blob: 7ebdec5b62f8516b99d156471a8f7f94339a7ccf [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
drhccb21132020-06-19 11:34:57 +000072** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drh37ccfcf2020-08-31 18:49:04 +0000115#ifdef SQLITE_DEBUG
116/*
drha7fc1682020-11-24 19:55:49 +0000117** Return and reset the seek counter for a Btree object.
drh37ccfcf2020-08-31 18:49:04 +0000118*/
119sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120 u64 n = pBt->nSeek;
121 pBt->nSeek = 0;
122 return n;
123}
124#endif
125
daneebf2f52017-11-18 17:30:08 +0000126/*
127** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128** (MemPage*) as an argument. The (MemPage*) must not be NULL.
129**
130** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133** with the page number and filename associated with the (MemPage*).
134*/
135#ifdef SQLITE_DEBUG
136int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000137 char *zMsg;
138 sqlite3BeginBenignMalloc();
139 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
141 );
drh8bfe66a2018-01-22 15:45:12 +0000142 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000143 if( zMsg ){
144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
145 }
146 sqlite3_free(zMsg);
147 return SQLITE_CORRUPT_BKPT;
148}
149# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150#else
151# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152#endif
153
drhe53831d2007-08-17 01:14:38 +0000154#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000155
156#ifdef SQLITE_DEBUG
157/*
drh0ee3dbe2009-10-16 15:05:18 +0000158**** This function is only used as part of an assert() statement. ***
159**
160** Check to see if pBtree holds the required locks to read or write to the
161** table with root page iRoot. Return 1 if it does and 0 if not.
162**
163** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000164** Btree connection pBtree:
165**
166** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
167**
drh0ee3dbe2009-10-16 15:05:18 +0000168** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000169** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000170** the corresponding table. This makes things a bit more complicated,
171** as this module treats each table as a separate structure. To determine
172** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000173** function has to search through the database schema.
174**
drh0ee3dbe2009-10-16 15:05:18 +0000175** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000176** hold a write-lock on the schema table (root page 1). This is also
177** acceptable.
178*/
179static int hasSharedCacheTableLock(
180 Btree *pBtree, /* Handle that must hold lock */
181 Pgno iRoot, /* Root page of b-tree */
182 int isIndex, /* True if iRoot is the root of an index b-tree */
183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
184){
185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186 Pgno iTab = 0;
187 BtLock *pLock;
188
drh0ee3dbe2009-10-16 15:05:18 +0000189 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000190 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000191 ** Return true immediately.
192 */
danielk197796d48e92009-06-29 06:00:37 +0000193 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000195 ){
196 return 1;
197 }
198
drh0ee3dbe2009-10-16 15:05:18 +0000199 /* If the client is reading or writing an index and the schema is
200 ** not loaded, then it is too difficult to actually check to see if
201 ** the correct locks are held. So do not bother - just return true.
202 ** This case does not come up very often anyhow.
203 */
drh2c5e35f2014-08-05 11:04:21 +0000204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000205 return 1;
206 }
207
danielk197796d48e92009-06-29 06:00:37 +0000208 /* Figure out the root-page that the lock should be held on. For table
209 ** b-trees, this is just the root page of the b-tree being read or
210 ** written. For index b-trees, it is the root page of the associated
211 ** table. */
212 if( isIndex ){
213 HashElem *p;
dan877859f2020-06-17 20:29:56 +0000214 int bSeen = 0;
danielk197796d48e92009-06-29 06:00:37 +0000215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216 Index *pIdx = (Index *)sqliteHashData(p);
drhe684ac62022-03-08 13:59:46 +0000217 if( pIdx->tnum==iRoot ){
dan877859f2020-06-17 20:29:56 +0000218 if( bSeen ){
drh1ffede82015-01-30 20:59:27 +0000219 /* Two or more indexes share the same root page. There must
220 ** be imposter tables. So just return true. The assert is not
221 ** useful in that case. */
222 return 1;
223 }
shane5eff7cf2009-08-10 03:57:58 +0000224 iTab = pIdx->pTable->tnum;
dan877859f2020-06-17 20:29:56 +0000225 bSeen = 1;
danielk197796d48e92009-06-29 06:00:37 +0000226 }
227 }
228 }else{
229 iTab = iRoot;
230 }
231
232 /* Search for the required lock. Either a write-lock on root-page iTab, a
233 ** write-lock on the schema table, or (if the client is reading) a
234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236 if( pLock->pBtree==pBtree
237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238 && pLock->eLock>=eLockType
239 ){
240 return 1;
241 }
242 }
243
244 /* Failed to find the required lock. */
245 return 0;
246}
drh0ee3dbe2009-10-16 15:05:18 +0000247#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000248
drh0ee3dbe2009-10-16 15:05:18 +0000249#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000250/*
drh0ee3dbe2009-10-16 15:05:18 +0000251**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000252**
drh0ee3dbe2009-10-16 15:05:18 +0000253** Return true if it would be illegal for pBtree to write into the
254** table or index rooted at iRoot because other shared connections are
255** simultaneously reading that same table or index.
256**
257** It is illegal for pBtree to write if some other Btree object that
258** shares the same BtShared object is currently reading or writing
259** the iRoot table. Except, if the other Btree object has the
260** read-uncommitted flag set, then it is OK for the other object to
261** have a read cursor.
262**
263** For example, before writing to any part of the table or index
264** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000265**
266** assert( !hasReadConflicts(pBtree, iRoot) );
267*/
268static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269 BtCursor *p;
270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271 if( p->pgnoRoot==iRoot
272 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000274 ){
275 return 1;
276 }
277 }
278 return 0;
279}
280#endif /* #ifdef SQLITE_DEBUG */
281
danielk1977da184232006-01-05 11:34:32 +0000282/*
drh0ee3dbe2009-10-16 15:05:18 +0000283** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000284** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000285** SQLITE_OK if the lock may be obtained (by calling
286** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000287*/
drhc25eabe2009-02-24 18:57:31 +0000288static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000289 BtShared *pBt = p->pBt;
290 BtLock *pIter;
291
drh1fee73e2007-08-29 04:00:57 +0000292 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000296
danielk19775b413d72009-04-01 09:41:54 +0000297 /* If requesting a write-lock, then the Btree must have an open write
298 ** transaction on this file. And, obviously, for this to be so there
299 ** must be an open write transaction on the file itself.
300 */
301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
303
drh0ee3dbe2009-10-16 15:05:18 +0000304 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000305 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000306 return SQLITE_OK;
307 }
308
danielk1977641b0f42007-12-21 04:47:25 +0000309 /* If some other connection is holding an exclusive lock, the
310 ** requested lock may not be obtained.
311 */
drhc9166342012-01-05 23:32:06 +0000312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000315 }
316
danielk1977e0d9e6f2009-07-03 16:25:06 +0000317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318 /* The condition (pIter->eLock!=eLock) in the following if(...)
319 ** statement is a simplification of:
320 **
321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
322 **
323 ** since we know that if eLock==WRITE_LOCK, then no other connection
324 ** may hold a WRITE_LOCK on any table in this file (since there can
325 ** only be a single writer).
326 */
327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331 if( eLock==WRITE_LOCK ){
332 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000333 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000334 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000335 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000336 }
337 }
338 return SQLITE_OK;
339}
drhe53831d2007-08-17 01:14:38 +0000340#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000341
drhe53831d2007-08-17 01:14:38 +0000342#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000343/*
344** Add a lock on the table with root-page iTable to the shared-btree used
345** by Btree handle p. Parameter eLock must be either READ_LOCK or
346** WRITE_LOCK.
347**
danielk19779d104862009-07-09 08:27:14 +0000348** This function assumes the following:
349**
drh0ee3dbe2009-10-16 15:05:18 +0000350** (a) The specified Btree object p is connected to a sharable
351** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000352**
drh0ee3dbe2009-10-16 15:05:18 +0000353** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000354** with the requested lock (i.e. querySharedCacheTableLock() has
355** already been called and returned SQLITE_OK).
356**
357** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000359*/
drhc25eabe2009-02-24 18:57:31 +0000360static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000361 BtShared *pBt = p->pBt;
362 BtLock *pLock = 0;
363 BtLock *pIter;
364
drh1fee73e2007-08-29 04:00:57 +0000365 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000368
danielk1977e0d9e6f2009-07-03 16:25:06 +0000369 /* A connection with the read-uncommitted flag set will never try to
370 ** obtain a read-lock using this function. The only read-lock obtained
drh1e32bed2020-06-19 13:33:53 +0000371 ** by a connection in read-uncommitted mode is on the sqlite_schema
danielk1977e0d9e6f2009-07-03 16:25:06 +0000372 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000374
danielk19779d104862009-07-09 08:27:14 +0000375 /* This function should only be called on a sharable b-tree after it
376 ** has been determined that no other b-tree holds a conflicting lock. */
377 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000379
380 /* First search the list for an existing lock on this table. */
381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382 if( pIter->iTable==iTable && pIter->pBtree==p ){
383 pLock = pIter;
384 break;
385 }
386 }
387
388 /* If the above search did not find a BtLock struct associating Btree p
389 ** with table iTable, allocate one and link it into the list.
390 */
391 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000393 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000394 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }
396 pLock->iTable = iTable;
397 pLock->pBtree = p;
398 pLock->pNext = pBt->pLock;
399 pBt->pLock = pLock;
400 }
401
402 /* Set the BtLock.eLock variable to the maximum of the current lock
403 ** and the requested lock. This means if a write-lock was already held
404 ** and a read-lock requested, we don't incorrectly downgrade the lock.
405 */
406 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000407 if( eLock>pLock->eLock ){
408 pLock->eLock = eLock;
409 }
danielk1977aef0bf62005-12-30 16:28:01 +0000410
411 return SQLITE_OK;
412}
drhe53831d2007-08-17 01:14:38 +0000413#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000414
drhe53831d2007-08-17 01:14:38 +0000415#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000416/*
drhc25eabe2009-02-24 18:57:31 +0000417** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000418** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000419**
drh0ee3dbe2009-10-16 15:05:18 +0000420** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000421** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000422** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000423*/
drhc25eabe2009-02-24 18:57:31 +0000424static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000425 BtShared *pBt = p->pBt;
426 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000427
drh1fee73e2007-08-29 04:00:57 +0000428 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000429 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000430 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000431
danielk1977aef0bf62005-12-30 16:28:01 +0000432 while( *ppIter ){
433 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000435 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000436 if( pLock->pBtree==p ){
437 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000438 assert( pLock->iTable!=1 || pLock==&p->lock );
439 if( pLock->iTable!=1 ){
440 sqlite3_free(pLock);
441 }
danielk1977aef0bf62005-12-30 16:28:01 +0000442 }else{
443 ppIter = &pLock->pNext;
444 }
445 }
danielk1977641b0f42007-12-21 04:47:25 +0000446
drhc9166342012-01-05 23:32:06 +0000447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000448 if( pBt->pWriter==p ){
449 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000451 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000452 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000453 ** transaction. If there currently exists a writer, and p is not
454 ** that writer, then the number of locks held by connections other
455 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000456 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000457 **
drhc9166342012-01-05 23:32:06 +0000458 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000459 ** be zero already. So this next line is harmless in that case.
460 */
drhc9166342012-01-05 23:32:06 +0000461 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000462 }
danielk1977aef0bf62005-12-30 16:28:01 +0000463}
danielk197794b30732009-07-02 17:21:57 +0000464
danielk1977e0d9e6f2009-07-03 16:25:06 +0000465/*
drh0ee3dbe2009-10-16 15:05:18 +0000466** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000467*/
danielk197794b30732009-07-02 17:21:57 +0000468static void downgradeAllSharedCacheTableLocks(Btree *p){
469 BtShared *pBt = p->pBt;
470 if( pBt->pWriter==p ){
471 BtLock *pLock;
472 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476 pLock->eLock = READ_LOCK;
477 }
478 }
479}
480
danielk1977aef0bf62005-12-30 16:28:01 +0000481#endif /* SQLITE_OMIT_SHARED_CACHE */
482
drh3908fe92017-09-01 14:50:19 +0000483static void releasePage(MemPage *pPage); /* Forward reference */
484static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000485static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000486
drh1fee73e2007-08-29 04:00:57 +0000487/*
drh0ee3dbe2009-10-16 15:05:18 +0000488***** This routine is used inside of assert() only ****
489**
490** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000491*/
drh0ee3dbe2009-10-16 15:05:18 +0000492#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000493static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000494 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000495}
drh5e08d0f2016-06-04 21:05:54 +0000496
497/* Verify that the cursor and the BtShared agree about what is the current
498** database connetion. This is important in shared-cache mode. If the database
499** connection pointers get out-of-sync, it is possible for routines like
500** btreeInitPage() to reference an stale connection pointer that references a
501** a connection that has already closed. This routine is used inside assert()
502** statements only and for the purpose of double-checking that the btree code
503** does keep the database connection pointers up-to-date.
504*/
dan7a2347e2016-01-07 16:43:54 +0000505static int cursorOwnsBtShared(BtCursor *p){
506 assert( cursorHoldsMutex(p) );
507 return (p->pBtree->db==p->pBt->db);
508}
drh1fee73e2007-08-29 04:00:57 +0000509#endif
510
danielk197792d4d7a2007-05-04 12:05:56 +0000511/*
dan5a500af2014-03-11 20:33:04 +0000512** Invalidate the overflow cache of the cursor passed as the first argument.
513** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000514*/
drh036dbec2014-03-11 23:40:44 +0000515#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000516
517/*
518** Invalidate the overflow page-list cache for all cursors opened
519** on the shared btree structure pBt.
520*/
521static void invalidateAllOverflowCache(BtShared *pBt){
522 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000523 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000524 for(p=pBt->pCursor; p; p=p->pNext){
525 invalidateOverflowCache(p);
526 }
527}
danielk197796d48e92009-06-29 06:00:37 +0000528
dan5a500af2014-03-11 20:33:04 +0000529#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000530/*
531** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000532** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000533** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000534**
535** If argument isClearTable is true, then the entire contents of the
536** table is about to be deleted. In this case invalidate all incrblob
537** cursors open on any row within the table with root-page pgnoRoot.
538**
539** Otherwise, if argument isClearTable is false, then the row with
540** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000541** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000542*/
543static void invalidateIncrblobCursors(
544 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000545 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000546 i64 iRow, /* The rowid that might be changing */
547 int isClearTable /* True if all rows are being deleted */
548){
549 BtCursor *p;
drh49bb56e2021-05-14 20:01:36 +0000550 assert( pBtree->hasIncrblobCur );
danielk197796d48e92009-06-29 06:00:37 +0000551 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000552 pBtree->hasIncrblobCur = 0;
553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554 if( (p->curFlags & BTCF_Incrblob)!=0 ){
555 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000557 p->eState = CURSOR_INVALID;
558 }
danielk197796d48e92009-06-29 06:00:37 +0000559 }
560 }
561}
562
danielk197792d4d7a2007-05-04 12:05:56 +0000563#else
dan5a500af2014-03-11 20:33:04 +0000564 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000565 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000566#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000567
drh980b1a72006-08-16 16:42:48 +0000568/*
danielk1977bea2a942009-01-20 17:06:27 +0000569** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570** when a page that previously contained data becomes a free-list leaf
571** page.
572**
573** The BtShared.pHasContent bitvec exists to work around an obscure
574** bug caused by the interaction of two useful IO optimizations surrounding
575** free-list leaf pages:
576**
577** 1) When all data is deleted from a page and the page becomes
578** a free-list leaf page, the page is not written to the database
579** (as free-list leaf pages contain no meaningful data). Sometimes
580** such a page is not even journalled (as it will not be modified,
581** why bother journalling it?).
582**
583** 2) When a free-list leaf page is reused, its content is not read
584** from the database or written to the journal file (why should it
585** be, if it is not at all meaningful?).
586**
587** By themselves, these optimizations work fine and provide a handy
588** performance boost to bulk delete or insert operations. However, if
589** a page is moved to the free-list and then reused within the same
590** transaction, a problem comes up. If the page is not journalled when
591** it is moved to the free-list and it is also not journalled when it
592** is extracted from the free-list and reused, then the original data
593** may be lost. In the event of a rollback, it may not be possible
594** to restore the database to its original configuration.
595**
596** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597** moved to become a free-list leaf page, the corresponding bit is
598** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000599** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000600** set in BtShared.pHasContent. The contents of the bitvec are cleared
601** at the end of every transaction.
602*/
603static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604 int rc = SQLITE_OK;
605 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000606 assert( pgno<=pBt->nPage );
607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000608 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000609 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000610 }
611 }
612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
614 }
615 return rc;
616}
617
618/*
619** Query the BtShared.pHasContent vector.
620**
621** This function is called when a free-list leaf page is removed from the
622** free-list for reuse. It returns false if it is safe to retrieve the
623** page from the pager layer with the 'no-content' flag set. True otherwise.
624*/
625static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626 Bitvec *p = pBt->pHasContent;
pdrdb9cb172020-03-08 13:33:58 +0000627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
danielk1977bea2a942009-01-20 17:06:27 +0000628}
629
630/*
631** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632** invoked at the conclusion of each write-transaction.
633*/
634static void btreeClearHasContent(BtShared *pBt){
635 sqlite3BitvecDestroy(pBt->pHasContent);
636 pBt->pHasContent = 0;
637}
638
639/*
drh138eeeb2013-03-27 03:15:23 +0000640** Release all of the apPage[] pages for a cursor.
641*/
642static void btreeReleaseAllCursorPages(BtCursor *pCur){
643 int i;
drh352a35a2017-08-15 03:46:47 +0000644 if( pCur->iPage>=0 ){
645 for(i=0; i<pCur->iPage; i++){
646 releasePageNotNull(pCur->apPage[i]);
647 }
648 releasePageNotNull(pCur->pPage);
649 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000650 }
drh138eeeb2013-03-27 03:15:23 +0000651}
652
danf0ee1d32015-09-12 19:26:11 +0000653/*
654** The cursor passed as the only argument must point to a valid entry
655** when this function is called (i.e. have eState==CURSOR_VALID). This
656** function saves the current cursor key in variables pCur->nKey and
657** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658** code otherwise.
659**
660** If the cursor is open on an intkey table, then the integer key
661** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663** set to point to a malloced buffer pCur->nKey bytes in size containing
664** the key.
665*/
666static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000667 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000668 assert( CURSOR_VALID==pCur->eState );
669 assert( 0==pCur->pKey );
670 assert( cursorHoldsMutex(pCur) );
671
drha7c90c42016-06-04 20:37:10 +0000672 if( pCur->curIntKey ){
673 /* Only the rowid is required for a table btree */
674 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675 }else{
danfffaf232018-12-14 13:18:35 +0000676 /* For an index btree, save the complete key content. It is possible
677 ** that the current key is corrupt. In that case, it is possible that
678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679 ** up to the size of 1 varint plus 1 8-byte value when the cursor
680 ** position is restored. Hence the 17 bytes of padding allocated
681 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000682 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000683 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000685 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000687 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000689 pCur->pKey = pKey;
690 }else{
691 sqlite3_free(pKey);
692 }
693 }else{
mistachkinfad30392016-02-13 23:43:46 +0000694 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000695 }
696 }
697 assert( !pCur->curIntKey || !pCur->pKey );
698 return rc;
699}
drh138eeeb2013-03-27 03:15:23 +0000700
701/*
drh980b1a72006-08-16 16:42:48 +0000702** Save the current cursor position in the variables BtCursor.nKey
703** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000704**
705** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000707*/
708static int saveCursorPosition(BtCursor *pCur){
709 int rc;
710
drhd2f83132015-03-25 17:35:01 +0000711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000712 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000713 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000714
drh7b14b652019-12-29 22:08:20 +0000715 if( pCur->curFlags & BTCF_Pinned ){
716 return SQLITE_CONSTRAINT_PINNED;
717 }
drhd2f83132015-03-25 17:35:01 +0000718 if( pCur->eState==CURSOR_SKIPNEXT ){
719 pCur->eState = CURSOR_VALID;
720 }else{
721 pCur->skipNext = 0;
722 }
drh980b1a72006-08-16 16:42:48 +0000723
danf0ee1d32015-09-12 19:26:11 +0000724 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000725 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000726 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000727 pCur->eState = CURSOR_REQUIRESEEK;
728 }
729
dane755e102015-09-30 12:59:12 +0000730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000731 return rc;
732}
733
drh637f3d82014-08-22 22:26:07 +0000734/* Forward reference */
735static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
736
drh980b1a72006-08-16 16:42:48 +0000737/*
drh0ee3dbe2009-10-16 15:05:18 +0000738** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000739** the table with root-page iRoot. "Saving the cursor position" means that
740** the location in the btree is remembered in such a way that it can be
741** moved back to the same spot after the btree has been modified. This
742** routine is called just before cursor pExcept is used to modify the
743** table, for example in BtreeDelete() or BtreeInsert().
744**
drh27fb7462015-06-30 02:47:36 +0000745** If there are two or more cursors on the same btree, then all such
746** cursors should have their BTCF_Multiple flag set. The btreeCursor()
747** routine enforces that rule. This routine only needs to be called in
748** the uncommon case when pExpect has the BTCF_Multiple flag set.
749**
750** If pExpect!=NULL and if no other cursors are found on the same root-page,
751** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752** pointless call to this routine.
753**
drh637f3d82014-08-22 22:26:07 +0000754** Implementation note: This routine merely checks to see if any cursors
755** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
756** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000757*/
758static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000760 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000761 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000762 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
764 }
drh27fb7462015-06-30 02:47:36 +0000765 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000768}
769
770/* This helper routine to saveAllCursors does the actual work of saving
771** the cursors if and when a cursor is found that actually requires saving.
772** The common case is that no cursors need to be saved, so this routine is
773** broken out from its caller to avoid unnecessary stack pointer movement.
774*/
775static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000776 BtCursor *p, /* The first cursor that needs saving */
777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
778 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000779){
780 do{
drh138eeeb2013-03-27 03:15:23 +0000781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000783 int rc = saveCursorPosition(p);
784 if( SQLITE_OK!=rc ){
785 return rc;
786 }
787 }else{
drh85ef6302017-08-02 15:50:09 +0000788 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000789 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000790 }
791 }
drh637f3d82014-08-22 22:26:07 +0000792 p = p->pNext;
793 }while( p );
drh980b1a72006-08-16 16:42:48 +0000794 return SQLITE_OK;
795}
796
797/*
drhbf700f32007-03-31 02:36:44 +0000798** Clear the current cursor position.
799*/
danielk1977be51a652008-10-08 17:58:48 +0000800void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000801 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000802 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000803 pCur->pKey = 0;
804 pCur->eState = CURSOR_INVALID;
805}
806
807/*
danielk19773509a652009-07-06 18:56:13 +0000808** In this version of BtreeMoveto, pKey is a packed index record
809** such as is generated by the OP_MakeRecord opcode. Unpack the
drheab10642022-03-06 20:22:24 +0000810** record and then call sqlite3BtreeIndexMoveto() to do the work.
danielk19773509a652009-07-06 18:56:13 +0000811*/
812static int btreeMoveto(
813 BtCursor *pCur, /* Cursor open on the btree to be searched */
814 const void *pKey, /* Packed key if the btree is an index */
815 i64 nKey, /* Integer key for tables. Size of pKey for indices */
816 int bias, /* Bias search to the high end */
817 int *pRes /* Write search results here */
818){
819 int rc; /* Status code */
820 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000821
822 if( pKey ){
danb0c4c942019-01-24 15:16:17 +0000823 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +0000824 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +0000825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +0000827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +0000829 rc = SQLITE_CORRUPT_BKPT;
drh42a410d2021-06-19 18:32:20 +0000830 }else{
831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
drh094b7582013-11-30 12:49:28 +0000832 }
drh42a410d2021-06-19 18:32:20 +0000833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000834 }else{
835 pIdxKey = 0;
drh42a410d2021-06-19 18:32:20 +0000836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
danielk19773509a652009-07-06 18:56:13 +0000837 }
838 return rc;
839}
840
841/*
drh980b1a72006-08-16 16:42:48 +0000842** Restore the cursor to the position it was in (or as close to as possible)
843** when saveCursorPosition() was called. Note that this call deletes the
844** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000845** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000846** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000847*/
danielk197730548662009-07-09 05:07:37 +0000848static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000849 int rc;
mistachkin4e2d3d42019-04-01 03:07:21 +0000850 int skipNext = 0;
dan7a2347e2016-01-07 16:43:54 +0000851 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000852 assert( pCur->eState>=CURSOR_REQUIRESEEK );
853 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000854 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000855 }
drh980b1a72006-08-16 16:42:48 +0000856 pCur->eState = CURSOR_INVALID;
drhb336d1a2019-03-30 19:17:35 +0000857 if( sqlite3FaultSim(410) ){
858 rc = SQLITE_IOERR;
859 }else{
860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
861 }
drh980b1a72006-08-16 16:42:48 +0000862 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000863 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000864 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +0000866 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +0000867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
868 pCur->eState = CURSOR_SKIPNEXT;
869 }
drh980b1a72006-08-16 16:42:48 +0000870 }
871 return rc;
872}
873
drha3460582008-07-11 21:02:53 +0000874#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000875 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000876 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000877 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000878
drha3460582008-07-11 21:02:53 +0000879/*
drh6848dad2014-08-22 23:33:03 +0000880** Determine whether or not a cursor has moved from the position where
881** it was last placed, or has been invalidated for any other reason.
882** Cursors can move when the row they are pointing at is deleted out
883** from under them, for example. Cursor might also move if a btree
884** is rebalanced.
drha3460582008-07-11 21:02:53 +0000885**
drh6848dad2014-08-22 23:33:03 +0000886** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000887**
drh6848dad2014-08-22 23:33:03 +0000888** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000890*/
drh6848dad2014-08-22 23:33:03 +0000891int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000892 assert( EIGHT_BYTE_ALIGNMENT(pCur)
893 || pCur==sqlite3BtreeFakeValidCursor() );
894 assert( offsetof(BtCursor, eState)==0 );
895 assert( sizeof(pCur->eState)==1 );
896 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000897}
898
899/*
drhfe0cf7a2017-08-16 19:20:20 +0000900** Return a pointer to a fake BtCursor object that will always answer
901** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
902** cursor returned must not be used with any other Btree interface.
903*/
904BtCursor *sqlite3BtreeFakeValidCursor(void){
905 static u8 fakeCursor = CURSOR_VALID;
906 assert( offsetof(BtCursor, eState)==0 );
907 return (BtCursor*)&fakeCursor;
908}
909
910/*
drh6848dad2014-08-22 23:33:03 +0000911** This routine restores a cursor back to its original position after it
912** has been moved by some outside activity (such as a btree rebalance or
913** a row having been deleted out from under the cursor).
914**
915** On success, the *pDifferentRow parameter is false if the cursor is left
916** pointing at exactly the same row. *pDifferntRow is the row the cursor
917** was pointing to has been deleted, forcing the cursor to point to some
918** nearby row.
919**
920** This routine should only be called for a cursor that just returned
921** TRUE from sqlite3BtreeCursorHasMoved().
922*/
923int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000924 int rc;
925
drh6848dad2014-08-22 23:33:03 +0000926 assert( pCur!=0 );
927 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000928 rc = restoreCursorPosition(pCur);
929 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000930 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000931 return rc;
932 }
drh606a3572015-03-25 18:29:10 +0000933 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000934 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000935 }else{
drh6848dad2014-08-22 23:33:03 +0000936 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000937 }
938 return SQLITE_OK;
939}
940
drhf7854c72015-10-27 13:24:37 +0000941#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000942/*
drh0df57012015-08-14 15:05:55 +0000943** Provide hints to the cursor. The particular hint given (and the type
944** and number of the varargs parameters) is determined by the eHintType
945** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000946*/
drh0df57012015-08-14 15:05:55 +0000947void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000948 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000949}
drhf7854c72015-10-27 13:24:37 +0000950#endif
951
952/*
953** Provide flag hints to the cursor.
954*/
955void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
957 pCur->hints = x;
958}
959
drh28935362013-12-07 20:39:19 +0000960
danielk1977599fcba2004-11-08 07:13:13 +0000961#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000962/*
drha3152892007-05-05 11:48:52 +0000963** Given a page number of a regular database page, return the page
964** number for the pointer-map page that contains the entry for the
965** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000966**
967** Return 0 (not a valid page) for pgno==1 since there is
968** no pointer map associated with page 1. The integrity_check logic
969** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000970*/
danielk1977266664d2006-02-10 08:24:21 +0000971static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000972 int nPagesPerMapPage;
973 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000974 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000975 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000976 nPagesPerMapPage = (pBt->usableSize/5)+1;
977 iPtrMap = (pgno-2)/nPagesPerMapPage;
978 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000979 if( ret==PENDING_BYTE_PAGE(pBt) ){
980 ret++;
981 }
982 return ret;
983}
danielk1977a19df672004-11-03 11:37:07 +0000984
danielk1977afcdd022004-10-31 16:25:42 +0000985/*
danielk1977afcdd022004-10-31 16:25:42 +0000986** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000987**
988** This routine updates the pointer map entry for page number 'key'
989** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000990**
991** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992** a no-op. If an error occurs, the appropriate error code is written
993** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000994*/
drh98add2e2009-07-20 17:11:49 +0000995static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000996 DbPage *pDbPage; /* The pointer map page */
997 u8 *pPtrmap; /* The pointer map data */
998 Pgno iPtrmap; /* The pointer map page number */
999 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +00001000 int rc; /* Return code from subfunctions */
1001
1002 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +00001003
drh1fee73e2007-08-29 04:00:57 +00001004 assert( sqlite3_mutex_held(pBt->mutex) );
drh067b92b2020-06-19 15:24:12 +00001005 /* The super-journal page number must never be used as a pointer map page */
danielk1977266664d2006-02-10 08:24:21 +00001006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1007
danielk1977ac11ee62005-01-15 12:45:51 +00001008 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +00001009 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +00001010 *pRC = SQLITE_CORRUPT_BKPT;
1011 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +00001012 }
danielk1977266664d2006-02-10 08:24:21 +00001013 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00001015 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00001016 *pRC = rc;
1017 return;
danielk1977afcdd022004-10-31 16:25:42 +00001018 }
drh203b1ea2018-12-14 03:14:18 +00001019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1020 /* The first byte of the extra data is the MemPage.isInit byte.
1021 ** If that byte is set, it means this page is also being used
1022 ** as a btree page. */
1023 *pRC = SQLITE_CORRUPT_BKPT;
1024 goto ptrmap_exit;
1025 }
danielk19778c666b12008-07-18 09:34:57 +00001026 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001027 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001028 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001029 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001030 }
drhfc243732011-05-17 15:21:56 +00001031 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001033
drh615ae552005-01-16 23:21:00 +00001034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001036 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001037 if( rc==SQLITE_OK ){
1038 pPtrmap[offset] = eType;
1039 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001040 }
danielk1977afcdd022004-10-31 16:25:42 +00001041 }
1042
drh4925a552009-07-07 11:39:58 +00001043ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001044 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001045}
1046
1047/*
1048** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001049**
1050** This routine retrieves the pointer map entry for page 'key', writing
1051** the type and parent page number to *pEType and *pPgno respectively.
1052** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001053*/
danielk1977aef0bf62005-12-30 16:28:01 +00001054static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001055 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001056 int iPtrmap; /* Pointer map page index */
1057 u8 *pPtrmap; /* Pointer map page data */
1058 int offset; /* Offset of entry in pointer map */
1059 int rc;
1060
drh1fee73e2007-08-29 04:00:57 +00001061 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001062
danielk1977266664d2006-02-10 08:24:21 +00001063 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001065 if( rc!=0 ){
1066 return rc;
1067 }
danielk19773b8a05f2007-03-19 17:44:26 +00001068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001069
danielk19778c666b12008-07-18 09:34:57 +00001070 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001071 if( offset<0 ){
1072 sqlite3PagerUnref(pDbPage);
1073 return SQLITE_CORRUPT_BKPT;
1074 }
1075 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001076 assert( pEType!=0 );
1077 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001079
danielk19773b8a05f2007-03-19 17:44:26 +00001080 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001082 return SQLITE_OK;
1083}
1084
danielk197785d90ca2008-07-19 14:25:15 +00001085#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001086 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001087 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001088 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001089#endif
danielk1977afcdd022004-10-31 16:25:42 +00001090
drh0d316a42002-08-11 20:10:47 +00001091/*
drh271efa52004-05-30 19:19:05 +00001092** Given a btree page and a cell index (0 means the first cell on
1093** the page, 1 means the second cell, and so forth) return a pointer
1094** to the cell content.
1095**
drhf44890a2015-06-27 03:58:15 +00001096** findCellPastPtr() does the same except it skips past the initial
1097** 4-byte child pointer found on interior pages, if there is one.
1098**
drh271efa52004-05-30 19:19:05 +00001099** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001100*/
drh1688c862008-07-18 02:44:17 +00001101#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001103#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001105
drh43605152004-05-29 21:46:49 +00001106
1107/*
drh5fa60512015-06-19 17:19:34 +00001108** This is common tail processing for btreeParseCellPtr() and
1109** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110** on a single B-tree page. Make necessary adjustments to the CellInfo
1111** structure.
drh43605152004-05-29 21:46:49 +00001112*/
drh5fa60512015-06-19 17:19:34 +00001113static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1114 MemPage *pPage, /* Page containing the cell */
1115 u8 *pCell, /* Pointer to the cell text. */
1116 CellInfo *pInfo /* Fill in this structure */
1117){
1118 /* If the payload will not fit completely on the local page, we have
1119 ** to decide how much to store locally and how much to spill onto
1120 ** overflow pages. The strategy is to minimize the amount of unused
1121 ** space on overflow pages while keeping the amount of local storage
1122 ** in between minLocal and maxLocal.
1123 **
1124 ** Warning: changing the way overflow payload is distributed in any
1125 ** way will result in an incompatible file format.
1126 */
1127 int minLocal; /* Minimum amount of payload held locally */
1128 int maxLocal; /* Maximum amount of payload held locally */
1129 int surplus; /* Overflow payload available for local storage */
1130
1131 minLocal = pPage->minLocal;
1132 maxLocal = pPage->maxLocal;
1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1134 testcase( surplus==maxLocal );
1135 testcase( surplus==maxLocal+1 );
1136 if( surplus <= maxLocal ){
1137 pInfo->nLocal = (u16)surplus;
1138 }else{
1139 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001140 }
drh45ac1c72015-12-18 03:59:16 +00001141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001142}
1143
1144/*
danebbf3682020-12-09 16:32:11 +00001145** Given a record with nPayload bytes of payload stored within btree
1146** page pPage, return the number of bytes of payload stored locally.
1147*/
dan59964b42020-12-14 15:25:14 +00001148static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
danebbf3682020-12-09 16:32:11 +00001149 int maxLocal; /* Maximum amount of payload held locally */
1150 maxLocal = pPage->maxLocal;
1151 if( nPayload<=maxLocal ){
1152 return nPayload;
1153 }else{
1154 int minLocal; /* Minimum amount of payload held locally */
1155 int surplus; /* Overflow payload available for local storage */
1156 minLocal = pPage->minLocal;
1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1158 return ( surplus <= maxLocal ) ? surplus : minLocal;
1159 }
1160}
1161
1162/*
drh5fa60512015-06-19 17:19:34 +00001163** The following routines are implementations of the MemPage.xParseCell()
1164** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001165**
drh5fa60512015-06-19 17:19:34 +00001166** Parse a cell content block and fill in the CellInfo structure.
1167**
1168** btreeParseCellPtr() => table btree leaf nodes
1169** btreeParseCellNoPayload() => table btree internal nodes
1170** btreeParseCellPtrIndex() => index btree nodes
1171**
1172** There is also a wrapper function btreeParseCell() that works for
1173** all MemPage types and that references the cell by index rather than
1174** by pointer.
drh43605152004-05-29 21:46:49 +00001175*/
drh5fa60512015-06-19 17:19:34 +00001176static void btreeParseCellPtrNoPayload(
1177 MemPage *pPage, /* Page containing the cell */
1178 u8 *pCell, /* Pointer to the cell text. */
1179 CellInfo *pInfo /* Fill in this structure */
1180){
1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001183 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001184#ifndef SQLITE_DEBUG
1185 UNUSED_PARAMETER(pPage);
1186#endif
drh5fa60512015-06-19 17:19:34 +00001187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1188 pInfo->nPayload = 0;
1189 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001190 pInfo->pPayload = 0;
1191 return;
1192}
danielk197730548662009-07-09 05:07:37 +00001193static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001194 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001195 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001196 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001197){
drh3e28ff52014-09-24 00:59:08 +00001198 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001199 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001200 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001201
drh1fee73e2007-08-29 04:00:57 +00001202 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001203 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001204 assert( pPage->intKeyLeaf );
1205 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001206 pIter = pCell;
1207
1208 /* The next block of code is equivalent to:
1209 **
1210 ** pIter += getVarint32(pIter, nPayload);
1211 **
1212 ** The code is inlined to avoid a function call.
1213 */
1214 nPayload = *pIter;
1215 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001216 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001217 nPayload &= 0x7f;
1218 do{
1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1220 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001221 }
drh56cb04e2015-06-19 18:24:37 +00001222 pIter++;
1223
1224 /* The next block of code is equivalent to:
1225 **
1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1227 **
drh29bbc2b2022-01-02 16:48:00 +00001228 ** The code is inlined and the loop is unrolled for performance.
1229 ** This routine is a high-runner.
drh56cb04e2015-06-19 18:24:37 +00001230 */
1231 iKey = *pIter;
1232 if( iKey>=0x80 ){
drh29bbc2b2022-01-02 16:48:00 +00001233 u8 x;
1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f);
1235 if( x>=0x80 ){
1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f);
1237 if( x>=0x80 ){
1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1239 if( x>=0x80 ){
1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1241 if( x>=0x80 ){
1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1243 if( x>=0x80 ){
1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1245 if( x>=0x80 ){
1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1247 if( x>=0x80 ){
1248 iKey = (iKey<<8) | (*++pIter);
1249 }
1250 }
1251 }
1252 }
1253 }
drh56cb04e2015-06-19 18:24:37 +00001254 }
1255 }
1256 }
1257 pIter++;
1258
1259 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001260 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001261 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001262 testcase( nPayload==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001263 testcase( nPayload==(u32)pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001264 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001265 /* This is the (easy) common case where the entire payload fits
1266 ** on the local page. No overflow is required.
1267 */
drhab1cc582014-09-23 21:25:19 +00001268 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1269 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001270 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001271 }else{
drh5fa60512015-06-19 17:19:34 +00001272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001273 }
drh3aac2dd2004-04-26 14:10:20 +00001274}
drh5fa60512015-06-19 17:19:34 +00001275static void btreeParseCellPtrIndex(
1276 MemPage *pPage, /* Page containing the cell */
1277 u8 *pCell, /* Pointer to the cell text. */
1278 CellInfo *pInfo /* Fill in this structure */
1279){
1280 u8 *pIter; /* For scanning through pCell */
1281 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001282
drh5fa60512015-06-19 17:19:34 +00001283 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1284 assert( pPage->leaf==0 || pPage->leaf==1 );
1285 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001286 pIter = pCell + pPage->childPtrSize;
1287 nPayload = *pIter;
1288 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001289 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001290 nPayload &= 0x7f;
1291 do{
1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1293 }while( *(pIter)>=0x80 && pIter<pEnd );
1294 }
1295 pIter++;
1296 pInfo->nKey = nPayload;
1297 pInfo->nPayload = nPayload;
1298 pInfo->pPayload = pIter;
1299 testcase( nPayload==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001300 testcase( nPayload==(u32)pPage->maxLocal+1 );
drh5fa60512015-06-19 17:19:34 +00001301 if( nPayload<=pPage->maxLocal ){
1302 /* This is the (easy) common case where the entire payload fits
1303 ** on the local page. No overflow is required.
1304 */
1305 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1306 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1307 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001308 }else{
1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001310 }
1311}
danielk197730548662009-07-09 05:07:37 +00001312static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001313 MemPage *pPage, /* Page containing the cell */
1314 int iCell, /* The cell index. First cell is 0 */
1315 CellInfo *pInfo /* Fill in this structure */
1316){
drh5fa60512015-06-19 17:19:34 +00001317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001318}
drh3aac2dd2004-04-26 14:10:20 +00001319
1320/*
drh5fa60512015-06-19 17:19:34 +00001321** The following routines are implementations of the MemPage.xCellSize
1322** method.
1323**
drh43605152004-05-29 21:46:49 +00001324** Compute the total number of bytes that a Cell needs in the cell
1325** data area of the btree-page. The return number includes the cell
1326** data header and the local payload, but not any overflow page or
1327** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001328**
drh5fa60512015-06-19 17:19:34 +00001329** cellSizePtrNoPayload() => table internal nodes
drh19ae01b2022-02-23 22:56:10 +00001330** cellSizePtrTableLeaf() => table leaf nodes
drh5fa60512015-06-19 17:19:34 +00001331** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001332*/
danielk1977ae5558b2009-04-29 11:31:47 +00001333static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001334 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1335 u8 *pEnd; /* End mark for a varint */
1336 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001337
1338#ifdef SQLITE_DEBUG
1339 /* The value returned by this function should always be the same as
1340 ** the (CellInfo.nSize) value found by doing a full parse of the
1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1342 ** this function verifies that this invariant is not violated. */
1343 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001344 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001345#endif
1346
drh3e28ff52014-09-24 00:59:08 +00001347 nSize = *pIter;
1348 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001349 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001350 nSize &= 0x7f;
1351 do{
1352 nSize = (nSize<<7) | (*++pIter & 0x7f);
1353 }while( *(pIter)>=0x80 && pIter<pEnd );
1354 }
1355 pIter++;
drh0a45c272009-07-08 01:49:11 +00001356 testcase( nSize==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001357 testcase( nSize==(u32)pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001358 if( nSize<=pPage->maxLocal ){
1359 nSize += (u32)(pIter - pCell);
1360 if( nSize<4 ) nSize = 4;
1361 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001362 int minLocal = pPage->minLocal;
1363 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001364 testcase( nSize==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001365 testcase( nSize==(u32)pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001366 if( nSize>pPage->maxLocal ){
1367 nSize = minLocal;
1368 }
drh3e28ff52014-09-24 00:59:08 +00001369 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001370 }
drhdc41d602014-09-22 19:51:35 +00001371 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001372 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001373}
drh25ada072015-06-19 15:07:14 +00001374static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1375 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1376 u8 *pEnd; /* End mark for a varint */
1377
1378#ifdef SQLITE_DEBUG
1379 /* The value returned by this function should always be the same as
1380 ** the (CellInfo.nSize) value found by doing a full parse of the
1381 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1382 ** this function verifies that this invariant is not violated. */
1383 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001384 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001385#else
1386 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001387#endif
1388
1389 assert( pPage->childPtrSize==4 );
1390 pEnd = pIter + 9;
1391 while( (*pIter++)&0x80 && pIter<pEnd );
1392 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1393 return (u16)(pIter - pCell);
1394}
drh19ae01b2022-02-23 22:56:10 +00001395static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){
1396 u8 *pIter = pCell; /* For looping over bytes of pCell */
1397 u8 *pEnd; /* End mark for a varint */
1398 u32 nSize; /* Size value to return */
1399
1400#ifdef SQLITE_DEBUG
1401 /* The value returned by this function should always be the same as
1402 ** the (CellInfo.nSize) value found by doing a full parse of the
1403 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1404 ** this function verifies that this invariant is not violated. */
1405 CellInfo debuginfo;
1406 pPage->xParseCell(pPage, pCell, &debuginfo);
1407#endif
1408
1409 nSize = *pIter;
1410 if( nSize>=0x80 ){
1411 pEnd = &pIter[8];
1412 nSize &= 0x7f;
1413 do{
1414 nSize = (nSize<<7) | (*++pIter & 0x7f);
1415 }while( *(pIter)>=0x80 && pIter<pEnd );
1416 }
1417 pIter++;
1418 /* pIter now points at the 64-bit integer key value, a variable length
1419 ** integer. The following block moves pIter to point at the first byte
1420 ** past the end of the key value. */
1421 if( (*pIter++)&0x80
1422 && (*pIter++)&0x80
1423 && (*pIter++)&0x80
1424 && (*pIter++)&0x80
1425 && (*pIter++)&0x80
1426 && (*pIter++)&0x80
1427 && (*pIter++)&0x80
1428 && (*pIter++)&0x80 ){ pIter++; }
1429 testcase( nSize==pPage->maxLocal );
1430 testcase( nSize==(u32)pPage->maxLocal+1 );
1431 if( nSize<=pPage->maxLocal ){
1432 nSize += (u32)(pIter - pCell);
1433 if( nSize<4 ) nSize = 4;
1434 }else{
1435 int minLocal = pPage->minLocal;
1436 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1437 testcase( nSize==pPage->maxLocal );
1438 testcase( nSize==(u32)pPage->maxLocal+1 );
1439 if( nSize>pPage->maxLocal ){
1440 nSize = minLocal;
1441 }
1442 nSize += 4 + (u16)(pIter - pCell);
1443 }
1444 assert( nSize==debuginfo.nSize || CORRUPT_DB );
1445 return (u16)nSize;
1446}
drh25ada072015-06-19 15:07:14 +00001447
drh0ee3dbe2009-10-16 15:05:18 +00001448
1449#ifdef SQLITE_DEBUG
1450/* This variation on cellSizePtr() is used inside of assert() statements
1451** only. */
drha9121e42008-02-19 14:59:35 +00001452static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001453 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001454}
danielk1977bc6ada42004-06-30 08:20:16 +00001455#endif
drh3b7511c2001-05-26 13:15:44 +00001456
danielk197779a40da2005-01-16 08:00:01 +00001457#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001458/*
drh0f1bf4c2019-01-13 20:17:21 +00001459** The cell pCell is currently part of page pSrc but will ultimately be part
drh3b4cb712022-03-01 19:19:20 +00001460** of pPage. (pSrc and pPage are often the same.) If pCell contains a
drh0f1bf4c2019-01-13 20:17:21 +00001461** pointer to an overflow page, insert an entry into the pointer-map for
1462** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001463*/
drh0f1bf4c2019-01-13 20:17:21 +00001464static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001465 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001466 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001467 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001468 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001469 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001470 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001471 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1472 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001473 *pRC = SQLITE_CORRUPT_BKPT;
1474 return;
1475 }
1476 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001477 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001478 }
danielk1977ac11ee62005-01-15 12:45:51 +00001479}
danielk197779a40da2005-01-16 08:00:01 +00001480#endif
1481
danielk1977ac11ee62005-01-15 12:45:51 +00001482
drhda200cc2004-05-09 11:51:38 +00001483/*
dane6d065a2017-02-24 19:58:22 +00001484** Defragment the page given. This routine reorganizes cells within the
1485** page so that there are no free-blocks on the free-block list.
1486**
1487** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1488** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001489**
1490** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1491** b-tree page so that there are no freeblocks or fragment bytes, all
1492** unused bytes are contained in the unallocated space region, and all
1493** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001494*/
dane6d065a2017-02-24 19:58:22 +00001495static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001496 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001497 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001498 int hdr; /* Offset to the page header */
1499 int size; /* Size of a cell */
1500 int usableSize; /* Number of usable bytes on a page */
1501 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001502 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001503 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001504 unsigned char *data; /* The page data */
1505 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001506 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001507 int iCellFirst; /* First allowable cell index */
1508 int iCellLast; /* Last possible cell index */
dan7f65b7a2021-04-10 20:27:06 +00001509 int iCellStart; /* First cell offset in input */
drh17146622009-07-07 17:38:38 +00001510
danielk19773b8a05f2007-03-19 17:44:26 +00001511 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001512 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001513 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001514 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001515 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001516 temp = 0;
1517 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001518 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001519 cellOffset = pPage->cellOffset;
1520 nCell = pPage->nCell;
drh45616c72019-02-28 13:21:36 +00001521 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001522 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001523 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001524
1525 /* This block handles pages with two or fewer free blocks and nMaxFrag
1526 ** or fewer fragmented bytes. In this case it is faster to move the
1527 ** two (or one) blocks of cells using memmove() and add the required
1528 ** offsets to each pointer in the cell-pointer array than it is to
1529 ** reconstruct the entire page. */
1530 if( (int)data[hdr+7]<=nMaxFrag ){
1531 int iFree = get2byte(&data[hdr+1]);
drh119e1ff2019-03-30 18:39:13 +00001532 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001533 if( iFree ){
1534 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001535 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001536 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1537 u8 *pEnd = &data[cellOffset + nCell*2];
1538 u8 *pAddr;
1539 int sz2 = 0;
1540 int sz = get2byte(&data[iFree+2]);
1541 int top = get2byte(&data[hdr+5]);
drh4b9e7362020-02-18 23:58:58 +00001542 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001543 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001544 }
dane6d065a2017-02-24 19:58:22 +00001545 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001546 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001547 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001548 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001549 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1550 sz += sz2;
drh46c425b2021-11-10 10:59:10 +00001551 }else if( NEVER(iFree+sz>usableSize) ){
dandcc427c2019-03-21 21:18:36 +00001552 return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001553 }
dandcc427c2019-03-21 21:18:36 +00001554
dane6d065a2017-02-24 19:58:22 +00001555 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001556 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001557 memmove(&data[cbrk], &data[top], iFree-top);
1558 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1559 pc = get2byte(pAddr);
1560 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1561 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1562 }
1563 goto defragment_out;
1564 }
1565 }
1566 }
1567
drh281b21d2008-08-22 12:57:08 +00001568 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001569 iCellLast = usableSize - 4;
dan7f65b7a2021-04-10 20:27:06 +00001570 iCellStart = get2byte(&data[hdr+5]);
drh43605152004-05-29 21:46:49 +00001571 for(i=0; i<nCell; i++){
1572 u8 *pAddr; /* The i-th cell pointer */
1573 pAddr = &data[cellOffset + i*2];
1574 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001575 testcase( pc==iCellFirst );
1576 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001577 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001578 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001579 */
dan7f65b7a2021-04-10 20:27:06 +00001580 if( pc<iCellStart || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001581 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001582 }
dan7f65b7a2021-04-10 20:27:06 +00001583 assert( pc>=iCellStart && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001584 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001585 cbrk -= size;
dan7f65b7a2021-04-10 20:27:06 +00001586 if( cbrk<iCellStart || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001587 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001588 }
dan7f65b7a2021-04-10 20:27:06 +00001589 assert( cbrk+size<=usableSize && cbrk>=iCellStart );
drh0a45c272009-07-08 01:49:11 +00001590 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001591 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001592 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001593 if( temp==0 ){
drh588400b2014-09-27 05:00:25 +00001594 if( cbrk==pc ) continue;
1595 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drhccf0bb42021-06-07 13:50:36 +00001596 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
drh588400b2014-09-27 05:00:25 +00001597 src = temp;
1598 }
1599 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001600 }
dane6d065a2017-02-24 19:58:22 +00001601 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001602
1603 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001604 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001605 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001606 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001607 }
drh17146622009-07-07 17:38:38 +00001608 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001609 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001610 data[hdr+1] = 0;
1611 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001612 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001613 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001614 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001615}
1616
drha059ad02001-04-17 20:09:11 +00001617/*
dan8e9ba0c2014-10-14 17:27:04 +00001618** Search the free-list on page pPg for space to store a cell nByte bytes in
1619** size. If one can be found, return a pointer to the space and remove it
1620** from the free-list.
