blob: b072f95e728a7f9822a135442dedff7545057335 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drhc85240d2009-06-04 16:14:33 +000012** $Id: btree.c,v 1.615 2009/06/04 16:14:34 drh Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000015** See the header comment on "btreeInt.h" for additional information.
16** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000017*/
drha3152892007-05-05 11:48:52 +000018#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000019
drh8c42ca92001-06-22 19:15:00 +000020/*
drha3152892007-05-05 11:48:52 +000021** The header string that appears at the beginning of every
22** SQLite database.
drh556b2a22005-06-14 16:04:05 +000023*/
drh556b2a22005-06-14 16:04:05 +000024static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000025
drh8c42ca92001-06-22 19:15:00 +000026/*
drha3152892007-05-05 11:48:52 +000027** Set this global variable to 1 to enable tracing using the TRACE
28** macro.
drh615ae552005-01-16 23:21:00 +000029*/
drhe8f52c52008-07-12 14:52:20 +000030#if 0
mlcreech3a00f902008-03-04 17:45:01 +000031int sqlite3BtreeTrace=0; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000032# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
33#else
34# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000035#endif
drh615ae552005-01-16 23:21:00 +000036
drh86f8c192007-08-22 00:39:19 +000037
38
drhe53831d2007-08-17 01:14:38 +000039#ifndef SQLITE_OMIT_SHARED_CACHE
40/*
danielk1977502b4e02008-09-02 14:07:24 +000041** A list of BtShared objects that are eligible for participation
42** in shared cache. This variable has file scope during normal builds,
43** but the test harness needs to access it so we make it global for
44** test builds.
drh7555d8e2009-03-20 13:15:30 +000045**
46** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000047*/
48#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000049BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#else
drh78f82d12008-09-02 00:52:52 +000051static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000052#endif
drhe53831d2007-08-17 01:14:38 +000053#endif /* SQLITE_OMIT_SHARED_CACHE */
54
55#ifndef SQLITE_OMIT_SHARED_CACHE
56/*
57** Enable or disable the shared pager and schema features.
58**
59** This routine has no effect on existing database connections.
60** The shared cache setting effects only future calls to
61** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
62*/
63int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000064 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000065 return SQLITE_OK;
66}
67#endif
68
drhd677b3d2007-08-20 22:48:41 +000069
drh615ae552005-01-16 23:21:00 +000070/*
drh66cbd152004-09-01 16:12:25 +000071** Forward declaration
72*/
drh11b57d62009-02-24 19:21:41 +000073static int checkForReadConflicts(Btree*, Pgno, BtCursor*, i64);
drh66cbd152004-09-01 16:12:25 +000074
danielk1977aef0bf62005-12-30 16:28:01 +000075
76#ifdef SQLITE_OMIT_SHARED_CACHE
77 /*
drhc25eabe2009-02-24 18:57:31 +000078 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
79 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000080 ** manipulate entries in the BtShared.pLock linked list used to store
81 ** shared-cache table level locks. If the library is compiled with the
82 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000083 ** of each BtShared structure and so this locking is not necessary.
84 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000085 */
drhc25eabe2009-02-24 18:57:31 +000086 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
87 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
88 #define clearAllSharedCacheTableLocks(a)
drhe53831d2007-08-17 01:14:38 +000089#endif
danielk1977aef0bf62005-12-30 16:28:01 +000090
drhe53831d2007-08-17 01:14:38 +000091#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977da184232006-01-05 11:34:32 +000092/*
danielk1977aef0bf62005-12-30 16:28:01 +000093** Query to see if btree handle p may obtain a lock of type eLock
94** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +000095** SQLITE_OK if the lock may be obtained (by calling
96** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +000097*/
drhc25eabe2009-02-24 18:57:31 +000098static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +000099 BtShared *pBt = p->pBt;
100 BtLock *pIter;
101
drh1fee73e2007-08-29 04:00:57 +0000102 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000103 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
104 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000105
danielk19775b413d72009-04-01 09:41:54 +0000106 /* If requesting a write-lock, then the Btree must have an open write
107 ** transaction on this file. And, obviously, for this to be so there
108 ** must be an open write transaction on the file itself.
109 */
110 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
111 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
112
danielk1977da184232006-01-05 11:34:32 +0000113 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000114 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000115 return SQLITE_OK;
116 }
117
danielk1977641b0f42007-12-21 04:47:25 +0000118 /* If some other connection is holding an exclusive lock, the
119 ** requested lock may not be obtained.
120 */
danielk1977404ca072009-03-16 13:19:36 +0000121 if( pBt->pWriter!=p && pBt->isExclusive ){
122 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
123 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000124 }
125
drhc25eabe2009-02-24 18:57:31 +0000126 /* This (along with setSharedCacheTableLock()) is where
127 ** the ReadUncommitted flag is dealt with.
128 ** If the caller is querying for a read-lock on any table
drhc74d0b1d2009-02-24 16:18:05 +0000129 ** other than the sqlite_master table (table 1) and if the ReadUncommitted
130 ** flag is set, then the lock granted even if there are write-locks
danielk1977da184232006-01-05 11:34:32 +0000131 ** on the table. If a write-lock is requested, the ReadUncommitted flag
132 ** is not considered.
133 **
drhc25eabe2009-02-24 18:57:31 +0000134 ** In function setSharedCacheTableLock(), if a read-lock is demanded and the
danielk1977da184232006-01-05 11:34:32 +0000135 ** ReadUncommitted flag is set, no entry is added to the locks list
136 ** (BtShared.pLock).
137 **
drhc74d0b1d2009-02-24 16:18:05 +0000138 ** To summarize: If the ReadUncommitted flag is set, then read cursors
139 ** on non-schema tables do not create or respect table locks. The locking
140 ** procedure for a write-cursor does not change.
danielk1977da184232006-01-05 11:34:32 +0000141 */
142 if(
drhe5fe6902007-12-07 18:55:28 +0000143 0==(p->db->flags&SQLITE_ReadUncommitted) ||
danielk1977da184232006-01-05 11:34:32 +0000144 eLock==WRITE_LOCK ||
drh47ded162006-01-06 01:42:58 +0000145 iTab==MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000146 ){
147 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
danielk19775b413d72009-04-01 09:41:54 +0000148 /* The condition (pIter->eLock!=eLock) in the following if(...)
149 ** statement is a simplification of:
150 **
151 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
152 **
153 ** since we know that if eLock==WRITE_LOCK, then no other connection
154 ** may hold a WRITE_LOCK on any table in this file (since there can
155 ** only be a single writer).
156 */
157 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
158 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
159 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
danielk1977404ca072009-03-16 13:19:36 +0000160 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
161 if( eLock==WRITE_LOCK ){
162 assert( p==pBt->pWriter );
163 pBt->isPending = 1;
164 }
165 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977da184232006-01-05 11:34:32 +0000166 }
danielk1977aef0bf62005-12-30 16:28:01 +0000167 }
168 }
169 return SQLITE_OK;
170}
drhe53831d2007-08-17 01:14:38 +0000171#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000172
drhe53831d2007-08-17 01:14:38 +0000173#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000174/*
175** Add a lock on the table with root-page iTable to the shared-btree used
176** by Btree handle p. Parameter eLock must be either READ_LOCK or
177** WRITE_LOCK.
178**
179** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
180** SQLITE_NOMEM may also be returned.
181*/
drhc25eabe2009-02-24 18:57:31 +0000182static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000183 BtShared *pBt = p->pBt;
184 BtLock *pLock = 0;
185 BtLock *pIter;
186
drh1fee73e2007-08-29 04:00:57 +0000187 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000188 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
189 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000190
danielk1977da184232006-01-05 11:34:32 +0000191 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000192 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000193 return SQLITE_OK;
194 }
195
drhc25eabe2009-02-24 18:57:31 +0000196 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000197
drhc74d0b1d2009-02-24 16:18:05 +0000198 /* If the read-uncommitted flag is set and a read-lock is requested on
199 ** a non-schema table, then the lock is always granted. Return early
200 ** without adding an entry to the BtShared.pLock list. See
drhc25eabe2009-02-24 18:57:31 +0000201 ** comment in function querySharedCacheTableLock() for more info
202 ** on handling the ReadUncommitted flag.
danielk1977da184232006-01-05 11:34:32 +0000203 */
204 if(
drhe5fe6902007-12-07 18:55:28 +0000205 (p->db->flags&SQLITE_ReadUncommitted) &&
danielk1977da184232006-01-05 11:34:32 +0000206 (eLock==READ_LOCK) &&
drh47ded162006-01-06 01:42:58 +0000207 iTable!=MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000208 ){
209 return SQLITE_OK;
210 }
211
danielk1977aef0bf62005-12-30 16:28:01 +0000212 /* First search the list for an existing lock on this table. */
213 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
214 if( pIter->iTable==iTable && pIter->pBtree==p ){
215 pLock = pIter;
216 break;
217 }
218 }
219
220 /* If the above search did not find a BtLock struct associating Btree p
221 ** with table iTable, allocate one and link it into the list.
222 */
223 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000224 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000225 if( !pLock ){
226 return SQLITE_NOMEM;
227 }
228 pLock->iTable = iTable;
229 pLock->pBtree = p;
230 pLock->pNext = pBt->pLock;
231 pBt->pLock = pLock;
232 }
233
234 /* Set the BtLock.eLock variable to the maximum of the current lock
235 ** and the requested lock. This means if a write-lock was already held
236 ** and a read-lock requested, we don't incorrectly downgrade the lock.
237 */
238 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000239 if( eLock>pLock->eLock ){
240 pLock->eLock = eLock;
241 }
danielk1977aef0bf62005-12-30 16:28:01 +0000242
243 return SQLITE_OK;
244}
drhe53831d2007-08-17 01:14:38 +0000245#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000246
drhe53831d2007-08-17 01:14:38 +0000247#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000248/*
drhc25eabe2009-02-24 18:57:31 +0000249** Release all the table locks (locks obtained via calls to
250** the setSharedCacheTableLock() procedure) held by Btree handle p.
danielk1977fa542f12009-04-02 18:28:08 +0000251**
252** This function assumes that handle p has an open read or write
253** transaction. If it does not, then the BtShared.isPending variable
254** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000255*/
drhc25eabe2009-02-24 18:57:31 +0000256static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000257 BtShared *pBt = p->pBt;
258 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000259
drh1fee73e2007-08-29 04:00:57 +0000260 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000261 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000262 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000263
danielk1977aef0bf62005-12-30 16:28:01 +0000264 while( *ppIter ){
265 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000266 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000267 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000268 if( pLock->pBtree==p ){
269 *ppIter = pLock->pNext;
drh17435752007-08-16 04:30:38 +0000270 sqlite3_free(pLock);
danielk1977aef0bf62005-12-30 16:28:01 +0000271 }else{
272 ppIter = &pLock->pNext;
273 }
274 }
danielk1977641b0f42007-12-21 04:47:25 +0000275
danielk1977404ca072009-03-16 13:19:36 +0000276 assert( pBt->isPending==0 || pBt->pWriter );
277 if( pBt->pWriter==p ){
278 pBt->pWriter = 0;
279 pBt->isExclusive = 0;
280 pBt->isPending = 0;
281 }else if( pBt->nTransaction==2 ){
282 /* This function is called when connection p is concluding its
283 ** transaction. If there currently exists a writer, and p is not
284 ** that writer, then the number of locks held by connections other
285 ** than the writer must be about to drop to zero. In this case
286 ** set the isPending flag to 0.
287 **
288 ** If there is not currently a writer, then BtShared.isPending must
289 ** be zero already. So this next line is harmless in that case.
290 */
291 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000292 }
danielk1977aef0bf62005-12-30 16:28:01 +0000293}
294#endif /* SQLITE_OMIT_SHARED_CACHE */
295
drh980b1a72006-08-16 16:42:48 +0000296static void releasePage(MemPage *pPage); /* Forward reference */
297
drh1fee73e2007-08-29 04:00:57 +0000298/*
299** Verify that the cursor holds a mutex on the BtShared
300*/
301#ifndef NDEBUG
302static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000303 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000304}
305#endif
306
307
danielk197792d4d7a2007-05-04 12:05:56 +0000308#ifndef SQLITE_OMIT_INCRBLOB
309/*
310** Invalidate the overflow page-list cache for cursor pCur, if any.
311*/
312static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000313 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000314 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000315 pCur->aOverflow = 0;
316}
317
318/*
319** Invalidate the overflow page-list cache for all cursors opened
320** on the shared btree structure pBt.
321*/
322static void invalidateAllOverflowCache(BtShared *pBt){
323 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000325 for(p=pBt->pCursor; p; p=p->pNext){
326 invalidateOverflowCache(p);
327 }
328}
329#else
330 #define invalidateOverflowCache(x)
331 #define invalidateAllOverflowCache(x)
332#endif
333
drh980b1a72006-08-16 16:42:48 +0000334/*
danielk1977bea2a942009-01-20 17:06:27 +0000335** Set bit pgno of the BtShared.pHasContent bitvec. This is called
336** when a page that previously contained data becomes a free-list leaf
337** page.
338**
339** The BtShared.pHasContent bitvec exists to work around an obscure
340** bug caused by the interaction of two useful IO optimizations surrounding
341** free-list leaf pages:
342**
343** 1) When all data is deleted from a page and the page becomes
344** a free-list leaf page, the page is not written to the database
345** (as free-list leaf pages contain no meaningful data). Sometimes
346** such a page is not even journalled (as it will not be modified,
347** why bother journalling it?).
348**
349** 2) When a free-list leaf page is reused, its content is not read
350** from the database or written to the journal file (why should it
351** be, if it is not at all meaningful?).
352**
353** By themselves, these optimizations work fine and provide a handy
354** performance boost to bulk delete or insert operations. However, if
355** a page is moved to the free-list and then reused within the same
356** transaction, a problem comes up. If the page is not journalled when
357** it is moved to the free-list and it is also not journalled when it
358** is extracted from the free-list and reused, then the original data
359** may be lost. In the event of a rollback, it may not be possible
360** to restore the database to its original configuration.
361**
362** The solution is the BtShared.pHasContent bitvec. Whenever a page is
363** moved to become a free-list leaf page, the corresponding bit is
364** set in the bitvec. Whenever a leaf page is extracted from the free-list,
365** optimization 2 above is ommitted if the corresponding bit is already
366** set in BtShared.pHasContent. The contents of the bitvec are cleared
367** at the end of every transaction.
368*/
369static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
370 int rc = SQLITE_OK;
371 if( !pBt->pHasContent ){
372 int nPage;
373 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
374 if( rc==SQLITE_OK ){
375 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
376 if( !pBt->pHasContent ){
377 rc = SQLITE_NOMEM;
378 }
379 }
380 }
381 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
382 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
383 }
384 return rc;
385}
386
387/*
388** Query the BtShared.pHasContent vector.
389**
390** This function is called when a free-list leaf page is removed from the
391** free-list for reuse. It returns false if it is safe to retrieve the
392** page from the pager layer with the 'no-content' flag set. True otherwise.
393*/
394static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
395 Bitvec *p = pBt->pHasContent;
396 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
397}
398
399/*
400** Clear (destroy) the BtShared.pHasContent bitvec. This should be
401** invoked at the conclusion of each write-transaction.
402*/
403static void btreeClearHasContent(BtShared *pBt){
404 sqlite3BitvecDestroy(pBt->pHasContent);
405 pBt->pHasContent = 0;
406}
407
408/*
drh980b1a72006-08-16 16:42:48 +0000409** Save the current cursor position in the variables BtCursor.nKey
410** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
411*/
412static int saveCursorPosition(BtCursor *pCur){
413 int rc;
414
415 assert( CURSOR_VALID==pCur->eState );
416 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000417 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000418
419 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
420
421 /* If this is an intKey table, then the above call to BtreeKeySize()
422 ** stores the integer key in pCur->nKey. In this case this value is
423 ** all that is required. Otherwise, if pCur is not open on an intKey
424 ** table, then malloc space for and store the pCur->nKey bytes of key
425 ** data.
426 */
danielk197771d5d2c2008-09-29 11:49:47 +0000427 if( rc==SQLITE_OK && 0==pCur->apPage[0]->intKey){
drhf49661a2008-12-10 16:45:50 +0000428 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000429 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000430 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000431 if( rc==SQLITE_OK ){
432 pCur->pKey = pKey;
433 }else{
drh17435752007-08-16 04:30:38 +0000434 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000435 }
436 }else{
437 rc = SQLITE_NOMEM;
438 }
439 }
danielk197771d5d2c2008-09-29 11:49:47 +0000440 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000441
442 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000443 int i;
444 for(i=0; i<=pCur->iPage; i++){
445 releasePage(pCur->apPage[i]);
446 pCur->apPage[i] = 0;
447 }
448 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000449 pCur->eState = CURSOR_REQUIRESEEK;
450 }
451
danielk197792d4d7a2007-05-04 12:05:56 +0000452 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000453 return rc;
454}
455
456/*
457** Save the positions of all cursors except pExcept open on the table
458** with root-page iRoot. Usually, this is called just before cursor
459** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
460*/
461static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
462 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000463 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000464 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000465 for(p=pBt->pCursor; p; p=p->pNext){
466 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
467 p->eState==CURSOR_VALID ){
468 int rc = saveCursorPosition(p);
469 if( SQLITE_OK!=rc ){
470 return rc;
471 }
472 }
473 }
474 return SQLITE_OK;
475}
476
477/*
drhbf700f32007-03-31 02:36:44 +0000478** Clear the current cursor position.
479*/
danielk1977be51a652008-10-08 17:58:48 +0000480void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000481 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000482 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000483 pCur->pKey = 0;
484 pCur->eState = CURSOR_INVALID;
485}
486
487/*
drh980b1a72006-08-16 16:42:48 +0000488** Restore the cursor to the position it was in (or as close to as possible)
489** when saveCursorPosition() was called. Note that this call deletes the
490** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000491** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000492** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000493*/
drha3460582008-07-11 21:02:53 +0000494int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000495 int rc;
drh1fee73e2007-08-29 04:00:57 +0000496 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000497 assert( pCur->eState>=CURSOR_REQUIRESEEK );
498 if( pCur->eState==CURSOR_FAULT ){
499 return pCur->skip;
500 }
drh980b1a72006-08-16 16:42:48 +0000501 pCur->eState = CURSOR_INVALID;
drhe63d9992008-08-13 19:11:48 +0000502 rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
drh980b1a72006-08-16 16:42:48 +0000503 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000504 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000505 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000506 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000507 }
508 return rc;
509}
510
drha3460582008-07-11 21:02:53 +0000511#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000512 (p->eState>=CURSOR_REQUIRESEEK ? \
drha3460582008-07-11 21:02:53 +0000513 sqlite3BtreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000514 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000515
drha3460582008-07-11 21:02:53 +0000516/*
517** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000518** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000519** at is deleted out from under them.
520**
521** This routine returns an error code if something goes wrong. The
522** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
523*/
524int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
525 int rc;
526
527 rc = restoreCursorPosition(pCur);
528 if( rc ){
529 *pHasMoved = 1;
530 return rc;
531 }
532 if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
533 *pHasMoved = 1;
534 }else{
535 *pHasMoved = 0;
536 }
537 return SQLITE_OK;
538}
539
danielk1977599fcba2004-11-08 07:13:13 +0000540#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000541/*
drha3152892007-05-05 11:48:52 +0000542** Given a page number of a regular database page, return the page
543** number for the pointer-map page that contains the entry for the
544** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000545*/
danielk1977266664d2006-02-10 08:24:21 +0000546static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000547 int nPagesPerMapPage;
548 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000549 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000550 nPagesPerMapPage = (pBt->usableSize/5)+1;
551 iPtrMap = (pgno-2)/nPagesPerMapPage;
552 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000553 if( ret==PENDING_BYTE_PAGE(pBt) ){
554 ret++;
555 }
556 return ret;
557}
danielk1977a19df672004-11-03 11:37:07 +0000558
danielk1977afcdd022004-10-31 16:25:42 +0000559/*
danielk1977afcdd022004-10-31 16:25:42 +0000560** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000561**
562** This routine updates the pointer map entry for page number 'key'
563** so that it maps to type 'eType' and parent page number 'pgno'.
564** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000565*/
danielk1977aef0bf62005-12-30 16:28:01 +0000566static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000567 DbPage *pDbPage; /* The pointer map page */
568 u8 *pPtrmap; /* The pointer map data */
569 Pgno iPtrmap; /* The pointer map page number */
570 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000571 int rc;
572
drh1fee73e2007-08-29 04:00:57 +0000573 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000574 /* The master-journal page number must never be used as a pointer map page */
575 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
576
danielk1977ac11ee62005-01-15 12:45:51 +0000577 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000578 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000579 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000580 }
danielk1977266664d2006-02-10 08:24:21 +0000581 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000582 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000583 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000584 return rc;
585 }
danielk19778c666b12008-07-18 09:34:57 +0000586 offset = PTRMAP_PTROFFSET(iPtrmap, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000587 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000588
drh615ae552005-01-16 23:21:00 +0000589 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
590 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000591 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000592 if( rc==SQLITE_OK ){
593 pPtrmap[offset] = eType;
594 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000595 }
danielk1977afcdd022004-10-31 16:25:42 +0000596 }
597
danielk19773b8a05f2007-03-19 17:44:26 +0000598 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000599 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000600}
601
602/*
603** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000604**
605** This routine retrieves the pointer map entry for page 'key', writing
606** the type and parent page number to *pEType and *pPgno respectively.
607** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000608*/
danielk1977aef0bf62005-12-30 16:28:01 +0000609static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000610 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000611 int iPtrmap; /* Pointer map page index */
612 u8 *pPtrmap; /* Pointer map page data */
613 int offset; /* Offset of entry in pointer map */
614 int rc;
615
drh1fee73e2007-08-29 04:00:57 +0000616 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000617
danielk1977266664d2006-02-10 08:24:21 +0000618 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000619 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000620 if( rc!=0 ){
621 return rc;
622 }
danielk19773b8a05f2007-03-19 17:44:26 +0000623 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000624
danielk19778c666b12008-07-18 09:34:57 +0000625 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000626 assert( pEType!=0 );
627 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000628 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000629
danielk19773b8a05f2007-03-19 17:44:26 +0000630 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000631 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000632 return SQLITE_OK;
633}
634
danielk197785d90ca2008-07-19 14:25:15 +0000635#else /* if defined SQLITE_OMIT_AUTOVACUUM */
636 #define ptrmapPut(w,x,y,z) SQLITE_OK
637 #define ptrmapGet(w,x,y,z) SQLITE_OK
638 #define ptrmapPutOvfl(y,z) SQLITE_OK
639#endif
danielk1977afcdd022004-10-31 16:25:42 +0000640
drh0d316a42002-08-11 20:10:47 +0000641/*
drh271efa52004-05-30 19:19:05 +0000642** Given a btree page and a cell index (0 means the first cell on
643** the page, 1 means the second cell, and so forth) return a pointer
644** to the cell content.
645**
646** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000647*/
drh1688c862008-07-18 02:44:17 +0000648#define findCell(P,I) \
649 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000650
651/*
drh93a960a2008-07-10 00:32:42 +0000652** This a more complex version of findCell() that works for
drh43605152004-05-29 21:46:49 +0000653** pages that do contain overflow cells. See insert
654*/
655static u8 *findOverflowCell(MemPage *pPage, int iCell){
656 int i;
drh1fee73e2007-08-29 04:00:57 +0000657 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000658 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000659 int k;
660 struct _OvflCell *pOvfl;
661 pOvfl = &pPage->aOvfl[i];
662 k = pOvfl->idx;
663 if( k<=iCell ){
664 if( k==iCell ){
665 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000666 }
667 iCell--;
668 }
669 }
danielk19771cc5ed82007-05-16 17:28:43 +0000670 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000671}
672
673/*
674** Parse a cell content block and fill in the CellInfo structure. There
drh16a9b832007-05-05 18:39:25 +0000675** are two versions of this function. sqlite3BtreeParseCell() takes a
676** cell index as the second argument and sqlite3BtreeParseCellPtr()
677** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000678**
679** Within this file, the parseCell() macro can be called instead of
680** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000681*/
drh16a9b832007-05-05 18:39:25 +0000682void sqlite3BtreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000683 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000684 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000685 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000686){
drhf49661a2008-12-10 16:45:50 +0000687 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000688 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000689
drh1fee73e2007-08-29 04:00:57 +0000690 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000691
drh43605152004-05-29 21:46:49 +0000692 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000693 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000694 n = pPage->childPtrSize;
695 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000696 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000697 if( pPage->hasData ){
698 n += getVarint32(&pCell[n], nPayload);
699 }else{
700 nPayload = 0;
701 }
drh1bd10f82008-12-10 21:19:56 +0000702 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000703 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000704 }else{
drh79df1f42008-07-18 00:57:33 +0000705 pInfo->nData = 0;
706 n += getVarint32(&pCell[n], nPayload);
707 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000708 }
drh72365832007-03-06 15:53:44 +0000709 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000710 pInfo->nHeader = n;
drh79df1f42008-07-18 00:57:33 +0000711 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000712 /* This is the (easy) common case where the entire payload fits
713 ** on the local page. No overflow is required.
714 */
715 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000716 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000717 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000718 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000719 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000720 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000721 }
drh1bd10f82008-12-10 21:19:56 +0000722 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000723 }else{
drh271efa52004-05-30 19:19:05 +0000724 /* If the payload will not fit completely on the local page, we have
725 ** to decide how much to store locally and how much to spill onto
726 ** overflow pages. The strategy is to minimize the amount of unused
727 ** space on overflow pages while keeping the amount of local storage
728 ** in between minLocal and maxLocal.
729 **
730 ** Warning: changing the way overflow payload is distributed in any
731 ** way will result in an incompatible file format.
732 */
733 int minLocal; /* Minimum amount of payload held locally */
734 int maxLocal; /* Maximum amount of payload held locally */
735 int surplus; /* Overflow payload available for local storage */
736
737 minLocal = pPage->minLocal;
738 maxLocal = pPage->maxLocal;
739 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000740 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000741 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000742 }else{
drhf49661a2008-12-10 16:45:50 +0000743 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000744 }
drhf49661a2008-12-10 16:45:50 +0000745 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000746 pInfo->nSize = pInfo->iOverflow + 4;
747 }
drh3aac2dd2004-04-26 14:10:20 +0000748}
danielk19771cc5ed82007-05-16 17:28:43 +0000749#define parseCell(pPage, iCell, pInfo) \
750 sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
drh16a9b832007-05-05 18:39:25 +0000751void sqlite3BtreeParseCell(
drh43605152004-05-29 21:46:49 +0000752 MemPage *pPage, /* Page containing the cell */
753 int iCell, /* The cell index. First cell is 0 */
754 CellInfo *pInfo /* Fill in this structure */
755){
danielk19771cc5ed82007-05-16 17:28:43 +0000756 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000757}
drh3aac2dd2004-04-26 14:10:20 +0000758
759/*
drh43605152004-05-29 21:46:49 +0000760** Compute the total number of bytes that a Cell needs in the cell
761** data area of the btree-page. The return number includes the cell
762** data header and the local payload, but not any overflow page or
763** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000764*/
danielk1977ae5558b2009-04-29 11:31:47 +0000765static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
766 u8 *pIter = &pCell[pPage->childPtrSize];
767 u32 nSize;
768
769#ifdef SQLITE_DEBUG
770 /* The value returned by this function should always be the same as
771 ** the (CellInfo.nSize) value found by doing a full parse of the
772 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
773 ** this function verifies that this invariant is not violated. */
774 CellInfo debuginfo;
775 sqlite3BtreeParseCellPtr(pPage, pCell, &debuginfo);
776#endif
777
778 if( pPage->intKey ){
779 u8 *pEnd;
780 if( pPage->hasData ){
781 pIter += getVarint32(pIter, nSize);
782 }else{
783 nSize = 0;
784 }
785
786 /* pIter now points at the 64-bit integer key value, a variable length
787 ** integer. The following block moves pIter to point at the first byte
788 ** past the end of the key value. */
789 pEnd = &pIter[9];
790 while( (*pIter++)&0x80 && pIter<pEnd );
791 }else{
792 pIter += getVarint32(pIter, nSize);
793 }
794
795 if( nSize>pPage->maxLocal ){
796 int minLocal = pPage->minLocal;
797 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
798 if( nSize>pPage->maxLocal ){
799 nSize = minLocal;
800 }
801 nSize += 4;
802 }
803 nSize += (pIter - pCell);
804
805 /* The minimum size of any cell is 4 bytes. */
806 if( nSize<4 ){
807 nSize = 4;
808 }
809
810 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +0000811 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +0000812}
danielk1977bc6ada42004-06-30 08:20:16 +0000813#ifndef NDEBUG
drha9121e42008-02-19 14:59:35 +0000814static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +0000815 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +0000816}
danielk1977bc6ada42004-06-30 08:20:16 +0000817#endif
drh3b7511c2001-05-26 13:15:44 +0000818
danielk197779a40da2005-01-16 08:00:01 +0000819#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000820/*
danielk197726836652005-01-17 01:33:13 +0000821** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +0000822** to an overflow page, insert an entry into the pointer-map
823** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +0000824*/
danielk197726836652005-01-17 01:33:13 +0000825static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
drhfa67c3c2008-07-11 02:21:40 +0000826 CellInfo info;
827 assert( pCell!=0 );
828 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
829 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
830 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
831 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
832 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +0000833 }
danielk197779a40da2005-01-16 08:00:01 +0000834 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +0000835}
danielk197726836652005-01-17 01:33:13 +0000836/*
837** If the cell with index iCell on page pPage contains a pointer
838** to an overflow page, insert an entry into the pointer-map
839** for the overflow page.
840*/
841static int ptrmapPutOvfl(MemPage *pPage, int iCell){
842 u8 *pCell;
drh1fee73e2007-08-29 04:00:57 +0000843 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197726836652005-01-17 01:33:13 +0000844 pCell = findOverflowCell(pPage, iCell);
845 return ptrmapPutOvflPtr(pPage, pCell);
846}
danielk197779a40da2005-01-16 08:00:01 +0000847#endif
848
danielk1977ac11ee62005-01-15 12:45:51 +0000849
drhda200cc2004-05-09 11:51:38 +0000850/*
drh72f82862001-05-24 21:06:34 +0000851** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +0000852** end of the page and all free space is collected into one
853** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +0000854** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +0000855*/
shane0af3f892008-11-12 04:55:34 +0000856static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +0000857 int i; /* Loop counter */
858 int pc; /* Address of a i-th cell */
859 int addr; /* Offset of first byte after cell pointer array */
860 int hdr; /* Offset to the page header */
861 int size; /* Size of a cell */
862 int usableSize; /* Number of usable bytes on a page */
863 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +0000864 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +0000865 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +0000866 unsigned char *data; /* The page data */
867 unsigned char *temp; /* Temp area for cell content */
drh2af926b2001-05-15 00:39:25 +0000868
danielk19773b8a05f2007-03-19 17:44:26 +0000869 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000870 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +0000871 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +0000872 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +0000873 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +0000874 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +0000875 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +0000876 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000877 cellOffset = pPage->cellOffset;
878 nCell = pPage->nCell;
879 assert( nCell==get2byte(&data[hdr+3]) );
880 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +0000881 cbrk = get2byte(&data[hdr+5]);
882 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
883 cbrk = usableSize;
drh43605152004-05-29 21:46:49 +0000884 for(i=0; i<nCell; i++){
885 u8 *pAddr; /* The i-th cell pointer */
886 pAddr = &data[cellOffset + i*2];
887 pc = get2byte(pAddr);
shanedcc50b72008-11-13 18:29:50 +0000888 if( pc>=usableSize ){
shane0af3f892008-11-12 04:55:34 +0000889 return SQLITE_CORRUPT_BKPT;
890 }
drh43605152004-05-29 21:46:49 +0000891 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +0000892 cbrk -= size;
danielk19770d065412008-11-12 18:21:36 +0000893 if( cbrk<cellOffset+2*nCell || pc+size>usableSize ){
shane0af3f892008-11-12 04:55:34 +0000894 return SQLITE_CORRUPT_BKPT;
895 }
danielk19770d065412008-11-12 18:21:36 +0000896 assert( cbrk+size<=usableSize && cbrk>=0 );
drh281b21d2008-08-22 12:57:08 +0000897 memcpy(&data[cbrk], &temp[pc], size);
898 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +0000899 }
drh281b21d2008-08-22 12:57:08 +0000900 assert( cbrk>=cellOffset+2*nCell );
901 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +0000902 data[hdr+1] = 0;
903 data[hdr+2] = 0;
904 data[hdr+7] = 0;
905 addr = cellOffset+2*nCell;
drh281b21d2008-08-22 12:57:08 +0000906 memset(&data[addr], 0, cbrk-addr);
drhc5053fb2008-11-27 02:22:10 +0000907 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977360e6342008-11-12 08:49:51 +0000908 if( cbrk-addr!=pPage->nFree ){
909 return SQLITE_CORRUPT_BKPT;
910 }
shane0af3f892008-11-12 04:55:34 +0000911 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +0000912}
913
drha059ad02001-04-17 20:09:11 +0000914/*
danielk19776011a752009-04-01 16:25:32 +0000915** Allocate nByte bytes of space from within the B-Tree page passed
916** as the first argument. Return the index into pPage->aData[] of the
917** first byte of allocated space.
drhbd03cae2001-06-02 02:40:57 +0000918**
danielk19776011a752009-04-01 16:25:32 +0000919** The caller guarantees that the space between the end of the cell-offset
920** array and the start of the cell-content area is at least nByte bytes
921** in size. So this routine can never fail.
drh2af926b2001-05-15 00:39:25 +0000922**
danielk19776011a752009-04-01 16:25:32 +0000923** If there are already 60 or more bytes of fragments within the page,
924** the page is defragmented before returning. If this were not done there
925** is a chance that the number of fragmented bytes could eventually
926** overflow the single-byte field of the page-header in which this value
927** is stored.
drh7e3b0a02001-04-28 16:52:40 +0000928*/
drh9e572e62004-04-23 23:43:10 +0000929static int allocateSpace(MemPage *pPage, int nByte){
danielk19776011a752009-04-01 16:25:32 +0000930 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
931 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
932 int nFrag; /* Number of fragmented bytes on pPage */
drh43605152004-05-29 21:46:49 +0000933 int top;
drh43605152004-05-29 21:46:49 +0000934
danielk19773b8a05f2007-03-19 17:44:26 +0000935 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000936 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +0000937 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +0000938 assert( nByte>=0 ); /* Minimum cell size is 4 */
939 assert( pPage->nFree>=nByte );
940 assert( pPage->nOverflow==0 );
drh43605152004-05-29 21:46:49 +0000941
danielk19776011a752009-04-01 16:25:32 +0000942 /* Assert that the space between the cell-offset array and the
943 ** cell-content area is greater than nByte bytes.
944 */
945 assert( nByte <= (
946 get2byte(&data[hdr+5])-(hdr+8+(pPage->leaf?0:4)+2*get2byte(&data[hdr+3]))
947 ));
948
949 pPage->nFree -= (u16)nByte;
drh43605152004-05-29 21:46:49 +0000950 nFrag = data[hdr+7];
danielk19776011a752009-04-01 16:25:32 +0000951 if( nFrag>=60 ){
952 defragmentPage(pPage);
953 }else{
954 /* Search the freelist looking for a free slot big enough to satisfy
955 ** the request. The allocation is made from the first free slot in
956 ** the list that is large enough to accomadate it.
957 */
958 int pc, addr;
959 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
960 int size = get2byte(&data[pc+2]); /* Size of free slot */
drh43605152004-05-29 21:46:49 +0000961 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +0000962 int x = size - nByte;
danielk19776011a752009-04-01 16:25:32 +0000963 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +0000964 /* Remove the slot from the free-list. Update the number of
965 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +0000966 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +0000967 data[hdr+7] = (u8)(nFrag + x);
drh43605152004-05-29 21:46:49 +0000968 }else{
danielk1977fad91942009-04-29 17:49:59 +0000969 /* The slot remains on the free-list. Reduce its size to account
970 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +0000971 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +0000972 }
danielk19776011a752009-04-01 16:25:32 +0000973 return pc + x;
drh43605152004-05-29 21:46:49 +0000974 }
drh9e572e62004-04-23 23:43:10 +0000975 }
976 }
drh43605152004-05-29 21:46:49 +0000977
978 /* Allocate memory from the gap in between the cell pointer array
979 ** and the cell content area.
980 */
danielk19776011a752009-04-01 16:25:32 +0000981 top = get2byte(&data[hdr+5]) - nByte;
drh43605152004-05-29 21:46:49 +0000982 put2byte(&data[hdr+5], top);
983 return top;
drh7e3b0a02001-04-28 16:52:40 +0000984}
985
986/*
drh9e572e62004-04-23 23:43:10 +0000987** Return a section of the pPage->aData to the freelist.