1621**
1622** If no suitable space can be found on the free-list, return NULL.
1623**
drhba0f9992014-10-30 20:48:44 +00001624** This function may detect corruption within pPg. If corruption is
1625** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001626**
drhb7580e82015-06-25 18:36:13 +00001627** Slots on the free list that are between 1 and 3 bytes larger than nByte
1628** will be ignored if adding the extra space to the fragmentation count
1629** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001630*/
drhb7580e82015-06-25 18:36:13 +00001631static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001632 const int hdr = pPg->hdrOffset; /* Offset to page header */
1633 u8 * const aData = pPg->aData; /* Page data */
1634 int iAddr = hdr + 1; /* Address of ptr to pc */
drh009a48e2022-02-23 18:23:15 +00001635 u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */
1636 int pc = get2byte(pTmp); /* Address of a free slot */
drh298f45c2019-02-08 22:34:59 +00001637 int x; /* Excess size of the slot */
1638 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1639 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001640
drhb7580e82015-06-25 18:36:13 +00001641 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001642 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001643 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1644 ** freeblock form a big-endian integer which is the size of the freeblock
1645 ** in bytes, including the 4-byte header. */
drh009a48e2022-02-23 18:23:15 +00001646 pTmp = &aData[pc+2];
1647 size = get2byte(pTmp);
drhb7580e82015-06-25 18:36:13 +00001648 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001649 testcase( x==4 );
1650 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001651 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001652 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1653 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001654 if( aData[hdr+7]>57 ) return 0;
1655
dan8e9ba0c2014-10-14 17:27:04 +00001656 /* Remove the slot from the free-list. Update the number of
1657 ** fragmented bytes within the page. */
1658 memcpy(&aData[iAddr], &aData[pc], 2);
1659 aData[hdr+7] += (u8)x;
dan1942d1f2022-04-18 15:56:58 +00001660 testcase( pc+x>maxPC );
1661 return &aData[pc];
drh298f45c2019-02-08 22:34:59 +00001662 }else if( x+pc > maxPC ){
1663 /* This slot extends off the end of the usable part of the page */
1664 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1665 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001666 }else{
1667 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001668 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001669 put2byte(&aData[pc+2], x);
1670 }
1671 return &aData[pc + x];
1672 }
drhb7580e82015-06-25 18:36:13 +00001673 iAddr = pc;
drh009a48e2022-02-23 18:23:15 +00001674 pTmp = &aData[pc];
1675 pc = get2byte(pTmp);
drh2a934d72019-03-13 10:29:16 +00001676 if( pc<=iAddr+size ){
drh298f45c2019-02-08 22:34:59 +00001677 if( pc ){
1678 /* The next slot in the chain is not past the end of the current slot */
1679 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1680 }
1681 return 0;
1682 }
drh87d63c92017-08-23 23:09:03 +00001683 }
drh298f45c2019-02-08 22:34:59 +00001684 if( pc>maxPC+nByte-4 ){
1685 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001686 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001687 }
dan8e9ba0c2014-10-14 17:27:04 +00001688 return 0;
1689}
1690
1691/*
danielk19776011a752009-04-01 16:25:32 +00001692** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001693** as the first argument. Write into *pIdx the index into pPage->aData[]
1694** of the first byte of allocated space. Return either SQLITE_OK or
1695** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001696**
drh0a45c272009-07-08 01:49:11 +00001697** The caller guarantees that there is sufficient space to make the
1698** allocation. This routine might need to defragment in order to bring
1699** all the space together, however. This routine will avoid using
1700** the first two bytes past the cell pointer area since presumably this
1701** allocation is being made in order to insert a new cell, so we will
1702** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001703*/
drh0a45c272009-07-08 01:49:11 +00001704static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001705 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1706 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001707 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001708 int rc = SQLITE_OK; /* Integer return code */
drh009a48e2022-02-23 18:23:15 +00001709 u8 *pTmp; /* Temp ptr into data[] */
drh0a45c272009-07-08 01:49:11 +00001710 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001711
danielk19773b8a05f2007-03-19 17:44:26 +00001712 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001713 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001714 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001715 assert( nByte>=0 ); /* Minimum cell size is 4 */
1716 assert( pPage->nFree>=nByte );
1717 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001718 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001719
drh0a45c272009-07-08 01:49:11 +00001720 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1721 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001722 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001723 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1724 ** and the reserved space is zero (the usual value for reserved space)
1725 ** then the cell content offset of an empty page wants to be 65536.
1726 ** However, that integer is too large to be stored in a 2-byte unsigned
1727 ** integer, so a value of 0 is used in its place. */
drh009a48e2022-02-23 18:23:15 +00001728 pTmp = &data[hdr+5];
1729 top = get2byte(pTmp);
drhdfcecdf2019-05-08 00:17:45 +00001730 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
drhded340e2015-06-25 15:04:56 +00001731 if( gap>top ){
drh291508f2019-05-08 04:33:17 +00001732 if( top==0 && pPage->pBt->usableSize==65536 ){
drhded340e2015-06-25 15:04:56 +00001733 top = 65536;
1734 }else{
daneebf2f52017-11-18 17:30:08 +00001735 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001736 }
1737 }
drh43605152004-05-29 21:46:49 +00001738
drhd4a67442019-02-11 19:27:36 +00001739 /* If there is enough space between gap and top for one more cell pointer,
1740 ** and if the freelist is not empty, then search the
1741 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001742 */
drh5e2f8b92001-05-28 00:41:15 +00001743 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001744 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001745 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001746 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001747 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001748 if( pSpace ){
drh3b76c452020-01-03 17:40:30 +00001749 int g2;
drh2b96b692019-08-05 16:22:20 +00001750 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
drh3b76c452020-01-03 17:40:30 +00001751 *pIdx = g2 = (int)(pSpace-data);
drhb9154182021-06-20 22:49:26 +00001752 if( g2<=gap ){
drh2b96b692019-08-05 16:22:20 +00001753 return SQLITE_CORRUPT_PAGE(pPage);
1754 }else{
1755 return SQLITE_OK;
1756 }
drhb7580e82015-06-25 18:36:13 +00001757 }else if( rc ){
1758 return rc;
drh9e572e62004-04-23 23:43:10 +00001759 }
1760 }
drh43605152004-05-29 21:46:49 +00001761
drh4c04f3c2014-08-20 11:56:14 +00001762 /* The request could not be fulfilled using a freelist slot. Check
1763 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001764 */
1765 testcase( gap+2+nByte==top );
1766 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001767 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001768 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001769 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001770 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001771 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001772 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001773 }
1774
1775
drh43605152004-05-29 21:46:49 +00001776 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001777 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001778 ** validated the freelist. Given that the freelist is valid, there
1779 ** is no way that the allocation can extend off the end of the page.
1780 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001781 */
drh0a45c272009-07-08 01:49:11 +00001782 top -= nByte;
drh43605152004-05-29 21:46:49 +00001783 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001784 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001785 *pIdx = top;
1786 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001787}
1788
1789/*
drh9e572e62004-04-23 23:43:10 +00001790** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001791** The first byte of the new free block is pPage->aData[iStart]
1792** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001793**
drh5f5c7532014-08-20 17:56:27 +00001794** Adjacent freeblocks are coalesced.
1795**
drh5860a612019-02-12 16:58:26 +00001796** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001797** that routine will not detect overlap between cells or freeblocks. Nor
1798** does it detect cells or freeblocks that encrouch into the reserved bytes
1799** at the end of the page. So do additional corruption checks inside this
1800** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001801*/
drh5f5c7532014-08-20 17:56:27 +00001802static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001803 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001804 u16 iFreeBlk; /* Address of the next freeblock */
1805 u8 hdr; /* Page header size. 0 or 100 */
1806 u8 nFrag = 0; /* Reduction in fragmentation */
1807 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001808 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001809 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001810 unsigned char *data = pPage->aData; /* Page content */
drh009a48e2022-02-23 18:23:15 +00001811 u8 *pTmp; /* Temporary ptr into data[] */
drh2af926b2001-05-15 00:39:25 +00001812
drh9e572e62004-04-23 23:43:10 +00001813 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001814 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001815 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001816 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001817 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001818 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001819 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001820
drh5f5c7532014-08-20 17:56:27 +00001821 /* The list of freeblocks must be in ascending order. Find the
1822 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001823 */
drh43605152004-05-29 21:46:49 +00001824 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001825 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001826 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1827 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1828 }else{
drh85f071b2016-09-17 19:34:32 +00001829 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1830 if( iFreeBlk<iPtr+4 ){
drh05e8c542020-01-14 16:39:54 +00001831 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
daneebf2f52017-11-18 17:30:08 +00001832 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001833 }
drh7bc4c452014-08-20 18:43:44 +00001834 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001835 }
drh628b1a32020-01-05 21:53:15 +00001836 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
daneebf2f52017-11-18 17:30:08 +00001837 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001838 }
drh0aa09452022-02-14 13:53:49 +00001839 assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB );
drh7bc4c452014-08-20 18:43:44 +00001840
1841 /* At this point:
1842 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001843 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001844 **
1845 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1846 */
1847 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1848 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001849 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001850 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drh6aa75152020-06-12 00:31:52 +00001851 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001852 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001853 }
drh7bc4c452014-08-20 18:43:44 +00001854 iSize = iEnd - iStart;
1855 iFreeBlk = get2byte(&data[iFreeBlk]);
1856 }
1857
drh3f387402014-09-24 01:23:00 +00001858 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1859 ** pointer in the page header) then check to see if iStart should be
1860 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001861 */
1862 if( iPtr>hdr+1 ){
1863 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1864 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001865 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001866 nFrag += iStart - iPtrEnd;
1867 iSize = iEnd - iPtr;
1868 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001869 }
drh9e572e62004-04-23 23:43:10 +00001870 }
daneebf2f52017-11-18 17:30:08 +00001871 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001872 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001873 }
drh009a48e2022-02-23 18:23:15 +00001874 pTmp = &data[hdr+5];
1875 x = get2byte(pTmp);
drh5e398e42017-08-23 20:36:06 +00001876 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001877 /* The new freeblock is at the beginning of the cell content area,
1878 ** so just extend the cell content area rather than create another
1879 ** freelist entry */
drh3b76c452020-01-03 17:40:30 +00001880 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
drh48118e42020-01-29 13:50:11 +00001881 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001882 put2byte(&data[hdr+1], iFreeBlk);
1883 put2byte(&data[hdr+5], iEnd);
1884 }else{
1885 /* Insert the new freeblock into the freelist */
1886 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001887 }
drh5e398e42017-08-23 20:36:06 +00001888 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1889 /* Overwrite deleted information with zeros when the secure_delete
1890 ** option is enabled */
1891 memset(&data[iStart], 0, iSize);
1892 }
1893 put2byte(&data[iStart], iFreeBlk);
1894 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001895 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001896 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001897}
1898
1899/*
drh271efa52004-05-30 19:19:05 +00001900** Decode the flags byte (the first byte of the header) for a page
1901** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001902**
1903** Only the following combinations are supported. Anything different
1904** indicates a corrupt database files:
1905**
1906** PTF_ZERODATA
1907** PTF_ZERODATA | PTF_LEAF
1908** PTF_LEAFDATA | PTF_INTKEY
1909** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001910*/
drh44845222008-07-17 18:39:57 +00001911static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001912 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001913
1914 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001915 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001916 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001917 flagByte &= ~PTF_LEAF;
1918 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001919 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001920 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001921 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1922 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001923 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001924 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1925 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001926 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001927 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001928 if( pPage->leaf ){
1929 pPage->intKeyLeaf = 1;
drh19ae01b2022-02-23 22:56:10 +00001930 pPage->xCellSize = cellSizePtrTableLeaf;
drh5fa60512015-06-19 17:19:34 +00001931 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001932 }else{
1933 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001934 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001935 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001936 }
drh271efa52004-05-30 19:19:05 +00001937 pPage->maxLocal = pBt->maxLeaf;
1938 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001939 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001940 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1941 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001942 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001943 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1944 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001945 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001946 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001947 pPage->intKeyLeaf = 0;
drh4f122712022-03-03 16:48:35 +00001948 pPage->xCellSize = cellSizePtr;
drh5fa60512015-06-19 17:19:34 +00001949 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001950 pPage->maxLocal = pBt->maxLocal;
1951 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001952 }else{
drhfdab0262014-11-20 15:30:50 +00001953 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1954 ** an error. */
drh4f122712022-03-03 16:48:35 +00001955 pPage->intKey = 0;
1956 pPage->intKeyLeaf = 0;
1957 pPage->xCellSize = cellSizePtr;
1958 pPage->xParseCell = btreeParseCellPtrIndex;
daneebf2f52017-11-18 17:30:08 +00001959 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001960 }
drhc9166342012-01-05 23:32:06 +00001961 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001962 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001963}
1964
1965/*
drhb0ea9432019-02-09 21:06:40 +00001966** Compute the amount of freespace on the page. In other words, fill
1967** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00001968*/
drhb0ea9432019-02-09 21:06:40 +00001969static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001970 int pc; /* Address of a freeblock within pPage->aData[] */
1971 u8 hdr; /* Offset to beginning of page header */
1972 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00001973 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00001974 int nFree; /* Number of unused bytes on the page */
1975 int top; /* First byte of the cell content area */
1976 int iCellFirst; /* First allowable cell or freeblock offset */
1977 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001978
danielk197771d5d2c2008-09-29 11:49:47 +00001979 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001980 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001981 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001982 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001983 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1984 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00001985 assert( pPage->isInit==1 );
1986 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001987
drhb0ea9432019-02-09 21:06:40 +00001988 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00001989 hdr = pPage->hdrOffset;
1990 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00001991 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1992 ** the start of the cell content area. A zero value for this integer is
1993 ** interpreted as 65536. */
1994 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00001995 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00001996 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00001997
drh14e845a2017-05-25 21:35:56 +00001998 /* Compute the total free space on the page
1999 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
2000 ** start of the first freeblock on the page, or is zero if there are no
2001 ** freeblocks. */
2002 pc = get2byte(&data[hdr+1]);
2003 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
2004 if( pc>0 ){
2005 u32 next, size;
dan9a20ea92020-01-03 15:51:23 +00002006 if( pc<top ){
drh14e845a2017-05-25 21:35:56 +00002007 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
2008 ** always be at least one cell before the first freeblock.
2009 */
daneebf2f52017-11-18 17:30:08 +00002010 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00002011 }
drh14e845a2017-05-25 21:35:56 +00002012 while( 1 ){
2013 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00002014 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00002015 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002016 }
2017 next = get2byte(&data[pc]);
2018 size = get2byte(&data[pc+2]);
2019 nFree = nFree + size;
2020 if( next<=pc+size+3 ) break;
2021 pc = next;
2022 }
2023 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00002024 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00002025 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002026 }
2027 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00002028 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00002029 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002030 }
danielk197771d5d2c2008-09-29 11:49:47 +00002031 }
drh14e845a2017-05-25 21:35:56 +00002032
2033 /* At this point, nFree contains the sum of the offset to the start
2034 ** of the cell-content area plus the number of free bytes within
2035 ** the cell-content area. If this is greater than the usable-size
2036 ** of the page, then the page must be corrupted. This check also
2037 ** serves to verify that the offset to the start of the cell-content
2038 ** area, according to the page header, lies within the page.
2039 */
drhdfcecdf2019-05-08 00:17:45 +00002040 if( nFree>usableSize || nFree<iCellFirst ){
daneebf2f52017-11-18 17:30:08 +00002041 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002042 }
2043 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00002044 return SQLITE_OK;
2045}
2046
2047/*
drh5860a612019-02-12 16:58:26 +00002048** Do additional sanity check after btreeInitPage() if
2049** PRAGMA cell_size_check=ON
2050*/
2051static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
2052 int iCellFirst; /* First allowable cell or freeblock offset */
2053 int iCellLast; /* Last possible cell or freeblock offset */
2054 int i; /* Index into the cell pointer array */
2055 int sz; /* Size of a cell */
2056 int pc; /* Address of a freeblock within pPage->aData[] */
2057 u8 *data; /* Equal to pPage->aData */
2058 int usableSize; /* Maximum usable space on the page */
2059 int cellOffset; /* Start of cell content area */
2060
2061 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
2062 usableSize = pPage->pBt->usableSize;
2063 iCellLast = usableSize - 4;
2064 data = pPage->aData;
2065 cellOffset = pPage->cellOffset;
2066 if( !pPage->leaf ) iCellLast--;
2067 for(i=0; i<pPage->nCell; i++){
2068 pc = get2byteAligned(&data[cellOffset+i*2]);
2069 testcase( pc==iCellFirst );
2070 testcase( pc==iCellLast );
2071 if( pc<iCellFirst || pc>iCellLast ){
2072 return SQLITE_CORRUPT_PAGE(pPage);
2073 }
2074 sz = pPage->xCellSize(pPage, &data[pc]);
2075 testcase( pc+sz==usableSize );
2076 if( pc+sz>usableSize ){
2077 return SQLITE_CORRUPT_PAGE(pPage);
2078 }
2079 }
2080 return SQLITE_OK;
2081}
2082
2083/*
drhb0ea9432019-02-09 21:06:40 +00002084** Initialize the auxiliary information for a disk block.
2085**
2086** Return SQLITE_OK on success. If we see that the page does
2087** not contain a well-formed database page, then return
2088** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2089** guarantee that the page is well-formed. It only shows that
2090** we failed to detect any corruption.
2091*/
2092static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00002093 u8 *data; /* Equal to pPage->aData */
2094 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00002095
2096 assert( pPage->pBt!=0 );
2097 assert( pPage->pBt->db!=0 );
2098 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2099 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2100 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2101 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2102 assert( pPage->isInit==0 );
2103
2104 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00002105 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00002106 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2107 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00002108 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00002109 return SQLITE_CORRUPT_PAGE(pPage);
2110 }
2111 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2112 pPage->maskPage = (u16)(pBt->pageSize - 1);
2113 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00002114 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2115 pPage->aCellIdx = data + pPage->childPtrSize + 8;
drha055abb2022-03-01 20:15:04 +00002116 pPage->aDataEnd = pPage->aData + pBt->pageSize;
drh5860a612019-02-12 16:58:26 +00002117 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002118 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2119 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002120 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002121 if( pPage->nCell>MX_CELL(pBt) ){
2122 /* To many cells for a single page. The page must be corrupt */
2123 return SQLITE_CORRUPT_PAGE(pPage);
2124 }
2125 testcase( pPage->nCell==MX_CELL(pBt) );
2126 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2127 ** possible for a root page of a table that contains no rows) then the
2128 ** offset to the cell content area will equal the page size minus the
2129 ** bytes of reserved space. */
2130 assert( pPage->nCell>0
mistachkin065f3bf2019-03-20 05:45:03 +00002131 || get2byteNotZero(&data[5])==(int)pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002132 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002133 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002134 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002135 if( pBt->db->flags & SQLITE_CellSizeCk ){
2136 return btreeCellSizeCheck(pPage);
2137 }
drh9e572e62004-04-23 23:43:10 +00002138 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002139}
2140
2141/*
drh8b2f49b2001-06-08 00:21:52 +00002142** Set up a raw page so that it looks like a database page holding
2143** no entries.
drhbd03cae2001-06-02 02:40:57 +00002144*/
drh9e572e62004-04-23 23:43:10 +00002145static void zeroPage(MemPage *pPage, int flags){
2146 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002147 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002148 u8 hdr = pPage->hdrOffset;
2149 u16 first;
drh9e572e62004-04-23 23:43:10 +00002150
drh37034292022-03-01 16:22:54 +00002151 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB );
drhbf4bca52007-09-06 22:19:14 +00002152 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2153 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002154 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002155 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002156 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002157 memset(&data[hdr], 0, pBt->usableSize - hdr);
2158 }
drh1bd10f82008-12-10 21:19:56 +00002159 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002160 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002161 memset(&data[hdr+1], 0, 4);
2162 data[hdr+7] = 0;
2163 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002164 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002165 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002166 pPage->cellOffset = first;
drha055abb2022-03-01 20:15:04 +00002167 pPage->aDataEnd = &data[pBt->pageSize];
drh3def2352011-11-11 00:27:15 +00002168 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002169 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002170 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002171 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2172 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002173 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002174 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002175}
2176
drh897a8202008-09-18 01:08:15 +00002177
2178/*
2179** Convert a DbPage obtained from the pager into a MemPage used by
2180** the btree layer.
2181*/
2182static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2183 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002184 if( pgno!=pPage->pgno ){
2185 pPage->aData = sqlite3PagerGetData(pDbPage);
2186 pPage->pDbPage = pDbPage;
2187 pPage->pBt = pBt;
2188 pPage->pgno = pgno;
2189 pPage->hdrOffset = pgno==1 ? 100 : 0;
2190 }
2191 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002192 return pPage;
2193}
2194
drhbd03cae2001-06-02 02:40:57 +00002195/*
drh3aac2dd2004-04-26 14:10:20 +00002196** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002197** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002198**
drh7e8c6f12015-05-28 03:28:27 +00002199** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2200** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002201** to fetch the content. Just fill in the content with zeros for now.
2202** If in the future we call sqlite3PagerWrite() on this page, that
2203** means we have started to be concerned about content and the disk
2204** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002205*/
danielk197730548662009-07-09 05:07:37 +00002206static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002207 BtShared *pBt, /* The btree */
2208 Pgno pgno, /* Number of the page to fetch */
2209 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002210 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002211){
drh3aac2dd2004-04-26 14:10:20 +00002212 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002213 DbPage *pDbPage;
2214
drhb00fc3b2013-08-21 23:42:32 +00002215 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002216 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002217 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002218 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002219 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002220 return SQLITE_OK;
2221}
2222
2223/*
danielk1977bea2a942009-01-20 17:06:27 +00002224** Retrieve a page from the pager cache. If the requested page is not
2225** already in the pager cache return NULL. Initialize the MemPage.pBt and
2226** MemPage.aData elements if needed.
2227*/
2228static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2229 DbPage *pDbPage;
2230 assert( sqlite3_mutex_held(pBt->mutex) );
2231 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2232 if( pDbPage ){
2233 return btreePageFromDbPage(pDbPage, pgno, pBt);
2234 }
2235 return 0;
2236}
2237
2238/*
danielk197789d40042008-11-17 14:20:56 +00002239** Return the size of the database file in pages. If there is any kind of
2240** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002241*/
drhb1299152010-03-30 22:58:33 +00002242static Pgno btreePagecount(BtShared *pBt){
drh406dfcb2020-01-07 18:10:01 +00002243 return pBt->nPage;
drhb1299152010-03-30 22:58:33 +00002244}
drh584e8b72020-07-22 17:12:59 +00002245Pgno sqlite3BtreeLastPage(Btree *p){
drhb1299152010-03-30 22:58:33 +00002246 assert( sqlite3BtreeHoldsMutex(p) );
drh584e8b72020-07-22 17:12:59 +00002247 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002248}
2249
2250/*
drh28f58dd2015-06-27 19:45:03 +00002251** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002252**
drh15a00212015-06-27 20:55:00 +00002253** If pCur!=0 then the page is being fetched as part of a moveToChild()
2254** call. Do additional sanity checking on the page in this case.
2255** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002256**
2257** The page is fetched as read-write unless pCur is not NULL and is
2258** a read-only cursor.
2259**
2260** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002261** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002262*/
2263static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002264 BtShared *pBt, /* The database file */
2265 Pgno pgno, /* Number of the page to get */
2266 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002267 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2268 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002269){
2270 int rc;
drh28f58dd2015-06-27 19:45:03 +00002271 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002272 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002273 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002274 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002275 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002276
danba3cbf32010-06-30 04:29:03 +00002277 if( pgno>btreePagecount(pBt) ){
2278 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002279 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002280 }
drh9584f582015-11-04 20:22:37 +00002281 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002282 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002283 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002284 }
drh8dd1c252015-11-04 22:31:02 +00002285 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002286 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002287 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002288 rc = btreeInitPage(*ppPage);
2289 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002290 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002291 }
drhee696e22004-08-30 16:52:17 +00002292 }
drh37034292022-03-01 16:22:54 +00002293 assert( (*ppPage)->pgno==pgno || CORRUPT_DB );
drh8dd1c252015-11-04 22:31:02 +00002294 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002295
drh15a00212015-06-27 20:55:00 +00002296 /* If obtaining a child page for a cursor, we must verify that the page is
2297 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002298 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002299 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002300 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002301 }
drh28f58dd2015-06-27 19:45:03 +00002302 return SQLITE_OK;
2303
drhb0ea9432019-02-09 21:06:40 +00002304getAndInitPage_error2:
2305 releasePage(*ppPage);
2306getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002307 if( pCur ){
2308 pCur->iPage--;
2309 pCur->pPage = pCur->apPage[pCur->iPage];
2310 }
danba3cbf32010-06-30 04:29:03 +00002311 testcase( pgno==0 );
drhcdc59c82022-02-24 01:41:14 +00002312 assert( pgno!=0 || rc==SQLITE_CORRUPT
2313 || rc==SQLITE_IOERR_NOMEM
2314 || rc==SQLITE_NOMEM );
drhde647132004-05-07 17:57:49 +00002315 return rc;
2316}
2317
2318/*
drh3aac2dd2004-04-26 14:10:20 +00002319** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002320** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002321**
2322** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002323*/
drhbbf0f862015-06-27 14:59:26 +00002324static void releasePageNotNull(MemPage *pPage){
2325 assert( pPage->aData );
2326 assert( pPage->pBt );
2327 assert( pPage->pDbPage!=0 );
2328 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2329 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2330 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2331 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002332}
drh3aac2dd2004-04-26 14:10:20 +00002333static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002334 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002335}
drh3908fe92017-09-01 14:50:19 +00002336static void releasePageOne(MemPage *pPage){
2337 assert( pPage!=0 );
2338 assert( pPage->aData );
2339 assert( pPage->pBt );
2340 assert( pPage->pDbPage!=0 );
2341 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2342 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2343 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2344 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2345}
drh3aac2dd2004-04-26 14:10:20 +00002346
2347/*
drh7e8c6f12015-05-28 03:28:27 +00002348** Get an unused page.
2349**
2350** This works just like btreeGetPage() with the addition:
2351**
2352** * If the page is already in use for some other purpose, immediately
2353** release it and return an SQLITE_CURRUPT error.
2354** * Make sure the isInit flag is clear
2355*/
2356static int btreeGetUnusedPage(
2357 BtShared *pBt, /* The btree */
2358 Pgno pgno, /* Number of the page to fetch */
2359 MemPage **ppPage, /* Return the page in this parameter */
2360 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2361){
2362 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2363 if( rc==SQLITE_OK ){
2364 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2365 releasePage(*ppPage);
2366 *ppPage = 0;
2367 return SQLITE_CORRUPT_BKPT;
2368 }
2369 (*ppPage)->isInit = 0;
2370 }else{
2371 *ppPage = 0;
2372 }
2373 return rc;
2374}
2375
drha059ad02001-04-17 20:09:11 +00002376
2377/*
drha6abd042004-06-09 17:37:22 +00002378** During a rollback, when the pager reloads information into the cache
2379** so that the cache is restored to its original state at the start of
2380** the transaction, for each page restored this routine is called.
2381**
2382** This routine needs to reset the extra data section at the end of the
2383** page to agree with the restored data.
2384*/
danielk1977eaa06f62008-09-18 17:34:44 +00002385static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002386 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002387 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002388 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002389 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002390 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002391 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002392 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002393 /* pPage might not be a btree page; it might be an overflow page
2394 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002395 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002396 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002397 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002398 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002399 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002400 }
drha6abd042004-06-09 17:37:22 +00002401 }
2402}
2403
2404/*
drhe5fe6902007-12-07 18:55:28 +00002405** Invoke the busy handler for a btree.
2406*/
danielk19771ceedd32008-11-19 10:22:33 +00002407static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002408 BtShared *pBt = (BtShared*)pArg;
2409 assert( pBt->db );
2410 assert( sqlite3_mutex_held(pBt->db->mutex) );
drh783e1592020-05-06 20:55:38 +00002411 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
drhe5fe6902007-12-07 18:55:28 +00002412}
2413
2414/*
drhad3e0102004-09-03 23:32:18 +00002415** Open a database file.
2416**
drh382c0242001-10-06 16:33:02 +00002417** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002418** then an ephemeral database is created. The ephemeral database might
2419** be exclusively in memory, or it might use a disk-based memory cache.
2420** Either way, the ephemeral database will be automatically deleted
2421** when sqlite3BtreeClose() is called.
2422**
drhe53831d2007-08-17 01:14:38 +00002423** If zFilename is ":memory:" then an in-memory database is created
2424** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002425**
drh33f111d2012-01-17 15:29:14 +00002426** The "flags" parameter is a bitmask that might contain bits like
2427** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002428**
drhc47fd8e2009-04-30 13:30:32 +00002429** If the database is already opened in the same database connection
2430** and we are in shared cache mode, then the open will fail with an
2431** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2432** objects in the same database connection since doing so will lead
2433** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002434*/
drh23e11ca2004-05-04 17:27:28 +00002435int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002436 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002437 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002438 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002439 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002440 int flags, /* Options */
2441 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002442){
drh7555d8e2009-03-20 13:15:30 +00002443 BtShared *pBt = 0; /* Shared part of btree structure */
2444 Btree *p; /* Handle to return */
2445 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2446 int rc = SQLITE_OK; /* Result code from this function */
2447 u8 nReserve; /* Byte of unused space on each page */
2448 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002449
drh75c014c2010-08-30 15:02:28 +00002450 /* True if opening an ephemeral, temporary database */
2451 const int isTempDb = zFilename==0 || zFilename[0]==0;
2452
danielk1977aef0bf62005-12-30 16:28:01 +00002453 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002454 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002455 */
drhb0a7c9c2010-12-06 21:09:59 +00002456#ifdef SQLITE_OMIT_MEMORYDB
2457 const int isMemdb = 0;
2458#else
2459 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002460 || (isTempDb && sqlite3TempInMemory(db))
2461 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002462#endif
2463
drhe5fe6902007-12-07 18:55:28 +00002464 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002465 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002466 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002467 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2468
2469 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2470 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2471
2472 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2473 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002474
drh75c014c2010-08-30 15:02:28 +00002475 if( isMemdb ){
2476 flags |= BTREE_MEMORY;
2477 }
2478 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2479 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2480 }
drh17435752007-08-16 04:30:38 +00002481 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002482 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002483 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002484 }
2485 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002486 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002487#ifndef SQLITE_OMIT_SHARED_CACHE
2488 p->lock.pBtree = p;
2489 p->lock.iTable = 1;
2490#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002491
drh198bf392006-01-06 21:52:49 +00002492#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002493 /*
2494 ** If this Btree is a candidate for shared cache, try to find an
2495 ** existing BtShared object that we can share with
2496 */
drh4ab9d252012-05-26 20:08:49 +00002497 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002498 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002499 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002500 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002501 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002502 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002503
drhff0587c2007-08-29 17:43:19 +00002504 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002505 if( !zFullPathname ){
2506 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002507 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002508 }
drhafc8b7f2012-05-26 18:06:38 +00002509 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002510 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002511 }else{
2512 rc = sqlite3OsFullPathname(pVfs, zFilename,
2513 nFullPathname, zFullPathname);
2514 if( rc ){
drhc398c652019-11-22 00:42:01 +00002515 if( rc==SQLITE_OK_SYMLINK ){
2516 rc = SQLITE_OK;
2517 }else{
2518 sqlite3_free(zFullPathname);
2519 sqlite3_free(p);
2520 return rc;
2521 }
drhafc8b7f2012-05-26 18:06:38 +00002522 }
drh070ad6b2011-11-17 11:43:19 +00002523 }
drh30ddce62011-10-15 00:16:30 +00002524#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002525 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2526 sqlite3_mutex_enter(mutexOpen);
drhccb21132020-06-19 11:34:57 +00002527 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
drhff0587c2007-08-29 17:43:19 +00002528 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002529#endif
drh78f82d12008-09-02 00:52:52 +00002530 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002531 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002532 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002533 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002534 int iDb;
2535 for(iDb=db->nDb-1; iDb>=0; iDb--){
2536 Btree *pExisting = db->aDb[iDb].pBt;
2537 if( pExisting && pExisting->pBt==pBt ){
2538 sqlite3_mutex_leave(mutexShared);
2539 sqlite3_mutex_leave(mutexOpen);
2540 sqlite3_free(zFullPathname);
2541 sqlite3_free(p);
2542 return SQLITE_CONSTRAINT;
2543 }
2544 }
drhff0587c2007-08-29 17:43:19 +00002545 p->pBt = pBt;
2546 pBt->nRef++;
2547 break;
2548 }
2549 }
2550 sqlite3_mutex_leave(mutexShared);
2551 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002552 }
drhff0587c2007-08-29 17:43:19 +00002553#ifdef SQLITE_DEBUG
2554 else{
2555 /* In debug mode, we mark all persistent databases as sharable
2556 ** even when they are not. This exercises the locking code and
2557 ** gives more opportunity for asserts(sqlite3_mutex_held())
2558 ** statements to find locking problems.
2559 */
2560 p->sharable = 1;
2561 }
2562#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002563 }
2564#endif
drha059ad02001-04-17 20:09:11 +00002565 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002566 /*
2567 ** The following asserts make sure that structures used by the btree are
2568 ** the right size. This is to guard against size changes that result
2569 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002570 */
drh062cf272015-03-23 19:03:51 +00002571 assert( sizeof(i64)==8 );
2572 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002573 assert( sizeof(u32)==4 );
2574 assert( sizeof(u16)==2 );
2575 assert( sizeof(Pgno)==4 );
2576
2577 pBt = sqlite3MallocZero( sizeof(*pBt) );
2578 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002579 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002580 goto btree_open_out;
2581 }
danielk197771d5d2c2008-09-29 11:49:47 +00002582 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002583 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002584 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002585 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002586 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2587 }
2588 if( rc!=SQLITE_OK ){
2589 goto btree_open_out;
2590 }
shanehbd2aaf92010-09-01 02:38:21 +00002591 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002592 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002593 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002594 p->pBt = pBt;
2595
drhe53831d2007-08-17 01:14:38 +00002596 pBt->pCursor = 0;
2597 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002598 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002599#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002600 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002601#elif defined(SQLITE_FAST_SECURE_DELETE)
2602 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002603#endif
drh113762a2014-11-19 16:36:25 +00002604 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2605 ** determined by the 2-byte integer located at an offset of 16 bytes from
2606 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002607 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002608 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2609 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002610 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002611#ifndef SQLITE_OMIT_AUTOVACUUM
2612 /* If the magic name ":memory:" will create an in-memory database, then
2613 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2614 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2615 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2616 ** regular file-name. In this case the auto-vacuum applies as per normal.
2617 */
2618 if( zFilename && !isMemdb ){
2619 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2620 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2621 }
2622#endif
2623 nReserve = 0;
2624 }else{
drh113762a2014-11-19 16:36:25 +00002625 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2626 ** determined by the one-byte unsigned integer found at an offset of 20
2627 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002628 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002629 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002630#ifndef SQLITE_OMIT_AUTOVACUUM
2631 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2632 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2633#endif
2634 }
drhfa9601a2009-06-18 17:22:39 +00002635 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002636 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002637 pBt->usableSize = pBt->pageSize - nReserve;
2638 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002639
2640#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2641 /* Add the new BtShared object to the linked list sharable BtShareds.
2642 */
dan272989b2016-07-06 10:12:02 +00002643 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002644 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002645 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhccb21132020-06-19 11:34:57 +00002646 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
danielk1977075c23a2008-09-01 18:34:20 +00002647 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002648 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002649 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002650 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002651 goto btree_open_out;
2652 }
drhff0587c2007-08-29 17:43:19 +00002653 }
drhe53831d2007-08-17 01:14:38 +00002654 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002655 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2656 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002657 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002658 }
drheee46cf2004-11-06 00:02:48 +00002659#endif
drh90f5ecb2004-07-22 01:19:35 +00002660 }
danielk1977aef0bf62005-12-30 16:28:01 +00002661
drhcfed7bc2006-03-13 14:28:05 +00002662#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002663 /* If the new Btree uses a sharable pBtShared, then link the new
2664 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002665 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002666 */
drhe53831d2007-08-17 01:14:38 +00002667 if( p->sharable ){
2668 int i;
2669 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002670 for(i=0; i<db->nDb; i++){
2671 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002672 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002673 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002674 p->pNext = pSib;
2675 p->pPrev = 0;
2676 pSib->pPrev = p;
2677 }else{
drh3bfa7e82016-03-22 14:37:59 +00002678 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002679 pSib = pSib->pNext;
2680 }
2681 p->pNext = pSib->pNext;
2682 p->pPrev = pSib;
2683 if( p->pNext ){
2684 p->pNext->pPrev = p;
2685 }
2686 pSib->pNext = p;
2687 }
2688 break;
2689 }
2690 }
danielk1977aef0bf62005-12-30 16:28:01 +00002691 }
danielk1977aef0bf62005-12-30 16:28:01 +00002692#endif
2693 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002694
2695btree_open_out:
2696 if( rc!=SQLITE_OK ){
2697 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002698 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002699 }
drh17435752007-08-16 04:30:38 +00002700 sqlite3_free(pBt);
2701 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002702 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002703 }else{
dan0f5a1862016-08-13 14:30:23 +00002704 sqlite3_file *pFile;
2705
drh75c014c2010-08-30 15:02:28 +00002706 /* If the B-Tree was successfully opened, set the pager-cache size to the
2707 ** default value. Except, when opening on an existing shared pager-cache,
2708 ** do not change the pager-cache size.
2709 */
2710 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
dan78f04752020-09-04 19:10:43 +00002711 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
drh75c014c2010-08-30 15:02:28 +00002712 }
dan0f5a1862016-08-13 14:30:23 +00002713
2714 pFile = sqlite3PagerFile(pBt->pPager);
2715 if( pFile->pMethods ){
2716 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2717 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002718 }
drh7555d8e2009-03-20 13:15:30 +00002719 if( mutexOpen ){
2720 assert( sqlite3_mutex_held(mutexOpen) );
2721 sqlite3_mutex_leave(mutexOpen);
2722 }
dan272989b2016-07-06 10:12:02 +00002723 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002724 return rc;
drha059ad02001-04-17 20:09:11 +00002725}
2726
2727/*
drhe53831d2007-08-17 01:14:38 +00002728** Decrement the BtShared.nRef counter. When it reaches zero,
2729** remove the BtShared structure from the sharing list. Return
2730** true if the BtShared.nRef counter reaches zero and return
2731** false if it is still positive.
2732*/
2733static int removeFromSharingList(BtShared *pBt){
2734#ifndef SQLITE_OMIT_SHARED_CACHE
drh067b92b2020-06-19 15:24:12 +00002735 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
drhe53831d2007-08-17 01:14:38 +00002736 BtShared *pList;
2737 int removed = 0;
2738
drhd677b3d2007-08-20 22:48:41 +00002739 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh067b92b2020-06-19 15:24:12 +00002740 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2741 sqlite3_mutex_enter(pMainMtx);
drhe53831d2007-08-17 01:14:38 +00002742 pBt->nRef--;
2743 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002744 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2745 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002746 }else{
drh78f82d12008-09-02 00:52:52 +00002747 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002748 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002749 pList=pList->pNext;
2750 }
drh34004ce2008-07-11 16:15:17 +00002751 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002752 pList->pNext = pBt->pNext;
2753 }
2754 }
drh3285db22007-09-03 22:00:39 +00002755 if( SQLITE_THREADSAFE ){
2756 sqlite3_mutex_free(pBt->mutex);
2757 }
drhe53831d2007-08-17 01:14:38 +00002758 removed = 1;
2759 }
drh067b92b2020-06-19 15:24:12 +00002760 sqlite3_mutex_leave(pMainMtx);
drhe53831d2007-08-17 01:14:38 +00002761 return removed;
2762#else
2763 return 1;
2764#endif
2765}
2766
2767/*
drhf7141992008-06-19 00:16:08 +00002768** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002769** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2770** pointer.
drhf7141992008-06-19 00:16:08 +00002771*/
drh2f0bc1d2021-12-03 13:42:41 +00002772static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
2773 assert( pBt!=0 );
2774 assert( pBt->pTmpSpace==0 );
2775 /* This routine is called only by btreeCursor() when allocating the
2776 ** first write cursor for the BtShared object */
2777 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
2778 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2779 if( pBt->pTmpSpace==0 ){
2780 BtCursor *pCur = pBt->pCursor;
2781 pBt->pCursor = pCur->pNext; /* Unlink the cursor */
2782 memset(pCur, 0, sizeof(*pCur));
2783 return SQLITE_NOMEM_BKPT;
drhf7141992008-06-19 00:16:08 +00002784 }
drh2f0bc1d2021-12-03 13:42:41 +00002785
2786 /* One of the uses of pBt->pTmpSpace is to format cells before
2787 ** inserting them into a leaf page (function fillInCell()). If
2788 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2789 ** by the various routines that manipulate binary cells. Which
2790 ** can mean that fillInCell() only initializes the first 2 or 3
2791 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2792 ** it into a database page. This is not actually a problem, but it
2793 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2794 ** data is passed to system call write(). So to avoid this error,
2795 ** zero the first 4 bytes of temp space here.
2796 **
2797 ** Also: Provide four bytes of initialized space before the
2798 ** beginning of pTmpSpace as an area available to prepend the
2799 ** left-child pointer to the beginning of a cell.
2800 */
drh11e4fdb2021-12-03 14:57:05 +00002801 memset(pBt->pTmpSpace, 0, 8);
2802 pBt->pTmpSpace += 4;
drh2f0bc1d2021-12-03 13:42:41 +00002803 return SQLITE_OK;
drhf7141992008-06-19 00:16:08 +00002804}
2805
2806/*
2807** Free the pBt->pTmpSpace allocation
2808*/
2809static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002810 if( pBt->pTmpSpace ){
2811 pBt->pTmpSpace -= 4;
2812 sqlite3PageFree(pBt->pTmpSpace);
2813 pBt->pTmpSpace = 0;
2814 }
drhf7141992008-06-19 00:16:08 +00002815}
2816
2817/*
drha059ad02001-04-17 20:09:11 +00002818** Close an open database and invalidate all cursors.
2819*/
danielk1977aef0bf62005-12-30 16:28:01 +00002820int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002821 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00002822
danielk1977aef0bf62005-12-30 16:28:01 +00002823 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002824 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002825 sqlite3BtreeEnter(p);
drh5a4a15f2021-03-18 15:42:59 +00002826
2827 /* Verify that no other cursors have this Btree open */
2828#ifdef SQLITE_DEBUG
2829 {
2830 BtCursor *pCur = pBt->pCursor;
2831 while( pCur ){
2832 BtCursor *pTmp = pCur;
2833 pCur = pCur->pNext;
2834 assert( pTmp->pBtree!=p );
2835
danielk1977aef0bf62005-12-30 16:28:01 +00002836 }
drha059ad02001-04-17 20:09:11 +00002837 }
drh5a4a15f2021-03-18 15:42:59 +00002838#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002839
danielk19778d34dfd2006-01-24 16:37:57 +00002840 /* Rollback any active transaction and free the handle structure.
2841 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2842 ** this handle.
2843 */
drh47b7fc72014-11-11 01:33:57 +00002844 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002845 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002846
danielk1977aef0bf62005-12-30 16:28:01 +00002847 /* If there are still other outstanding references to the shared-btree
2848 ** structure, return now. The remainder of this procedure cleans
2849 ** up the shared-btree.
2850 */
drhe53831d2007-08-17 01:14:38 +00002851 assert( p->wantToLock==0 && p->locked==0 );
2852 if( !p->sharable || removeFromSharingList(pBt) ){
2853 /* The pBt is no longer on the sharing list, so we can access
2854 ** it without having to hold the mutex.
2855 **
2856 ** Clean out and delete the BtShared object.
2857 */
2858 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002859 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002860 if( pBt->xFreeSchema && pBt->pSchema ){
2861 pBt->xFreeSchema(pBt->pSchema);
2862 }
drhb9755982010-07-24 16:34:37 +00002863 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002864 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002865 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002866 }
2867
drhe53831d2007-08-17 01:14:38 +00002868#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002869 assert( p->wantToLock==0 );
2870 assert( p->locked==0 );
2871 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2872 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002873#endif
2874
drhe53831d2007-08-17 01:14:38 +00002875 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002876 return SQLITE_OK;
2877}
2878
2879/*
drh9b0cf342015-11-12 14:57:19 +00002880** Change the "soft" limit on the number of pages in the cache.
2881** Unused and unmodified pages will be recycled when the number of
2882** pages in the cache exceeds this soft limit. But the size of the
2883** cache is allowed to grow larger than this limit if it contains
2884** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002885*/
danielk1977aef0bf62005-12-30 16:28:01 +00002886int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2887 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002888 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002889 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002890 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002891 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002892 return SQLITE_OK;
2893}
2894
drh9b0cf342015-11-12 14:57:19 +00002895/*
2896** Change the "spill" limit on the number of pages in the cache.
2897** If the number of pages exceeds this limit during a write transaction,
2898** the pager might attempt to "spill" pages to the journal early in
2899** order to free up memory.
2900**
2901** The value returned is the current spill size. If zero is passed
2902** as an argument, no changes are made to the spill size setting, so
2903** using mxPage of 0 is a way to query the current spill size.
2904*/
2905int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2906 BtShared *pBt = p->pBt;
2907 int res;
2908 assert( sqlite3_mutex_held(p->db->mutex) );
2909 sqlite3BtreeEnter(p);
2910 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2911 sqlite3BtreeLeave(p);
2912 return res;
2913}
2914
drh18c7e402014-03-14 11:46:10 +00002915#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002916/*
dan5d8a1372013-03-19 19:28:06 +00002917** Change the limit on the amount of the database file that may be
2918** memory mapped.
2919*/
drh9b4c59f2013-04-15 17:03:42 +00002920int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002921 BtShared *pBt = p->pBt;
2922 assert( sqlite3_mutex_held(p->db->mutex) );
2923 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002924 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002925 sqlite3BtreeLeave(p);
2926 return SQLITE_OK;
2927}
drh18c7e402014-03-14 11:46:10 +00002928#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002929
2930/*
drh973b6e32003-02-12 14:09:42 +00002931** Change the way data is synced to disk in order to increase or decrease
2932** how well the database resists damage due to OS crashes and power
2933** failures. Level 1 is the same as asynchronous (no syncs() occur and
2934** there is a high probability of damage) Level 2 is the default. There
2935** is a very low but non-zero probability of damage. Level 3 reduces the
2936** probability of damage to near zero but with a write performance reduction.
2937*/
danielk197793758c82005-01-21 08:13:14 +00002938#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002939int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002940 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002941 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002942){
danielk1977aef0bf62005-12-30 16:28:01 +00002943 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002944 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002945 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002946 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002947 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002948 return SQLITE_OK;
2949}
danielk197793758c82005-01-21 08:13:14 +00002950#endif
drh973b6e32003-02-12 14:09:42 +00002951
drh2c8997b2005-08-27 16:36:48 +00002952/*
drh90f5ecb2004-07-22 01:19:35 +00002953** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002954** Or, if the page size has already been fixed, return SQLITE_READONLY
2955** without changing anything.
drh06f50212004-11-02 14:24:33 +00002956**
2957** The page size must be a power of 2 between 512 and 65536. If the page
2958** size supplied does not meet this constraint then the page size is not
2959** changed.
2960**
2961** Page sizes are constrained to be a power of two so that the region
2962** of the database file used for locking (beginning at PENDING_BYTE,
2963** the first byte past the 1GB boundary, 0x40000000) needs to occur
2964** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002965**
2966** If parameter nReserve is less than zero, then the number of reserved
2967** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002968**
drhc9166342012-01-05 23:32:06 +00002969** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002970** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002971*/
drhce4869f2009-04-02 20:16:58 +00002972int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002973 int rc = SQLITE_OK;
drhe937df82020-05-07 01:56:57 +00002974 int x;
danielk1977aef0bf62005-12-30 16:28:01 +00002975 BtShared *pBt = p->pBt;
drhe937df82020-05-07 01:56:57 +00002976 assert( nReserve>=0 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002977 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00002978 pBt->nReserveWanted = nReserve;
2979 x = pBt->pageSize - pBt->usableSize;
2980 if( nReserve<x ) nReserve = x;
drhc9166342012-01-05 23:32:06 +00002981 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002982 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002983 return SQLITE_READONLY;
2984 }
drhf49661a2008-12-10 16:45:50 +00002985 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002986 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2987 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002988 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002989 assert( !pBt->pCursor );
drh906602a2021-01-21 21:36:25 +00002990 if( nReserve>32 && pageSize==512 ) pageSize = 1024;
drhb2eced52010-08-12 02:41:12 +00002991 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002992 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002993 }
drhfa9601a2009-06-18 17:22:39 +00002994 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002995 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002996 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002997 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002998 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002999}
3000
3001/*
3002** Return the currently defined page size
3003*/
danielk1977aef0bf62005-12-30 16:28:01 +00003004int sqlite3BtreeGetPageSize(Btree *p){
3005 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00003006}
drh7f751222009-03-17 22:33:00 +00003007
dan0094f372012-09-28 20:23:42 +00003008/*
3009** This function is similar to sqlite3BtreeGetReserve(), except that it
3010** may only be called if it is guaranteed that the b-tree mutex is already
3011** held.
3012**
3013** This is useful in one special case in the backup API code where it is
3014** known that the shared b-tree mutex is held, but the mutex on the
3015** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
3016** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00003017** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00003018*/
3019int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00003020 int n;
dan0094f372012-09-28 20:23:42 +00003021 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00003022 n = p->pBt->pageSize - p->pBt->usableSize;
3023 return n;
dan0094f372012-09-28 20:23:42 +00003024}
3025
drh7f751222009-03-17 22:33:00 +00003026/*
3027** Return the number of bytes of space at the end of every page that
3028** are intentually left unused. This is the "reserved" space that is
3029** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00003030**
drh4d347662020-04-22 00:50:21 +00003031** The value returned is the larger of the current reserve size and
3032** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
3033** The amount of reserve can only grow - never shrink.
drh7f751222009-03-17 22:33:00 +00003034*/
drh45248de2020-04-20 15:18:43 +00003035int sqlite3BtreeGetRequestedReserve(Btree *p){
drhe937df82020-05-07 01:56:57 +00003036 int n1, n2;
drhd677b3d2007-08-20 22:48:41 +00003037 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00003038 n1 = (int)p->pBt->nReserveWanted;
3039 n2 = sqlite3BtreeGetReserveNoMutex(p);
drhd677b3d2007-08-20 22:48:41 +00003040 sqlite3BtreeLeave(p);
drhe937df82020-05-07 01:56:57 +00003041 return n1>n2 ? n1 : n2;
drh2011d5f2004-07-22 02:40:37 +00003042}
drhf8e632b2007-05-08 14:51:36 +00003043
drhad0961b2015-02-21 00:19:25 +00003044
drhf8e632b2007-05-08 14:51:36 +00003045/*
3046** Set the maximum page count for a database if mxPage is positive.
3047** No changes are made if mxPage is 0 or negative.
3048** Regardless of the value of mxPage, return the maximum page count.
3049*/
drhe9261db2020-07-20 12:47:32 +00003050Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
3051 Pgno n;
drhd677b3d2007-08-20 22:48:41 +00003052 sqlite3BtreeEnter(p);
3053 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
3054 sqlite3BtreeLeave(p);
3055 return n;
drhf8e632b2007-05-08 14:51:36 +00003056}
drh5b47efa2010-02-12 18:18:39 +00003057
3058/*
drha5907a82017-06-19 11:44:22 +00003059** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
3060**
3061** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3062** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3063** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3064** newFlag==(-1) No changes
3065**
3066** This routine acts as a query if newFlag is less than zero
3067**
3068** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3069** freelist leaf pages are not written back to the database. Thus in-page
3070** deleted content is cleared, but freelist deleted content is not.
3071**
3072** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3073** that freelist leaf pages are written back into the database, increasing
3074** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00003075*/
3076int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
3077 int b;
drhaf034ed2010-02-12 19:46:26 +00003078 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00003079 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00003080 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
3081 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00003082 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00003083 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3084 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3085 }
3086 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00003087 sqlite3BtreeLeave(p);
3088 return b;
3089}
drh90f5ecb2004-07-22 01:19:35 +00003090
3091/*
danielk1977951af802004-11-05 15:45:09 +00003092** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3093** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3094** is disabled. The default value for the auto-vacuum property is
3095** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3096*/
danielk1977aef0bf62005-12-30 16:28:01 +00003097int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00003098#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00003099 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00003100#else
danielk1977dddbcdc2007-04-26 14:42:34 +00003101 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003102 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00003103 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00003104
3105 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00003106 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003107 rc = SQLITE_READONLY;
3108 }else{
drh076d4662009-02-18 20:31:18 +00003109 pBt->autoVacuum = av ?1:0;
3110 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00003111 }
drhd677b3d2007-08-20 22:48:41 +00003112 sqlite3BtreeLeave(p);
3113 return rc;
danielk1977951af802004-11-05 15:45:09 +00003114#endif
3115}
3116
3117/*
3118** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3119** enabled 1 is returned. Otherwise 0.
3120*/
danielk1977aef0bf62005-12-30 16:28:01 +00003121int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00003122#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003123 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00003124#else
drhd677b3d2007-08-20 22:48:41 +00003125 int rc;
3126 sqlite3BtreeEnter(p);
3127 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003128 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3129 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3130 BTREE_AUTOVACUUM_INCR
3131 );
drhd677b3d2007-08-20 22:48:41 +00003132 sqlite3BtreeLeave(p);
3133 return rc;
danielk1977951af802004-11-05 15:45:09 +00003134#endif
3135}
3136
danf5da7db2017-03-16 18:14:39 +00003137/*
3138** If the user has not set the safety-level for this database connection
3139** using "PRAGMA synchronous", and if the safety-level is not already
3140** set to the value passed to this function as the second parameter,
3141** set it so.
3142*/
drh2ed57372017-10-05 20:57:38 +00003143#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3144 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003145static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3146 sqlite3 *db;
3147 Db *pDb;
3148 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3149 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3150 if( pDb->bSyncSet==0
3151 && pDb->safety_level!=safety_level
3152 && pDb!=&db->aDb[1]
3153 ){
3154 pDb->safety_level = safety_level;
3155 sqlite3PagerSetFlags(pBt->pPager,
3156 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3157 }
3158 }
3159}
3160#else
danfc8f4b62017-03-16 18:54:42 +00003161# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003162#endif
danielk1977951af802004-11-05 15:45:09 +00003163
drh0314cf32018-04-28 01:27:09 +00003164/* Forward declaration */
3165static int newDatabase(BtShared*);
3166
3167
danielk1977951af802004-11-05 15:45:09 +00003168/*
drha34b6762004-05-07 13:30:42 +00003169** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003170** also acquire a readlock on that file.
3171**
3172** SQLITE_OK is returned on success. If the file is not a
3173** well-formed database file, then SQLITE_CORRUPT is returned.
3174** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003175** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003176*/
danielk1977aef0bf62005-12-30 16:28:01 +00003177static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003178 int rc; /* Result code from subfunctions */
3179 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003180 u32 nPage; /* Number of pages in the database */
3181 u32 nPageFile = 0; /* Number of pages in the database file */
drhd677b3d2007-08-20 22:48:41 +00003182
drh1fee73e2007-08-29 04:00:57 +00003183 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003184 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003185 rc = sqlite3PagerSharedLock(pBt->pPager);
3186 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003187 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003188 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003189
3190 /* Do some checking to help insure the file we opened really is
3191 ** a valid database file.
3192 */
drh7d4c94b2021-10-04 22:34:38 +00003193 nPage = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003194 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003195 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003196 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003197 }
drh0314cf32018-04-28 01:27:09 +00003198 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3199 nPage = 0;
3200 }
drh97b59a52010-03-31 02:31:33 +00003201 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003202 u32 pageSize;
3203 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003204 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003205 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003206 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3207 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3208 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003209 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003210 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003211 }
dan5cf53532010-05-01 16:40:20 +00003212
3213#ifdef SQLITE_OMIT_WAL
3214 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003215 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003216 }
3217 if( page1[19]>1 ){
3218 goto page1_init_failed;
3219 }
3220#else
dane04dc882010-04-20 18:53:15 +00003221 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003222 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003223 }
dane04dc882010-04-20 18:53:15 +00003224 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003225 goto page1_init_failed;
3226 }
drhe5ae5732008-06-15 02:51:47 +00003227
drh0ccda522021-08-23 15:56:01 +00003228 /* If the read version is set to 2, this database should be accessed
dana470aeb2010-04-21 11:43:38 +00003229 ** in WAL mode. If the log is not already open, open it now. Then
3230 ** return SQLITE_OK and return without populating BtShared.pPage1.
3231 ** The caller detects this and calls this function again. This is
3232 ** required as the version of page 1 currently in the page1 buffer
3233 ** may not be the latest version - there may be a newer one in the log
3234 ** file.
3235 */
drhc9166342012-01-05 23:32:06 +00003236 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003237 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003238 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003239 if( rc!=SQLITE_OK ){
3240 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003241 }else{
danf5da7db2017-03-16 18:14:39 +00003242 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003243 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003244 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003245 return SQLITE_OK;
3246 }
dane04dc882010-04-20 18:53:15 +00003247 }
dan8b5444b2010-04-27 14:37:47 +00003248 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003249 }else{
3250 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003251 }
dan5cf53532010-05-01 16:40:20 +00003252#endif
dane04dc882010-04-20 18:53:15 +00003253
drh113762a2014-11-19 16:36:25 +00003254 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3255 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3256 **
drhe5ae5732008-06-15 02:51:47 +00003257 ** The original design allowed these amounts to vary, but as of
3258 ** version 3.6.0, we require them to be fixed.
3259 */
3260 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3261 goto page1_init_failed;
3262 }
drh113762a2014-11-19 16:36:25 +00003263 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3264 ** determined by the 2-byte integer located at an offset of 16 bytes from
3265 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003266 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003267 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3268 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003269 if( ((pageSize-1)&pageSize)!=0
3270 || pageSize>SQLITE_MAX_PAGE_SIZE
3271 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003272 ){
drh07d183d2005-05-01 22:52:42 +00003273 goto page1_init_failed;
3274 }
drhdcc27002019-01-06 02:06:31 +00003275 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003276 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003277 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3278 ** integer at offset 20 is the number of bytes of space at the end of
3279 ** each page to reserve for extensions.
3280 **
3281 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3282 ** determined by the one-byte unsigned integer found at an offset of 20
3283 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003284 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003285 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003286 /* After reading the first page of the database assuming a page size
3287 ** of BtShared.pageSize, we have discovered that the page-size is
3288 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3289 ** zero and return SQLITE_OK. The caller will call this function
3290 ** again with the correct page-size.
3291 */
drh3908fe92017-09-01 14:50:19 +00003292 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003293 pBt->usableSize = usableSize;
3294 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003295 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003296 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3297 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003298 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003299 }
drh5a6f8182022-01-17 14:42:38 +00003300 if( nPage>nPageFile ){
3301 if( sqlite3WritableSchema(pBt->db)==0 ){
3302 rc = SQLITE_CORRUPT_BKPT;
3303 goto page1_init_failed;
3304 }else{
3305 nPage = nPageFile;
3306 }
drhc2a4bab2010-04-02 12:46:45 +00003307 }
drh113762a2014-11-19 16:36:25 +00003308 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3309 ** be less than 480. In other words, if the page size is 512, then the
3310 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003311 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003312 goto page1_init_failed;
3313 }
drh43b18e12010-08-17 19:40:08 +00003314 pBt->pageSize = pageSize;
3315 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003316#ifndef SQLITE_OMIT_AUTOVACUUM
3317 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003318 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003319#endif
drh306dc212001-05-21 13:45:10 +00003320 }
drhb6f41482004-05-14 01:58:11 +00003321
3322 /* maxLocal is the maximum amount of payload to store locally for
3323 ** a cell. Make sure it is small enough so that at least minFanout
3324 ** cells can will fit on one page. We assume a 10-byte page header.
3325 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003326 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003327 ** 4-byte child pointer
3328 ** 9-byte nKey value
3329 ** 4-byte nData value
3330 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003331 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003332 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3333 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003334 */
shaneh1df2db72010-08-18 02:28:48 +00003335 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3336 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3337 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3338 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003339 if( pBt->maxLocal>127 ){
3340 pBt->max1bytePayload = 127;
3341 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003342 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003343 }
drh2e38c322004-09-03 18:38:44 +00003344 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003345 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003346 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003347 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003348
drh72f82862001-05-24 21:06:34 +00003349page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003350 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003351 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003352 return rc;
drh306dc212001-05-21 13:45:10 +00003353}
3354
drh85ec3b62013-05-14 23:12:06 +00003355#ifndef NDEBUG
3356/*
3357** Return the number of cursors open on pBt. This is for use
3358** in assert() expressions, so it is only compiled if NDEBUG is not
3359** defined.
3360**
3361** Only write cursors are counted if wrOnly is true. If wrOnly is
3362** false then all cursors are counted.
3363**
3364** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003365** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003366** have been tripped into the CURSOR_FAULT state are not counted.
3367*/
3368static int countValidCursors(BtShared *pBt, int wrOnly){
3369 BtCursor *pCur;
3370 int r = 0;
3371 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003372 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3373 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003374 }
3375 return r;
3376}
3377#endif
3378
drh306dc212001-05-21 13:45:10 +00003379/*
drhb8ca3072001-12-05 00:21:20 +00003380** If there are no outstanding cursors and we are not in the middle
3381** of a transaction but there is a read lock on the database, then
3382** this routine unrefs the first page of the database file which
3383** has the effect of releasing the read lock.
3384**
drhb8ca3072001-12-05 00:21:20 +00003385** If there is a transaction in progress, this routine is a no-op.
3386*/
danielk1977aef0bf62005-12-30 16:28:01 +00003387static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003388 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003389 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003390 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003391 MemPage *pPage1 = pBt->pPage1;
3392 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003393 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003394 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003395 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003396 }
3397}
3398
3399/*
drhe39f2f92009-07-23 01:43:59 +00003400** If pBt points to an empty file then convert that empty file
3401** into a new empty database by initializing the first page of
3402** the database.
drh8b2f49b2001-06-08 00:21:52 +00003403*/
danielk1977aef0bf62005-12-30 16:28:01 +00003404static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003405 MemPage *pP1;
3406 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003407 int rc;
drhd677b3d2007-08-20 22:48:41 +00003408
drh1fee73e2007-08-29 04:00:57 +00003409 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003410 if( pBt->nPage>0 ){
3411 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003412 }
drh3aac2dd2004-04-26 14:10:20 +00003413 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003414 assert( pP1!=0 );
3415 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003416 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003417 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003418 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3419 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003420 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3421 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003422 data[18] = 1;
3423 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003424 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3425 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003426 data[21] = 64;
3427 data[22] = 32;
3428 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003429 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003430 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003431 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003432#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003433 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003434 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003435 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003436 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003437#endif
drhdd3cd972010-03-27 17:12:36 +00003438 pBt->nPage = 1;
3439 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003440 return SQLITE_OK;
3441}
3442
3443/*
danb483eba2012-10-13 19:58:11 +00003444** Initialize the first page of the database file (creating a database
3445** consisting of a single page and no schema objects). Return SQLITE_OK
3446** if successful, or an SQLite error code otherwise.
3447*/
3448int sqlite3BtreeNewDb(Btree *p){
3449 int rc;
3450 sqlite3BtreeEnter(p);
3451 p->pBt->nPage = 0;
3452 rc = newDatabase(p->pBt);
3453 sqlite3BtreeLeave(p);
3454 return rc;
3455}
3456
3457/*
danielk1977ee5741e2004-05-31 10:01:34 +00003458** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003459** is started if the second argument is nonzero, otherwise a read-
3460** transaction. If the second argument is 2 or more and exclusive
3461** transaction is started, meaning that no other process is allowed
3462** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003463** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003464** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003465**
danielk1977ee5741e2004-05-31 10:01:34 +00003466** A write-transaction must be started before attempting any
3467** changes to the database. None of the following routines
3468** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003469**
drh23e11ca2004-05-04 17:27:28 +00003470** sqlite3BtreeCreateTable()
3471** sqlite3BtreeCreateIndex()
3472** sqlite3BtreeClearTable()
3473** sqlite3BtreeDropTable()
3474** sqlite3BtreeInsert()
3475** sqlite3BtreeDelete()
3476** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003477**
drhb8ef32c2005-03-14 02:01:49 +00003478** If an initial attempt to acquire the lock fails because of lock contention
3479** and the database was previously unlocked, then invoke the busy handler
3480** if there is one. But if there was previously a read-lock, do not
3481** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3482** returned when there is already a read-lock in order to avoid a deadlock.
3483**
3484** Suppose there are two processes A and B. A has a read lock and B has
3485** a reserved lock. B tries to promote to exclusive but is blocked because
3486** of A's read lock. A tries to promote to reserved but is blocked by B.
3487** One or the other of the two processes must give way or there can be
3488** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3489** when A already has a read lock, we encourage A to give up and let B
3490** proceed.
drha059ad02001-04-17 20:09:11 +00003491*/
drhbb2d9b12018-06-06 16:28:40 +00003492int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003493 BtShared *pBt = p->pBt;
dan7bb8b8a2020-05-06 20:27:18 +00003494 Pager *pPager = pBt->pPager;
danielk1977ee5741e2004-05-31 10:01:34 +00003495 int rc = SQLITE_OK;
3496
drhd677b3d2007-08-20 22:48:41 +00003497 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003498 btreeIntegrity(p);
3499
danielk1977ee5741e2004-05-31 10:01:34 +00003500 /* If the btree is already in a write-transaction, or it
3501 ** is already in a read-transaction and a read-transaction
3502 ** is requested, this is a no-op.
3503 */
danielk1977aef0bf62005-12-30 16:28:01 +00003504 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003505 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003506 }
dan56c517a2013-09-26 11:04:33 +00003507 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003508
danea933f02018-07-19 11:44:02 +00003509 if( (p->db->flags & SQLITE_ResetDatabase)
dan7bb8b8a2020-05-06 20:27:18 +00003510 && sqlite3PagerIsreadonly(pPager)==0
danea933f02018-07-19 11:44:02 +00003511 ){
3512 pBt->btsFlags &= ~BTS_READ_ONLY;
3513 }
3514
drhb8ef32c2005-03-14 02:01:49 +00003515 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003516 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003517 rc = SQLITE_READONLY;
3518 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003519 }
3520
danielk1977404ca072009-03-16 13:19:36 +00003521#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003522 {
3523 sqlite3 *pBlock = 0;
3524 /* If another database handle has already opened a write transaction
3525 ** on this shared-btree structure and a second write transaction is
3526 ** requested, return SQLITE_LOCKED.
3527 */
3528 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3529 || (pBt->btsFlags & BTS_PENDING)!=0
3530 ){
3531 pBlock = pBt->pWriter->db;
3532 }else if( wrflag>1 ){
3533 BtLock *pIter;
3534 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3535 if( pIter->pBtree!=p ){
3536 pBlock = pIter->pBtree->db;
3537 break;
3538 }
danielk1977641b0f42007-12-21 04:47:25 +00003539 }
3540 }
drh5a1fb182016-01-08 19:34:39 +00003541 if( pBlock ){
3542 sqlite3ConnectionBlocked(p->db, pBlock);
3543 rc = SQLITE_LOCKED_SHAREDCACHE;
3544 goto trans_begun;
3545 }
danielk1977404ca072009-03-16 13:19:36 +00003546 }
danielk1977641b0f42007-12-21 04:47:25 +00003547#endif
3548
danielk1977602b4662009-07-02 07:47:33 +00003549 /* Any read-only or read-write transaction implies a read-lock on
3550 ** page 1. So if some other shared-cache client already has a write-lock
3551 ** on page 1, the transaction cannot be opened. */
drh346a70c2020-06-15 20:27:35 +00003552 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
drh4c301aa2009-07-15 17:25:45 +00003553 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003554
drhc9166342012-01-05 23:32:06 +00003555 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3556 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003557 do {
dan11a81822020-05-07 14:26:40 +00003558 sqlite3PagerWalDb(pPager, p->db);
dan58021b22020-05-05 20:30:07 +00003559
3560#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3561 /* If transitioning from no transaction directly to a write transaction,
3562 ** block for the WRITER lock first if possible. */
3563 if( pBt->pPage1==0 && wrflag ){
3564 assert( pBt->inTransaction==TRANS_NONE );
dan861fb1e2020-05-06 19:14:41 +00003565 rc = sqlite3PagerWalWriteLock(pPager, 1);
dan7bb8b8a2020-05-06 20:27:18 +00003566 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
dan58021b22020-05-05 20:30:07 +00003567 }
3568#endif
3569
danielk1977295dc102009-04-01 19:07:03 +00003570 /* Call lockBtree() until either pBt->pPage1 is populated or
3571 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3572 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3573 ** reading page 1 it discovers that the page-size of the database
3574 ** file is not pBt->pageSize. In this case lockBtree() will update
3575 ** pBt->pageSize to the page-size of the file on disk.
3576 */
3577 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003578
drhb8ef32c2005-03-14 02:01:49 +00003579 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003580 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003581 rc = SQLITE_READONLY;
3582 }else{
dan58021b22020-05-05 20:30:07 +00003583 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003584 if( rc==SQLITE_OK ){
3585 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003586 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3587 /* if there was no transaction opened when this function was
3588 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3589 ** code to SQLITE_BUSY. */
3590 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003591 }
drhb8ef32c2005-03-14 02:01:49 +00003592 }
3593 }
3594
danielk1977bd434552009-03-18 10:33:00 +00003595 if( rc!=SQLITE_OK ){
danfc87ab82020-05-06 19:22:59 +00003596 (void)sqlite3PagerWalWriteLock(pPager, 0);
drhb8ef32c2005-03-14 02:01:49 +00003597 unlockBtreeIfUnused(pBt);
3598 }
danf9b76712010-06-01 14:12:45 +00003599 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003600 btreeInvokeBusyHandler(pBt) );
dan7bb8b8a2020-05-06 20:27:18 +00003601 sqlite3PagerWalDb(pPager, 0);
3602#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3603 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3604#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003605
3606 if( rc==SQLITE_OK ){
3607 if( p->inTrans==TRANS_NONE ){
3608 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003609#ifndef SQLITE_OMIT_SHARED_CACHE
3610 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003611 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003612 p->lock.eLock = READ_LOCK;
3613 p->lock.pNext = pBt->pLock;
3614 pBt->pLock = &p->lock;
3615 }
3616#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003617 }
3618 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3619 if( p->inTrans>pBt->inTransaction ){
3620 pBt->inTransaction = p->inTrans;
3621 }
danielk1977404ca072009-03-16 13:19:36 +00003622 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003623 MemPage *pPage1 = pBt->pPage1;
3624#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003625 assert( !pBt->pWriter );
3626 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003627 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3628 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003629#endif
dan59257dc2010-08-04 11:34:31 +00003630
3631 /* If the db-size header field is incorrect (as it may be if an old
3632 ** client has been writing the database file), update it now. Doing
3633 ** this sooner rather than later means the database size can safely
3634 ** re-read the database size from page 1 if a savepoint or transaction
3635 ** rollback occurs within the transaction.
3636 */
3637 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3638 rc = sqlite3PagerWrite(pPage1->pDbPage);
3639 if( rc==SQLITE_OK ){
3640 put4byte(&pPage1->aData[28], pBt->nPage);
3641 }
3642 }
3643 }
danielk1977aef0bf62005-12-30 16:28:01 +00003644 }
3645
drhd677b3d2007-08-20 22:48:41 +00003646trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003647 if( rc==SQLITE_OK ){
3648 if( pSchemaVersion ){
3649 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3650 }
3651 if( wrflag ){
3652 /* This call makes sure that the pager has the correct number of
3653 ** open savepoints. If the second parameter is greater than 0 and
3654 ** the sub-journal is not already open, then it will be opened here.
3655 */
dan7bb8b8a2020-05-06 20:27:18 +00003656 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
drhbb2d9b12018-06-06 16:28:40 +00003657 }
danielk1977fd7f0452008-12-17 17:30:26 +00003658 }
danielk197712dd5492008-12-18 15:45:07 +00003659
danielk1977aef0bf62005-12-30 16:28:01 +00003660 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003661 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003662 return rc;
drha059ad02001-04-17 20:09:11 +00003663}
3664
danielk1977687566d2004-11-02 12:56:41 +00003665#ifndef SQLITE_OMIT_AUTOVACUUM
3666
3667/*
3668** Set the pointer-map entries for all children of page pPage. Also, if
3669** pPage contains cells that point to overflow pages, set the pointer
3670** map entries for the overflow pages as well.
3671*/
3672static int setChildPtrmaps(MemPage *pPage){
3673 int i; /* Counter variable */
3674 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003675 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003676 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003677 Pgno pgno = pPage->pgno;
3678
drh1fee73e2007-08-29 04:00:57 +00003679 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003680 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003681 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003682 nCell = pPage->nCell;
3683
3684 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003685 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003686
drh0f1bf4c2019-01-13 20:17:21 +00003687 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003688
danielk1977687566d2004-11-02 12:56:41 +00003689 if( !pPage->leaf ){
3690 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003691 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003692 }
3693 }
3694
3695 if( !pPage->leaf ){
3696 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003697 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003698 }
3699
danielk1977687566d2004-11-02 12:56:41 +00003700 return rc;
3701}
3702
3703/*
drhf3aed592009-07-08 18:12:49 +00003704** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3705** that it points to iTo. Parameter eType describes the type of pointer to
3706** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003707**
3708** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3709** page of pPage.
3710**
3711** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3712** page pointed to by one of the cells on pPage.
3713**
3714** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3715** overflow page in the list.
3716*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003717static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003718 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003719 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003720 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003721 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003722 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003723 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003724 }
danielk1977f78fc082004-11-02 14:40:32 +00003725 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003726 }else{
danielk1977687566d2004-11-02 12:56:41 +00003727 int i;
3728 int nCell;
drha1f75d92015-05-24 10:18:12 +00003729 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003730
drh14e845a2017-05-25 21:35:56 +00003731 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003732 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003733 nCell = pPage->nCell;
3734
danielk1977687566d2004-11-02 12:56:41 +00003735 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003736 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003737 if( eType==PTRMAP_OVERFLOW1 ){
3738 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003739 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003740 if( info.nLocal<info.nPayload ){
3741 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003742 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003743 }
3744 if( iFrom==get4byte(pCell+info.nSize-4) ){
3745 put4byte(pCell+info.nSize-4, iTo);
3746 break;
3747 }
danielk1977687566d2004-11-02 12:56:41 +00003748 }
3749 }else{
3750 if( get4byte(pCell)==iFrom ){
3751 put4byte(pCell, iTo);
3752 break;
3753 }
3754 }
3755 }
3756
3757 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003758 if( eType!=PTRMAP_BTREE ||
3759 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003760 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003761 }
danielk1977687566d2004-11-02 12:56:41 +00003762 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3763 }
danielk1977687566d2004-11-02 12:56:41 +00003764 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003765 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003766}
3767
danielk1977003ba062004-11-04 02:57:33 +00003768
danielk19777701e812005-01-10 12:59:51 +00003769/*
3770** Move the open database page pDbPage to location iFreePage in the
3771** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003772**
3773** The isCommit flag indicates that there is no need to remember that
3774** the journal needs to be sync()ed before database page pDbPage->pgno
3775** can be written to. The caller has already promised not to write to that
3776** page.
danielk19777701e812005-01-10 12:59:51 +00003777*/
danielk1977003ba062004-11-04 02:57:33 +00003778static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003779 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003780 MemPage *pDbPage, /* Open page to move */
3781 u8 eType, /* Pointer map 'type' entry for pDbPage */
3782 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003783 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003784 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003785){
3786 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3787 Pgno iDbPage = pDbPage->pgno;
3788 Pager *pPager = pBt->pPager;
3789 int rc;
3790
danielk1977a0bf2652004-11-04 14:30:04 +00003791 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3792 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003793 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003794 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003795 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003796
drh85b623f2007-12-13 21:54:09 +00003797 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003798 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3799 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003800 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003801 if( rc!=SQLITE_OK ){
3802 return rc;
3803 }
3804 pDbPage->pgno = iFreePage;
3805
3806 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3807 ** that point to overflow pages. The pointer map entries for all these
3808 ** pages need to be changed.
3809 **
3810 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3811 ** pointer to a subsequent overflow page. If this is the case, then
3812 ** the pointer map needs to be updated for the subsequent overflow page.
3813 */
danielk1977a0bf2652004-11-04 14:30:04 +00003814 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003815 rc = setChildPtrmaps(pDbPage);
3816 if( rc!=SQLITE_OK ){
3817 return rc;
3818 }
3819 }else{
3820 Pgno nextOvfl = get4byte(pDbPage->aData);
3821 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003822 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003823 if( rc!=SQLITE_OK ){
3824 return rc;
3825 }
3826 }
3827 }
3828
3829 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3830 ** that it points at iFreePage. Also fix the pointer map entry for
3831 ** iPtrPage.
3832 */
danielk1977a0bf2652004-11-04 14:30:04 +00003833 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003834 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003835 if( rc!=SQLITE_OK ){
3836 return rc;
3837 }
danielk19773b8a05f2007-03-19 17:44:26 +00003838 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003839 if( rc!=SQLITE_OK ){
3840 releasePage(pPtrPage);
3841 return rc;
3842 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003843 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003844 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003845 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003846 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003847 }
danielk1977003ba062004-11-04 02:57:33 +00003848 }
danielk1977003ba062004-11-04 02:57:33 +00003849 return rc;
3850}
3851
danielk1977dddbcdc2007-04-26 14:42:34 +00003852/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003853static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003854
3855/*
dan51f0b6d2013-02-22 20:16:34 +00003856** Perform a single step of an incremental-vacuum. If successful, return
3857** SQLITE_OK. If there is no work to do (and therefore no point in
3858** calling this function again), return SQLITE_DONE. Or, if an error
3859** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003860**
peter.d.reid60ec9142014-09-06 16:39:46 +00003861** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003862** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003863**
dan51f0b6d2013-02-22 20:16:34 +00003864** Parameter nFin is the number of pages that this database would contain
3865** were this function called until it returns SQLITE_DONE.
3866**
3867** If the bCommit parameter is non-zero, this function assumes that the
3868** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003869** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003870** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003871*/
dan51f0b6d2013-02-22 20:16:34 +00003872static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003873 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003874 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003875
drh1fee73e2007-08-29 04:00:57 +00003876 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003877 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003878
3879 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003880 u8 eType;
3881 Pgno iPtrPage;
3882
3883 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003884 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003885 return SQLITE_DONE;
3886 }
3887
3888 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3889 if( rc!=SQLITE_OK ){
3890 return rc;
3891 }
3892 if( eType==PTRMAP_ROOTPAGE ){
3893 return SQLITE_CORRUPT_BKPT;
3894 }
3895
3896 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003897 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003898 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003899 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003900 ** truncated to zero after this function returns, so it doesn't
3901 ** matter if it still contains some garbage entries.
3902 */
3903 Pgno iFreePg;
3904 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003905 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003906 if( rc!=SQLITE_OK ){
3907 return rc;
3908 }
3909 assert( iFreePg==iLastPg );
3910 releasePage(pFreePg);
3911 }
3912 } else {
3913 Pgno iFreePg; /* Index of free page to move pLastPg to */
3914 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003915 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3916 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003917
drhb00fc3b2013-08-21 23:42:32 +00003918 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003919 if( rc!=SQLITE_OK ){
3920 return rc;
3921 }
3922
dan51f0b6d2013-02-22 20:16:34 +00003923 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003924 ** is swapped with the first free page pulled off the free list.
3925 **
dan51f0b6d2013-02-22 20:16:34 +00003926 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003927 ** looping until a free-page located within the first nFin pages
3928 ** of the file is found.
3929 */
dan51f0b6d2013-02-22 20:16:34 +00003930 if( bCommit==0 ){
3931 eMode = BTALLOC_LE;
3932 iNear = nFin;
3933 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003934 do {
3935 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003936 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003937 if( rc!=SQLITE_OK ){
3938 releasePage(pLastPg);
3939 return rc;
3940 }
3941 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003942 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003943 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003944
dane1df4e32013-03-05 11:27:04 +00003945 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003946 releasePage(pLastPg);
3947 if( rc!=SQLITE_OK ){
3948 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003949 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003950 }
3951 }
3952
dan51f0b6d2013-02-22 20:16:34 +00003953 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003954 do {
danielk19773460d192008-12-27 15:23:13 +00003955 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003956 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3957 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003958 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003959 }
3960 return SQLITE_OK;
3961}
3962
3963/*
dan51f0b6d2013-02-22 20:16:34 +00003964** The database opened by the first argument is an auto-vacuum database
3965** nOrig pages in size containing nFree free pages. Return the expected
3966** size of the database in pages following an auto-vacuum operation.
3967*/
3968static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3969 int nEntry; /* Number of entries on one ptrmap page */
3970 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3971 Pgno nFin; /* Return value */
3972
3973 nEntry = pBt->usableSize/5;
3974 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3975 nFin = nOrig - nFree - nPtrmap;
3976 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3977 nFin--;
3978 }
3979 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3980 nFin--;
3981 }
dan51f0b6d2013-02-22 20:16:34 +00003982
3983 return nFin;
3984}
3985
3986/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003987** A write-transaction must be opened before calling this function.
3988** It performs a single unit of work towards an incremental vacuum.
3989**
3990** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003991** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003992** SQLITE_OK is returned. Otherwise an SQLite error code.
3993*/
3994int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003995 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003996 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003997
3998 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003999 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
4000 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00004001 rc = SQLITE_DONE;
4002 }else{
dan51f0b6d2013-02-22 20:16:34 +00004003 Pgno nOrig = btreePagecount(pBt);
4004 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
4005 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
4006
drhbc2cf3b2020-07-14 12:40:53 +00004007 if( nOrig<nFin || nFree>=nOrig ){
dan91384712013-02-24 11:50:43 +00004008 rc = SQLITE_CORRUPT_BKPT;
4009 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00004010 rc = saveAllCursors(pBt, 0, 0);
4011 if( rc==SQLITE_OK ){
4012 invalidateAllOverflowCache(pBt);
4013 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
4014 }
dan51f0b6d2013-02-22 20:16:34 +00004015 if( rc==SQLITE_OK ){
4016 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4017 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
4018 }
4019 }else{
4020 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00004021 }
danielk1977dddbcdc2007-04-26 14:42:34 +00004022 }
drhd677b3d2007-08-20 22:48:41 +00004023 sqlite3BtreeLeave(p);
4024 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00004025}
4026
4027/*
danielk19773b8a05f2007-03-19 17:44:26 +00004028** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00004029** is committed for an auto-vacuum database.
danielk1977687566d2004-11-02 12:56:41 +00004030*/
drh1bbfc672021-10-15 23:02:27 +00004031static int autoVacuumCommit(Btree *p){
danielk1977dddbcdc2007-04-26 14:42:34 +00004032 int rc = SQLITE_OK;
drh1bbfc672021-10-15 23:02:27 +00004033 Pager *pPager;
4034 BtShared *pBt;
4035 sqlite3 *db;
4036 VVA_ONLY( int nRef );
4037
4038 assert( p!=0 );
4039 pBt = p->pBt;
4040 pPager = pBt->pPager;
4041 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00004042
drh1fee73e2007-08-29 04:00:57 +00004043 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00004044 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00004045 assert(pBt->autoVacuum);
4046 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00004047 Pgno nFin; /* Number of pages in database after autovacuuming */
4048 Pgno nFree; /* Number of pages on the freelist initially */
drh1bbfc672021-10-15 23:02:27 +00004049 Pgno nVac; /* Number of pages to vacuum */
drh41d628c2009-07-11 17:04:08 +00004050 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00004051 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00004052
drhb1299152010-03-30 22:58:33 +00004053 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00004054 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
4055 /* It is not possible to create a database for which the final page
4056 ** is either a pointer-map page or the pending-byte page. If one
4057 ** is encountered, this indicates corruption.
4058 */
danielk19773460d192008-12-27 15:23:13 +00004059 return SQLITE_CORRUPT_BKPT;
4060 }
danielk1977ef165ce2009-04-06 17:50:03 +00004061
danielk19773460d192008-12-27 15:23:13 +00004062 nFree = get4byte(&pBt->pPage1->aData[36]);
drh1bbfc672021-10-15 23:02:27 +00004063 db = p->db;
4064 if( db->xAutovacPages ){
4065 int iDb;
4066 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
4067 if( db->aDb[iDb].pBt==p ) break;
4068 }
4069 nVac = db->xAutovacPages(
4070 db->pAutovacPagesArg,
4071 db->aDb[iDb].zDbSName,
4072 nOrig,
4073 nFree,
4074 pBt->pageSize
4075 );
4076 if( nVac>nFree ){
4077 nVac = nFree;
4078 }
4079 if( nVac==0 ){
4080 return SQLITE_OK;
4081 }
4082 }else{
4083 nVac = nFree;
4084 }
4085 nFin = finalDbSize(pBt, nOrig, nVac);
drhc5e47ac2009-06-04 00:11:56 +00004086 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00004087 if( nFin<nOrig ){
4088 rc = saveAllCursors(pBt, 0, 0);
4089 }
danielk19773460d192008-12-27 15:23:13 +00004090 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
drh1bbfc672021-10-15 23:02:27 +00004091 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00004092 }
danielk19773460d192008-12-27 15:23:13 +00004093 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00004094 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
drh1bbfc672021-10-15 23:02:27 +00004095 if( nVac==nFree ){
4096 put4byte(&pBt->pPage1->aData[32], 0);
4097 put4byte(&pBt->pPage1->aData[36], 0);
4098 }
drhdd3cd972010-03-27 17:12:36 +00004099 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00004100 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00004101 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00004102 }
4103 if( rc!=SQLITE_OK ){
4104 sqlite3PagerRollback(pPager);
4105 }
danielk1977687566d2004-11-02 12:56:41 +00004106 }
4107
dan0aed84d2013-03-26 14:16:20 +00004108 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00004109 return rc;
4110}
danielk1977dddbcdc2007-04-26 14:42:34 +00004111
danielk1977a50d9aa2009-06-08 14:49:45 +00004112#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4113# define setChildPtrmaps(x) SQLITE_OK
4114#endif
danielk1977687566d2004-11-02 12:56:41 +00004115
4116/*
drh80e35f42007-03-30 14:06:34 +00004117** This routine does the first phase of a two-phase commit. This routine
4118** causes a rollback journal to be created (if it does not already exist)
4119** and populated with enough information so that if a power loss occurs
4120** the database can be restored to its original state by playing back
4121** the journal. Then the contents of the journal are flushed out to
4122** the disk. After the journal is safely on oxide, the changes to the
4123** database are written into the database file and flushed to oxide.
4124** At the end of this call, the rollback journal still exists on the
4125** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00004126** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00004127** commit process.
4128**
4129** This call is a no-op if no write-transaction is currently active on pBt.
4130**
drh067b92b2020-06-19 15:24:12 +00004131** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4132** the name of a super-journal file that should be written into the
4133** individual journal file, or is NULL, indicating no super-journal file
drh80e35f42007-03-30 14:06:34 +00004134** (single database transaction).
4135**
drh067b92b2020-06-19 15:24:12 +00004136** When this is called, the super-journal should already have been
drh80e35f42007-03-30 14:06:34 +00004137** created, populated with this journal pointer and synced to disk.
4138**
4139** Once this is routine has returned, the only thing required to commit
4140** the write-transaction for this database file is to delete the journal.
4141*/
drh067b92b2020-06-19 15:24:12 +00004142int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
drh80e35f42007-03-30 14:06:34 +00004143 int rc = SQLITE_OK;
4144 if( p->inTrans==TRANS_WRITE ){
4145 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004146 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004147#ifndef SQLITE_OMIT_AUTOVACUUM
4148 if( pBt->autoVacuum ){
drh1bbfc672021-10-15 23:02:27 +00004149 rc = autoVacuumCommit(p);
drh80e35f42007-03-30 14:06:34 +00004150 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00004151 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004152 return rc;
4153 }
4154 }
danbc1a3c62013-02-23 16:40:46 +00004155 if( pBt->bDoTruncate ){
4156 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4157 }
drh80e35f42007-03-30 14:06:34 +00004158#endif
drh067b92b2020-06-19 15:24:12 +00004159 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
drhd677b3d2007-08-20 22:48:41 +00004160 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004161 }
4162 return rc;
4163}
4164
4165/*
danielk197794b30732009-07-02 17:21:57 +00004166** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4167** at the conclusion of a transaction.
4168*/
4169static void btreeEndTransaction(Btree *p){
4170 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00004171 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004172 assert( sqlite3BtreeHoldsMutex(p) );
4173
danbc1a3c62013-02-23 16:40:46 +00004174#ifndef SQLITE_OMIT_AUTOVACUUM
4175 pBt->bDoTruncate = 0;
4176#endif
danc0537fe2013-06-28 19:41:43 +00004177 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004178 /* If there are other active statements that belong to this database
4179 ** handle, downgrade to a read-only transaction. The other statements
4180 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004181 downgradeAllSharedCacheTableLocks(p);
4182 p->inTrans = TRANS_READ;
4183 }else{
4184 /* If the handle had any kind of transaction open, decrement the
4185 ** transaction count of the shared btree. If the transaction count
4186 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4187 ** call below will unlock the pager. */
4188 if( p->inTrans!=TRANS_NONE ){
4189 clearAllSharedCacheTableLocks(p);
4190 pBt->nTransaction--;
4191 if( 0==pBt->nTransaction ){
4192 pBt->inTransaction = TRANS_NONE;
4193 }
4194 }
4195
4196 /* Set the current transaction state to TRANS_NONE and unlock the
4197 ** pager if this call closed the only read or write transaction. */
4198 p->inTrans = TRANS_NONE;
4199 unlockBtreeIfUnused(pBt);
4200 }
4201
4202 btreeIntegrity(p);
4203}
4204
4205/*
drh2aa679f2001-06-25 02:11:07 +00004206** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004207**
drh6e345992007-03-30 11:12:08 +00004208** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004209** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4210** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4211** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004212** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004213** routine has to do is delete or truncate or zero the header in the
4214** the rollback journal (which causes the transaction to commit) and
4215** drop locks.
drh6e345992007-03-30 11:12:08 +00004216**
dan60939d02011-03-29 15:40:55 +00004217** Normally, if an error occurs while the pager layer is attempting to
4218** finalize the underlying journal file, this function returns an error and
4219** the upper layer will attempt a rollback. However, if the second argument
4220** is non-zero then this b-tree transaction is part of a multi-file
4221** transaction. In this case, the transaction has already been committed
drh067b92b2020-06-19 15:24:12 +00004222** (by deleting a super-journal file) and the caller will ignore this
dan60939d02011-03-29 15:40:55 +00004223** functions return code. So, even if an error occurs in the pager layer,
4224** reset the b-tree objects internal state to indicate that the write
4225** transaction has been closed. This is quite safe, as the pager will have
4226** transitioned to the error state.
4227**
drh5e00f6c2001-09-13 13:46:56 +00004228** This will release the write lock on the database file. If there
4229** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004230*/
dan60939d02011-03-29 15:40:55 +00004231int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004232
drh075ed302010-10-14 01:17:30 +00004233 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004234 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004235 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004236
4237 /* If the handle has a write-transaction open, commit the shared-btrees
4238 ** transaction and set the shared state to TRANS_READ.
4239 */
4240 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004241 int rc;
drh075ed302010-10-14 01:17:30 +00004242 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004243 assert( pBt->inTransaction==TRANS_WRITE );
4244 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004245 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004246 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004247 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004248 return rc;
4249 }
drh2b994ce2021-03-18 12:36:09 +00004250 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004251 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004252 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004253 }
danielk1977aef0bf62005-12-30 16:28:01 +00004254
danielk197794b30732009-07-02 17:21:57 +00004255 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004256 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004257 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004258}
4259
drh80e35f42007-03-30 14:06:34 +00004260/*
4261** Do both phases of a commit.
4262*/
4263int sqlite3BtreeCommit(Btree *p){
4264 int rc;
drhd677b3d2007-08-20 22:48:41 +00004265 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004266 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4267 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004268 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004269 }
drhd677b3d2007-08-20 22:48:41 +00004270 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004271 return rc;
4272}
4273
drhc39e0002004-05-07 23:50:57 +00004274/*
drhfb982642007-08-30 01:19:59 +00004275** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004276** code to errCode for every cursor on any BtShared that pBtree
4277** references. Or if the writeOnly flag is set to 1, then only
4278** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004279**
drh47b7fc72014-11-11 01:33:57 +00004280** Every cursor is a candidate to be tripped, including cursors
4281** that belong to other database connections that happen to be
4282** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004283**
dan80231042014-11-12 14:56:02 +00004284** This routine gets called when a rollback occurs. If the writeOnly
4285** flag is true, then only write-cursors need be tripped - read-only
4286** cursors save their current positions so that they may continue
4287** following the rollback. Or, if writeOnly is false, all cursors are
4288** tripped. In general, writeOnly is false if the transaction being
4289** rolled back modified the database schema. In this case b-tree root
4290** pages may be moved or deleted from the database altogether, making
4291** it unsafe for read cursors to continue.
4292**
4293** If the writeOnly flag is true and an error is encountered while
4294** saving the current position of a read-only cursor, all cursors,
4295** including all read-cursors are tripped.
4296**
4297** SQLITE_OK is returned if successful, or if an error occurs while
4298** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004299*/
dan80231042014-11-12 14:56:02 +00004300int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004301 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004302 int rc = SQLITE_OK;
4303
drh47b7fc72014-11-11 01:33:57 +00004304 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004305 if( pBtree ){
4306 sqlite3BtreeEnter(pBtree);
4307 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004308 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004309 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004310 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004311 if( rc!=SQLITE_OK ){
4312 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4313 break;
4314 }
4315 }
4316 }else{
4317 sqlite3BtreeClearCursor(p);
4318 p->eState = CURSOR_FAULT;
4319 p->skipNext = errCode;
4320 }
drh85ef6302017-08-02 15:50:09 +00004321 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004322 }
dan80231042014-11-12 14:56:02 +00004323 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004324 }
dan80231042014-11-12 14:56:02 +00004325 return rc;
drhfb982642007-08-30 01:19:59 +00004326}
4327
4328/*
drh41422652019-05-10 14:34:18 +00004329** Set the pBt->nPage field correctly, according to the current
4330** state of the database. Assume pBt->pPage1 is valid.
4331*/
4332static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4333 int nPage = get4byte(&pPage1->aData[28]);
4334 testcase( nPage==0 );
4335 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
mistachkin2b5fbb22021-12-31 18:26:50 +00004336 testcase( pBt->nPage!=(u32)nPage );
drh41422652019-05-10 14:34:18 +00004337 pBt->nPage = nPage;
4338}
4339
4340/*
drh47b7fc72014-11-11 01:33:57 +00004341** Rollback the transaction in progress.