988** The first byte of the new free block is pPage->aDisk[start]
989** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +0000990**
991** Most of the effort here is involved in coalesing adjacent
992** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000993*/
shanedcc50b72008-11-13 18:29:50 +0000994static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +0000995 int addr, pbegin, hdr;
drh9e572e62004-04-23 23:43:10 +0000996 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +0000997
drh9e572e62004-04-23 23:43:10 +0000998 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +0000999 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001000 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +00001001 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001002 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001003 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001004
drhfcce93f2006-02-22 03:08:32 +00001005#ifdef SQLITE_SECURE_DELETE
1006 /* Overwrite deleted information with zeros when the SECURE_DELETE
1007 ** option is enabled at compile-time */
1008 memset(&data[start], 0, size);
1009#endif
1010
drh9e572e62004-04-23 23:43:10 +00001011 /* Add the space back into the linked list of freeblocks */
drh43605152004-05-29 21:46:49 +00001012 hdr = pPage->hdrOffset;
1013 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001014 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +00001015 assert( pbegin<=pPage->pBt->usableSize-4 );
shanedcc50b72008-11-13 18:29:50 +00001016 if( pbegin<=addr ) {
1017 return SQLITE_CORRUPT_BKPT;
1018 }
drh3aac2dd2004-04-26 14:10:20 +00001019 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001020 }
shanedcc50b72008-11-13 18:29:50 +00001021 if ( pbegin>pPage->pBt->usableSize-4 ) {
1022 return SQLITE_CORRUPT_BKPT;
1023 }
drh3aac2dd2004-04-26 14:10:20 +00001024 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001025 put2byte(&data[addr], start);
1026 put2byte(&data[start], pbegin);
1027 put2byte(&data[start+2], size);
drhf49661a2008-12-10 16:45:50 +00001028 pPage->nFree += (u16)size;
drh9e572e62004-04-23 23:43:10 +00001029
1030 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +00001031 addr = pPage->hdrOffset + 1;
1032 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001033 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001034 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001035 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001036 pnext = get2byte(&data[pbegin]);
1037 psize = get2byte(&data[pbegin+2]);
1038 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1039 int frag = pnext - (pbegin+psize);
drhf49661a2008-12-10 16:45:50 +00001040 if( (frag<0) || (frag>(int)data[pPage->hdrOffset+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001041 return SQLITE_CORRUPT_BKPT;
1042 }
drhf49661a2008-12-10 16:45:50 +00001043 data[pPage->hdrOffset+7] -= (u8)frag;
1044 x = get2byte(&data[pnext]);
1045 put2byte(&data[pbegin], x);
1046 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1047 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001048 }else{
drh3aac2dd2004-04-26 14:10:20 +00001049 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001050 }
1051 }
drh7e3b0a02001-04-28 16:52:40 +00001052
drh43605152004-05-29 21:46:49 +00001053 /* If the cell content area begins with a freeblock, remove it. */
1054 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1055 int top;
1056 pbegin = get2byte(&data[hdr+1]);
1057 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001058 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1059 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001060 }
drhc5053fb2008-11-27 02:22:10 +00001061 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001062 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001063}
1064
1065/*
drh271efa52004-05-30 19:19:05 +00001066** Decode the flags byte (the first byte of the header) for a page
1067** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001068**
1069** Only the following combinations are supported. Anything different
1070** indicates a corrupt database files:
1071**
1072** PTF_ZERODATA
1073** PTF_ZERODATA | PTF_LEAF
1074** PTF_LEAFDATA | PTF_INTKEY
1075** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001076*/
drh44845222008-07-17 18:39:57 +00001077static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001078 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001079
1080 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001081 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001082 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001083 flagByte &= ~PTF_LEAF;
1084 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001085 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001086 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1087 pPage->intKey = 1;
1088 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001089 pPage->maxLocal = pBt->maxLeaf;
1090 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001091 }else if( flagByte==PTF_ZERODATA ){
1092 pPage->intKey = 0;
1093 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001094 pPage->maxLocal = pBt->maxLocal;
1095 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001096 }else{
1097 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001098 }
drh44845222008-07-17 18:39:57 +00001099 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001100}
1101
1102/*
drh7e3b0a02001-04-28 16:52:40 +00001103** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001104**
1105** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001106** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001107** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1108** guarantee that the page is well-formed. It only shows that
1109** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001110*/
danielk197771d5d2c2008-09-29 11:49:47 +00001111int sqlite3BtreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001112
danielk197771d5d2c2008-09-29 11:49:47 +00001113 assert( pPage->pBt!=0 );
1114 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001115 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001116 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1117 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001118
1119 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001120 u16 pc; /* Address of a freeblock within pPage->aData[] */
1121 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001122 u8 *data; /* Equal to pPage->aData */
1123 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001124 u16 usableSize; /* Amount of usable space on each page */
1125 u16 cellOffset; /* Offset from start of page to first cell pointer */
1126 u16 nFree; /* Number of unused bytes on the page */
1127 u16 top; /* First byte of the cell content area */
danielk197771d5d2c2008-09-29 11:49:47 +00001128
1129 pBt = pPage->pBt;
1130
danielk1977eaa06f62008-09-18 17:34:44 +00001131 hdr = pPage->hdrOffset;
1132 data = pPage->aData;
1133 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1134 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1135 pPage->maskPage = pBt->pageSize - 1;
1136 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001137 usableSize = pBt->usableSize;
1138 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1139 top = get2byte(&data[hdr+5]);
1140 pPage->nCell = get2byte(&data[hdr+3]);
1141 if( pPage->nCell>MX_CELL(pBt) ){
1142 /* To many cells for a single page. The page must be corrupt */
1143 return SQLITE_CORRUPT_BKPT;
1144 }
drh69e931e2009-06-03 21:04:35 +00001145
1146 /* A malformed database page might cause use to read past the end
1147 ** of page when parsing a cell.
1148 **
1149 ** The following block of code checks early to see if a cell extends
1150 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1151 ** returned if it does.
1152 */
1153#if defined(SQLITE_OVERREAD_CHECK) || 1
1154 {
1155 int iCellFirst; /* First allowable cell index */
1156 int iCellLast; /* Last possible cell index */
1157 int i; /* Index into the cell pointer array */
1158 int sz; /* Size of a cell */
1159
1160 iCellFirst = cellOffset + 2*pPage->nCell;
1161 iCellLast = usableSize - 4;
1162 if( !pPage->leaf ) iCellLast--;
1163 for(i=0; i<pPage->nCell; i++){
1164 pc = get2byte(&data[cellOffset+i*2]);
1165 if( pc<iCellFirst || pc>iCellLast ){
1166 return SQLITE_CORRUPT_BKPT;
1167 }
1168 sz = cellSizePtr(pPage, &data[pc]);
1169 if( pc+sz>usableSize ){
1170 return SQLITE_CORRUPT_BKPT;
1171 }
1172 }
1173 }
1174#endif
1175
danielk1977eaa06f62008-09-18 17:34:44 +00001176 /* Compute the total free space on the page */
1177 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001178 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001179 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001180 u16 next, size;
danielk1977eaa06f62008-09-18 17:34:44 +00001181 if( pc>usableSize-4 ){
1182 /* Free block is off the page */
1183 return SQLITE_CORRUPT_BKPT;
1184 }
1185 next = get2byte(&data[pc]);
1186 size = get2byte(&data[pc+2]);
1187 if( next>0 && next<=pc+size+3 ){
1188 /* Free blocks must be in accending order */
1189 return SQLITE_CORRUPT_BKPT;
1190 }
1191 nFree += size;
1192 pc = next;
1193 }
danielk197793c829c2009-06-03 17:26:17 +00001194
1195 /* At this point, nFree contains the sum of the offset to the start
1196 ** of the cell-content area plus the number of free bytes within
1197 ** the cell-content area. If this is greater than the usable-size
1198 ** of the page, then the page must be corrupted. This check also
1199 ** serves to verify that the offset to the start of the cell-content
1200 ** area, according to the page header, lies within the page.
1201 */
1202 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001203 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001204 }
danielk197793c829c2009-06-03 17:26:17 +00001205 pPage->nFree = nFree - (cellOffset + 2*pPage->nCell);
drh9e572e62004-04-23 23:43:10 +00001206
drh1688c862008-07-18 02:44:17 +00001207#if 0
1208 /* Check that all the offsets in the cell offset array are within range.
1209 **
1210 ** Omitting this consistency check and using the pPage->maskPage mask
1211 ** to prevent overrunning the page buffer in findCell() results in a
1212 ** 2.5% performance gain.
1213 */
1214 {
1215 u8 *pOff; /* Iterator used to check all cell offsets are in range */
1216 u8 *pEnd; /* Pointer to end of cell offset array */
1217 u8 mask; /* Mask of bits that must be zero in MSB of cell offsets */
1218 mask = ~(((u8)(pBt->pageSize>>8))-1);
1219 pEnd = &data[cellOffset + pPage->nCell*2];
1220 for(pOff=&data[cellOffset]; pOff!=pEnd && !((*pOff)&mask); pOff+=2);
1221 if( pOff!=pEnd ){
1222 return SQLITE_CORRUPT_BKPT;
1223 }
danielk1977e16535f2008-06-11 18:15:29 +00001224 }
drh1688c862008-07-18 02:44:17 +00001225#endif
danielk1977e16535f2008-06-11 18:15:29 +00001226
danielk197771d5d2c2008-09-29 11:49:47 +00001227 pPage->isInit = 1;
1228 }
drh9e572e62004-04-23 23:43:10 +00001229 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001230}
1231
1232/*
drh8b2f49b2001-06-08 00:21:52 +00001233** Set up a raw page so that it looks like a database page holding
1234** no entries.
drhbd03cae2001-06-02 02:40:57 +00001235*/
drh9e572e62004-04-23 23:43:10 +00001236static void zeroPage(MemPage *pPage, int flags){
1237 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001238 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001239 u8 hdr = pPage->hdrOffset;
1240 u16 first;
drh9e572e62004-04-23 23:43:10 +00001241
danielk19773b8a05f2007-03-19 17:44:26 +00001242 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001243 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1244 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001245 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001246 assert( sqlite3_mutex_held(pBt->mutex) );
drh1af4a6e2008-07-18 03:32:51 +00001247 /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
drh1bd10f82008-12-10 21:19:56 +00001248 data[hdr] = (char)flags;
1249 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001250 memset(&data[hdr+1], 0, 4);
1251 data[hdr+7] = 0;
1252 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001253 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001254 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001255 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001256 pPage->cellOffset = first;
1257 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001258 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1259 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001260 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001261 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001262}
1263
drh897a8202008-09-18 01:08:15 +00001264
1265/*
1266** Convert a DbPage obtained from the pager into a MemPage used by
1267** the btree layer.
1268*/
1269static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1270 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1271 pPage->aData = sqlite3PagerGetData(pDbPage);
1272 pPage->pDbPage = pDbPage;
1273 pPage->pBt = pBt;
1274 pPage->pgno = pgno;
1275 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1276 return pPage;
1277}
1278
drhbd03cae2001-06-02 02:40:57 +00001279/*
drh3aac2dd2004-04-26 14:10:20 +00001280** Get a page from the pager. Initialize the MemPage.pBt and
1281** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001282**
1283** If the noContent flag is set, it means that we do not care about
1284** the content of the page at this time. So do not go to the disk
1285** to fetch the content. Just fill in the content with zeros for now.
1286** If in the future we call sqlite3PagerWrite() on this page, that
1287** means we have started to be concerned about content and the disk
1288** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001289*/
drh16a9b832007-05-05 18:39:25 +00001290int sqlite3BtreeGetPage(
1291 BtShared *pBt, /* The btree */
1292 Pgno pgno, /* Number of the page to fetch */
1293 MemPage **ppPage, /* Return the page in this parameter */
1294 int noContent /* Do not load page content if true */
1295){
drh3aac2dd2004-04-26 14:10:20 +00001296 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001297 DbPage *pDbPage;
1298
drh1fee73e2007-08-29 04:00:57 +00001299 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001300 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001301 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001302 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001303 return SQLITE_OK;
1304}
1305
1306/*
danielk1977bea2a942009-01-20 17:06:27 +00001307** Retrieve a page from the pager cache. If the requested page is not
1308** already in the pager cache return NULL. Initialize the MemPage.pBt and
1309** MemPage.aData elements if needed.
1310*/
1311static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1312 DbPage *pDbPage;
1313 assert( sqlite3_mutex_held(pBt->mutex) );
1314 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1315 if( pDbPage ){
1316 return btreePageFromDbPage(pDbPage, pgno, pBt);
1317 }
1318 return 0;
1319}
1320
1321/*
danielk197789d40042008-11-17 14:20:56 +00001322** Return the size of the database file in pages. If there is any kind of
1323** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001324*/
danielk197789d40042008-11-17 14:20:56 +00001325static Pgno pagerPagecount(BtShared *pBt){
1326 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001327 int rc;
danielk197789d40042008-11-17 14:20:56 +00001328 assert( pBt->pPage1 );
1329 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1330 assert( rc==SQLITE_OK || nPage==-1 );
1331 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001332}
1333
1334/*
drhde647132004-05-07 17:57:49 +00001335** Get a page from the pager and initialize it. This routine
1336** is just a convenience wrapper around separate calls to
drh16a9b832007-05-05 18:39:25 +00001337** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
drhde647132004-05-07 17:57:49 +00001338*/
1339static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001340 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001341 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001342 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001343){
1344 int rc;
drh897a8202008-09-18 01:08:15 +00001345 MemPage *pPage;
1346
drh1fee73e2007-08-29 04:00:57 +00001347 assert( sqlite3_mutex_held(pBt->mutex) );
drh897a8202008-09-18 01:08:15 +00001348 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001349 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001350 }
danielk19779f580ad2008-09-10 14:45:57 +00001351
drh897a8202008-09-18 01:08:15 +00001352 /* It is often the case that the page we want is already in cache.
1353 ** If so, get it directly. This saves us from having to call
1354 ** pagerPagecount() to make sure pgno is within limits, which results
1355 ** in a measureable performance improvements.
1356 */
danielk1977bea2a942009-01-20 17:06:27 +00001357 *ppPage = pPage = btreePageLookup(pBt, pgno);
1358 if( pPage ){
drh897a8202008-09-18 01:08:15 +00001359 /* Page is already in cache */
drh897a8202008-09-18 01:08:15 +00001360 rc = SQLITE_OK;
1361 }else{
1362 /* Page not in cache. Acquire it. */
danielk197789d40042008-11-17 14:20:56 +00001363 if( pgno>pagerPagecount(pBt) ){
drh897a8202008-09-18 01:08:15 +00001364 return SQLITE_CORRUPT_BKPT;
1365 }
1366 rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
1367 if( rc ) return rc;
1368 pPage = *ppPage;
1369 }
danielk197771d5d2c2008-09-29 11:49:47 +00001370 if( !pPage->isInit ){
1371 rc = sqlite3BtreeInitPage(pPage);
drh897a8202008-09-18 01:08:15 +00001372 }
1373 if( rc!=SQLITE_OK ){
1374 releasePage(pPage);
1375 *ppPage = 0;
1376 }
drhde647132004-05-07 17:57:49 +00001377 return rc;
1378}
1379
1380/*
drh3aac2dd2004-04-26 14:10:20 +00001381** Release a MemPage. This should be called once for each prior
drh16a9b832007-05-05 18:39:25 +00001382** call to sqlite3BtreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001383*/
drh4b70f112004-05-02 21:12:19 +00001384static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001385 if( pPage ){
drh30df0092008-12-23 15:58:06 +00001386 assert( pPage->nOverflow==0 || sqlite3PagerPageRefcount(pPage->pDbPage)>1 );
drh3aac2dd2004-04-26 14:10:20 +00001387 assert( pPage->aData );
1388 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001389 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1390 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001391 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001392 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001393 }
1394}
1395
1396/*
drha6abd042004-06-09 17:37:22 +00001397** During a rollback, when the pager reloads information into the cache
1398** so that the cache is restored to its original state at the start of
1399** the transaction, for each page restored this routine is called.
1400**
1401** This routine needs to reset the extra data section at the end of the
1402** page to agree with the restored data.
1403*/
danielk1977eaa06f62008-09-18 17:34:44 +00001404static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001405 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001406 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001407 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001408 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001409 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001410 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001411 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001412 /* pPage might not be a btree page; it might be an overflow page
1413 ** or ptrmap page or a free page. In those cases, the following
1414 ** call to sqlite3BtreeInitPage() will likely return SQLITE_CORRUPT.
1415 ** But no harm is done by this. And it is very important that
1416 ** sqlite3BtreeInitPage() be called on every btree page so we make
1417 ** the call for every page that comes in for re-initing. */
danielk197771d5d2c2008-09-29 11:49:47 +00001418 sqlite3BtreeInitPage(pPage);
1419 }
drha6abd042004-06-09 17:37:22 +00001420 }
1421}
1422
1423/*
drhe5fe6902007-12-07 18:55:28 +00001424** Invoke the busy handler for a btree.
1425*/
danielk19771ceedd32008-11-19 10:22:33 +00001426static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001427 BtShared *pBt = (BtShared*)pArg;
1428 assert( pBt->db );
1429 assert( sqlite3_mutex_held(pBt->db->mutex) );
1430 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1431}
1432
1433/*
drhad3e0102004-09-03 23:32:18 +00001434** Open a database file.
1435**
drh382c0242001-10-06 16:33:02 +00001436** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001437** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001438** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001439** If zFilename is ":memory:" then an in-memory database is created
1440** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001441**
1442** If the database is already opened in the same database connection
1443** and we are in shared cache mode, then the open will fail with an
1444** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1445** objects in the same database connection since doing so will lead
1446** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001447*/
drh23e11ca2004-05-04 17:27:28 +00001448int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001449 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001450 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001451 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001452 int flags, /* Options */
1453 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001454){
drh7555d8e2009-03-20 13:15:30 +00001455 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1456 BtShared *pBt = 0; /* Shared part of btree structure */
1457 Btree *p; /* Handle to return */
1458 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1459 int rc = SQLITE_OK; /* Result code from this function */
1460 u8 nReserve; /* Byte of unused space on each page */
1461 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001462
1463 /* Set the variable isMemdb to true for an in-memory database, or
1464 ** false for a file-based database. This symbol is only required if
1465 ** either of the shared-data or autovacuum features are compiled
1466 ** into the library.
1467 */
1468#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1469 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001470 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001471 #else
drh980b1a72006-08-16 16:42:48 +00001472 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001473 #endif
1474#endif
1475
drhe5fe6902007-12-07 18:55:28 +00001476 assert( db!=0 );
1477 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001478
drhe5fe6902007-12-07 18:55:28 +00001479 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001480 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001481 if( !p ){
1482 return SQLITE_NOMEM;
1483 }
1484 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001485 p->db = db;
danielk1977aef0bf62005-12-30 16:28:01 +00001486
drh198bf392006-01-06 21:52:49 +00001487#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001488 /*
1489 ** If this Btree is a candidate for shared cache, try to find an
1490 ** existing BtShared object that we can share with
1491 */
danielk197720c6cc22009-04-01 18:03:00 +00001492 if( isMemdb==0 && zFilename && zFilename[0] ){
danielk1977502b4e02008-09-02 14:07:24 +00001493 if( sqlite3GlobalConfig.sharedCacheEnabled ){
danielk1977adfb9b02007-09-17 07:02:56 +00001494 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001495 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001496 sqlite3_mutex *mutexShared;
1497 p->sharable = 1;
drh34004ce2008-07-11 16:15:17 +00001498 db->flags |= SQLITE_SharedCache;
drhff0587c2007-08-29 17:43:19 +00001499 if( !zFullPathname ){
1500 sqlite3_free(p);
1501 return SQLITE_NOMEM;
1502 }
danielk1977adfb9b02007-09-17 07:02:56 +00001503 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001504 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1505 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001506 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001507 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001508 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001509 assert( pBt->nRef>0 );
1510 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1511 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001512 int iDb;
1513 for(iDb=db->nDb-1; iDb>=0; iDb--){
1514 Btree *pExisting = db->aDb[iDb].pBt;
1515 if( pExisting && pExisting->pBt==pBt ){
1516 sqlite3_mutex_leave(mutexShared);
1517 sqlite3_mutex_leave(mutexOpen);
1518 sqlite3_free(zFullPathname);
1519 sqlite3_free(p);
1520 return SQLITE_CONSTRAINT;
1521 }
1522 }
drhff0587c2007-08-29 17:43:19 +00001523 p->pBt = pBt;
1524 pBt->nRef++;
1525 break;
1526 }
1527 }
1528 sqlite3_mutex_leave(mutexShared);
1529 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001530 }
drhff0587c2007-08-29 17:43:19 +00001531#ifdef SQLITE_DEBUG
1532 else{
1533 /* In debug mode, we mark all persistent databases as sharable
1534 ** even when they are not. This exercises the locking code and
1535 ** gives more opportunity for asserts(sqlite3_mutex_held())
1536 ** statements to find locking problems.
1537 */
1538 p->sharable = 1;
1539 }
1540#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001541 }
1542#endif
drha059ad02001-04-17 20:09:11 +00001543 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001544 /*
1545 ** The following asserts make sure that structures used by the btree are
1546 ** the right size. This is to guard against size changes that result
1547 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001548 */
drhe53831d2007-08-17 01:14:38 +00001549 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1550 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1551 assert( sizeof(u32)==4 );
1552 assert( sizeof(u16)==2 );
1553 assert( sizeof(Pgno)==4 );
1554
1555 pBt = sqlite3MallocZero( sizeof(*pBt) );
1556 if( pBt==0 ){
1557 rc = SQLITE_NOMEM;
1558 goto btree_open_out;
1559 }
danielk197771d5d2c2008-09-29 11:49:47 +00001560 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh33f4e022007-09-03 15:19:34 +00001561 EXTRA_SIZE, flags, vfsFlags);
drhe53831d2007-08-17 01:14:38 +00001562 if( rc==SQLITE_OK ){
1563 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1564 }
1565 if( rc!=SQLITE_OK ){
1566 goto btree_open_out;
1567 }
danielk19772a50ff02009-04-10 09:47:06 +00001568 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001569 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001570 p->pBt = pBt;
1571
drhe53831d2007-08-17 01:14:38 +00001572 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
1573 pBt->pCursor = 0;
1574 pBt->pPage1 = 0;
1575 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1576 pBt->pageSize = get2byte(&zDbHeader[16]);
1577 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1578 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001579 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001580#ifndef SQLITE_OMIT_AUTOVACUUM
1581 /* If the magic name ":memory:" will create an in-memory database, then
1582 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1583 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1584 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1585 ** regular file-name. In this case the auto-vacuum applies as per normal.
1586 */
1587 if( zFilename && !isMemdb ){
1588 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1589 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1590 }
1591#endif
1592 nReserve = 0;
1593 }else{
1594 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001595 pBt->pageSizeFixed = 1;
1596#ifndef SQLITE_OMIT_AUTOVACUUM
1597 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1598 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1599#endif
1600 }
drhc0b61812009-04-30 01:22:41 +00001601 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
1602 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001603 pBt->usableSize = pBt->pageSize - nReserve;
1604 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001605
1606#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1607 /* Add the new BtShared object to the linked list sharable BtShareds.
1608 */
1609 if( p->sharable ){
1610 sqlite3_mutex *mutexShared;
1611 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001612 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001613 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001614 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001615 if( pBt->mutex==0 ){
1616 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001617 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001618 goto btree_open_out;
1619 }
drhff0587c2007-08-29 17:43:19 +00001620 }
drhe53831d2007-08-17 01:14:38 +00001621 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001622 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1623 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001624 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001625 }
drheee46cf2004-11-06 00:02:48 +00001626#endif
drh90f5ecb2004-07-22 01:19:35 +00001627 }
danielk1977aef0bf62005-12-30 16:28:01 +00001628
drhcfed7bc2006-03-13 14:28:05 +00001629#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001630 /* If the new Btree uses a sharable pBtShared, then link the new
1631 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001632 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001633 */
drhe53831d2007-08-17 01:14:38 +00001634 if( p->sharable ){
1635 int i;
1636 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001637 for(i=0; i<db->nDb; i++){
1638 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001639 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1640 if( p->pBt<pSib->pBt ){
1641 p->pNext = pSib;
1642 p->pPrev = 0;
1643 pSib->pPrev = p;
1644 }else{
drhabddb0c2007-08-20 13:14:28 +00001645 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001646 pSib = pSib->pNext;
1647 }
1648 p->pNext = pSib->pNext;
1649 p->pPrev = pSib;
1650 if( p->pNext ){
1651 p->pNext->pPrev = p;
1652 }
1653 pSib->pNext = p;
1654 }
1655 break;
1656 }
1657 }
danielk1977aef0bf62005-12-30 16:28:01 +00001658 }
danielk1977aef0bf62005-12-30 16:28:01 +00001659#endif
1660 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001661
1662btree_open_out:
1663 if( rc!=SQLITE_OK ){
1664 if( pBt && pBt->pPager ){
1665 sqlite3PagerClose(pBt->pPager);
1666 }
drh17435752007-08-16 04:30:38 +00001667 sqlite3_free(pBt);
1668 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001669 *ppBtree = 0;
1670 }
drh7555d8e2009-03-20 13:15:30 +00001671 if( mutexOpen ){
1672 assert( sqlite3_mutex_held(mutexOpen) );
1673 sqlite3_mutex_leave(mutexOpen);
1674 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001675 return rc;
drha059ad02001-04-17 20:09:11 +00001676}
1677
1678/*
drhe53831d2007-08-17 01:14:38 +00001679** Decrement the BtShared.nRef counter. When it reaches zero,
1680** remove the BtShared structure from the sharing list. Return
1681** true if the BtShared.nRef counter reaches zero and return
1682** false if it is still positive.
1683*/
1684static int removeFromSharingList(BtShared *pBt){
1685#ifndef SQLITE_OMIT_SHARED_CACHE
1686 sqlite3_mutex *pMaster;
1687 BtShared *pList;
1688 int removed = 0;
1689
drhd677b3d2007-08-20 22:48:41 +00001690 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001691 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001692 sqlite3_mutex_enter(pMaster);
1693 pBt->nRef--;
1694 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001695 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1696 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001697 }else{
drh78f82d12008-09-02 00:52:52 +00001698 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001699 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001700 pList=pList->pNext;
1701 }
drh34004ce2008-07-11 16:15:17 +00001702 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001703 pList->pNext = pBt->pNext;
1704 }
1705 }
drh3285db22007-09-03 22:00:39 +00001706 if( SQLITE_THREADSAFE ){
1707 sqlite3_mutex_free(pBt->mutex);
1708 }
drhe53831d2007-08-17 01:14:38 +00001709 removed = 1;
1710 }
1711 sqlite3_mutex_leave(pMaster);
1712 return removed;
1713#else
1714 return 1;
1715#endif
1716}
1717
1718/*
drhf7141992008-06-19 00:16:08 +00001719** Make sure pBt->pTmpSpace points to an allocation of
1720** MX_CELL_SIZE(pBt) bytes.
1721*/
1722static void allocateTempSpace(BtShared *pBt){
1723 if( !pBt->pTmpSpace ){
1724 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1725 }
1726}
1727
1728/*
1729** Free the pBt->pTmpSpace allocation
1730*/
1731static void freeTempSpace(BtShared *pBt){
1732 sqlite3PageFree( pBt->pTmpSpace);
1733 pBt->pTmpSpace = 0;
1734}
1735
1736/*
drha059ad02001-04-17 20:09:11 +00001737** Close an open database and invalidate all cursors.
1738*/
danielk1977aef0bf62005-12-30 16:28:01 +00001739int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001740 BtShared *pBt = p->pBt;
1741 BtCursor *pCur;
1742
danielk1977aef0bf62005-12-30 16:28:01 +00001743 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001744 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001745 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001746 pCur = pBt->pCursor;
1747 while( pCur ){
1748 BtCursor *pTmp = pCur;
1749 pCur = pCur->pNext;
1750 if( pTmp->pBtree==p ){
1751 sqlite3BtreeCloseCursor(pTmp);
1752 }
drha059ad02001-04-17 20:09:11 +00001753 }
danielk1977aef0bf62005-12-30 16:28:01 +00001754
danielk19778d34dfd2006-01-24 16:37:57 +00001755 /* Rollback any active transaction and free the handle structure.
1756 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1757 ** this handle.
1758 */
danielk1977b597f742006-01-15 11:39:18 +00001759 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001760 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001761
danielk1977aef0bf62005-12-30 16:28:01 +00001762 /* If there are still other outstanding references to the shared-btree
1763 ** structure, return now. The remainder of this procedure cleans
1764 ** up the shared-btree.
1765 */
drhe53831d2007-08-17 01:14:38 +00001766 assert( p->wantToLock==0 && p->locked==0 );
1767 if( !p->sharable || removeFromSharingList(pBt) ){
1768 /* The pBt is no longer on the sharing list, so we can access
1769 ** it without having to hold the mutex.
1770 **
1771 ** Clean out and delete the BtShared object.
1772 */
1773 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001774 sqlite3PagerClose(pBt->pPager);
1775 if( pBt->xFreeSchema && pBt->pSchema ){
1776 pBt->xFreeSchema(pBt->pSchema);
1777 }
1778 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00001779 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00001780 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001781 }
1782
drhe53831d2007-08-17 01:14:38 +00001783#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00001784 assert( p->wantToLock==0 );
1785 assert( p->locked==0 );
1786 if( p->pPrev ) p->pPrev->pNext = p->pNext;
1787 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00001788#endif
1789
drhe53831d2007-08-17 01:14:38 +00001790 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00001791 return SQLITE_OK;
1792}
1793
1794/*
drhda47d772002-12-02 04:25:19 +00001795** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001796**
1797** The maximum number of cache pages is set to the absolute
1798** value of mxPage. If mxPage is negative, the pager will
1799** operate asynchronously - it will not stop to do fsync()s
1800** to insure data is written to the disk surface before
1801** continuing. Transactions still work if synchronous is off,
1802** and the database cannot be corrupted if this program
1803** crashes. But if the operating system crashes or there is
1804** an abrupt power failure when synchronous is off, the database
1805** could be left in an inconsistent and unrecoverable state.
1806** Synchronous is on by default so database corruption is not
1807** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001808*/
danielk1977aef0bf62005-12-30 16:28:01 +00001809int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
1810 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00001811 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001812 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001813 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00001814 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00001815 return SQLITE_OK;
1816}
1817
1818/*
drh973b6e32003-02-12 14:09:42 +00001819** Change the way data is synced to disk in order to increase or decrease
1820** how well the database resists damage due to OS crashes and power
1821** failures. Level 1 is the same as asynchronous (no syncs() occur and
1822** there is a high probability of damage) Level 2 is the default. There
1823** is a very low but non-zero probability of damage. Level 3 reduces the
1824** probability of damage to near zero but with a write performance reduction.
1825*/
danielk197793758c82005-01-21 08:13:14 +00001826#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00001827int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00001828 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00001829 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001830 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001831 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00001832 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00001833 return SQLITE_OK;
1834}
danielk197793758c82005-01-21 08:13:14 +00001835#endif
drh973b6e32003-02-12 14:09:42 +00001836
drh2c8997b2005-08-27 16:36:48 +00001837/*
1838** Return TRUE if the given btree is set to safety level 1. In other
1839** words, return TRUE if no sync() occurs on the disk files.
1840*/
danielk1977aef0bf62005-12-30 16:28:01 +00001841int sqlite3BtreeSyncDisabled(Btree *p){
1842 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001843 int rc;
drhe5fe6902007-12-07 18:55:28 +00001844 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001845 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00001846 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00001847 rc = sqlite3PagerNosync(pBt->pPager);
1848 sqlite3BtreeLeave(p);
1849 return rc;
drh2c8997b2005-08-27 16:36:48 +00001850}
1851
danielk1977576ec6b2005-01-21 11:55:25 +00001852#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00001853/*
drh90f5ecb2004-07-22 01:19:35 +00001854** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00001855** Or, if the page size has already been fixed, return SQLITE_READONLY
1856** without changing anything.
drh06f50212004-11-02 14:24:33 +00001857**
1858** The page size must be a power of 2 between 512 and 65536. If the page
1859** size supplied does not meet this constraint then the page size is not
1860** changed.
1861**
1862** Page sizes are constrained to be a power of two so that the region
1863** of the database file used for locking (beginning at PENDING_BYTE,
1864** the first byte past the 1GB boundary, 0x40000000) needs to occur
1865** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00001866**
1867** If parameter nReserve is less than zero, then the number of reserved
1868** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00001869**
1870** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
1871** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00001872*/
drhce4869f2009-04-02 20:16:58 +00001873int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00001874 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00001875 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00001876 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00001877 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00001878 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00001879 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00001880 return SQLITE_READONLY;
1881 }
1882 if( nReserve<0 ){
1883 nReserve = pBt->pageSize - pBt->usableSize;
1884 }
drhf49661a2008-12-10 16:45:50 +00001885 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00001886 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
1887 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00001888 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00001889 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00001890 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00001891 freeTempSpace(pBt);
danielk1977a1644fd2007-08-29 12:31:25 +00001892 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
drh90f5ecb2004-07-22 01:19:35 +00001893 }
drhf49661a2008-12-10 16:45:50 +00001894 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00001895 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00001896 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00001897 return rc;
drh90f5ecb2004-07-22 01:19:35 +00001898}
1899
1900/*
1901** Return the currently defined page size
1902*/
danielk1977aef0bf62005-12-30 16:28:01 +00001903int sqlite3BtreeGetPageSize(Btree *p){
1904 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00001905}
drh7f751222009-03-17 22:33:00 +00001906
1907/*
1908** Return the number of bytes of space at the end of every page that
1909** are intentually left unused. This is the "reserved" space that is
1910** sometimes used by extensions.
1911*/
danielk1977aef0bf62005-12-30 16:28:01 +00001912int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00001913 int n;
1914 sqlite3BtreeEnter(p);
1915 n = p->pBt->pageSize - p->pBt->usableSize;
1916 sqlite3BtreeLeave(p);
1917 return n;
drh2011d5f2004-07-22 02:40:37 +00001918}
drhf8e632b2007-05-08 14:51:36 +00001919
1920/*
1921** Set the maximum page count for a database if mxPage is positive.
1922** No changes are made if mxPage is 0 or negative.
1923** Regardless of the value of mxPage, return the maximum page count.
1924*/
1925int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00001926 int n;
1927 sqlite3BtreeEnter(p);
1928 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
1929 sqlite3BtreeLeave(p);
1930 return n;
drhf8e632b2007-05-08 14:51:36 +00001931}
danielk1977576ec6b2005-01-21 11:55:25 +00001932#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00001933
1934/*
danielk1977951af802004-11-05 15:45:09 +00001935** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
1936** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
1937** is disabled. The default value for the auto-vacuum property is
1938** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
1939*/
danielk1977aef0bf62005-12-30 16:28:01 +00001940int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00001941#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00001942 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00001943#else
danielk1977dddbcdc2007-04-26 14:42:34 +00001944 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001945 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00001946 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00001947
1948 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00001949 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00001950 rc = SQLITE_READONLY;
1951 }else{
drh076d4662009-02-18 20:31:18 +00001952 pBt->autoVacuum = av ?1:0;
1953 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00001954 }
drhd677b3d2007-08-20 22:48:41 +00001955 sqlite3BtreeLeave(p);
1956 return rc;
danielk1977951af802004-11-05 15:45:09 +00001957#endif
1958}
1959
1960/*
1961** Return the value of the 'auto-vacuum' property. If auto-vacuum is
1962** enabled 1 is returned. Otherwise 0.
1963*/
danielk1977aef0bf62005-12-30 16:28:01 +00001964int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00001965#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00001966 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00001967#else
drhd677b3d2007-08-20 22:48:41 +00001968 int rc;
1969 sqlite3BtreeEnter(p);
1970 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00001971 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
1972 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
1973 BTREE_AUTOVACUUM_INCR
1974 );
drhd677b3d2007-08-20 22:48:41 +00001975 sqlite3BtreeLeave(p);
1976 return rc;
danielk1977951af802004-11-05 15:45:09 +00001977#endif
1978}
1979
1980
1981/*
drha34b6762004-05-07 13:30:42 +00001982** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00001983** also acquire a readlock on that file.
1984**
1985** SQLITE_OK is returned on success. If the file is not a
1986** well-formed database file, then SQLITE_CORRUPT is returned.
1987** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00001988** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00001989*/
danielk1977aef0bf62005-12-30 16:28:01 +00001990static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00001991 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001992 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00001993 int nPage;
drhd677b3d2007-08-20 22:48:41 +00001994
drh1fee73e2007-08-29 04:00:57 +00001995 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00001996 assert( pBt->pPage1==0 );
drh16a9b832007-05-05 18:39:25 +00001997 rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00001998 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00001999
2000 /* Do some checking to help insure the file we opened really is
2001 ** a valid database file.
2002 */
danielk1977ad0132d2008-06-07 08:58:22 +00002003 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2004 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00002005 goto page1_init_failed;
2006 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002007 int pageSize;
2008 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002009 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002010 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002011 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002012 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002013 }
drh309169a2007-04-24 17:27:51 +00002014 if( page1[18]>1 ){
2015 pBt->readOnly = 1;
2016 }
2017 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00002018 goto page1_init_failed;
2019 }
drhe5ae5732008-06-15 02:51:47 +00002020
2021 /* The maximum embedded fraction must be exactly 25%. And the minimum
2022 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2023 ** The original design allowed these amounts to vary, but as of
2024 ** version 3.6.0, we require them to be fixed.
2025 */
2026 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2027 goto page1_init_failed;
2028 }
drh07d183d2005-05-01 22:52:42 +00002029 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002030 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2031 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2032 ){
drh07d183d2005-05-01 22:52:42 +00002033 goto page1_init_failed;
2034 }
2035 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002036 usableSize = pageSize - page1[20];
2037 if( pageSize!=pBt->pageSize ){
2038 /* After reading the first page of the database assuming a page size
2039 ** of BtShared.pageSize, we have discovered that the page-size is
2040 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2041 ** zero and return SQLITE_OK. The caller will call this function
2042 ** again with the correct page-size.
2043 */
2044 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002045 pBt->usableSize = (u16)usableSize;
2046 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002047 freeTempSpace(pBt);
drhc0b61812009-04-30 01:22:41 +00002048 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
2049 if( rc ) goto page1_init_failed;
danielk1977f653d782008-03-20 11:04:21 +00002050 return SQLITE_OK;
2051 }
2052 if( usableSize<500 ){
drhb6f41482004-05-14 01:58:11 +00002053 goto page1_init_failed;
2054 }
drh1bd10f82008-12-10 21:19:56 +00002055 pBt->pageSize = (u16)pageSize;
2056 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002057#ifndef SQLITE_OMIT_AUTOVACUUM
2058 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002059 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002060#endif
drh306dc212001-05-21 13:45:10 +00002061 }
drhb6f41482004-05-14 01:58:11 +00002062
2063 /* maxLocal is the maximum amount of payload to store locally for
2064 ** a cell. Make sure it is small enough so that at least minFanout
2065 ** cells can will fit on one page. We assume a 10-byte page header.
2066 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002067 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002068 ** 4-byte child pointer
2069 ** 9-byte nKey value
2070 ** 4-byte nData value
2071 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002072 ** So a cell consists of a 2-byte poiner, a header which is as much as
2073 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2074 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002075 */
drhe5ae5732008-06-15 02:51:47 +00002076 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2077 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002078 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002079 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002080 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002081 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002082 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002083
drh72f82862001-05-24 21:06:34 +00002084page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002085 releasePage(pPage1);
2086 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002087 return rc;
drh306dc212001-05-21 13:45:10 +00002088}
2089
2090/*
drhb8ef32c2005-03-14 02:01:49 +00002091** This routine works like lockBtree() except that it also invokes the
2092** busy callback if there is lock contention.
2093*/
danielk1977aef0bf62005-12-30 16:28:01 +00002094static int lockBtreeWithRetry(Btree *pRef){
drhb8ef32c2005-03-14 02:01:49 +00002095 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00002096
drh1fee73e2007-08-29 04:00:57 +00002097 assert( sqlite3BtreeHoldsMutex(pRef) );
danielk1977aef0bf62005-12-30 16:28:01 +00002098 if( pRef->inTrans==TRANS_NONE ){
2099 u8 inTransaction = pRef->pBt->inTransaction;
2100 btreeIntegrity(pRef);
2101 rc = sqlite3BtreeBeginTrans(pRef, 0);
2102 pRef->pBt->inTransaction = inTransaction;
2103 pRef->inTrans = TRANS_NONE;
2104 if( rc==SQLITE_OK ){
2105 pRef->pBt->nTransaction--;
2106 }
2107 btreeIntegrity(pRef);
drhb8ef32c2005-03-14 02:01:49 +00002108 }
2109 return rc;
2110}
2111
2112
2113/*
drhb8ca3072001-12-05 00:21:20 +00002114** If there are no outstanding cursors and we are not in the middle
2115** of a transaction but there is a read lock on the database, then
2116** this routine unrefs the first page of the database file which
2117** has the effect of releasing the read lock.
2118**
2119** If there are any outstanding cursors, this routine is a no-op.
2120**
2121** If there is a transaction in progress, this routine is a no-op.
2122*/
danielk1977aef0bf62005-12-30 16:28:01 +00002123static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002124 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00002125 if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00002126 if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
drhde4fcfd2008-01-19 23:50:26 +00002127 assert( pBt->pPage1->aData );
drh24c9a2e2007-01-05 02:00:47 +00002128 releasePage(pBt->pPage1);
drh51c6d962004-06-06 00:42:25 +00002129 }
drh3aac2dd2004-04-26 14:10:20 +00002130 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002131 }
2132}
2133
2134/*
drh9e572e62004-04-23 23:43:10 +00002135** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00002136** file.
drh8b2f49b2001-06-08 00:21:52 +00002137*/
danielk1977aef0bf62005-12-30 16:28:01 +00002138static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002139 MemPage *pP1;
2140 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002141 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002142 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002143
drh1fee73e2007-08-29 04:00:57 +00002144 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002145 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2146 if( rc!=SQLITE_OK || nPage>0 ){
2147 return rc;
2148 }
drh3aac2dd2004-04-26 14:10:20 +00002149 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002150 assert( pP1!=0 );
2151 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002152 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002153 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002154 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2155 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002156 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002157 data[18] = 1;
2158 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002159 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2160 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002161 data[21] = 64;
2162 data[22] = 32;
2163 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002164 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002165 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002166 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002167#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002168 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002169 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002170 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002171 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002172#endif
drh8b2f49b2001-06-08 00:21:52 +00002173 return SQLITE_OK;
2174}
2175
2176/*
danielk1977ee5741e2004-05-31 10:01:34 +00002177** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002178** is started if the second argument is nonzero, otherwise a read-
2179** transaction. If the second argument is 2 or more and exclusive
2180** transaction is started, meaning that no other process is allowed
2181** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002182** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002183** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002184**
danielk1977ee5741e2004-05-31 10:01:34 +00002185** A write-transaction must be started before attempting any
2186** changes to the database. None of the following routines
2187** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002188**
drh23e11ca2004-05-04 17:27:28 +00002189** sqlite3BtreeCreateTable()
2190** sqlite3BtreeCreateIndex()
2191** sqlite3BtreeClearTable()
2192** sqlite3BtreeDropTable()
2193** sqlite3BtreeInsert()
2194** sqlite3BtreeDelete()
2195** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002196**
drhb8ef32c2005-03-14 02:01:49 +00002197** If an initial attempt to acquire the lock fails because of lock contention
2198** and the database was previously unlocked, then invoke the busy handler
2199** if there is one. But if there was previously a read-lock, do not
2200** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2201** returned when there is already a read-lock in order to avoid a deadlock.
2202**
2203** Suppose there are two processes A and B. A has a read lock and B has
2204** a reserved lock. B tries to promote to exclusive but is blocked because
2205** of A's read lock. A tries to promote to reserved but is blocked by B.
2206** One or the other of the two processes must give way or there can be
2207** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2208** when A already has a read lock, we encourage A to give up and let B
2209** proceed.
drha059ad02001-04-17 20:09:11 +00002210*/
danielk1977aef0bf62005-12-30 16:28:01 +00002211int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002212 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002213 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002214 int rc = SQLITE_OK;
2215
drhd677b3d2007-08-20 22:48:41 +00002216 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002217 btreeIntegrity(p);
2218
danielk1977ee5741e2004-05-31 10:01:34 +00002219 /* If the btree is already in a write-transaction, or it
2220 ** is already in a read-transaction and a read-transaction
2221 ** is requested, this is a no-op.
2222 */
danielk1977aef0bf62005-12-30 16:28:01 +00002223 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002224 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002225 }
drhb8ef32c2005-03-14 02:01:49 +00002226
2227 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002228 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002229 rc = SQLITE_READONLY;
2230 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002231 }
2232
danielk1977404ca072009-03-16 13:19:36 +00002233#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002234 /* If another database handle has already opened a write transaction
2235 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002236 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002237 */
danielk1977404ca072009-03-16 13:19:36 +00002238 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2239 pBlock = pBt->pWriter->db;
2240 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002241 BtLock *pIter;
2242 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2243 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002244 pBlock = pIter->pBtree->db;
2245 break;
danielk1977641b0f42007-12-21 04:47:25 +00002246 }
2247 }
2248 }
danielk1977404ca072009-03-16 13:19:36 +00002249 if( pBlock ){
2250 sqlite3ConnectionBlocked(p->db, pBlock);
2251 rc = SQLITE_LOCKED_SHAREDCACHE;
2252 goto trans_begun;
2253 }
danielk1977641b0f42007-12-21 04:47:25 +00002254#endif
2255
drhb8ef32c2005-03-14 02:01:49 +00002256 do {
danielk1977295dc102009-04-01 19:07:03 +00002257 /* Call lockBtree() until either pBt->pPage1 is populated or
2258 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2259 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2260 ** reading page 1 it discovers that the page-size of the database
2261 ** file is not pBt->pageSize. In this case lockBtree() will update
2262 ** pBt->pageSize to the page-size of the file on disk.
2263 */
2264 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002265
drhb8ef32c2005-03-14 02:01:49 +00002266 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002267 if( pBt->readOnly ){
2268 rc = SQLITE_READONLY;
2269 }else{
danielk1977d8293352009-04-30 09:10:37 +00002270 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002271 if( rc==SQLITE_OK ){
2272 rc = newDatabase(pBt);
2273 }
drhb8ef32c2005-03-14 02:01:49 +00002274 }
2275 }
2276
danielk1977bd434552009-03-18 10:33:00 +00002277 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002278 unlockBtreeIfUnused(pBt);
2279 }
danielk1977aef0bf62005-12-30 16:28:01 +00002280 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002281 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002282
2283 if( rc==SQLITE_OK ){
2284 if( p->inTrans==TRANS_NONE ){
2285 pBt->nTransaction++;
2286 }
2287 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2288 if( p->inTrans>pBt->inTransaction ){
2289 pBt->inTransaction = p->inTrans;
2290 }
danielk1977641b0f42007-12-21 04:47:25 +00002291#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002292 if( wrflag ){
2293 assert( !pBt->pWriter );
2294 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002295 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002296 }
2297#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002298 }
2299
drhd677b3d2007-08-20 22:48:41 +00002300
2301trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002302 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002303 /* This call makes sure that the pager has the correct number of
2304 ** open savepoints. If the second parameter is greater than 0 and
2305 ** the sub-journal is not already open, then it will be opened here.
2306 */
danielk1977fd7f0452008-12-17 17:30:26 +00002307 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2308 }
danielk197712dd5492008-12-18 15:45:07 +00002309
danielk1977aef0bf62005-12-30 16:28:01 +00002310 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002311 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002312 return rc;
drha059ad02001-04-17 20:09:11 +00002313}
2314
danielk1977687566d2004-11-02 12:56:41 +00002315#ifndef SQLITE_OMIT_AUTOVACUUM
2316
2317/*
2318** Set the pointer-map entries for all children of page pPage. Also, if
2319** pPage contains cells that point to overflow pages, set the pointer
2320** map entries for the overflow pages as well.
2321*/
2322static int setChildPtrmaps(MemPage *pPage){
2323 int i; /* Counter variable */
2324 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002325 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002326 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002327 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002328 Pgno pgno = pPage->pgno;
2329
drh1fee73e2007-08-29 04:00:57 +00002330 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197771d5d2c2008-09-29 11:49:47 +00002331 rc = sqlite3BtreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002332 if( rc!=SQLITE_OK ){
2333 goto set_child_ptrmaps_out;
2334 }
danielk1977687566d2004-11-02 12:56:41 +00002335 nCell = pPage->nCell;
2336
2337 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002338 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002339
danielk197726836652005-01-17 01:33:13 +00002340 rc = ptrmapPutOvflPtr(pPage, pCell);
2341 if( rc!=SQLITE_OK ){
2342 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002343 }
danielk197726836652005-01-17 01:33:13 +00002344
danielk1977687566d2004-11-02 12:56:41 +00002345 if( !pPage->leaf ){
2346 Pgno childPgno = get4byte(pCell);
2347 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
danielk197700a696d2008-09-29 16:41:31 +00002348 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002349 }
2350 }
2351
2352 if( !pPage->leaf ){
2353 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2354 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2355 }
2356
2357set_child_ptrmaps_out:
2358 pPage->isInit = isInitOrig;
2359 return rc;
2360}
2361
2362/*
danielk1977fa542f12009-04-02 18:28:08 +00002363** Somewhere on pPage, which is guaranteed to be a btree page, not an overflow
danielk1977687566d2004-11-02 12:56:41 +00002364** page, is a pointer to page iFrom. Modify this pointer so that it points to
2365** iTo. Parameter eType describes the type of pointer to be modified, as
2366** follows:
2367**
2368** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2369** page of pPage.
2370**
2371** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2372** page pointed to by one of the cells on pPage.
2373**
2374** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2375** overflow page in the list.
2376*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002377static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002378 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002379 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002380 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002381 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002382 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002383 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002384 }
danielk1977f78fc082004-11-02 14:40:32 +00002385 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002386 }else{
drhf49661a2008-12-10 16:45:50 +00002387 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002388 int i;
2389 int nCell;
2390
danielk197771d5d2c2008-09-29 11:49:47 +00002391 sqlite3BtreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002392 nCell = pPage->nCell;
2393
danielk1977687566d2004-11-02 12:56:41 +00002394 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002395 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002396 if( eType==PTRMAP_OVERFLOW1 ){
2397 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00002398 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002399 if( info.iOverflow ){
2400 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2401 put4byte(&pCell[info.iOverflow], iTo);
2402 break;
2403 }
2404 }
2405 }else{
2406 if( get4byte(pCell)==iFrom ){
2407 put4byte(pCell, iTo);
2408 break;
2409 }
2410 }
2411 }
2412
2413 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002414 if( eType!=PTRMAP_BTREE ||
2415 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002416 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002417 }
danielk1977687566d2004-11-02 12:56:41 +00002418 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2419 }
2420
2421 pPage->isInit = isInitOrig;
2422 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002423 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002424}
2425
danielk1977003ba062004-11-04 02:57:33 +00002426
danielk19777701e812005-01-10 12:59:51 +00002427/*
2428** Move the open database page pDbPage to location iFreePage in the
2429** database. The pDbPage reference remains valid.
2430*/
danielk1977003ba062004-11-04 02:57:33 +00002431static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002432 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002433 MemPage *pDbPage, /* Open page to move */
2434 u8 eType, /* Pointer map 'type' entry for pDbPage */
2435 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002436 Pgno iFreePage, /* The location to move pDbPage to */
2437 int isCommit
danielk1977003ba062004-11-04 02:57:33 +00002438){
2439 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2440 Pgno iDbPage = pDbPage->pgno;
2441 Pager *pPager = pBt->pPager;
2442 int rc;
2443
danielk1977a0bf2652004-11-04 14:30:04 +00002444 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2445 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002446 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002447 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002448
drh85b623f2007-12-13 21:54:09 +00002449 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002450 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2451 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002452 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002453 if( rc!=SQLITE_OK ){
2454 return rc;
2455 }
2456 pDbPage->pgno = iFreePage;
2457
2458 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2459 ** that point to overflow pages. The pointer map entries for all these
2460 ** pages need to be changed.
2461 **
2462 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2463 ** pointer to a subsequent overflow page. If this is the case, then
2464 ** the pointer map needs to be updated for the subsequent overflow page.
2465 */
danielk1977a0bf2652004-11-04 14:30:04 +00002466 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002467 rc = setChildPtrmaps(pDbPage);
2468 if( rc!=SQLITE_OK ){
2469 return rc;
2470 }
2471 }else{
2472 Pgno nextOvfl = get4byte(pDbPage->aData);
2473 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002474 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2475 if( rc!=SQLITE_OK ){
2476 return rc;
2477 }
2478 }
2479 }
2480
2481 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2482 ** that it points at iFreePage. Also fix the pointer map entry for
2483 ** iPtrPage.
2484 */
danielk1977a0bf2652004-11-04 14:30:04 +00002485 if( eType!=PTRMAP_ROOTPAGE ){
drh16a9b832007-05-05 18:39:25 +00002486 rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002487 if( rc!=SQLITE_OK ){
2488 return rc;
2489 }
danielk19773b8a05f2007-03-19 17:44:26 +00002490 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002491 if( rc!=SQLITE_OK ){
2492 releasePage(pPtrPage);
2493 return rc;
2494 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002495 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002496 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002497 if( rc==SQLITE_OK ){
2498 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2499 }
danielk1977003ba062004-11-04 02:57:33 +00002500 }
danielk1977003ba062004-11-04 02:57:33 +00002501 return rc;
2502}
2503
danielk1977dddbcdc2007-04-26 14:42:34 +00002504/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002505static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002506
2507/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002508** Perform a single step of an incremental-vacuum. If successful,
2509** return SQLITE_OK. If there is no work to do (and therefore no
2510** point in calling this function again), return SQLITE_DONE.
2511**
2512** More specificly, this function attempts to re-organize the
2513** database so that the last page of the file currently in use
2514** is no longer in use.
2515**
2516** If the nFin parameter is non-zero, the implementation assumes
2517** that the caller will keep calling incrVacuumStep() until
2518** it returns SQLITE_DONE or an error, and that nFin is the
2519** number of pages the database file will contain after this
2520** process is complete.
2521*/
danielk19773460d192008-12-27 15:23:13 +00002522static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002523 Pgno nFreeList; /* Number of pages still on the free-list */
2524
drh1fee73e2007-08-29 04:00:57 +00002525 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002526 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002527
2528 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2529 int rc;
2530 u8 eType;
2531 Pgno iPtrPage;
2532
2533 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002534 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002535 return SQLITE_DONE;
2536 }
2537
2538 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2539 if( rc!=SQLITE_OK ){
2540 return rc;
2541 }
2542 if( eType==PTRMAP_ROOTPAGE ){
2543 return SQLITE_CORRUPT_BKPT;
2544 }
2545
2546 if( eType==PTRMAP_FREEPAGE ){
2547 if( nFin==0 ){
2548 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002549 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002550 ** truncated to zero after this function returns, so it doesn't
2551 ** matter if it still contains some garbage entries.
2552 */
2553 Pgno iFreePg;
2554 MemPage *pFreePg;
2555 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2556 if( rc!=SQLITE_OK ){
2557 return rc;
2558 }
2559 assert( iFreePg==iLastPg );
2560 releasePage(pFreePg);
2561 }
2562 } else {
2563 Pgno iFreePg; /* Index of free page to move pLastPg to */
2564 MemPage *pLastPg;
2565
drh16a9b832007-05-05 18:39:25 +00002566 rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002567 if( rc!=SQLITE_OK ){
2568 return rc;
2569 }
2570
danielk1977b4626a32007-04-28 15:47:43 +00002571 /* If nFin is zero, this loop runs exactly once and page pLastPg
2572 ** is swapped with the first free page pulled off the free list.
2573 **
2574 ** On the other hand, if nFin is greater than zero, then keep
2575 ** looping until a free-page located within the first nFin pages
2576 ** of the file is found.
2577 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002578 do {
2579 MemPage *pFreePg;
2580 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2581 if( rc!=SQLITE_OK ){
2582 releasePage(pLastPg);
2583 return rc;
2584 }
2585 releasePage(pFreePg);
2586 }while( nFin!=0 && iFreePg>nFin );
2587 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002588
2589 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002590 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002591 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002592 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002593 releasePage(pLastPg);
2594 if( rc!=SQLITE_OK ){
2595 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002596 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002597 }
2598 }
2599
danielk19773460d192008-12-27 15:23:13 +00002600 if( nFin==0 ){
2601 iLastPg--;
2602 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002603 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2604 MemPage *pPg;
2605 int rc = sqlite3BtreeGetPage(pBt, iLastPg, &pPg, 0);
2606 if( rc!=SQLITE_OK ){
2607 return rc;
2608 }
2609 rc = sqlite3PagerWrite(pPg->pDbPage);
2610 releasePage(pPg);
2611 if( rc!=SQLITE_OK ){
2612 return rc;
2613 }
2614 }
danielk19773460d192008-12-27 15:23:13 +00002615 iLastPg--;
2616 }
2617 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002618 }
2619 return SQLITE_OK;
2620}
2621
2622/*
2623** A write-transaction must be opened before calling this function.
2624** It performs a single unit of work towards an incremental vacuum.
2625**
2626** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002627** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002628** SQLITE_OK is returned. Otherwise an SQLite error code.
2629*/
2630int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002631 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002632 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002633
2634 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002635 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2636 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002637 rc = SQLITE_DONE;
2638 }else{
2639 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002640 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002641 }
drhd677b3d2007-08-20 22:48:41 +00002642 sqlite3BtreeLeave(p);
2643 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002644}
2645
2646/*
danielk19773b8a05f2007-03-19 17:44:26 +00002647** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002648** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002649**
2650** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2651** the database file should be truncated to during the commit process.
2652** i.e. the database has been reorganized so that only the first *pnTrunc
2653** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002654*/
danielk19773460d192008-12-27 15:23:13 +00002655static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002656 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002657 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002658 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002659
drh1fee73e2007-08-29 04:00:57 +00002660 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002661 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002662 assert(pBt->autoVacuum);
2663 if( !pBt->incrVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002664 Pgno nFin;
2665 Pgno nFree;
2666 Pgno nPtrmap;
2667 Pgno iFree;
2668 const int pgsz = pBt->pageSize;
2669 Pgno nOrig = pagerPagecount(pBt);
danielk1977687566d2004-11-02 12:56:41 +00002670
danielk1977ef165ce2009-04-06 17:50:03 +00002671 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2672 /* It is not possible to create a database for which the final page
2673 ** is either a pointer-map page or the pending-byte page. If one
2674 ** is encountered, this indicates corruption.
2675 */
danielk19773460d192008-12-27 15:23:13 +00002676 return SQLITE_CORRUPT_BKPT;
2677 }
danielk1977ef165ce2009-04-06 17:50:03 +00002678
danielk19773460d192008-12-27 15:23:13 +00002679 nFree = get4byte(&pBt->pPage1->aData[36]);
2680 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
2681 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002682 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002683 nFin--;
2684 }
2685 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2686 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002687 }
drhc5e47ac2009-06-04 00:11:56 +00002688 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002689
danielk19773460d192008-12-27 15:23:13 +00002690 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2691 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002692 }
danielk19773460d192008-12-27 15:23:13 +00002693 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002694 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002695 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2696 put4byte(&pBt->pPage1->aData[32], 0);
2697 put4byte(&pBt->pPage1->aData[36], 0);
2698 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002699 }
2700 if( rc!=SQLITE_OK ){
2701 sqlite3PagerRollback(pPager);
2702 }
danielk1977687566d2004-11-02 12:56:41 +00002703 }
2704
danielk19773b8a05f2007-03-19 17:44:26 +00002705 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002706 return rc;
2707}
danielk1977dddbcdc2007-04-26 14:42:34 +00002708
shane831c3292008-11-10 17:14:58 +00002709#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
danielk1977687566d2004-11-02 12:56:41 +00002710
2711/*
drh80e35f42007-03-30 14:06:34 +00002712** This routine does the first phase of a two-phase commit. This routine
2713** causes a rollback journal to be created (if it does not already exist)
2714** and populated with enough information so that if a power loss occurs
2715** the database can be restored to its original state by playing back
2716** the journal. Then the contents of the journal are flushed out to
2717** the disk. After the journal is safely on oxide, the changes to the
2718** database are written into the database file and flushed to oxide.
2719** At the end of this call, the rollback journal still exists on the
2720** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002721** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002722** commit process.
2723**
2724** This call is a no-op if no write-transaction is currently active on pBt.
2725**
2726** Otherwise, sync the database file for the btree pBt. zMaster points to
2727** the name of a master journal file that should be written into the
2728** individual journal file, or is NULL, indicating no master journal file
2729** (single database transaction).
2730**
2731** When this is called, the master journal should already have been
2732** created, populated with this journal pointer and synced to disk.
2733**
2734** Once this is routine has returned, the only thing required to commit
2735** the write-transaction for this database file is to delete the journal.
2736*/
2737int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2738 int rc = SQLITE_OK;
2739 if( p->inTrans==TRANS_WRITE ){
2740 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002741 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002742#ifndef SQLITE_OMIT_AUTOVACUUM
2743 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002744 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002745 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002746 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002747 return rc;
2748 }
2749 }
2750#endif
drh49b9d332009-01-02 18:10:42 +00002751 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00002752 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002753 }
2754 return rc;
2755}
2756
2757/*
drh2aa679f2001-06-25 02:11:07 +00002758** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002759**
drh6e345992007-03-30 11:12:08 +00002760** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00002761** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
2762** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
2763** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00002764** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00002765** routine has to do is delete or truncate or zero the header in the
2766** the rollback journal (which causes the transaction to commit) and
2767** drop locks.
drh6e345992007-03-30 11:12:08 +00002768**
drh5e00f6c2001-09-13 13:46:56 +00002769** This will release the write lock on the database file. If there
2770** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002771*/
drh80e35f42007-03-30 14:06:34 +00002772int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002773 BtShared *pBt = p->pBt;
2774
drhd677b3d2007-08-20 22:48:41 +00002775 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002776 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002777
2778 /* If the handle has a write-transaction open, commit the shared-btrees
2779 ** transaction and set the shared state to TRANS_READ.
2780 */
2781 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00002782 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002783 assert( pBt->inTransaction==TRANS_WRITE );
2784 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00002785 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00002786 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002787 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002788 return rc;
2789 }
danielk1977aef0bf62005-12-30 16:28:01 +00002790 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00002791 }
danielk1977aef0bf62005-12-30 16:28:01 +00002792
2793 /* If the handle has any kind of transaction open, decrement the transaction
2794 ** count of the shared btree. If the transaction count reaches 0, set
2795 ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
2796 ** will unlock the pager.
2797 */
2798 if( p->inTrans!=TRANS_NONE ){
danielk1977fa542f12009-04-02 18:28:08 +00002799 clearAllSharedCacheTableLocks(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002800 pBt->nTransaction--;
2801 if( 0==pBt->nTransaction ){
2802 pBt->inTransaction = TRANS_NONE;
2803 }
2804 }
2805
drh51898cf2009-04-19 20:51:06 +00002806 /* Set the current transaction state to TRANS_NONE and unlock
danielk1977aef0bf62005-12-30 16:28:01 +00002807 ** the pager if this call closed the only read or write transaction.
2808 */
danielk1977bea2a942009-01-20 17:06:27 +00002809 btreeClearHasContent(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002810 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002811 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002812
2813 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002814 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002815 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002816}
2817
drh80e35f42007-03-30 14:06:34 +00002818/*
2819** Do both phases of a commit.
2820*/
2821int sqlite3BtreeCommit(Btree *p){
2822 int rc;
drhd677b3d2007-08-20 22:48:41 +00002823 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002824 rc = sqlite3BtreeCommitPhaseOne(p, 0);
2825 if( rc==SQLITE_OK ){
2826 rc = sqlite3BtreeCommitPhaseTwo(p);
2827 }
drhd677b3d2007-08-20 22:48:41 +00002828 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002829 return rc;
2830}
2831
danielk1977fbcd5852004-06-15 02:44:18 +00002832#ifndef NDEBUG
2833/*
2834** Return the number of write-cursors open on this handle. This is for use
2835** in assert() expressions, so it is only compiled if NDEBUG is not
2836** defined.
drhfb982642007-08-30 01:19:59 +00002837**
2838** For the purposes of this routine, a write-cursor is any cursor that
2839** is capable of writing to the databse. That means the cursor was
2840** originally opened for writing and the cursor has not be disabled
2841** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00002842*/
danielk1977aef0bf62005-12-30 16:28:01 +00002843static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00002844 BtCursor *pCur;
2845 int r = 0;
2846 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00002847 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00002848 }
2849 return r;
2850}
2851#endif
2852
drhc39e0002004-05-07 23:50:57 +00002853/*
drhfb982642007-08-30 01:19:59 +00002854** This routine sets the state to CURSOR_FAULT and the error
2855** code to errCode for every cursor on BtShared that pBtree
2856** references.
2857**
2858** Every cursor is tripped, including cursors that belong
2859** to other database connections that happen to be sharing
2860** the cache with pBtree.
2861**
2862** This routine gets called when a rollback occurs.
2863** All cursors using the same cache must be tripped
2864** to prevent them from trying to use the btree after
2865** the rollback. The rollback may have deleted tables
2866** or moved root pages, so it is not sufficient to
2867** save the state of the cursor. The cursor must be
2868** invalidated.
2869*/
2870void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
2871 BtCursor *p;
2872 sqlite3BtreeEnter(pBtree);
2873 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00002874 int i;
danielk1977be51a652008-10-08 17:58:48 +00002875 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00002876 p->eState = CURSOR_FAULT;
2877 p->skip = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00002878 for(i=0; i<=p->iPage; i++){
2879 releasePage(p->apPage[i]);
2880 p->apPage[i] = 0;
2881 }
drhfb982642007-08-30 01:19:59 +00002882 }
2883 sqlite3BtreeLeave(pBtree);
2884}
2885
2886/*
drhecdc7532001-09-23 02:35:53 +00002887** Rollback the transaction in progress. All cursors will be
2888** invalided by this operation. Any attempt to use a cursor
2889** that was open at the beginning of this operation will result
2890** in an error.
drh5e00f6c2001-09-13 13:46:56 +00002891**
2892** This will release the write lock on the database file. If there
2893** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002894*/
danielk1977aef0bf62005-12-30 16:28:01 +00002895int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00002896 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002897 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00002898 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00002899
drhd677b3d2007-08-20 22:48:41 +00002900 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00002901 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00002902#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00002903 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00002904 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00002905 ** trying to save cursor positions. If this is an automatic rollback (as
2906 ** the result of a constraint, malloc() failure or IO error) then
2907 ** the cache may be internally inconsistent (not contain valid trees) so
2908 ** we cannot simply return the error to the caller. Instead, abort
2909 ** all queries that may be using any of the cursors that failed to save.
2910 */
drhfb982642007-08-30 01:19:59 +00002911 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00002912 }
danielk19778d34dfd2006-01-24 16:37:57 +00002913#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002914 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002915
2916 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00002917 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00002918
danielk19778d34dfd2006-01-24 16:37:57 +00002919 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00002920 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00002921 if( rc2!=SQLITE_OK ){
2922 rc = rc2;
2923 }
2924
drh24cd67e2004-05-10 16:18:47 +00002925 /* The rollback may have destroyed the pPage1->aData value. So
drh16a9b832007-05-05 18:39:25 +00002926 ** call sqlite3BtreeGetPage() on page 1 again to make
2927 ** sure pPage1->aData is set correctly. */
2928 if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00002929 releasePage(pPage1);
2930 }
danielk1977fbcd5852004-06-15 02:44:18 +00002931 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002932 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00002933 }
danielk1977aef0bf62005-12-30 16:28:01 +00002934
2935 if( p->inTrans!=TRANS_NONE ){
danielk1977fa542f12009-04-02 18:28:08 +00002936 clearAllSharedCacheTableLocks(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002937 assert( pBt->nTransaction>0 );
2938 pBt->nTransaction--;
2939 if( 0==pBt->nTransaction ){
2940 pBt->inTransaction = TRANS_NONE;
2941 }
2942 }
2943
danielk1977bea2a942009-01-20 17:06:27 +00002944 btreeClearHasContent(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002945 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002946 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002947
2948 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002949 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00002950 return rc;
2951}
2952
2953/*
danielk1977bd434552009-03-18 10:33:00 +00002954** Start a statement subtransaction. The subtransaction can can be rolled
2955** back independently of the main transaction. You must start a transaction
2956** before starting a subtransaction. The subtransaction is ended automatically
2957** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00002958**
2959** Statement subtransactions are used around individual SQL statements
2960** that are contained within a BEGIN...COMMIT block. If a constraint
2961** error occurs within the statement, the effect of that one statement
2962** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00002963**
2964** A statement sub-transaction is implemented as an anonymous savepoint. The
2965** value passed as the second parameter is the total number of savepoints,
2966** including the new anonymous savepoint, open on the B-Tree. i.e. if there
2967** are no active savepoints and no other statement-transactions open,
2968** iStatement is 1. This anonymous savepoint can be released or rolled back
2969** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00002970*/
danielk1977bd434552009-03-18 10:33:00 +00002971int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00002972 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002973 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002974 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00002975 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00002976 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00002977 assert( iStatement>0 );
2978 assert( iStatement>p->db->nSavepoint );
2979 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00002980 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00002981 }else{
2982 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00002983 /* At the pager level, a statement transaction is a savepoint with
2984 ** an index greater than all savepoints created explicitly using
2985 ** SQL statements. It is illegal to open, release or rollback any
2986 ** such savepoints while the statement transaction savepoint is active.
2987 */
danielk1977bd434552009-03-18 10:33:00 +00002988 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00002989 }
drhd677b3d2007-08-20 22:48:41 +00002990 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00002991 return rc;
2992}
2993
2994/*
danielk1977fd7f0452008-12-17 17:30:26 +00002995** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
2996** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00002997** savepoint identified by parameter iSavepoint, depending on the value
2998** of op.
2999**
3000** Normally, iSavepoint is greater than or equal to zero. However, if op is
3001** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3002** contents of the entire transaction are rolled back. This is different
3003** from a normal transaction rollback, as no locks are released and the
3004** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003005*/
3006int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3007 int rc = SQLITE_OK;
3008 if( p && p->inTrans==TRANS_WRITE ){
3009 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003010 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3011 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3012 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003013 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003014 if( rc==SQLITE_OK ){
3015 rc = newDatabase(pBt);
3016 }
danielk1977fd7f0452008-12-17 17:30:26 +00003017 sqlite3BtreeLeave(p);
3018 }
3019 return rc;
3020}
3021
3022/*
drh8b2f49b2001-06-08 00:21:52 +00003023** Create a new cursor for the BTree whose root is on the page
3024** iTable. The act of acquiring a cursor gets a read lock on
3025** the database file.
drh1bee3d72001-10-15 00:44:35 +00003026**
3027** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003028** If wrFlag==1, then the cursor can be used for reading or for
3029** writing if other conditions for writing are also met. These
3030** are the conditions that must be met in order for writing to
3031** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003032**
drhf74b8d92002-09-01 23:20:45 +00003033** 1: The cursor must have been opened with wrFlag==1
3034**
drhfe5d71d2007-03-19 11:54:10 +00003035** 2: Other database connections that share the same pager cache
3036** but which are not in the READ_UNCOMMITTED state may not have
3037** cursors open with wrFlag==0 on the same table. Otherwise
3038** the changes made by this write cursor would be visible to
3039** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003040**
3041** 3: The database must be writable (not on read-only media)
3042**
3043** 4: There must be an active transaction.
3044**
drh6446c4d2001-12-15 14:22:18 +00003045** No checking is done to make sure that page iTable really is the
3046** root page of a b-tree. If it is not, then the cursor acquired
3047** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003048**
3049** It is assumed that the sqlite3BtreeCursorSize() bytes of memory
3050** pointed to by pCur have been zeroed by the caller.
drha059ad02001-04-17 20:09:11 +00003051*/
drhd677b3d2007-08-20 22:48:41 +00003052static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003053 Btree *p, /* The btree */
3054 int iTable, /* Root page of table to open */
3055 int wrFlag, /* 1 to write. 0 read-only */
3056 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3057 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003058){
drha059ad02001-04-17 20:09:11 +00003059 int rc;
danielk197789d40042008-11-17 14:20:56 +00003060 Pgno nPage;
danielk1977aef0bf62005-12-30 16:28:01 +00003061 BtShared *pBt = p->pBt;
drhecdc7532001-09-23 02:35:53 +00003062
drh1fee73e2007-08-29 04:00:57 +00003063 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003064 assert( wrFlag==0 || wrFlag==1 );
drh8dcd7ca2004-08-08 19:43:29 +00003065 if( wrFlag ){
drh64022502009-01-09 14:11:04 +00003066 assert( !pBt->readOnly );
3067 if( NEVER(pBt->readOnly) ){
drh8dcd7ca2004-08-08 19:43:29 +00003068 return SQLITE_READONLY;
3069 }
danielk1977404ca072009-03-16 13:19:36 +00003070 rc = checkForReadConflicts(p, iTable, 0, 0);
3071 if( rc!=SQLITE_OK ){
3072 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
3073 return rc;
drh8dcd7ca2004-08-08 19:43:29 +00003074 }
drha0c9a112004-03-10 13:42:37 +00003075 }
danielk1977aef0bf62005-12-30 16:28:01 +00003076
drh4b70f112004-05-02 21:12:19 +00003077 if( pBt->pPage1==0 ){
danielk1977aef0bf62005-12-30 16:28:01 +00003078 rc = lockBtreeWithRetry(p);
drha059ad02001-04-17 20:09:11 +00003079 if( rc!=SQLITE_OK ){
drha059ad02001-04-17 20:09:11 +00003080 return rc;
3081 }
3082 }
drh8b2f49b2001-06-08 00:21:52 +00003083 pCur->pgnoRoot = (Pgno)iTable;
danielk197789d40042008-11-17 14:20:56 +00003084 rc = sqlite3PagerPagecount(pBt->pPager, (int *)&nPage);
3085 if( rc!=SQLITE_OK ){
3086 return rc;
3087 }
3088 if( iTable==1 && nPage==0 ){
drh24cd67e2004-05-10 16:18:47 +00003089 rc = SQLITE_EMPTY;
3090 goto create_cursor_exception;
3091 }
danielk197771d5d2c2008-09-29 11:49:47 +00003092 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
drhbd03cae2001-06-02 02:40:57 +00003093 if( rc!=SQLITE_OK ){
3094 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00003095 }
danielk1977aef0bf62005-12-30 16:28:01 +00003096
danielk1977aef0bf62005-12-30 16:28:01 +00003097 /* Now that no other errors can occur, finish filling in the BtCursor
3098 ** variables, link the cursor into the BtShared list and set *ppCur (the
3099 ** output argument to this function).
3100 */
drh1e968a02008-03-25 00:22:21 +00003101 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003102 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003103 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003104 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003105 pCur->pNext = pBt->pCursor;
3106 if( pCur->pNext ){
3107 pCur->pNext->pPrev = pCur;
3108 }
3109 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003110 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003111 pCur->cachedRowid = 0;
drhbd03cae2001-06-02 02:40:57 +00003112
danielk1977aef0bf62005-12-30 16:28:01 +00003113 return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003114
drhbd03cae2001-06-02 02:40:57 +00003115create_cursor_exception:
danielk197771d5d2c2008-09-29 11:49:47 +00003116 releasePage(pCur->apPage[0]);
drh5e00f6c2001-09-13 13:46:56 +00003117 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00003118 return rc;
drha059ad02001-04-17 20:09:11 +00003119}
drhd677b3d2007-08-20 22:48:41 +00003120int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003121 Btree *p, /* The btree */
3122 int iTable, /* Root page of table to open */
3123 int wrFlag, /* 1 to write. 0 read-only */
3124 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3125 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003126){
3127 int rc;
3128 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003129 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003130 sqlite3BtreeLeave(p);
3131 return rc;
3132}
drh7f751222009-03-17 22:33:00 +00003133
3134/*
3135** Return the size of a BtCursor object in bytes.
3136**
3137** This interfaces is needed so that users of cursors can preallocate
3138** sufficient storage to hold a cursor. The BtCursor object is opaque
3139** to users so they cannot do the sizeof() themselves - they must call
3140** this routine.