4342**
4343** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4344** Only write cursors are tripped if writeOnly is true but all cursors are
4345** tripped if writeOnly is false. Any attempt to use
4346** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004347**
4348** This will release the write lock on the database file. If there
4349** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004350*/
drh47b7fc72014-11-11 01:33:57 +00004351int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004352 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004353 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004354 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004355
drh47b7fc72014-11-11 01:33:57 +00004356 assert( writeOnly==1 || writeOnly==0 );
4357 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004358 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004359 if( tripCode==SQLITE_OK ){
4360 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004361 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004362 }else{
4363 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004364 }
drh0f198a72012-02-13 16:43:16 +00004365 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004366 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4367 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4368 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004369 }
danielk1977aef0bf62005-12-30 16:28:01 +00004370 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004371
4372 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004373 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004374
danielk19778d34dfd2006-01-24 16:37:57 +00004375 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004376 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004377 if( rc2!=SQLITE_OK ){
4378 rc = rc2;
4379 }
4380
drh24cd67e2004-05-10 16:18:47 +00004381 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004382 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004383 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004384 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh41422652019-05-10 14:34:18 +00004385 btreeSetNPage(pBt, pPage1);
drh3908fe92017-09-01 14:50:19 +00004386 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004387 }
drh85ec3b62013-05-14 23:12:06 +00004388 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004389 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004390 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004391 }
danielk1977aef0bf62005-12-30 16:28:01 +00004392
danielk197794b30732009-07-02 17:21:57 +00004393 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004394 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004395 return rc;
4396}
4397
4398/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004399** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004400** back independently of the main transaction. You must start a transaction
4401** before starting a subtransaction. The subtransaction is ended automatically
4402** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004403**
4404** Statement subtransactions are used around individual SQL statements
4405** that are contained within a BEGIN...COMMIT block. If a constraint
4406** error occurs within the statement, the effect of that one statement
4407** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004408**
4409** A statement sub-transaction is implemented as an anonymous savepoint. The
4410** value passed as the second parameter is the total number of savepoints,
4411** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4412** are no active savepoints and no other statement-transactions open,
4413** iStatement is 1. This anonymous savepoint can be released or rolled back
4414** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004415*/
danielk1977bd434552009-03-18 10:33:00 +00004416int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004417 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004418 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004419 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004420 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004421 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004422 assert( iStatement>0 );
4423 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004424 assert( pBt->inTransaction==TRANS_WRITE );
4425 /* At the pager level, a statement transaction is a savepoint with
4426 ** an index greater than all savepoints created explicitly using
4427 ** SQL statements. It is illegal to open, release or rollback any
4428 ** such savepoints while the statement transaction savepoint is active.
4429 */
4430 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004431 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004432 return rc;
4433}
4434
4435/*
danielk1977fd7f0452008-12-17 17:30:26 +00004436** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4437** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004438** savepoint identified by parameter iSavepoint, depending on the value
4439** of op.
4440**
4441** Normally, iSavepoint is greater than or equal to zero. However, if op is
4442** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4443** contents of the entire transaction are rolled back. This is different
4444** from a normal transaction rollback, as no locks are released and the
4445** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004446*/
4447int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4448 int rc = SQLITE_OK;
4449 if( p && p->inTrans==TRANS_WRITE ){
4450 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004451 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4452 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4453 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004454 if( op==SAVEPOINT_ROLLBACK ){
4455 rc = saveAllCursors(pBt, 0, 0);
4456 }
4457 if( rc==SQLITE_OK ){
4458 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4459 }
drh9f0bbf92009-01-02 21:08:09 +00004460 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004461 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4462 pBt->nPage = 0;
4463 }
drh9f0bbf92009-01-02 21:08:09 +00004464 rc = newDatabase(pBt);
drh41422652019-05-10 14:34:18 +00004465 btreeSetNPage(pBt, pBt->pPage1);
drhb9b49bf2010-08-05 03:21:39 +00004466
dana9a54652019-04-22 11:47:40 +00004467 /* pBt->nPage might be zero if the database was corrupt when
4468 ** the transaction was started. Otherwise, it must be at least 1. */
4469 assert( CORRUPT_DB || pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004470 }
danielk1977fd7f0452008-12-17 17:30:26 +00004471 sqlite3BtreeLeave(p);
4472 }
4473 return rc;
4474}
4475
4476/*
drh8b2f49b2001-06-08 00:21:52 +00004477** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004478** iTable. If a read-only cursor is requested, it is assumed that
4479** the caller already has at least a read-only transaction open
4480** on the database already. If a write-cursor is requested, then
4481** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004482**
drhe807bdb2016-01-21 17:06:33 +00004483** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4484** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4485** can be used for reading or for writing if other conditions for writing
4486** are also met. These are the conditions that must be met in order
4487** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004488**
drhe807bdb2016-01-21 17:06:33 +00004489** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004490**
drhfe5d71d2007-03-19 11:54:10 +00004491** 2: Other database connections that share the same pager cache
4492** but which are not in the READ_UNCOMMITTED state may not have
4493** cursors open with wrFlag==0 on the same table. Otherwise
4494** the changes made by this write cursor would be visible to
4495** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004496**
4497** 3: The database must be writable (not on read-only media)
4498**
4499** 4: There must be an active transaction.
4500**
drhe807bdb2016-01-21 17:06:33 +00004501** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4502** is set. If FORDELETE is set, that is a hint to the implementation that
4503** this cursor will only be used to seek to and delete entries of an index
4504** as part of a larger DELETE statement. The FORDELETE hint is not used by
4505** this implementation. But in a hypothetical alternative storage engine
4506** in which index entries are automatically deleted when corresponding table
4507** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4508** operations on this cursor can be no-ops and all READ operations can
4509** return a null row (2-bytes: 0x01 0x00).
4510**
drh6446c4d2001-12-15 14:22:18 +00004511** No checking is done to make sure that page iTable really is the
4512** root page of a b-tree. If it is not, then the cursor acquired
4513** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004514**
drhf25a5072009-11-18 23:01:25 +00004515** It is assumed that the sqlite3BtreeCursorZero() has been called
4516** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004517*/
drhd677b3d2007-08-20 22:48:41 +00004518static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004519 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004520 Pgno iTable, /* Root page of table to open */
danielk1977cd3e8f72008-03-25 09:47:35 +00004521 int wrFlag, /* 1 to write. 0 read-only */
4522 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4523 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004524){
danielk19773e8add92009-07-04 17:16:00 +00004525 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004526 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004527
drh1fee73e2007-08-29 04:00:57 +00004528 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004529 assert( wrFlag==0
4530 || wrFlag==BTREE_WRCSR
4531 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4532 );
danielk197796d48e92009-06-29 06:00:37 +00004533
danielk1977602b4662009-07-02 07:47:33 +00004534 /* The following assert statements verify that if this is a sharable
4535 ** b-tree database, the connection is holding the required table locks,
4536 ** and that no other connection has any open cursor that conflicts with
drhac801802019-11-17 11:47:50 +00004537 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4538 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4539 || iTable<1 );
danielk197796d48e92009-06-29 06:00:37 +00004540 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4541
danielk19773e8add92009-07-04 17:16:00 +00004542 /* Assert that the caller has opened the required transaction. */
4543 assert( p->inTrans>TRANS_NONE );
4544 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4545 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004546 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004547
drhdb561bc2019-10-25 14:46:05 +00004548 if( iTable<=1 ){
4549 if( iTable<1 ){
4550 return SQLITE_CORRUPT_BKPT;
4551 }else if( btreePagecount(pBt)==0 ){
4552 assert( wrFlag==0 );
4553 iTable = 0;
4554 }
danielk19773e8add92009-07-04 17:16:00 +00004555 }
danielk1977aef0bf62005-12-30 16:28:01 +00004556
danielk1977aef0bf62005-12-30 16:28:01 +00004557 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004558 ** variables and link the cursor into the BtShared list. */
drhabc38152020-07-22 13:38:04 +00004559 pCur->pgnoRoot = iTable;
danielk1977172114a2009-07-07 15:47:12 +00004560 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004561 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004562 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004563 pCur->pBt = pBt;
drh2f0bc1d2021-12-03 13:42:41 +00004564 pCur->curFlags = 0;
drh27fb7462015-06-30 02:47:36 +00004565 /* If there are two or more cursors on the same btree, then all such
4566 ** cursors *must* have the BTCF_Multiple flag set. */
4567 for(pX=pBt->pCursor; pX; pX=pX->pNext){
drhabc38152020-07-22 13:38:04 +00004568 if( pX->pgnoRoot==iTable ){
drh27fb7462015-06-30 02:47:36 +00004569 pX->curFlags |= BTCF_Multiple;
drh2f0bc1d2021-12-03 13:42:41 +00004570 pCur->curFlags = BTCF_Multiple;
drh27fb7462015-06-30 02:47:36 +00004571 }
drha059ad02001-04-17 20:09:11 +00004572 }
drh2f0bc1d2021-12-03 13:42:41 +00004573 pCur->eState = CURSOR_INVALID;
drh27fb7462015-06-30 02:47:36 +00004574 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004575 pBt->pCursor = pCur;
drh2f0bc1d2021-12-03 13:42:41 +00004576 if( wrFlag ){
4577 pCur->curFlags |= BTCF_WriteFlag;
4578 pCur->curPagerFlags = 0;
4579 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
4580 }else{
4581 pCur->curPagerFlags = PAGER_GET_READONLY;
4582 }
danielk1977aef0bf62005-12-30 16:28:01 +00004583 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004584}
drhdb561bc2019-10-25 14:46:05 +00004585static int btreeCursorWithLock(
4586 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004587 Pgno iTable, /* Root page of table to open */
drhdb561bc2019-10-25 14:46:05 +00004588 int wrFlag, /* 1 to write. 0 read-only */
4589 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4590 BtCursor *pCur /* Space for new cursor */
4591){
4592 int rc;
4593 sqlite3BtreeEnter(p);
4594 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4595 sqlite3BtreeLeave(p);
4596 return rc;
4597}
drhd677b3d2007-08-20 22:48:41 +00004598int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004599 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004600 Pgno iTable, /* Root page of table to open */
danielk1977cd3e8f72008-03-25 09:47:35 +00004601 int wrFlag, /* 1 to write. 0 read-only */
4602 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4603 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004604){
drhdb561bc2019-10-25 14:46:05 +00004605 if( p->sharable ){
4606 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004607 }else{
drhdb561bc2019-10-25 14:46:05 +00004608 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004609 }
drhd677b3d2007-08-20 22:48:41 +00004610}
drh7f751222009-03-17 22:33:00 +00004611
4612/*
4613** Return the size of a BtCursor object in bytes.
4614**
4615** This interfaces is needed so that users of cursors can preallocate
4616** sufficient storage to hold a cursor. The BtCursor object is opaque
4617** to users so they cannot do the sizeof() themselves - they must call
4618** this routine.
4619*/
4620int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004621 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004622}
4623
drh7f751222009-03-17 22:33:00 +00004624/*
drhf25a5072009-11-18 23:01:25 +00004625** Initialize memory that will be converted into a BtCursor object.
4626**
4627** The simple approach here would be to memset() the entire object
4628** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4629** do not need to be zeroed and they are large, so we can save a lot
4630** of run-time by skipping the initialization of those elements.
4631*/
4632void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004633 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004634}
4635
4636/*
drh5e00f6c2001-09-13 13:46:56 +00004637** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004638** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004639*/
drh3aac2dd2004-04-26 14:10:20 +00004640int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004641 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004642 if( pBtree ){
4643 BtShared *pBt = pCur->pBt;
4644 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004645 assert( pBt->pCursor!=0 );
4646 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004647 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004648 }else{
4649 BtCursor *pPrev = pBt->pCursor;
4650 do{
4651 if( pPrev->pNext==pCur ){
4652 pPrev->pNext = pCur->pNext;
4653 break;
4654 }
4655 pPrev = pPrev->pNext;
4656 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004657 }
drh352a35a2017-08-15 03:46:47 +00004658 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004659 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004660 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004661 sqlite3_free(pCur->pKey);
daneeee8a52021-03-18 14:31:37 +00004662 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4663 /* Since the BtShared is not sharable, there is no need to
4664 ** worry about the missing sqlite3BtreeLeave() call here. */
4665 assert( pBtree->sharable==0 );
4666 sqlite3BtreeClose(pBtree);
4667 }else{
4668 sqlite3BtreeLeave(pBtree);
4669 }
dan97c8cb32019-01-01 18:00:17 +00004670 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004671 }
drh8c42ca92001-06-22 19:15:00 +00004672 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004673}
4674
drh5e2f8b92001-05-28 00:41:15 +00004675/*
drh86057612007-06-26 01:04:48 +00004676** Make sure the BtCursor* given in the argument has a valid
4677** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004678** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004679**
4680** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004681** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004682*/
drh9188b382004-05-14 21:12:22 +00004683#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004684 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4685 if( a->nKey!=b->nKey ) return 0;
4686 if( a->pPayload!=b->pPayload ) return 0;
4687 if( a->nPayload!=b->nPayload ) return 0;
4688 if( a->nLocal!=b->nLocal ) return 0;
4689 if( a->nSize!=b->nSize ) return 0;
4690 return 1;
4691 }
danielk19771cc5ed82007-05-16 17:28:43 +00004692 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004693 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004694 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004695 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004696 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004697 }
danielk19771cc5ed82007-05-16 17:28:43 +00004698#else
4699 #define assertCellInfo(x)
4700#endif
drhc5b41ac2015-06-17 02:11:46 +00004701static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4702 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004703 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004704 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004705 }else{
4706 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004707 }
drhc5b41ac2015-06-17 02:11:46 +00004708}
drh9188b382004-05-14 21:12:22 +00004709
drhea8ffdf2009-07-22 00:35:23 +00004710#ifndef NDEBUG /* The next routine used only within assert() statements */
4711/*
4712** Return true if the given BtCursor is valid. A valid cursor is one
4713** that is currently pointing to a row in a (non-empty) table.
4714** This is a verification routine is used only within assert() statements.
4715*/
4716int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4717 return pCur && pCur->eState==CURSOR_VALID;
4718}
4719#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004720int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4721 assert( pCur!=0 );
4722 return pCur->eState==CURSOR_VALID;
4723}
drhea8ffdf2009-07-22 00:35:23 +00004724
drh9188b382004-05-14 21:12:22 +00004725/*
drha7c90c42016-06-04 20:37:10 +00004726** Return the value of the integer key or "rowid" for a table btree.
4727** This routine is only valid for a cursor that is pointing into a
4728** ordinary table btree. If the cursor points to an index btree or
4729** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004730*/
drha7c90c42016-06-04 20:37:10 +00004731i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004732 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004733 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004734 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004735 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004736 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004737}
drh2af926b2001-05-15 00:39:25 +00004738
drh7b14b652019-12-29 22:08:20 +00004739/*
4740** Pin or unpin a cursor.
4741*/
4742void sqlite3BtreeCursorPin(BtCursor *pCur){
4743 assert( (pCur->curFlags & BTCF_Pinned)==0 );
4744 pCur->curFlags |= BTCF_Pinned;
4745}
4746void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4747 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4748 pCur->curFlags &= ~BTCF_Pinned;
4749}
4750
drh092457b2017-12-29 15:04:49 +00004751#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004752/*
drh2fc865c2017-12-16 20:20:37 +00004753** Return the offset into the database file for the start of the
4754** payload to which the cursor is pointing.
4755*/
drh092457b2017-12-29 15:04:49 +00004756i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004757 assert( cursorHoldsMutex(pCur) );
4758 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004759 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004760 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004761 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4762}
drh092457b2017-12-29 15:04:49 +00004763#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004764
4765/*
drha7c90c42016-06-04 20:37:10 +00004766** Return the number of bytes of payload for the entry that pCur is
4767** currently pointing to. For table btrees, this will be the amount
4768** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004769**
4770** The caller must guarantee that the cursor is pointing to a non-NULL
4771** valid entry. In other words, the calling procedure must guarantee
4772** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004773*/
drha7c90c42016-06-04 20:37:10 +00004774u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4775 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004776 assert( pCur->eState==CURSOR_VALID );
4777 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004778 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004779}
4780
4781/*
drh53d30dd2019-02-04 21:10:24 +00004782** Return an upper bound on the size of any record for the table
4783** that the cursor is pointing into.
4784**
4785** This is an optimization. Everything will still work if this
4786** routine always returns 2147483647 (which is the largest record
4787** that SQLite can handle) or more. But returning a smaller value might
4788** prevent large memory allocations when trying to interpret a
4789** corrupt datrabase.
4790**
4791** The current implementation merely returns the size of the underlying
4792** database file.
4793*/
4794sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4795 assert( cursorHoldsMutex(pCur) );
4796 assert( pCur->eState==CURSOR_VALID );
4797 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4798}
4799
4800/*
danielk1977d04417962007-05-02 13:16:30 +00004801** Given the page number of an overflow page in the database (parameter
4802** ovfl), this function finds the page number of the next page in the
4803** linked list of overflow pages. If possible, it uses the auto-vacuum
4804** pointer-map data instead of reading the content of page ovfl to do so.
4805**
4806** If an error occurs an SQLite error code is returned. Otherwise:
4807**
danielk1977bea2a942009-01-20 17:06:27 +00004808** The page number of the next overflow page in the linked list is
4809** written to *pPgnoNext. If page ovfl is the last page in its linked
4810** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004811**
danielk1977bea2a942009-01-20 17:06:27 +00004812** If ppPage is not NULL, and a reference to the MemPage object corresponding
4813** to page number pOvfl was obtained, then *ppPage is set to point to that
4814** reference. It is the responsibility of the caller to call releasePage()
4815** on *ppPage to free the reference. In no reference was obtained (because
4816** the pointer-map was used to obtain the value for *pPgnoNext), then
4817** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004818*/
4819static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004820 BtShared *pBt, /* The database file */
4821 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004822 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004823 Pgno *pPgnoNext /* OUT: Next overflow page number */
4824){
4825 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004826 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004827 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004828
drh1fee73e2007-08-29 04:00:57 +00004829 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004830 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004831
4832#ifndef SQLITE_OMIT_AUTOVACUUM
4833 /* Try to find the next page in the overflow list using the
4834 ** autovacuum pointer-map pages. Guess that the next page in
4835 ** the overflow list is page number (ovfl+1). If that guess turns
4836 ** out to be wrong, fall back to loading the data of page
4837 ** number ovfl to determine the next page number.
4838 */
4839 if( pBt->autoVacuum ){
4840 Pgno pgno;
4841 Pgno iGuess = ovfl+1;
4842 u8 eType;
4843
4844 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4845 iGuess++;
4846 }
4847
drhb1299152010-03-30 22:58:33 +00004848 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004849 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004850 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004851 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004852 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004853 }
4854 }
4855 }
4856#endif
4857
danielk1977d8a3f3d2009-07-11 11:45:23 +00004858 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004859 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004860 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004861 assert( rc==SQLITE_OK || pPage==0 );
4862 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004863 next = get4byte(pPage->aData);
4864 }
danielk1977443c0592009-01-16 15:21:05 +00004865 }
danielk197745d68822009-01-16 16:23:38 +00004866
danielk1977bea2a942009-01-20 17:06:27 +00004867 *pPgnoNext = next;
4868 if( ppPage ){
4869 *ppPage = pPage;
4870 }else{
4871 releasePage(pPage);
4872 }
4873 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004874}
4875
danielk1977da107192007-05-04 08:32:13 +00004876/*
4877** Copy data from a buffer to a page, or from a page to a buffer.
4878**
4879** pPayload is a pointer to data stored on database page pDbPage.
4880** If argument eOp is false, then nByte bytes of data are copied
4881** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4882** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4883** of data are copied from the buffer pBuf to pPayload.
4884**
4885** SQLITE_OK is returned on success, otherwise an error code.
4886*/
4887static int copyPayload(
4888 void *pPayload, /* Pointer to page data */
4889 void *pBuf, /* Pointer to buffer */
4890 int nByte, /* Number of bytes to copy */
4891 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4892 DbPage *pDbPage /* Page containing pPayload */
4893){
4894 if( eOp ){
4895 /* Copy data from buffer to page (a write operation) */
4896 int rc = sqlite3PagerWrite(pDbPage);
4897 if( rc!=SQLITE_OK ){
4898 return rc;
4899 }
4900 memcpy(pPayload, pBuf, nByte);
4901 }else{
4902 /* Copy data from page to buffer (a read operation) */
4903 memcpy(pBuf, pPayload, nByte);
4904 }
4905 return SQLITE_OK;
4906}
danielk1977d04417962007-05-02 13:16:30 +00004907
4908/*
danielk19779f8d6402007-05-02 17:48:45 +00004909** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004910** for the entry that the pCur cursor is pointing to. The eOp
4911** argument is interpreted as follows:
4912**
4913** 0: The operation is a read. Populate the overflow cache.
4914** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004915**
4916** A total of "amt" bytes are read or written beginning at "offset".
4917** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004918**
drh3bcdfd22009-07-12 02:32:21 +00004919** The content being read or written might appear on the main page
4920** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004921**
drh42e28f12017-01-27 00:31:59 +00004922** If the current cursor entry uses one or more overflow pages
4923** this function may allocate space for and lazily populate
4924** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004925** Subsequent calls use this cache to make seeking to the supplied offset
4926** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004927**
drh42e28f12017-01-27 00:31:59 +00004928** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004929** invalidated if some other cursor writes to the same table, or if
4930** the cursor is moved to a different row. Additionally, in auto-vacuum
4931** mode, the following events may invalidate an overflow page-list cache.
4932**
4933** * An incremental vacuum,
4934** * A commit in auto_vacuum="full" mode,
4935** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004936*/
danielk19779f8d6402007-05-02 17:48:45 +00004937static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004938 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004939 u32 offset, /* Begin reading this far into payload */
4940 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004941 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004942 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004943){
4944 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004945 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004946 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004947 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004948 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004949#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004950 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004951#endif
drh3aac2dd2004-04-26 14:10:20 +00004952
danielk1977da107192007-05-04 08:32:13 +00004953 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004954 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004955 assert( pCur->eState==CURSOR_VALID );
drha7149082021-10-13 20:11:30 +00004956 if( pCur->ix>=pPage->nCell ){
4957 return SQLITE_CORRUPT_PAGE(pPage);
4958 }
drh1fee73e2007-08-29 04:00:57 +00004959 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004960
drh86057612007-06-26 01:04:48 +00004961 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004962 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004963 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004964
drh0b982072016-03-22 14:10:45 +00004965 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004966 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004967 /* Trying to read or write past the end of the data is an error. The
4968 ** conditional above is really:
4969 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4970 ** but is recast into its current form to avoid integer overflow problems
4971 */
daneebf2f52017-11-18 17:30:08 +00004972 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004973 }
danielk1977da107192007-05-04 08:32:13 +00004974
4975 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004976 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004977 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004978 if( a+offset>pCur->info.nLocal ){
4979 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004980 }
drh42e28f12017-01-27 00:31:59 +00004981 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004982 offset = 0;
drha34b6762004-05-07 13:30:42 +00004983 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004984 amt -= a;
drhdd793422001-06-28 01:54:48 +00004985 }else{
drhfa1a98a2004-05-14 19:08:17 +00004986 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004987 }
danielk1977da107192007-05-04 08:32:13 +00004988
dan85753662014-12-11 16:38:18 +00004989
danielk1977da107192007-05-04 08:32:13 +00004990 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004991 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004992 Pgno nextPage;
4993
drhfa1a98a2004-05-14 19:08:17 +00004994 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
drh584e8b72020-07-22 17:12:59 +00004995
drha38c9512014-04-01 01:24:34 +00004996 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004997 **
4998 ** The aOverflow[] array is sized at one entry for each overflow page
4999 ** in the overflow chain. The page number of the first overflow page is
5000 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
5001 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00005002 */
drh42e28f12017-01-27 00:31:59 +00005003 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00005004 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00005005 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00005006 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00005007 ){
dan85753662014-12-11 16:38:18 +00005008 Pgno *aNew = (Pgno*)sqlite3Realloc(
5009 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00005010 );
5011 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00005012 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00005013 }else{
dan5a500af2014-03-11 20:33:04 +00005014 pCur->aOverflow = aNew;
5015 }
5016 }
drhcd645532017-01-20 20:43:14 +00005017 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
5018 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00005019 }else{
5020 /* If the overflow page-list cache has been allocated and the
5021 ** entry for the first required overflow page is valid, skip
5022 ** directly to it.
5023 */
5024 if( pCur->aOverflow[offset/ovflSize] ){
5025 iIdx = (offset/ovflSize);
5026 nextPage = pCur->aOverflow[iIdx];
5027 offset = (offset%ovflSize);
5028 }
danielk19772dec9702007-05-02 16:48:37 +00005029 }
danielk1977da107192007-05-04 08:32:13 +00005030
drhcd645532017-01-20 20:43:14 +00005031 assert( rc==SQLITE_OK && amt>0 );
5032 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00005033 /* If required, populate the overflow page-list cache. */
drh584e8b72020-07-22 17:12:59 +00005034 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
drh42e28f12017-01-27 00:31:59 +00005035 assert( pCur->aOverflow[iIdx]==0
5036 || pCur->aOverflow[iIdx]==nextPage
5037 || CORRUPT_DB );
5038 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00005039
danielk1977d04417962007-05-02 13:16:30 +00005040 if( offset>=ovflSize ){
5041 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00005042 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00005043 ** data is not required. So first try to lookup the overflow
5044 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00005045 ** function.
danielk1977d04417962007-05-02 13:16:30 +00005046 */
drha38c9512014-04-01 01:24:34 +00005047 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00005048 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00005049 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00005050 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00005051 }else{
danielk1977da107192007-05-04 08:32:13 +00005052 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00005053 }
danielk1977da107192007-05-04 08:32:13 +00005054 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00005055 }else{
danielk19779f8d6402007-05-02 17:48:45 +00005056 /* Need to read this page properly. It contains some of the
5057 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00005058 */
danielk1977cfe9a692004-06-16 12:00:29 +00005059 int a = amt;
danf4ba1092011-10-08 14:57:07 +00005060 if( a + offset > ovflSize ){
5061 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00005062 }
danf4ba1092011-10-08 14:57:07 +00005063
5064#ifdef SQLITE_DIRECT_OVERFLOW_READ
5065 /* If all the following are true:
5066 **
5067 ** 1) this is a read operation, and
5068 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00005069 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00005070 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00005071 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00005072 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00005073 **
5074 ** then data can be read directly from the database file into the
5075 ** output buffer, bypassing the page-cache altogether. This speeds
5076 ** up loading large records that span many overflow pages.
5077 */
drh42e28f12017-01-27 00:31:59 +00005078 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00005079 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00005080 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00005081 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00005082 ){
dan09236752018-11-22 19:10:14 +00005083 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00005084 u8 aSave[4];
5085 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00005086 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00005087 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00005088 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
drhb9fc4552019-08-15 00:04:44 +00005089 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
danf4ba1092011-10-08 14:57:07 +00005090 nextPage = get4byte(aWrite);
5091 memcpy(aWrite, aSave, 4);
5092 }else
5093#endif
5094
5095 {
5096 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00005097 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00005098 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00005099 );
danf4ba1092011-10-08 14:57:07 +00005100 if( rc==SQLITE_OK ){
5101 aPayload = sqlite3PagerGetData(pDbPage);
5102 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00005103 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00005104 sqlite3PagerUnref(pDbPage);
5105 offset = 0;
5106 }
5107 }
5108 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00005109 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00005110 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00005111 }
drhcd645532017-01-20 20:43:14 +00005112 if( rc ) break;
5113 iIdx++;
drh2af926b2001-05-15 00:39:25 +00005114 }
drh2af926b2001-05-15 00:39:25 +00005115 }
danielk1977cfe9a692004-06-16 12:00:29 +00005116
danielk1977da107192007-05-04 08:32:13 +00005117 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00005118 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00005119 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00005120 }
danielk1977da107192007-05-04 08:32:13 +00005121 return rc;
drh2af926b2001-05-15 00:39:25 +00005122}
5123
drh72f82862001-05-24 21:06:34 +00005124/*
drhcb3cabd2016-11-25 19:18:28 +00005125** Read part of the payload for the row at which that cursor pCur is currently
5126** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00005127** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00005128**
drhcb3cabd2016-11-25 19:18:28 +00005129** pCur can be pointing to either a table or an index b-tree.
5130** If pointing to a table btree, then the content section is read. If
5131** pCur is pointing to an index b-tree then the key section is read.
5132**
5133** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5134** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5135** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00005136**
drh3aac2dd2004-04-26 14:10:20 +00005137** Return SQLITE_OK on success or an error code if anything goes
5138** wrong. An error is returned if "offset+amt" is larger than
5139** the available payload.
drh72f82862001-05-24 21:06:34 +00005140*/
drhcb3cabd2016-11-25 19:18:28 +00005141int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00005142 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00005143 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005144 assert( pCur->iPage>=0 && pCur->pPage );
drh5d1a8722009-07-22 18:07:40 +00005145 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00005146}
drh83ec2762017-01-26 16:54:47 +00005147
5148/*
5149** This variant of sqlite3BtreePayload() works even if the cursor has not
5150** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5151** interface.
5152*/
danielk19773588ceb2008-06-10 17:30:26 +00005153#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00005154static SQLITE_NOINLINE int accessPayloadChecked(
5155 BtCursor *pCur,
5156 u32 offset,
5157 u32 amt,
5158 void *pBuf
5159){
drhcb3cabd2016-11-25 19:18:28 +00005160 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00005161 if ( pCur->eState==CURSOR_INVALID ){
5162 return SQLITE_ABORT;
5163 }
dan7a2347e2016-01-07 16:43:54 +00005164 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00005165 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00005166 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5167}
5168int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5169 if( pCur->eState==CURSOR_VALID ){
5170 assert( cursorOwnsBtShared(pCur) );
5171 return accessPayload(pCur, offset, amt, pBuf, 0);
5172 }else{
5173 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00005174 }
drh2af926b2001-05-15 00:39:25 +00005175}
drhcb3cabd2016-11-25 19:18:28 +00005176#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00005177
drh72f82862001-05-24 21:06:34 +00005178/*
drh0e1c19e2004-05-11 00:58:56 +00005179** Return a pointer to payload information from the entry that the
5180** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00005181** the key if index btrees (pPage->intKey==0) and is the data for
5182** table btrees (pPage->intKey==1). The number of bytes of available
5183** key/data is written into *pAmt. If *pAmt==0, then the value
5184** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00005185**
5186** This routine is an optimization. It is common for the entire key
5187** and data to fit on the local page and for there to be no overflow
5188** pages. When that is so, this routine can be used to access the
5189** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00005190** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00005191** the key/data and copy it into a preallocated buffer.
5192**
5193** The pointer returned by this routine looks directly into the cached
5194** page of the database. The data might change or move the next time
5195** any btree routine is called.
5196*/
drh2a8d2262013-12-09 20:43:22 +00005197static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00005198 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00005199 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00005200){
danf2f72a02017-10-19 15:17:38 +00005201 int amt;
drh352a35a2017-08-15 03:46:47 +00005202 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00005203 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00005204 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00005205 assert( cursorOwnsBtShared(pCur) );
drhcd789f92021-10-11 09:39:42 +00005206 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
drh86dd3712014-03-25 11:00:21 +00005207 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00005208 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5209 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00005210 amt = pCur->info.nLocal;
5211 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5212 /* There is too little space on the page for the expected amount
5213 ** of local content. Database must be corrupt. */
5214 assert( CORRUPT_DB );
5215 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5216 }
5217 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00005218 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00005219}
5220
5221
5222/*
drhe51c44f2004-05-30 20:46:09 +00005223** For the entry that cursor pCur is point to, return as
5224** many bytes of the key or data as are available on the local
5225** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005226**
5227** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005228** or be destroyed on the next call to any Btree routine,
5229** including calls from other threads against the same cache.
5230** Hence, a mutex on the BtShared should be held prior to calling
5231** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005232**
5233** These routines is used to get quick access to key and data
5234** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005235*/
drha7c90c42016-06-04 20:37:10 +00005236const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005237 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005238}
5239
5240
5241/*
drh8178a752003-01-05 21:41:40 +00005242** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005243** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005244**
5245** This function returns SQLITE_CORRUPT if the page-header flags field of
5246** the new child page does not match the flags field of the parent (i.e.
5247** if an intkey page appears to be the parent of a non-intkey page, or
5248** vice-versa).
drh72f82862001-05-24 21:06:34 +00005249*/
drh3aac2dd2004-04-26 14:10:20 +00005250static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005251 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005252
dan7a2347e2016-01-07 16:43:54 +00005253 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005254 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005255 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005256 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005257 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5258 return SQLITE_CORRUPT_BKPT;
5259 }
drh271efa52004-05-30 19:19:05 +00005260 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005261 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005262 pCur->aiIdx[pCur->iPage] = pCur->ix;
5263 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005264 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005265 pCur->iPage++;
5266 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005267}
5268
drhd879e3e2017-02-13 13:35:55 +00005269#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005270/*
5271** Page pParent is an internal (non-leaf) tree page. This function
5272** asserts that page number iChild is the left-child if the iIdx'th
5273** cell in page pParent. Or, if iIdx is equal to the total number of
5274** cells in pParent, that page number iChild is the right-child of
5275** the page.
5276*/
5277static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005278 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5279 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005280 assert( iIdx<=pParent->nCell );
5281 if( iIdx==pParent->nCell ){
5282 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5283 }else{
5284 assert( get4byte(findCell(pParent, iIdx))==iChild );
5285 }
5286}
5287#else
5288# define assertParentIndex(x,y,z)
5289#endif
5290
drh72f82862001-05-24 21:06:34 +00005291/*
drh5e2f8b92001-05-28 00:41:15 +00005292** Move the cursor up to the parent page.
5293**
5294** pCur->idx is set to the cell index that contains the pointer
5295** to the page we are coming from. If we are coming from the
5296** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005297** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005298*/
danielk197730548662009-07-09 05:07:37 +00005299static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005300 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005301 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005302 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005303 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005304 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005305 assertParentIndex(
5306 pCur->apPage[pCur->iPage-1],
5307 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005308 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005309 );
dan6c2688c2012-01-12 15:05:03 +00005310 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005311 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005312 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005313 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005314 pLeaf = pCur->pPage;
5315 pCur->pPage = pCur->apPage[--pCur->iPage];
5316 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005317}
5318
5319/*
danielk19778f880a82009-07-13 09:41:45 +00005320** Move the cursor to point to the root page of its b-tree structure.
5321**
5322** If the table has a virtual root page, then the cursor is moved to point
5323** to the virtual root page instead of the actual root page. A table has a
5324** virtual root page when the actual root page contains no cells and a
5325** single child page. This can only happen with the table rooted at page 1.
5326**
5327** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005328** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5329** the cursor is set to point to the first cell located on the root
5330** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005331**
5332** If this function returns successfully, it may be assumed that the
5333** page-header flags indicate that the [virtual] root-page is the expected
5334** kind of b-tree page (i.e. if when opening the cursor the caller did not
5335** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5336** indicating a table b-tree, or if the caller did specify a KeyInfo
5337** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5338** b-tree).
drh72f82862001-05-24 21:06:34 +00005339*/
drh5e2f8b92001-05-28 00:41:15 +00005340static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005341 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005342 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005343
dan7a2347e2016-01-07 16:43:54 +00005344 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005345 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5346 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5347 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005348 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005349 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005350
5351 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005352 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005353 releasePageNotNull(pCur->pPage);
5354 while( --pCur->iPage ){
5355 releasePageNotNull(pCur->apPage[pCur->iPage]);
5356 }
drh7f8f6592021-12-13 19:59:55 +00005357 pRoot = pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005358 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005359 }
dana205a482011-08-27 18:48:57 +00005360 }else if( pCur->pgnoRoot==0 ){
5361 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005362 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005363 }else{
drh28f58dd2015-06-27 19:45:03 +00005364 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005365 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5366 if( pCur->eState==CURSOR_FAULT ){
5367 assert( pCur->skipNext!=SQLITE_OK );
5368 return pCur->skipNext;
5369 }
5370 sqlite3BtreeClearCursor(pCur);
5371 }
drh352a35a2017-08-15 03:46:47 +00005372 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005373 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005374 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005375 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005376 return rc;
drh777e4c42006-01-13 04:31:58 +00005377 }
danielk1977172114a2009-07-07 15:47:12 +00005378 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005379 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005380 }
drh352a35a2017-08-15 03:46:47 +00005381 pRoot = pCur->pPage;
drhec9b6222022-03-07 18:32:08 +00005382 assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB );
dan7df42ab2014-01-20 18:25:44 +00005383
5384 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5385 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5386 ** NULL, the caller expects a table b-tree. If this is not the case,
5387 ** return an SQLITE_CORRUPT error.
5388 **
5389 ** Earlier versions of SQLite assumed that this test could not fail
5390 ** if the root page was already loaded when this function was called (i.e.
5391 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5392 ** in such a way that page pRoot is linked into a second b-tree table
5393 ** (or the freelist). */
5394 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5395 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005396 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005397 }
danielk19778f880a82009-07-13 09:41:45 +00005398
drh7ad3eb62016-10-24 01:01:09 +00005399skip_init:
drh75e96b32017-04-01 00:20:06 +00005400 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005401 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005402 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005403
drh4e8fe3f2013-12-06 23:25:27 +00005404 if( pRoot->nCell>0 ){
5405 pCur->eState = CURSOR_VALID;
5406 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005407 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005408 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005409 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005410 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005411 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005412 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005413 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005414 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005415 }
5416 return rc;
drh72f82862001-05-24 21:06:34 +00005417}
drh2af926b2001-05-15 00:39:25 +00005418
drh5e2f8b92001-05-28 00:41:15 +00005419/*
5420** Move the cursor down to the left-most leaf entry beneath the
5421** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005422**
5423** The left-most leaf is the one with the smallest key - the first
5424** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005425*/
5426static int moveToLeftmost(BtCursor *pCur){
5427 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005428 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005429 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005430
dan7a2347e2016-01-07 16:43:54 +00005431 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005432 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005433 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005434 assert( pCur->ix<pPage->nCell );
5435 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005436 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005437 }
drhd677b3d2007-08-20 22:48:41 +00005438 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005439}
5440
drh2dcc9aa2002-12-04 13:40:25 +00005441/*
5442** Move the cursor down to the right-most leaf entry beneath the
5443** page to which it is currently pointing. Notice the difference
5444** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5445** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5446** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005447**
5448** The right-most entry is the one with the largest key - the last
5449** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005450*/
5451static int moveToRightmost(BtCursor *pCur){
5452 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005453 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005454 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005455
dan7a2347e2016-01-07 16:43:54 +00005456 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005457 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005458 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005459 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005460 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005461 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005462 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005463 }
drh75e96b32017-04-01 00:20:06 +00005464 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005465 assert( pCur->info.nSize==0 );
5466 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5467 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005468}
5469
drh5e00f6c2001-09-13 13:46:56 +00005470/* Move the cursor to the first entry in the table. Return SQLITE_OK
5471** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005472** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005473*/
drh3aac2dd2004-04-26 14:10:20 +00005474int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005475 int rc;
drhd677b3d2007-08-20 22:48:41 +00005476
dan7a2347e2016-01-07 16:43:54 +00005477 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005478 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005479 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005480 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005481 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005482 *pRes = 0;
5483 rc = moveToLeftmost(pCur);
5484 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005485 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005486 *pRes = 1;
5487 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005488 }
drh5e00f6c2001-09-13 13:46:56 +00005489 return rc;
5490}
drh5e2f8b92001-05-28 00:41:15 +00005491
drh9562b552002-02-19 15:00:07 +00005492/* Move the cursor to the last entry in the table. Return SQLITE_OK
5493** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005494** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005495*/
drh3aac2dd2004-04-26 14:10:20 +00005496int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005497 int rc;
drhd677b3d2007-08-20 22:48:41 +00005498
dan7a2347e2016-01-07 16:43:54 +00005499 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005500 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005501
5502 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005503 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005504#ifdef SQLITE_DEBUG
5505 /* This block serves to assert() that the cursor really does point
5506 ** to the last entry in the b-tree. */
5507 int ii;
5508 for(ii=0; ii<pCur->iPage; ii++){
5509 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5510 }
drh319deef2021-04-04 23:56:15 +00005511 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5512 testcase( pCur->ix!=pCur->pPage->nCell-1 );
5513 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
drh352a35a2017-08-15 03:46:47 +00005514 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005515#endif
drheb265342019-05-08 23:55:04 +00005516 *pRes = 0;
danielk19773f632d52009-05-02 10:03:09 +00005517 return SQLITE_OK;
5518 }
5519
drh9562b552002-02-19 15:00:07 +00005520 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005521 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005522 assert( pCur->eState==CURSOR_VALID );
5523 *pRes = 0;
5524 rc = moveToRightmost(pCur);
5525 if( rc==SQLITE_OK ){
5526 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005527 }else{
drh44548e72017-08-14 18:13:52 +00005528 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005529 }
drh44548e72017-08-14 18:13:52 +00005530 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005531 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005532 *pRes = 1;
5533 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005534 }
drh9562b552002-02-19 15:00:07 +00005535 return rc;
5536}
5537
drh42a410d2021-06-19 18:32:20 +00005538/* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5539** table near the key intKey. Return a success code.
drh3aac2dd2004-04-26 14:10:20 +00005540**
drh5e2f8b92001-05-28 00:41:15 +00005541** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005542** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005543** were present. The cursor might point to an entry that comes
5544** before or after the key.
5545**
drh64022502009-01-09 14:11:04 +00005546** An integer is written into *pRes which is the result of
5547** comparing the key with the entry to which the cursor is
5548** pointing. The meaning of the integer written into
5549** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005550**
5551** *pRes<0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005552** is smaller than intKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005553** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005554**
5555** *pRes==0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005556** exactly matches intKey.
drhbd03cae2001-06-02 02:40:57 +00005557**
5558** *pRes>0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005559** is larger than intKey.
drha059ad02001-04-17 20:09:11 +00005560*/
drh42a410d2021-06-19 18:32:20 +00005561int sqlite3BtreeTableMoveto(
drhe63d9992008-08-13 19:11:48 +00005562 BtCursor *pCur, /* The cursor to be moved */
drhe63d9992008-08-13 19:11:48 +00005563 i64 intKey, /* The table key */
5564 int biasRight, /* If true, bias the search to the high end */
5565 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005566){
drh72f82862001-05-24 21:06:34 +00005567 int rc;
drhd677b3d2007-08-20 22:48:41 +00005568
dan7a2347e2016-01-07 16:43:54 +00005569 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005570 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005571 assert( pRes );
drh42a410d2021-06-19 18:32:20 +00005572 assert( pCur->pKeyInfo==0 );
5573 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
drha2c20e42008-03-29 16:01:04 +00005574
5575 /* If the cursor is already positioned at the point we are trying
5576 ** to move to, then just return without doing any work */
drh42a410d2021-06-19 18:32:20 +00005577 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
drhe63d9992008-08-13 19:11:48 +00005578 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005579 *pRes = 0;
5580 return SQLITE_OK;
5581 }
drh451e76d2017-01-21 16:54:19 +00005582 if( pCur->info.nKey<intKey ){
5583 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5584 *pRes = -1;
5585 return SQLITE_OK;
5586 }
drh7f11afa2017-01-21 21:47:54 +00005587 /* If the requested key is one more than the previous key, then
5588 ** try to get there using sqlite3BtreeNext() rather than a full
5589 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005590 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005591 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005592 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005593 rc = sqlite3BtreeNext(pCur, 0);
5594 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005595 getCellInfo(pCur);
5596 if( pCur->info.nKey==intKey ){
5597 return SQLITE_OK;
5598 }
drhe85e1da2021-10-01 21:01:07 +00005599 }else if( rc!=SQLITE_DONE ){
drh2ab792e2017-05-30 18:34:07 +00005600 return rc;
drh451e76d2017-01-21 16:54:19 +00005601 }
5602 }
drha2c20e42008-03-29 16:01:04 +00005603 }
5604 }
5605
drh37ccfcf2020-08-31 18:49:04 +00005606#ifdef SQLITE_DEBUG
5607 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5608#endif
5609
drh42a410d2021-06-19 18:32:20 +00005610 rc = moveToRoot(pCur);
5611 if( rc ){
5612 if( rc==SQLITE_EMPTY ){
5613 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5614 *pRes = -1;
5615 return SQLITE_OK;
5616 }
5617 return rc;
dan1fed5da2014-02-25 21:01:25 +00005618 }
drh42a410d2021-06-19 18:32:20 +00005619 assert( pCur->pPage );
5620 assert( pCur->pPage->isInit );
5621 assert( pCur->eState==CURSOR_VALID );
5622 assert( pCur->pPage->nCell > 0 );
5623 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5624 assert( pCur->curIntKey );
5625
5626 for(;;){
5627 int lwr, upr, idx, c;
5628 Pgno chldPg;
5629 MemPage *pPage = pCur->pPage;
5630 u8 *pCell; /* Pointer to current cell in pPage */
5631
5632 /* pPage->nCell must be greater than zero. If this is the root-page
5633 ** the cursor would have been INVALID above and this for(;;) loop
5634 ** not run. If this is not the root-page, then the moveToChild() routine
5635 ** would have already detected db corruption. Similarly, pPage must
5636 ** be the right kind (index or table) of b-tree page. Otherwise
5637 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5638 assert( pPage->nCell>0 );
5639 assert( pPage->intKey );
5640 lwr = 0;
5641 upr = pPage->nCell-1;
5642 assert( biasRight==0 || biasRight==1 );
5643 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh42a410d2021-06-19 18:32:20 +00005644 for(;;){
5645 i64 nCellKey;
5646 pCell = findCellPastPtr(pPage, idx);
5647 if( pPage->intKeyLeaf ){
5648 while( 0x80 <= *(pCell++) ){
5649 if( pCell>=pPage->aDataEnd ){
5650 return SQLITE_CORRUPT_PAGE(pPage);
5651 }
5652 }
5653 }
5654 getVarint(pCell, (u64*)&nCellKey);
5655 if( nCellKey<intKey ){
5656 lwr = idx+1;
5657 if( lwr>upr ){ c = -1; break; }
5658 }else if( nCellKey>intKey ){
5659 upr = idx-1;
5660 if( lwr>upr ){ c = +1; break; }
5661 }else{
5662 assert( nCellKey==intKey );
5663 pCur->ix = (u16)idx;
5664 if( !pPage->leaf ){
5665 lwr = idx;
5666 goto moveto_table_next_layer;
5667 }else{
5668 pCur->curFlags |= BTCF_ValidNKey;
5669 pCur->info.nKey = nCellKey;
5670 pCur->info.nSize = 0;
5671 *pRes = 0;
5672 return SQLITE_OK;
5673 }
5674 }
5675 assert( lwr+upr>=0 );
5676 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
5677 }
5678 assert( lwr==upr+1 || !pPage->leaf );
5679 assert( pPage->isInit );
5680 if( pPage->leaf ){
5681 assert( pCur->ix<pCur->pPage->nCell );
5682 pCur->ix = (u16)idx;
5683 *pRes = c;
5684 rc = SQLITE_OK;
5685 goto moveto_table_finish;
5686 }
5687moveto_table_next_layer:
5688 if( lwr>=pPage->nCell ){
5689 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5690 }else{
5691 chldPg = get4byte(findCell(pPage, lwr));
5692 }
5693 pCur->ix = (u16)lwr;
5694 rc = moveToChild(pCur, chldPg);
5695 if( rc ) break;
5696 }
5697moveto_table_finish:
5698 pCur->info.nSize = 0;
5699 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5700 return rc;
5701}
5702
drhc5a55db2022-03-07 01:29:36 +00005703/*
5704** Compare the "idx"-th cell on the page the cursor pCur is currently
5705** pointing to to pIdxKey using xRecordCompare. Return negative or
5706** zero if the cell is less than or equal pIdxKey. Return positive
5707** if unknown.
5708**
5709** Return value negative: Cell at pCur[idx] less than pIdxKey
5710**
5711** Return value is zero: Cell at pCur[idx] equals pIdxKey
5712**
5713** Return value positive: Nothing is known about the relationship
5714** of the cell at pCur[idx] and pIdxKey.
5715**
5716** This routine is part of an optimization. It is always safe to return
5717** a positive value as that will cause the optimization to be skipped.
5718*/
5719static int indexCellCompare(
5720 BtCursor *pCur,
5721 int idx,
5722 UnpackedRecord *pIdxKey,
5723 RecordCompare xRecordCompare
5724){
5725 MemPage *pPage = pCur->pPage;
5726 int c;
5727 int nCell; /* Size of the pCell cell in bytes */
5728 u8 *pCell = findCellPastPtr(pPage, idx);
5729
5730 nCell = pCell[0];
5731 if( nCell<=pPage->max1bytePayload ){
5732 /* This branch runs if the record-size field of the cell is a
5733 ** single byte varint and the record fits entirely on the main
5734 ** b-tree page. */
5735 testcase( pCell+nCell+1==pPage->aDataEnd );
5736 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5737 }else if( !(pCell[1] & 0x80)
5738 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5739 ){
5740 /* The record-size field is a 2 byte varint and the record
5741 ** fits entirely on the main b-tree page. */
5742 testcase( pCell+nCell+2==pPage->aDataEnd );
5743 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5744 }else{
5745 /* If the record extends into overflow pages, do not attempt
5746 ** the optimization. */
5747 c = 99;
5748 }
5749 return c;
5750}
5751
5752/*
5753** Return true (non-zero) if pCur is current pointing to the last
5754** page of a table.
5755*/
5756static int cursorOnLastPage(BtCursor *pCur){
5757 int i;
5758 assert( pCur->eState==CURSOR_VALID );
5759 for(i=0; i<pCur->iPage; i++){
5760 MemPage *pPage = pCur->apPage[i];
5761 if( pCur->aiIdx[i]<pPage->nCell ) return 0;
5762 }
5763 return 1;
5764}
5765
drh42a410d2021-06-19 18:32:20 +00005766/* Move the cursor so that it points to an entry in an index table
5767** near the key pIdxKey. Return a success code.
5768**
5769** If an exact match is not found, then the cursor is always
5770** left pointing at a leaf page which would hold the entry if it
5771** were present. The cursor might point to an entry that comes
5772** before or after the key.
5773**
5774** An integer is written into *pRes which is the result of
5775** comparing the key with the entry to which the cursor is
5776** pointing. The meaning of the integer written into
5777** *pRes is as follows:
5778**
5779** *pRes<0 The cursor is left pointing at an entry that
5780** is smaller than pIdxKey or if the table is empty
5781** and the cursor is therefore left point to nothing.
5782**
5783** *pRes==0 The cursor is left pointing at an entry that
5784** exactly matches pIdxKey.
5785**
5786** *pRes>0 The cursor is left pointing at an entry that
5787** is larger than pIdxKey.
5788**
5789** The pIdxKey->eqSeen field is set to 1 if there
5790** exists an entry in the table that exactly matches pIdxKey.
5791*/
5792int sqlite3BtreeIndexMoveto(
5793 BtCursor *pCur, /* The cursor to be moved */
5794 UnpackedRecord *pIdxKey, /* Unpacked index key */
5795 int *pRes /* Write search results here */
5796){
5797 int rc;
5798 RecordCompare xRecordCompare;
5799
5800 assert( cursorOwnsBtShared(pCur) );
5801 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5802 assert( pRes );
5803 assert( pCur->pKeyInfo!=0 );
5804
5805#ifdef SQLITE_DEBUG
5806 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5807#endif
5808
5809 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5810 pIdxKey->errCode = 0;
5811 assert( pIdxKey->default_rc==1
5812 || pIdxKey->default_rc==0
5813 || pIdxKey->default_rc==-1
5814 );
dan1fed5da2014-02-25 21:01:25 +00005815
drhc5a55db2022-03-07 01:29:36 +00005816
5817 /* Check to see if we can skip a lot of work. Two cases:
5818 **
5819 ** (1) If the cursor is already pointing to the very last cell
5820 ** in the table and the pIdxKey search key is greater than or
5821 ** equal to that last cell, then no movement is required.
5822 **
5823 ** (2) If the cursor is on the last page of the table and the first
5824 ** cell on that last page is less than or equal to the pIdxKey
5825 ** search key, then we can start the search on the current page
5826 ** without needing to go back to root.
5827 */
5828 if( pCur->eState==CURSOR_VALID
5829 && pCur->pPage->leaf
5830 && cursorOnLastPage(pCur)
5831 ){
5832 int c;
5833 if( pCur->ix==pCur->pPage->nCell-1
5834 && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0
drh605137a2022-03-11 14:20:06 +00005835 && pIdxKey->errCode==SQLITE_OK
drhc5a55db2022-03-07 01:29:36 +00005836 ){
5837 *pRes = c;
5838 return SQLITE_OK; /* Cursor already pointing at the correct spot */
5839 }
5840 if( pCur->iPage>0
drh605137a2022-03-11 14:20:06 +00005841 && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0
5842 && pIdxKey->errCode==SQLITE_OK
drhc5a55db2022-03-07 01:29:36 +00005843 ){
drh42bb09c2022-03-07 17:19:40 +00005844 pCur->curFlags &= ~BTCF_ValidOvfl;
drhc5a55db2022-03-07 01:29:36 +00005845 goto bypass_moveto_root; /* Start search on the current page */
5846 }
drh605137a2022-03-11 14:20:06 +00005847 pIdxKey->errCode = SQLITE_OK;
drhc5a55db2022-03-07 01:29:36 +00005848 }
5849
drh5e2f8b92001-05-28 00:41:15 +00005850 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005851 if( rc ){
drh44548e72017-08-14 18:13:52 +00005852 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005853 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005854 *pRes = -1;
5855 return SQLITE_OK;
5856 }
drhd677b3d2007-08-20 22:48:41 +00005857 return rc;
5858 }
drhc5a55db2022-03-07 01:29:36 +00005859
5860bypass_moveto_root:
drh352a35a2017-08-15 03:46:47 +00005861 assert( pCur->pPage );
5862 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005863 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005864 assert( pCur->pPage->nCell > 0 );
drhc5a55db2022-03-07 01:29:36 +00005865 assert( pCur->curIntKey==0 );
5866 assert( pIdxKey!=0 );
drh14684382006-11-30 13:05:29 +00005867 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005868 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005869 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005870 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005871 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005872
5873 /* pPage->nCell must be greater than zero. If this is the root-page
5874 ** the cursor would have been INVALID above and this for(;;) loop
5875 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005876 ** would have already detected db corruption. Similarly, pPage must
5877 ** be the right kind (index or table) of b-tree page. Otherwise
5878 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005879 assert( pPage->nCell>0 );
drhc5a55db2022-03-07 01:29:36 +00005880 assert( pPage->intKey==0 );
drh72f82862001-05-24 21:06:34 +00005881 lwr = 0;
5882 upr = pPage->nCell-1;
drh42a410d2021-06-19 18:32:20 +00005883 idx = upr>>1; /* idx = (lwr+upr)/2; */
drh42a410d2021-06-19 18:32:20 +00005884 for(;;){
5885 int nCell; /* Size of the pCell cell in bytes */
5886 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005887
drh42a410d2021-06-19 18:32:20 +00005888 /* The maximum supported page-size is 65536 bytes. This means that
5889 ** the maximum number of record bytes stored on an index B-Tree
5890 ** page is less than 16384 bytes and may be stored as a 2-byte
5891 ** varint. This information is used to attempt to avoid parsing
5892 ** the entire cell by checking for the cases where the record is
5893 ** stored entirely within the b-tree page by inspecting the first
5894 ** 2 bytes of the cell.
5895 */
5896 nCell = pCell[0];
5897 if( nCell<=pPage->max1bytePayload ){
5898 /* This branch runs if the record-size field of the cell is a
5899 ** single byte varint and the record fits entirely on the main
5900 ** b-tree page. */
5901 testcase( pCell+nCell+1==pPage->aDataEnd );
5902 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5903 }else if( !(pCell[1] & 0x80)
5904 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5905 ){
5906 /* The record-size field is a 2 byte varint and the record
5907 ** fits entirely on the main b-tree page. */
5908 testcase( pCell+nCell+2==pPage->aDataEnd );
5909 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5910 }else{
5911 /* The record flows over onto one or more overflow pages. In
5912 ** this case the whole cell needs to be parsed, a buffer allocated
5913 ** and accessPayload() used to retrieve the record into the
5914 ** buffer before VdbeRecordCompare() can be called.
5915 **
5916 ** If the record is corrupt, the xRecordCompare routine may read
5917 ** up to two varints past the end of the buffer. An extra 18
5918 ** bytes of padding is allocated at the end of the buffer in
5919 ** case this happens. */
5920 void *pCellKey;
5921 u8 * const pCellBody = pCell - pPage->childPtrSize;
5922 const int nOverrun = 18; /* Size of the overrun padding */
5923 pPage->xParseCell(pPage, pCellBody, &pCur->info);
5924 nCell = (int)pCur->info.nKey;
5925 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5926 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5927 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5928 testcase( nCell==2 ); /* Minimum legal index key size */
5929 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5930 rc = SQLITE_CORRUPT_PAGE(pPage);
5931 goto moveto_index_finish;
5932 }
5933 pCellKey = sqlite3Malloc( nCell+nOverrun );
5934 if( pCellKey==0 ){
5935 rc = SQLITE_NOMEM_BKPT;
5936 goto moveto_index_finish;
5937 }
5938 pCur->ix = (u16)idx;
5939 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5940 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5941 pCur->curFlags &= ~BTCF_ValidOvfl;
5942 if( rc ){
drhfacf0302008-06-17 15:12:00 +00005943 sqlite3_free(pCellKey);
drh42a410d2021-06-19 18:32:20 +00005944 goto moveto_index_finish;
drhe51c44f2004-05-30 20:46:09 +00005945 }
drh42a410d2021-06-19 18:32:20 +00005946 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5947 sqlite3_free(pCellKey);
drh72f82862001-05-24 21:06:34 +00005948 }
drh42a410d2021-06-19 18:32:20 +00005949 assert(
5950 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5951 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5952 );
5953 if( c<0 ){
5954 lwr = idx+1;
5955 }else if( c>0 ){
5956 upr = idx-1;
5957 }else{
5958 assert( c==0 );
5959 *pRes = 0;
5960 rc = SQLITE_OK;
5961 pCur->ix = (u16)idx;
5962 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5963 goto moveto_index_finish;
5964 }
5965 if( lwr>upr ) break;
5966 assert( lwr+upr>=0 );
5967 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005968 }
drhb07028f2011-10-14 21:49:18 +00005969 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005970 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005971 if( pPage->leaf ){
drh3b79f752022-04-13 10:49:50 +00005972 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
drh75e96b32017-04-01 00:20:06 +00005973 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005974 *pRes = c;
5975 rc = SQLITE_OK;
drh42a410d2021-06-19 18:32:20 +00005976 goto moveto_index_finish;
drhebf10b12013-11-25 17:38:26 +00005977 }
drhebf10b12013-11-25 17:38:26 +00005978 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005979 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005980 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005981 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005982 }
drh75e96b32017-04-01 00:20:06 +00005983 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005984 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005985 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005986 }
drh42a410d2021-06-19 18:32:20 +00005987moveto_index_finish:
drhd2022b02013-11-25 16:23:52 +00005988 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005989 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005990 return rc;
5991}
5992
drhd677b3d2007-08-20 22:48:41 +00005993
drh72f82862001-05-24 21:06:34 +00005994/*
drhc39e0002004-05-07 23:50:57 +00005995** Return TRUE if the cursor is not pointing at an entry of the table.
5996**
5997** TRUE will be returned after a call to sqlite3BtreeNext() moves
5998** past the last entry in the table or sqlite3BtreePrev() moves past
5999** the first entry. TRUE is also returned if the table is empty.
6000*/
6001int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00006002 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
6003 ** have been deleted? This API will need to change to return an error code
6004 ** as well as the boolean result value.
6005 */
6006 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00006007}
6008
6009/*
drh5e98e832017-02-17 19:24:06 +00006010** Return an estimate for the number of rows in the table that pCur is
6011** pointing to. Return a negative number if no estimate is currently
6012** available.
6013*/
6014i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
6015 i64 n;
6016 u8 i;
6017
6018 assert( cursorOwnsBtShared(pCur) );
6019 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00006020
6021 /* Currently this interface is only called by the OP_IfSmaller
6022 ** opcode, and it that case the cursor will always be valid and
6023 ** will always point to a leaf node. */
6024 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00006025 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00006026
drh352a35a2017-08-15 03:46:47 +00006027 n = pCur->pPage->nCell;
6028 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00006029 n *= pCur->apPage[i]->nCell;
6030 }
6031 return n;
6032}
6033
6034/*
drh2ab792e2017-05-30 18:34:07 +00006035** Advance the cursor to the next entry in the database.
6036** Return value:
6037**
6038** SQLITE_OK success
6039** SQLITE_DONE cursor is already pointing at the last element
6040** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00006041**
drhee6438d2014-09-01 13:29:32 +00006042** The main entry point is sqlite3BtreeNext(). That routine is optimized
6043** for the common case of merely incrementing the cell counter BtCursor.aiIdx
6044** to the next cell on the current page. The (slower) btreeNext() helper
6045** routine is called when it is necessary to move to a different page or
6046** to restore the cursor.
6047**
drh89997982017-07-11 18:11:33 +00006048** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
6049** cursor corresponds to an SQL index and this routine could have been
6050** skipped if the SQL index had been a unique index. The F argument
6051** is a hint to the implement. SQLite btree implementation does not use
6052** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00006053*/
drh89997982017-07-11 18:11:33 +00006054static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00006055 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006056 int idx;
danielk197797a227c2006-01-20 16:32:04 +00006057 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00006058
dan7a2347e2016-01-07 16:43:54 +00006059 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00006060 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00006061 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00006062 rc = restoreCursorPosition(pCur);
6063 if( rc!=SQLITE_OK ){
6064 return rc;
6065 }
6066 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00006067 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00006068 }
drh0c873bf2019-01-28 00:42:06 +00006069 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00006070 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00006071 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00006072 }
danielk1977da184232006-01-05 11:34:32 +00006073 }
danielk1977da184232006-01-05 11:34:32 +00006074
drh352a35a2017-08-15 03:46:47 +00006075 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00006076 idx = ++pCur->ix;
drha957e222020-09-30 00:48:45 +00006077 if( !pPage->isInit || sqlite3FaultSim(412) ){
drhf3cd0c82018-06-08 19:13:57 +00006078 /* The only known way for this to happen is for there to be a
6079 ** recursive SQL function that does a DELETE operation as part of a
6080 ** SELECT which deletes content out from under an active cursor
6081 ** in a corrupt database file where the table being DELETE-ed from
6082 ** has pages in common with the table being queried. See TH3
6083 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
6084 ** example. */
6085 return SQLITE_CORRUPT_BKPT;
6086 }
danbb246c42012-01-12 14:25:55 +00006087
danielk197771d5d2c2008-09-29 11:49:47 +00006088 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00006089 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006090 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00006091 if( rc ) return rc;
6092 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00006093 }
drh5e2f8b92001-05-28 00:41:15 +00006094 do{
danielk197771d5d2c2008-09-29 11:49:47 +00006095 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00006096 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00006097 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00006098 }
danielk197730548662009-07-09 05:07:37 +00006099 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00006100 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00006101 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00006102 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00006103 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00006104 }else{
drhee6438d2014-09-01 13:29:32 +00006105 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00006106 }
drh8178a752003-01-05 21:41:40 +00006107 }
drh3aac2dd2004-04-26 14:10:20 +00006108 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00006109 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00006110 }else{
6111 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00006112 }
drh72f82862001-05-24 21:06:34 +00006113}
drh2ab792e2017-05-30 18:34:07 +00006114int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00006115 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00006116 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00006117 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00006118 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00006119 pCur->info.nSize = 0;
6120 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00006121 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00006122 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00006123 if( (++pCur->ix)>=pPage->nCell ){
6124 pCur->ix--;
drh89997982017-07-11 18:11:33 +00006125 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00006126 }
6127 if( pPage->leaf ){
6128 return SQLITE_OK;
6129 }else{
6130 return moveToLeftmost(pCur);
6131 }
6132}
drh72f82862001-05-24 21:06:34 +00006133
drh3b7511c2001-05-26 13:15:44 +00006134/*
drh2ab792e2017-05-30 18:34:07 +00006135** Step the cursor to the back to the previous entry in the database.
6136** Return values:
6137**
6138** SQLITE_OK success
6139** SQLITE_DONE the cursor is already on the first element of the table
6140** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00006141**
drhee6438d2014-09-01 13:29:32 +00006142** The main entry point is sqlite3BtreePrevious(). That routine is optimized
6143** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00006144** to the previous cell on the current page. The (slower) btreePrevious()
6145** helper routine is called when it is necessary to move to a different page
6146** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00006147**
drh89997982017-07-11 18:11:33 +00006148** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
6149** the cursor corresponds to an SQL index and this routine could have been
6150** skipped if the SQL index had been a unique index. The F argument is a
6151** hint to the implement. The native SQLite btree implementation does not
6152** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00006153*/
drh89997982017-07-11 18:11:33 +00006154static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00006155 int rc;
drh8178a752003-01-05 21:41:40 +00006156 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00006157
dan7a2347e2016-01-07 16:43:54 +00006158 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00006159 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
6160 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00006161 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00006162 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00006163 if( rc!=SQLITE_OK ){
6164 return rc;
drhf66f26a2013-08-19 20:04:10 +00006165 }
6166 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00006167 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00006168 }
drh0c873bf2019-01-28 00:42:06 +00006169 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00006170 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00006171 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00006172 }
danielk1977da184232006-01-05 11:34:32 +00006173 }
danielk1977da184232006-01-05 11:34:32 +00006174
drh352a35a2017-08-15 03:46:47 +00006175 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00006176 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00006177 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00006178 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00006179 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00006180 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00006181 rc = moveToRightmost(pCur);
6182 }else{
drh75e96b32017-04-01 00:20:06 +00006183 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00006184 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00006185 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00006186 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00006187 }
danielk197730548662009-07-09 05:07:37 +00006188 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00006189 }
drhee6438d2014-09-01 13:29:32 +00006190 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00006191 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006192
drh75e96b32017-04-01 00:20:06 +00006193 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00006194 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00006195 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00006196 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00006197 }else{
6198 rc = SQLITE_OK;
6199 }
drh2dcc9aa2002-12-04 13:40:25 +00006200 }
drh2dcc9aa2002-12-04 13:40:25 +00006201 return rc;
6202}
drh2ab792e2017-05-30 18:34:07 +00006203int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00006204 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00006205 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00006206 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00006207 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
6208 pCur->info.nSize = 0;
6209 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00006210 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00006211 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00006212 ){
drh89997982017-07-11 18:11:33 +00006213 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00006214 }
drh75e96b32017-04-01 00:20:06 +00006215 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00006216 return SQLITE_OK;
6217}
drh2dcc9aa2002-12-04 13:40:25 +00006218
6219/*
drh3b7511c2001-05-26 13:15:44 +00006220** Allocate a new page from the database file.
6221**
danielk19773b8a05f2007-03-19 17:44:26 +00006222** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00006223** has already been called on the new page.) The new page has also
6224** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00006225** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00006226**
6227** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00006228** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00006229**
drh82e647d2013-03-02 03:25:55 +00006230** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00006231** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00006232** attempt to keep related pages close to each other in the database file,
6233** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00006234**
drh82e647d2013-03-02 03:25:55 +00006235** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6236** anywhere on the free-list, then it is guaranteed to be returned. If
6237** eMode is BTALLOC_LT then the page returned will be less than or equal
6238** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
6239** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00006240*/
drh4f0c5872007-03-26 22:05:01 +00006241static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00006242 BtShared *pBt, /* The btree */
6243 MemPage **ppPage, /* Store pointer to the allocated page here */
6244 Pgno *pPgno, /* Store the page number here */
6245 Pgno nearby, /* Search for a page near this one */
6246 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006247){
drh3aac2dd2004-04-26 14:10:20 +00006248 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00006249 int rc;
drh35cd6432009-06-05 14:17:21 +00006250 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00006251 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00006252 MemPage *pTrunk = 0;
6253 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00006254 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00006255
drh1fee73e2007-08-29 04:00:57 +00006256 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00006257 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00006258 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00006259 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00006260 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
6261 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00006262 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00006263 testcase( n==mxPage-1 );
6264 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00006265 return SQLITE_CORRUPT_BKPT;
6266 }
drh3aac2dd2004-04-26 14:10:20 +00006267 if( n>0 ){
drh91025292004-05-03 19:49:32 +00006268 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006269 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006270 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00006271 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006272
drh82e647d2013-03-02 03:25:55 +00006273 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006274 ** shows that the page 'nearby' is somewhere on the free-list, then
6275 ** the entire-list will be searched for that page.
6276 */
6277#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006278 if( eMode==BTALLOC_EXACT ){
drh41af5b32020-07-31 02:07:16 +00006279 if( nearby<=mxPage ){
dan51f0b6d2013-02-22 20:16:34 +00006280 u8 eType;
6281 assert( nearby>0 );
6282 assert( pBt->autoVacuum );
6283 rc = ptrmapGet(pBt, nearby, &eType, 0);
6284 if( rc ) return rc;
6285 if( eType==PTRMAP_FREEPAGE ){
6286 searchList = 1;
6287 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006288 }
dan51f0b6d2013-02-22 20:16:34 +00006289 }else if( eMode==BTALLOC_LE ){
6290 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006291 }
6292#endif
6293
6294 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6295 ** first free-list trunk page. iPrevTrunk is initially 1.
6296 */
danielk19773b8a05f2007-03-19 17:44:26 +00006297 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00006298 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00006299 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006300
6301 /* The code within this loop is run only once if the 'searchList' variable
6302 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00006303 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6304 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00006305 */
6306 do {
6307 pPrevTrunk = pTrunk;
6308 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00006309 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6310 ** is the page number of the next freelist trunk page in the list or
6311 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006312 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00006313 }else{
drh113762a2014-11-19 16:36:25 +00006314 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6315 ** stores the page number of the first page of the freelist, or zero if
6316 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006317 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00006318 }
drhdf35a082009-07-09 02:24:35 +00006319 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00006320 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00006321 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00006322 }else{
drh7e8c6f12015-05-28 03:28:27 +00006323 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00006324 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006325 if( rc ){
drhd3627af2006-12-18 18:34:51 +00006326 pTrunk = 0;
6327 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006328 }
drhb07028f2011-10-14 21:49:18 +00006329 assert( pTrunk!=0 );
6330 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00006331 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6332 ** is the number of leaf page pointers to follow. */
6333 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006334 if( k==0 && !searchList ){
6335 /* The trunk has no leaves and the list is not being searched.
6336 ** So extract the trunk page itself and use it as the newly
6337 ** allocated page */
6338 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006339 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006340 if( rc ){
6341 goto end_allocate_page;
6342 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006343 *pPgno = iTrunk;
6344 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6345 *ppPage = pTrunk;
6346 pTrunk = 0;
6347 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00006348 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006349 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00006350 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00006351 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006352#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006353 }else if( searchList
6354 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6355 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006356 /* The list is being searched and this trunk page is the page
6357 ** to allocate, regardless of whether it has leaves.
6358 */
dan51f0b6d2013-02-22 20:16:34 +00006359 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006360 *ppPage = pTrunk;
6361 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006362 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006363 if( rc ){
6364 goto end_allocate_page;
6365 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006366 if( k==0 ){
6367 if( !pPrevTrunk ){
6368 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6369 }else{
danf48c3552010-08-23 15:41:24 +00006370 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6371 if( rc!=SQLITE_OK ){
6372 goto end_allocate_page;
6373 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006374 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6375 }
6376 }else{
6377 /* The trunk page is required by the caller but it contains
6378 ** pointers to free-list leaves. The first leaf becomes a trunk
6379 ** page in this case.
6380 */
6381 MemPage *pNewTrunk;
6382 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00006383 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006384 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006385 goto end_allocate_page;
6386 }
drhdf35a082009-07-09 02:24:35 +00006387 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00006388 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006389 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00006390 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006391 }
danielk19773b8a05f2007-03-19 17:44:26 +00006392 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006393 if( rc!=SQLITE_OK ){
6394 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00006395 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006396 }
6397 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6398 put4byte(&pNewTrunk->aData[4], k-1);
6399 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006400 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006401 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006402 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006403 put4byte(&pPage1->aData[32], iNewTrunk);
6404 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006405 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006406 if( rc ){
6407 goto end_allocate_page;
6408 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006409 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6410 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006411 }
6412 pTrunk = 0;
6413 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6414#endif
danielk1977e5765212009-06-17 11:13:28 +00006415 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006416 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006417 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006418 Pgno iPage;
6419 unsigned char *aData = pTrunk->aData;
6420 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006421 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006422 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006423 if( eMode==BTALLOC_LE ){
6424 for(i=0; i<k; i++){
6425 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006426 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006427 closest = i;
6428 break;
6429 }
6430 }
6431 }else{
6432 int dist;
6433 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6434 for(i=1; i<k; i++){
6435 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6436 if( d2<dist ){
6437 closest = i;
6438 dist = d2;
6439 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006440 }
6441 }
6442 }else{
6443 closest = 0;
6444 }
6445
6446 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006447 testcase( iPage==mxPage );
drh07812192021-04-07 12:21:35 +00006448 if( iPage>mxPage || iPage<2 ){
drhcc97ca42017-06-07 22:32:59 +00006449 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006450 goto end_allocate_page;
6451 }
drhdf35a082009-07-09 02:24:35 +00006452 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006453 if( !searchList
6454 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6455 ){
danielk1977bea2a942009-01-20 17:06:27 +00006456 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006457 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006458 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6459 ": %d more free pages\n",
6460 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006461 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6462 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006463 if( closest<k-1 ){
6464 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6465 }
6466 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006467 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006468 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006469 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006470 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006471 if( rc!=SQLITE_OK ){
6472 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006473 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006474 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006475 }
6476 searchList = 0;
6477 }
drhee696e22004-08-30 16:52:17 +00006478 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006479 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006480 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006481 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006482 }else{
danbc1a3c62013-02-23 16:40:46 +00006483 /* There are no pages on the freelist, so append a new page to the
6484 ** database image.
6485 **
6486 ** Normally, new pages allocated by this block can be requested from the
6487 ** pager layer with the 'no-content' flag set. This prevents the pager
6488 ** from trying to read the pages content from disk. However, if the
6489 ** current transaction has already run one or more incremental-vacuum
6490 ** steps, then the page we are about to allocate may contain content
6491 ** that is required in the event of a rollback. In this case, do
6492 ** not set the no-content flag. This causes the pager to load and journal
6493 ** the current page content before overwriting it.
6494 **
6495 ** Note that the pager will not actually attempt to load or journal
6496 ** content for any page that really does lie past the end of the database
6497 ** file on disk. So the effects of disabling the no-content optimization
6498 ** here are confined to those pages that lie between the end of the
6499 ** database image and the end of the database file.
6500 */
drh3f387402014-09-24 01:23:00 +00006501 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006502
drhdd3cd972010-03-27 17:12:36 +00006503 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6504 if( rc ) return rc;
6505 pBt->nPage++;
6506 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006507
danielk1977afcdd022004-10-31 16:25:42 +00006508#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006509 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006510 /* If *pPgno refers to a pointer-map page, allocate two new pages
6511 ** at the end of the file instead of one. The first allocated page
6512 ** becomes a new pointer-map page, the second is used by the caller.
6513 */
danielk1977ac861692009-03-28 10:54:22 +00006514 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006515 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6516 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006517 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006518 if( rc==SQLITE_OK ){
6519 rc = sqlite3PagerWrite(pPg->pDbPage);
6520 releasePage(pPg);
6521 }
6522 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006523 pBt->nPage++;
6524 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006525 }
6526#endif
drhdd3cd972010-03-27 17:12:36 +00006527 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6528 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006529
danielk1977599fcba2004-11-08 07:13:13 +00006530 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006531 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006532 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006533 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006534 if( rc!=SQLITE_OK ){
6535 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006536 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006537 }
drh3a4c1412004-05-09 20:40:11 +00006538 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006539 }
danielk1977599fcba2004-11-08 07:13:13 +00006540
danba14c692019-01-25 13:42:12 +00006541 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006542
6543end_allocate_page:
6544 releasePage(pTrunk);
6545 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006546 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6547 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006548 return rc;
6549}
6550
6551/*
danielk1977bea2a942009-01-20 17:06:27 +00006552** This function is used to add page iPage to the database file free-list.
6553** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006554**
danielk1977bea2a942009-01-20 17:06:27 +00006555** The value passed as the second argument to this function is optional.
6556** If the caller happens to have a pointer to the MemPage object
6557** corresponding to page iPage handy, it may pass it as the second value.
6558** Otherwise, it may pass NULL.
6559**
6560** If a pointer to a MemPage object is passed as the second argument,
6561** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006562*/
danielk1977bea2a942009-01-20 17:06:27 +00006563static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6564 MemPage *pTrunk = 0; /* Free-list trunk page */
6565 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6566 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6567 MemPage *pPage; /* Page being freed. May be NULL. */
6568 int rc; /* Return Code */
drh25050f22019-04-09 01:26:31 +00006569 u32 nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006570
danielk1977bea2a942009-01-20 17:06:27 +00006571 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006572 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006573 assert( !pMemPage || pMemPage->pgno==iPage );
6574
drh9a4e8862022-02-14 18:18:56 +00006575 if( iPage<2 || iPage>pBt->nPage ){
drh58b42ad2019-03-25 19:50:19 +00006576 return SQLITE_CORRUPT_BKPT;
6577 }
danielk1977bea2a942009-01-20 17:06:27 +00006578 if( pMemPage ){
6579 pPage = pMemPage;
6580 sqlite3PagerRef(pPage->pDbPage);
6581 }else{
6582 pPage = btreePageLookup(pBt, iPage);
6583 }
drh3aac2dd2004-04-26 14:10:20 +00006584
drha34b6762004-05-07 13:30:42 +00006585 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006586 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006587 if( rc ) goto freepage_out;
6588 nFree = get4byte(&pPage1->aData[36]);
6589 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006590
drhc9166342012-01-05 23:32:06 +00006591 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006592 /* If the secure_delete option is enabled, then
6593 ** always fully overwrite deleted information with zeros.
6594 */
drhb00fc3b2013-08-21 23:42:32 +00006595 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006596 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006597 ){
6598 goto freepage_out;
6599 }
6600 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006601 }
drhfcce93f2006-02-22 03:08:32 +00006602
danielk1977687566d2004-11-02 12:56:41 +00006603 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006604 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006605 */
danielk197785d90ca2008-07-19 14:25:15 +00006606 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006607 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006608 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006609 }
danielk1977687566d2004-11-02 12:56:41 +00006610
danielk1977bea2a942009-01-20 17:06:27 +00006611 /* Now manipulate the actual database free-list structure. There are two
6612 ** possibilities. If the free-list is currently empty, or if the first
6613 ** trunk page in the free-list is full, then this page will become a
6614 ** new free-list trunk page. Otherwise, it will become a leaf of the
6615 ** first trunk page in the current free-list. This block tests if it
6616 ** is possible to add the page as a new free-list leaf.
6617 */
6618 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006619 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006620
6621 iTrunk = get4byte(&pPage1->aData[32]);
drh10248222020-07-28 20:32:12 +00006622 if( iTrunk>btreePagecount(pBt) ){
6623 rc = SQLITE_CORRUPT_BKPT;
6624 goto freepage_out;
6625 }
drhb00fc3b2013-08-21 23:42:32 +00006626 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006627 if( rc!=SQLITE_OK ){
6628 goto freepage_out;
6629 }
6630
6631 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006632 assert( pBt->usableSize>32 );
6633 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006634 rc = SQLITE_CORRUPT_BKPT;
6635 goto freepage_out;
6636 }
drheeb844a2009-08-08 18:01:07 +00006637 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006638 /* In this case there is room on the trunk page to insert the page
6639 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006640 **
6641 ** Note that the trunk page is not really full until it contains
6642 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6643 ** coded. But due to a coding error in versions of SQLite prior to
6644 ** 3.6.0, databases with freelist trunk pages holding more than
6645 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6646 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006647 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006648 ** for now. At some point in the future (once everyone has upgraded
6649 ** to 3.6.0 or later) we should consider fixing the conditional above
6650 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006651 **
6652 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6653 ** avoid using the last six entries in the freelist trunk page array in
6654 ** order that database files created by newer versions of SQLite can be
6655 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006656 */
danielk19773b8a05f2007-03-19 17:44:26 +00006657 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006658 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006659 put4byte(&pTrunk->aData[4], nLeaf+1);
6660 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006661 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006662 sqlite3PagerDontWrite(pPage->pDbPage);
6663 }
danielk1977bea2a942009-01-20 17:06:27 +00006664 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006665 }
drh3a4c1412004-05-09 20:40:11 +00006666 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006667 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006668 }
drh3b7511c2001-05-26 13:15:44 +00006669 }
danielk1977bea2a942009-01-20 17:06:27 +00006670
6671 /* If control flows to this point, then it was not possible to add the
6672 ** the page being freed as a leaf page of the first trunk in the free-list.
6673 ** Possibly because the free-list is empty, or possibly because the
6674 ** first trunk in the free-list is full. Either way, the page being freed
6675 ** will become the new first trunk page in the free-list.
6676 */
drhb00fc3b2013-08-21 23:42:32 +00006677 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006678 goto freepage_out;
6679 }
6680 rc = sqlite3PagerWrite(pPage->pDbPage);
6681 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006682 goto freepage_out;
6683 }
6684 put4byte(pPage->aData, iTrunk);
6685 put4byte(&pPage->aData[4], 0);
6686 put4byte(&pPage1->aData[32], iPage);
6687 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6688
6689freepage_out:
6690 if( pPage ){
6691 pPage->isInit = 0;
6692 }
6693 releasePage(pPage);
6694 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006695 return rc;
6696}
drhc314dc72009-07-21 11:52:34 +00006697static void freePage(MemPage *pPage, int *pRC){
6698 if( (*pRC)==SQLITE_OK ){
6699 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6700 }
danielk1977bea2a942009-01-20 17:06:27 +00006701}
drh3b7511c2001-05-26 13:15:44 +00006702
6703/*
drh86c779f2021-05-15 13:08:44 +00006704** Free the overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00006705*/
drh86c779f2021-05-15 13:08:44 +00006706static SQLITE_NOINLINE int clearCellOverflow(
drh9bfdc252014-09-24 02:05:41 +00006707 MemPage *pPage, /* The page that contains the Cell */
6708 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006709 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006710){
drh60172a52017-08-02 18:27:50 +00006711 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006712 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006713 int rc;
drh94440812007-03-06 11:42:19 +00006714 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006715 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006716
drh1fee73e2007-08-29 04:00:57 +00006717 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh86c779f2021-05-15 13:08:44 +00006718 assert( pInfo->nLocal!=pInfo->nPayload );
drh6fcf83a2018-05-05 01:23:28 +00006719 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6720 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6721 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006722 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006723 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006724 }
drh80159da2016-12-09 17:32:51 +00006725 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006726 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006727 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006728 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006729 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006730 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006731 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006732 );
drh72365832007-03-06 15:53:44 +00006733 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006734 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006735 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006736 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006737 /* 0 is not a legal page number and page 1 cannot be an
6738 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6739 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006740 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006741 }
danielk1977bea2a942009-01-20 17:06:27 +00006742 if( nOvfl ){
6743 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6744 if( rc ) return rc;
6745 }
dan887d4b22010-02-25 12:09:16 +00006746
shaneh1da207e2010-03-09 14:41:12 +00006747 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006748 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6749 ){
6750 /* There is no reason any cursor should have an outstanding reference
6751 ** to an overflow page belonging to a cell that is being deleted/updated.
6752 ** So if there exists more than one reference to this page, then it
6753 ** must not really be an overflow page and the database must be corrupt.
6754 ** It is helpful to detect this before calling freePage2(), as
6755 ** freePage2() may zero the page contents if secure-delete mode is
6756 ** enabled. If this 'overflow' page happens to be a page that the
6757 ** caller is iterating through or using in some other way, this
6758 ** can be problematic.
6759 */
6760 rc = SQLITE_CORRUPT_BKPT;
6761 }else{
6762 rc = freePage2(pBt, pOvfl, ovflPgno);
6763 }
6764
danielk1977bea2a942009-01-20 17:06:27 +00006765 if( pOvfl ){
6766 sqlite3PagerUnref(pOvfl->pDbPage);
6767 }
drh3b7511c2001-05-26 13:15:44 +00006768 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006769 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006770 }
drh5e2f8b92001-05-28 00:41:15 +00006771 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006772}
6773
drh86c779f2021-05-15 13:08:44 +00006774/* Call xParseCell to compute the size of a cell. If the cell contains
6775** overflow, then invoke cellClearOverflow to clear out that overflow.
6776** STore the result code (SQLITE_OK or some error code) in rc.
6777**
6778** Implemented as macro to force inlining for performance.
6779*/
6780#define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
6781 pPage->xParseCell(pPage, pCell, &sInfo); \
6782 if( sInfo.nLocal!=sInfo.nPayload ){ \
6783 rc = clearCellOverflow(pPage, pCell, &sInfo); \
6784 }else{ \
6785 rc = SQLITE_OK; \
6786 }
6787
6788
drh3b7511c2001-05-26 13:15:44 +00006789/*
drh91025292004-05-03 19:49:32 +00006790** Create the byte sequence used to represent a cell on page pPage
6791** and write that byte sequence into pCell[]. Overflow pages are
6792** allocated and filled in as necessary. The calling procedure
6793** is responsible for making sure sufficient space has been allocated
6794** for pCell[].
6795**
6796** Note that pCell does not necessary need to point to the pPage->aData
6797** area. pCell might point to some temporary storage. The cell will
6798** be constructed in this temporary area then copied into pPage->aData
6799** later.
drh3b7511c2001-05-26 13:15:44 +00006800*/
6801static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006802 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006803 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006804 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006805 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006806){
drh3b7511c2001-05-26 13:15:44 +00006807 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006808 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006809 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006810 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006811 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006812 unsigned char *pPrior;
6813 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006814 BtShared *pBt;
6815 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006816 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006817
drh1fee73e2007-08-29 04:00:57 +00006818 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006819
drhc5053fb2008-11-27 02:22:10 +00006820 /* pPage is not necessarily writeable since pCell might be auxiliary
6821 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006822 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006823 || sqlite3PagerIswriteable(pPage->pDbPage) );
6824
drh91025292004-05-03 19:49:32 +00006825 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006826 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006827 if( pPage->intKey ){
6828 nPayload = pX->nData + pX->nZero;
6829 pSrc = pX->pData;
6830 nSrc = pX->nData;
6831 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006832 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006833 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006834 }else{
drh8eeb4462016-05-21 20:03:42 +00006835 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6836 nSrc = nPayload = (int)pX->nKey;
6837 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006838 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006839 }
drhdfc2daa2016-05-21 23:25:29 +00006840
6841 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006842 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006843 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006844 /* This is the common case where everything fits on the btree page
6845 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006846 n = nHeader + nPayload;
6847 testcase( n==3 );
6848 testcase( n==4 );
6849 if( n<4 ) n = 4;
6850 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006851 assert( nSrc<=nPayload );
6852 testcase( nSrc<nPayload );
6853 memcpy(pPayload, pSrc, nSrc);
6854 memset(pPayload+nSrc, 0, nPayload-nSrc);
6855 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006856 }
drh5e27e1d2017-08-23 14:45:59 +00006857
6858 /* If we reach this point, it means that some of the content will need
6859 ** to spill onto overflow pages.
6860 */
6861 mn = pPage->minLocal;
6862 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6863 testcase( n==pPage->maxLocal );
6864 testcase( n==pPage->maxLocal+1 );
6865 if( n > pPage->maxLocal ) n = mn;
6866 spaceLeft = n;
6867 *pnSize = n + nHeader + 4;
6868 pPrior = &pCell[nHeader+n];
6869 pToRelease = 0;
6870 pgnoOvfl = 0;
6871 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006872
drh6200c882014-09-23 22:36:25 +00006873 /* At this point variables should be set as follows:
6874 **
6875 ** nPayload Total payload size in bytes
6876 ** pPayload Begin writing payload here
6877 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6878 ** that means content must spill into overflow pages.
6879 ** *pnSize Size of the local cell (not counting overflow pages)
6880 ** pPrior Where to write the pgno of the first overflow page
6881 **
6882 ** Use a call to btreeParseCellPtr() to verify that the values above
6883 ** were computed correctly.
6884 */
drhd879e3e2017-02-13 13:35:55 +00006885#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006886 {
6887 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006888 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006889 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006890 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006891 assert( *pnSize == info.nSize );
6892 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006893 }
6894#endif
6895
6896 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006897 while( 1 ){
6898 n = nPayload;
6899 if( n>spaceLeft ) n = spaceLeft;
6900
6901 /* If pToRelease is not zero than pPayload points into the data area
6902 ** of pToRelease. Make sure pToRelease is still writeable. */
6903 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6904
6905 /* If pPayload is part of the data area of pPage, then make sure pPage
6906 ** is still writeable */
6907 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6908 || sqlite3PagerIswriteable(pPage->pDbPage) );
6909
6910 if( nSrc>=n ){
6911 memcpy(pPayload, pSrc, n);
6912 }else if( nSrc>0 ){
6913 n = nSrc;
6914 memcpy(pPayload, pSrc, n);
6915 }else{
6916 memset(pPayload, 0, n);
6917 }
6918 nPayload -= n;
6919 if( nPayload<=0 ) break;
6920 pPayload += n;
6921 pSrc += n;
6922 nSrc -= n;
6923 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006924 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006925 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006926#ifndef SQLITE_OMIT_AUTOVACUUM
6927 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006928 if( pBt->autoVacuum ){
6929 do{
6930 pgnoOvfl++;
6931 } while(
6932 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6933 );
danielk1977b39f70b2007-05-17 18:28:11 +00006934 }
danielk1977afcdd022004-10-31 16:25:42 +00006935#endif
drhf49661a2008-12-10 16:45:50 +00006936 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006937#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006938 /* If the database supports auto-vacuum, and the second or subsequent
6939 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006940 ** for that page now.
6941 **
6942 ** If this is the first overflow page, then write a partial entry
6943 ** to the pointer-map. If we write nothing to this pointer-map slot,
6944 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006945 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006946 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006947 */
danielk19774ef24492007-05-23 09:52:41 +00006948 if( pBt->autoVacuum && rc==SQLITE_OK ){
6949 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006950 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006951 if( rc ){
6952 releasePage(pOvfl);
6953 }
danielk1977afcdd022004-10-31 16:25:42 +00006954 }
6955#endif
drh3b7511c2001-05-26 13:15:44 +00006956 if( rc ){
drh9b171272004-05-08 02:03:22 +00006957 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006958 return rc;
6959 }
drhc5053fb2008-11-27 02:22:10 +00006960
6961 /* If pToRelease is not zero than pPrior points into the data area
6962 ** of pToRelease. Make sure pToRelease is still writeable. */
6963 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6964
6965 /* If pPrior is part of the data area of pPage, then make sure pPage
6966 ** is still writeable */
6967 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6968 || sqlite3PagerIswriteable(pPage->pDbPage) );
6969
drh3aac2dd2004-04-26 14:10:20 +00006970 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006971 releasePage(pToRelease);
6972 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006973 pPrior = pOvfl->aData;
6974 put4byte(pPrior, 0);
6975 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006976 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006977 }
drhdd793422001-06-28 01:54:48 +00006978 }
drh9b171272004-05-08 02:03:22 +00006979 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006980 return SQLITE_OK;
6981}
6982
drh14acc042001-06-10 19:56:58 +00006983/*
6984** Remove the i-th cell from pPage. This routine effects pPage only.
6985** The cell content is not freed or deallocated. It is assumed that
6986** the cell content has been copied someplace else. This routine just
6987** removes the reference to the cell from pPage.
6988**
6989** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006990*/
drh98add2e2009-07-20 17:11:49 +00006991static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006992 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006993 u8 *data; /* pPage->aData */
6994 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006995 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006996 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006997
drh98add2e2009-07-20 17:11:49 +00006998 if( *pRC ) return;
drh2dfe9662022-01-02 11:25:51 +00006999 assert( idx>=0 );
7000 assert( idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00007001 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00007002 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00007003 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00007004 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00007005 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00007006 ptr = &pPage->aCellIdx[2*idx];
mistachkinbeacaac2022-01-12 00:28:12 +00007007 assert( pPage->pBt->usableSize > (u32)(ptr-data) );
shane0af3f892008-11-12 04:55:34 +00007008 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00007009 hdr = pPage->hdrOffset;
drh0aa09452022-02-14 13:53:49 +00007010#if 0 /* Not required. Omit for efficiency */
7011 if( pc<hdr+pPage->nCell*2 ){
7012 *pRC = SQLITE_CORRUPT_BKPT;
7013 return;
7014 }
7015#endif
mistachkin2b5fbb22021-12-31 18:26:50 +00007016 testcase( pc==(u32)get2byte(&data[hdr+5]) );
drhc314dc72009-07-21 11:52:34 +00007017 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00007018 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00007019 *pRC = SQLITE_CORRUPT_BKPT;
7020 return;
shane0af3f892008-11-12 04:55:34 +00007021 }
shanedcc50b72008-11-13 18:29:50 +00007022 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00007023 if( rc ){
7024 *pRC = rc;
7025 return;
shanedcc50b72008-11-13 18:29:50 +00007026 }
drh14acc042001-06-10 19:56:58 +00007027 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00007028 if( pPage->nCell==0 ){
7029 memset(&data[hdr+1], 0, 4);
7030 data[hdr+7] = 0;
7031 put2byte(&data[hdr+5], pPage->pBt->usableSize);
7032 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
7033 - pPage->childPtrSize - 8;
7034 }else{
7035 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
7036 put2byte(&data[hdr+3], pPage->nCell);
7037 pPage->nFree += 2;
7038 }
drh14acc042001-06-10 19:56:58 +00007039}
7040
7041/*
7042** Insert a new cell on pPage at cell index "i". pCell points to the
7043** content of the cell.
7044**
7045** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00007046** will not fit, then make a copy of the cell content into pTemp if
7047** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00007048** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00007049** in pTemp or the original pCell) and also record its index.
7050** Allocating a new entry in pPage->aCell[] implies that
7051** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00007052**
7053** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00007054*/
drh98add2e2009-07-20 17:11:49 +00007055static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00007056 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00007057 int i, /* New cell becomes the i-th cell of the page */
7058 u8 *pCell, /* Content of the new cell */
7059 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00007060 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00007061 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
7062 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00007063){
drh383d30f2010-02-26 13:07:37 +00007064 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00007065 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00007066 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00007067 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00007068
drhcb89f4a2016-05-21 11:23:26 +00007069 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00007070 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00007071 assert( MX_CELL(pPage->pBt)<=10921 );
7072 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00007073 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
7074 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00007075 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh996f5cc2019-07-17 16:18:01 +00007076 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00007077 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00007078 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00007079 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00007080 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00007081 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00007082 }
danielk19774dbaa892009-06-16 16:50:22 +00007083 if( iChild ){
7084 put4byte(pCell, iChild);
7085 }
drh43605152004-05-29 21:46:49 +00007086 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00007087 /* Comparison against ArraySize-1 since we hold back one extra slot
7088 ** as a contingency. In other words, never need more than 3 overflow
7089 ** slots but 4 are allocated, just to be safe. */
7090 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00007091 pPage->apOvfl[j] = pCell;
7092 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00007093
7094 /* When multiple overflows occur, they are always sequential and in
7095 ** sorted order. This invariants arise because multiple overflows can
7096 ** only occur when inserting divider cells into the parent page during
7097 ** balancing, and the dividers are adjacent and sorted.
7098 */
7099 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
7100 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00007101 }else{
danielk19776e465eb2007-08-21 13:11:00 +00007102 int rc = sqlite3PagerWrite(pPage->pDbPage);
7103 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00007104 *pRC = rc;
7105 return;
danielk19776e465eb2007-08-21 13:11:00 +00007106 }
7107 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00007108 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00007109 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00007110 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00007111 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00007112 /* The allocateSpace() routine guarantees the following properties
7113 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00007114 assert( idx >= 0 );
7115 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00007116 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00007117 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00007118 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00007119 /* In a corrupt database where an entry in the cell index section of
7120 ** a btree page has a value of 3 or less, the pCell value might point
7121 ** as many as 4 bytes in front of the start of the aData buffer for
7122 ** the source page. Make sure this does not cause problems by not
7123 ** reading the first 4 bytes */
7124 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00007125 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00007126 }else{
7127 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00007128 }
drh2c8fb922015-06-25 19:53:48 +00007129 pIns = pPage->aCellIdx + i*2;
7130 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
7131 put2byte(pIns, idx);
7132 pPage->nCell++;
7133 /* increment the cell count */
7134 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00007135 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
danielk1977a19df672004-11-03 11:37:07 +00007136#ifndef SQLITE_OMIT_AUTOVACUUM
7137 if( pPage->pBt->autoVacuum ){
7138 /* The cell may contain a pointer to an overflow page. If so, write
7139 ** the entry for the overflow page into the pointer map.
7140 */
drh0f1bf4c2019-01-13 20:17:21 +00007141 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00007142 }
7143#endif
drh14acc042001-06-10 19:56:58 +00007144 }
7145}
7146
7147/*
drhe3dadac2019-01-23 19:25:59 +00007148** The following parameters determine how many adjacent pages get involved
7149** in a balancing operation. NN is the number of neighbors on either side
7150** of the page that participate in the balancing operation. NB is the
7151** total number of pages that participate, including the target page and
7152** NN neighbors on either side.
7153**
7154** The minimum value of NN is 1 (of course). Increasing NN above 1
7155** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7156** in exchange for a larger degradation in INSERT and UPDATE performance.
7157** The value of NN appears to give the best results overall.
7158**
7159** (Later:) The description above makes it seem as if these values are
7160** tunable - as if you could change them and recompile and it would all work.
7161** But that is unlikely. NB has been 3 since the inception of SQLite and
7162** we have never tested any other value.
7163*/
7164#define NN 1 /* Number of neighbors on either side of pPage */
7165#define NB 3 /* (NN*2+1): Total pages involved in the balance */
7166
7167/*
drh1ffd2472015-06-23 02:37:30 +00007168** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00007169** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00007170**
7171** The cells in this array are the divider cell or cells from the pParent
7172** page plus up to three child pages. There are a total of nCell cells.
7173**
7174** pRef is a pointer to one of the pages that contributes cells. This is
7175** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7176** which should be common to all pages that contribute cells to this array.
7177**
7178** apCell[] and szCell[] hold, respectively, pointers to the start of each
7179** cell and the size of each cell. Some of the apCell[] pointers might refer
7180** to overflow cells. In other words, some apCel[] pointers might not point
7181** to content area of the pages.
7182**
7183** A szCell[] of zero means the size of that cell has not yet been computed.