3141*/
3142int sqlite3BtreeCursorSize(void){
danielk1977cd3e8f72008-03-25 09:47:35 +00003143 return sizeof(BtCursor);
3144}
3145
drh7f751222009-03-17 22:33:00 +00003146/*
3147** Set the cached rowid value of every cursor in the same database file
3148** as pCur and having the same root page number as pCur. The value is
3149** set to iRowid.
3150**
3151** Only positive rowid values are considered valid for this cache.
3152** The cache is initialized to zero, indicating an invalid cache.
3153** A btree will work fine with zero or negative rowids. We just cannot
3154** cache zero or negative rowids, which means tables that use zero or
3155** negative rowids might run a little slower. But in practice, zero
3156** or negative rowids are very uncommon so this should not be a problem.
3157*/
3158void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3159 BtCursor *p;
3160 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3161 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3162 }
3163 assert( pCur->cachedRowid==iRowid );
3164}
drhd677b3d2007-08-20 22:48:41 +00003165
drh7f751222009-03-17 22:33:00 +00003166/*
3167** Return the cached rowid for the given cursor. A negative or zero
3168** return value indicates that the rowid cache is invalid and should be
3169** ignored. If the rowid cache has never before been set, then a
3170** zero is returned.
3171*/
3172sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3173 return pCur->cachedRowid;
3174}
drha059ad02001-04-17 20:09:11 +00003175
3176/*
drh5e00f6c2001-09-13 13:46:56 +00003177** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003178** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003179*/
drh3aac2dd2004-04-26 14:10:20 +00003180int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003181 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003182 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003183 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003184 BtShared *pBt = pCur->pBt;
3185 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003186 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003187 if( pCur->pPrev ){
3188 pCur->pPrev->pNext = pCur->pNext;
3189 }else{
3190 pBt->pCursor = pCur->pNext;
3191 }
3192 if( pCur->pNext ){
3193 pCur->pNext->pPrev = pCur->pPrev;
3194 }
danielk197771d5d2c2008-09-29 11:49:47 +00003195 for(i=0; i<=pCur->iPage; i++){
3196 releasePage(pCur->apPage[i]);
3197 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003198 unlockBtreeIfUnused(pBt);
3199 invalidateOverflowCache(pCur);
3200 /* sqlite3_free(pCur); */
3201 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003202 }
drh8c42ca92001-06-22 19:15:00 +00003203 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003204}
3205
drh7e3b0a02001-04-28 16:52:40 +00003206/*
drh5e2f8b92001-05-28 00:41:15 +00003207** Make a temporary cursor by filling in the fields of pTempCur.
3208** The temporary cursor is not on the cursor list for the Btree.
3209*/
drh16a9b832007-05-05 18:39:25 +00003210void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003211 int i;
drh1fee73e2007-08-29 04:00:57 +00003212 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003213 memcpy(pTempCur, pCur, sizeof(BtCursor));
drh5e2f8b92001-05-28 00:41:15 +00003214 pTempCur->pNext = 0;
3215 pTempCur->pPrev = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003216 for(i=0; i<=pTempCur->iPage; i++){
3217 sqlite3PagerRef(pTempCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003218 }
danielk197736e20932008-11-26 07:40:30 +00003219 assert( pTempCur->pKey==0 );
drh5e2f8b92001-05-28 00:41:15 +00003220}
3221
3222/*
drhbd03cae2001-06-02 02:40:57 +00003223** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00003224** function above.
3225*/
drh16a9b832007-05-05 18:39:25 +00003226void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003227 int i;
drh1fee73e2007-08-29 04:00:57 +00003228 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003229 for(i=0; i<=pCur->iPage; i++){
3230 sqlite3PagerUnref(pCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003231 }
danielk197736e20932008-11-26 07:40:30 +00003232 sqlite3_free(pCur->pKey);
drh5e2f8b92001-05-28 00:41:15 +00003233}
3234
drh7f751222009-03-17 22:33:00 +00003235
3236
drh5e2f8b92001-05-28 00:41:15 +00003237/*
drh86057612007-06-26 01:04:48 +00003238** Make sure the BtCursor* given in the argument has a valid
3239** BtCursor.info structure. If it is not already valid, call
danielk19771cc5ed82007-05-16 17:28:43 +00003240** sqlite3BtreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003241**
3242** BtCursor.info is a cache of the information in the current cell.
drh16a9b832007-05-05 18:39:25 +00003243** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
drh86057612007-06-26 01:04:48 +00003244**
3245** 2007-06-25: There is a bug in some versions of MSVC that cause the
3246** compiler to crash when getCellInfo() is implemented as a macro.
3247** But there is a measureable speed advantage to using the macro on gcc
3248** (when less compiler optimizations like -Os or -O0 are used and the
3249** compiler is not doing agressive inlining.) So we use a real function
3250** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003251*/
drh9188b382004-05-14 21:12:22 +00003252#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003253 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003254 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003255 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003256 memset(&info, 0, sizeof(info));
danielk197771d5d2c2008-09-29 11:49:47 +00003257 sqlite3BtreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003258 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003259 }
danielk19771cc5ed82007-05-16 17:28:43 +00003260#else
3261 #define assertCellInfo(x)
3262#endif
drh86057612007-06-26 01:04:48 +00003263#ifdef _MSC_VER
3264 /* Use a real function in MSVC to work around bugs in that compiler. */
3265 static void getCellInfo(BtCursor *pCur){
3266 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003267 int iPage = pCur->iPage;
3268 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003269 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003270 }else{
3271 assertCellInfo(pCur);
3272 }
3273 }
3274#else /* if not _MSC_VER */
3275 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003276#define getCellInfo(pCur) \
3277 if( pCur->info.nSize==0 ){ \
3278 int iPage = pCur->iPage; \
3279 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3280 pCur->validNKey = 1; \
3281 }else{ \
3282 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003283 }
3284#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003285
3286/*
drh3aac2dd2004-04-26 14:10:20 +00003287** Set *pSize to the size of the buffer needed to hold the value of
3288** the key for the current entry. If the cursor is not pointing
3289** to a valid entry, *pSize is set to 0.
3290**
drh4b70f112004-05-02 21:12:19 +00003291** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003292** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00003293*/
drh4a1c3802004-05-12 15:15:47 +00003294int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003295 int rc;
3296
drh1fee73e2007-08-29 04:00:57 +00003297 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003298 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003299 if( rc==SQLITE_OK ){
3300 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3301 if( pCur->eState==CURSOR_INVALID ){
3302 *pSize = 0;
3303 }else{
drh86057612007-06-26 01:04:48 +00003304 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003305 *pSize = pCur->info.nKey;
3306 }
drh72f82862001-05-24 21:06:34 +00003307 }
danielk1977da184232006-01-05 11:34:32 +00003308 return rc;
drha059ad02001-04-17 20:09:11 +00003309}
drh2af926b2001-05-15 00:39:25 +00003310
drh72f82862001-05-24 21:06:34 +00003311/*
drh0e1c19e2004-05-11 00:58:56 +00003312** Set *pSize to the number of bytes of data in the entry the
3313** cursor currently points to. Always return SQLITE_OK.
3314** Failure is not possible. If the cursor is not currently
3315** pointing to an entry (which can happen, for example, if
3316** the database is empty) then *pSize is set to 0.
3317*/
3318int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003319 int rc;
3320
drh1fee73e2007-08-29 04:00:57 +00003321 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003322 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003323 if( rc==SQLITE_OK ){
3324 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3325 if( pCur->eState==CURSOR_INVALID ){
3326 /* Not pointing at a valid entry - set *pSize to 0. */
3327 *pSize = 0;
3328 }else{
drh86057612007-06-26 01:04:48 +00003329 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003330 *pSize = pCur->info.nData;
3331 }
drh0e1c19e2004-05-11 00:58:56 +00003332 }
danielk1977da184232006-01-05 11:34:32 +00003333 return rc;
drh0e1c19e2004-05-11 00:58:56 +00003334}
3335
3336/*
danielk1977d04417962007-05-02 13:16:30 +00003337** Given the page number of an overflow page in the database (parameter
3338** ovfl), this function finds the page number of the next page in the
3339** linked list of overflow pages. If possible, it uses the auto-vacuum
3340** pointer-map data instead of reading the content of page ovfl to do so.
3341**
3342** If an error occurs an SQLite error code is returned. Otherwise:
3343**
danielk1977bea2a942009-01-20 17:06:27 +00003344** The page number of the next overflow page in the linked list is
3345** written to *pPgnoNext. If page ovfl is the last page in its linked
3346** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003347**
danielk1977bea2a942009-01-20 17:06:27 +00003348** If ppPage is not NULL, and a reference to the MemPage object corresponding
3349** to page number pOvfl was obtained, then *ppPage is set to point to that
3350** reference. It is the responsibility of the caller to call releasePage()
3351** on *ppPage to free the reference. In no reference was obtained (because
3352** the pointer-map was used to obtain the value for *pPgnoNext), then
3353** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003354*/
3355static int getOverflowPage(
3356 BtShared *pBt,
3357 Pgno ovfl, /* Overflow page */
danielk1977bea2a942009-01-20 17:06:27 +00003358 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003359 Pgno *pPgnoNext /* OUT: Next overflow page number */
3360){
3361 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003362 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003363 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003364
drh1fee73e2007-08-29 04:00:57 +00003365 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003366 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003367
3368#ifndef SQLITE_OMIT_AUTOVACUUM
3369 /* Try to find the next page in the overflow list using the
3370 ** autovacuum pointer-map pages. Guess that the next page in
3371 ** the overflow list is page number (ovfl+1). If that guess turns
3372 ** out to be wrong, fall back to loading the data of page
3373 ** number ovfl to determine the next page number.
3374 */
3375 if( pBt->autoVacuum ){
3376 Pgno pgno;
3377 Pgno iGuess = ovfl+1;
3378 u8 eType;
3379
3380 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3381 iGuess++;
3382 }
3383
danielk197789d40042008-11-17 14:20:56 +00003384 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003385 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003386 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003387 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003388 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003389 }
3390 }
3391 }
3392#endif
3393
danielk1977bea2a942009-01-20 17:06:27 +00003394 if( rc==SQLITE_OK ){
3395 rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d04417962007-05-02 13:16:30 +00003396 assert(rc==SQLITE_OK || pPage==0);
3397 if( next==0 && rc==SQLITE_OK ){
3398 next = get4byte(pPage->aData);
3399 }
danielk1977443c0592009-01-16 15:21:05 +00003400 }
danielk197745d68822009-01-16 16:23:38 +00003401
danielk1977bea2a942009-01-20 17:06:27 +00003402 *pPgnoNext = next;
3403 if( ppPage ){
3404 *ppPage = pPage;
3405 }else{
3406 releasePage(pPage);
3407 }
3408 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003409}
3410
danielk1977da107192007-05-04 08:32:13 +00003411/*
3412** Copy data from a buffer to a page, or from a page to a buffer.
3413**
3414** pPayload is a pointer to data stored on database page pDbPage.
3415** If argument eOp is false, then nByte bytes of data are copied
3416** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3417** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3418** of data are copied from the buffer pBuf to pPayload.
3419**
3420** SQLITE_OK is returned on success, otherwise an error code.
3421*/
3422static int copyPayload(
3423 void *pPayload, /* Pointer to page data */
3424 void *pBuf, /* Pointer to buffer */
3425 int nByte, /* Number of bytes to copy */
3426 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3427 DbPage *pDbPage /* Page containing pPayload */
3428){
3429 if( eOp ){
3430 /* Copy data from buffer to page (a write operation) */
3431 int rc = sqlite3PagerWrite(pDbPage);
3432 if( rc!=SQLITE_OK ){
3433 return rc;
3434 }
3435 memcpy(pPayload, pBuf, nByte);
3436 }else{
3437 /* Copy data from page to buffer (a read operation) */
3438 memcpy(pBuf, pPayload, nByte);
3439 }
3440 return SQLITE_OK;
3441}
danielk1977d04417962007-05-02 13:16:30 +00003442
3443/*
danielk19779f8d6402007-05-02 17:48:45 +00003444** This function is used to read or overwrite payload information
3445** for the entry that the pCur cursor is pointing to. If the eOp
3446** parameter is 0, this is a read operation (data copied into
3447** buffer pBuf). If it is non-zero, a write (data copied from
3448** buffer pBuf).
3449**
3450** A total of "amt" bytes are read or written beginning at "offset".
3451** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003452**
3453** This routine does not make a distinction between key and data.
danielk19779f8d6402007-05-02 17:48:45 +00003454** It just reads or writes bytes from the payload area. Data might
3455** appear on the main page or be scattered out on multiple overflow
3456** pages.
danielk1977da107192007-05-04 08:32:13 +00003457**
danielk1977dcbb5d32007-05-04 18:36:44 +00003458** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003459** cursor entry uses one or more overflow pages, this function
3460** allocates space for and lazily popluates the overflow page-list
3461** cache array (BtCursor.aOverflow). Subsequent calls use this
3462** cache to make seeking to the supplied offset more efficient.
3463**
3464** Once an overflow page-list cache has been allocated, it may be
3465** invalidated if some other cursor writes to the same table, or if
3466** the cursor is moved to a different row. Additionally, in auto-vacuum
3467** mode, the following events may invalidate an overflow page-list cache.
3468**
3469** * An incremental vacuum,
3470** * A commit in auto_vacuum="full" mode,
3471** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003472*/
danielk19779f8d6402007-05-02 17:48:45 +00003473static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003474 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003475 u32 offset, /* Begin reading this far into payload */
3476 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003477 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003478 int skipKey, /* offset begins at data if this is true */
3479 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003480){
3481 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003482 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003483 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003484 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003485 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003486 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003487
danielk1977da107192007-05-04 08:32:13 +00003488 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003489 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003490 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003491 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003492
drh86057612007-06-26 01:04:48 +00003493 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003494 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003495 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003496
drh3aac2dd2004-04-26 14:10:20 +00003497 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003498 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00003499 }
danielk19770d065412008-11-12 18:21:36 +00003500 if( offset+amt > nKey+pCur->info.nData
3501 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3502 ){
danielk1977da107192007-05-04 08:32:13 +00003503 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003504 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003505 }
danielk1977da107192007-05-04 08:32:13 +00003506
3507 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003508 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003509 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003510 if( a+offset>pCur->info.nLocal ){
3511 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003512 }
danielk1977da107192007-05-04 08:32:13 +00003513 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003514 offset = 0;
drha34b6762004-05-07 13:30:42 +00003515 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003516 amt -= a;
drhdd793422001-06-28 01:54:48 +00003517 }else{
drhfa1a98a2004-05-14 19:08:17 +00003518 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003519 }
danielk1977da107192007-05-04 08:32:13 +00003520
3521 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003522 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003523 Pgno nextPage;
3524
drhfa1a98a2004-05-14 19:08:17 +00003525 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003526
danielk19772dec9702007-05-02 16:48:37 +00003527#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003528 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003529 ** has not been allocated, allocate it now. The array is sized at
3530 ** one entry for each overflow page in the overflow chain. The
3531 ** page number of the first overflow page is stored in aOverflow[0],
3532 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3533 ** (the cache is lazily populated).
3534 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003535 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003536 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003537 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
danielk19772dec9702007-05-02 16:48:37 +00003538 if( nOvfl && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003539 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003540 }
3541 }
danielk1977da107192007-05-04 08:32:13 +00003542
3543 /* If the overflow page-list cache has been allocated and the
3544 ** entry for the first required overflow page is valid, skip
3545 ** directly to it.
3546 */
danielk19772dec9702007-05-02 16:48:37 +00003547 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3548 iIdx = (offset/ovflSize);
3549 nextPage = pCur->aOverflow[iIdx];
3550 offset = (offset%ovflSize);
3551 }
3552#endif
danielk1977da107192007-05-04 08:32:13 +00003553
3554 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3555
3556#ifndef SQLITE_OMIT_INCRBLOB
3557 /* If required, populate the overflow page-list cache. */
3558 if( pCur->aOverflow ){
3559 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3560 pCur->aOverflow[iIdx] = nextPage;
3561 }
3562#endif
3563
danielk1977d04417962007-05-02 13:16:30 +00003564 if( offset>=ovflSize ){
3565 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003566 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003567 ** data is not required. So first try to lookup the overflow
3568 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003569 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003570 */
danielk19772dec9702007-05-02 16:48:37 +00003571#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003572 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3573 nextPage = pCur->aOverflow[iIdx+1];
3574 } else
danielk19772dec9702007-05-02 16:48:37 +00003575#endif
danielk1977da107192007-05-04 08:32:13 +00003576 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003577 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003578 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003579 /* Need to read this page properly. It contains some of the
3580 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003581 */
3582 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003583 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003584 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003585 if( rc==SQLITE_OK ){
3586 aPayload = sqlite3PagerGetData(pDbPage);
3587 nextPage = get4byte(aPayload);
3588 if( a + offset > ovflSize ){
3589 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003590 }
danielk1977da107192007-05-04 08:32:13 +00003591 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3592 sqlite3PagerUnref(pDbPage);
3593 offset = 0;
3594 amt -= a;
3595 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003596 }
danielk1977cfe9a692004-06-16 12:00:29 +00003597 }
drh2af926b2001-05-15 00:39:25 +00003598 }
drh2af926b2001-05-15 00:39:25 +00003599 }
danielk1977cfe9a692004-06-16 12:00:29 +00003600
danielk1977da107192007-05-04 08:32:13 +00003601 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003602 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003603 }
danielk1977da107192007-05-04 08:32:13 +00003604 return rc;
drh2af926b2001-05-15 00:39:25 +00003605}
3606
drh72f82862001-05-24 21:06:34 +00003607/*
drh3aac2dd2004-04-26 14:10:20 +00003608** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003609** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003610** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003611**
drh3aac2dd2004-04-26 14:10:20 +00003612** Return SQLITE_OK on success or an error code if anything goes
3613** wrong. An error is returned if "offset+amt" is larger than
3614** the available payload.
drh72f82862001-05-24 21:06:34 +00003615*/
drha34b6762004-05-07 13:30:42 +00003616int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003617 int rc;
3618
drh1fee73e2007-08-29 04:00:57 +00003619 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003620 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003621 if( rc==SQLITE_OK ){
3622 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003623 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3624 if( pCur->apPage[0]->intKey ){
danielk1977da184232006-01-05 11:34:32 +00003625 return SQLITE_CORRUPT_BKPT;
3626 }
danielk197771d5d2c2008-09-29 11:49:47 +00003627 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003628 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
drh6575a222005-03-10 17:06:34 +00003629 }
danielk1977da184232006-01-05 11:34:32 +00003630 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003631}
3632
3633/*
drh3aac2dd2004-04-26 14:10:20 +00003634** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003635** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003636** begins at "offset".
3637**
3638** Return SQLITE_OK on success or an error code if anything goes
3639** wrong. An error is returned if "offset+amt" is larger than
3640** the available payload.
drh72f82862001-05-24 21:06:34 +00003641*/
drh3aac2dd2004-04-26 14:10:20 +00003642int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003643 int rc;
3644
danielk19773588ceb2008-06-10 17:30:26 +00003645#ifndef SQLITE_OMIT_INCRBLOB
3646 if ( pCur->eState==CURSOR_INVALID ){
3647 return SQLITE_ABORT;
3648 }
3649#endif
3650
drh1fee73e2007-08-29 04:00:57 +00003651 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003652 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003653 if( rc==SQLITE_OK ){
3654 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003655 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3656 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003657 rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
danielk1977da184232006-01-05 11:34:32 +00003658 }
3659 return rc;
drh2af926b2001-05-15 00:39:25 +00003660}
3661
drh72f82862001-05-24 21:06:34 +00003662/*
drh0e1c19e2004-05-11 00:58:56 +00003663** Return a pointer to payload information from the entry that the
3664** pCur cursor is pointing to. The pointer is to the beginning of
3665** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003666** skipKey==1. The number of bytes of available key/data is written
3667** into *pAmt. If *pAmt==0, then the value returned will not be
3668** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003669**
3670** This routine is an optimization. It is common for the entire key
3671** and data to fit on the local page and for there to be no overflow
3672** pages. When that is so, this routine can be used to access the
3673** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003674** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003675** the key/data and copy it into a preallocated buffer.
3676**
3677** The pointer returned by this routine looks directly into the cached
3678** page of the database. The data might change or move the next time
3679** any btree routine is called.
3680*/
3681static const unsigned char *fetchPayload(
3682 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003683 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003684 int skipKey /* read beginning at data if this is true */
3685){
3686 unsigned char *aPayload;
3687 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003688 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003689 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003690
danielk197771d5d2c2008-09-29 11:49:47 +00003691 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003692 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003693 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003694 pPage = pCur->apPage[pCur->iPage];
3695 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh86057612007-06-26 01:04:48 +00003696 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003697 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003698 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003699 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003700 nKey = 0;
3701 }else{
drhf49661a2008-12-10 16:45:50 +00003702 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003703 }
drh0e1c19e2004-05-11 00:58:56 +00003704 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003705 aPayload += nKey;
3706 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003707 }else{
drhfa1a98a2004-05-14 19:08:17 +00003708 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003709 if( nLocal>nKey ){
3710 nLocal = nKey;
3711 }
drh0e1c19e2004-05-11 00:58:56 +00003712 }
drhe51c44f2004-05-30 20:46:09 +00003713 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003714 return aPayload;
3715}
3716
3717
3718/*
drhe51c44f2004-05-30 20:46:09 +00003719** For the entry that cursor pCur is point to, return as
3720** many bytes of the key or data as are available on the local
3721** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003722**
3723** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003724** or be destroyed on the next call to any Btree routine,
3725** including calls from other threads against the same cache.
3726** Hence, a mutex on the BtShared should be held prior to calling
3727** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003728**
3729** These routines is used to get quick access to key and data
3730** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003731*/
drhe51c44f2004-05-30 20:46:09 +00003732const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003733 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003734 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003735 if( pCur->eState==CURSOR_VALID ){
3736 return (const void*)fetchPayload(pCur, pAmt, 0);
3737 }
3738 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003739}
drhe51c44f2004-05-30 20:46:09 +00003740const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003741 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003742 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003743 if( pCur->eState==CURSOR_VALID ){
3744 return (const void*)fetchPayload(pCur, pAmt, 1);
3745 }
3746 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003747}
3748
3749
3750/*
drh8178a752003-01-05 21:41:40 +00003751** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003752** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003753*/
drh3aac2dd2004-04-26 14:10:20 +00003754static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003755 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003756 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003757 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003758 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003759
drh1fee73e2007-08-29 04:00:57 +00003760 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003761 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003762 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3763 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3764 return SQLITE_CORRUPT_BKPT;
3765 }
3766 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003767 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003768 pCur->apPage[i+1] = pNewPage;
3769 pCur->aiIdx[i+1] = 0;
3770 pCur->iPage++;
3771
drh271efa52004-05-30 19:19:05 +00003772 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003773 pCur->validNKey = 0;
drh4be295b2003-12-16 03:44:47 +00003774 if( pNewPage->nCell<1 ){
drh49285702005-09-17 15:20:26 +00003775 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003776 }
drh72f82862001-05-24 21:06:34 +00003777 return SQLITE_OK;
3778}
3779
danielk1977bf93c562008-09-29 15:53:25 +00003780#ifndef NDEBUG
3781/*
3782** Page pParent is an internal (non-leaf) tree page. This function
3783** asserts that page number iChild is the left-child if the iIdx'th
3784** cell in page pParent. Or, if iIdx is equal to the total number of
3785** cells in pParent, that page number iChild is the right-child of
3786** the page.
3787*/
3788static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
3789 assert( iIdx<=pParent->nCell );
3790 if( iIdx==pParent->nCell ){
3791 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
3792 }else{
3793 assert( get4byte(findCell(pParent, iIdx))==iChild );
3794 }
3795}
3796#else
3797# define assertParentIndex(x,y,z)
3798#endif
3799
drh72f82862001-05-24 21:06:34 +00003800/*
drh5e2f8b92001-05-28 00:41:15 +00003801** Move the cursor up to the parent page.
3802**
3803** pCur->idx is set to the cell index that contains the pointer
3804** to the page we are coming from. If we are coming from the
3805** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003806** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003807*/
drh16a9b832007-05-05 18:39:25 +00003808void sqlite3BtreeMoveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00003809 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003810 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003811 assert( pCur->iPage>0 );
3812 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00003813 assertParentIndex(
3814 pCur->apPage[pCur->iPage-1],
3815 pCur->aiIdx[pCur->iPage-1],
3816 pCur->apPage[pCur->iPage]->pgno
3817 );
danielk197771d5d2c2008-09-29 11:49:47 +00003818 releasePage(pCur->apPage[pCur->iPage]);
3819 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00003820 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003821 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00003822}
3823
3824/*
3825** Move the cursor to the root page
3826*/
drh5e2f8b92001-05-28 00:41:15 +00003827static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00003828 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00003829 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003830 Btree *p = pCur->pBtree;
3831 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00003832
drh1fee73e2007-08-29 04:00:57 +00003833 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00003834 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
3835 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
3836 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
3837 if( pCur->eState>=CURSOR_REQUIRESEEK ){
3838 if( pCur->eState==CURSOR_FAULT ){
3839 return pCur->skip;
3840 }
danielk1977be51a652008-10-08 17:58:48 +00003841 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00003842 }
danielk197771d5d2c2008-09-29 11:49:47 +00003843
3844 if( pCur->iPage>=0 ){
3845 int i;
3846 for(i=1; i<=pCur->iPage; i++){
3847 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00003848 }
drh777e4c42006-01-13 04:31:58 +00003849 }else{
3850 if(
danielk197771d5d2c2008-09-29 11:49:47 +00003851 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]))
drh777e4c42006-01-13 04:31:58 +00003852 ){
3853 pCur->eState = CURSOR_INVALID;
3854 return rc;
3855 }
drhc39e0002004-05-07 23:50:57 +00003856 }
danielk197771d5d2c2008-09-29 11:49:47 +00003857
3858 pRoot = pCur->apPage[0];
3859 assert( pRoot->pgno==pCur->pgnoRoot );
3860 pCur->iPage = 0;
3861 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00003862 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003863 pCur->atLast = 0;
3864 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003865
drh8856d6a2004-04-29 14:42:46 +00003866 if( pRoot->nCell==0 && !pRoot->leaf ){
3867 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00003868 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh8856d6a2004-04-29 14:42:46 +00003869 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00003870 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00003871 assert( subpage>0 );
danielk1977da184232006-01-05 11:34:32 +00003872 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00003873 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00003874 }else{
3875 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00003876 }
3877 return rc;
drh72f82862001-05-24 21:06:34 +00003878}
drh2af926b2001-05-15 00:39:25 +00003879
drh5e2f8b92001-05-28 00:41:15 +00003880/*
3881** Move the cursor down to the left-most leaf entry beneath the
3882** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00003883**
3884** The left-most leaf is the one with the smallest key - the first
3885** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00003886*/
3887static int moveToLeftmost(BtCursor *pCur){
3888 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00003889 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00003890 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00003891
drh1fee73e2007-08-29 04:00:57 +00003892 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003893 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003894 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
3895 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
3896 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00003897 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00003898 }
drhd677b3d2007-08-20 22:48:41 +00003899 return rc;
drh5e2f8b92001-05-28 00:41:15 +00003900}
3901
drh2dcc9aa2002-12-04 13:40:25 +00003902/*
3903** Move the cursor down to the right-most leaf entry beneath the
3904** page to which it is currently pointing. Notice the difference
3905** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
3906** finds the left-most entry beneath the *entry* whereas moveToRightmost()
3907** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00003908**
3909** The right-most entry is the one with the largest key - the last
3910** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00003911*/
3912static int moveToRightmost(BtCursor *pCur){
3913 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00003914 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00003915 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00003916
drh1fee73e2007-08-29 04:00:57 +00003917 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003918 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003919 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00003920 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00003921 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00003922 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00003923 }
drhd677b3d2007-08-20 22:48:41 +00003924 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00003925 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00003926 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003927 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00003928 }
danielk1977518002e2008-09-05 05:02:46 +00003929 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00003930}
3931
drh5e00f6c2001-09-13 13:46:56 +00003932/* Move the cursor to the first entry in the table. Return SQLITE_OK
3933** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003934** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00003935*/
drh3aac2dd2004-04-26 14:10:20 +00003936int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00003937 int rc;
drhd677b3d2007-08-20 22:48:41 +00003938
drh1fee73e2007-08-29 04:00:57 +00003939 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003940 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00003941 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003942 if( rc==SQLITE_OK ){
3943 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00003944 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00003945 *pRes = 1;
3946 rc = SQLITE_OK;
3947 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00003948 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00003949 *pRes = 0;
3950 rc = moveToLeftmost(pCur);
3951 }
drh5e00f6c2001-09-13 13:46:56 +00003952 }
drh5e00f6c2001-09-13 13:46:56 +00003953 return rc;
3954}
drh5e2f8b92001-05-28 00:41:15 +00003955
drh9562b552002-02-19 15:00:07 +00003956/* Move the cursor to the last entry in the table. Return SQLITE_OK
3957** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003958** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00003959*/
drh3aac2dd2004-04-26 14:10:20 +00003960int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00003961 int rc;
drhd677b3d2007-08-20 22:48:41 +00003962
drh1fee73e2007-08-29 04:00:57 +00003963 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003964 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00003965
3966 /* If the cursor already points to the last entry, this is a no-op. */
3967 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
3968#ifdef SQLITE_DEBUG
3969 /* This block serves to assert() that the cursor really does point
3970 ** to the last entry in the b-tree. */
3971 int ii;
3972 for(ii=0; ii<pCur->iPage; ii++){
3973 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
3974 }
3975 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
3976 assert( pCur->apPage[pCur->iPage]->leaf );
3977#endif
3978 return SQLITE_OK;
3979 }
3980
drh9562b552002-02-19 15:00:07 +00003981 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003982 if( rc==SQLITE_OK ){
3983 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00003984 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00003985 *pRes = 1;
3986 }else{
3987 assert( pCur->eState==CURSOR_VALID );
3988 *pRes = 0;
3989 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00003990 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00003991 }
drh9562b552002-02-19 15:00:07 +00003992 }
drh9562b552002-02-19 15:00:07 +00003993 return rc;
3994}
3995
drhe14006d2008-03-25 17:23:32 +00003996/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00003997** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00003998**
drhe63d9992008-08-13 19:11:48 +00003999** For INTKEY tables, the intKey parameter is used. pIdxKey
4000** must be NULL. For index tables, pIdxKey is used and intKey
4001** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004002**
drh5e2f8b92001-05-28 00:41:15 +00004003** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004004** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004005** were present. The cursor might point to an entry that comes
4006** before or after the key.
4007**
drh64022502009-01-09 14:11:04 +00004008** An integer is written into *pRes which is the result of
4009** comparing the key with the entry to which the cursor is
4010** pointing. The meaning of the integer written into
4011** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004012**
4013** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004014** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004015** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004016**
4017** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004018** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004019**
4020** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004021** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004022**
drha059ad02001-04-17 20:09:11 +00004023*/
drhe63d9992008-08-13 19:11:48 +00004024int sqlite3BtreeMovetoUnpacked(
4025 BtCursor *pCur, /* The cursor to be moved */
4026 UnpackedRecord *pIdxKey, /* Unpacked index key */
4027 i64 intKey, /* The table key */
4028 int biasRight, /* If true, bias the search to the high end */
4029 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004030){
drh72f82862001-05-24 21:06:34 +00004031 int rc;
drhd677b3d2007-08-20 22:48:41 +00004032
drh1fee73e2007-08-29 04:00:57 +00004033 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004034 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drha2c20e42008-03-29 16:01:04 +00004035
4036 /* If the cursor is already positioned at the point we are trying
4037 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004038 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4039 && pCur->apPage[0]->intKey
4040 ){
drhe63d9992008-08-13 19:11:48 +00004041 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004042 *pRes = 0;
4043 return SQLITE_OK;
4044 }
drhe63d9992008-08-13 19:11:48 +00004045 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004046 *pRes = -1;
4047 return SQLITE_OK;
4048 }
4049 }
4050
drh5e2f8b92001-05-28 00:41:15 +00004051 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004052 if( rc ){
4053 return rc;
4054 }
danielk197771d5d2c2008-09-29 11:49:47 +00004055 assert( pCur->apPage[pCur->iPage] );
4056 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977da184232006-01-05 11:34:32 +00004057 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004058 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004059 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004060 return SQLITE_OK;
4061 }
danielk197771d5d2c2008-09-29 11:49:47 +00004062 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004063 for(;;){
drh72f82862001-05-24 21:06:34 +00004064 int lwr, upr;
4065 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004066 MemPage *pPage = pCur->apPage[pCur->iPage];
drh1a844c32002-12-04 22:29:28 +00004067 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00004068 lwr = 0;
4069 upr = pPage->nCell-1;
drh64022502009-01-09 14:11:04 +00004070 if( (!pPage->intKey && pIdxKey==0) || upr<0 ){
drh1e968a02008-03-25 00:22:21 +00004071 rc = SQLITE_CORRUPT_BKPT;
4072 goto moveto_finish;
drh4eec4c12005-01-21 00:22:37 +00004073 }
drhe4d90812007-03-29 05:51:49 +00004074 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004075 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004076 }else{
drhf49661a2008-12-10 16:45:50 +00004077 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004078 }
drh64022502009-01-09 14:11:04 +00004079 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004080 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4081 u8 *pCell; /* Pointer to current cell in pPage */
4082
drh366fda62006-01-13 02:35:09 +00004083 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004084 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004085 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004086 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004087 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004088 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004089 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004090 }
drha2c20e42008-03-29 16:01:04 +00004091 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004092 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004093 c = 0;
drhe63d9992008-08-13 19:11:48 +00004094 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004095 c = -1;
4096 }else{
drhe63d9992008-08-13 19:11:48 +00004097 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004098 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004099 }
danielk197711c327a2009-05-04 19:01:26 +00004100 pCur->validNKey = 1;
4101 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004102 }else{
danielk197711c327a2009-05-04 19:01:26 +00004103 /* The maximum supported page-size is 32768 bytes. This means that
4104 ** the maximum number of record bytes stored on an index B-Tree
4105 ** page is at most 8198 bytes, which may be stored as a 2-byte
4106 ** varint. This information is used to attempt to avoid parsing
4107 ** the entire cell by checking for the cases where the record is
4108 ** stored entirely within the b-tree page by inspecting the first
4109 ** 2 bytes of the cell.
4110 */
4111 int nCell = pCell[0];
4112 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4113 /* This branch runs if the record-size field of the cell is a
4114 ** single byte varint and the record fits entirely on the main
4115 ** b-tree page. */
4116 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4117 }else if( !(pCell[1] & 0x80)
4118 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4119 ){
4120 /* The record-size field is a 2 byte varint and the record
4121 ** fits entirely on the main b-tree page. */
4122 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004123 }else{
danielk197711c327a2009-05-04 19:01:26 +00004124 /* The record flows over onto one or more overflow pages. In
4125 ** this case the whole cell needs to be parsed, a buffer allocated
4126 ** and accessPayload() used to retrieve the record into the
4127 ** buffer before VdbeRecordCompare() can be called. */
4128 void *pCellKey;
4129 u8 * const pCellBody = pCell - pPage->childPtrSize;
4130 sqlite3BtreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004131 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004132 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004133 if( pCellKey==0 ){
4134 rc = SQLITE_NOMEM;
4135 goto moveto_finish;
4136 }
danielk197711c327a2009-05-04 19:01:26 +00004137 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0, 0);
4138 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004139 sqlite3_free(pCellKey);
drh1e968a02008-03-25 00:22:21 +00004140 if( rc ) goto moveto_finish;
drhe51c44f2004-05-30 20:46:09 +00004141 }
drh3aac2dd2004-04-26 14:10:20 +00004142 }
drh72f82862001-05-24 21:06:34 +00004143 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004144 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004145 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004146 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004147 break;
4148 }else{
drh64022502009-01-09 14:11:04 +00004149 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004150 rc = SQLITE_OK;
4151 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004152 }
drh72f82862001-05-24 21:06:34 +00004153 }
4154 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004155 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004156 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004157 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004158 }
drhf1d68b32007-03-29 04:43:26 +00004159 if( lwr>upr ){
4160 break;
4161 }
drhf49661a2008-12-10 16:45:50 +00004162 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004163 }
4164 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004165 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004166 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004167 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004168 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004169 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004170 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004171 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004172 }
4173 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004174 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh72f82862001-05-24 21:06:34 +00004175 if( pRes ) *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004176 rc = SQLITE_OK;
4177 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004178 }
drhf49661a2008-12-10 16:45:50 +00004179 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004180 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004181 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004182 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004183 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004184 }
drh1e968a02008-03-25 00:22:21 +00004185moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004186 return rc;
4187}
4188
4189/*
4190** In this version of BtreeMoveto, pKey is a packed index record
4191** such as is generated by the OP_MakeRecord opcode. Unpack the
4192** record and then call BtreeMovetoUnpacked() to do the work.
4193*/
4194int sqlite3BtreeMoveto(
4195 BtCursor *pCur, /* Cursor open on the btree to be searched */
4196 const void *pKey, /* Packed key if the btree is an index */
4197 i64 nKey, /* Integer key for tables. Size of pKey for indices */
4198 int bias, /* Bias search to the high end */
4199 int *pRes /* Write search results here */
4200){
4201 int rc; /* Status code */
4202 UnpackedRecord *pIdxKey; /* Unpacked index key */
drh8c5d1522009-04-10 00:56:28 +00004203 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
4204
drhe63d9992008-08-13 19:11:48 +00004205
drhe14006d2008-03-25 17:23:32 +00004206 if( pKey ){
drhf49661a2008-12-10 16:45:50 +00004207 assert( nKey==(i64)(int)nKey );
4208 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
drh23f79d02008-08-20 22:06:47 +00004209 aSpace, sizeof(aSpace));
drhe63d9992008-08-13 19:11:48 +00004210 if( pIdxKey==0 ) return SQLITE_NOMEM;
4211 }else{
4212 pIdxKey = 0;
4213 }
4214 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
4215 if( pKey ){
4216 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
drhe14006d2008-03-25 17:23:32 +00004217 }
drh1e968a02008-03-25 00:22:21 +00004218 return rc;
drh72f82862001-05-24 21:06:34 +00004219}
4220
drhd677b3d2007-08-20 22:48:41 +00004221
drh72f82862001-05-24 21:06:34 +00004222/*
drhc39e0002004-05-07 23:50:57 +00004223** Return TRUE if the cursor is not pointing at an entry of the table.
4224**
4225** TRUE will be returned after a call to sqlite3BtreeNext() moves
4226** past the last entry in the table or sqlite3BtreePrev() moves past
4227** the first entry. TRUE is also returned if the table is empty.
4228*/
4229int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004230 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4231 ** have been deleted? This API will need to change to return an error code
4232 ** as well as the boolean result value.
4233 */
4234 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004235}
4236
4237/*
drhbd03cae2001-06-02 02:40:57 +00004238** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004239** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004240** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004241** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004242*/
drhd094db12008-04-03 21:46:57 +00004243int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004244 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004245 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004246 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004247
drh1fee73e2007-08-29 04:00:57 +00004248 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004249 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004250 if( rc!=SQLITE_OK ){
4251 return rc;
4252 }
drh8c4d3a62007-04-06 01:03:32 +00004253 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004254 if( CURSOR_INVALID==pCur->eState ){
4255 *pRes = 1;
4256 return SQLITE_OK;
4257 }
danielk1977da184232006-01-05 11:34:32 +00004258 if( pCur->skip>0 ){
4259 pCur->skip = 0;
4260 *pRes = 0;
4261 return SQLITE_OK;
4262 }
4263 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004264
danielk197771d5d2c2008-09-29 11:49:47 +00004265 pPage = pCur->apPage[pCur->iPage];
4266 idx = ++pCur->aiIdx[pCur->iPage];
4267 assert( pPage->isInit );
4268 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004269
drh271efa52004-05-30 19:19:05 +00004270 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004271 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004272 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004273 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004274 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004275 if( rc ) return rc;
4276 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004277 *pRes = 0;
4278 return rc;
drh72f82862001-05-24 21:06:34 +00004279 }
drh5e2f8b92001-05-28 00:41:15 +00004280 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004281 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004282 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004283 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004284 return SQLITE_OK;
4285 }
drh16a9b832007-05-05 18:39:25 +00004286 sqlite3BtreeMoveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004287 pPage = pCur->apPage[pCur->iPage];
4288 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004289 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004290 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004291 rc = sqlite3BtreeNext(pCur, pRes);
4292 }else{
4293 rc = SQLITE_OK;
4294 }
4295 return rc;
drh8178a752003-01-05 21:41:40 +00004296 }
4297 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004298 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004299 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004300 }
drh5e2f8b92001-05-28 00:41:15 +00004301 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004302 return rc;
drh72f82862001-05-24 21:06:34 +00004303}
drhd677b3d2007-08-20 22:48:41 +00004304
drh72f82862001-05-24 21:06:34 +00004305
drh3b7511c2001-05-26 13:15:44 +00004306/*
drh2dcc9aa2002-12-04 13:40:25 +00004307** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004308** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004309** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004310** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004311*/
drhd094db12008-04-03 21:46:57 +00004312int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004313 int rc;
drh8178a752003-01-05 21:41:40 +00004314 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004315
drh1fee73e2007-08-29 04:00:57 +00004316 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004317 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004318 if( rc!=SQLITE_OK ){
4319 return rc;
4320 }
drha2c20e42008-03-29 16:01:04 +00004321 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004322 if( CURSOR_INVALID==pCur->eState ){
4323 *pRes = 1;
4324 return SQLITE_OK;
4325 }
danielk1977da184232006-01-05 11:34:32 +00004326 if( pCur->skip<0 ){
4327 pCur->skip = 0;
4328 *pRes = 0;
4329 return SQLITE_OK;
4330 }
4331 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004332
danielk197771d5d2c2008-09-29 11:49:47 +00004333 pPage = pCur->apPage[pCur->iPage];
4334 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004335 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004336 int idx = pCur->aiIdx[pCur->iPage];
4337 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004338 if( rc ){
4339 return rc;
4340 }
drh2dcc9aa2002-12-04 13:40:25 +00004341 rc = moveToRightmost(pCur);
4342 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004343 while( pCur->aiIdx[pCur->iPage]==0 ){
4344 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004345 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004346 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004347 return SQLITE_OK;
4348 }
drh16a9b832007-05-05 18:39:25 +00004349 sqlite3BtreeMoveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004350 }
drh271efa52004-05-30 19:19:05 +00004351 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004352 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004353
4354 pCur->aiIdx[pCur->iPage]--;
4355 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004356 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004357 rc = sqlite3BtreePrevious(pCur, pRes);
4358 }else{
4359 rc = SQLITE_OK;
4360 }
drh2dcc9aa2002-12-04 13:40:25 +00004361 }
drh8178a752003-01-05 21:41:40 +00004362 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004363 return rc;
4364}
4365
4366/*
drh3b7511c2001-05-26 13:15:44 +00004367** Allocate a new page from the database file.
4368**
danielk19773b8a05f2007-03-19 17:44:26 +00004369** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004370** has already been called on the new page.) The new page has also
4371** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004372** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004373**
4374** SQLITE_OK is returned on success. Any other return value indicates
4375** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004376** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004377**
drh199e3cf2002-07-18 11:01:47 +00004378** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4379** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004380** attempt to keep related pages close to each other in the database file,
4381** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004382**
4383** If the "exact" parameter is not 0, and the page-number nearby exists
4384** anywhere on the free-list, then it is guarenteed to be returned. This
4385** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004386*/
drh4f0c5872007-03-26 22:05:01 +00004387static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004388 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004389 MemPage **ppPage,
4390 Pgno *pPgno,
4391 Pgno nearby,
4392 u8 exact
4393){
drh3aac2dd2004-04-26 14:10:20 +00004394 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004395 int rc;
drh3aac2dd2004-04-26 14:10:20 +00004396 int n; /* Number of pages on the freelist */
4397 int k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004398 MemPage *pTrunk = 0;
4399 MemPage *pPrevTrunk = 0;
drh30e58752002-03-02 20:41:57 +00004400
drh1fee73e2007-08-29 04:00:57 +00004401 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004402 pPage1 = pBt->pPage1;
4403 n = get4byte(&pPage1->aData[36]);
4404 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004405 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004406 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004407 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4408
4409 /* If the 'exact' parameter was true and a query of the pointer-map
4410 ** shows that the page 'nearby' is somewhere on the free-list, then
4411 ** the entire-list will be searched for that page.
4412 */
4413#ifndef SQLITE_OMIT_AUTOVACUUM
danielk197789d40042008-11-17 14:20:56 +00004414 if( exact && nearby<=pagerPagecount(pBt) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004415 u8 eType;
4416 assert( nearby>0 );
4417 assert( pBt->autoVacuum );
4418 rc = ptrmapGet(pBt, nearby, &eType, 0);
4419 if( rc ) return rc;
4420 if( eType==PTRMAP_FREEPAGE ){
4421 searchList = 1;
4422 }
4423 *pPgno = nearby;
4424 }
4425#endif
4426
4427 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4428 ** first free-list trunk page. iPrevTrunk is initially 1.
4429 */
danielk19773b8a05f2007-03-19 17:44:26 +00004430 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004431 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004432 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004433
4434 /* The code within this loop is run only once if the 'searchList' variable
4435 ** is not true. Otherwise, it runs once for each trunk-page on the
4436 ** free-list until the page 'nearby' is located.
4437 */
4438 do {
4439 pPrevTrunk = pTrunk;
4440 if( pPrevTrunk ){
4441 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004442 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004443 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004444 }
drh16a9b832007-05-05 18:39:25 +00004445 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004446 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004447 pTrunk = 0;
4448 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004449 }
4450
4451 k = get4byte(&pTrunk->aData[4]);
4452 if( k==0 && !searchList ){
4453 /* The trunk has no leaves and the list is not being searched.
4454 ** So extract the trunk page itself and use it as the newly
4455 ** allocated page */
4456 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004457 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004458 if( rc ){
4459 goto end_allocate_page;
4460 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004461 *pPgno = iTrunk;
4462 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4463 *ppPage = pTrunk;
4464 pTrunk = 0;
4465 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh45b1fac2008-07-04 17:52:42 +00004466 }else if( k>pBt->usableSize/4 - 2 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004467 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004468 rc = SQLITE_CORRUPT_BKPT;
4469 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004470#ifndef SQLITE_OMIT_AUTOVACUUM
4471 }else if( searchList && nearby==iTrunk ){
4472 /* The list is being searched and this trunk page is the page
4473 ** to allocate, regardless of whether it has leaves.
4474 */
4475 assert( *pPgno==iTrunk );
4476 *ppPage = pTrunk;
4477 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004478 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004479 if( rc ){
4480 goto end_allocate_page;
4481 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004482 if( k==0 ){
4483 if( !pPrevTrunk ){
4484 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4485 }else{
4486 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4487 }
4488 }else{
4489 /* The trunk page is required by the caller but it contains
4490 ** pointers to free-list leaves. The first leaf becomes a trunk
4491 ** page in this case.
4492 */
4493 MemPage *pNewTrunk;
4494 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh16a9b832007-05-05 18:39:25 +00004495 rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004496 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004497 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004498 }
danielk19773b8a05f2007-03-19 17:44:26 +00004499 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004500 if( rc!=SQLITE_OK ){
4501 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004502 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004503 }
4504 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4505 put4byte(&pNewTrunk->aData[4], k-1);
4506 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004507 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004508 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004509 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004510 put4byte(&pPage1->aData[32], iNewTrunk);
4511 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004512 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004513 if( rc ){
4514 goto end_allocate_page;
4515 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004516 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4517 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004518 }
4519 pTrunk = 0;
4520 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4521#endif
4522 }else{
4523 /* Extract a leaf from the trunk */
4524 int closest;
4525 Pgno iPage;
4526 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004527 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004528 if( rc ){
4529 goto end_allocate_page;
4530 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004531 if( nearby>0 ){
4532 int i, dist;
4533 closest = 0;
4534 dist = get4byte(&aData[8]) - nearby;
4535 if( dist<0 ) dist = -dist;
4536 for(i=1; i<k; i++){
4537 int d2 = get4byte(&aData[8+i*4]) - nearby;
4538 if( d2<0 ) d2 = -d2;
4539 if( d2<dist ){
4540 closest = i;
4541 dist = d2;
4542 }
4543 }
4544 }else{
4545 closest = 0;
4546 }
4547
4548 iPage = get4byte(&aData[8+closest*4]);
4549 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004550 int noContent;
danielk197789d40042008-11-17 14:20:56 +00004551 Pgno nPage;
shane1f9e6aa2008-06-09 19:27:11 +00004552 *pPgno = iPage;
danielk197789d40042008-11-17 14:20:56 +00004553 nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004554 if( *pPgno>nPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004555 /* Free page off the end of the file */
danielk197743e377a2008-05-05 12:09:32 +00004556 rc = SQLITE_CORRUPT_BKPT;
4557 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004558 }
4559 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4560 ": %d more free pages\n",
4561 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4562 if( closest<k-1 ){
4563 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4564 }
4565 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004566 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004567 noContent = !btreeGetHasContent(pBt, *pPgno);
4568 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004569 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004570 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004571 if( rc!=SQLITE_OK ){
4572 releasePage(*ppPage);
4573 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004574 }
4575 searchList = 0;
4576 }
drhee696e22004-08-30 16:52:17 +00004577 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004578 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004579 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004580 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004581 }else{
drh3aac2dd2004-04-26 14:10:20 +00004582 /* There are no pages on the freelist, so create a new page at the
4583 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004584 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004585 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004586
danielk1977bea2a942009-01-20 17:06:27 +00004587 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4588 (*pPgno)++;
4589 }
4590
danielk1977afcdd022004-10-31 16:25:42 +00004591#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004592 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004593 /* If *pPgno refers to a pointer-map page, allocate two new pages
4594 ** at the end of the file instead of one. The first allocated page
4595 ** becomes a new pointer-map page, the second is used by the caller.
4596 */
danielk1977ac861692009-03-28 10:54:22 +00004597 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004598 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004599 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk1977ac861692009-03-28 10:54:22 +00004600 rc = sqlite3BtreeGetPage(pBt, *pPgno, &pPg, 0);
4601 if( rc==SQLITE_OK ){
4602 rc = sqlite3PagerWrite(pPg->pDbPage);
4603 releasePage(pPg);
4604 }
4605 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004606 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004607 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004608 }
4609#endif
4610
danielk1977599fcba2004-11-08 07:13:13 +00004611 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh16a9b832007-05-05 18:39:25 +00004612 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004613 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004614 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004615 if( rc!=SQLITE_OK ){
4616 releasePage(*ppPage);
4617 }
drh3a4c1412004-05-09 20:40:11 +00004618 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004619 }
danielk1977599fcba2004-11-08 07:13:13 +00004620
4621 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004622
4623end_allocate_page:
4624 releasePage(pTrunk);
4625 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004626 if( rc==SQLITE_OK ){
4627 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4628 releasePage(*ppPage);
4629 return SQLITE_CORRUPT_BKPT;
4630 }
4631 (*ppPage)->isInit = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004632 }
drh3b7511c2001-05-26 13:15:44 +00004633 return rc;
4634}
4635
4636/*
danielk1977bea2a942009-01-20 17:06:27 +00004637** This function is used to add page iPage to the database file free-list.
4638** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004639**
danielk1977bea2a942009-01-20 17:06:27 +00004640** The value passed as the second argument to this function is optional.
4641** If the caller happens to have a pointer to the MemPage object
4642** corresponding to page iPage handy, it may pass it as the second value.
4643** Otherwise, it may pass NULL.
4644**
4645** If a pointer to a MemPage object is passed as the second argument,
4646** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004647*/
danielk1977bea2a942009-01-20 17:06:27 +00004648static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4649 MemPage *pTrunk = 0; /* Free-list trunk page */
4650 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4651 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4652 MemPage *pPage; /* Page being freed. May be NULL. */
4653 int rc; /* Return Code */
4654 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004655
danielk1977bea2a942009-01-20 17:06:27 +00004656 assert( sqlite3_mutex_held(pBt->mutex) );
4657 assert( iPage>1 );
4658 assert( !pMemPage || pMemPage->pgno==iPage );
4659
4660 if( pMemPage ){
4661 pPage = pMemPage;
4662 sqlite3PagerRef(pPage->pDbPage);
4663 }else{
4664 pPage = btreePageLookup(pBt, iPage);
4665 }
drh3aac2dd2004-04-26 14:10:20 +00004666
drha34b6762004-05-07 13:30:42 +00004667 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004668 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004669 if( rc ) goto freepage_out;
4670 nFree = get4byte(&pPage1->aData[36]);
4671 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004672
drhfcce93f2006-02-22 03:08:32 +00004673#ifdef SQLITE_SECURE_DELETE
4674 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4675 ** always fully overwrite deleted information with zeros.
4676 */
danielk1977bea2a942009-01-20 17:06:27 +00004677 if( (!pPage && (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0)))
4678 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4679 ){
4680 goto freepage_out;
4681 }
drhfcce93f2006-02-22 03:08:32 +00004682 memset(pPage->aData, 0, pPage->pBt->pageSize);
4683#endif
4684
danielk1977687566d2004-11-02 12:56:41 +00004685 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004686 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004687 */
danielk197785d90ca2008-07-19 14:25:15 +00004688 if( ISAUTOVACUUM ){
danielk1977bea2a942009-01-20 17:06:27 +00004689 rc = ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0);
4690 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004691 }
danielk1977687566d2004-11-02 12:56:41 +00004692
danielk1977bea2a942009-01-20 17:06:27 +00004693 /* Now manipulate the actual database free-list structure. There are two
4694 ** possibilities. If the free-list is currently empty, or if the first
4695 ** trunk page in the free-list is full, then this page will become a
4696 ** new free-list trunk page. Otherwise, it will become a leaf of the
4697 ** first trunk page in the current free-list. This block tests if it
4698 ** is possible to add the page as a new free-list leaf.
4699 */
4700 if( nFree!=0 ){
4701 int nLeaf; /* Initial number of leaf cells on trunk page */
4702
4703 iTrunk = get4byte(&pPage1->aData[32]);
4704 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
4705 if( rc!=SQLITE_OK ){
4706 goto freepage_out;
4707 }
4708
4709 nLeaf = get4byte(&pTrunk->aData[4]);
4710 if( nLeaf<0 ){
4711 rc = SQLITE_CORRUPT_BKPT;
4712 goto freepage_out;
4713 }
4714 if( nLeaf<pBt->usableSize/4 - 8 ){
4715 /* In this case there is room on the trunk page to insert the page
4716 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004717 **
4718 ** Note that the trunk page is not really full until it contains
4719 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4720 ** coded. But due to a coding error in versions of SQLite prior to
4721 ** 3.6.0, databases with freelist trunk pages holding more than
4722 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4723 ** to maintain backwards compatibility with older versions of SQLite,
4724 ** we will contain to restrict the number of entries to usableSize/4 - 8
4725 ** for now. At some point in the future (once everyone has upgraded
4726 ** to 3.6.0 or later) we should consider fixing the conditional above
4727 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4728 */
danielk19773b8a05f2007-03-19 17:44:26 +00004729 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004730 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004731 put4byte(&pTrunk->aData[4], nLeaf+1);
4732 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhfcce93f2006-02-22 03:08:32 +00004733#ifndef SQLITE_SECURE_DELETE
danielk1977bea2a942009-01-20 17:06:27 +00004734 if( pPage ){
4735 sqlite3PagerDontWrite(pPage->pDbPage);
4736 }
drhfcce93f2006-02-22 03:08:32 +00004737#endif
danielk1977bea2a942009-01-20 17:06:27 +00004738 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004739 }
drh3a4c1412004-05-09 20:40:11 +00004740 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004741 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004742 }
drh3b7511c2001-05-26 13:15:44 +00004743 }
danielk1977bea2a942009-01-20 17:06:27 +00004744
4745 /* If control flows to this point, then it was not possible to add the
4746 ** the page being freed as a leaf page of the first trunk in the free-list.
4747 ** Possibly because the free-list is empty, or possibly because the
4748 ** first trunk in the free-list is full. Either way, the page being freed
4749 ** will become the new first trunk page in the free-list.
4750 */
shane63207ab2009-02-04 01:49:30 +00004751 if( ((!pPage) && (0 != (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0))))
4752 || (0 != (rc = sqlite3PagerWrite(pPage->pDbPage)))
danielk1977bea2a942009-01-20 17:06:27 +00004753 ){
4754 goto freepage_out;
4755 }
4756 put4byte(pPage->aData, iTrunk);
4757 put4byte(&pPage->aData[4], 0);
4758 put4byte(&pPage1->aData[32], iPage);
4759 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
4760
4761freepage_out:
4762 if( pPage ){
4763 pPage->isInit = 0;
4764 }
4765 releasePage(pPage);
4766 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004767 return rc;
4768}
danielk1977bea2a942009-01-20 17:06:27 +00004769static int freePage(MemPage *pPage){
4770 return freePage2(pPage->pBt, pPage, pPage->pgno);
4771}
drh3b7511c2001-05-26 13:15:44 +00004772
4773/*
drh3aac2dd2004-04-26 14:10:20 +00004774** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00004775*/
drh3aac2dd2004-04-26 14:10:20 +00004776static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00004777 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00004778 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00004779 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00004780 int rc;
drh94440812007-03-06 11:42:19 +00004781 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00004782 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00004783
drh1fee73e2007-08-29 04:00:57 +00004784 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh16a9b832007-05-05 18:39:25 +00004785 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004786 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00004787 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00004788 }
drh6f11bef2004-05-13 01:12:56 +00004789 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00004790 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00004791 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00004792 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
4793 assert( ovflPgno==0 || nOvfl>0 );
4794 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00004795 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004796 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00004797 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
4798 /* 0 is not a legal page number and page 1 cannot be an
4799 ** overflow page. Therefore if ovflPgno<2 or past the end of the
4800 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00004801 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00004802 }
danielk1977bea2a942009-01-20 17:06:27 +00004803 if( nOvfl ){
4804 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
4805 if( rc ) return rc;
4806 }
4807 rc = freePage2(pBt, pOvfl, ovflPgno);
4808 if( pOvfl ){
4809 sqlite3PagerUnref(pOvfl->pDbPage);
4810 }
drh3b7511c2001-05-26 13:15:44 +00004811 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00004812 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00004813 }
drh5e2f8b92001-05-28 00:41:15 +00004814 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00004815}
4816
4817/*
drh91025292004-05-03 19:49:32 +00004818** Create the byte sequence used to represent a cell on page pPage
4819** and write that byte sequence into pCell[]. Overflow pages are
4820** allocated and filled in as necessary. The calling procedure
4821** is responsible for making sure sufficient space has been allocated
4822** for pCell[].
4823**
4824** Note that pCell does not necessary need to point to the pPage->aData
4825** area. pCell might point to some temporary storage. The cell will
4826** be constructed in this temporary area then copied into pPage->aData
4827** later.
drh3b7511c2001-05-26 13:15:44 +00004828*/
4829static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00004830 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00004831 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00004832 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00004833 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00004834 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00004835 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00004836){
drh3b7511c2001-05-26 13:15:44 +00004837 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00004838 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00004839 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00004840 int spaceLeft;
4841 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00004842 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00004843 unsigned char *pPrior;
4844 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00004845 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00004846 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00004847 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00004848 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00004849
drh1fee73e2007-08-29 04:00:57 +00004850 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00004851
drhc5053fb2008-11-27 02:22:10 +00004852 /* pPage is not necessarily writeable since pCell might be auxiliary
4853 ** buffer space that is separate from the pPage buffer area */
4854 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
4855 || sqlite3PagerIswriteable(pPage->pDbPage) );
4856
drh91025292004-05-03 19:49:32 +00004857 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00004858 nHeader = 0;
drh91025292004-05-03 19:49:32 +00004859 if( !pPage->leaf ){
4860 nHeader += 4;
4861 }
drh8b18dd42004-05-12 19:18:15 +00004862 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00004863 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00004864 }else{
drhb026e052007-05-02 01:34:31 +00004865 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00004866 }
drh6f11bef2004-05-13 01:12:56 +00004867 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh16a9b832007-05-05 18:39:25 +00004868 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004869 assert( info.nHeader==nHeader );
4870 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00004871 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00004872
4873 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00004874 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00004875 if( pPage->intKey ){
4876 pSrc = pData;
4877 nSrc = nData;
drh91025292004-05-03 19:49:32 +00004878 nData = 0;
drhf49661a2008-12-10 16:45:50 +00004879 }else{
drh20abac22009-01-28 20:21:17 +00004880 if( nKey>0x7fffffff || pKey==0 ){
4881 return SQLITE_CORRUPT;
4882 }
drhf49661a2008-12-10 16:45:50 +00004883 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00004884 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00004885 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00004886 }
drh6f11bef2004-05-13 01:12:56 +00004887 *pnSize = info.nSize;
4888 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00004889 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00004890 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00004891
drh3b7511c2001-05-26 13:15:44 +00004892 while( nPayload>0 ){
4893 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00004894#ifndef SQLITE_OMIT_AUTOVACUUM
4895 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00004896 if( pBt->autoVacuum ){
4897 do{
4898 pgnoOvfl++;
4899 } while(
4900 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
4901 );
danielk1977b39f70b2007-05-17 18:28:11 +00004902 }
danielk1977afcdd022004-10-31 16:25:42 +00004903#endif
drhf49661a2008-12-10 16:45:50 +00004904 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00004905#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00004906 /* If the database supports auto-vacuum, and the second or subsequent
4907 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00004908 ** for that page now.
4909 **
4910 ** If this is the first overflow page, then write a partial entry
4911 ** to the pointer-map. If we write nothing to this pointer-map slot,
4912 ** then the optimistic overflow chain processing in clearCell()
4913 ** may misinterpret the uninitialised values and delete the
4914 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00004915 */
danielk19774ef24492007-05-23 09:52:41 +00004916 if( pBt->autoVacuum && rc==SQLITE_OK ){
4917 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
4918 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
danielk197789a4be82007-05-23 13:34:32 +00004919 if( rc ){
4920 releasePage(pOvfl);
4921 }
danielk1977afcdd022004-10-31 16:25:42 +00004922 }
4923#endif
drh3b7511c2001-05-26 13:15:44 +00004924 if( rc ){
drh9b171272004-05-08 02:03:22 +00004925 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004926 return rc;
4927 }
drhc5053fb2008-11-27 02:22:10 +00004928
4929 /* If pToRelease is not zero than pPrior points into the data area
4930 ** of pToRelease. Make sure pToRelease is still writeable. */
4931 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
4932
4933 /* If pPrior is part of the data area of pPage, then make sure pPage
4934 ** is still writeable */
4935 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
4936 || sqlite3PagerIswriteable(pPage->pDbPage) );
4937
drh3aac2dd2004-04-26 14:10:20 +00004938 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00004939 releasePage(pToRelease);
4940 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00004941 pPrior = pOvfl->aData;
4942 put4byte(pPrior, 0);
4943 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00004944 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00004945 }
4946 n = nPayload;
4947 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00004948
4949 /* If pToRelease is not zero than pPayload points into the data area
4950 ** of pToRelease. Make sure pToRelease is still writeable. */
4951 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
4952
4953 /* If pPayload is part of the data area of pPage, then make sure pPage
4954 ** is still writeable */
4955 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
4956 || sqlite3PagerIswriteable(pPage->pDbPage) );
4957
drhb026e052007-05-02 01:34:31 +00004958 if( nSrc>0 ){
4959 if( n>nSrc ) n = nSrc;
4960 assert( pSrc );
4961 memcpy(pPayload, pSrc, n);
4962 }else{
4963 memset(pPayload, 0, n);
4964 }
drh3b7511c2001-05-26 13:15:44 +00004965 nPayload -= n;
drhde647132004-05-07 17:57:49 +00004966 pPayload += n;
drh9b171272004-05-08 02:03:22 +00004967 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00004968 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00004969 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00004970 if( nSrc==0 ){
4971 nSrc = nData;
4972 pSrc = pData;
4973 }
drhdd793422001-06-28 01:54:48 +00004974 }
drh9b171272004-05-08 02:03:22 +00004975 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004976 return SQLITE_OK;
4977}
4978
drh14acc042001-06-10 19:56:58 +00004979/*
4980** Remove the i-th cell from pPage. This routine effects pPage only.
4981** The cell content is not freed or deallocated. It is assumed that
4982** the cell content has been copied someplace else. This routine just
4983** removes the reference to the cell from pPage.
4984**
4985** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00004986*/
shane0af3f892008-11-12 04:55:34 +00004987static int dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00004988 int i; /* Loop counter */
4989 int pc; /* Offset to cell content of cell being deleted */
4990 u8 *data; /* pPage->aData */
4991 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00004992 int rc; /* The return code */
drh43605152004-05-29 21:46:49 +00004993
drh8c42ca92001-06-22 19:15:00 +00004994 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00004995 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00004996 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00004997 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00004998 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00004999 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005000 pc = get2byte(ptr);
drhc5053fb2008-11-27 02:22:10 +00005001 if( (pc<pPage->hdrOffset+6+(pPage->leaf?0:4))
5002 || (pc+sz>pPage->pBt->usableSize) ){
shane0af3f892008-11-12 04:55:34 +00005003 return SQLITE_CORRUPT_BKPT;
5004 }
shanedcc50b72008-11-13 18:29:50 +00005005 rc = freeSpace(pPage, pc, sz);
5006 if( rc!=SQLITE_OK ){
5007 return rc;
5008 }
drh43605152004-05-29 21:46:49 +00005009 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5010 ptr[0] = ptr[2];
5011 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005012 }
5013 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00005014 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
5015 pPage->nFree += 2;
shane0af3f892008-11-12 04:55:34 +00005016 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005017}
5018
5019/*
5020** Insert a new cell on pPage at cell index "i". pCell points to the
5021** content of the cell.
5022**
5023** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005024** will not fit, then make a copy of the cell content into pTemp if
5025** pTemp is not null. Regardless of pTemp, allocate a new entry
5026** in pPage->aOvfl[] and make it point to the cell content (either
5027** in pTemp or the original pCell) and also record its index.
5028** Allocating a new entry in pPage->aCell[] implies that
5029** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005030**
5031** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5032** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005033** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005034** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005035*/
danielk1977e80463b2004-11-03 03:01:16 +00005036static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00005037 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005038 int i, /* New cell becomes the i-th cell of the page */
5039 u8 *pCell, /* Content of the new cell */
5040 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005041 u8 *pTemp, /* Temp storage space for pCell, if needed */
5042 u8 nSkip /* Do not write the first nSkip bytes of the cell */
drh24cd67e2004-05-10 16:18:47 +00005043){
drh43605152004-05-29 21:46:49 +00005044 int idx; /* Where to write new cell content in data[] */
5045 int j; /* Loop counter */
5046 int top; /* First byte of content for any cell in data[] */
5047 int end; /* First byte past the last cell pointer in data[] */
5048 int ins; /* Index in data[] where new cell pointer is inserted */
5049 int hdr; /* Offset into data[] of the page header */
5050 int cellOffset; /* Address of first cell pointer in data[] */
5051 u8 *data; /* The content of the whole page */
5052 u8 *ptr; /* Used for moving information around in data[] */
5053
5054 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005055 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5056 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh43605152004-05-29 21:46:49 +00005057 assert( sz==cellSizePtr(pPage, pCell) );
drh1fee73e2007-08-29 04:00:57 +00005058 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00005059 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005060 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005061 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005062 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005063 }
drh43605152004-05-29 21:46:49 +00005064 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005065 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005066 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005067 pPage->aOvfl[j].idx = (u16)i;
drh43605152004-05-29 21:46:49 +00005068 pPage->nFree = 0;
drh14acc042001-06-10 19:56:58 +00005069 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005070 int rc = sqlite3PagerWrite(pPage->pDbPage);
5071 if( rc!=SQLITE_OK ){
5072 return rc;
5073 }
5074 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005075 data = pPage->aData;
5076 hdr = pPage->hdrOffset;
5077 top = get2byte(&data[hdr+5]);
5078 cellOffset = pPage->cellOffset;
5079 end = cellOffset + 2*pPage->nCell + 2;
5080 ins = cellOffset + 2*i;
5081 if( end > top - sz ){
shane0af3f892008-11-12 04:55:34 +00005082 rc = defragmentPage(pPage);
5083 if( rc!=SQLITE_OK ){
5084 return rc;
5085 }
drh43605152004-05-29 21:46:49 +00005086 top = get2byte(&data[hdr+5]);
5087 assert( end + sz <= top );
5088 }
5089 idx = allocateSpace(pPage, sz);
5090 assert( idx>0 );
5091 assert( end <= get2byte(&data[hdr+5]) );
shane0af3f892008-11-12 04:55:34 +00005092 if (idx+sz > pPage->pBt->usableSize) {
shane34ac18d2008-11-11 22:18:20 +00005093 return SQLITE_CORRUPT_BKPT;
shane0af3f892008-11-12 04:55:34 +00005094 }
drh43605152004-05-29 21:46:49 +00005095 pPage->nCell++;
5096 pPage->nFree -= 2;
danielk1977a3ad5e72005-01-07 08:56:44 +00005097 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005098 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
5099 ptr[0] = ptr[-2];
5100 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005101 }
drh43605152004-05-29 21:46:49 +00005102 put2byte(&data[ins], idx);
5103 put2byte(&data[hdr+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005104#ifndef SQLITE_OMIT_AUTOVACUUM
5105 if( pPage->pBt->autoVacuum ){
5106 /* The cell may contain a pointer to an overflow page. If so, write
5107 ** the entry for the overflow page into the pointer map.
5108 */
5109 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00005110 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh72365832007-03-06 15:53:44 +00005111 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19777b801382009-04-29 06:27:56 +00005112 if( info.iOverflow ){
danielk1977a19df672004-11-03 11:37:07 +00005113 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
danielk19776e465eb2007-08-21 13:11:00 +00005114 rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977a19df672004-11-03 11:37:07 +00005115 if( rc!=SQLITE_OK ) return rc;
5116 }
5117 }
5118#endif
drh14acc042001-06-10 19:56:58 +00005119 }
danielk1977e80463b2004-11-03 03:01:16 +00005120
danielk1977e80463b2004-11-03 03:01:16 +00005121 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005122}
5123
5124/*
drhfa1a98a2004-05-14 19:08:17 +00005125** Add a list of cells to a page. The page should be initially empty.
5126** The cells are guaranteed to fit on the page.
5127*/
5128static void assemblePage(
5129 MemPage *pPage, /* The page to be assemblied */
5130 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005131 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005132 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005133){
5134 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005135 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005136 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005137 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5138 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5139 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005140
drh43605152004-05-29 21:46:49 +00005141 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005142 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005143 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005144 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005145
5146 /* Check that the page has just been zeroed by zeroPage() */
5147 assert( pPage->nCell==0 );
5148 assert( get2byte(&data[hdr+5])==nUsable );
5149
5150 pCellptr = &data[pPage->cellOffset + nCell*2];
5151 cellbody = nUsable;
5152 for(i=nCell-1; i>=0; i--){
5153 pCellptr -= 2;
5154 cellbody -= aSize[i];
5155 put2byte(pCellptr, cellbody);
5156 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005157 }
danielk1977fad91942009-04-29 17:49:59 +00005158 put2byte(&data[hdr+3], nCell);
5159 put2byte(&data[hdr+5], cellbody);
5160 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005161 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005162}
5163
drh14acc042001-06-10 19:56:58 +00005164/*
drhc3b70572003-01-04 19:44:07 +00005165** The following parameters determine how many adjacent pages get involved
5166** in a balancing operation. NN is the number of neighbors on either side
5167** of the page that participate in the balancing operation. NB is the
5168** total number of pages that participate, including the target page and
5169** NN neighbors on either side.
5170**
5171** The minimum value of NN is 1 (of course). Increasing NN above 1
5172** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5173** in exchange for a larger degradation in INSERT and UPDATE performance.
5174** The value of NN appears to give the best results overall.
5175*/
5176#define NN 1 /* Number of neighbors on either side of pPage */
5177#define NB (NN*2+1) /* Total pages involved in the balance */
5178
drh43605152004-05-29 21:46:49 +00005179/* Forward reference */
danielk197771d5d2c2008-09-29 11:49:47 +00005180static int balance(BtCursor*, int);
danielk1977ac245ec2005-01-14 13:50:11 +00005181
drh615ae552005-01-16 23:21:00 +00005182#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005183/*
5184** This version of balance() handles the common special case where
5185** a new entry is being inserted on the extreme right-end of the
5186** tree, in other words, when the new entry will become the largest
5187** entry in the tree.
5188**
5189** Instead of trying balance the 3 right-most leaf pages, just add
5190** a new page to the right-hand side and put the one new entry in
5191** that page. This leaves the right side of the tree somewhat
5192** unbalanced. But odds are that we will be inserting new entries
5193** at the end soon afterwards so the nearly empty page will quickly
5194** fill up. On average.
5195**
5196** pPage is the leaf page which is the right-most page in the tree.
5197** pParent is its parent. pPage must have a single overflow entry
5198** which is also the right-most entry on the page.
5199*/
danielk197771d5d2c2008-09-29 11:49:47 +00005200static int balance_quick(BtCursor *pCur){
danielk19776f235cc2009-06-04 14:46:08 +00005201 MemPage *const pPage = pCur->apPage[pCur->iPage];
5202 BtShared *const pBt = pCur->pBt;
5203 MemPage *pNew = 0; /* Newly allocated page */
5204 int rc; /* Return Code */
5205 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005206
drh1fee73e2007-08-29 04:00:57 +00005207 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19776f235cc2009-06-04 14:46:08 +00005208 assert( pPage->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00005209
danielk19776f235cc2009-06-04 14:46:08 +00005210 /* Allocate a new page. This page will become the right-sibling of pPage */
drh4f0c5872007-03-26 22:05:01 +00005211 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19776f235cc2009-06-04 14:46:08 +00005212
danielk1977eaa06f62008-09-18 17:34:44 +00005213 if( rc==SQLITE_OK ){
danielk19776f235cc2009-06-04 14:46:08 +00005214 /* The parentCell buffer is used to store a temporary copy of the divider
5215 ** cell that will be inserted into pParent. Such a cell consists of a 4
5216 ** byte page number followed by a variable length integer. In other
5217 ** words, at most 13 bytes. Hence the parentCell buffer must be at
5218 ** least 13 bytes in size.
5219 */
5220 MemPage * const pParent = pCur->apPage[pCur->iPage-1];
5221 u8 parentCell[13];
5222 u8 *pOut = &parentCell[4];
5223 u8 *pCell = pPage->aOvfl[0].pCell;
5224 u16 szCell = cellSizePtr(pPage, pCell);
5225 u8 *pStop;
5226
drhc5053fb2008-11-27 02:22:10 +00005227 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977eaa06f62008-09-18 17:34:44 +00005228 zeroPage(pNew, pPage->aData[0]);
5229 assemblePage(pNew, 1, &pCell, &szCell);
5230 pPage->nOverflow = 0;
5231
danielk19776f235cc2009-06-04 14:46:08 +00005232 /* Create a divider cell to insert into pParent. The divider cell
5233 ** consists of a 4-byte page number (the page number of pPage) and
5234 ** a variable length key value (which must be the same value as the
5235 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005236 **
danielk19776f235cc2009-06-04 14:46:08 +00005237 ** To find the largest key value on pPage, first find the right-most
5238 ** cell on pPage. The first two fields of this cell are the
5239 ** record-length (a variable length integer at most 32-bits in size)
5240 ** and the key value (a variable length integer, may have any value).