7184**
7185** The cells come from as many as four different pages:
7186**
7187** -----------
7188** | Parent |
7189** -----------
7190** / | \
7191** / | \
7192** --------- --------- ---------
7193** |Child-1| |Child-2| |Child-3|
7194** --------- --------- ---------
7195**
drh26b7ec82019-02-01 14:50:43 +00007196** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00007197**
7198** 1. All cells from Child-1 in order
7199** 2. The first divider cell from Parent
7200** 3. All cells from Child-2 in order
7201** 4. The second divider cell from Parent
7202** 5. All cells from Child-3 in order
7203**
drh26b7ec82019-02-01 14:50:43 +00007204** For a table-btree (with rowids) the items 2 and 4 are empty because
7205** content exists only in leaves and there are no divider cells.
7206**
7207** For an index btree, the apEnd[] array holds pointer to the end of page
7208** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7209** respectively. The ixNx[] array holds the number of cells contained in
7210** each of these 5 stages, and all stages to the left. Hence:
7211**
drhe3dadac2019-01-23 19:25:59 +00007212** ixNx[0] = Number of cells in Child-1.
7213** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7214** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7215** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7216** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00007217**
7218** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7219** are used and they point to the leaf pages only, and the ixNx value are:
7220**
7221** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00007222** ixNx[1] = Number of cells in Child-1 and Child-2.
7223** ixNx[2] = Total number of cells.
7224**
7225** Sometimes when deleting, a child page can have zero cells. In those
7226** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7227** entries, shift down. The end result is that each ixNx[] entry should
7228** be larger than the previous
drhfa1a98a2004-05-14 19:08:17 +00007229*/
drh1ffd2472015-06-23 02:37:30 +00007230typedef struct CellArray CellArray;
7231struct CellArray {
7232 int nCell; /* Number of cells in apCell[] */
7233 MemPage *pRef; /* Reference page */
7234 u8 **apCell; /* All cells begin balanced */
7235 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00007236 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
7237 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00007238};
drhfa1a98a2004-05-14 19:08:17 +00007239
drh1ffd2472015-06-23 02:37:30 +00007240/*
7241** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7242** computed.
7243*/
7244static void populateCellCache(CellArray *p, int idx, int N){
7245 assert( idx>=0 && idx+N<=p->nCell );
7246 while( N>0 ){
7247 assert( p->apCell[idx]!=0 );
7248 if( p->szCell[idx]==0 ){
7249 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
7250 }else{
7251 assert( CORRUPT_DB ||
7252 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
7253 }
7254 idx++;
7255 N--;
drhfa1a98a2004-05-14 19:08:17 +00007256 }
drh1ffd2472015-06-23 02:37:30 +00007257}
7258
7259/*
7260** Return the size of the Nth element of the cell array
7261*/
7262static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7263 assert( N>=0 && N<p->nCell );
7264 assert( p->szCell[N]==0 );
7265 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7266 return p->szCell[N];
7267}
7268static u16 cachedCellSize(CellArray *p, int N){
7269 assert( N>=0 && N<p->nCell );
7270 if( p->szCell[N] ) return p->szCell[N];
7271 return computeCellSize(p, N);
7272}
7273
7274/*
dan8e9ba0c2014-10-14 17:27:04 +00007275** Array apCell[] contains pointers to nCell b-tree page cells. The
7276** szCell[] array contains the size in bytes of each cell. This function
7277** replaces the current contents of page pPg with the contents of the cell
7278** array.
7279**
7280** Some of the cells in apCell[] may currently be stored in pPg. This
7281** function works around problems caused by this by making a copy of any
7282** such cells before overwriting the page data.
7283**
7284** The MemPage.nFree field is invalidated by this function. It is the
7285** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00007286*/
drh658873b2015-06-22 20:02:04 +00007287static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00007288 CellArray *pCArray, /* Content to be added to page pPg */
7289 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00007290 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00007291 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00007292){
7293 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
7294 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
7295 const int usableSize = pPg->pBt->usableSize;
7296 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00007297 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00007298 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00007299 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00007300 u8 *pCellptr = pPg->aCellIdx;
7301 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7302 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00007303 int k; /* Current slot in pCArray->apEnd[] */
7304 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00007305
drhe3dadac2019-01-23 19:25:59 +00007306 assert( i<iEnd );
7307 j = get2byte(&aData[hdr+5]);
drh10f73652022-01-05 21:01:26 +00007308 if( j>(u32)usableSize ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00007309 memcpy(&pTmp[j], &aData[j], usableSize - j);
7310
7311 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7312 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00007313
dan8e9ba0c2014-10-14 17:27:04 +00007314 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00007315 while( 1/*exit by break*/ ){
7316 u8 *pCell = pCArray->apCell[i];
7317 u16 sz = pCArray->szCell[i];
7318 assert( sz>0 );
drh8cae5a42021-04-20 20:48:15 +00007319 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
drhb2b61bb2020-01-04 14:50:06 +00007320 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00007321 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00007322 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7323 && (uptr)(pCell)<(uptr)pSrcEnd
7324 ){
7325 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00007326 }
drhe3dadac2019-01-23 19:25:59 +00007327
7328 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00007329 put2byte(pCellptr, (pData - aData));
7330 pCellptr += 2;
drhe5cf3e92020-01-04 12:34:44 +00007331 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drheca3c672021-04-22 20:01:02 +00007332 memmove(pData, pCell, sz);
drhe5cf3e92020-01-04 12:34:44 +00007333 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007334 i++;
7335 if( i>=iEnd ) break;
7336 if( pCArray->ixNx[k]<=i ){
7337 k++;
7338 pSrcEnd = pCArray->apEnd[k];
7339 }
dan33ea4862014-10-09 19:35:37 +00007340 }
7341
dand7b545b2014-10-13 18:03:27 +00007342 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00007343 pPg->nCell = nCell;
7344 pPg->nOverflow = 0;
7345
7346 put2byte(&aData[hdr+1], 0);
7347 put2byte(&aData[hdr+3], pPg->nCell);
7348 put2byte(&aData[hdr+5], pData - aData);
7349 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00007350 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00007351}
7352
dan8e9ba0c2014-10-14 17:27:04 +00007353/*
drhe3dadac2019-01-23 19:25:59 +00007354** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7355** This function attempts to add the cells stored in the array to page pPg.
7356** If it cannot (because the page needs to be defragmented before the cells
7357** will fit), non-zero is returned. Otherwise, if the cells are added
7358** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00007359**
7360** Argument pCellptr points to the first entry in the cell-pointer array
7361** (part of page pPg) to populate. After cell apCell[0] is written to the
7362** page body, a 16-bit offset is written to pCellptr. And so on, for each
7363** cell in the array. It is the responsibility of the caller to ensure
7364** that it is safe to overwrite this part of the cell-pointer array.
7365**
7366** When this function is called, *ppData points to the start of the
7367** content area on page pPg. If the size of the content area is extended,
7368** *ppData is updated to point to the new start of the content area
7369** before returning.
7370**
7371** Finally, argument pBegin points to the byte immediately following the
7372** end of the space required by this page for the cell-pointer area (for
7373** all cells - not just those inserted by the current call). If the content
7374** area must be extended to before this point in order to accomodate all
7375** cells in apCell[], then the cells do not fit and non-zero is returned.
7376*/
dand7b545b2014-10-13 18:03:27 +00007377static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00007378 MemPage *pPg, /* Page to add cells to */
7379 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00007380 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00007381 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00007382 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00007383 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00007384 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007385){
drhe3dadac2019-01-23 19:25:59 +00007386 int i = iFirst; /* Loop counter - cell index to insert */
7387 u8 *aData = pPg->aData; /* Complete page */
7388 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7389 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7390 int k; /* Current slot in pCArray->apEnd[] */
7391 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00007392 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00007393 if( iEnd<=iFirst ) return 0;
7394 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7395 pEnd = pCArray->apEnd[k];
7396 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00007397 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00007398 u8 *pSlot;
dan666a42f2019-08-24 21:02:47 +00007399 assert( pCArray->szCell[i]!=0 );
7400 sz = pCArray->szCell[i];
drhb7580e82015-06-25 18:36:13 +00007401 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00007402 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00007403 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00007404 pSlot = pData;
7405 }
drh48310f82015-10-10 16:41:28 +00007406 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7407 ** database. But they might for a corrupt database. Hence use memmove()
7408 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7409 assert( (pSlot+sz)<=pCArray->apCell[i]
7410 || pSlot>=(pCArray->apCell[i]+sz)
7411 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007412 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7413 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7414 ){
7415 assert( CORRUPT_DB );
7416 (void)SQLITE_CORRUPT_BKPT;
7417 return 1;
7418 }
drh48310f82015-10-10 16:41:28 +00007419 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007420 put2byte(pCellptr, (pSlot - aData));
7421 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007422 i++;
7423 if( i>=iEnd ) break;
7424 if( pCArray->ixNx[k]<=i ){
7425 k++;
7426 pEnd = pCArray->apEnd[k];
7427 }
dand7b545b2014-10-13 18:03:27 +00007428 }
7429 *ppData = pData;
7430 return 0;
7431}
7432
dan8e9ba0c2014-10-14 17:27:04 +00007433/*
drhe3dadac2019-01-23 19:25:59 +00007434** The pCArray object contains pointers to b-tree cells and their sizes.
7435**
7436** This function adds the space associated with each cell in the array
7437** that is currently stored within the body of pPg to the pPg free-list.
7438** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007439**
7440** This function returns the total number of cells added to the free-list.
7441*/
dand7b545b2014-10-13 18:03:27 +00007442static int pageFreeArray(
7443 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007444 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007445 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007446 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007447){
7448 u8 * const aData = pPg->aData;
7449 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007450 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007451 int nRet = 0;
7452 int i;
drhf7838932015-06-23 15:36:34 +00007453 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007454 u8 *pFree = 0;
7455 int szFree = 0;
7456
drhf7838932015-06-23 15:36:34 +00007457 for(i=iFirst; i<iEnd; i++){
7458 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007459 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007460 int sz;
7461 /* No need to use cachedCellSize() here. The sizes of all cells that
7462 ** are to be freed have already been computing while deciding which
7463 ** cells need freeing */
7464 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007465 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007466 if( pFree ){
7467 assert( pFree>aData && (pFree - aData)<65536 );
7468 freeSpace(pPg, (u16)(pFree - aData), szFree);
7469 }
dand7b545b2014-10-13 18:03:27 +00007470 pFree = pCell;
7471 szFree = sz;
drhccb897c2021-05-11 10:47:41 +00007472 if( pFree+sz>pEnd ){
7473 return 0;
drhc3c23f32021-05-06 11:02:55 +00007474 }
dand7b545b2014-10-13 18:03:27 +00007475 }else{
7476 pFree = pCell;
7477 szFree += sz;
7478 }
7479 nRet++;
7480 }
7481 }
drhfefa0942014-11-05 21:21:08 +00007482 if( pFree ){
7483 assert( pFree>aData && (pFree - aData)<65536 );
7484 freeSpace(pPg, (u16)(pFree - aData), szFree);
7485 }
dand7b545b2014-10-13 18:03:27 +00007486 return nRet;
7487}
7488
dand7b545b2014-10-13 18:03:27 +00007489/*
drha0466432019-01-29 16:41:13 +00007490** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007491** balanced. The current page, pPg, has pPg->nCell cells starting with
7492** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007493** starting at apCell[iNew].
7494**
7495** This routine makes the necessary adjustments to pPg so that it contains
7496** the correct cells after being balanced.
7497**
dand7b545b2014-10-13 18:03:27 +00007498** The pPg->nFree field is invalid when this function returns. It is the
7499** responsibility of the caller to set it correctly.
7500*/
drh658873b2015-06-22 20:02:04 +00007501static int editPage(
dan09c68402014-10-11 20:00:24 +00007502 MemPage *pPg, /* Edit this page */
7503 int iOld, /* Index of first cell currently on page */
7504 int iNew, /* Index of new first cell on page */
7505 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007506 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007507){
dand7b545b2014-10-13 18:03:27 +00007508 u8 * const aData = pPg->aData;
7509 const int hdr = pPg->hdrOffset;
7510 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7511 int nCell = pPg->nCell; /* Cells stored on pPg */
7512 u8 *pData;
7513 u8 *pCellptr;
7514 int i;
7515 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7516 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007517
7518#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007519 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7520 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007521#endif
7522
dand7b545b2014-10-13 18:03:27 +00007523 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007524 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007525 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007526 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drhfde25922020-05-05 19:54:02 +00007527 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007528 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7529 nCell -= nShift;
7530 }
7531 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007532 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7533 assert( nCell>=nTail );
7534 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007535 }
dan09c68402014-10-11 20:00:24 +00007536
drh5ab63772014-11-27 03:46:04 +00007537 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007538 if( pData<pBegin ) goto editpage_fail;
drh10f73652022-01-05 21:01:26 +00007539 if( pData>pPg->aDataEnd ) goto editpage_fail;
dand7b545b2014-10-13 18:03:27 +00007540
7541 /* Add cells to the start of the page */
7542 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007543 int nAdd = MIN(nNew,iOld-iNew);
7544 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007545 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007546 pCellptr = pPg->aCellIdx;
7547 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7548 if( pageInsertArray(
7549 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007550 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007551 ) ) goto editpage_fail;
7552 nCell += nAdd;
7553 }
7554
7555 /* Add any overflow cells */
7556 for(i=0; i<pPg->nOverflow; i++){
7557 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7558 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007559 pCellptr = &pPg->aCellIdx[iCell * 2];
drh4b986b22019-03-08 14:02:11 +00007560 if( nCell>iCell ){
7561 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7562 }
dand7b545b2014-10-13 18:03:27 +00007563 nCell++;
dan666a42f2019-08-24 21:02:47 +00007564 cachedCellSize(pCArray, iCell+iNew);
dand7b545b2014-10-13 18:03:27 +00007565 if( pageInsertArray(
7566 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007567 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007568 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007569 }
dand7b545b2014-10-13 18:03:27 +00007570 }
dan09c68402014-10-11 20:00:24 +00007571
dand7b545b2014-10-13 18:03:27 +00007572 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007573 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007574 pCellptr = &pPg->aCellIdx[nCell*2];
7575 if( pageInsertArray(
7576 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007577 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007578 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007579
dand7b545b2014-10-13 18:03:27 +00007580 pPg->nCell = nNew;
7581 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007582
dand7b545b2014-10-13 18:03:27 +00007583 put2byte(&aData[hdr+3], pPg->nCell);
7584 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007585
7586#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007587 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007588 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007589 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007590 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007591 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007592 }
drh1ffd2472015-06-23 02:37:30 +00007593 assert( 0==memcmp(pCell, &aData[iOff],
7594 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007595 }
dan09c68402014-10-11 20:00:24 +00007596#endif
7597
drh658873b2015-06-22 20:02:04 +00007598 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007599 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007600 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007601 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007602 return rebuildPage(pCArray, iNew, nNew, pPg);
drhfa1a98a2004-05-14 19:08:17 +00007603}
7604
danielk1977ac245ec2005-01-14 13:50:11 +00007605
drh615ae552005-01-16 23:21:00 +00007606#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007607/*
7608** This version of balance() handles the common special case where
7609** a new entry is being inserted on the extreme right-end of the
7610** tree, in other words, when the new entry will become the largest
7611** entry in the tree.
7612**
drhc314dc72009-07-21 11:52:34 +00007613** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007614** a new page to the right-hand side and put the one new entry in
7615** that page. This leaves the right side of the tree somewhat
7616** unbalanced. But odds are that we will be inserting new entries
7617** at the end soon afterwards so the nearly empty page will quickly
7618** fill up. On average.
7619**
7620** pPage is the leaf page which is the right-most page in the tree.
7621** pParent is its parent. pPage must have a single overflow entry
7622** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007623**
7624** The pSpace buffer is used to store a temporary copy of the divider
7625** cell that will be inserted into pParent. Such a cell consists of a 4
7626** byte page number followed by a variable length integer. In other
7627** words, at most 13 bytes. Hence the pSpace buffer must be at
7628** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007629*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007630static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7631 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007632 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007633 int rc; /* Return Code */
7634 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007635
drh1fee73e2007-08-29 04:00:57 +00007636 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007637 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007638 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007639
drh6301c432018-12-13 21:52:18 +00007640 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007641 assert( pPage->nFree>=0 );
7642 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007643
danielk1977a50d9aa2009-06-08 14:49:45 +00007644 /* Allocate a new page. This page will become the right-sibling of
7645 ** pPage. Make the parent page writable, so that the new divider cell
7646 ** may be inserted. If both these operations are successful, proceed.
7647 */
drh4f0c5872007-03-26 22:05:01 +00007648 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007649
danielk1977eaa06f62008-09-18 17:34:44 +00007650 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007651
7652 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007653 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007654 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007655 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007656 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007657
drhc5053fb2008-11-27 02:22:10 +00007658 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007659 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007660 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007661 b.nCell = 1;
7662 b.pRef = pPage;
7663 b.apCell = &pCell;
7664 b.szCell = &szCell;
7665 b.apEnd[0] = pPage->aDataEnd;
7666 b.ixNx[0] = 2;
7667 rc = rebuildPage(&b, 0, 1, pNew);
7668 if( NEVER(rc) ){
7669 releasePage(pNew);
7670 return rc;
7671 }
dan8e9ba0c2014-10-14 17:27:04 +00007672 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007673
7674 /* If this is an auto-vacuum database, update the pointer map
7675 ** with entries for the new page, and any pointer from the
7676 ** cell on the page to an overflow page. If either of these
7677 ** operations fails, the return code is set, but the contents
7678 ** of the parent page are still manipulated by thh code below.
7679 ** That is Ok, at this point the parent page is guaranteed to
7680 ** be marked as dirty. Returning an error code will cause a
7681 ** rollback, undoing any changes made to the parent page.
7682 */
7683 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007684 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7685 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007686 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007687 }
7688 }
danielk1977eaa06f62008-09-18 17:34:44 +00007689
danielk19776f235cc2009-06-04 14:46:08 +00007690 /* Create a divider cell to insert into pParent. The divider cell
7691 ** consists of a 4-byte page number (the page number of pPage) and
7692 ** a variable length key value (which must be the same value as the
7693 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007694 **
danielk19776f235cc2009-06-04 14:46:08 +00007695 ** To find the largest key value on pPage, first find the right-most
7696 ** cell on pPage. The first two fields of this cell are the
7697 ** record-length (a variable length integer at most 32-bits in size)
7698 ** and the key value (a variable length integer, may have any value).
7699 ** The first of the while(...) loops below skips over the record-length
7700 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007701 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007702 */
danielk1977eaa06f62008-09-18 17:34:44 +00007703 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007704 pStop = &pCell[9];
7705 while( (*(pCell++)&0x80) && pCell<pStop );
7706 pStop = &pCell[9];
7707 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7708
danielk19774dbaa892009-06-16 16:50:22 +00007709 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007710 if( rc==SQLITE_OK ){
7711 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7712 0, pPage->pgno, &rc);
7713 }
danielk19776f235cc2009-06-04 14:46:08 +00007714
7715 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007716 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7717
danielk1977e08a3c42008-09-18 18:17:03 +00007718 /* Release the reference to the new page. */
7719 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007720 }
7721
danielk1977eaa06f62008-09-18 17:34:44 +00007722 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007723}
drh615ae552005-01-16 23:21:00 +00007724#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007725
danielk19774dbaa892009-06-16 16:50:22 +00007726#if 0
drhc3b70572003-01-04 19:44:07 +00007727/*
danielk19774dbaa892009-06-16 16:50:22 +00007728** This function does not contribute anything to the operation of SQLite.
7729** it is sometimes activated temporarily while debugging code responsible
7730** for setting pointer-map entries.
7731*/
7732static int ptrmapCheckPages(MemPage **apPage, int nPage){
7733 int i, j;
7734 for(i=0; i<nPage; i++){
7735 Pgno n;
7736 u8 e;
7737 MemPage *pPage = apPage[i];
7738 BtShared *pBt = pPage->pBt;
7739 assert( pPage->isInit );
7740
7741 for(j=0; j<pPage->nCell; j++){
7742 CellInfo info;
7743 u8 *z;
7744
7745 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007746 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007747 if( info.nLocal<info.nPayload ){
7748 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007749 ptrmapGet(pBt, ovfl, &e, &n);
7750 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7751 }
7752 if( !pPage->leaf ){
7753 Pgno child = get4byte(z);
7754 ptrmapGet(pBt, child, &e, &n);
7755 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7756 }
7757 }
7758 if( !pPage->leaf ){
7759 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7760 ptrmapGet(pBt, child, &e, &n);
7761 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7762 }
7763 }
7764 return 1;
7765}
7766#endif
7767
danielk1977cd581a72009-06-23 15:43:39 +00007768/*
7769** This function is used to copy the contents of the b-tree node stored
7770** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7771** the pointer-map entries for each child page are updated so that the
7772** parent page stored in the pointer map is page pTo. If pFrom contained
7773** any cells with overflow page pointers, then the corresponding pointer
7774** map entries are also updated so that the parent page is page pTo.
7775**
7776** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007777** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007778**
danielk197730548662009-07-09 05:07:37 +00007779** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007780**
7781** The performance of this function is not critical. It is only used by
7782** the balance_shallower() and balance_deeper() procedures, neither of
7783** which are called often under normal circumstances.
7784*/
drhc314dc72009-07-21 11:52:34 +00007785static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7786 if( (*pRC)==SQLITE_OK ){
7787 BtShared * const pBt = pFrom->pBt;
7788 u8 * const aFrom = pFrom->aData;
7789 u8 * const aTo = pTo->aData;
7790 int const iFromHdr = pFrom->hdrOffset;
7791 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007792 int rc;
drhc314dc72009-07-21 11:52:34 +00007793 int iData;
7794
7795
7796 assert( pFrom->isInit );
7797 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007798 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007799
7800 /* Copy the b-tree node content from page pFrom to page pTo. */
7801 iData = get2byte(&aFrom[iFromHdr+5]);
7802 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7803 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7804
7805 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007806 ** match the new data. The initialization of pTo can actually fail under
7807 ** fairly obscure circumstances, even though it is a copy of initialized
7808 ** page pFrom.
7809 */
drhc314dc72009-07-21 11:52:34 +00007810 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007811 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00007812 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00007813 if( rc!=SQLITE_OK ){
7814 *pRC = rc;
7815 return;
7816 }
drhc314dc72009-07-21 11:52:34 +00007817
7818 /* If this is an auto-vacuum database, update the pointer-map entries
7819 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7820 */
7821 if( ISAUTOVACUUM ){
7822 *pRC = setChildPtrmaps(pTo);
7823 }
danielk1977cd581a72009-06-23 15:43:39 +00007824 }
danielk1977cd581a72009-06-23 15:43:39 +00007825}
7826
7827/*
danielk19774dbaa892009-06-16 16:50:22 +00007828** This routine redistributes cells on the iParentIdx'th child of pParent
7829** (hereafter "the page") and up to 2 siblings so that all pages have about the
7830** same amount of free space. Usually a single sibling on either side of the
7831** page are used in the balancing, though both siblings might come from one
7832** side if the page is the first or last child of its parent. If the page
7833** has fewer than 2 siblings (something which can only happen if the page
7834** is a root page or a child of a root page) then all available siblings
7835** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007836**
danielk19774dbaa892009-06-16 16:50:22 +00007837** The number of siblings of the page might be increased or decreased by
7838** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007839**
danielk19774dbaa892009-06-16 16:50:22 +00007840** Note that when this routine is called, some of the cells on the page
7841** might not actually be stored in MemPage.aData[]. This can happen
7842** if the page is overfull. This routine ensures that all cells allocated
7843** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007844**
danielk19774dbaa892009-06-16 16:50:22 +00007845** In the course of balancing the page and its siblings, cells may be
7846** inserted into or removed from the parent page (pParent). Doing so
7847** may cause the parent page to become overfull or underfull. If this
7848** happens, it is the responsibility of the caller to invoke the correct
7849** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007850**
drh5e00f6c2001-09-13 13:46:56 +00007851** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007852** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007853** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007854**
7855** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007856** buffer big enough to hold one page. If while inserting cells into the parent
7857** page (pParent) the parent page becomes overfull, this buffer is
7858** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007859** a maximum of four divider cells into the parent page, and the maximum
7860** size of a cell stored within an internal node is always less than 1/4
7861** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7862** enough for all overflow cells.
7863**
7864** If aOvflSpace is set to a null pointer, this function returns
7865** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007866*/
danielk19774dbaa892009-06-16 16:50:22 +00007867static int balance_nonroot(
7868 MemPage *pParent, /* Parent page of siblings being balanced */
7869 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007870 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007871 int isRoot, /* True if pParent is a root-page */
7872 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007873){
drh16a9b832007-05-05 18:39:25 +00007874 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007875 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007876 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007877 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007878 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007879 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007880 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007881 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007882 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007883 int usableSpace; /* Bytes in pPage beyond the header */
7884 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007885 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007886 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007887 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007888 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007889 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007890 u8 *pRight; /* Location in parent of right-sibling pointer */
7891 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007892 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7893 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007894 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007895 u8 *aSpace1; /* Space for copies of dividers cells */
7896 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007897 u8 abDone[NB+2]; /* True after i'th new page is populated */
7898 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007899 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007900 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh7d4c94b2021-10-04 22:34:38 +00007901 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007902
dan33ea4862014-10-09 19:35:37 +00007903 memset(abDone, 0, sizeof(abDone));
drh7d4c94b2021-10-04 22:34:38 +00007904 memset(&b, 0, sizeof(b));
danielk1977a50d9aa2009-06-08 14:49:45 +00007905 pBt = pParent->pBt;
7906 assert( sqlite3_mutex_held(pBt->mutex) );
7907 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007908
danielk19774dbaa892009-06-16 16:50:22 +00007909 /* At this point pParent may have at most one overflow cell. And if
7910 ** this overflow cell is present, it must be the cell with
7911 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007912 ** is called (indirectly) from sqlite3BtreeDelete().
7913 */
danielk19774dbaa892009-06-16 16:50:22 +00007914 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007915 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007916
danielk197711a8a862009-06-17 11:49:52 +00007917 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007918 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007919 }
drh68133502019-02-11 17:22:30 +00007920 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00007921
danielk1977a50d9aa2009-06-08 14:49:45 +00007922 /* Find the sibling pages to balance. Also locate the cells in pParent
7923 ** that divide the siblings. An attempt is made to find NN siblings on
7924 ** either side of pPage. More siblings are taken from one side, however,
7925 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007926 ** has NB or fewer children then all children of pParent are taken.
7927 **
7928 ** This loop also drops the divider cells from the parent page. This
7929 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007930 ** overflow cells in the parent page, since if any existed they will
7931 ** have already been removed.
7932 */
danielk19774dbaa892009-06-16 16:50:22 +00007933 i = pParent->nOverflow + pParent->nCell;
7934 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007935 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007936 }else{
dan7d6885a2012-08-08 14:04:56 +00007937 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007938 if( iParentIdx==0 ){
7939 nxDiv = 0;
7940 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007941 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007942 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007943 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007944 }
dan7d6885a2012-08-08 14:04:56 +00007945 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007946 }
dan7d6885a2012-08-08 14:04:56 +00007947 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007948 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7949 pRight = &pParent->aData[pParent->hdrOffset+8];
7950 }else{
7951 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7952 }
7953 pgno = get4byte(pRight);
7954 while( 1 ){
dan1f9f5762021-03-01 16:15:41 +00007955 if( rc==SQLITE_OK ){
7956 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7957 }
danielk19774dbaa892009-06-16 16:50:22 +00007958 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007959 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007960 goto balance_cleanup;
7961 }
drh85a379b2019-02-09 22:33:44 +00007962 if( apOld[i]->nFree<0 ){
7963 rc = btreeComputeFreeSpace(apOld[i]);
7964 if( rc ){
7965 memset(apOld, 0, (i)*sizeof(MemPage*));
7966 goto balance_cleanup;
7967 }
7968 }
danb9f8a182021-06-22 14:59:34 +00007969 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
danielk19774dbaa892009-06-16 16:50:22 +00007970 if( (i--)==0 ) break;
7971
drh9cc5b4e2016-12-26 01:41:33 +00007972 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007973 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007974 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007975 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007976 pParent->nOverflow = 0;
7977 }else{
7978 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7979 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007980 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007981
7982 /* Drop the cell from the parent page. apDiv[i] still points to
7983 ** the cell within the parent, even though it has been dropped.
7984 ** This is safe because dropping a cell only overwrites the first
7985 ** four bytes of it, and this function does not need the first
7986 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007987 ** later on.
7988 **
drh8a575d92011-10-12 17:00:28 +00007989 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007990 ** the dropCell() routine will overwrite the entire cell with zeroes.
7991 ** In this case, temporarily copy the cell into the aOvflSpace[]
7992 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7993 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007994 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007995 int iOff;
7996
dan1f9f5762021-03-01 16:15:41 +00007997 /* If the following if() condition is not true, the db is corrupted.
7998 ** The call to dropCell() below will detect this. */
drh8a575d92011-10-12 17:00:28 +00007999 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
dan1f9f5762021-03-01 16:15:41 +00008000 if( (iOff+szNew[i])<=(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00008001 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
8002 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
8003 }
drh5b47efa2010-02-12 18:18:39 +00008004 }
drh98add2e2009-07-20 17:11:49 +00008005 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008006 }
drh8b2f49b2001-06-08 00:21:52 +00008007 }
8008
drha9121e42008-02-19 14:59:35 +00008009 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00008010 ** alignment */
drha9121e42008-02-19 14:59:35 +00008011 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00008012
drh8b2f49b2001-06-08 00:21:52 +00008013 /*
danielk1977634f2982005-03-28 08:44:07 +00008014 ** Allocate space for memory structures
8015 */
drhfacf0302008-06-17 15:12:00 +00008016 szScratch =
drh1ffd2472015-06-23 02:37:30 +00008017 nMaxCells*sizeof(u8*) /* b.apCell */
8018 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00008019 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00008020
drhf012dc42019-03-19 15:36:46 +00008021 assert( szScratch<=7*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00008022 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00008023 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00008024 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00008025 goto balance_cleanup;
8026 }
drh1ffd2472015-06-23 02:37:30 +00008027 b.szCell = (u16*)&b.apCell[nMaxCells];
8028 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00008029 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00008030
8031 /*
8032 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00008033 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00008034 ** into space obtained from aSpace1[]. The divider cells have already
8035 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00008036 **
8037 ** If the siblings are on leaf pages, then the child pointers of the
8038 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00008039 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00008040 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00008041 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00008042 ** are alike.
drh96f5b762004-05-16 16:24:36 +00008043 **
8044 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
8045 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00008046 */
drh1ffd2472015-06-23 02:37:30 +00008047 b.pRef = apOld[0];
8048 leafCorrection = b.pRef->leaf*4;
8049 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00008050 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00008051 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00008052 int limit = pOld->nCell;
8053 u8 *aData = pOld->aData;
8054 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00008055 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00008056 u8 *piEnd;
drhe12ca5a2019-05-02 15:56:39 +00008057 VVA_ONLY( int nCellAtStart = b.nCell; )
danielk19774dbaa892009-06-16 16:50:22 +00008058
drh73d340a2015-05-28 11:23:11 +00008059 /* Verify that all sibling pages are of the same "type" (table-leaf,
8060 ** table-interior, index-leaf, or index-interior).
8061 */
8062 if( pOld->aData[0]!=apOld[0]->aData[0] ){
8063 rc = SQLITE_CORRUPT_BKPT;
8064 goto balance_cleanup;
8065 }
8066
drhfe647dc2015-06-23 18:24:25 +00008067 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00008068 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00008069 ** in the correct spot.
8070 **
8071 ** Note that when there are multiple overflow cells, it is always the
8072 ** case that they are sequential and adjacent. This invariant arises
8073 ** because multiple overflows can only occurs when inserting divider
8074 ** cells into a parent on a prior balance, and divider cells are always
8075 ** adjacent and are inserted in order. There is an assert() tagged
8076 ** with "NOTE 1" in the overflow cell insertion loop to prove this
8077 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00008078 **
8079 ** This must be done in advance. Once the balance starts, the cell
8080 ** offset section of the btree page will be overwritten and we will no
8081 ** long be able to find the cells if a pointer to each cell is not saved
8082 ** first.
8083 */
drh36b78ee2016-01-20 01:32:00 +00008084 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00008085 if( pOld->nOverflow>0 ){
drh27e80a32019-08-15 13:17:49 +00008086 if( NEVER(limit<pOld->aiOvfl[0]) ){
drhe12ca5a2019-05-02 15:56:39 +00008087 rc = SQLITE_CORRUPT_BKPT;
8088 goto balance_cleanup;
8089 }
drhfe647dc2015-06-23 18:24:25 +00008090 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00008091 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00008092 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00008093 piCell += 2;
8094 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00008095 }
drhfe647dc2015-06-23 18:24:25 +00008096 for(k=0; k<pOld->nOverflow; k++){
8097 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00008098 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00008099 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00008100 }
drh1ffd2472015-06-23 02:37:30 +00008101 }
drhfe647dc2015-06-23 18:24:25 +00008102 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
8103 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00008104 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00008105 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00008106 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00008107 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00008108 }
drhe12ca5a2019-05-02 15:56:39 +00008109 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
drh4edfdd32015-06-23 14:49:42 +00008110
drh1ffd2472015-06-23 02:37:30 +00008111 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00008112 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00008113 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00008114 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00008115 assert( b.nCell<nMaxCells );
8116 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00008117 pTemp = &aSpace1[iSpace1];
8118 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00008119 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00008120 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00008121 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00008122 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00008123 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00008124 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00008125 if( !pOld->leaf ){
8126 assert( leafCorrection==0 );
dan5b482a92021-04-20 13:31:51 +00008127 assert( pOld->hdrOffset==0 || CORRUPT_DB );
danielk19774dbaa892009-06-16 16:50:22 +00008128 /* The right pointer of the child page pOld becomes the left
8129 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00008130 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00008131 }else{
8132 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00008133 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00008134 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
8135 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00008136 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
8137 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00008138 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00008139 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00008140 }
8141 }
drh1ffd2472015-06-23 02:37:30 +00008142 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00008143 }
drh8b2f49b2001-06-08 00:21:52 +00008144 }
8145
8146 /*
drh1ffd2472015-06-23 02:37:30 +00008147 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00008148 ** Store this number in "k". Also compute szNew[] which is the total
8149 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00008150 ** in b.apCell[] of the cell that divides page i from page i+1.
8151 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00008152 **
drh96f5b762004-05-16 16:24:36 +00008153 ** Values computed by this block:
8154 **
8155 ** k: The total number of sibling pages
8156 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00008157 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00008158 ** the right of the i-th sibling page.
8159 ** usableSpace: Number of bytes of space available on each sibling.
8160 **
drh8b2f49b2001-06-08 00:21:52 +00008161 */
drh43605152004-05-29 21:46:49 +00008162 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00008163 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00008164 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00008165 b.apEnd[k] = p->aDataEnd;
8166 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00008167 if( k && b.ixNx[k]==b.ixNx[k-1] ){
8168 k--; /* Omit b.ixNx[] entry for child pages with no cells */
8169 }
drh26b7ec82019-02-01 14:50:43 +00008170 if( !leafData ){
8171 k++;
8172 b.apEnd[k] = pParent->aDataEnd;
8173 b.ixNx[k] = cntOld[i]+1;
8174 }
drhb0ea9432019-02-09 21:06:40 +00008175 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00008176 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00008177 for(j=0; j<p->nOverflow; j++){
8178 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
8179 }
8180 cntNew[i] = cntOld[i];
8181 }
8182 k = nOld;
8183 for(i=0; i<k; i++){
8184 int sz;
8185 while( szNew[i]>usableSpace ){
8186 if( i+1>=k ){
8187 k = i+2;
8188 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
8189 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00008190 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00008191 }
drh1ffd2472015-06-23 02:37:30 +00008192 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00008193 szNew[i] -= sz;
8194 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00008195 if( cntNew[i]<b.nCell ){
8196 sz = 2 + cachedCellSize(&b, cntNew[i]);
8197 }else{
8198 sz = 0;
8199 }
drh658873b2015-06-22 20:02:04 +00008200 }
8201 szNew[i+1] += sz;
8202 cntNew[i]--;
8203 }
drh1ffd2472015-06-23 02:37:30 +00008204 while( cntNew[i]<b.nCell ){
8205 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00008206 if( szNew[i]+sz>usableSpace ) break;
8207 szNew[i] += sz;
8208 cntNew[i]++;
8209 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00008210 if( cntNew[i]<b.nCell ){
8211 sz = 2 + cachedCellSize(&b, cntNew[i]);
8212 }else{
8213 sz = 0;
8214 }
drh658873b2015-06-22 20:02:04 +00008215 }
8216 szNew[i+1] -= sz;
8217 }
drh1ffd2472015-06-23 02:37:30 +00008218 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00008219 k = i+1;
drh672073a2015-06-24 12:07:40 +00008220 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00008221 rc = SQLITE_CORRUPT_BKPT;
8222 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00008223 }
8224 }
drh96f5b762004-05-16 16:24:36 +00008225
8226 /*
8227 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00008228 ** on the left side (siblings with smaller keys). The left siblings are
8229 ** always nearly full, while the right-most sibling might be nearly empty.
8230 ** The next block of code attempts to adjust the packing of siblings to
8231 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00008232 **
8233 ** This adjustment is more than an optimization. The packing above might
8234 ** be so out of balance as to be illegal. For example, the right-most
8235 ** sibling might be completely empty. This adjustment is not optional.
8236 */
drh6019e162001-07-02 17:51:45 +00008237 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00008238 int szRight = szNew[i]; /* Size of sibling on the right */
8239 int szLeft = szNew[i-1]; /* Size of sibling on the left */
8240 int r; /* Index of right-most cell in left sibling */
8241 int d; /* Index of first cell to the left of right sibling */
8242
8243 r = cntNew[i-1] - 1;
8244 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00008245 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00008246 do{
drh1ffd2472015-06-23 02:37:30 +00008247 assert( d<nMaxCells );
8248 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008249 (void)cachedCellSize(&b, r);
8250 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00008251 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00008252 break;
8253 }
8254 szRight += b.szCell[d] + 2;
8255 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00008256 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00008257 r--;
8258 d--;
drh672073a2015-06-24 12:07:40 +00008259 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00008260 szNew[i] = szRight;
8261 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00008262 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8263 rc = SQLITE_CORRUPT_BKPT;
8264 goto balance_cleanup;
8265 }
drh6019e162001-07-02 17:51:45 +00008266 }
drh09d0deb2005-08-02 17:13:09 +00008267
drh2a0df922014-10-30 23:14:56 +00008268 /* Sanity check: For a non-corrupt database file one of the follwing
8269 ** must be true:
8270 ** (1) We found one or more cells (cntNew[0])>0), or
8271 ** (2) pPage is a virtual root page. A virtual root page is when
8272 ** the real root page is page 1 and we are the only child of
8273 ** that page.
drh09d0deb2005-08-02 17:13:09 +00008274 */
drh2a0df922014-10-30 23:14:56 +00008275 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00008276 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8277 apOld[0]->pgno, apOld[0]->nCell,
8278 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8279 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00008280 ));
8281
drh8b2f49b2001-06-08 00:21:52 +00008282 /*
drh6b308672002-07-08 02:16:37 +00008283 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00008284 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008285 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00008286 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00008287 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00008288 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00008289 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00008290 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00008291 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00008292 nNew++;
drh41d26392021-06-20 22:17:49 +00008293 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8294 && rc==SQLITE_OK
8295 ){
drh9e673ac2021-02-01 12:39:50 +00008296 rc = SQLITE_CORRUPT_BKPT;
8297 }
danielk197728129562005-01-11 10:25:06 +00008298 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00008299 }else{
drh7aa8f852006-03-28 00:24:44 +00008300 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00008301 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00008302 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008303 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00008304 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00008305 nNew++;
drh1ffd2472015-06-23 02:37:30 +00008306 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00008307
8308 /* Set the pointer-map entry for the new sibling page. */
8309 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00008310 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008311 if( rc!=SQLITE_OK ){
8312 goto balance_cleanup;
8313 }
8314 }
drh6b308672002-07-08 02:16:37 +00008315 }
drh8b2f49b2001-06-08 00:21:52 +00008316 }
8317
8318 /*
dan33ea4862014-10-09 19:35:37 +00008319 ** Reassign page numbers so that the new pages are in ascending order.
8320 ** This helps to keep entries in the disk file in order so that a scan
8321 ** of the table is closer to a linear scan through the file. That in turn
8322 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00008323 **
dan33ea4862014-10-09 19:35:37 +00008324 ** An O(n^2) insertion sort algorithm is used, but since n is never more
8325 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00008326 **
dan33ea4862014-10-09 19:35:37 +00008327 ** When NB==3, this one optimization makes the database about 25% faster
8328 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00008329 */
dan33ea4862014-10-09 19:35:37 +00008330 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00008331 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00008332 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00008333 for(j=0; j<i; j++){
drh8ab79d62021-02-04 13:52:34 +00008334 if( NEVER(aPgno[j]==aPgno[i]) ){
dan89ca0b32014-10-25 20:36:28 +00008335 /* This branch is taken if the set of sibling pages somehow contains
8336 ** duplicate entries. This can happen if the database is corrupt.
8337 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00008338 ** we do the detection here in order to avoid populating the pager
8339 ** cache with two separate objects associated with the same
8340 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00008341 assert( CORRUPT_DB );
8342 rc = SQLITE_CORRUPT_BKPT;
8343 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00008344 }
8345 }
dan33ea4862014-10-09 19:35:37 +00008346 }
8347 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00008348 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00008349 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00008350 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00008351 }
drh00fe08a2014-10-31 00:05:23 +00008352 pgno = aPgOrder[iBest];
8353 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00008354 if( iBest!=i ){
8355 if( iBest>i ){
8356 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
8357 }
8358 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8359 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00008360 }
8361 }
dan33ea4862014-10-09 19:35:37 +00008362
8363 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8364 "%d(%d nc=%d) %d(%d nc=%d)\n",
8365 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00008366 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00008367 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008368 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00008369 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008370 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00008371 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8372 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8373 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8374 ));
danielk19774dbaa892009-06-16 16:50:22 +00008375
8376 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh55f66b32019-07-16 19:44:32 +00008377 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8378 assert( apNew[nNew-1]!=0 );
danielk19774dbaa892009-06-16 16:50:22 +00008379 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00008380
dan33ea4862014-10-09 19:35:37 +00008381 /* If the sibling pages are not leaves, ensure that the right-child pointer
8382 ** of the right-most new sibling page is set to the value that was
8383 ** originally in the same field of the right-most old sibling page. */
8384 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8385 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8386 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8387 }
danielk1977ac11ee62005-01-15 12:45:51 +00008388
dan33ea4862014-10-09 19:35:37 +00008389 /* Make any required updates to pointer map entries associated with
8390 ** cells stored on sibling pages following the balance operation. Pointer
8391 ** map entries associated with divider cells are set by the insertCell()
8392 ** routine. The associated pointer map entries are:
8393 **
8394 ** a) if the cell contains a reference to an overflow chain, the
8395 ** entry associated with the first page in the overflow chain, and
8396 **
8397 ** b) if the sibling pages are not leaves, the child page associated
8398 ** with the cell.
8399 **
8400 ** If the sibling pages are not leaves, then the pointer map entry
8401 ** associated with the right-child of each sibling may also need to be
8402 ** updated. This happens below, after the sibling pages have been
8403 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00008404 */
dan33ea4862014-10-09 19:35:37 +00008405 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00008406 MemPage *pOld;
8407 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00008408 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00008409 int iNew = 0;
8410 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00008411
drh1ffd2472015-06-23 02:37:30 +00008412 for(i=0; i<b.nCell; i++){
8413 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00008414 while( i==cntOldNext ){
8415 iOld++;
8416 assert( iOld<nNew || iOld<nOld );
drhdd2d9a32019-05-07 17:47:43 +00008417 assert( iOld>=0 && iOld<NB );
drh9c7e44c2019-02-14 15:27:12 +00008418 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00008419 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
drh4b70f112004-05-02 21:12:19 +00008420 }
dan33ea4862014-10-09 19:35:37 +00008421 if( i==cntNew[iNew] ){
8422 pNew = apNew[++iNew];
8423 if( !leafData ) continue;
8424 }
danielk197785d90ca2008-07-19 14:25:15 +00008425
dan33ea4862014-10-09 19:35:37 +00008426 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00008427 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00008428 ** or else the divider cell to the left of sibling page iOld. So,
8429 ** if sibling page iOld had the same page number as pNew, and if
8430 ** pCell really was a part of sibling page iOld (not a divider or
8431 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008432 if( iOld>=nNew
8433 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008434 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008435 ){
dan33ea4862014-10-09 19:35:37 +00008436 if( !leafCorrection ){
8437 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8438 }
drh1ffd2472015-06-23 02:37:30 +00008439 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008440 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00008441 }
drhea82b372015-06-23 21:35:28 +00008442 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00008443 }
drh14acc042001-06-10 19:56:58 +00008444 }
8445 }
dan33ea4862014-10-09 19:35:37 +00008446
8447 /* Insert new divider cells into pParent. */
8448 for(i=0; i<nNew-1; i++){
8449 u8 *pCell;
8450 u8 *pTemp;
8451 int sz;
drhc3c23f32021-05-06 11:02:55 +00008452 u8 *pSrcEnd;
dan33ea4862014-10-09 19:35:37 +00008453 MemPage *pNew = apNew[i];
8454 j = cntNew[i];
8455
8456 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008457 assert( b.apCell[j]!=0 );
8458 pCell = b.apCell[j];
8459 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008460 pTemp = &aOvflSpace[iOvflSpace];
8461 if( !pNew->leaf ){
8462 memcpy(&pNew->aData[8], pCell, 4);
8463 }else if( leafData ){
8464 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008465 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008466 ** cell consists of the integer key for the right-most cell of
8467 ** the sibling-page assembled above only.
8468 */
8469 CellInfo info;
8470 j--;
drh1ffd2472015-06-23 02:37:30 +00008471 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008472 pCell = pTemp;
8473 sz = 4 + putVarint(&pCell[4], info.nKey);
8474 pTemp = 0;
8475 }else{
8476 pCell -= 4;
8477 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8478 ** previously stored on a leaf node, and its reported size was 4
8479 ** bytes, then it may actually be smaller than this
8480 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8481 ** any cell). But it is important to pass the correct size to
8482 ** insertCell(), so reparse the cell now.
8483 **
drhc1fb2b82016-03-09 03:29:27 +00008484 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8485 ** and WITHOUT ROWID tables with exactly one column which is the
8486 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008487 */
drh1ffd2472015-06-23 02:37:30 +00008488 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008489 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008490 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008491 }
8492 }
8493 iOvflSpace += sz;
8494 assert( sz<=pBt->maxLocal+23 );
8495 assert( iOvflSpace <= (int)pBt->pageSize );
dan6625d6d2022-04-12 17:02:27 +00008496 for(k=0; b.ixNx[k]<=j && ALWAYS(k<NB*2); k++){}
drhc3c23f32021-05-06 11:02:55 +00008497 pSrcEnd = b.apEnd[k];
8498 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8499 rc = SQLITE_CORRUPT_BKPT;
8500 goto balance_cleanup;
8501 }
dan33ea4862014-10-09 19:35:37 +00008502 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
drhd2cfbea2019-05-08 03:34:53 +00008503 if( rc!=SQLITE_OK ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008504 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8505 }
8506
8507 /* Now update the actual sibling pages. The order in which they are updated
8508 ** is important, as this code needs to avoid disrupting any page from which
8509 ** cells may still to be read. In practice, this means:
8510 **
drhd836d422014-10-31 14:26:36 +00008511 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8512 ** then it is not safe to update page apNew[iPg] until after
8513 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008514 **
drhd836d422014-10-31 14:26:36 +00008515 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8516 ** then it is not safe to update page apNew[iPg] until after
8517 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008518 **
8519 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008520 **
8521 ** The iPg value in the following loop starts at nNew-1 goes down
8522 ** to 0, then back up to nNew-1 again, thus making two passes over
8523 ** the pages. On the initial downward pass, only condition (1) above
8524 ** needs to be tested because (2) will always be true from the previous
8525 ** step. On the upward pass, both conditions are always true, so the
8526 ** upwards pass simply processes pages that were missed on the downward
8527 ** pass.
dan33ea4862014-10-09 19:35:37 +00008528 */
drhbec021b2014-10-31 12:22:00 +00008529 for(i=1-nNew; i<nNew; i++){
8530 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008531 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008532 if( abDone[iPg] ) continue; /* Skip pages already processed */
8533 if( i>=0 /* On the upwards pass, or... */
8534 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008535 ){
dan09c68402014-10-11 20:00:24 +00008536 int iNew;
8537 int iOld;
8538 int nNewCell;
8539
drhd836d422014-10-31 14:26:36 +00008540 /* Verify condition (1): If cells are moving left, update iPg
8541 ** only after iPg-1 has already been updated. */
8542 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8543
8544 /* Verify condition (2): If cells are moving right, update iPg
8545 ** only after iPg+1 has already been updated. */
8546 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8547
dan09c68402014-10-11 20:00:24 +00008548 if( iPg==0 ){
8549 iNew = iOld = 0;
8550 nNewCell = cntNew[0];
8551 }else{
drh1ffd2472015-06-23 02:37:30 +00008552 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008553 iNew = cntNew[iPg-1] + !leafData;
8554 nNewCell = cntNew[iPg] - iNew;
8555 }
8556
drh1ffd2472015-06-23 02:37:30 +00008557 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008558 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008559 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008560 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008561 assert( apNew[iPg]->nOverflow==0 );
8562 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008563 }
8564 }
drhd836d422014-10-31 14:26:36 +00008565
8566 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008567 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8568
drh7aa8f852006-03-28 00:24:44 +00008569 assert( nOld>0 );
8570 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008571
danielk197713bd99f2009-06-24 05:40:34 +00008572 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8573 /* The root page of the b-tree now contains no cells. The only sibling
8574 ** page is the right-child of the parent. Copy the contents of the
8575 ** child page into the parent, decreasing the overall height of the
8576 ** b-tree structure by one. This is described as the "balance-shallower"
8577 ** sub-algorithm in some documentation.