5241 ** The first of the while(...) loops below skips over the record-length
5242 ** field. The second while(...) loop copies the key value from the
5243 ** cell on pPage into the parentCell buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005244 */
danielk19776f235cc2009-06-04 14:46:08 +00005245 put4byte(parentCell, pPage->pgno);
danielk1977eaa06f62008-09-18 17:34:44 +00005246 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005247 pStop = &pCell[9];
5248 while( (*(pCell++)&0x80) && pCell<pStop );
5249 pStop = &pCell[9];
5250 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5251
5252 /* Insert the new divider cell into pParent */
5253 insertCell(pParent, pParent->nCell, parentCell, pOut-parentCell, 0, 0);
5254
5255 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005256 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5257
5258 /* If this is an auto-vacuum database, update the pointer map
5259 ** with entries for the new page, and any pointer from the
5260 ** cell on the page to an overflow page.
5261 */
5262 if( ISAUTOVACUUM ){
5263 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
5264 if( rc==SQLITE_OK ){
5265 rc = ptrmapPutOvfl(pNew, 0);
5266 }
danielk1977ac11ee62005-01-15 12:45:51 +00005267 }
danielk1977e08a3c42008-09-18 18:17:03 +00005268
5269 /* Release the reference to the new page. */
5270 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005271 }
5272
danielk1977eaa06f62008-09-18 17:34:44 +00005273 /* At this point the pPage->nFree variable is not set correctly with
5274 ** respect to the content of the page (because it was set to 0 by
5275 ** insertCell). So call sqlite3BtreeInitPage() to make sure it is
5276 ** correct.
5277 **
5278 ** This has to be done even if an error will be returned. Normally, if
5279 ** an error occurs during tree balancing, the contents of MemPage are
5280 ** not important, as they will be recalculated when the page is rolled
5281 ** back. But here, in balance_quick(), it is possible that pPage has
5282 ** not yet been marked dirty or written into the journal file. Therefore
5283 ** it will not be rolled back and so it is important to make sure that
5284 ** the page data and contents of MemPage are consistent.
5285 */
5286 pPage->isInit = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00005287 sqlite3BtreeInitPage(pPage);
danielk1977a4124bd2008-12-23 10:37:47 +00005288 assert( pPage->nOverflow==0 );
danielk1977eaa06f62008-09-18 17:34:44 +00005289
danielk1977e08a3c42008-09-18 18:17:03 +00005290 /* If everything else succeeded, balance the parent page, in
5291 ** case the divider cell inserted caused it to become overfull.
danielk197779a40da2005-01-16 08:00:01 +00005292 */
danielk1977eaa06f62008-09-18 17:34:44 +00005293 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00005294 releasePage(pPage);
5295 pCur->iPage--;
5296 rc = balance(pCur, 0);
danielk1977eaa06f62008-09-18 17:34:44 +00005297 }
5298 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005299}
drh615ae552005-01-16 23:21:00 +00005300#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005301
drhc3b70572003-01-04 19:44:07 +00005302/*
drhab01f612004-05-22 02:55:23 +00005303** This routine redistributes Cells on pPage and up to NN*2 siblings
drh8b2f49b2001-06-08 00:21:52 +00005304** of pPage so that all pages have about the same amount of free space.
drh0c6cc4e2004-06-15 02:13:26 +00005305** Usually NN siblings on either side of pPage is used in the balancing,
5306** though more siblings might come from one side if pPage is the first
drhab01f612004-05-22 02:55:23 +00005307** or last child of its parent. If pPage has fewer than 2*NN siblings
drh8b2f49b2001-06-08 00:21:52 +00005308** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00005309** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005310**
drh0c6cc4e2004-06-15 02:13:26 +00005311** The number of siblings of pPage might be increased or decreased by one or
5312** two in an effort to keep pages nearly full but not over full. The root page
drhab01f612004-05-22 02:55:23 +00005313** is special and is allowed to be nearly empty. If pPage is
drh8c42ca92001-06-22 19:15:00 +00005314** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00005315** or decreased by one, as necessary, to keep the root page from being
drhab01f612004-05-22 02:55:23 +00005316** overfull or completely empty.
drh14acc042001-06-10 19:56:58 +00005317**
drh8b2f49b2001-06-08 00:21:52 +00005318** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00005319** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00005320** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00005321** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00005322**
drh8c42ca92001-06-22 19:15:00 +00005323** In the course of balancing the siblings of pPage, the parent of pPage
5324** might become overfull or underfull. If that happens, then this routine
5325** is called recursively on the parent.
5326**
drh5e00f6c2001-09-13 13:46:56 +00005327** If this routine fails for any reason, it might leave the database
5328** in a corrupted state. So if this routine fails, the database should
5329** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00005330*/
danielk197771d5d2c2008-09-29 11:49:47 +00005331static int balance_nonroot(BtCursor *pCur){
5332 MemPage *pPage; /* The over or underfull page to balance */
drh8b2f49b2001-06-08 00:21:52 +00005333 MemPage *pParent; /* The parent of pPage */
drh16a9b832007-05-05 18:39:25 +00005334 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005335 int nCell = 0; /* Number of cells in apCell[] */
5336 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005337 int nOld = 0; /* Number of pages in apOld[] */
5338 int nNew = 0; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00005339 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00005340 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005341 int idx; /* Index of pPage in pParent->aCell[] */
5342 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00005343 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00005344 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005345 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005346 int usableSpace; /* Bytes in pPage beyond the header */
5347 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005348 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005349 int iSpace1 = 0; /* First unused byte of aSpace1[] */
5350 int iSpace2 = 0; /* First unused byte of aSpace2[] */
drhfacf0302008-06-17 15:12:00 +00005351 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005352 MemPage *apOld[NB]; /* pPage and up to two siblings */
5353 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00005354 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005355 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
5356 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
drh4b70f112004-05-02 21:12:19 +00005357 u8 *apDiv[NB]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005358 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5359 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005360 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005361 u16 *szCell; /* Local size of all cells in apCell[] */
drhe5ae5732008-06-15 02:51:47 +00005362 u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
5363 u8 *aSpace1; /* Space for copies of dividers cells before balance */
5364 u8 *aSpace2 = 0; /* Space for overflow dividers cells after balance */
danielk1977ac11ee62005-01-15 12:45:51 +00005365 u8 *aFrom = 0;
drh8b2f49b2001-06-08 00:21:52 +00005366
danielk197771d5d2c2008-09-29 11:49:47 +00005367 pPage = pCur->apPage[pCur->iPage];
drh1fee73e2007-08-29 04:00:57 +00005368 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf94a1732008-09-30 17:18:17 +00005369 VVA_ONLY( pCur->pagesShuffled = 1 );
drhd677b3d2007-08-20 22:48:41 +00005370
drh14acc042001-06-10 19:56:58 +00005371 /*
drh43605152004-05-29 21:46:49 +00005372 ** Find the parent page.
drh8b2f49b2001-06-08 00:21:52 +00005373 */
danielk197771d5d2c2008-09-29 11:49:47 +00005374 assert( pCur->iPage>0 );
5375 assert( pPage->isInit );
danielk19776e465eb2007-08-21 13:11:00 +00005376 assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
drh4b70f112004-05-02 21:12:19 +00005377 pBt = pPage->pBt;
danielk197771d5d2c2008-09-29 11:49:47 +00005378 pParent = pCur->apPage[pCur->iPage-1];
drh43605152004-05-29 21:46:49 +00005379 assert( pParent );
danielk19773b8a05f2007-03-19 17:44:26 +00005380 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
danielk1977a4124bd2008-12-23 10:37:47 +00005381 goto balance_cleanup;
danielk197707cb5602006-01-20 10:55:05 +00005382 }
danielk1977474b7cc2008-07-09 11:49:46 +00005383
drh43605152004-05-29 21:46:49 +00005384 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
drh2e38c322004-09-03 18:38:44 +00005385
drh615ae552005-01-16 23:21:00 +00005386#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005387 /*
5388 ** A special case: If a new entry has just been inserted into a
5389 ** table (that is, a btree with integer keys and all data at the leaves)
drh09d0deb2005-08-02 17:13:09 +00005390 ** and the new entry is the right-most entry in the tree (it has the
drhf222e712005-01-14 22:55:49 +00005391 ** largest key) then use the special balance_quick() routine for
5392 ** balancing. balance_quick() is much faster and results in a tighter
5393 ** packing of data in the common case.
5394 */
danielk1977ac245ec2005-01-14 13:50:11 +00005395 if( pPage->leaf &&
5396 pPage->intKey &&
danielk1977ac245ec2005-01-14 13:50:11 +00005397 pPage->nOverflow==1 &&
5398 pPage->aOvfl[0].idx==pPage->nCell &&
danielk197771d5d2c2008-09-29 11:49:47 +00005399 pParent->pgno!=1 &&
danielk1977ac245ec2005-01-14 13:50:11 +00005400 get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
5401 ){
drh44845222008-07-17 18:39:57 +00005402 assert( pPage->intKey );
danielk1977ac11ee62005-01-15 12:45:51 +00005403 /*
5404 ** TODO: Check the siblings to the left of pPage. It may be that
5405 ** they are not full and no new page is required.
5406 */
danielk197771d5d2c2008-09-29 11:49:47 +00005407 return balance_quick(pCur);
danielk1977ac245ec2005-01-14 13:50:11 +00005408 }
5409#endif
5410
danielk19776e465eb2007-08-21 13:11:00 +00005411 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
danielk1977a4124bd2008-12-23 10:37:47 +00005412 goto balance_cleanup;
danielk19776e465eb2007-08-21 13:11:00 +00005413 }
5414
drh2e38c322004-09-03 18:38:44 +00005415 /*
drh4b70f112004-05-02 21:12:19 +00005416 ** Find the cell in the parent page whose left child points back
drh14acc042001-06-10 19:56:58 +00005417 ** to pPage. The "idx" variable is the index of that cell. If pPage
5418 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00005419 */
danielk1977bf93c562008-09-29 15:53:25 +00005420 idx = pCur->aiIdx[pCur->iPage-1];
5421 assertParentIndex(pParent, idx, pPage->pgno);
drh8b2f49b2001-06-08 00:21:52 +00005422
5423 /*
drh4b70f112004-05-02 21:12:19 +00005424 ** Find sibling pages to pPage and the cells in pParent that divide
drhc3b70572003-01-04 19:44:07 +00005425 ** the siblings. An attempt is made to find NN siblings on either
5426 ** side of pPage. More siblings are taken from one side, however, if
5427 ** pPage there are fewer than NN siblings on the other side. If pParent
5428 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00005429 */
drhc3b70572003-01-04 19:44:07 +00005430 nxDiv = idx - NN;
5431 if( nxDiv + NB > pParent->nCell ){
5432 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00005433 }
drhc3b70572003-01-04 19:44:07 +00005434 if( nxDiv<0 ){
5435 nxDiv = 0;
5436 }
drh8b2f49b2001-06-08 00:21:52 +00005437 nDiv = 0;
drhc3b70572003-01-04 19:44:07 +00005438 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00005439 if( k<pParent->nCell ){
danielk19771cc5ed82007-05-16 17:28:43 +00005440 apDiv[i] = findCell(pParent, k);
drh8b2f49b2001-06-08 00:21:52 +00005441 nDiv++;
drha34b6762004-05-07 13:30:42 +00005442 assert( !pParent->leaf );
drh43605152004-05-29 21:46:49 +00005443 pgnoOld[i] = get4byte(apDiv[i]);
drh14acc042001-06-10 19:56:58 +00005444 }else if( k==pParent->nCell ){
drh43605152004-05-29 21:46:49 +00005445 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
drh14acc042001-06-10 19:56:58 +00005446 }else{
5447 break;
drh8b2f49b2001-06-08 00:21:52 +00005448 }
danielk197771d5d2c2008-09-29 11:49:47 +00005449 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i]);
drh6019e162001-07-02 17:51:45 +00005450 if( rc ) goto balance_cleanup;
danielk197771d5d2c2008-09-29 11:49:47 +00005451 /* apOld[i]->idxParent = k; */
drh91025292004-05-03 19:49:32 +00005452 apCopy[i] = 0;
5453 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00005454 nOld++;
danielk1977634f2982005-03-28 08:44:07 +00005455 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
drh8b2f49b2001-06-08 00:21:52 +00005456 }
5457
drha9121e42008-02-19 14:59:35 +00005458 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005459 ** alignment */
drha9121e42008-02-19 14:59:35 +00005460 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005461
drh8b2f49b2001-06-08 00:21:52 +00005462 /*
danielk1977634f2982005-03-28 08:44:07 +00005463 ** Allocate space for memory structures
5464 */
drhfacf0302008-06-17 15:12:00 +00005465 szScratch =
drha9121e42008-02-19 14:59:35 +00005466 nMaxCells*sizeof(u8*) /* apCell */
5467 + nMaxCells*sizeof(u16) /* szCell */
5468 + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB /* aCopy */
drhe5ae5732008-06-15 02:51:47 +00005469 + pBt->pageSize /* aSpace1 */
drhfacf0302008-06-17 15:12:00 +00005470 + (ISAUTOVACUUM ? nMaxCells : 0); /* aFrom */
5471 apCell = sqlite3ScratchMalloc( szScratch );
danielk1977634f2982005-03-28 08:44:07 +00005472 if( apCell==0 ){
5473 rc = SQLITE_NOMEM;
5474 goto balance_cleanup;
5475 }
drha9121e42008-02-19 14:59:35 +00005476 szCell = (u16*)&apCell[nMaxCells];
danielk1977634f2982005-03-28 08:44:07 +00005477 aCopy[0] = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005478 assert( EIGHT_BYTE_ALIGNMENT(aCopy[0]) );
danielk1977634f2982005-03-28 08:44:07 +00005479 for(i=1; i<NB; i++){
drhc96d8532005-05-03 12:30:33 +00005480 aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
drh66e80082008-12-16 13:46:29 +00005481 assert( ((aCopy[i] - (u8*)0) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00005482 }
drhe5ae5732008-06-15 02:51:47 +00005483 aSpace1 = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
drhea598cb2009-04-05 12:22:08 +00005484 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
danielk197785d90ca2008-07-19 14:25:15 +00005485 if( ISAUTOVACUUM ){
drhe5ae5732008-06-15 02:51:47 +00005486 aFrom = &aSpace1[pBt->pageSize];
danielk1977634f2982005-03-28 08:44:07 +00005487 }
drhfacf0302008-06-17 15:12:00 +00005488 aSpace2 = sqlite3PageMalloc(pBt->pageSize);
drhe5ae5732008-06-15 02:51:47 +00005489 if( aSpace2==0 ){
5490 rc = SQLITE_NOMEM;
5491 goto balance_cleanup;
5492 }
danielk1977634f2982005-03-28 08:44:07 +00005493
5494 /*
drh14acc042001-06-10 19:56:58 +00005495 ** Make copies of the content of pPage and its siblings into aOld[].
5496 ** The rest of this function will use data from the copies rather
5497 ** that the original pages since the original pages will be in the
5498 ** process of being overwritten.
5499 */
5500 for(i=0; i<nOld; i++){
drhbf4bca52007-09-06 22:19:14 +00005501 MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
5502 memcpy(p, apOld[i], sizeof(MemPage));
5503 p->aData = (void*)&p[1];
5504 memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
drh14acc042001-06-10 19:56:58 +00005505 }
5506
5507 /*
5508 ** Load pointers to all cells on sibling pages and the divider cells
5509 ** into the local apCell[] array. Make copies of the divider cells
drhe5ae5732008-06-15 02:51:47 +00005510 ** into space obtained form aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005511 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005512 **
5513 ** If the siblings are on leaf pages, then the child pointers of the
5514 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005515 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005516 ** child pointers. If siblings are not leaves, then all cell in
5517 ** apCell[] include child pointers. Either way, all cells in apCell[]
5518 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005519 **
5520 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5521 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005522 */
5523 nCell = 0;
drh4b70f112004-05-02 21:12:19 +00005524 leafCorrection = pPage->leaf*4;
drh44845222008-07-17 18:39:57 +00005525 leafData = pPage->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005526 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00005527 MemPage *pOld = apCopy[i];
drh43605152004-05-29 21:46:49 +00005528 int limit = pOld->nCell+pOld->nOverflow;
5529 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005530 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005531 apCell[nCell] = findOverflowCell(pOld, j);
5532 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk197785d90ca2008-07-19 14:25:15 +00005533 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005534 int a;
drhf49661a2008-12-10 16:45:50 +00005535 aFrom[nCell] = (u8)i; assert( i>=0 && i<6 );
danielk1977ac11ee62005-01-15 12:45:51 +00005536 for(a=0; a<pOld->nOverflow; a++){
5537 if( pOld->aOvfl[a].pCell==apCell[nCell] ){
5538 aFrom[nCell] = 0xFF;
5539 break;
5540 }
5541 }
5542 }
drh14acc042001-06-10 19:56:58 +00005543 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005544 }
5545 if( i<nOld-1 ){
drha9121e42008-02-19 14:59:35 +00005546 u16 sz = cellSizePtr(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00005547 if( leafData ){
drh96f5b762004-05-16 16:24:36 +00005548 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
5549 ** are duplicates of keys on the child pages. We need to remove
5550 ** the divider cells from pParent, but the dividers cells are not
5551 ** added to apCell[] because they are duplicates of child cells.
5552 */
drh8b18dd42004-05-12 19:18:15 +00005553 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00005554 }else{
drhb6f41482004-05-14 01:58:11 +00005555 u8 *pTemp;
danielk1977634f2982005-03-28 08:44:07 +00005556 assert( nCell<nMaxCells );
drhb6f41482004-05-14 01:58:11 +00005557 szCell[nCell] = sz;
drhe5ae5732008-06-15 02:51:47 +00005558 pTemp = &aSpace1[iSpace1];
5559 iSpace1 += sz;
5560 assert( sz<=pBt->pageSize/4 );
5561 assert( iSpace1<=pBt->pageSize );
drhb6f41482004-05-14 01:58:11 +00005562 memcpy(pTemp, apDiv[i], sz);
5563 apCell[nCell] = pTemp+leafCorrection;
danielk197785d90ca2008-07-19 14:25:15 +00005564 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005565 aFrom[nCell] = 0xFF;
5566 }
drhb6f41482004-05-14 01:58:11 +00005567 dropCell(pParent, nxDiv, sz);
drhf49661a2008-12-10 16:45:50 +00005568 assert( leafCorrection==0 || leafCorrection==4 );
5569 szCell[nCell] -= (u16)leafCorrection;
drh43605152004-05-29 21:46:49 +00005570 assert( get4byte(pTemp)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00005571 if( !pOld->leaf ){
5572 assert( leafCorrection==0 );
5573 /* The right pointer of the child page pOld becomes the left
5574 ** pointer of the divider cell */
drh43605152004-05-29 21:46:49 +00005575 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
drh8b18dd42004-05-12 19:18:15 +00005576 }else{
5577 assert( leafCorrection==4 );
danielk197739c96042007-05-12 10:41:47 +00005578 if( szCell[nCell]<4 ){
5579 /* Do not allow any cells smaller than 4 bytes. */
5580 szCell[nCell] = 4;
5581 }
drh8b18dd42004-05-12 19:18:15 +00005582 }
5583 nCell++;
drh4b70f112004-05-02 21:12:19 +00005584 }
drh8b2f49b2001-06-08 00:21:52 +00005585 }
5586 }
5587
5588 /*
drh6019e162001-07-02 17:51:45 +00005589 ** Figure out the number of pages needed to hold all nCell cells.
5590 ** Store this number in "k". Also compute szNew[] which is the total
5591 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005592 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005593 ** cntNew[k] should equal nCell.
5594 **
drh96f5b762004-05-16 16:24:36 +00005595 ** Values computed by this block:
5596 **
5597 ** k: The total number of sibling pages
5598 ** szNew[i]: Spaced used on the i-th sibling page.
5599 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5600 ** the right of the i-th sibling page.
5601 ** usableSpace: Number of bytes of space available on each sibling.
5602 **
drh8b2f49b2001-06-08 00:21:52 +00005603 */
drh43605152004-05-29 21:46:49 +00005604 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005605 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005606 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005607 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005608 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005609 szNew[k] = subtotal - szCell[i];
5610 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005611 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005612 subtotal = 0;
5613 k++;
5614 }
5615 }
5616 szNew[k] = subtotal;
5617 cntNew[k] = nCell;
5618 k++;
drh96f5b762004-05-16 16:24:36 +00005619
5620 /*
5621 ** The packing computed by the previous block is biased toward the siblings
5622 ** on the left side. The left siblings are always nearly full, while the
5623 ** right-most sibling might be nearly empty. This block of code attempts
5624 ** to adjust the packing of siblings to get a better balance.
5625 **
5626 ** This adjustment is more than an optimization. The packing above might
5627 ** be so out of balance as to be illegal. For example, the right-most
5628 ** sibling might be completely empty. This adjustment is not optional.
5629 */
drh6019e162001-07-02 17:51:45 +00005630 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005631 int szRight = szNew[i]; /* Size of sibling on the right */
5632 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5633 int r; /* Index of right-most cell in left sibling */
5634 int d; /* Index of first cell to the left of right sibling */
5635
5636 r = cntNew[i-1] - 1;
5637 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005638 assert( d<nMaxCells );
5639 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005640 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5641 szRight += szCell[d] + 2;
5642 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005643 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005644 r = cntNew[i-1] - 1;
5645 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005646 }
drh96f5b762004-05-16 16:24:36 +00005647 szNew[i] = szRight;
5648 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005649 }
drh09d0deb2005-08-02 17:13:09 +00005650
danielk19776f235cc2009-06-04 14:46:08 +00005651 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00005652 ** a virtual root page. A virtual root page is when the real root
5653 ** page is page 1 and we are the only child of that page.
5654 */
5655 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005656
5657 /*
drh6b308672002-07-08 02:16:37 +00005658 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005659 */
drh4b70f112004-05-02 21:12:19 +00005660 assert( pPage->pgno>1 );
5661 pageFlags = pPage->aData[0];
drh14acc042001-06-10 19:56:58 +00005662 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005663 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005664 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005665 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005666 pgnoNew[i] = pgnoOld[i];
5667 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005668 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005669 nNew++;
danielk197728129562005-01-11 10:25:06 +00005670 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005671 }else{
drh7aa8f852006-03-28 00:24:44 +00005672 assert( i>0 );
drh4f0c5872007-03-26 22:05:01 +00005673 rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
drh6b308672002-07-08 02:16:37 +00005674 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005675 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005676 nNew++;
drh6b308672002-07-08 02:16:37 +00005677 }
drh8b2f49b2001-06-08 00:21:52 +00005678 }
5679
danielk1977299b1872004-11-22 10:02:10 +00005680 /* Free any old pages that were not reused as new pages.
5681 */
5682 while( i<nOld ){
5683 rc = freePage(apOld[i]);
5684 if( rc ) goto balance_cleanup;
5685 releasePage(apOld[i]);
5686 apOld[i] = 0;
5687 i++;
5688 }
5689
drh8b2f49b2001-06-08 00:21:52 +00005690 /*
drhf9ffac92002-03-02 19:00:31 +00005691 ** Put the new pages in accending order. This helps to
5692 ** keep entries in the disk file in order so that a scan
5693 ** of the table is a linear scan through the file. That
5694 ** in turn helps the operating system to deliver pages
5695 ** from the disk more rapidly.
5696 **
5697 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005698 ** n is never more than NB (a small constant), that should
5699 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005700 **
drhc3b70572003-01-04 19:44:07 +00005701 ** When NB==3, this one optimization makes the database
5702 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00005703 */
5704 for(i=0; i<k-1; i++){
5705 int minV = pgnoNew[i];
5706 int minI = i;
5707 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00005708 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00005709 minI = j;
5710 minV = pgnoNew[j];
5711 }
5712 }
5713 if( minI>i ){
5714 int t;
5715 MemPage *pT;
5716 t = pgnoNew[i];
5717 pT = apNew[i];
5718 pgnoNew[i] = pgnoNew[minI];
5719 apNew[i] = apNew[minI];
5720 pgnoNew[minI] = t;
5721 apNew[minI] = pT;
5722 }
5723 }
drha2fce642004-06-05 00:01:44 +00005724 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
drh24cd67e2004-05-10 16:18:47 +00005725 pgnoOld[0],
5726 nOld>=2 ? pgnoOld[1] : 0,
5727 nOld>=3 ? pgnoOld[2] : 0,
drh10c0fa62004-05-18 12:50:17 +00005728 pgnoNew[0], szNew[0],
5729 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
5730 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
drha2fce642004-06-05 00:01:44 +00005731 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
5732 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
drh24cd67e2004-05-10 16:18:47 +00005733
drhf9ffac92002-03-02 19:00:31 +00005734 /*
drh14acc042001-06-10 19:56:58 +00005735 ** Evenly distribute the data in apCell[] across the new pages.
5736 ** Insert divider cells into pParent as necessary.
5737 */
5738 j = 0;
5739 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00005740 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00005741 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00005742 assert( j<nMaxCells );
drh4b70f112004-05-02 21:12:19 +00005743 assert( pNew->pgno==pgnoNew[i] );
drh10131482008-07-11 03:34:09 +00005744 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00005745 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00005746 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00005747 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00005748
danielk1977ac11ee62005-01-15 12:45:51 +00005749 /* If this is an auto-vacuum database, update the pointer map entries
5750 ** that point to the siblings that were rearranged. These can be: left
5751 ** children of cells, the right-child of the page, or overflow pages
5752 ** pointed to by cells.
5753 */
danielk197785d90ca2008-07-19 14:25:15 +00005754 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005755 for(k=j; k<cntNew[i]; k++){
danielk1977634f2982005-03-28 08:44:07 +00005756 assert( k<nMaxCells );
danielk1977ac11ee62005-01-15 12:45:51 +00005757 if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
danielk197779a40da2005-01-16 08:00:01 +00005758 rc = ptrmapPutOvfl(pNew, k-j);
danielk197787c52b52008-07-19 11:49:07 +00005759 if( rc==SQLITE_OK && leafCorrection==0 ){
5760 rc = ptrmapPut(pBt, get4byte(apCell[k]), PTRMAP_BTREE, pNew->pgno);
5761 }
danielk197779a40da2005-01-16 08:00:01 +00005762 if( rc!=SQLITE_OK ){
5763 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00005764 }
5765 }
5766 }
5767 }
danielk1977ac11ee62005-01-15 12:45:51 +00005768
5769 j = cntNew[i];
5770
5771 /* If the sibling page assembled above was not the right-most sibling,
5772 ** insert a divider cell into the parent page.
5773 */
drh14acc042001-06-10 19:56:58 +00005774 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00005775 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00005776 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00005777 int sz;
danielk1977634f2982005-03-28 08:44:07 +00005778
5779 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00005780 pCell = apCell[j];
5781 sz = szCell[j] + leafCorrection;
drhe5ae5732008-06-15 02:51:47 +00005782 pTemp = &aSpace2[iSpace2];
drh4b70f112004-05-02 21:12:19 +00005783 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00005784 memcpy(&pNew->aData[8], pCell, 4);
danielk197785d90ca2008-07-19 14:25:15 +00005785 if( ISAUTOVACUUM
danielk197787c52b52008-07-19 11:49:07 +00005786 && (aFrom[j]==0xFF || apCopy[aFrom[j]]->pgno!=pNew->pgno)
5787 ){
5788 rc = ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno);
5789 if( rc!=SQLITE_OK ){
5790 goto balance_cleanup;
5791 }
5792 }
drh8b18dd42004-05-12 19:18:15 +00005793 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00005794 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00005795 ** then there is no divider cell in apCell[]. Instead, the divider
5796 ** cell consists of the integer key for the right-most cell of
5797 ** the sibling-page assembled above only.
5798 */
drh6f11bef2004-05-13 01:12:56 +00005799 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00005800 j--;
drh16a9b832007-05-05 18:39:25 +00005801 sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00005802 pCell = pTemp;
drh20abac22009-01-28 20:21:17 +00005803 rc = fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
5804 if( rc!=SQLITE_OK ){
5805 goto balance_cleanup;
5806 }
drh8b18dd42004-05-12 19:18:15 +00005807 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00005808 }else{
5809 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00005810 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00005811 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00005812 ** bytes, then it may actually be smaller than this
5813 ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00005814 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00005815 ** insertCell(), so reparse the cell now.
5816 **
5817 ** Note that this can never happen in an SQLite data file, as all
5818 ** cells are at least 4 bytes. It only happens in b-trees used
5819 ** to evaluate "IN (SELECT ...)" and similar clauses.
5820 */
5821 if( szCell[j]==4 ){
5822 assert(leafCorrection==4);
5823 sz = cellSizePtr(pParent, pCell);
5824 }
drh4b70f112004-05-02 21:12:19 +00005825 }
drhe5ae5732008-06-15 02:51:47 +00005826 iSpace2 += sz;
5827 assert( sz<=pBt->pageSize/4 );
5828 assert( iSpace2<=pBt->pageSize );
danielk1977a3ad5e72005-01-07 08:56:44 +00005829 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
danielk1977e80463b2004-11-03 03:01:16 +00005830 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00005831 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh43605152004-05-29 21:46:49 +00005832 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
danielk197785d90ca2008-07-19 14:25:15 +00005833
danielk1977ac11ee62005-01-15 12:45:51 +00005834 /* If this is an auto-vacuum database, and not a leaf-data tree,
5835 ** then update the pointer map with an entry for the overflow page
5836 ** that the cell just inserted points to (if any).
5837 */
danielk197785d90ca2008-07-19 14:25:15 +00005838 if( ISAUTOVACUUM && !leafData ){
danielk197779a40da2005-01-16 08:00:01 +00005839 rc = ptrmapPutOvfl(pParent, nxDiv);
5840 if( rc!=SQLITE_OK ){
5841 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00005842 }
5843 }
drh14acc042001-06-10 19:56:58 +00005844 j++;
5845 nxDiv++;
5846 }
danielk197787c52b52008-07-19 11:49:07 +00005847
danielk197787c52b52008-07-19 11:49:07 +00005848 /* Set the pointer-map entry for the new sibling page. */
danielk197785d90ca2008-07-19 14:25:15 +00005849 if( ISAUTOVACUUM ){
danielk197787c52b52008-07-19 11:49:07 +00005850 rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
5851 if( rc!=SQLITE_OK ){
5852 goto balance_cleanup;
5853 }
5854 }
drh14acc042001-06-10 19:56:58 +00005855 }
drh6019e162001-07-02 17:51:45 +00005856 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00005857 assert( nOld>0 );
5858 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00005859 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00005860 u8 *zChild = &apCopy[nOld-1]->aData[8];
5861 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
danielk197785d90ca2008-07-19 14:25:15 +00005862 if( ISAUTOVACUUM ){
danielk197787c52b52008-07-19 11:49:07 +00005863 rc = ptrmapPut(pBt, get4byte(zChild), PTRMAP_BTREE, apNew[nNew-1]->pgno);
5864 if( rc!=SQLITE_OK ){
5865 goto balance_cleanup;
5866 }
5867 }
drh14acc042001-06-10 19:56:58 +00005868 }
drhc5053fb2008-11-27 02:22:10 +00005869 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh43605152004-05-29 21:46:49 +00005870 if( nxDiv==pParent->nCell+pParent->nOverflow ){
drh4b70f112004-05-02 21:12:19 +00005871 /* Right-most sibling is the right-most child of pParent */
drh43605152004-05-29 21:46:49 +00005872 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
drh4b70f112004-05-02 21:12:19 +00005873 }else{
5874 /* Right-most sibling is the left child of the first entry in pParent
5875 ** past the right-most divider entry */
drh43605152004-05-29 21:46:49 +00005876 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00005877 }
5878
5879 /*
drh3a4c1412004-05-09 20:40:11 +00005880 ** Balance the parent page. Note that the current page (pPage) might
danielk1977ac11ee62005-01-15 12:45:51 +00005881 ** have been added to the freelist so it might no longer be initialized.
drh3a4c1412004-05-09 20:40:11 +00005882 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00005883 */
danielk197771d5d2c2008-09-29 11:49:47 +00005884 assert( pParent->isInit );
drhfacf0302008-06-17 15:12:00 +00005885 sqlite3ScratchFree(apCell);
drhe5ae5732008-06-15 02:51:47 +00005886 apCell = 0;
danielk1977a4124bd2008-12-23 10:37:47 +00005887 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
5888 pPage->pgno, nOld, nNew, nCell));
5889 pPage->nOverflow = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00005890 releasePage(pPage);
5891 pCur->iPage--;
5892 rc = balance(pCur, 0);
drhda200cc2004-05-09 11:51:38 +00005893
drh8b2f49b2001-06-08 00:21:52 +00005894 /*
drh14acc042001-06-10 19:56:58 +00005895 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00005896 */
drh14acc042001-06-10 19:56:58 +00005897balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00005898 sqlite3PageFree(aSpace2);
5899 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00005900 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00005901 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00005902 }
drh14acc042001-06-10 19:56:58 +00005903 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00005904 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00005905 }
danielk1977a4124bd2008-12-23 10:37:47 +00005906 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005907
drh8b2f49b2001-06-08 00:21:52 +00005908 return rc;
5909}
5910
5911/*
drh43605152004-05-29 21:46:49 +00005912** This routine is called for the root page of a btree when the root
5913** page contains no cells. This is an opportunity to make the tree
5914** shallower by one level.
5915*/
danielk197771d5d2c2008-09-29 11:49:47 +00005916static int balance_shallower(BtCursor *pCur){
5917 MemPage *pPage; /* Root page of B-Tree */
drh43605152004-05-29 21:46:49 +00005918 MemPage *pChild; /* The only child page of pPage */
5919 Pgno pgnoChild; /* Page number for pChild */
drh2e38c322004-09-03 18:38:44 +00005920 int rc = SQLITE_OK; /* Return code from subprocedures */
danielk1977aef0bf62005-12-30 16:28:01 +00005921 BtShared *pBt; /* The main BTree structure */
drh2e38c322004-09-03 18:38:44 +00005922 int mxCellPerPage; /* Maximum number of cells per page */
5923 u8 **apCell; /* All cells from pages being balanced */
drha9121e42008-02-19 14:59:35 +00005924 u16 *szCell; /* Local size of all cells */
drh43605152004-05-29 21:46:49 +00005925
danielk197771d5d2c2008-09-29 11:49:47 +00005926 assert( pCur->iPage==0 );
5927 pPage = pCur->apPage[0];
5928
drh43605152004-05-29 21:46:49 +00005929 assert( pPage->nCell==0 );
drh1fee73e2007-08-29 04:00:57 +00005930 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh2e38c322004-09-03 18:38:44 +00005931 pBt = pPage->pBt;
5932 mxCellPerPage = MX_CELL(pBt);
drhe5ae5732008-06-15 02:51:47 +00005933 apCell = sqlite3Malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) );
drh2e38c322004-09-03 18:38:44 +00005934 if( apCell==0 ) return SQLITE_NOMEM;
drha9121e42008-02-19 14:59:35 +00005935 szCell = (u16*)&apCell[mxCellPerPage];
drh43605152004-05-29 21:46:49 +00005936 if( pPage->leaf ){
5937 /* The table is completely empty */
5938 TRACE(("BALANCE: empty table %d\n", pPage->pgno));
5939 }else{
5940 /* The root page is empty but has one child. Transfer the
5941 ** information from that one child into the root page if it
5942 ** will fit. This reduces the depth of the tree by one.
5943 **
5944 ** If the root page is page 1, it has less space available than
5945 ** its child (due to the 100 byte header that occurs at the beginning
5946 ** of the database fle), so it might not be able to hold all of the
5947 ** information currently contained in the child. If this is the
5948 ** case, then do not do the transfer. Leave page 1 empty except
5949 ** for the right-pointer to the child page. The child page becomes
5950 ** the virtual root of the tree.
5951 */
drhf94a1732008-09-30 17:18:17 +00005952 VVA_ONLY( pCur->pagesShuffled = 1 );
drh43605152004-05-29 21:46:49 +00005953 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5954 assert( pgnoChild>0 );
danielk197789d40042008-11-17 14:20:56 +00005955 assert( pgnoChild<=pagerPagecount(pPage->pBt) );
drh16a9b832007-05-05 18:39:25 +00005956 rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
drh2e38c322004-09-03 18:38:44 +00005957 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005958 if( pPage->pgno==1 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005959 rc = sqlite3BtreeInitPage(pChild);
drh2e38c322004-09-03 18:38:44 +00005960 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005961 assert( pChild->nOverflow==0 );
5962 if( pChild->nFree>=100 ){
5963 /* The child information will fit on the root page, so do the
5964 ** copy */
5965 int i;
5966 zeroPage(pPage, pChild->aData[0]);
5967 for(i=0; i<pChild->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00005968 apCell[i] = findCell(pChild,i);
drh43605152004-05-29 21:46:49 +00005969 szCell[i] = cellSizePtr(pChild, apCell[i]);
5970 }
5971 assemblePage(pPage, pChild->nCell, apCell, szCell);
danielk1977ae825582004-11-23 09:06:55 +00005972 /* Copy the right-pointer of the child to the parent. */
drhc5053fb2008-11-27 02:22:10 +00005973 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977ae825582004-11-23 09:06:55 +00005974 put4byte(&pPage->aData[pPage->hdrOffset+8],
5975 get4byte(&pChild->aData[pChild->hdrOffset+8]));
drh9bf9e9c2008-12-05 20:01:43 +00005976 rc = freePage(pChild);
drh43605152004-05-29 21:46:49 +00005977 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
5978 }else{
5979 /* The child has more information that will fit on the root.