8578 **
8579 ** If this is an auto-vacuum database, the call to copyNodeContent()
8580 ** sets all pointer-map entries corresponding to database image pages
8581 ** for which the pointer is stored within the content being copied.
8582 **
drh768f2902014-10-31 02:51:41 +00008583 ** It is critical that the child page be defragmented before being
8584 ** copied into the parent, because if the parent is page 1 then it will
8585 ** by smaller than the child due to the database header, and so all the
8586 ** free space needs to be up front.
8587 */
drh9b5351d2015-09-30 14:19:08 +00008588 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008589 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008590 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00008591 assert( apNew[0]->nFree ==
drh1c960262019-03-25 18:44:08 +00008592 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8593 - apNew[0]->nCell*2)
drh768f2902014-10-31 02:51:41 +00008594 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00008595 );
drhc314dc72009-07-21 11:52:34 +00008596 copyNodeContent(apNew[0], pParent, &rc);
8597 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00008598 }else if( ISAUTOVACUUM && !leafCorrection ){
8599 /* Fix the pointer map entries associated with the right-child of each
8600 ** sibling page. All other pointer map entries have already been taken
8601 ** care of. */
8602 for(i=0; i<nNew; i++){
8603 u32 key = get4byte(&apNew[i]->aData[8]);
8604 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008605 }
dan33ea4862014-10-09 19:35:37 +00008606 }
danielk19774dbaa892009-06-16 16:50:22 +00008607
dan33ea4862014-10-09 19:35:37 +00008608 assert( pParent->isInit );
8609 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008610 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008611
dan33ea4862014-10-09 19:35:37 +00008612 /* Free any old pages that were not reused as new pages.
8613 */
8614 for(i=nNew; i<nOld; i++){
8615 freePage(apOld[i], &rc);
8616 }
danielk19774dbaa892009-06-16 16:50:22 +00008617
8618#if 0
dan33ea4862014-10-09 19:35:37 +00008619 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008620 /* The ptrmapCheckPages() contains assert() statements that verify that
8621 ** all pointer map pages are set correctly. This is helpful while
8622 ** debugging. This is usually disabled because a corrupt database may
8623 ** cause an assert() statement to fail. */
8624 ptrmapCheckPages(apNew, nNew);
8625 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008626 }
dan33ea4862014-10-09 19:35:37 +00008627#endif
danielk1977cd581a72009-06-23 15:43:39 +00008628
drh8b2f49b2001-06-08 00:21:52 +00008629 /*
drh14acc042001-06-10 19:56:58 +00008630 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008631 */
drh14acc042001-06-10 19:56:58 +00008632balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008633 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008634 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008635 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008636 }
drh14acc042001-06-10 19:56:58 +00008637 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008638 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008639 }
danielk1977eaa06f62008-09-18 17:34:44 +00008640
drh8b2f49b2001-06-08 00:21:52 +00008641 return rc;
8642}
8643
drh43605152004-05-29 21:46:49 +00008644
8645/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008646** This function is called when the root page of a b-tree structure is
8647** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008648**
danielk1977a50d9aa2009-06-08 14:49:45 +00008649** A new child page is allocated and the contents of the current root
8650** page, including overflow cells, are copied into the child. The root
8651** page is then overwritten to make it an empty page with the right-child
8652** pointer pointing to the new page.
8653**
8654** Before returning, all pointer-map entries corresponding to pages
8655** that the new child-page now contains pointers to are updated. The
8656** entry corresponding to the new right-child pointer of the root
8657** page is also updated.
8658**
8659** If successful, *ppChild is set to contain a reference to the child
8660** page and SQLITE_OK is returned. In this case the caller is required
8661** to call releasePage() on *ppChild exactly once. If an error occurs,
8662** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008663*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008664static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8665 int rc; /* Return value from subprocedures */
8666 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008667 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008668 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008669
danielk1977a50d9aa2009-06-08 14:49:45 +00008670 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008671 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008672
danielk1977a50d9aa2009-06-08 14:49:45 +00008673 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8674 ** page that will become the new right-child of pPage. Copy the contents
8675 ** of the node stored on pRoot into the new child page.
8676 */
drh98add2e2009-07-20 17:11:49 +00008677 rc = sqlite3PagerWrite(pRoot->pDbPage);
8678 if( rc==SQLITE_OK ){
8679 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008680 copyNodeContent(pRoot, pChild, &rc);
8681 if( ISAUTOVACUUM ){
8682 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008683 }
8684 }
8685 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008686 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008687 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008688 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008689 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008690 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8691 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drh12fe9a02019-02-19 16:42:54 +00008692 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00008693
danielk1977a50d9aa2009-06-08 14:49:45 +00008694 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8695
8696 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008697 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8698 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8699 memcpy(pChild->apOvfl, pRoot->apOvfl,
8700 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008701 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008702
8703 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8704 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8705 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8706
8707 *ppChild = pChild;
8708 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008709}
8710
8711/*
drha2d50282019-12-23 18:02:15 +00008712** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8713** on the same B-tree as pCur.
8714**
drh87463962021-10-05 22:51:26 +00008715** This can occur if a database is corrupt with two or more SQL tables
drha2d50282019-12-23 18:02:15 +00008716** pointing to the same b-tree. If an insert occurs on one SQL table
8717** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8718** table linked to the same b-tree. If the secondary insert causes a
8719** rebalance, that can change content out from under the cursor on the
8720** first SQL table, violating invariants on the first insert.
8721*/
8722static int anotherValidCursor(BtCursor *pCur){
8723 BtCursor *pOther;
8724 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8725 if( pOther!=pCur
8726 && pOther->eState==CURSOR_VALID
8727 && pOther->pPage==pCur->pPage
8728 ){
8729 return SQLITE_CORRUPT_BKPT;
8730 }
8731 }
8732 return SQLITE_OK;
8733}
8734
8735/*
danielk197771d5d2c2008-09-29 11:49:47 +00008736** The page that pCur currently points to has just been modified in
8737** some way. This function figures out if this modification means the
8738** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008739** routine. Balancing routines are:
8740**
8741** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008742** balance_deeper()
8743** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008744*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008745static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008746 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008747 u8 aBalanceQuickSpace[13];
8748 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008749
drhcc5f8a42016-02-06 22:32:06 +00008750 VVA_ONLY( int balance_quick_called = 0 );
8751 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008752
8753 do {
dan01fd42b2019-07-13 09:55:33 +00008754 int iPage;
drh352a35a2017-08-15 03:46:47 +00008755 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008756
drha941ff72019-02-12 00:58:10 +00008757 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
drhc4c0ff82022-03-31 16:09:13 +00008758 if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
drhde948482022-03-29 13:16:32 +00008759 /* No rebalance required as long as:
8760 ** (1) There are no overflow cells
8761 ** (2) The amount of free space on the page is less than 2/3rds of
8762 ** the total usable space on the page. */
dan01fd42b2019-07-13 09:55:33 +00008763 break;
8764 }else if( (iPage = pCur->iPage)==0 ){
drha2d50282019-12-23 18:02:15 +00008765 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008766 /* The root page of the b-tree is overfull. In this case call the
8767 ** balance_deeper() function to create a new child for the root-page
8768 ** and copy the current contents of the root-page to it. The
8769 ** next iteration of the do-loop will balance the child page.
8770 */
drhcc5f8a42016-02-06 22:32:06 +00008771 assert( balance_deeper_called==0 );
8772 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008773 rc = balance_deeper(pPage, &pCur->apPage[1]);
8774 if( rc==SQLITE_OK ){
8775 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008776 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008777 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008778 pCur->apPage[0] = pPage;
8779 pCur->pPage = pCur->apPage[1];
8780 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008781 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008782 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008783 break;
8784 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008785 }else{
8786 MemPage * const pParent = pCur->apPage[iPage-1];
8787 int const iIdx = pCur->aiIdx[iPage-1];
8788
8789 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00008790 if( rc==SQLITE_OK && pParent->nFree<0 ){
8791 rc = btreeComputeFreeSpace(pParent);
8792 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008793 if( rc==SQLITE_OK ){
8794#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008795 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008796 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008797 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008798 && pParent->pgno!=1
8799 && pParent->nCell==iIdx
8800 ){
8801 /* Call balance_quick() to create a new sibling of pPage on which
8802 ** to store the overflow cell. balance_quick() inserts a new cell
8803 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008804 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008805 ** use either balance_nonroot() or balance_deeper(). Until this
8806 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8807 ** buffer.
8808 **
8809 ** The purpose of the following assert() is to check that only a
8810 ** single call to balance_quick() is made for each call to this
8811 ** function. If this were not verified, a subtle bug involving reuse
8812 ** of the aBalanceQuickSpace[] might sneak in.
8813 */
drhcc5f8a42016-02-06 22:32:06 +00008814 assert( balance_quick_called==0 );
8815 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008816 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8817 }else
8818#endif
8819 {
8820 /* In this case, call balance_nonroot() to redistribute cells
8821 ** between pPage and up to 2 of its sibling pages. This involves
8822 ** modifying the contents of pParent, which may cause pParent to
8823 ** become overfull or underfull. The next iteration of the do-loop
8824 ** will balance the parent page to correct this.
8825 **
8826 ** If the parent page becomes overfull, the overflow cell or cells
8827 ** are stored in the pSpace buffer allocated immediately below.
8828 ** A subsequent iteration of the do-loop will deal with this by
8829 ** calling balance_nonroot() (balance_deeper() may be called first,
8830 ** but it doesn't deal with overflow cells - just moves them to a
8831 ** different page). Once this subsequent call to balance_nonroot()
8832 ** has completed, it is safe to release the pSpace buffer used by
8833 ** the previous call, as the overflow cell data will have been
8834 ** copied either into the body of a database page or into the new
8835 ** pSpace buffer passed to the latter call to balance_nonroot().
8836 */
8837 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008838 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8839 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008840 if( pFree ){
8841 /* If pFree is not NULL, it points to the pSpace buffer used
8842 ** by a previous call to balance_nonroot(). Its contents are
8843 ** now stored either on real database pages or within the
8844 ** new pSpace buffer, so it may be safely freed here. */
8845 sqlite3PageFree(pFree);
8846 }
8847
danielk19774dbaa892009-06-16 16:50:22 +00008848 /* The pSpace buffer will be freed after the next call to
8849 ** balance_nonroot(), or just before this function returns, whichever
8850 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008851 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008852 }
8853 }
8854
8855 pPage->nOverflow = 0;
8856
8857 /* The next iteration of the do-loop balances the parent page. */
8858 releasePage(pPage);
8859 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008860 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008861 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008862 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008863 }while( rc==SQLITE_OK );
8864
8865 if( pFree ){
8866 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008867 }
8868 return rc;
8869}
8870
drh3de5d162018-05-03 03:59:02 +00008871/* Overwrite content from pX into pDest. Only do the write if the
8872** content is different from what is already there.
8873*/
8874static int btreeOverwriteContent(
8875 MemPage *pPage, /* MemPage on which writing will occur */
8876 u8 *pDest, /* Pointer to the place to start writing */
8877 const BtreePayload *pX, /* Source of data to write */
8878 int iOffset, /* Offset of first byte to write */
8879 int iAmt /* Number of bytes to be written */
8880){
8881 int nData = pX->nData - iOffset;
8882 if( nData<=0 ){
8883 /* Overwritting with zeros */
8884 int i;
8885 for(i=0; i<iAmt && pDest[i]==0; i++){}
8886 if( i<iAmt ){
8887 int rc = sqlite3PagerWrite(pPage->pDbPage);
8888 if( rc ) return rc;
8889 memset(pDest + i, 0, iAmt - i);
8890 }
8891 }else{
8892 if( nData<iAmt ){
8893 /* Mixed read data and zeros at the end. Make a recursive call
8894 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008895 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8896 iAmt-nData);
8897 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008898 iAmt = nData;
8899 }
8900 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8901 int rc = sqlite3PagerWrite(pPage->pDbPage);
8902 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00008903 /* In a corrupt database, it is possible for the source and destination
8904 ** buffers to overlap. This is harmless since the database is already
8905 ** corrupt but it does cause valgrind and ASAN warnings. So use
8906 ** memmove(). */
8907 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00008908 }
8909 }
8910 return SQLITE_OK;
8911}
8912
8913/*
8914** Overwrite the cell that cursor pCur is pointing to with fresh content
8915** contained in pX.
8916*/
8917static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8918 int iOffset; /* Next byte of pX->pData to write */
8919 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8920 int rc; /* Return code */
8921 MemPage *pPage = pCur->pPage; /* Page being written */
8922 BtShared *pBt; /* Btree */
8923 Pgno ovflPgno; /* Next overflow page to write */
8924 u32 ovflPageSize; /* Size to write on overflow page */
8925
drh27e80a32019-08-15 13:17:49 +00008926 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8927 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8928 ){
drh4f84e9c2018-05-03 13:56:23 +00008929 return SQLITE_CORRUPT_BKPT;
8930 }
drh3de5d162018-05-03 03:59:02 +00008931 /* Overwrite the local portion first */
8932 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8933 0, pCur->info.nLocal);
8934 if( rc ) return rc;
8935 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8936
8937 /* Now overwrite the overflow pages */
8938 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008939 assert( nTotal>=0 );
8940 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008941 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8942 pBt = pPage->pBt;
8943 ovflPageSize = pBt->usableSize - 4;
8944 do{
8945 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8946 if( rc ) return rc;
drhf9241a52021-11-11 16:26:46 +00008947 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
drhd5aa9262018-05-03 16:56:06 +00008948 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008949 }else{
drh30f7a252018-05-07 11:29:59 +00008950 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008951 ovflPgno = get4byte(pPage->aData);
8952 }else{
8953 ovflPageSize = nTotal - iOffset;
8954 }
8955 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8956 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008957 }
drhd5aa9262018-05-03 16:56:06 +00008958 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008959 if( rc ) return rc;
8960 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008961 }while( iOffset<nTotal );
8962 return SQLITE_OK;
8963}
8964
drhf74b8d92002-09-01 23:20:45 +00008965
8966/*
drh8eeb4462016-05-21 20:03:42 +00008967** Insert a new record into the BTree. The content of the new record
8968** is described by the pX object. The pCur cursor is used only to
8969** define what table the record should be inserted into, and is left
8970** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008971**
drh8eeb4462016-05-21 20:03:42 +00008972** For a table btree (used for rowid tables), only the pX.nKey value of
8973** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8974** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8975** hold the content of the row.
8976**
8977** For an index btree (used for indexes and WITHOUT ROWID tables), the
8978** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8979** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008980**
8981** If the seekResult parameter is non-zero, then a successful call to
drheab10642022-03-06 20:22:24 +00008982** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already
drheaf6ae22016-11-09 20:14:34 +00008983** been performed. In other words, if seekResult!=0 then the cursor
8984** is currently pointing to a cell that will be adjacent to the cell
8985** to be inserted. If seekResult<0 then pCur points to a cell that is
8986** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8987** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008988**
drheaf6ae22016-11-09 20:14:34 +00008989** If seekResult==0, that means pCur is pointing at some unknown location.
8990** In that case, this routine must seek the cursor to the correct insertion
8991** point for (pKey,nKey) before doing the insertion. For index btrees,
8992** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8993** key values and pX->aMem can be used instead of pX->pKey to avoid having
8994** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008995*/
drh3aac2dd2004-04-26 14:10:20 +00008996int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008997 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008998 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008999 int flags, /* True if this is likely an append */
drheab10642022-03-06 20:22:24 +00009000 int seekResult /* Result of prior IndexMoveto() call */
drh3b7511c2001-05-26 13:15:44 +00009001){
drh3b7511c2001-05-26 13:15:44 +00009002 int rc;
drh3e9ca092009-09-08 01:14:48 +00009003 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00009004 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00009005 int idx;
drh3b7511c2001-05-26 13:15:44 +00009006 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00009007 Btree *p = pCur->pBtree;
9008 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00009009 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00009010 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00009011
dancd1b2d02020-12-09 20:33:51 +00009012 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
dan7aae7352020-12-10 18:06:24 +00009013 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
danf91c1312017-01-10 20:04:38 +00009014
danielk19779c3acf32009-05-02 07:36:49 +00009015 /* Save the positions of any other cursors open on this table.
9016 **
danielk19773509a652009-07-06 18:56:13 +00009017 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00009018 ** example, when inserting data into a table with auto-generated integer
9019 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
9020 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00009021 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00009022 ** that the cursor is already where it needs to be and returns without
9023 ** doing any work. To avoid thwarting these optimizations, it is important
9024 ** not to clear the cursor here.
9025 */
drh27fb7462015-06-30 02:47:36 +00009026 if( pCur->curFlags & BTCF_Multiple ){
9027 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9028 if( rc ) return rc;
danf5ea93b2021-04-08 19:39:00 +00009029 if( loc && pCur->iPage<0 ){
9030 /* This can only happen if the schema is corrupt such that there is more
9031 ** than one table or index with the same root page as used by the cursor.
9032 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
9033 ** the schema was loaded. This cannot be asserted though, as a user might
9034 ** set the flag, load the schema, and then unset the flag. */
9035 return SQLITE_CORRUPT_BKPT;
9036 }
drhd60f4f42012-03-23 14:23:52 +00009037 }
9038
drhc63e4092022-03-21 18:48:31 +00009039 /* Ensure that the cursor is not in the CURSOR_FAULT state and that it
9040 ** points to a valid cell.
9041 */
drhbd5fb3a2022-03-21 18:17:09 +00009042 if( pCur->eState>=CURSOR_REQUIRESEEK ){
drhc63e4092022-03-21 18:48:31 +00009043 testcase( pCur->eState==CURSOR_REQUIRESEEK );
9044 testcase( pCur->eState==CURSOR_FAULT );
drhbd5fb3a2022-03-21 18:17:09 +00009045 rc = moveToRoot(pCur);
9046 if( rc && rc!=SQLITE_EMPTY ) return rc;
9047 }
9048
9049 assert( cursorOwnsBtShared(pCur) );
9050 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
9051 && pBt->inTransaction==TRANS_WRITE
9052 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
9053 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9054
9055 /* Assert that the caller has been consistent. If this cursor was opened
9056 ** expecting an index b-tree, then the caller should be inserting blob
9057 ** keys with no associated data. If the cursor was opened expecting an
9058 ** intkey table, the caller should be inserting integer keys with a
9059 ** blob of associated data. */
9060 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
9061
danielk197771d5d2c2008-09-29 11:49:47 +00009062 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00009063 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00009064 /* If this is an insert into a table b-tree, invalidate any incrblob
9065 ** cursors open on the row being replaced */
drh49bb56e2021-05-14 20:01:36 +00009066 if( p->hasIncrblobCur ){
9067 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
9068 }
drhe0670b62014-02-12 21:31:12 +00009069
danf91c1312017-01-10 20:04:38 +00009070 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00009071 ** to a row with the same key as the new entry being inserted.
9072 */
9073#ifdef SQLITE_DEBUG
9074 if( flags & BTREE_SAVEPOSITION ){
9075 assert( pCur->curFlags & BTCF_ValidNKey );
9076 assert( pX->nKey==pCur->info.nKey );
drhd720d392018-05-07 17:27:04 +00009077 assert( loc==0 );
9078 }
9079#endif
danf91c1312017-01-10 20:04:38 +00009080
drhd720d392018-05-07 17:27:04 +00009081 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
9082 ** that the cursor is not pointing to a row to be overwritten.
9083 ** So do a complete check.
9084 */
drh7a1c28d2016-11-10 20:42:08 +00009085 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00009086 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00009087 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00009088 assert( pX->nData>=0 && pX->nZero>=0 );
9089 if( pCur->info.nSize!=0
9090 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
9091 ){
drhd720d392018-05-07 17:27:04 +00009092 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00009093 return btreeOverwriteCell(pCur, pX);
9094 }
drhd720d392018-05-07 17:27:04 +00009095 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00009096 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00009097 /* The cursor is *not* pointing to the cell to be overwritten, nor
9098 ** to an adjacent cell. Move the cursor so that it is pointing either
9099 ** to the cell to be overwritten or an adjacent cell.
9100 */
drh42a410d2021-06-19 18:32:20 +00009101 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
9102 (flags & BTREE_APPEND)!=0, &loc);
drh207c8172015-06-29 23:01:32 +00009103 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00009104 }
drhd720d392018-05-07 17:27:04 +00009105 }else{
9106 /* This is an index or a WITHOUT ROWID table */
9107
9108 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9109 ** to a row with the same key as the new entry being inserted.
9110 */
9111 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
9112
9113 /* If the cursor is not already pointing either to the cell to be
9114 ** overwritten, or if a new cell is being inserted, if the cursor is
9115 ** not pointing to an immediately adjacent cell, then move the cursor
9116 ** so that it does.
9117 */
9118 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
9119 if( pX->nMem ){
9120 UnpackedRecord r;
9121 r.pKeyInfo = pCur->pKeyInfo;
9122 r.aMem = pX->aMem;
9123 r.nField = pX->nMem;
9124 r.default_rc = 0;
drhd720d392018-05-07 17:27:04 +00009125 r.eqSeen = 0;
drh42a410d2021-06-19 18:32:20 +00009126 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
drhd720d392018-05-07 17:27:04 +00009127 }else{
drh42a410d2021-06-19 18:32:20 +00009128 rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
9129 (flags & BTREE_APPEND)!=0, &loc);
drhd720d392018-05-07 17:27:04 +00009130 }
9131 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00009132 }
drh89ee2292018-05-07 18:41:19 +00009133
9134 /* If the cursor is currently pointing to an entry to be overwritten
9135 ** and the new content is the same as as the old, then use the
9136 ** overwrite optimization.
9137 */
9138 if( loc==0 ){
9139 getCellInfo(pCur);
9140 if( pCur->info.nKey==pX->nKey ){
9141 BtreePayload x2;
9142 x2.pData = pX->pKey;
9143 x2.nData = pX->nKey;
9144 x2.nZero = 0;
9145 return btreeOverwriteCell(pCur, &x2);
9146 }
9147 }
danielk1977da184232006-01-05 11:34:32 +00009148 }
drh0e5ce802019-12-20 12:33:17 +00009149 assert( pCur->eState==CURSOR_VALID
drhbd5fb3a2022-03-21 18:17:09 +00009150 || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00009151
drh352a35a2017-08-15 03:46:47 +00009152 pPage = pCur->pPage;
dancd1b2d02020-12-09 20:33:51 +00009153 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
drh44845222008-07-17 18:39:57 +00009154 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00009155 if( pPage->nFree<0 ){
drhc63e4092022-03-21 18:48:31 +00009156 if( NEVER(pCur->eState>CURSOR_INVALID) ){
9157 /* ^^^^^--- due to the moveToRoot() call above */
drha1085f02020-07-11 16:42:28 +00009158 rc = SQLITE_CORRUPT_BKPT;
9159 }else{
9160 rc = btreeComputeFreeSpace(pPage);
9161 }
drhb0ea9432019-02-09 21:06:40 +00009162 if( rc ) return rc;
9163 }
danielk19778f880a82009-07-13 09:41:45 +00009164
drh3a4c1412004-05-09 20:40:11 +00009165 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00009166 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00009167 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00009168 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00009169 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009170 assert( newCell!=0 );
dancd1b2d02020-12-09 20:33:51 +00009171 if( flags & BTREE_PREFORMAT ){
dancd1b2d02020-12-09 20:33:51 +00009172 rc = SQLITE_OK;
dan7aae7352020-12-10 18:06:24 +00009173 szNew = pBt->nPreformatSize;
9174 if( szNew<4 ) szNew = 4;
9175 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
9176 CellInfo info;
9177 pPage->xParseCell(pPage, newCell, &info);
dan9257ddb2020-12-10 19:54:13 +00009178 if( info.nPayload!=info.nLocal ){
dan7aae7352020-12-10 18:06:24 +00009179 Pgno ovfl = get4byte(&newCell[szNew-4]);
9180 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
9181 }
9182 }
dancd1b2d02020-12-09 20:33:51 +00009183 }else{
9184 rc = fillInCell(pPage, newCell, pX, &szNew);
dancd1b2d02020-12-09 20:33:51 +00009185 }
dan7aae7352020-12-10 18:06:24 +00009186 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00009187 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00009188 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00009189 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00009190 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00009191 CellInfo info;
drh635480e2021-10-08 16:15:17 +00009192 assert( idx>=0 );
9193 if( idx>=pPage->nCell ){
9194 return SQLITE_CORRUPT_BKPT;
9195 }
danielk19776e465eb2007-08-21 13:11:00 +00009196 rc = sqlite3PagerWrite(pPage->pDbPage);
9197 if( rc ){
9198 goto end_insert;
9199 }
danielk197771d5d2c2008-09-29 11:49:47 +00009200 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00009201 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00009202 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00009203 }
drh86c779f2021-05-15 13:08:44 +00009204 BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
drh554a19d2019-08-12 18:26:46 +00009205 testcase( pCur->curFlags & BTCF_ValidOvfl );
9206 invalidateOverflowCache(pCur);
danca66f6c2017-06-08 11:14:08 +00009207 if( info.nSize==szNew && info.nLocal==info.nPayload
9208 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
9209 ){
drhf9238252016-12-09 18:09:42 +00009210 /* Overwrite the old cell with the new if they are the same size.
9211 ** We could also try to do this if the old cell is smaller, then add
9212 ** the leftover space to the free list. But experiments show that
9213 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00009214 ** calling dropCell() and insertCell().
9215 **
9216 ** This optimization cannot be used on an autovacuum database if the
9217 ** new entry uses overflow pages, as the insertCell() call below is
9218 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00009219 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh93788182019-07-22 23:24:01 +00009220 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
9221 return SQLITE_CORRUPT_BKPT;
9222 }
9223 if( oldCell+szNew > pPage->aDataEnd ){
9224 return SQLITE_CORRUPT_BKPT;
9225 }
drh80159da2016-12-09 17:32:51 +00009226 memcpy(oldCell, newCell, szNew);
9227 return SQLITE_OK;
9228 }
9229 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00009230 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00009231 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00009232 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00009233 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00009234 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00009235 }else{
drh4b70f112004-05-02 21:12:19 +00009236 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00009237 }
drh98add2e2009-07-20 17:11:49 +00009238 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00009239 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00009240 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00009241
mistachkin48864df2013-03-21 21:20:32 +00009242 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00009243 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00009244 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00009245 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00009246 **
danielk1977a50d9aa2009-06-08 14:49:45 +00009247 ** Previous versions of SQLite called moveToRoot() to move the cursor
9248 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00009249 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9250 ** set the cursor state to "invalid". This makes common insert operations
9251 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00009252 **
danielk1977a50d9aa2009-06-08 14:49:45 +00009253 ** There is a subtle but important optimization here too. When inserting
9254 ** multiple records into an intkey b-tree using a single cursor (as can
9255 ** happen while processing an "INSERT INTO ... SELECT" statement), it
9256 ** is advantageous to leave the cursor pointing to the last entry in
9257 ** the b-tree if possible. If the cursor is left pointing to the last
9258 ** entry in the table, and the next row inserted has an integer key
9259 ** larger than the largest existing key, it is possible to insert the
9260 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00009261 */
danielk1977a50d9aa2009-06-08 14:49:45 +00009262 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00009263 if( pPage->nOverflow ){
9264 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00009265 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00009266 rc = balance(pCur);
9267
9268 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00009269 ** fails. Internal data structure corruption will result otherwise.
9270 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9271 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00009272 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00009273 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00009274 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00009275 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00009276 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00009277 assert( pCur->pKey==0 );
9278 pCur->pKey = sqlite3Malloc( pX->nKey );
9279 if( pCur->pKey==0 ){
9280 rc = SQLITE_NOMEM;
9281 }else{
9282 memcpy(pCur->pKey, pX->pKey, pX->nKey);
9283 }
9284 }
9285 pCur->eState = CURSOR_REQUIRESEEK;
9286 pCur->nKey = pX->nKey;
9287 }
danielk19773f632d52009-05-02 10:03:09 +00009288 }
drh352a35a2017-08-15 03:46:47 +00009289 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00009290
drh2e38c322004-09-03 18:38:44 +00009291end_insert:
drh5e2f8b92001-05-28 00:41:15 +00009292 return rc;
9293}
9294
dand2ffc972020-12-10 19:20:15 +00009295/*
9296** This function is used as part of copying the current row from cursor
9297** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9298** parameter iKey is used as the rowid value when the record is copied
9299** into pDest. Otherwise, the record is copied verbatim.
9300**
9301** This function does not actually write the new value to cursor pDest.
9302** Instead, it creates and populates any required overflow pages and
9303** writes the data for the new cell into the BtShared.pTmpSpace buffer
9304** for the destination database. The size of the cell, in bytes, is left
9305** in BtShared.nPreformatSize. The caller completes the insertion by
9306** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9307**
9308** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9309*/
dan7aae7352020-12-10 18:06:24 +00009310int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
dan036e0672020-12-08 20:19:07 +00009311 int rc = SQLITE_OK;
dan7aae7352020-12-10 18:06:24 +00009312 BtShared *pBt = pDest->pBt;
9313 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */
danebbf3682020-12-09 16:32:11 +00009314 const u8 *aIn; /* Pointer to next input buffer */
drhe5baf5c2020-12-16 14:20:45 +00009315 u32 nIn; /* Size of input buffer aIn[] */
dan7f607062020-12-15 19:27:20 +00009316 u32 nRem; /* Bytes of data still to copy */
dan036e0672020-12-08 20:19:07 +00009317
dan036e0672020-12-08 20:19:07 +00009318 getCellInfo(pSrc);
drhb47b1f62022-04-01 21:01:37 +00009319 if( pSrc->info.nPayload<0x80 ){
9320 *(aOut++) = pSrc->info.nPayload;
9321 }else{
9322 aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload);
9323 }
dan7aae7352020-12-10 18:06:24 +00009324 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
danebbf3682020-12-09 16:32:11 +00009325 nIn = pSrc->info.nLocal;
9326 aIn = pSrc->info.pPayload;
drh0a8b6a92020-12-16 21:09:45 +00009327 if( aIn+nIn>pSrc->pPage->aDataEnd ){
9328 return SQLITE_CORRUPT_BKPT;
9329 }
danebbf3682020-12-09 16:32:11 +00009330 nRem = pSrc->info.nPayload;
dan7aae7352020-12-10 18:06:24 +00009331 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9332 memcpy(aOut, aIn, nIn);
9333 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9334 }else{
9335 Pager *pSrcPager = pSrc->pBt->pPager;
9336 u8 *pPgnoOut = 0;
9337 Pgno ovflIn = 0;
9338 DbPage *pPageIn = 0;
9339 MemPage *pPageOut = 0;
drhe5baf5c2020-12-16 14:20:45 +00009340 u32 nOut; /* Size of output buffer aOut[] */
danebbf3682020-12-09 16:32:11 +00009341
dan7aae7352020-12-10 18:06:24 +00009342 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9343 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9344 if( nOut<pSrc->info.nPayload ){
9345 pPgnoOut = &aOut[nOut];
9346 pBt->nPreformatSize += 4;
9347 }
9348
9349 if( nRem>nIn ){
drh0a8b6a92020-12-16 21:09:45 +00009350 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9351 return SQLITE_CORRUPT_BKPT;
9352 }
dan7aae7352020-12-10 18:06:24 +00009353 ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9354 }
9355
9356 do {
9357 nRem -= nOut;
9358 do{
9359 assert( nOut>0 );
9360 if( nIn>0 ){
9361 int nCopy = MIN(nOut, nIn);
9362 memcpy(aOut, aIn, nCopy);
9363 nOut -= nCopy;
9364 nIn -= nCopy;
9365 aOut += nCopy;
9366 aIn += nCopy;
9367 }
9368 if( nOut>0 ){
9369 sqlite3PagerUnref(pPageIn);
9370 pPageIn = 0;
9371 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9372 if( rc==SQLITE_OK ){
9373 aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9374 ovflIn = get4byte(aIn);
9375 aIn += 4;
9376 nIn = pSrc->pBt->usableSize - 4;
9377 }
9378 }
9379 }while( rc==SQLITE_OK && nOut>0 );
9380
drhad1188b2021-10-02 18:22:24 +00009381 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
dan7aae7352020-12-10 18:06:24 +00009382 Pgno pgnoNew;
9383 MemPage *pNew = 0;
9384 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9385 put4byte(pPgnoOut, pgnoNew);
9386 if( ISAUTOVACUUM && pPageOut ){
9387 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9388 }
9389 releasePage(pPageOut);
9390 pPageOut = pNew;
9391 if( pPageOut ){
9392 pPgnoOut = pPageOut->aData;
9393 put4byte(pPgnoOut, 0);
9394 aOut = &pPgnoOut[4];
9395 nOut = MIN(pBt->usableSize - 4, nRem);
danebbf3682020-12-09 16:32:11 +00009396 }
9397 }
dan7aae7352020-12-10 18:06:24 +00009398 }while( nRem>0 && rc==SQLITE_OK );
9399
9400 releasePage(pPageOut);
9401 sqlite3PagerUnref(pPageIn);
dan036e0672020-12-08 20:19:07 +00009402 }
9403
9404 return rc;
9405}
9406
drh5e2f8b92001-05-28 00:41:15 +00009407/*
danf0ee1d32015-09-12 19:26:11 +00009408** Delete the entry that the cursor is pointing to.
9409**
drhe807bdb2016-01-21 17:06:33 +00009410** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9411** the cursor is left pointing at an arbitrary location after the delete.
9412** But if that bit is set, then the cursor is left in a state such that
9413** the next call to BtreeNext() or BtreePrev() moves it to the same row
9414** as it would have been on if the call to BtreeDelete() had been omitted.
9415**
drhdef19e32016-01-27 16:26:25 +00009416** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9417** associated with a single table entry and its indexes. Only one of those
9418** deletes is considered the "primary" delete. The primary delete occurs
9419** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9420** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9421** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00009422** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00009423*/
drhe807bdb2016-01-21 17:06:33 +00009424int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00009425 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00009426 BtShared *pBt = p->pBt;
drh7e17a3a2022-01-02 14:55:43 +00009427 int rc; /* Return code */
9428 MemPage *pPage; /* Page to delete cell from */
9429 unsigned char *pCell; /* Pointer to cell to delete */
9430 int iCellIdx; /* Index of cell to delete */
9431 int iCellDepth; /* Depth of node containing pCell */
9432 CellInfo info; /* Size of the cell being deleted */
9433 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
drh8b2f49b2001-06-08 00:21:52 +00009434
dan7a2347e2016-01-07 16:43:54 +00009435 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00009436 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009437 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00009438 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00009439 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9440 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drhdef19e32016-01-27 16:26:25 +00009441 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
drh500d7e52022-03-22 23:33:20 +00009442 if( pCur->eState!=CURSOR_VALID ){
9443 if( pCur->eState>=CURSOR_REQUIRESEEK ){
9444 rc = btreeRestoreCursorPosition(pCur);
9445 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9446 if( rc || pCur->eState!=CURSOR_VALID ) return rc;
9447 }else{
9448 return SQLITE_CORRUPT_BKPT;
9449 }
danb560a712019-03-13 15:29:14 +00009450 }
drh500d7e52022-03-22 23:33:20 +00009451 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00009452
danielk19774dbaa892009-06-16 16:50:22 +00009453 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00009454 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00009455 pPage = pCur->pPage;
drh7e17a3a2022-01-02 14:55:43 +00009456 if( pPage->nCell<=iCellIdx ){
9457 return SQLITE_CORRUPT_BKPT;
9458 }
danielk19774dbaa892009-06-16 16:50:22 +00009459 pCell = findCell(pPage, iCellIdx);
drh2dfe9662022-01-02 11:25:51 +00009460 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
9461 return SQLITE_CORRUPT_BKPT;
9462 }
danielk19774dbaa892009-06-16 16:50:22 +00009463
drh7e17a3a2022-01-02 14:55:43 +00009464 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
drhbfc7a8b2016-04-09 17:04:05 +00009465 ** be preserved following this delete operation. If the current delete
9466 ** will cause a b-tree rebalance, then this is done by saving the cursor
9467 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9468 ** returning.
9469 **
drh7e17a3a2022-01-02 14:55:43 +00009470 ** If the current delete will not cause a rebalance, then the cursor
drhbfc7a8b2016-04-09 17:04:05 +00009471 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
drh7e17a3a2022-01-02 14:55:43 +00009472 ** before or after the deleted entry.
9473 **
9474 ** The bPreserve value records which path is required:
9475 **
9476 ** bPreserve==0 Not necessary to save the cursor position
9477 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
9478 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
9479 */
9480 bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
drhbfc7a8b2016-04-09 17:04:05 +00009481 if( bPreserve ){
9482 if( !pPage->leaf
drh500d7e52022-03-22 23:33:20 +00009483 || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) >
9484 (int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00009485 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00009486 ){
9487 /* A b-tree rebalance will be required after deleting this entry.
9488 ** Save the cursor key. */
9489 rc = saveCursorKey(pCur);
9490 if( rc ) return rc;
9491 }else{
drh7e17a3a2022-01-02 14:55:43 +00009492 bPreserve = 2;
drhbfc7a8b2016-04-09 17:04:05 +00009493 }
9494 }
9495
danielk19774dbaa892009-06-16 16:50:22 +00009496 /* If the page containing the entry to delete is not a leaf page, move
9497 ** the cursor to the largest entry in the tree that is smaller than
9498 ** the entry being deleted. This cell will replace the cell being deleted
9499 ** from the internal node. The 'previous' entry is used for this instead
9500 ** of the 'next' entry, as the previous entry is always a part of the
9501 ** sub-tree headed by the child page of the cell being deleted. This makes
9502 ** balancing the tree following the delete operation easier. */
9503 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00009504 rc = sqlite3BtreePrevious(pCur, 0);
9505 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00009506 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00009507 }
9508
9509 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00009510 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00009511 if( pCur->curFlags & BTCF_Multiple ){
9512 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9513 if( rc ) return rc;
9514 }
drhd60f4f42012-03-23 14:23:52 +00009515
9516 /* If this is a delete operation to remove a row from a table b-tree,
9517 ** invalidate any incrblob cursors open on the row being deleted. */
drh49bb56e2021-05-14 20:01:36 +00009518 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
drh9ca431a2017-03-29 18:03:50 +00009519 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00009520 }
9521
danf0ee1d32015-09-12 19:26:11 +00009522 /* Make the page containing the entry to be deleted writable. Then free any
9523 ** overflow pages associated with the entry and finally remove the cell
9524 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00009525 rc = sqlite3PagerWrite(pPage->pDbPage);
9526 if( rc ) return rc;
drh86c779f2021-05-15 13:08:44 +00009527 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
drh80159da2016-12-09 17:32:51 +00009528 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00009529 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00009530
danielk19774dbaa892009-06-16 16:50:22 +00009531 /* If the cell deleted was not located on a leaf page, then the cursor
9532 ** is currently pointing to the largest entry in the sub-tree headed
9533 ** by the child-page of the cell that was just deleted from an internal
9534 ** node. The cell from the leaf node needs to be moved to the internal
9535 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00009536 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00009537 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00009538 int nCell;
drh352a35a2017-08-15 03:46:47 +00009539 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00009540 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00009541
drhb0ea9432019-02-09 21:06:40 +00009542 if( pLeaf->nFree<0 ){
9543 rc = btreeComputeFreeSpace(pLeaf);
9544 if( rc ) return rc;
9545 }
drh352a35a2017-08-15 03:46:47 +00009546 if( iCellDepth<pCur->iPage-1 ){
9547 n = pCur->apPage[iCellDepth+1]->pgno;
9548 }else{
9549 n = pCur->pPage->pgno;
9550 }
danielk19774dbaa892009-06-16 16:50:22 +00009551 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00009552 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00009553 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00009554 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00009555 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009556 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00009557 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00009558 if( rc==SQLITE_OK ){
9559 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9560 }
drh98add2e2009-07-20 17:11:49 +00009561 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00009562 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00009563 }
danielk19774dbaa892009-06-16 16:50:22 +00009564
9565 /* Balance the tree. If the entry deleted was located on a leaf page,
9566 ** then the cursor still points to that page. In this case the first
9567 ** call to balance() repairs the tree, and the if(...) condition is
9568 ** never true.
9569 **
9570 ** Otherwise, if the entry deleted was on an internal node page, then
9571 ** pCur is pointing to the leaf page from which a cell was removed to
9572 ** replace the cell deleted from the internal node. This is slightly
9573 ** tricky as the leaf node may be underfull, and the internal node may
9574 ** be either under or overfull. In this case run the balancing algorithm
9575 ** on the leaf node first. If the balance proceeds far enough up the
9576 ** tree that we can be sure that any problem in the internal node has
9577 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9578 ** walk the cursor up the tree to the internal node and balance it as
9579 ** well. */
drhde948482022-03-29 13:16:32 +00009580 assert( pCur->pPage->nOverflow==0 );
9581 assert( pCur->pPage->nFree>=0 );
drhc4c0ff82022-03-31 16:09:13 +00009582 if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
drhde948482022-03-29 13:16:32 +00009583 /* Optimization: If the free space is less than 2/3rds of the page,
9584 ** then balance() will always be a no-op. No need to invoke it. */
9585 rc = SQLITE_OK;
9586 }else{
9587 rc = balance(pCur);
9588 }
danielk19774dbaa892009-06-16 16:50:22 +00009589 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00009590 releasePageNotNull(pCur->pPage);
9591 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00009592 while( pCur->iPage>iCellDepth ){
9593 releasePage(pCur->apPage[pCur->iPage--]);
9594 }
drh352a35a2017-08-15 03:46:47 +00009595 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00009596 rc = balance(pCur);
9597 }
9598
danielk19776b456a22005-03-21 04:04:02 +00009599 if( rc==SQLITE_OK ){
drh7e17a3a2022-01-02 14:55:43 +00009600 if( bPreserve>1 ){
9601 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00009602 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00009603 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00009604 pCur->eState = CURSOR_SKIPNEXT;
9605 if( iCellIdx>=pPage->nCell ){
9606 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00009607 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00009608 }else{
9609 pCur->skipNext = 1;
9610 }
9611 }else{
9612 rc = moveToRoot(pCur);
9613 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00009614 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00009615 pCur->eState = CURSOR_REQUIRESEEK;
9616 }
drh44548e72017-08-14 18:13:52 +00009617 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00009618 }
danielk19776b456a22005-03-21 04:04:02 +00009619 }
drh5e2f8b92001-05-28 00:41:15 +00009620 return rc;
drh3b7511c2001-05-26 13:15:44 +00009621}
drh8b2f49b2001-06-08 00:21:52 +00009622
9623/*
drhc6b52df2002-01-04 03:09:29 +00009624** Create a new BTree table. Write into *piTable the page
9625** number for the root page of the new table.
9626**
drhab01f612004-05-22 02:55:23 +00009627** The type of type is determined by the flags parameter. Only the
9628** following values of flags are currently in use. Other values for
9629** flags might not work:
9630**
9631** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9632** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00009633*/
drhabc38152020-07-22 13:38:04 +00009634static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00009635 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009636 MemPage *pRoot;
9637 Pgno pgnoRoot;
9638 int rc;
drhd4187c72010-08-30 22:15:45 +00009639 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00009640
drh1fee73e2007-08-29 04:00:57 +00009641 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009642 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009643 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00009644
danielk1977003ba062004-11-04 02:57:33 +00009645#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00009646 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00009647 if( rc ){
9648 return rc;
9649 }
danielk1977003ba062004-11-04 02:57:33 +00009650#else
danielk1977687566d2004-11-02 12:56:41 +00009651 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009652 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9653 MemPage *pPageMove; /* The page to move to. */
9654
danielk197720713f32007-05-03 11:43:33 +00009655 /* Creating a new table may probably require moving an existing database
9656 ** to make room for the new tables root page. In case this page turns
9657 ** out to be an overflow page, delete all overflow page-map caches
9658 ** held by open cursors.
9659 */
danielk197792d4d7a2007-05-04 12:05:56 +00009660 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009661
danielk1977003ba062004-11-04 02:57:33 +00009662 /* Read the value of meta[3] from the database to determine where the
9663 ** root page of the new table should go. meta[3] is the largest root-page
9664 ** created so far, so the new root-page is (meta[3]+1).
9665 */
danielk1977602b4662009-07-02 07:47:33 +00009666 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
drh10248222020-07-28 20:32:12 +00009667 if( pgnoRoot>btreePagecount(pBt) ){
9668 return SQLITE_CORRUPT_BKPT;
9669 }
danielk1977003ba062004-11-04 02:57:33 +00009670 pgnoRoot++;
9671
danielk1977599fcba2004-11-08 07:13:13 +00009672 /* The new root-page may not be allocated on a pointer-map page, or the
9673 ** PENDING_BYTE page.
9674 */
drh72190432008-01-31 14:54:43 +00009675 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009676 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009677 pgnoRoot++;
9678 }
drh48bf2d72020-07-30 17:14:55 +00009679 assert( pgnoRoot>=3 );
danielk1977003ba062004-11-04 02:57:33 +00009680
9681 /* Allocate a page. The page that currently resides at pgnoRoot will
9682 ** be moved to the allocated page (unless the allocated page happens
9683 ** to reside at pgnoRoot).
9684 */
dan51f0b6d2013-02-22 20:16:34 +00009685 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009686 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009687 return rc;
9688 }
danielk1977003ba062004-11-04 02:57:33 +00009689
9690 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009691 /* pgnoRoot is the page that will be used for the root-page of
9692 ** the new table (assuming an error did not occur). But we were
9693 ** allocated pgnoMove. If required (i.e. if it was not allocated
9694 ** by extending the file), the current page at position pgnoMove
9695 ** is already journaled.
9696 */
drheeb844a2009-08-08 18:01:07 +00009697 u8 eType = 0;
9698 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009699
danf7679ad2013-04-03 11:38:36 +00009700 /* Save the positions of any open cursors. This is required in
9701 ** case they are holding a reference to an xFetch reference
9702 ** corresponding to page pgnoRoot. */
9703 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009704 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009705 if( rc!=SQLITE_OK ){
9706 return rc;
9707 }
danielk1977f35843b2007-04-07 15:03:17 +00009708
9709 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009710 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009711 if( rc!=SQLITE_OK ){
9712 return rc;
9713 }
9714 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009715 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9716 rc = SQLITE_CORRUPT_BKPT;
9717 }
9718 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009719 releasePage(pRoot);
9720 return rc;
9721 }
drhccae6022005-02-26 17:31:26 +00009722 assert( eType!=PTRMAP_ROOTPAGE );
9723 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009724 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009725 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009726
9727 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009728 if( rc!=SQLITE_OK ){
9729 return rc;
9730 }
drhb00fc3b2013-08-21 23:42:32 +00009731 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009732 if( rc!=SQLITE_OK ){
9733 return rc;
9734 }
danielk19773b8a05f2007-03-19 17:44:26 +00009735 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009736 if( rc!=SQLITE_OK ){
9737 releasePage(pRoot);
9738 return rc;
9739 }
9740 }else{
9741 pRoot = pPageMove;
9742 }
9743
danielk197742741be2005-01-08 12:42:39 +00009744 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009745 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009746 if( rc ){
9747 releasePage(pRoot);
9748 return rc;
9749 }
drhbf592832010-03-30 15:51:12 +00009750
9751 /* When the new root page was allocated, page 1 was made writable in
9752 ** order either to increase the database filesize, or to decrement the
9753 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9754 */
9755 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009756 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009757 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009758 releasePage(pRoot);
9759 return rc;
9760 }
danielk197742741be2005-01-08 12:42:39 +00009761
danielk1977003ba062004-11-04 02:57:33 +00009762 }else{
drh4f0c5872007-03-26 22:05:01 +00009763 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009764 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009765 }
9766#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009767 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009768 if( createTabFlags & BTREE_INTKEY ){
9769 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9770 }else{
9771 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9772 }
9773 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009774 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009775 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drhabc38152020-07-22 13:38:04 +00009776 *piTable = pgnoRoot;
drh8b2f49b2001-06-08 00:21:52 +00009777 return SQLITE_OK;
9778}
drhabc38152020-07-22 13:38:04 +00009779int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
drhd677b3d2007-08-20 22:48:41 +00009780 int rc;
9781 sqlite3BtreeEnter(p);
9782 rc = btreeCreateTable(p, piTable, flags);
9783 sqlite3BtreeLeave(p);
9784 return rc;
9785}
drh8b2f49b2001-06-08 00:21:52 +00009786
9787/*
9788** Erase the given database page and all its children. Return
9789** the page to the freelist.