5980 ** The tree is already balanced. Do nothing. */
5981 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
5982 }
5983 }else{
5984 memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
5985 pPage->isInit = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00005986 rc = sqlite3BtreeInitPage(pPage);
drh43605152004-05-29 21:46:49 +00005987 assert( rc==SQLITE_OK );
5988 freePage(pChild);
5989 TRACE(("BALANCE: transfer child %d into root %d\n",
5990 pChild->pgno, pPage->pgno));
5991 }
danielk1977ac11ee62005-01-15 12:45:51 +00005992 assert( pPage->nOverflow==0 );
shane831c3292008-11-10 17:14:58 +00005993#ifndef SQLITE_OMIT_AUTOVACUUM
drh9bf9e9c2008-12-05 20:01:43 +00005994 if( ISAUTOVACUUM && rc==SQLITE_OK ){
danielk197700a696d2008-09-29 16:41:31 +00005995 rc = setChildPtrmaps(pPage);
danielk1977ac11ee62005-01-15 12:45:51 +00005996 }
shane831c3292008-11-10 17:14:58 +00005997#endif
drh43605152004-05-29 21:46:49 +00005998 releasePage(pChild);
5999 }
drh2e38c322004-09-03 18:38:44 +00006000end_shallow_balance:
drh17435752007-08-16 04:30:38 +00006001 sqlite3_free(apCell);
drh2e38c322004-09-03 18:38:44 +00006002 return rc;
drh43605152004-05-29 21:46:49 +00006003}
6004
6005
6006/*
6007** The root page is overfull
6008**
6009** When this happens, Create a new child page and copy the
6010** contents of the root into the child. Then make the root
6011** page an empty page with rightChild pointing to the new
6012** child. Finally, call balance_internal() on the new child
6013** to cause it to split.
6014*/
danielk197771d5d2c2008-09-29 11:49:47 +00006015static int balance_deeper(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006016 int rc; /* Return value from subprocedures */
danielk197771d5d2c2008-09-29 11:49:47 +00006017 MemPage *pPage; /* Pointer to the root page */
drh43605152004-05-29 21:46:49 +00006018 MemPage *pChild; /* Pointer to a new child page */
6019 Pgno pgnoChild; /* Page number of the new child page */
danielk1977aef0bf62005-12-30 16:28:01 +00006020 BtShared *pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006021 int usableSize; /* Total usable size of a page */
6022 u8 *data; /* Content of the parent page */
6023 u8 *cdata; /* Content of the child page */
6024 int hdr; /* Offset to page header in parent */
drh281b21d2008-08-22 12:57:08 +00006025 int cbrk; /* Offset to content of first cell in parent */
drh43605152004-05-29 21:46:49 +00006026
danielk197771d5d2c2008-09-29 11:49:47 +00006027 assert( pCur->iPage==0 );
6028 assert( pCur->apPage[0]->nOverflow>0 );
6029
drhf94a1732008-09-30 17:18:17 +00006030 VVA_ONLY( pCur->pagesShuffled = 1 );
danielk197771d5d2c2008-09-29 11:49:47 +00006031 pPage = pCur->apPage[0];
drh43605152004-05-29 21:46:49 +00006032 pBt = pPage->pBt;
drh1fee73e2007-08-29 04:00:57 +00006033 assert( sqlite3_mutex_held(pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00006034 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh4f0c5872007-03-26 22:05:01 +00006035 rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
drh43605152004-05-29 21:46:49 +00006036 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006037 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
drh43605152004-05-29 21:46:49 +00006038 usableSize = pBt->usableSize;
6039 data = pPage->aData;
6040 hdr = pPage->hdrOffset;
drh281b21d2008-08-22 12:57:08 +00006041 cbrk = get2byte(&data[hdr+5]);
drh43605152004-05-29 21:46:49 +00006042 cdata = pChild->aData;
6043 memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
drh281b21d2008-08-22 12:57:08 +00006044 memcpy(&cdata[cbrk], &data[cbrk], usableSize-cbrk);
danielk1977bc2ca9e2008-11-13 14:28:28 +00006045
6046 assert( pChild->isInit==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006047 rc = sqlite3BtreeInitPage(pChild);
6048 if( rc==SQLITE_OK ){
6049 int nCopy = pPage->nOverflow*sizeof(pPage->aOvfl[0]);
6050 memcpy(pChild->aOvfl, pPage->aOvfl, nCopy);
6051 pChild->nOverflow = pPage->nOverflow;
6052 if( pChild->nOverflow ){
6053 pChild->nFree = 0;
6054 }
6055 assert( pChild->nCell==pPage->nCell );
drhc5053fb2008-11-27 02:22:10 +00006056 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00006057 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
6058 put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
6059 TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
6060 if( ISAUTOVACUUM ){
danielk197771d5d2c2008-09-29 11:49:47 +00006061 rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
shane831c3292008-11-10 17:14:58 +00006062#ifndef SQLITE_OMIT_AUTOVACUUM
danielk197771d5d2c2008-09-29 11:49:47 +00006063 if( rc==SQLITE_OK ){
danielk197700a696d2008-09-29 16:41:31 +00006064 rc = setChildPtrmaps(pChild);
danielk1977ac11ee62005-01-15 12:45:51 +00006065 }
drh30df0092008-12-23 15:58:06 +00006066 if( rc ){
6067 pChild->nOverflow = 0;
6068 }
shane831c3292008-11-10 17:14:58 +00006069#endif
danielk1977ac11ee62005-01-15 12:45:51 +00006070 }
danielk197787c52b52008-07-19 11:49:07 +00006071 }
danielk19776b456a22005-03-21 04:04:02 +00006072
danielk197771d5d2c2008-09-29 11:49:47 +00006073 if( rc==SQLITE_OK ){
6074 pCur->iPage++;
6075 pCur->apPage[1] = pChild;
danielk1977bf93c562008-09-29 15:53:25 +00006076 pCur->aiIdx[0] = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006077 rc = balance_nonroot(pCur);
6078 }else{
6079 releasePage(pChild);
6080 }
6081
drh43605152004-05-29 21:46:49 +00006082 return rc;
6083}
6084
6085/*
danielk197771d5d2c2008-09-29 11:49:47 +00006086** The page that pCur currently points to has just been modified in
6087** some way. This function figures out if this modification means the
6088** tree needs to be balanced, and if so calls the appropriate balancing
6089** routine.
6090**
6091** Parameter isInsert is true if a new cell was just inserted into the
6092** page, or false otherwise.
drh43605152004-05-29 21:46:49 +00006093*/
danielk197771d5d2c2008-09-29 11:49:47 +00006094static int balance(BtCursor *pCur, int isInsert){
drh43605152004-05-29 21:46:49 +00006095 int rc = SQLITE_OK;
danielk197771d5d2c2008-09-29 11:49:47 +00006096 MemPage *pPage = pCur->apPage[pCur->iPage];
6097
drh1fee73e2007-08-29 04:00:57 +00006098 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197771d5d2c2008-09-29 11:49:47 +00006099 if( pCur->iPage==0 ){
danielk19776e465eb2007-08-21 13:11:00 +00006100 rc = sqlite3PagerWrite(pPage->pDbPage);
6101 if( rc==SQLITE_OK && pPage->nOverflow>0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00006102 rc = balance_deeper(pCur);
danielk1977a4124bd2008-12-23 10:37:47 +00006103 assert( pCur->apPage[0]==pPage );
drh9bf9e9c2008-12-05 20:01:43 +00006104 assert( pPage->nOverflow==0 || rc!=SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006105 }
danielk1977687566d2004-11-02 12:56:41 +00006106 if( rc==SQLITE_OK && pPage->nCell==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00006107 rc = balance_shallower(pCur);
danielk1977a4124bd2008-12-23 10:37:47 +00006108 assert( pCur->apPage[0]==pPage );
drh9bf9e9c2008-12-05 20:01:43 +00006109 assert( pPage->nOverflow==0 || rc!=SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006110 }
6111 }else{
danielk1977ac245ec2005-01-14 13:50:11 +00006112 if( pPage->nOverflow>0 ||
danielk197771d5d2c2008-09-29 11:49:47 +00006113 (!isInsert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
6114 rc = balance_nonroot(pCur);
drh43605152004-05-29 21:46:49 +00006115 }
6116 }
6117 return rc;
6118}
6119
6120/*
drh8dcd7ca2004-08-08 19:43:29 +00006121** This routine checks all cursors that point to table pgnoRoot.
drh980b1a72006-08-16 16:42:48 +00006122** If any of those cursors were opened with wrFlag==0 in a different
6123** database connection (a database connection that shares the pager
6124** cache with the current connection) and that other connection
6125** is not in the ReadUncommmitted state, then this routine returns
6126** SQLITE_LOCKED.
danielk1977299b1872004-11-22 10:02:10 +00006127**
drh11b57d62009-02-24 19:21:41 +00006128** As well as cursors with wrFlag==0, cursors with
6129** isIncrblobHandle==1 are also considered 'read' cursors because
6130** incremental blob cursors are used for both reading and writing.
danielk19773588ceb2008-06-10 17:30:26 +00006131**
6132** When pgnoRoot is the root page of an intkey table, this function is also
6133** responsible for invalidating incremental blob cursors when the table row
6134** on which they are opened is deleted or modified. Cursors are invalidated
6135** according to the following rules:
6136**
6137** 1) When BtreeClearTable() is called to completely delete the contents
6138** of a B-Tree table, pExclude is set to zero and parameter iRow is
6139** set to non-zero. In this case all incremental blob cursors open
6140** on the table rooted at pgnoRoot are invalidated.
6141**
6142** 2) When BtreeInsert(), BtreeDelete() or BtreePutData() is called to
6143** modify a table row via an SQL statement, pExclude is set to the
6144** write cursor used to do the modification and parameter iRow is set
6145** to the integer row id of the B-Tree entry being modified. Unless
6146** pExclude is itself an incremental blob cursor, then all incremental
6147** blob cursors open on row iRow of the B-Tree are invalidated.
6148**
6149** 3) If both pExclude and iRow are set to zero, no incremental blob
6150** cursors are invalidated.
drhf74b8d92002-09-01 23:20:45 +00006151*/
drh11b57d62009-02-24 19:21:41 +00006152static int checkForReadConflicts(
6153 Btree *pBtree, /* The database file to check */
6154 Pgno pgnoRoot, /* Look for read cursors on this btree */
6155 BtCursor *pExclude, /* Ignore this cursor */
6156 i64 iRow /* The rowid that might be changing */
danielk19773588ceb2008-06-10 17:30:26 +00006157){
danielk1977299b1872004-11-22 10:02:10 +00006158 BtCursor *p;
drh980b1a72006-08-16 16:42:48 +00006159 BtShared *pBt = pBtree->pBt;
drhe5fe6902007-12-07 18:55:28 +00006160 sqlite3 *db = pBtree->db;
drh1fee73e2007-08-29 04:00:57 +00006161 assert( sqlite3BtreeHoldsMutex(pBtree) );
danielk1977299b1872004-11-22 10:02:10 +00006162 for(p=pBt->pCursor; p; p=p->pNext){
drh980b1a72006-08-16 16:42:48 +00006163 if( p==pExclude ) continue;
drh980b1a72006-08-16 16:42:48 +00006164 if( p->pgnoRoot!=pgnoRoot ) continue;
danielk19773588ceb2008-06-10 17:30:26 +00006165#ifndef SQLITE_OMIT_INCRBLOB
6166 if( p->isIncrblobHandle && (
6167 (!pExclude && iRow)
6168 || (pExclude && !pExclude->isIncrblobHandle && p->info.nKey==iRow)
6169 )){
6170 p->eState = CURSOR_INVALID;
6171 }
6172#endif
6173 if( p->eState!=CURSOR_VALID ) continue;
6174 if( p->wrFlag==0
6175#ifndef SQLITE_OMIT_INCRBLOB
6176 || p->isIncrblobHandle
6177#endif
6178 ){
drhe5fe6902007-12-07 18:55:28 +00006179 sqlite3 *dbOther = p->pBtree->db;
danielk1977404ca072009-03-16 13:19:36 +00006180 assert(dbOther);
6181 if( dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0 ){
6182 sqlite3ConnectionBlocked(db, dbOther);
6183 return SQLITE_LOCKED_SHAREDCACHE;
drh980b1a72006-08-16 16:42:48 +00006184 }
danielk1977299b1872004-11-22 10:02:10 +00006185 }
6186 }
drhf74b8d92002-09-01 23:20:45 +00006187 return SQLITE_OK;
6188}
6189
6190/*
drh3b7511c2001-05-26 13:15:44 +00006191** Insert a new record into the BTree. The key is given by (pKey,nKey)
6192** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006193** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006194** is left pointing at a random location.
6195**
6196** For an INTKEY table, only the nKey value of the key is used. pKey is
6197** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006198**
6199** If the seekResult parameter is non-zero, then a successful call to
6200** sqlite3BtreeMoveto() to seek cursor pCur to (pKey, nKey) has already
6201** been performed. seekResult is the search result returned (a negative
6202** number if pCur points at an entry that is smaller than (pKey, nKey), or
6203** a positive value if pCur points at an etry that is larger than
6204** (pKey, nKey)).
6205**
6206** If the seekResult parameter is 0, then cursor pCur may point to any
6207** entry or to no entry at all. In this case this function has to seek
6208** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006209*/
drh3aac2dd2004-04-26 14:10:20 +00006210int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006211 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006212 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006213 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006214 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006215 int appendBias, /* True if this is likely an append */
6216 int seekResult /* Result of prior sqlite3BtreeMoveto() call */
drh3b7511c2001-05-26 13:15:44 +00006217){
drh3b7511c2001-05-26 13:15:44 +00006218 int rc;
danielk1977de630352009-05-04 11:42:29 +00006219 int loc = seekResult;
drh14acc042001-06-10 19:56:58 +00006220 int szNew;
danielk197771d5d2c2008-09-29 11:49:47 +00006221 int idx;
drh3b7511c2001-05-26 13:15:44 +00006222 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006223 Btree *p = pCur->pBtree;
6224 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006225 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006226 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006227
drh1fee73e2007-08-29 04:00:57 +00006228 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006229 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006230 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006231 assert( pCur->wrFlag );
danielk1977404ca072009-03-16 13:19:36 +00006232 rc = checkForReadConflicts(pCur->pBtree, pCur->pgnoRoot, pCur, nKey);
6233 if( rc ){
6234 /* The table pCur points to has a read lock */
6235 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
6236 return rc;
drhf74b8d92002-09-01 23:20:45 +00006237 }
drhfb982642007-08-30 01:19:59 +00006238 if( pCur->eState==CURSOR_FAULT ){
6239 return pCur->skip;
6240 }
danielk1977da184232006-01-05 11:34:32 +00006241
danielk19779c3acf32009-05-02 07:36:49 +00006242 /* Save the positions of any other cursors open on this table.
6243 **
6244 ** In some cases, the call to sqlite3BtreeMoveto() below is a no-op. For
6245 ** example, when inserting data into a table with auto-generated integer
6246 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6247 ** integer key to use. It then calls this function to actually insert the
6248 ** data into the intkey B-Tree. In this case sqlite3BtreeMoveto() recognizes
6249 ** that the cursor is already where it needs to be and returns without
6250 ** doing any work. To avoid thwarting these optimizations, it is important
6251 ** not to clear the cursor here.
6252 */
danielk1977de630352009-05-04 11:42:29 +00006253 if(
6254 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || (!loc &&
drhe63d9992008-08-13 19:11:48 +00006255 SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
danielk1977de630352009-05-04 11:42:29 +00006256 )){
danielk1977da184232006-01-05 11:34:32 +00006257 return rc;
6258 }
6259
danielk197771d5d2c2008-09-29 11:49:47 +00006260 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006261 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006262 assert( pPage->leaf || !pPage->intKey );
drh3a4c1412004-05-09 20:40:11 +00006263 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6264 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6265 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006266 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006267 allocateTempSpace(pBt);
6268 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006269 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006270 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006271 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006272 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006273 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006274 idx = pCur->aiIdx[pCur->iPage];
danielk1977da184232006-01-05 11:34:32 +00006275 if( loc==0 && CURSOR_VALID==pCur->eState ){
drha9121e42008-02-19 14:59:35 +00006276 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006277 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006278 rc = sqlite3PagerWrite(pPage->pDbPage);
6279 if( rc ){
6280 goto end_insert;
6281 }
danielk197771d5d2c2008-09-29 11:49:47 +00006282 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006283 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006284 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006285 }
drh43605152004-05-29 21:46:49 +00006286 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006287 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00006288 if( rc ) goto end_insert;
shane0af3f892008-11-12 04:55:34 +00006289 rc = dropCell(pPage, idx, szOld);
6290 if( rc!=SQLITE_OK ) {
6291 goto end_insert;
6292 }
drh7c717f72001-06-24 20:39:41 +00006293 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006294 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006295 idx = ++pCur->aiIdx[pCur->iPage];
drh271efa52004-05-30 19:19:05 +00006296 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00006297 pCur->validNKey = 0;
drh14acc042001-06-10 19:56:58 +00006298 }else{
drh4b70f112004-05-02 21:12:19 +00006299 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006300 }
danielk197771d5d2c2008-09-29 11:49:47 +00006301 rc = insertCell(pPage, idx, newCell, szNew, 0, 0);
danielk19773f632d52009-05-02 10:03:09 +00006302 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006303
danielk19773f632d52009-05-02 10:03:09 +00006304 /* If no error has occured, call balance() to deal with any overflow and
6305 ** move the cursor to point at the root of the table (since balance may
6306 ** have rearranged the table in such a way as to invalidate BtCursor.apPage[]
6307 ** or BtCursor.aiIdx[]).
6308 **
6309 ** Except, if all of the following are true, do nothing:
6310 **
6311 ** * Inserting the new cell did not cause overflow,
6312 **
6313 ** * Before inserting the new cell the cursor was pointing at the
6314 ** largest key in an intkey B-Tree, and
6315 **
6316 ** * The key value associated with the new cell is now the largest
6317 ** in the B-Tree.
6318 **
6319 ** In this case the cursor can be safely left pointing at the (new)
6320 ** largest key value in the B-Tree. Doing so speeds up inserting a set
6321 ** of entries with increasing integer key values via a single cursor
6322 ** (comes up with "INSERT INTO ... SELECT ..." statements), as
6323 ** the next insert operation is not required to seek the cursor.
6324 */
6325 if( rc==SQLITE_OK
6326 && (pPage->nOverflow || !pCur->atLast || loc>=0 || !pCur->apPage[0]->intKey)
6327 ){
6328 rc = balance(pCur, 1);
6329 if( rc==SQLITE_OK ){
6330 moveToRoot(pCur);
6331 }
6332 }
6333
drh9bf9e9c2008-12-05 20:01:43 +00006334 /* Must make sure nOverflow is reset to zero even if the balance()
6335 ** fails. Internal data structure corruption will result otherwise. */
danielk1977a4124bd2008-12-23 10:37:47 +00006336 pCur->apPage[pCur->iPage]->nOverflow = 0;
drh9bf9e9c2008-12-05 20:01:43 +00006337
drh2e38c322004-09-03 18:38:44 +00006338end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006339 return rc;
6340}
6341
6342/*
drh4b70f112004-05-02 21:12:19 +00006343** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006344** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006345*/
drh3aac2dd2004-04-26 14:10:20 +00006346int sqlite3BtreeDelete(BtCursor *pCur){
danielk197771d5d2c2008-09-29 11:49:47 +00006347 MemPage *pPage = pCur->apPage[pCur->iPage];
6348 int idx;
drh4b70f112004-05-02 21:12:19 +00006349 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00006350 int rc;
danielk1977cfe9a692004-06-16 12:00:29 +00006351 Pgno pgnoChild = 0;
drhd677b3d2007-08-20 22:48:41 +00006352 Btree *p = pCur->pBtree;
6353 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006354
drh1fee73e2007-08-29 04:00:57 +00006355 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00006356 assert( pPage->isInit );
drh64022502009-01-09 14:11:04 +00006357 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006358 assert( !pBt->readOnly );
drhfb982642007-08-30 01:19:59 +00006359 if( pCur->eState==CURSOR_FAULT ){
6360 return pCur->skip;
6361 }
drh64022502009-01-09 14:11:04 +00006362 if( NEVER(pCur->aiIdx[pCur->iPage]>=pPage->nCell) ){
drhbd03cae2001-06-02 02:40:57 +00006363 return SQLITE_ERROR; /* The cursor is not pointing to anything */
6364 }
drh64022502009-01-09 14:11:04 +00006365 assert( pCur->wrFlag );
danielk1977404ca072009-03-16 13:19:36 +00006366 rc = checkForReadConflicts(p, pCur->pgnoRoot, pCur, pCur->info.nKey);
6367 if( rc!=SQLITE_OK ){
6368 /* The table pCur points to has a read lock */
6369 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
6370 return rc;
drhf74b8d92002-09-01 23:20:45 +00006371 }
danielk1977da184232006-01-05 11:34:32 +00006372
6373 /* Restore the current cursor position (a no-op if the cursor is not in
6374 ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
danielk19773b8a05f2007-03-19 17:44:26 +00006375 ** open on the same table. Then call sqlite3PagerWrite() on the page
danielk1977da184232006-01-05 11:34:32 +00006376 ** that the entry will be deleted from.
6377 */
6378 if(
drha3460582008-07-11 21:02:53 +00006379 (rc = restoreCursorPosition(pCur))!=0 ||
drhd1167392006-01-23 13:00:35 +00006380 (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
danielk19773b8a05f2007-03-19 17:44:26 +00006381 (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
danielk1977da184232006-01-05 11:34:32 +00006382 ){
6383 return rc;
6384 }
danielk1977e6efa742004-11-10 11:55:10 +00006385
drh85b623f2007-12-13 21:54:09 +00006386 /* Locate the cell within its page and leave pCell pointing to the
danielk1977e6efa742004-11-10 11:55:10 +00006387 ** data. The clearCell() call frees any overflow pages associated with the
6388 ** cell. The cell itself is still intact.
6389 */
danielk197771d5d2c2008-09-29 11:49:47 +00006390 idx = pCur->aiIdx[pCur->iPage];
6391 pCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006392 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006393 pgnoChild = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00006394 }
danielk197728129562005-01-11 10:25:06 +00006395 rc = clearCell(pPage, pCell);
drhd677b3d2007-08-20 22:48:41 +00006396 if( rc ){
drhd677b3d2007-08-20 22:48:41 +00006397 return rc;
6398 }
danielk1977e6efa742004-11-10 11:55:10 +00006399
drh4b70f112004-05-02 21:12:19 +00006400 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00006401 /*
drh5e00f6c2001-09-13 13:46:56 +00006402 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00006403 ** do something we will leave a hole on an internal page.
6404 ** We have to fill the hole by moving in a cell from a leaf. The
6405 ** next Cell after the one to be deleted is guaranteed to exist and
danielk1977299b1872004-11-22 10:02:10 +00006406 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00006407 */
drh14acc042001-06-10 19:56:58 +00006408 BtCursor leafCur;
drh1bd10f82008-12-10 21:19:56 +00006409 MemPage *pLeafPage = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006410
drh4b70f112004-05-02 21:12:19 +00006411 unsigned char *pNext;
danielk1977299b1872004-11-22 10:02:10 +00006412 int notUsed;
danielk19776b456a22005-03-21 04:04:02 +00006413 unsigned char *tempCell = 0;
drh44845222008-07-17 18:39:57 +00006414 assert( !pPage->intKey );
drh16a9b832007-05-05 18:39:25 +00006415 sqlite3BtreeGetTempCursor(pCur, &leafCur);
danielk1977299b1872004-11-22 10:02:10 +00006416 rc = sqlite3BtreeNext(&leafCur, &notUsed);
danielk19776b456a22005-03-21 04:04:02 +00006417 if( rc==SQLITE_OK ){
danielk19772f78fc62008-09-30 09:31:45 +00006418 assert( leafCur.aiIdx[leafCur.iPage]==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006419 pLeafPage = leafCur.apPage[leafCur.iPage];
danielk197771d5d2c2008-09-29 11:49:47 +00006420 rc = sqlite3PagerWrite(pLeafPage->pDbPage);
danielk19776b456a22005-03-21 04:04:02 +00006421 }
6422 if( rc==SQLITE_OK ){
danielk19772f78fc62008-09-30 09:31:45 +00006423 int leafCursorInvalid = 0;
drha9121e42008-02-19 14:59:35 +00006424 u16 szNext;
danielk19776b456a22005-03-21 04:04:02 +00006425 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
danielk197771d5d2c2008-09-29 11:49:47 +00006426 pCur->pgnoRoot, pPage->pgno, pLeafPage->pgno));
6427 dropCell(pPage, idx, cellSizePtr(pPage, pCell));
danielk19772f78fc62008-09-30 09:31:45 +00006428 pNext = findCell(pLeafPage, 0);
danielk197771d5d2c2008-09-29 11:49:47 +00006429 szNext = cellSizePtr(pLeafPage, pNext);
danielk19776b456a22005-03-21 04:04:02 +00006430 assert( MX_CELL_SIZE(pBt)>=szNext+4 );
danielk197752ae7242008-03-25 14:24:56 +00006431 allocateTempSpace(pBt);
6432 tempCell = pBt->pTmpSpace;
danielk19776b456a22005-03-21 04:04:02 +00006433 if( tempCell==0 ){
6434 rc = SQLITE_NOMEM;
6435 }
danielk19778ea1cfa2008-01-01 06:19:02 +00006436 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00006437 rc = insertCell(pPage, idx, pNext-4, szNext+4, tempCell, 0);
danielk19778ea1cfa2008-01-01 06:19:02 +00006438 }
danielk19772f78fc62008-09-30 09:31:45 +00006439
drhf94a1732008-09-30 17:18:17 +00006440
6441 /* The "if" statement in the next code block is critical. The
6442 ** slightest error in that statement would allow SQLite to operate
6443 ** correctly most of the time but produce very rare failures. To
6444 ** guard against this, the following macros help to verify that
6445 ** the "if" statement is well tested.
6446 */
6447 testcase( pPage->nOverflow==0 && pPage->nFree<pBt->usableSize*2/3
6448 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6449 testcase( pPage->nOverflow==0 && pPage->nFree==pBt->usableSize*2/3
6450 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6451 testcase( pPage->nOverflow==0 && pPage->nFree==pBt->usableSize*2/3+1
6452 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6453 testcase( pPage->nOverflow>0 && pPage->nFree<=pBt->usableSize*2/3
6454 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6455 testcase( (pPage->nOverflow>0 || (pPage->nFree > pBt->usableSize*2/3))
6456 && pLeafPage->nFree+2+szNext == pBt->usableSize*2/3 );
6457
6458
danielk19772f78fc62008-09-30 09:31:45 +00006459 if( (pPage->nOverflow>0 || (pPage->nFree > pBt->usableSize*2/3)) &&
6460 (pLeafPage->nFree+2+szNext > pBt->usableSize*2/3)
6461 ){
drhf94a1732008-09-30 17:18:17 +00006462 /* This branch is taken if the internal node is now either overflowing
6463 ** or underfull and the leaf node will be underfull after the just cell
danielk19772f78fc62008-09-30 09:31:45 +00006464 ** copied to the internal node is deleted from it. This is a special
6465 ** case because the call to balance() to correct the internal node
6466 ** may change the tree structure and invalidate the contents of
6467 ** the leafCur.apPage[] and leafCur.aiIdx[] arrays, which will be
6468 ** used by the balance() required to correct the underfull leaf
6469 ** node.
6470 **
6471 ** The formula used in the expression above are based on facets of
6472 ** the SQLite file-format that do not change over time.
6473 */
drhf94a1732008-09-30 17:18:17 +00006474 testcase( pPage->nFree==pBt->usableSize*2/3+1 );
6475 testcase( pLeafPage->nFree+2+szNext==pBt->usableSize*2/3+1 );
danielk19772f78fc62008-09-30 09:31:45 +00006476 leafCursorInvalid = 1;
6477 }
6478
danielk19778ea1cfa2008-01-01 06:19:02 +00006479 if( rc==SQLITE_OK ){
drhc5053fb2008-11-27 02:22:10 +00006480 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00006481 put4byte(findOverflowCell(pPage, idx), pgnoChild);
drhf94a1732008-09-30 17:18:17 +00006482 VVA_ONLY( pCur->pagesShuffled = 0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006483 rc = balance(pCur, 0);
danielk19778ea1cfa2008-01-01 06:19:02 +00006484 }
danielk19772f78fc62008-09-30 09:31:45 +00006485
6486 if( rc==SQLITE_OK && leafCursorInvalid ){
6487 /* The leaf-node is now underfull and so the tree needs to be
6488 ** rebalanced. However, the balance() operation on the internal
6489 ** node above may have modified the structure of the B-Tree and
6490 ** so the current contents of leafCur.apPage[] and leafCur.aiIdx[]
6491 ** may not be trusted.
6492 **
6493 ** It is not possible to copy the ancestry from pCur, as the same
6494 ** balance() call has invalidated the pCur->apPage[] and aiIdx[]
6495 ** arrays.
drh7b682802008-09-30 14:06:28 +00006496 **
6497 ** The call to saveCursorPosition() below internally saves the
6498 ** key that leafCur is currently pointing to. Currently, there
6499 ** are two copies of that key in the tree - one here on the leaf
6500 ** page and one on some internal node in the tree. The copy on
6501 ** the leaf node is always the next key in tree-order after the
6502 ** copy on the internal node. So, the call to sqlite3BtreeNext()
6503 ** calls restoreCursorPosition() to point the cursor to the copy
6504 ** stored on the internal node, then advances to the next entry,
6505 ** which happens to be the copy of the key on the internal node.
danielk1977a69fda22008-09-30 16:48:10 +00006506 ** Net effect: leafCur is pointing back to the duplicate cell
6507 ** that needs to be removed, and the leafCur.apPage[] and
6508 ** leafCur.aiIdx[] arrays are correct.
danielk19772f78fc62008-09-30 09:31:45 +00006509 */
drhf94a1732008-09-30 17:18:17 +00006510 VVA_ONLY( Pgno leafPgno = pLeafPage->pgno );
danielk19772f78fc62008-09-30 09:31:45 +00006511 rc = saveCursorPosition(&leafCur);
6512 if( rc==SQLITE_OK ){
6513 rc = sqlite3BtreeNext(&leafCur, &notUsed);
6514 }
6515 pLeafPage = leafCur.apPage[leafCur.iPage];
danielk19775d189852009-04-07 14:38:58 +00006516 assert( rc!=SQLITE_OK || pLeafPage->pgno==leafPgno );
6517 assert( rc!=SQLITE_OK || leafCur.aiIdx[leafCur.iPage]==0 );
danielk19772f78fc62008-09-30 09:31:45 +00006518 }
6519
danielk19770cd1bbd2008-11-26 07:25:52 +00006520 if( SQLITE_OK==rc
6521 && SQLITE_OK==(rc = sqlite3PagerWrite(pLeafPage->pDbPage))
6522 ){
danielk19772f78fc62008-09-30 09:31:45 +00006523 dropCell(pLeafPage, 0, szNext);
drhf94a1732008-09-30 17:18:17 +00006524 VVA_ONLY( leafCur.pagesShuffled = 0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006525 rc = balance(&leafCur, 0);
drhf94a1732008-09-30 17:18:17 +00006526 assert( leafCursorInvalid || !leafCur.pagesShuffled
6527 || !pCur->pagesShuffled );
danielk19778ea1cfa2008-01-01 06:19:02 +00006528 }
danielk19776b456a22005-03-21 04:04:02 +00006529 }
drh16a9b832007-05-05 18:39:25 +00006530 sqlite3BtreeReleaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00006531 }else{
danielk1977299b1872004-11-22 10:02:10 +00006532 TRACE(("DELETE: table=%d delete from leaf %d\n",
6533 pCur->pgnoRoot, pPage->pgno));
shanedcc50b72008-11-13 18:29:50 +00006534 rc = dropCell(pPage, idx, cellSizePtr(pPage, pCell));
6535 if( rc==SQLITE_OK ){
6536 rc = balance(pCur, 0);
6537 }
drh5e2f8b92001-05-28 00:41:15 +00006538 }
danielk19776b456a22005-03-21 04:04:02 +00006539 if( rc==SQLITE_OK ){
6540 moveToRoot(pCur);
6541 }
drh5e2f8b92001-05-28 00:41:15 +00006542 return rc;
drh3b7511c2001-05-26 13:15:44 +00006543}
drh8b2f49b2001-06-08 00:21:52 +00006544
6545/*
drhc6b52df2002-01-04 03:09:29 +00006546** Create a new BTree table. Write into *piTable the page
6547** number for the root page of the new table.
6548**
drhab01f612004-05-22 02:55:23 +00006549** The type of type is determined by the flags parameter. Only the
6550** following values of flags are currently in use. Other values for
6551** flags might not work:
6552**
6553** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6554** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006555*/
drhd677b3d2007-08-20 22:48:41 +00006556static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006557 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006558 MemPage *pRoot;
6559 Pgno pgnoRoot;
6560 int rc;
drhd677b3d2007-08-20 22:48:41 +00006561
drh1fee73e2007-08-29 04:00:57 +00006562 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006563 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006564 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006565
danielk1977003ba062004-11-04 02:57:33 +00006566#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006567 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006568 if( rc ){
6569 return rc;
6570 }
danielk1977003ba062004-11-04 02:57:33 +00006571#else
danielk1977687566d2004-11-02 12:56:41 +00006572 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006573 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6574 MemPage *pPageMove; /* The page to move to. */
6575
danielk197720713f32007-05-03 11:43:33 +00006576 /* Creating a new table may probably require moving an existing database
6577 ** to make room for the new tables root page. In case this page turns
6578 ** out to be an overflow page, delete all overflow page-map caches
6579 ** held by open cursors.
6580 */
danielk197792d4d7a2007-05-04 12:05:56 +00006581 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006582
danielk1977003ba062004-11-04 02:57:33 +00006583 /* Read the value of meta[3] from the database to determine where the
6584 ** root page of the new table should go. meta[3] is the largest root-page
6585 ** created so far, so the new root-page is (meta[3]+1).
6586 */
danielk19770d19f7a2009-06-03 11:25:07 +00006587 rc = sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
drhd677b3d2007-08-20 22:48:41 +00006588 if( rc!=SQLITE_OK ){
6589 return rc;
6590 }
danielk1977003ba062004-11-04 02:57:33 +00006591 pgnoRoot++;
6592
danielk1977599fcba2004-11-08 07:13:13 +00006593 /* The new root-page may not be allocated on a pointer-map page, or the
6594 ** PENDING_BYTE page.
6595 */
drh72190432008-01-31 14:54:43 +00006596 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006597 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006598 pgnoRoot++;
6599 }
6600 assert( pgnoRoot>=3 );
6601
6602 /* Allocate a page. The page that currently resides at pgnoRoot will
6603 ** be moved to the allocated page (unless the allocated page happens
6604 ** to reside at pgnoRoot).
6605 */
drh4f0c5872007-03-26 22:05:01 +00006606 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006607 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006608 return rc;
6609 }
danielk1977003ba062004-11-04 02:57:33 +00006610
6611 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006612 /* pgnoRoot is the page that will be used for the root-page of
6613 ** the new table (assuming an error did not occur). But we were
6614 ** allocated pgnoMove. If required (i.e. if it was not allocated
6615 ** by extending the file), the current page at position pgnoMove
6616 ** is already journaled.
6617 */
danielk1977003ba062004-11-04 02:57:33 +00006618 u8 eType;
6619 Pgno iPtrPage;
6620
6621 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006622
6623 /* Move the page currently at pgnoRoot to pgnoMove. */
drh16a9b832007-05-05 18:39:25 +00006624 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006625 if( rc!=SQLITE_OK ){
6626 return rc;
6627 }
6628 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drhccae6022005-02-26 17:31:26 +00006629 if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00006630 releasePage(pRoot);
6631 return rc;
6632 }
drhccae6022005-02-26 17:31:26 +00006633 assert( eType!=PTRMAP_ROOTPAGE );
6634 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006635 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006636 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006637
6638 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006639 if( rc!=SQLITE_OK ){
6640 return rc;
6641 }
drh16a9b832007-05-05 18:39:25 +00006642 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006643 if( rc!=SQLITE_OK ){
6644 return rc;
6645 }
danielk19773b8a05f2007-03-19 17:44:26 +00006646 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006647 if( rc!=SQLITE_OK ){
6648 releasePage(pRoot);
6649 return rc;
6650 }
6651 }else{
6652 pRoot = pPageMove;
6653 }
6654
danielk197742741be2005-01-08 12:42:39 +00006655 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00006656 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
6657 if( rc ){
6658 releasePage(pRoot);
6659 return rc;
6660 }
danielk1977aef0bf62005-12-30 16:28:01 +00006661 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006662 if( rc ){
6663 releasePage(pRoot);
6664 return rc;
6665 }
danielk197742741be2005-01-08 12:42:39 +00006666
danielk1977003ba062004-11-04 02:57:33 +00006667 }else{
drh4f0c5872007-03-26 22:05:01 +00006668 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006669 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006670 }
6671#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006672 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006673 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006674 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006675 *piTable = (int)pgnoRoot;
6676 return SQLITE_OK;
6677}
drhd677b3d2007-08-20 22:48:41 +00006678int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6679 int rc;
6680 sqlite3BtreeEnter(p);
6681 rc = btreeCreateTable(p, piTable, flags);
6682 sqlite3BtreeLeave(p);
6683 return rc;
6684}
drh8b2f49b2001-06-08 00:21:52 +00006685
6686/*
6687** Erase the given database page and all its children. Return
6688** the page to the freelist.
6689*/
drh4b70f112004-05-02 21:12:19 +00006690static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006691 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00006692 Pgno pgno, /* Page number to clear */
danielk1977c7af4842008-10-27 13:59:33 +00006693 int freePageFlag, /* Deallocate page if true */
6694 int *pnChange
drh4b70f112004-05-02 21:12:19 +00006695){
danielk19776b456a22005-03-21 04:04:02 +00006696 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006697 int rc;
drh4b70f112004-05-02 21:12:19 +00006698 unsigned char *pCell;
6699 int i;
drh8b2f49b2001-06-08 00:21:52 +00006700
drh1fee73e2007-08-29 04:00:57 +00006701 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006702 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006703 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006704 }
6705
danielk197771d5d2c2008-09-29 11:49:47 +00006706 rc = getAndInitPage(pBt, pgno, &pPage);
danielk19776b456a22005-03-21 04:04:02 +00006707 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00006708 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006709 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006710 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006711 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006712 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006713 }
drh4b70f112004-05-02 21:12:19 +00006714 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006715 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006716 }
drha34b6762004-05-07 13:30:42 +00006717 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006718 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006719 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006720 }else if( pnChange ){
6721 assert( pPage->intKey );
6722 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006723 }
6724 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00006725 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00006726 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006727 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006728 }
danielk19776b456a22005-03-21 04:04:02 +00006729
6730cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006731 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006732 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006733}
6734
6735/*
drhab01f612004-05-22 02:55:23 +00006736** Delete all information from a single table in the database. iTable is
6737** the page number of the root of the table. After this routine returns,
6738** the root page is empty, but still exists.
6739**
6740** This routine will fail with SQLITE_LOCKED if there are any open
6741** read cursors on the table. Open write cursors are moved to the
6742** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006743**
6744** If pnChange is not NULL, then table iTable must be an intkey table. The
6745** integer value pointed to by pnChange is incremented by the number of
6746** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006747*/
danielk1977c7af4842008-10-27 13:59:33 +00006748int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006749 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006750 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006751 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006752 assert( p->inTrans==TRANS_WRITE );
drh11b57d62009-02-24 19:21:41 +00006753 if( (rc = checkForReadConflicts(p, iTable, 0, 1))!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00006754 /* nothing to do */
6755 }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
6756 /* nothing to do */
6757 }else{
danielk197762c14b32008-11-19 09:05:26 +00006758 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006759 }
drhd677b3d2007-08-20 22:48:41 +00006760 sqlite3BtreeLeave(p);
6761 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006762}
6763
6764/*
6765** Erase all information in a table and add the root of the table to
6766** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006767** page 1) is never added to the freelist.
6768**
6769** This routine will fail with SQLITE_LOCKED if there are any open
6770** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006771**
6772** If AUTOVACUUM is enabled and the page at iTable is not the last
6773** root page in the database file, then the last root page
6774** in the database file is moved into the slot formerly occupied by
6775** iTable and that last slot formerly occupied by the last root page
6776** is added to the freelist instead of iTable. In this say, all
6777** root pages are kept at the beginning of the database file, which
6778** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6779** page number that used to be the last root page in the file before
6780** the move. If no page gets moved, *piMoved is set to 0.
6781** The last root page is recorded in meta[3] and the value of
6782** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006783*/
danielk197789d40042008-11-17 14:20:56 +00006784static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006785 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006786 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006787 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006788
drh1fee73e2007-08-29 04:00:57 +00006789 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006790 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006791
danielk1977e6efa742004-11-10 11:55:10 +00006792 /* It is illegal to drop a table if any cursors are open on the
6793 ** database. This is because in auto-vacuum mode the backend may
6794 ** need to move another root-page to fill a gap left by the deleted
6795 ** root page. If an open cursor was using this page a problem would
6796 ** occur.
6797 */
6798 if( pBt->pCursor ){
danielk1977404ca072009-03-16 13:19:36 +00006799 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
6800 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00006801 }
danielk1977a0bf2652004-11-04 14:30:04 +00006802
drh16a9b832007-05-05 18:39:25 +00006803 rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006804 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00006805 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00006806 if( rc ){
6807 releasePage(pPage);
6808 return rc;
6809 }
danielk1977a0bf2652004-11-04 14:30:04 +00006810
drh205f48e2004-11-05 00:43:11 +00006811 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006812
drh4b70f112004-05-02 21:12:19 +00006813 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006814#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00006815 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00006816 releasePage(pPage);
6817#else
6818 if( pBt->autoVacuum ){
6819 Pgno maxRootPgno;
danielk19770d19f7a2009-06-03 11:25:07 +00006820 rc = sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006821 if( rc!=SQLITE_OK ){
6822 releasePage(pPage);
6823 return rc;
6824 }
6825
6826 if( iTable==maxRootPgno ){
6827 /* If the table being dropped is the table with the largest root-page
6828 ** number in the database, put the root page on the free list.
6829 */
6830 rc = freePage(pPage);
6831 releasePage(pPage);
6832 if( rc!=SQLITE_OK ){
6833 return rc;
6834 }
6835 }else{
6836 /* The table being dropped does not have the largest root-page
6837 ** number in the database. So move the page that does into the
6838 ** gap left by the deleted root-page.
6839 */
6840 MemPage *pMove;
6841 releasePage(pPage);
drh16a9b832007-05-05 18:39:25 +00006842 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006843 if( rc!=SQLITE_OK ){
6844 return rc;
6845 }
danielk19774c999992008-07-16 18:17:55 +00006846 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006847 releasePage(pMove);
6848 if( rc!=SQLITE_OK ){
6849 return rc;
6850 }
drh16a9b832007-05-05 18:39:25 +00006851 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006852 if( rc!=SQLITE_OK ){
6853 return rc;
6854 }
6855 rc = freePage(pMove);
6856 releasePage(pMove);
6857 if( rc!=SQLITE_OK ){
6858 return rc;
6859 }
6860 *piMoved = maxRootPgno;
6861 }
6862
danielk1977599fcba2004-11-08 07:13:13 +00006863 /* Set the new 'max-root-page' value in the database header. This
6864 ** is the old value less one, less one more if that happens to
6865 ** be a root-page number, less one again if that is the
6866 ** PENDING_BYTE_PAGE.
6867 */
danielk197787a6e732004-11-05 12:58:25 +00006868 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00006869 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
6870 maxRootPgno--;
6871 }
danielk1977266664d2006-02-10 08:24:21 +00006872 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00006873 maxRootPgno--;
6874 }
danielk1977599fcba2004-11-08 07:13:13 +00006875 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
6876
danielk1977aef0bf62005-12-30 16:28:01 +00006877 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006878 }else{
6879 rc = freePage(pPage);
6880 releasePage(pPage);
6881 }
6882#endif
drh2aa679f2001-06-25 02:11:07 +00006883 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00006884 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00006885 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00006886 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00006887 }
drh8b2f49b2001-06-08 00:21:52 +00006888 return rc;
6889}
drhd677b3d2007-08-20 22:48:41 +00006890int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
6891 int rc;
6892 sqlite3BtreeEnter(p);
6893 rc = btreeDropTable(p, iTable, piMoved);
6894 sqlite3BtreeLeave(p);
6895 return rc;
6896}
drh8b2f49b2001-06-08 00:21:52 +00006897
drh001bbcb2003-03-19 03:14:00 +00006898
drh8b2f49b2001-06-08 00:21:52 +00006899/*
drh23e11ca2004-05-04 17:27:28 +00006900** Read the meta-information out of a database file. Meta[0]
6901** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00006902** through meta[15] are available for use by higher layers. Meta[0]
6903** is read-only, the others are read/write.
6904**
6905** The schema layer numbers meta values differently. At the schema
6906** layer (and the SetCookie and ReadCookie opcodes) the number of
6907** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00006908*/
danielk1977aef0bf62005-12-30 16:28:01 +00006909int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
drh1bd10f82008-12-10 21:19:56 +00006910 DbPage *pDbPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006911 int rc;
drh4b70f112004-05-02 21:12:19 +00006912 unsigned char *pP1;
danielk1977aef0bf62005-12-30 16:28:01 +00006913 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006914
drhd677b3d2007-08-20 22:48:41 +00006915 sqlite3BtreeEnter(p);
6916
danielk1977da184232006-01-05 11:34:32 +00006917 /* Reading a meta-data value requires a read-lock on page 1 (and hence
6918 ** the sqlite_master table. We grab this lock regardless of whether or
6919 ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
drhc25eabe2009-02-24 18:57:31 +00006920 ** 1 is treated as a special case by querySharedCacheTableLock()
6921 ** and setSharedCacheTableLock()).
danielk1977da184232006-01-05 11:34:32 +00006922 */
drhc25eabe2009-02-24 18:57:31 +00006923 rc = querySharedCacheTableLock(p, 1, READ_LOCK);
danielk1977da184232006-01-05 11:34:32 +00006924 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00006925 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006926 return rc;
6927 }
6928
drh23e11ca2004-05-04 17:27:28 +00006929 assert( idx>=0 && idx<=15 );
danielk1977d9f6c532008-09-19 16:39:38 +00006930 if( pBt->pPage1 ){
6931 /* The b-tree is already holding a reference to page 1 of the database
6932 ** file. In this case the required meta-data value can be read directly
6933 ** from the page data of this reference. This is slightly faster than
6934 ** requesting a new reference from the pager layer.
6935 */
6936 pP1 = (unsigned char *)pBt->pPage1->aData;
6937 }else{
6938 /* The b-tree does not have a reference to page 1 of the database file.
6939 ** Obtain one from the pager layer.
6940 */
danielk1977ea897302008-09-19 15:10:58 +00006941 rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
6942 if( rc ){
6943 sqlite3BtreeLeave(p);
6944 return rc;
6945 }
6946 pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
drhd677b3d2007-08-20 22:48:41 +00006947 }
drh23e11ca2004-05-04 17:27:28 +00006948 *pMeta = get4byte(&pP1[36 + idx*4]);
danielk1977ea897302008-09-19 15:10:58 +00006949
danielk1977d9f6c532008-09-19 16:39:38 +00006950 /* If the b-tree is not holding a reference to page 1, then one was
6951 ** requested from the pager layer in the above block. Release it now.
6952 */
danielk1977ea897302008-09-19 15:10:58 +00006953 if( !pBt->pPage1 ){
6954 sqlite3PagerUnref(pDbPage);
6955 }
drhae157872004-08-14 19:20:09 +00006956
danielk1977599fcba2004-11-08 07:13:13 +00006957 /* If autovacuumed is disabled in this build but we are trying to
6958 ** access an autovacuumed database, then make the database readonly.
6959 */
danielk1977003ba062004-11-04 02:57:33 +00006960#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00006961 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00006962#endif
drhae157872004-08-14 19:20:09 +00006963
danielk1977fa542f12009-04-02 18:28:08 +00006964 /* If there is currently an open transaction, grab a read-lock
6965 ** on page 1 of the database file. This is done to make sure that
6966 ** no other connection can modify the meta value just read from
6967 ** the database until the transaction is concluded.
6968 */
6969 if( p->inTrans>0 ){
6970 rc = setSharedCacheTableLock(p, 1, READ_LOCK);
6971 }
drhd677b3d2007-08-20 22:48:41 +00006972 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006973 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006974}
6975
6976/*
drh23e11ca2004-05-04 17:27:28 +00006977** Write meta-information back into the database. Meta[0] is
6978** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00006979*/
danielk1977aef0bf62005-12-30 16:28:01 +00006980int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
6981 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00006982 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00006983 int rc;
drh23e11ca2004-05-04 17:27:28 +00006984 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00006985 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006986 assert( p->inTrans==TRANS_WRITE );
6987 assert( pBt->pPage1!=0 );
6988 pP1 = pBt->pPage1->aData;
6989 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6990 if( rc==SQLITE_OK ){
6991 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00006992#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00006993 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00006994 assert( pBt->autoVacuum || iMeta==0 );
6995 assert( iMeta==0 || iMeta==1 );
6996 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00006997 }
drh64022502009-01-09 14:11:04 +00006998#endif
drh5df72a52002-06-06 23:16:05 +00006999 }
drhd677b3d2007-08-20 22:48:41 +00007000 sqlite3BtreeLeave(p);
7001 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007002}
drh8c42ca92001-06-22 19:15:00 +00007003
drhf328bc82004-05-10 23:29:49 +00007004/*
7005** Return the flag byte at the beginning of the page that the cursor
7006** is currently pointing to.
7007*/
7008int sqlite3BtreeFlags(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00007009 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
drha3460582008-07-11 21:02:53 +00007010 ** restoreCursorPosition() here.
danielk1977da184232006-01-05 11:34:32 +00007011 */
danielk1977e448dc42008-01-02 11:50:51 +00007012 MemPage *pPage;
drha3460582008-07-11 21:02:53 +00007013 restoreCursorPosition(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00007014 pPage = pCur->apPage[pCur->iPage];
drh1fee73e2007-08-29 04:00:57 +00007015 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007016 assert( pPage!=0 );
drhd0679ed2007-08-28 22:24:34 +00007017 assert( pPage->pBt==pCur->pBt );
drh64022502009-01-09 14:11:04 +00007018 return pPage->aData[pPage->hdrOffset];
drhf328bc82004-05-10 23:29:49 +00007019}
7020
danielk1977a5533162009-02-24 10:01:51 +00007021#ifndef SQLITE_OMIT_BTREECOUNT
7022/*
7023** The first argument, pCur, is a cursor opened on some b-tree. Count the
7024** number of entries in the b-tree and write the result to *pnEntry.
7025**
7026** SQLITE_OK is returned if the operation is successfully executed.
7027** Otherwise, if an error is encountered (i.e. an IO error or database
7028** corruption) an SQLite error code is returned.
7029*/
7030int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7031 i64 nEntry = 0; /* Value to return in *pnEntry */
7032 int rc; /* Return code */
7033 rc = moveToRoot(pCur);
7034
7035 /* Unless an error occurs, the following loop runs one iteration for each
7036 ** page in the B-Tree structure (not including overflow pages).
7037 */
7038 while( rc==SQLITE_OK ){
7039 int iIdx; /* Index of child node in parent */
7040 MemPage *pPage; /* Current page of the b-tree */
7041
7042 /* If this is a leaf page or the tree is not an int-key tree, then
7043 ** this page contains countable entries. Increment the entry counter
7044 ** accordingly.
7045 */
7046 pPage = pCur->apPage[pCur->iPage];
7047 if( pPage->leaf || !pPage->intKey ){
7048 nEntry += pPage->nCell;
7049 }
7050
7051 /* pPage is a leaf node. This loop navigates the cursor so that it
7052 ** points to the first interior cell that it points to the parent of
7053 ** the next page in the tree that has not yet been visited. The
7054 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7055 ** of the page, or to the number of cells in the page if the next page
7056 ** to visit is the right-child of its parent.
7057 **
7058 ** If all pages in the tree have been visited, return SQLITE_OK to the
7059 ** caller.
7060 */
7061 if( pPage->leaf ){
7062 do {
7063 if( pCur->iPage==0 ){
7064 /* All pages of the b-tree have been visited. Return successfully. */
7065 *pnEntry = nEntry;
7066 return SQLITE_OK;
7067 }
7068 sqlite3BtreeMoveToParent(pCur);
7069 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7070
7071 pCur->aiIdx[pCur->iPage]++;
7072 pPage = pCur->apPage[pCur->iPage];
7073 }
7074
7075 /* Descend to the child node of the cell that the cursor currently
7076 ** points at. This is the right-child if (iIdx==pPage->nCell).
7077 */
7078 iIdx = pCur->aiIdx[pCur->iPage];
7079 if( iIdx==pPage->nCell ){
7080 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7081 }else{
7082 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7083 }
7084 }
7085
shanebe217792009-03-05 04:20:31 +00007086 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007087 return rc;
7088}
7089#endif
drhdd793422001-06-28 01:54:48 +00007090
drhdd793422001-06-28 01:54:48 +00007091/*
drh5eddca62001-06-30 21:53:53 +00007092** Return the pager associated with a BTree. This routine is used for
7093** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007094*/
danielk1977aef0bf62005-12-30 16:28:01 +00007095Pager *sqlite3BtreePager(Btree *p){
7096 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007097}
drh5eddca62001-06-30 21:53:53 +00007098
drhb7f91642004-10-31 02:22:47 +00007099#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007100/*
7101** Append a message to the error message string.
7102*/
drh2e38c322004-09-03 18:38:44 +00007103static void checkAppendMsg(
7104 IntegrityCk *pCheck,
7105 char *zMsg1,
7106 const char *zFormat,
7107 ...
7108){
7109 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007110 if( !pCheck->mxErr ) return;
7111 pCheck->mxErr--;
7112 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007113 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007114 if( pCheck->errMsg.nChar ){
7115 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007116 }
drhf089aa42008-07-08 19:34:06 +00007117 if( zMsg1 ){
7118 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7119 }
7120 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7121 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007122 if( pCheck->errMsg.mallocFailed ){
7123 pCheck->mallocFailed = 1;
7124 }
drh5eddca62001-06-30 21:53:53 +00007125}
drhb7f91642004-10-31 02:22:47 +00007126#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007127
drhb7f91642004-10-31 02:22:47 +00007128#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007129/*
7130** Add 1 to the reference count for page iPage. If this is the second
7131** reference to the page, add an error message to pCheck->zErrMsg.
7132** Return 1 if there are 2 ore more references to the page and 0 if
7133** if this is the first reference to the page.
7134**
7135** Also check that the page number is in bounds.
7136*/
danielk197789d40042008-11-17 14:20:56 +00007137static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007138 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007139 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007140 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007141 return 1;
7142 }
7143 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007144 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007145 return 1;
7146 }
7147 return (pCheck->anRef[iPage]++)>1;
7148}
7149
danielk1977afcdd022004-10-31 16:25:42 +00007150#ifndef SQLITE_OMIT_AUTOVACUUM
7151/*
7152** Check that the entry in the pointer-map for page iChild maps to
7153** page iParent, pointer type ptrType. If not, append an error message
7154** to pCheck.
7155*/
7156static void checkPtrmap(
7157 IntegrityCk *pCheck, /* Integrity check context */
7158 Pgno iChild, /* Child page number */
7159 u8 eType, /* Expected pointer map type */
7160 Pgno iParent, /* Expected pointer map parent page number */
7161 char *zContext /* Context description (used for error msg) */
7162){
7163 int rc;
7164 u8 ePtrmapType;
7165 Pgno iPtrmapParent;
7166
7167 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7168 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007169 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007170 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7171 return;
7172 }
7173
7174 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7175 checkAppendMsg(pCheck, zContext,
7176 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7177 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7178 }
7179}
7180#endif
7181
drh5eddca62001-06-30 21:53:53 +00007182/*
7183** Check the integrity of the freelist or of an overflow page list.
7184** Verify that the number of pages on the list is N.
7185*/
drh30e58752002-03-02 20:41:57 +00007186static void checkList(
7187 IntegrityCk *pCheck, /* Integrity checking context */
7188 int isFreeList, /* True for a freelist. False for overflow page list */
7189 int iPage, /* Page number for first page in the list */
7190 int N, /* Expected number of pages in the list */
7191 char *zContext /* Context for error messages */
7192){
7193 int i;
drh3a4c1412004-05-09 20:40:11 +00007194 int expected = N;
7195 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007196 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007197 DbPage *pOvflPage;
7198 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007199 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007200 checkAppendMsg(pCheck, zContext,
7201 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007202 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007203 break;
7204 }
7205 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007206 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007207 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007208 break;
7209 }
danielk19773b8a05f2007-03-19 17:44:26 +00007210 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007211 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007212 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007213#ifndef SQLITE_OMIT_AUTOVACUUM
7214 if( pCheck->pBt->autoVacuum ){
7215 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7216 }
7217#endif
drh45b1fac2008-07-04 17:52:42 +00007218 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007219 checkAppendMsg(pCheck, zContext,
7220 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007221 N--;
7222 }else{
7223 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007224 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007225#ifndef SQLITE_OMIT_AUTOVACUUM
7226 if( pCheck->pBt->autoVacuum ){
7227 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7228 }
7229#endif
7230 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007231 }
7232 N -= n;
drh30e58752002-03-02 20:41:57 +00007233 }
drh30e58752002-03-02 20:41:57 +00007234 }
danielk1977afcdd022004-10-31 16:25:42 +00007235#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007236 else{
7237 /* If this database supports auto-vacuum and iPage is not the last
7238 ** page in this overflow list, check that the pointer-map entry for
7239 ** the following page matches iPage.
7240 */
7241 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007242 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007243 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7244 }
danielk1977afcdd022004-10-31 16:25:42 +00007245 }
7246#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007247 iPage = get4byte(pOvflData);
7248 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007249 }
7250}
drhb7f91642004-10-31 02:22:47 +00007251#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007252
drhb7f91642004-10-31 02:22:47 +00007253#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007254/*
7255** Do various sanity checks on a single page of a tree. Return
7256** the tree depth. Root pages return 0. Parents of root pages
7257** return 1, and so forth.
7258**
7259** These checks are done:
7260**
7261** 1. Make sure that cells and freeblocks do not overlap
7262** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007263** NO 2. Make sure cell keys are in order.
7264** NO 3. Make sure no key is less than or equal to zLowerBound.
7265** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007266** 5. Check the integrity of overflow pages.
7267** 6. Recursively call checkTreePage on all children.
7268** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007269** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007270** the root of the tree.
7271*/
7272static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007273 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007274 int iPage, /* Page number of the page to check */
drh74161702006-02-24 02:53:49 +00007275 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00007276){
7277 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007278 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007279 int hdr, cellStart;
7280 int nCell;
drhda200cc2004-05-09 11:51:38 +00007281 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007282 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007283 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007284 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007285 char *hit = 0;
drh5eddca62001-06-30 21:53:53 +00007286
drh5bb3eb92007-05-04 13:15:55 +00007287 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007288
drh5eddca62001-06-30 21:53:53 +00007289 /* Check that the page exists
7290 */
drhd9cb6ac2005-10-20 07:28:17 +00007291 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007292 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007293 if( iPage==0 ) return 0;
7294 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh16a9b832007-05-05 18:39:25 +00007295 if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drhb56cd552009-05-01 13:16:54 +00007296 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh2e38c322004-09-03 18:38:44 +00007297 checkAppendMsg(pCheck, zContext,
7298 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007299 return 0;
7300 }
danielk197771d5d2c2008-09-29 11:49:47 +00007301 if( (rc = sqlite3BtreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007302 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007303 checkAppendMsg(pCheck, zContext,
7304 "sqlite3BtreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007305 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007306 return 0;
7307 }
7308
7309 /* Check out all the cells.
7310 */
7311 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007312 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007313 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007314 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007315 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007316
7317 /* Check payload overflow pages
7318 */
drh5bb3eb92007-05-04 13:15:55 +00007319 sqlite3_snprintf(sizeof(zContext), zContext,
7320 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007321 pCell = findCell(pPage,i);
drh16a9b832007-05-05 18:39:25 +00007322 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007323 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007324 if( !pPage->intKey ) sz += (int)info.nKey;
drh72365832007-03-06 15:53:44 +00007325 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007326 if( (sz>info.nLocal)
7327 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7328 ){
drhb6f41482004-05-14 01:58:11 +00007329 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007330 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7331#ifndef SQLITE_OMIT_AUTOVACUUM
7332 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007333 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007334 }
7335#endif
7336 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007337 }
7338
7339 /* Check sanity of left child page.
7340 */
drhda200cc2004-05-09 11:51:38 +00007341 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007342 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007343#ifndef SQLITE_OMIT_AUTOVACUUM
7344 if( pBt->autoVacuum ){
7345 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7346 }
7347#endif
danielk197762c14b32008-11-19 09:05:26 +00007348 d2 = checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007349 if( i>0 && d2!=depth ){
7350 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7351 }
7352 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007353 }
drh5eddca62001-06-30 21:53:53 +00007354 }
drhda200cc2004-05-09 11:51:38 +00007355 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007356 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007357 sqlite3_snprintf(sizeof(zContext), zContext,
7358 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007359#ifndef SQLITE_OMIT_AUTOVACUUM
7360 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007361 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00007362 }
7363#endif
danielk197762c14b32008-11-19 09:05:26 +00007364 checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007365 }
drh5eddca62001-06-30 21:53:53 +00007366
7367 /* Check for complete coverage of the page
7368 */
drhda200cc2004-05-09 11:51:38 +00007369 data = pPage->aData;
7370 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007371 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007372 if( hit==0 ){
7373 pCheck->mallocFailed = 1;
7374 }else{
shane5780ebd2008-11-11 17:36:30 +00007375 u16 contentOffset = get2byte(&data[hdr+5]);
7376 if (contentOffset > usableSize) {
7377 checkAppendMsg(pCheck, 0,
7378 "Corruption detected in header on page %d",iPage,0);
shane0af3f892008-11-12 04:55:34 +00007379 goto check_page_abort;
shane5780ebd2008-11-11 17:36:30 +00007380 }
7381 memset(hit+contentOffset, 0, usableSize-contentOffset);
7382 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007383 nCell = get2byte(&data[hdr+3]);
7384 cellStart = hdr + 12 - 4*pPage->leaf;
7385 for(i=0; i<nCell; i++){
7386 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007387 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007388 int j;
danielk1977daca5432008-08-25 11:57:16 +00007389 if( pc<=usableSize ){
7390 size = cellSizePtr(pPage, &data[pc]);
7391 }
danielk19777701e812005-01-10 12:59:51 +00007392 if( (pc+size-1)>=usableSize || pc<0 ){
7393 checkAppendMsg(pCheck, 0,
7394 "Corruption detected in cell %d on page %d",i,iPage,0);
7395 }else{
7396 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7397 }
drh2e38c322004-09-03 18:38:44 +00007398 }
7399 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
7400 cnt++){
7401 int size = get2byte(&data[i+2]);
7402 int j;
danielk19777701e812005-01-10 12:59:51 +00007403 if( (i+size-1)>=usableSize || i<0 ){
7404 checkAppendMsg(pCheck, 0,
7405 "Corruption detected in cell %d on page %d",i,iPage,0);
7406 }else{
7407 for(j=i+size-1; j>=i; j--) hit[j]++;
7408 }
drh2e38c322004-09-03 18:38:44 +00007409 i = get2byte(&data[i]);
7410 }
7411 for(i=cnt=0; i<usableSize; i++){
7412 if( hit[i]==0 ){
7413 cnt++;
7414 }else if( hit[i]>1 ){
7415 checkAppendMsg(pCheck, 0,
7416 "Multiple uses for byte %d of page %d", i, iPage);
7417 break;
7418 }
7419 }
7420 if( cnt!=data[hdr+7] ){
7421 checkAppendMsg(pCheck, 0,
7422 "Fragmented space is %d byte reported as %d on page %d",
7423 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007424 }
7425 }
shane0af3f892008-11-12 04:55:34 +00007426check_page_abort:
7427 if (hit) sqlite3PageFree(hit);
drh6019e162001-07-02 17:51:45 +00007428
drh4b70f112004-05-02 21:12:19 +00007429 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007430 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007431}
drhb7f91642004-10-31 02:22:47 +00007432#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007433
drhb7f91642004-10-31 02:22:47 +00007434#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007435/*
7436** This routine does a complete check of the given BTree file. aRoot[] is
7437** an array of pages numbers were each page number is the root page of
7438** a table. nRoot is the number of entries in aRoot.
7439**
drhc890fec2008-08-01 20:10:08 +00007440** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007441** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007442** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007443** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007444*/
drh1dcdbc02007-01-27 02:24:54 +00007445char *sqlite3BtreeIntegrityCheck(
7446 Btree *p, /* The btree to be checked */
7447 int *aRoot, /* An array of root pages numbers for individual trees */
7448 int nRoot, /* Number of entries in aRoot[] */
7449 int mxErr, /* Stop reporting errors after this many */
7450 int *pnErr /* Write number of errors seen to this variable */
7451){
danielk197789d40042008-11-17 14:20:56 +00007452 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007453 int nRef;
drhaaab5722002-02-19 13:39:21 +00007454 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007455 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007456 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007457
drhd677b3d2007-08-20 22:48:41 +00007458 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00007459 nRef = sqlite3PagerRefcount(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00007460 if( lockBtreeWithRetry(p)!=SQLITE_OK ){
drhc890fec2008-08-01 20:10:08 +00007461 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007462 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007463 return sqlite3DbStrDup(0, "cannot acquire a read lock on the database");
drhefc251d2001-07-01 22:12:01 +00007464 }
drh5eddca62001-06-30 21:53:53 +00007465 sCheck.pBt = pBt;
7466 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007467 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007468 sCheck.mxErr = mxErr;
7469 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007470 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007471 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007472 if( sCheck.nPage==0 ){
7473 unlockBtreeIfUnused(pBt);
drhd677b3d2007-08-20 22:48:41 +00007474 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007475 return 0;
7476 }
drhe5ae5732008-06-15 02:51:47 +00007477 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007478 if( !sCheck.anRef ){
7479 unlockBtreeIfUnused(pBt);
drh1dcdbc02007-01-27 02:24:54 +00007480 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007481 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007482 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007483 }
drhda200cc2004-05-09 11:51:38 +00007484 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007485 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007486 if( i<=sCheck.nPage ){
7487 sCheck.anRef[i] = 1;
7488 }
drhf089aa42008-07-08 19:34:06 +00007489 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007490
7491 /* Check the integrity of the freelist
7492 */
drha34b6762004-05-07 13:30:42 +00007493 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7494 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007495
7496 /* Check all the tables.
7497 */
danielk197789d40042008-11-17 14:20:56 +00007498 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007499 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007500#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007501 if( pBt->autoVacuum && aRoot[i]>1 ){
7502 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7503 }
7504#endif
danielk197762c14b32008-11-19 09:05:26 +00007505 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00007506 }
7507
7508 /* Make sure every page in the file is referenced
7509 */
drh1dcdbc02007-01-27 02:24:54 +00007510 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007511#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007512 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007513 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007514 }
danielk1977afcdd022004-10-31 16:25:42 +00007515#else
7516 /* If the database supports auto-vacuum, make sure no tables contain
7517 ** references to pointer-map pages.
7518 */
7519 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007520 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007521 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7522 }
7523 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007524 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007525 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7526 }
7527#endif
drh5eddca62001-06-30 21:53:53 +00007528 }
7529
drh64022502009-01-09 14:11:04 +00007530 /* Make sure this analysis did not leave any unref() pages.
7531 ** This is an internal consistency check; an integrity check
7532 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007533 */
drh5e00f6c2001-09-13 13:46:56 +00007534 unlockBtreeIfUnused(pBt);
drh64022502009-01-09 14:11:04 +00007535 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007536 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007537 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007538 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007539 );
drh5eddca62001-06-30 21:53:53 +00007540 }
7541
7542 /* Clean up and report errors.
7543 */
drhd677b3d2007-08-20 22:48:41 +00007544 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007545 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007546 if( sCheck.mallocFailed ){
7547 sqlite3StrAccumReset(&sCheck.errMsg);
7548 *pnErr = sCheck.nErr+1;
7549 return 0;
7550 }
drh1dcdbc02007-01-27 02:24:54 +00007551 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007552 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7553 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007554}
drhb7f91642004-10-31 02:22:47 +00007555#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007556
drh73509ee2003-04-06 20:44:45 +00007557/*
7558** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007559**
7560** The pager filename is invariant as long as the pager is
7561** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007562*/
danielk1977aef0bf62005-12-30 16:28:01 +00007563const char *sqlite3BtreeGetFilename(Btree *p){
7564 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007565 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007566}
7567
7568/*
danielk19775865e3d2004-06-14 06:03:57 +00007569** Return the pathname of the journal file for this database. The return
7570** value of this routine is the same regardless of whether the journal file
7571** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007572**
7573** The pager journal filename is invariant as long as the pager is
7574** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007575*/
danielk1977aef0bf62005-12-30 16:28:01 +00007576const char *sqlite3BtreeGetJournalname(Btree *p){
7577 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007578 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007579}
7580
danielk19771d850a72004-05-31 08:26:49 +00007581/*
7582** Return non-zero if a transaction is active.
7583*/
danielk1977aef0bf62005-12-30 16:28:01 +00007584int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007585 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007586 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007587}
7588
7589/*
danielk19772372c2b2006-06-27 16:34:56 +00007590** Return non-zero if a read (or write) transaction is active.
7591*/
7592int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007593 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007594 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007595 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007596}
7597
danielk197704103022009-02-03 16:51:24 +00007598int sqlite3BtreeIsInBackup(Btree *p){
7599 assert( p );
7600 assert( sqlite3_mutex_held(p->db->mutex) );
7601 return p->nBackup!=0;
7602}
7603
danielk19772372c2b2006-06-27 16:34:56 +00007604/*
danielk1977da184232006-01-05 11:34:32 +00007605** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007606** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007607** purposes (for example, to store a high-level schema associated with
7608** the shared-btree). The btree layer manages reference counting issues.
7609**
7610** The first time this is called on a shared-btree, nBytes bytes of memory
7611** are allocated, zeroed, and returned to the caller. For each subsequent
7612** call the nBytes parameter is ignored and a pointer to the same blob
7613** of memory returned.
7614**
danielk1977171bfed2008-06-23 09:50:50 +00007615** If the nBytes parameter is 0 and the blob of memory has not yet been
7616** allocated, a null pointer is returned. If the blob has already been
7617** allocated, it is returned as normal.
7618**
danielk1977da184232006-01-05 11:34:32 +00007619** Just before the shared-btree is closed, the function passed as the
7620** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007621** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007622** on the memory, the btree layer does that.
7623*/
7624void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7625 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007626 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007627 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007628 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007629 pBt->xFreeSchema = xFree;
7630 }
drh27641702007-08-22 02:56:42 +00007631 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007632 return pBt->pSchema;
7633}
7634
danielk1977c87d34d2006-01-06 13:00:28 +00007635/*
danielk1977404ca072009-03-16 13:19:36 +00007636** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7637** btree as the argument handle holds an exclusive lock on the
7638** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007639*/
7640int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007641 int rc;
drhe5fe6902007-12-07 18:55:28 +00007642 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007643 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007644 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7645 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007646 sqlite3BtreeLeave(p);
7647 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007648}
7649
drha154dcd2006-03-22 22:10:07 +00007650
7651#ifndef SQLITE_OMIT_SHARED_CACHE
7652/*
7653** Obtain a lock on the table whose root page is iTab. The
7654** lock is a write lock if isWritelock is true or a read lock
7655** if it is false.
7656*/
danielk1977c00da102006-01-07 13:21:04 +00007657int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007658 int rc = SQLITE_OK;
drh6a9ad3d2008-04-02 16:29:30 +00007659 if( p->sharable ){
7660 u8 lockType = READ_LOCK + isWriteLock;
7661 assert( READ_LOCK+1==WRITE_LOCK );
7662 assert( isWriteLock==0 || isWriteLock==1 );
7663 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007664 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007665 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007666 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007667 }
7668 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007669 }
7670 return rc;
7671}
drha154dcd2006-03-22 22:10:07 +00007672#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007673
danielk1977b4e9af92007-05-01 17:49:49 +00007674#ifndef SQLITE_OMIT_INCRBLOB
7675/*
7676** Argument pCsr must be a cursor opened for writing on an
7677** INTKEY table currently pointing at a valid table entry.
7678** This function modifies the data stored as part of that entry.
7679** Only the data content may only be modified, it is not possible
7680** to change the length of the data stored.
7681*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007682int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977404ca072009-03-16 13:19:36 +00007683 int rc;
7684
drh1fee73e2007-08-29 04:00:57 +00007685 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007686 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007687 assert(pCsr->isIncrblobHandle);
danielk19773588ceb2008-06-10 17:30:26 +00007688
drha3460582008-07-11 21:02:53 +00007689 restoreCursorPosition(pCsr);
danielk19773588ceb2008-06-10 17:30:26 +00007690 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7691 if( pCsr->eState!=CURSOR_VALID ){
7692 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007693 }
7694
danielk1977d04417962007-05-02 13:16:30 +00007695 /* Check some preconditions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007696 ** (a) the cursor is open for writing,
7697 ** (b) there is no read-lock on the table being modified and
7698 ** (c) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007699 */
danielk1977d04417962007-05-02 13:16:30 +00007700 if( !pCsr->wrFlag ){
danielk1977dcbb5d32007-05-04 18:36:44 +00007701 return SQLITE_READONLY;
danielk1977d04417962007-05-02 13:16:30 +00007702 }
drhd0679ed2007-08-28 22:24:34 +00007703 assert( !pCsr->pBt->readOnly
7704 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk1977404ca072009-03-16 13:19:36 +00007705 rc = checkForReadConflicts(pCsr->pBtree, pCsr->pgnoRoot, pCsr, 0);
7706 if( rc!=SQLITE_OK ){
7707 /* The table pCur points to has a read lock */
7708 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
7709 return rc;
danielk1977d04417962007-05-02 13:16:30 +00007710 }
danielk197771d5d2c2008-09-29 11:49:47 +00007711 if( pCsr->eState==CURSOR_INVALID || !pCsr->apPage[pCsr->iPage]->intKey ){
danielk1977d04417962007-05-02 13:16:30 +00007712 return SQLITE_ERROR;
danielk1977b4e9af92007-05-01 17:49:49 +00007713 }
7714
danielk19779f8d6402007-05-02 17:48:45 +00007715 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007716}
danielk19772dec9702007-05-02 16:48:37 +00007717
7718/*
7719** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007720** overflow list for the current row. This is used by cursors opened
7721** for incremental blob IO only.
7722**
7723** This function sets a flag only. The actual page location cache
7724** (stored in BtCursor.aOverflow[]) is allocated and used by function
7725** accessPayload() (the worker function for sqlite3BtreeData() and
7726** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007727*/
7728void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007729 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007730 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007731 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007732 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007733 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007734}
danielk1977b4e9af92007-05-01 17:49:49 +00007735#endif