9790*/
drh4b70f112004-05-02 21:12:19 +00009791static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00009792 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00009793 Pgno pgno, /* Page number to clear */
9794 int freePageFlag, /* Deallocate page if true */
dan2c718872021-06-22 18:32:05 +00009795 i64 *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00009796){
danielk1977146ba992009-07-22 14:08:13 +00009797 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00009798 int rc;
drh4b70f112004-05-02 21:12:19 +00009799 unsigned char *pCell;
9800 int i;
dan8ce71842014-01-14 20:14:09 +00009801 int hdr;
drh80159da2016-12-09 17:32:51 +00009802 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00009803
drh1fee73e2007-08-29 04:00:57 +00009804 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00009805 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00009806 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00009807 }
drh28f58dd2015-06-27 19:45:03 +00009808 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00009809 if( rc ) return rc;
dan1273d692021-10-16 17:09:36 +00009810 if( (pBt->openFlags & BTREE_SINGLE)==0
drh9a4e8862022-02-14 18:18:56 +00009811 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
dan1273d692021-10-16 17:09:36 +00009812 ){
drhccf46d02015-04-01 13:21:33 +00009813 rc = SQLITE_CORRUPT_BKPT;
9814 goto cleardatabasepage_out;
9815 }
dan8ce71842014-01-14 20:14:09 +00009816 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00009817 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00009818 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00009819 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00009820 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009821 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009822 }
drh86c779f2021-05-15 13:08:44 +00009823 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
danielk19776b456a22005-03-21 04:04:02 +00009824 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009825 }
drha34b6762004-05-07 13:30:42 +00009826 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00009827 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009828 if( rc ) goto cleardatabasepage_out;
dan020c4f32021-06-22 18:06:23 +00009829 if( pPage->intKey ) pnChange = 0;
drha6df0e62021-06-03 18:51:51 +00009830 }
9831 if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00009832 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00009833 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00009834 }
9835 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00009836 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00009837 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00009838 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00009839 }
danielk19776b456a22005-03-21 04:04:02 +00009840
9841cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00009842 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00009843 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009844}
9845
9846/*
drhab01f612004-05-22 02:55:23 +00009847** Delete all information from a single table in the database. iTable is
9848** the page number of the root of the table. After this routine returns,
9849** the root page is empty, but still exists.
9850**
9851** This routine will fail with SQLITE_LOCKED if there are any open
9852** read cursors on the table. Open write cursors are moved to the
9853** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00009854**
drha6df0e62021-06-03 18:51:51 +00009855** If pnChange is not NULL, then the integer value pointed to by pnChange
9856** is incremented by the number of entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00009857*/
dan2c718872021-06-22 18:32:05 +00009858int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00009859 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009860 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009861 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009862 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009863
drhc046e3e2009-07-15 11:26:44 +00009864 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009865
drhc046e3e2009-07-15 11:26:44 +00009866 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009867 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9868 ** is the root of a table b-tree - if it is not, the following call is
9869 ** a no-op). */
drh49bb56e2021-05-14 20:01:36 +00009870 if( p->hasIncrblobCur ){
9871 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9872 }
danielk197762c14b32008-11-19 09:05:26 +00009873 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009874 }
drhd677b3d2007-08-20 22:48:41 +00009875 sqlite3BtreeLeave(p);
9876 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009877}
9878
9879/*
drh079a3072014-03-19 14:10:55 +00009880** Delete all information from the single table that pCur is open on.
9881**
9882** This routine only work for pCur on an ephemeral table.
9883*/
9884int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9885 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9886}
9887
9888/*
drh8b2f49b2001-06-08 00:21:52 +00009889** Erase all information in a table and add the root of the table to
9890** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009891** page 1) is never added to the freelist.
9892**
9893** This routine will fail with SQLITE_LOCKED if there are any open
9894** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009895**
9896** If AUTOVACUUM is enabled and the page at iTable is not the last
9897** root page in the database file, then the last root page
9898** in the database file is moved into the slot formerly occupied by
9899** iTable and that last slot formerly occupied by the last root page
9900** is added to the freelist instead of iTable. In this say, all
9901** root pages are kept at the beginning of the database file, which
9902** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9903** page number that used to be the last root page in the file before
9904** the move. If no page gets moved, *piMoved is set to 0.
9905** The last root page is recorded in meta[3] and the value of
9906** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009907*/
danielk197789d40042008-11-17 14:20:56 +00009908static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009909 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009910 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009911 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009912
drh1fee73e2007-08-29 04:00:57 +00009913 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009914 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009915 assert( iTable>=2 );
drh9a518842019-03-08 01:52:30 +00009916 if( iTable>btreePagecount(pBt) ){
9917 return SQLITE_CORRUPT_BKPT;
9918 }
drh055f2982016-01-15 15:06:41 +00009919
danielk1977c7af4842008-10-27 13:59:33 +00009920 rc = sqlite3BtreeClearTable(p, iTable, 0);
dan1273d692021-10-16 17:09:36 +00009921 if( rc ) return rc;
9922 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drhda125362021-10-16 18:53:36 +00009923 if( NEVER(rc) ){
danielk19776b456a22005-03-21 04:04:02 +00009924 releasePage(pPage);
9925 return rc;
9926 }
danielk1977a0bf2652004-11-04 14:30:04 +00009927
drh205f48e2004-11-05 00:43:11 +00009928 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009929
danielk1977a0bf2652004-11-04 14:30:04 +00009930#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009931 freePage(pPage, &rc);
9932 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009933#else
drh055f2982016-01-15 15:06:41 +00009934 if( pBt->autoVacuum ){
9935 Pgno maxRootPgno;
9936 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009937
drh055f2982016-01-15 15:06:41 +00009938 if( iTable==maxRootPgno ){
9939 /* If the table being dropped is the table with the largest root-page
9940 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009941 */
drhc314dc72009-07-21 11:52:34 +00009942 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009943 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009944 if( rc!=SQLITE_OK ){
9945 return rc;
9946 }
9947 }else{
9948 /* The table being dropped does not have the largest root-page
9949 ** number in the database. So move the page that does into the
9950 ** gap left by the deleted root-page.
9951 */
9952 MemPage *pMove;
9953 releasePage(pPage);
9954 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9955 if( rc!=SQLITE_OK ){
9956 return rc;
9957 }
9958 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9959 releasePage(pMove);
9960 if( rc!=SQLITE_OK ){
9961 return rc;
9962 }
9963 pMove = 0;
9964 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9965 freePage(pMove, &rc);
9966 releasePage(pMove);
9967 if( rc!=SQLITE_OK ){
9968 return rc;
9969 }
9970 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009971 }
drh055f2982016-01-15 15:06:41 +00009972
9973 /* Set the new 'max-root-page' value in the database header. This
9974 ** is the old value less one, less one more if that happens to
9975 ** be a root-page number, less one again if that is the
9976 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009977 */
drh055f2982016-01-15 15:06:41 +00009978 maxRootPgno--;
9979 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9980 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9981 maxRootPgno--;
9982 }
9983 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9984
9985 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9986 }else{
9987 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009988 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009989 }
drh055f2982016-01-15 15:06:41 +00009990#endif
drh8b2f49b2001-06-08 00:21:52 +00009991 return rc;
9992}
drhd677b3d2007-08-20 22:48:41 +00009993int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9994 int rc;
9995 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009996 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009997 sqlite3BtreeLeave(p);
9998 return rc;
9999}
drh8b2f49b2001-06-08 00:21:52 +000010000
drh001bbcb2003-03-19 03:14:00 +000010001
drh8b2f49b2001-06-08 00:21:52 +000010002/*
danielk1977602b4662009-07-02 07:47:33 +000010003** This function may only be called if the b-tree connection already
10004** has a read or write transaction open on the database.
10005**
drh23e11ca2004-05-04 17:27:28 +000010006** Read the meta-information out of a database file. Meta[0]
10007** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +000010008** through meta[15] are available for use by higher layers. Meta[0]
10009** is read-only, the others are read/write.
10010**
10011** The schema layer numbers meta values differently. At the schema
10012** layer (and the SetCookie and ReadCookie opcodes) the number of
10013** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +000010014**
10015** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
10016** of reading the value out of the header, it instead loads the "DataVersion"
10017** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
10018** database file. It is a number computed by the pager. But its access
10019** pattern is the same as header meta values, and so it is convenient to
10020** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +000010021*/
danielk1977602b4662009-07-02 07:47:33 +000010022void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +000010023 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +000010024
drhd677b3d2007-08-20 22:48:41 +000010025 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +000010026 assert( p->inTrans>TRANS_NONE );
drh346a70c2020-06-15 20:27:35 +000010027 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +000010028 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +000010029 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +000010030
drh91618562014-12-19 19:28:02 +000010031 if( idx==BTREE_DATA_VERSION ){
drh2b994ce2021-03-18 12:36:09 +000010032 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
drh91618562014-12-19 19:28:02 +000010033 }else{
10034 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
10035 }
drhae157872004-08-14 19:20:09 +000010036
danielk1977602b4662009-07-02 07:47:33 +000010037 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
10038 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +000010039#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +000010040 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
10041 pBt->btsFlags |= BTS_READ_ONLY;
10042 }
danielk1977003ba062004-11-04 02:57:33 +000010043#endif
drhae157872004-08-14 19:20:09 +000010044
drhd677b3d2007-08-20 22:48:41 +000010045 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +000010046}
10047
10048/*
drh23e11ca2004-05-04 17:27:28 +000010049** Write meta-information back into the database. Meta[0] is
10050** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +000010051*/
danielk1977aef0bf62005-12-30 16:28:01 +000010052int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
10053 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +000010054 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +000010055 int rc;
drh23e11ca2004-05-04 17:27:28 +000010056 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +000010057 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +000010058 assert( p->inTrans==TRANS_WRITE );
10059 assert( pBt->pPage1!=0 );
10060 pP1 = pBt->pPage1->aData;
10061 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10062 if( rc==SQLITE_OK ){
10063 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +000010064#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +000010065 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +000010066 assert( pBt->autoVacuum || iMeta==0 );
10067 assert( iMeta==0 || iMeta==1 );
10068 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +000010069 }
drh64022502009-01-09 14:11:04 +000010070#endif
drh5df72a52002-06-06 23:16:05 +000010071 }
drhd677b3d2007-08-20 22:48:41 +000010072 sqlite3BtreeLeave(p);
10073 return rc;
drh8b2f49b2001-06-08 00:21:52 +000010074}
drh8c42ca92001-06-22 19:15:00 +000010075
danielk1977a5533162009-02-24 10:01:51 +000010076/*
10077** The first argument, pCur, is a cursor opened on some b-tree. Count the
10078** number of entries in the b-tree and write the result to *pnEntry.
10079**
10080** SQLITE_OK is returned if the operation is successfully executed.
10081** Otherwise, if an error is encountered (i.e. an IO error or database
10082** corruption) an SQLite error code is returned.
10083*/
drh21f6daa2019-10-11 14:21:48 +000010084int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
danielk1977a5533162009-02-24 10:01:51 +000010085 i64 nEntry = 0; /* Value to return in *pnEntry */
10086 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +000010087
drh44548e72017-08-14 18:13:52 +000010088 rc = moveToRoot(pCur);
10089 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +000010090 *pnEntry = 0;
10091 return SQLITE_OK;
10092 }
danielk1977a5533162009-02-24 10:01:51 +000010093
10094 /* Unless an error occurs, the following loop runs one iteration for each
10095 ** page in the B-Tree structure (not including overflow pages).
10096 */
dan892edb62020-03-30 13:35:05 +000010097 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
danielk1977a5533162009-02-24 10:01:51 +000010098 int iIdx; /* Index of child node in parent */
10099 MemPage *pPage; /* Current page of the b-tree */
10100
10101 /* If this is a leaf page or the tree is not an int-key tree, then
10102 ** this page contains countable entries. Increment the entry counter
10103 ** accordingly.
10104 */
drh352a35a2017-08-15 03:46:47 +000010105 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +000010106 if( pPage->leaf || !pPage->intKey ){
10107 nEntry += pPage->nCell;
10108 }
10109
10110 /* pPage is a leaf node. This loop navigates the cursor so that it
10111 ** points to the first interior cell that it points to the parent of
10112 ** the next page in the tree that has not yet been visited. The
10113 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
10114 ** of the page, or to the number of cells in the page if the next page
10115 ** to visit is the right-child of its parent.
10116 **
10117 ** If all pages in the tree have been visited, return SQLITE_OK to the
10118 ** caller.
10119 */
10120 if( pPage->leaf ){
10121 do {
10122 if( pCur->iPage==0 ){
10123 /* All pages of the b-tree have been visited. Return successfully. */
10124 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +000010125 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +000010126 }
danielk197730548662009-07-09 05:07:37 +000010127 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +000010128 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +000010129
drh75e96b32017-04-01 00:20:06 +000010130 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +000010131 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +000010132 }
10133
10134 /* Descend to the child node of the cell that the cursor currently
10135 ** points at. This is the right-child if (iIdx==pPage->nCell).
10136 */
drh75e96b32017-04-01 00:20:06 +000010137 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +000010138 if( iIdx==pPage->nCell ){
10139 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
10140 }else{
10141 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
10142 }
10143 }
10144
shanebe217792009-03-05 04:20:31 +000010145 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +000010146 return rc;
10147}
drhdd793422001-06-28 01:54:48 +000010148
drhdd793422001-06-28 01:54:48 +000010149/*
drh5eddca62001-06-30 21:53:53 +000010150** Return the pager associated with a BTree. This routine is used for
10151** testing and debugging only.
drhdd793422001-06-28 01:54:48 +000010152*/
danielk1977aef0bf62005-12-30 16:28:01 +000010153Pager *sqlite3BtreePager(Btree *p){
10154 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +000010155}
drh5eddca62001-06-30 21:53:53 +000010156
drhb7f91642004-10-31 02:22:47 +000010157#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010158/*
10159** Append a message to the error message string.
10160*/
drh2e38c322004-09-03 18:38:44 +000010161static void checkAppendMsg(
10162 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +000010163 const char *zFormat,
10164 ...
10165){
10166 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +000010167 if( !pCheck->mxErr ) return;
10168 pCheck->mxErr--;
10169 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +000010170 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +000010171 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +000010172 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +000010173 }
drh867db832014-09-26 02:41:05 +000010174 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +000010175 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +000010176 }
drh0cdbe1a2018-05-09 13:46:26 +000010177 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +000010178 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +000010179 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drh8ddf6352020-06-29 18:30:49 +000010180 pCheck->bOomFault = 1;
drhc890fec2008-08-01 20:10:08 +000010181 }
drh5eddca62001-06-30 21:53:53 +000010182}
drhb7f91642004-10-31 02:22:47 +000010183#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010184
drhb7f91642004-10-31 02:22:47 +000010185#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +000010186
10187/*
10188** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
10189** corresponds to page iPg is already set.
10190*/
10191static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10192 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10193 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
10194}
10195
10196/*
10197** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10198*/
10199static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10200 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10201 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
10202}
10203
10204
drh5eddca62001-06-30 21:53:53 +000010205/*
10206** Add 1 to the reference count for page iPage. If this is the second
10207** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +000010208** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +000010209** if this is the first reference to the page.
10210**
10211** Also check that the page number is in bounds.
10212*/
drh867db832014-09-26 02:41:05 +000010213static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +000010214 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +000010215 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010216 return 1;
10217 }
dan1235bb12012-04-03 17:43:28 +000010218 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +000010219 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010220 return 1;
10221 }
dan892edb62020-03-30 13:35:05 +000010222 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
dan1235bb12012-04-03 17:43:28 +000010223 setPageReferenced(pCheck, iPage);
10224 return 0;
drh5eddca62001-06-30 21:53:53 +000010225}
10226
danielk1977afcdd022004-10-31 16:25:42 +000010227#ifndef SQLITE_OMIT_AUTOVACUUM
10228/*
10229** Check that the entry in the pointer-map for page iChild maps to
10230** page iParent, pointer type ptrType. If not, append an error message
10231** to pCheck.
10232*/
10233static void checkPtrmap(
10234 IntegrityCk *pCheck, /* Integrity check context */
10235 Pgno iChild, /* Child page number */
10236 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +000010237 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +000010238){
10239 int rc;
10240 u8 ePtrmapType;
10241 Pgno iPtrmapParent;
10242
10243 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
10244 if( rc!=SQLITE_OK ){
drh8ddf6352020-06-29 18:30:49 +000010245 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
drh867db832014-09-26 02:41:05 +000010246 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +000010247 return;
10248 }
10249
10250 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +000010251 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +000010252 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10253 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
10254 }
10255}
10256#endif
10257
drh5eddca62001-06-30 21:53:53 +000010258/*
10259** Check the integrity of the freelist or of an overflow page list.
10260** Verify that the number of pages on the list is N.
10261*/
drh30e58752002-03-02 20:41:57 +000010262static void checkList(
10263 IntegrityCk *pCheck, /* Integrity checking context */
10264 int isFreeList, /* True for a freelist. False for overflow page list */
drhabc38152020-07-22 13:38:04 +000010265 Pgno iPage, /* Page number for first page in the list */
drheaac9992019-02-26 16:17:06 +000010266 u32 N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +000010267){
10268 int i;
drheaac9992019-02-26 16:17:06 +000010269 u32 expected = N;
drh91d58662018-07-20 13:39:28 +000010270 int nErrAtStart = pCheck->nErr;
10271 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +000010272 DbPage *pOvflPage;
10273 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +000010274 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +000010275 N--;
drh9584f582015-11-04 20:22:37 +000010276 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +000010277 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010278 break;
10279 }
danielk19773b8a05f2007-03-19 17:44:26 +000010280 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +000010281 if( isFreeList ){
drhae104742018-12-14 17:57:01 +000010282 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +000010283#ifndef SQLITE_OMIT_AUTOVACUUM
10284 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010285 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010286 }
10287#endif
drhae104742018-12-14 17:57:01 +000010288 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +000010289 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +000010290 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +000010291 N--;
10292 }else{
drhae104742018-12-14 17:57:01 +000010293 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +000010294 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +000010295#ifndef SQLITE_OMIT_AUTOVACUUM
10296 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010297 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010298 }
10299#endif
drh867db832014-09-26 02:41:05 +000010300 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +000010301 }
10302 N -= n;
drh30e58752002-03-02 20:41:57 +000010303 }
drh30e58752002-03-02 20:41:57 +000010304 }
danielk1977afcdd022004-10-31 16:25:42 +000010305#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010306 else{
10307 /* If this database supports auto-vacuum and iPage is not the last
10308 ** page in this overflow list, check that the pointer-map entry for
10309 ** the following page matches iPage.
10310 */
10311 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +000010312 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +000010313 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +000010314 }
danielk1977afcdd022004-10-31 16:25:42 +000010315 }
10316#endif
danielk19773b8a05f2007-03-19 17:44:26 +000010317 iPage = get4byte(pOvflData);
10318 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +000010319 }
10320 if( N && nErrAtStart==pCheck->nErr ){
10321 checkAppendMsg(pCheck,
10322 "%s is %d but should be %d",
10323 isFreeList ? "size" : "overflow list length",
10324 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +000010325 }
10326}
drhb7f91642004-10-31 02:22:47 +000010327#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010328
drh67731a92015-04-16 11:56:03 +000010329/*
10330** An implementation of a min-heap.
10331**
10332** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +000010333** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +000010334** and aHeap[N*2+1].
10335**
10336** The heap property is this: Every node is less than or equal to both
10337** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +000010338** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +000010339**
10340** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10341** the heap, preserving the heap property. The btreeHeapPull() routine
10342** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +000010343** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +000010344** property.
10345**
10346** This heap is used for cell overlap and coverage testing. Each u32
10347** entry represents the span of a cell or freeblock on a btree page.
10348** The upper 16 bits are the index of the first byte of a range and the
10349** lower 16 bits are the index of the last byte of that range.
10350*/
10351static void btreeHeapInsert(u32 *aHeap, u32 x){
10352 u32 j, i = ++aHeap[0];
10353 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +000010354 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +000010355 x = aHeap[j];
10356 aHeap[j] = aHeap[i];
10357 aHeap[i] = x;
10358 i = j;
10359 }
10360}
10361static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10362 u32 j, i, x;
10363 if( (x = aHeap[0])==0 ) return 0;
10364 *pOut = aHeap[1];
10365 aHeap[1] = aHeap[x];
10366 aHeap[x] = 0xffffffff;
10367 aHeap[0]--;
10368 i = 1;
10369 while( (j = i*2)<=aHeap[0] ){
10370 if( aHeap[j]>aHeap[j+1] ) j++;
10371 if( aHeap[i]<aHeap[j] ) break;
10372 x = aHeap[i];
10373 aHeap[i] = aHeap[j];
10374 aHeap[j] = x;
10375 i = j;
10376 }
10377 return 1;
10378}
10379
drhb7f91642004-10-31 02:22:47 +000010380#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010381/*
10382** Do various sanity checks on a single page of a tree. Return
10383** the tree depth. Root pages return 0. Parents of root pages
10384** return 1, and so forth.
10385**
10386** These checks are done:
10387**
10388** 1. Make sure that cells and freeblocks do not overlap
10389** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +000010390** 2. Make sure integer cell keys are in order.
10391** 3. Check the integrity of overflow pages.
10392** 4. Recursively call checkTreePage on all children.
10393** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +000010394*/
10395static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +000010396 IntegrityCk *pCheck, /* Context for the sanity check */
drhabc38152020-07-22 13:38:04 +000010397 Pgno iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +000010398 i64 *piMinKey, /* Write minimum integer primary key here */
10399 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +000010400){
drhcbc6b712015-07-02 16:17:30 +000010401 MemPage *pPage = 0; /* The page being analyzed */
10402 int i; /* Loop counter */
10403 int rc; /* Result code from subroutine call */
10404 int depth = -1, d2; /* Depth of a subtree */
10405 int pgno; /* Page number */
10406 int nFrag; /* Number of fragmented bytes on the page */
10407 int hdr; /* Offset to the page header */
10408 int cellStart; /* Offset to the start of the cell pointer array */
10409 int nCell; /* Number of cells */
10410 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10411 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
10412 ** False if IPK must be strictly less than maxKey */
10413 u8 *data; /* Page content */
10414 u8 *pCell; /* Cell content */
10415 u8 *pCellIdx; /* Next element of the cell pointer array */
10416 BtShared *pBt; /* The BtShared object that owns pPage */
10417 u32 pc; /* Address of a cell */
10418 u32 usableSize; /* Usable size of the page */
10419 u32 contentOffset; /* Offset to the start of the cell content area */
10420 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +000010421 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +000010422 const char *saved_zPfx = pCheck->zPfx;
10423 int saved_v1 = pCheck->v1;
10424 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +000010425 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +000010426
drh5eddca62001-06-30 21:53:53 +000010427 /* Check that the page exists
10428 */
drhd9cb6ac2005-10-20 07:28:17 +000010429 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +000010430 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +000010431 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +000010432 if( checkRef(pCheck, iPage) ) return 0;
drhabc38152020-07-22 13:38:04 +000010433 pCheck->zPfx = "Page %u: ";
drh867db832014-09-26 02:41:05 +000010434 pCheck->v1 = iPage;
drhabc38152020-07-22 13:38:04 +000010435 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +000010436 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +000010437 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +000010438 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +000010439 }
danielk197793caf5a2009-07-11 06:55:33 +000010440
10441 /* Clear MemPage.isInit to make sure the corruption detection code in
10442 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +000010443 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +000010444 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +000010445 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +000010446 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +000010447 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +000010448 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +000010449 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +000010450 }
drhb0ea9432019-02-09 21:06:40 +000010451 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10452 assert( rc==SQLITE_CORRUPT );
10453 checkAppendMsg(pCheck, "free space corruption", rc);
10454 goto end_of_check;
10455 }
drhcbc6b712015-07-02 16:17:30 +000010456 data = pPage->aData;
10457 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +000010458
drhcbc6b712015-07-02 16:17:30 +000010459 /* Set up for cell analysis */
drhabc38152020-07-22 13:38:04 +000010460 pCheck->zPfx = "On tree page %u cell %d: ";
drhcbc6b712015-07-02 16:17:30 +000010461 contentOffset = get2byteNotZero(&data[hdr+5]);
10462 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
10463
10464 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10465 ** number of cells on the page. */
10466 nCell = get2byte(&data[hdr+3]);
10467 assert( pPage->nCell==nCell );
10468
10469 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10470 ** immediately follows the b-tree page header. */
10471 cellStart = hdr + 12 - 4*pPage->leaf;
10472 assert( pPage->aCellIdx==&data[cellStart] );
10473 pCellIdx = &data[cellStart + 2*(nCell-1)];
10474
10475 if( !pPage->leaf ){
10476 /* Analyze the right-child page of internal pages */
10477 pgno = get4byte(&data[hdr+8]);
10478#ifndef SQLITE_OMIT_AUTOVACUUM
10479 if( pBt->autoVacuum ){
drhabc38152020-07-22 13:38:04 +000010480 pCheck->zPfx = "On page %u at right child: ";
drhcbc6b712015-07-02 16:17:30 +000010481 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10482 }
10483#endif
10484 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10485 keyCanBeEqual = 0;
10486 }else{
10487 /* For leaf pages, the coverage check will occur in the same loop
10488 ** as the other cell checks, so initialize the heap. */
10489 heap = pCheck->heap;
10490 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +000010491 }
10492
drhcbc6b712015-07-02 16:17:30 +000010493 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10494 ** integer offsets to the cell contents. */
10495 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +000010496 CellInfo info;
drh5eddca62001-06-30 21:53:53 +000010497
drhcbc6b712015-07-02 16:17:30 +000010498 /* Check cell size */
drh867db832014-09-26 02:41:05 +000010499 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +000010500 assert( pCellIdx==&data[cellStart + i*2] );
10501 pc = get2byteAligned(pCellIdx);
10502 pCellIdx -= 2;
10503 if( pc<contentOffset || pc>usableSize-4 ){
10504 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10505 pc, contentOffset, usableSize-4);
10506 doCoverageCheck = 0;
10507 continue;
shaneh195475d2010-02-19 04:28:08 +000010508 }
drhcbc6b712015-07-02 16:17:30 +000010509 pCell = &data[pc];
10510 pPage->xParseCell(pPage, pCell, &info);
10511 if( pc+info.nSize>usableSize ){
10512 checkAppendMsg(pCheck, "Extends off end of page");
10513 doCoverageCheck = 0;
10514 continue;
drh5eddca62001-06-30 21:53:53 +000010515 }
10516
drhcbc6b712015-07-02 16:17:30 +000010517 /* Check for integer primary key out of range */
10518 if( pPage->intKey ){
10519 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10520 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10521 }
10522 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +000010523 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +000010524 }
10525
10526 /* Check the content overflow list */
10527 if( info.nPayload>info.nLocal ){
drheaac9992019-02-26 16:17:06 +000010528 u32 nPage; /* Number of pages on the overflow chain */
drhcbc6b712015-07-02 16:17:30 +000010529 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +000010530 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +000010531 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +000010532 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +000010533#ifndef SQLITE_OMIT_AUTOVACUUM
10534 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010535 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +000010536 }
10537#endif
drh867db832014-09-26 02:41:05 +000010538 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +000010539 }
10540
drh5eddca62001-06-30 21:53:53 +000010541 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +000010542 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +000010543 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +000010544#ifndef SQLITE_OMIT_AUTOVACUUM
10545 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010546 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +000010547 }
10548#endif
drhcbc6b712015-07-02 16:17:30 +000010549 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10550 keyCanBeEqual = 0;
10551 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +000010552 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +000010553 depth = d2;
drh5eddca62001-06-30 21:53:53 +000010554 }
drhcbc6b712015-07-02 16:17:30 +000010555 }else{
10556 /* Populate the coverage-checking heap for leaf pages */
10557 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +000010558 }
10559 }
drhcbc6b712015-07-02 16:17:30 +000010560 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +000010561
drh5eddca62001-06-30 21:53:53 +000010562 /* Check for complete coverage of the page
10563 */
drh867db832014-09-26 02:41:05 +000010564 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +000010565 if( doCoverageCheck && pCheck->mxErr>0 ){
10566 /* For leaf pages, the min-heap has already been initialized and the
10567 ** cells have already been inserted. But for internal pages, that has
10568 ** not yet been done, so do it now */
10569 if( !pPage->leaf ){
10570 heap = pCheck->heap;
10571 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +000010572 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +000010573 u32 size;
10574 pc = get2byteAligned(&data[cellStart+i*2]);
10575 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +000010576 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +000010577 }
drh2e38c322004-09-03 18:38:44 +000010578 }
drhcbc6b712015-07-02 16:17:30 +000010579 /* Add the freeblocks to the min-heap
10580 **
10581 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +000010582 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +000010583 ** freeblocks on the page.
10584 */
drh8c2bbb62009-07-10 02:52:20 +000010585 i = get2byte(&data[hdr+1]);
10586 while( i>0 ){
10587 int size, j;
drh5860a612019-02-12 16:58:26 +000010588 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010589 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +000010590 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +000010591 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +000010592 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10593 ** big-endian integer which is the offset in the b-tree page of the next
10594 ** freeblock in the chain, or zero if the freeblock is the last on the
10595 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +000010596 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +000010597 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10598 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +000010599 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10600 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010601 i = j;
drh2e38c322004-09-03 18:38:44 +000010602 }
drhcbc6b712015-07-02 16:17:30 +000010603 /* Analyze the min-heap looking for overlap between cells and/or
10604 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +000010605 **
10606 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10607 ** There is an implied first entry the covers the page header, the cell
10608 ** pointer index, and the gap between the cell pointer index and the start
10609 ** of cell content.
10610 **
10611 ** The loop below pulls entries from the min-heap in order and compares
10612 ** the start_address against the previous end_address. If there is an
10613 ** overlap, that means bytes are used multiple times. If there is a gap,
10614 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +000010615 */
10616 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +000010617 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +000010618 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +000010619 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +000010620 checkAppendMsg(pCheck,
drhabc38152020-07-22 13:38:04 +000010621 "Multiple uses for byte %u of page %u", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +000010622 break;
drh67731a92015-04-16 11:56:03 +000010623 }else{
drhcbc6b712015-07-02 16:17:30 +000010624 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +000010625 prev = x;
drh2e38c322004-09-03 18:38:44 +000010626 }
10627 }
drhcbc6b712015-07-02 16:17:30 +000010628 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +000010629 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10630 ** is stored in the fifth field of the b-tree page header.
10631 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10632 ** number of fragmented free bytes within the cell content area.
10633 */
drhcbc6b712015-07-02 16:17:30 +000010634 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +000010635 checkAppendMsg(pCheck,
drhabc38152020-07-22 13:38:04 +000010636 "Fragmentation of %d bytes reported as %d on page %u",
drhcbc6b712015-07-02 16:17:30 +000010637 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +000010638 }
10639 }
drh867db832014-09-26 02:41:05 +000010640
10641end_of_check:
drh72e191e2015-07-04 11:14:20 +000010642 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +000010643 releasePage(pPage);
drh867db832014-09-26 02:41:05 +000010644 pCheck->zPfx = saved_zPfx;
10645 pCheck->v1 = saved_v1;
10646 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +000010647 return depth+1;
drh5eddca62001-06-30 21:53:53 +000010648}
drhb7f91642004-10-31 02:22:47 +000010649#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010650
drhb7f91642004-10-31 02:22:47 +000010651#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010652/*
10653** This routine does a complete check of the given BTree file. aRoot[] is
10654** an array of pages numbers were each page number is the root page of
10655** a table. nRoot is the number of entries in aRoot.
10656**
danielk19773509a652009-07-06 18:56:13 +000010657** A read-only or read-write transaction must be opened before calling
10658** this function.
10659**
drhc890fec2008-08-01 20:10:08 +000010660** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010661** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010662** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010663** returned. If a memory allocation error occurs, NULL is returned.
drh17d2d592020-07-23 00:45:06 +000010664**
10665** If the first entry in aRoot[] is 0, that indicates that the list of
10666** root pages is incomplete. This is a "partial integrity-check". This
10667** happens when performing an integrity check on a single table. The
10668** zero is skipped, of course. But in addition, the freelist checks
10669** and the checks to make sure every page is referenced are also skipped,
10670** since obviously it is not possible to know which pages are covered by
10671** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10672** checks are still performed.
drh5eddca62001-06-30 21:53:53 +000010673*/
drh1dcdbc02007-01-27 02:24:54 +000010674char *sqlite3BtreeIntegrityCheck(
drh21f6daa2019-10-11 14:21:48 +000010675 sqlite3 *db, /* Database connection that is running the check */
drh1dcdbc02007-01-27 02:24:54 +000010676 Btree *p, /* The btree to be checked */
drhabc38152020-07-22 13:38:04 +000010677 Pgno *aRoot, /* An array of root pages numbers for individual trees */
drh1dcdbc02007-01-27 02:24:54 +000010678 int nRoot, /* Number of entries in aRoot[] */
10679 int mxErr, /* Stop reporting errors after this many */
10680 int *pnErr /* Write number of errors seen to this variable */
10681){
danielk197789d40042008-11-17 14:20:56 +000010682 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010683 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010684 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010685 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010686 char zErr[100];
drh17d2d592020-07-23 00:45:06 +000010687 int bPartial = 0; /* True if not checking all btrees */
10688 int bCkFreelist = 1; /* True to scan the freelist */
drh8deae5a2020-07-29 12:23:20 +000010689 VVA_ONLY( int nRef );
drh17d2d592020-07-23 00:45:06 +000010690 assert( nRoot>0 );
10691
10692 /* aRoot[0]==0 means this is a partial check */
10693 if( aRoot[0]==0 ){
10694 assert( nRoot>1 );
10695 bPartial = 1;
10696 if( aRoot[1]!=1 ) bCkFreelist = 0;
10697 }
drh5eddca62001-06-30 21:53:53 +000010698
drhd677b3d2007-08-20 22:48:41 +000010699 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010700 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010701 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10702 assert( nRef>=0 );
drh21f6daa2019-10-11 14:21:48 +000010703 sCheck.db = db;
drh5eddca62001-06-30 21:53:53 +000010704 sCheck.pBt = pBt;
10705 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010706 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010707 sCheck.mxErr = mxErr;
10708 sCheck.nErr = 0;
drh8ddf6352020-06-29 18:30:49 +000010709 sCheck.bOomFault = 0;
drh867db832014-09-26 02:41:05 +000010710 sCheck.zPfx = 0;
10711 sCheck.v1 = 0;
10712 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010713 sCheck.aPgRef = 0;
10714 sCheck.heap = 0;
10715 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010716 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010717 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010718 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010719 }
dan1235bb12012-04-03 17:43:28 +000010720
10721 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10722 if( !sCheck.aPgRef ){
drh8ddf6352020-06-29 18:30:49 +000010723 sCheck.bOomFault = 1;
drhe05b3f82015-07-01 17:53:49 +000010724 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010725 }
drhe05b3f82015-07-01 17:53:49 +000010726 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10727 if( sCheck.heap==0 ){
drh8ddf6352020-06-29 18:30:49 +000010728 sCheck.bOomFault = 1;
drhe05b3f82015-07-01 17:53:49 +000010729 goto integrity_ck_cleanup;
10730 }
10731
drh42cac6d2004-11-20 20:31:11 +000010732 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010733 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010734
10735 /* Check the integrity of the freelist
10736 */
drh17d2d592020-07-23 00:45:06 +000010737 if( bCkFreelist ){
10738 sCheck.zPfx = "Main freelist: ";
10739 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10740 get4byte(&pBt->pPage1->aData[36]));
10741 sCheck.zPfx = 0;
10742 }
drh5eddca62001-06-30 21:53:53 +000010743
10744 /* Check all the tables.
10745 */
drh040d77a2018-07-20 15:44:09 +000010746#ifndef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010747 if( !bPartial ){
10748 if( pBt->autoVacuum ){
drhed109c02020-07-23 09:14:25 +000010749 Pgno mx = 0;
10750 Pgno mxInHdr;
drh17d2d592020-07-23 00:45:06 +000010751 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10752 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10753 if( mx!=mxInHdr ){
10754 checkAppendMsg(&sCheck,
10755 "max rootpage (%d) disagrees with header (%d)",
10756 mx, mxInHdr
10757 );
10758 }
10759 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
drh040d77a2018-07-20 15:44:09 +000010760 checkAppendMsg(&sCheck,
drh17d2d592020-07-23 00:45:06 +000010761 "incremental_vacuum enabled with a max rootpage of zero"
drh040d77a2018-07-20 15:44:09 +000010762 );
10763 }
drh040d77a2018-07-20 15:44:09 +000010764 }
10765#endif
drhcbc6b712015-07-02 16:17:30 +000010766 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010767 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010768 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010769 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010770 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010771#ifndef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010772 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
drh867db832014-09-26 02:41:05 +000010773 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010774 }
10775#endif
drhcbc6b712015-07-02 16:17:30 +000010776 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000010777 }
drhcbc6b712015-07-02 16:17:30 +000010778 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000010779
10780 /* Make sure every page in the file is referenced
10781 */
drh17d2d592020-07-23 00:45:06 +000010782 if( !bPartial ){
10783 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000010784#ifdef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010785 if( getPageReferenced(&sCheck, i)==0 ){
10786 checkAppendMsg(&sCheck, "Page %d is never used", i);
10787 }
danielk1977afcdd022004-10-31 16:25:42 +000010788#else
drh17d2d592020-07-23 00:45:06 +000010789 /* If the database supports auto-vacuum, make sure no tables contain
10790 ** references to pointer-map pages.
10791 */
10792 if( getPageReferenced(&sCheck, i)==0 &&
10793 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10794 checkAppendMsg(&sCheck, "Page %d is never used", i);
10795 }
10796 if( getPageReferenced(&sCheck, i)!=0 &&
10797 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10798 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10799 }
danielk1977afcdd022004-10-31 16:25:42 +000010800#endif
drh47eb5612020-08-10 21:01:32 +000010801 }
drh5eddca62001-06-30 21:53:53 +000010802 }
10803
drh5eddca62001-06-30 21:53:53 +000010804 /* Clean up and report errors.
10805 */
drhe05b3f82015-07-01 17:53:49 +000010806integrity_ck_cleanup:
10807 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000010808 sqlite3_free(sCheck.aPgRef);
drh8ddf6352020-06-29 18:30:49 +000010809 if( sCheck.bOomFault ){
drh0cdbe1a2018-05-09 13:46:26 +000010810 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010811 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000010812 }
drh1dcdbc02007-01-27 02:24:54 +000010813 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000010814 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010815 /* Make sure this analysis did not leave any unref() pages. */
10816 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10817 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000010818 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000010819}
drhb7f91642004-10-31 02:22:47 +000010820#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000010821
drh73509ee2003-04-06 20:44:45 +000010822/*
drhd4e0bb02012-05-27 01:19:04 +000010823** Return the full pathname of the underlying database file. Return
10824** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000010825**
10826** The pager filename is invariant as long as the pager is
10827** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000010828*/
danielk1977aef0bf62005-12-30 16:28:01 +000010829const char *sqlite3BtreeGetFilename(Btree *p){
10830 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000010831 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000010832}
10833
10834/*
danielk19775865e3d2004-06-14 06:03:57 +000010835** Return the pathname of the journal file for this database. The return
10836** value of this routine is the same regardless of whether the journal file
10837** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000010838**
10839** The pager journal filename is invariant as long as the pager is
10840** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000010841*/
danielk1977aef0bf62005-12-30 16:28:01 +000010842const char *sqlite3BtreeGetJournalname(Btree *p){
10843 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000010844 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000010845}
10846
danielk19771d850a72004-05-31 08:26:49 +000010847/*
drh99744fa2020-08-25 19:09:07 +000010848** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10849** to describe the current transaction state of Btree p.
danielk19771d850a72004-05-31 08:26:49 +000010850*/
drh99744fa2020-08-25 19:09:07 +000010851int sqlite3BtreeTxnState(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000010852 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
drh99744fa2020-08-25 19:09:07 +000010853 return p ? p->inTrans : 0;
danielk19771d850a72004-05-31 08:26:49 +000010854}
10855
dana550f2d2010-08-02 10:47:05 +000010856#ifndef SQLITE_OMIT_WAL
10857/*
10858** Run a checkpoint on the Btree passed as the first argument.
10859**
10860** Return SQLITE_LOCKED if this or any other connection has an open
10861** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000010862**
dancdc1f042010-11-18 12:11:05 +000010863** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000010864*/
dancdc1f042010-11-18 12:11:05 +000010865int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000010866 int rc = SQLITE_OK;
10867 if( p ){
10868 BtShared *pBt = p->pBt;
10869 sqlite3BtreeEnter(p);
10870 if( pBt->inTransaction!=TRANS_NONE ){
10871 rc = SQLITE_LOCKED;
10872 }else{
dan7fb89902016-08-12 16:21:15 +000010873 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000010874 }
10875 sqlite3BtreeLeave(p);
10876 }
10877 return rc;
10878}
10879#endif
10880
danielk19771d850a72004-05-31 08:26:49 +000010881/*
drh99744fa2020-08-25 19:09:07 +000010882** Return true if there is currently a backup running on Btree p.
danielk19772372c2b2006-06-27 16:34:56 +000010883*/
danielk197704103022009-02-03 16:51:24 +000010884int sqlite3BtreeIsInBackup(Btree *p){
10885 assert( p );
10886 assert( sqlite3_mutex_held(p->db->mutex) );
10887 return p->nBackup!=0;
10888}
10889
danielk19772372c2b2006-06-27 16:34:56 +000010890/*
danielk1977da184232006-01-05 11:34:32 +000010891** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010892** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010893** purposes (for example, to store a high-level schema associated with
10894** the shared-btree). The btree layer manages reference counting issues.
10895**
10896** The first time this is called on a shared-btree, nBytes bytes of memory
10897** are allocated, zeroed, and returned to the caller. For each subsequent
10898** call the nBytes parameter is ignored and a pointer to the same blob
10899** of memory returned.
10900**
danielk1977171bfed2008-06-23 09:50:50 +000010901** If the nBytes parameter is 0 and the blob of memory has not yet been
10902** allocated, a null pointer is returned. If the blob has already been
10903** allocated, it is returned as normal.
10904**
danielk1977da184232006-01-05 11:34:32 +000010905** Just before the shared-btree is closed, the function passed as the
10906** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010907** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010908** on the memory, the btree layer does that.
10909*/
10910void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10911 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010912 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010913 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010914 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010915 pBt->xFreeSchema = xFree;
10916 }
drh27641702007-08-22 02:56:42 +000010917 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010918 return pBt->pSchema;
10919}
10920
danielk1977c87d34d2006-01-06 13:00:28 +000010921/*
danielk1977404ca072009-03-16 13:19:36 +000010922** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10923** btree as the argument handle holds an exclusive lock on the
drh1e32bed2020-06-19 13:33:53 +000010924** sqlite_schema table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010925*/
10926int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010927 int rc;
drhe5fe6902007-12-07 18:55:28 +000010928 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010929 sqlite3BtreeEnter(p);
drh346a70c2020-06-15 20:27:35 +000010930 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
danielk1977404ca072009-03-16 13:19:36 +000010931 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010932 sqlite3BtreeLeave(p);
10933 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010934}
10935
drha154dcd2006-03-22 22:10:07 +000010936
10937#ifndef SQLITE_OMIT_SHARED_CACHE
10938/*
10939** Obtain a lock on the table whose root page is iTab. The
10940** lock is a write lock if isWritelock is true or a read lock
10941** if it is false.
10942*/
danielk1977c00da102006-01-07 13:21:04 +000010943int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010944 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010945 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010946 if( p->sharable ){
10947 u8 lockType = READ_LOCK + isWriteLock;
10948 assert( READ_LOCK+1==WRITE_LOCK );
10949 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010950
drh6a9ad3d2008-04-02 16:29:30 +000010951 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010952 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010953 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010954 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010955 }
10956 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010957 }
10958 return rc;
10959}
drha154dcd2006-03-22 22:10:07 +000010960#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010961
danielk1977b4e9af92007-05-01 17:49:49 +000010962#ifndef SQLITE_OMIT_INCRBLOB
10963/*
10964** Argument pCsr must be a cursor opened for writing on an
10965** INTKEY table currently pointing at a valid table entry.
10966** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010967**
10968** Only the data content may only be modified, it is not possible to
10969** change the length of the data stored. If this function is called with
10970** parameters that attempt to write past the end of the existing data,
10971** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010972*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010973int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010974 int rc;
dan7a2347e2016-01-07 16:43:54 +000010975 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010976 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010977 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010978
danielk1977c9000e62009-07-08 13:55:28 +000010979 rc = restoreCursorPosition(pCsr);
10980 if( rc!=SQLITE_OK ){
10981 return rc;
10982 }
danielk19773588ceb2008-06-10 17:30:26 +000010983 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10984 if( pCsr->eState!=CURSOR_VALID ){
10985 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010986 }
10987
dan227a1c42013-04-03 11:17:39 +000010988 /* Save the positions of all other cursors open on this table. This is
10989 ** required in case any of them are holding references to an xFetch
10990 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010991 **
drh3f387402014-09-24 01:23:00 +000010992 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010993 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10994 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010995 */
drh370c9f42013-04-03 20:04:04 +000010996 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10997 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010998
danielk1977c9000e62009-07-08 13:55:28 +000010999 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000011000 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000011001 ** (b) there is a read/write transaction open,
11002 ** (c) the connection holds a write-lock on the table (if required),
11003 ** (d) there are no conflicting read-locks, and
11004 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000011005 */
drh036dbec2014-03-11 23:40:44 +000011006 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000011007 return SQLITE_READONLY;
11008 }
drhc9166342012-01-05 23:32:06 +000011009 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
11010 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000011011 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
11012 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000011013 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000011014
drhfb192682009-07-11 18:26:28 +000011015 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000011016}
danielk19772dec9702007-05-02 16:48:37 +000011017
11018/*
dan5a500af2014-03-11 20:33:04 +000011019** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000011020*/
dan5a500af2014-03-11 20:33:04 +000011021void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000011022 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000011023 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000011024}
danielk1977b4e9af92007-05-01 17:49:49 +000011025#endif
dane04dc882010-04-20 18:53:15 +000011026
11027/*
11028** Set both the "read version" (single byte at byte offset 18) and
11029** "write version" (single byte at byte offset 19) fields in the database
11030** header to iVersion.
11031*/
11032int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
11033 BtShared *pBt = pBtree->pBt;
11034 int rc; /* Return code */
11035
dane04dc882010-04-20 18:53:15 +000011036 assert( iVersion==1 || iVersion==2 );
11037
danb9780022010-04-21 18:37:57 +000011038 /* If setting the version fields to 1, do not automatically open the
11039 ** WAL connection, even if the version fields are currently set to 2.
11040 */
drhc9166342012-01-05 23:32:06 +000011041 pBt->btsFlags &= ~BTS_NO_WAL;
11042 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000011043
drhbb2d9b12018-06-06 16:28:40 +000011044 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000011045 if( rc==SQLITE_OK ){
11046 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000011047 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000011048 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000011049 if( rc==SQLITE_OK ){
11050 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
11051 if( rc==SQLITE_OK ){
11052 aData[18] = (u8)iVersion;
11053 aData[19] = (u8)iVersion;
11054 }
11055 }
11056 }
dane04dc882010-04-20 18:53:15 +000011057 }
11058
drhc9166342012-01-05 23:32:06 +000011059 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000011060 return rc;
11061}
dan428c2182012-08-06 18:50:11 +000011062
drhe0997b32015-03-20 14:57:50 +000011063/*
11064** Return true if the cursor has a hint specified. This routine is
11065** only used from within assert() statements
11066*/
11067int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
11068 return (pCsr->hints & mask)!=0;
11069}
drhe0997b32015-03-20 14:57:50 +000011070
drh781597f2014-05-21 08:21:07 +000011071/*
11072** Return true if the given Btree is read-only.
11073*/
11074int sqlite3BtreeIsReadonly(Btree *p){
11075 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
11076}
drhdef68892014-11-04 12:11:23 +000011077
11078/*
11079** Return the size of the header added to each page by this module.
11080*/
drh37c057b2014-12-30 00:57:29 +000011081int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000011082
drh5a1fb182016-01-08 19:34:39 +000011083#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000011084/*
11085** Return true if the Btree passed as the only argument is sharable.
11086*/
11087int sqlite3BtreeSharable(Btree *p){
11088 return p->sharable;
11089}
dan272989b2016-07-06 10:12:02 +000011090
11091/*
11092** Return the number of connections to the BtShared object accessed by
11093** the Btree handle passed as the only argument. For private caches
11094** this is always 1. For shared caches it may be 1 or greater.
11095*/
11096int sqlite3BtreeConnectionCount(Btree *p){
11097 testcase( p->sharable );
11098 return p->pBt->nRef;
11099}
drh5a1fb182016-01-08 19:34:39 +000011100#endif