blob: 6c724d0fa395b94f6158bf0ded07ac0cc1e59fe5 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
drhe53831d2007-08-17 01:14:38 +000046#ifndef SQLITE_OMIT_SHARED_CACHE
47/*
danielk1977502b4e02008-09-02 14:07:24 +000048** A list of BtShared objects that are eligible for participation
49** in shared cache. This variable has file scope during normal builds,
50** but the test harness needs to access it so we make it global for
51** test builds.
drh7555d8e2009-03-20 13:15:30 +000052**
53** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000054*/
55#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000056BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000057#else
drh78f82d12008-09-02 00:52:52 +000058static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000059#endif
drhe53831d2007-08-17 01:14:38 +000060#endif /* SQLITE_OMIT_SHARED_CACHE */
61
62#ifndef SQLITE_OMIT_SHARED_CACHE
63/*
64** Enable or disable the shared pager and schema features.
65**
66** This routine has no effect on existing database connections.
67** The shared cache setting effects only future calls to
68** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
69*/
70int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000071 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000072 return SQLITE_OK;
73}
74#endif
75
drhd677b3d2007-08-20 22:48:41 +000076
danielk1977aef0bf62005-12-30 16:28:01 +000077
78#ifdef SQLITE_OMIT_SHARED_CACHE
79 /*
drhc25eabe2009-02-24 18:57:31 +000080 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
81 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000082 ** manipulate entries in the BtShared.pLock linked list used to store
83 ** shared-cache table level locks. If the library is compiled with the
84 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000085 ** of each BtShared structure and so this locking is not necessary.
86 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000087 */
drhc25eabe2009-02-24 18:57:31 +000088 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
89 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
90 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000091 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000092 #define hasSharedCacheTableLock(a,b,c,d) 1
93 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000094#endif
danielk1977aef0bf62005-12-30 16:28:01 +000095
drhe53831d2007-08-17 01:14:38 +000096#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000097
98#ifdef SQLITE_DEBUG
99/*
drh0ee3dbe2009-10-16 15:05:18 +0000100**** This function is only used as part of an assert() statement. ***
101**
102** Check to see if pBtree holds the required locks to read or write to the
103** table with root page iRoot. Return 1 if it does and 0 if not.
104**
105** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000106** Btree connection pBtree:
107**
108** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
109**
drh0ee3dbe2009-10-16 15:05:18 +0000110** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000111** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000112** the corresponding table. This makes things a bit more complicated,
113** as this module treats each table as a separate structure. To determine
114** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000115** function has to search through the database schema.
116**
drh0ee3dbe2009-10-16 15:05:18 +0000117** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000118** hold a write-lock on the schema table (root page 1). This is also
119** acceptable.
120*/
121static int hasSharedCacheTableLock(
122 Btree *pBtree, /* Handle that must hold lock */
123 Pgno iRoot, /* Root page of b-tree */
124 int isIndex, /* True if iRoot is the root of an index b-tree */
125 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
126){
127 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
128 Pgno iTab = 0;
129 BtLock *pLock;
130
drh0ee3dbe2009-10-16 15:05:18 +0000131 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000132 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000133 ** Return true immediately.
134 */
danielk197796d48e92009-06-29 06:00:37 +0000135 if( (pBtree->sharable==0)
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000137 ){
138 return 1;
139 }
140
drh0ee3dbe2009-10-16 15:05:18 +0000141 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow.
145 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
147 return 1;
148 }
149
danielk197796d48e92009-06-29 06:00:37 +0000150 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated
153 ** table. */
154 if( isIndex ){
155 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
157 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000158 if( pIdx->tnum==(int)iRoot ){
159 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000160 }
161 }
162 }else{
163 iTab = iRoot;
164 }
165
166 /* Search for the required lock. Either a write-lock on root-page iTab, a
167 ** write-lock on the schema table, or (if the client is reading) a
168 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
169 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
170 if( pLock->pBtree==pBtree
171 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
172 && pLock->eLock>=eLockType
173 ){
174 return 1;
175 }
176 }
177
178 /* Failed to find the required lock. */
179 return 0;
180}
drh0ee3dbe2009-10-16 15:05:18 +0000181#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000182
drh0ee3dbe2009-10-16 15:05:18 +0000183#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000184/*
drh0ee3dbe2009-10-16 15:05:18 +0000185**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000186**
drh0ee3dbe2009-10-16 15:05:18 +0000187** Return true if it would be illegal for pBtree to write into the
188** table or index rooted at iRoot because other shared connections are
189** simultaneously reading that same table or index.
190**
191** It is illegal for pBtree to write if some other Btree object that
192** shares the same BtShared object is currently reading or writing
193** the iRoot table. Except, if the other Btree object has the
194** read-uncommitted flag set, then it is OK for the other object to
195** have a read cursor.
196**
197** For example, before writing to any part of the table or index
198** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000199**
200** assert( !hasReadConflicts(pBtree, iRoot) );
201*/
202static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
203 BtCursor *p;
204 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
205 if( p->pgnoRoot==iRoot
206 && p->pBtree!=pBtree
207 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
208 ){
209 return 1;
210 }
211 }
212 return 0;
213}
214#endif /* #ifdef SQLITE_DEBUG */
215
danielk1977da184232006-01-05 11:34:32 +0000216/*
drh0ee3dbe2009-10-16 15:05:18 +0000217** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000218** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000219** SQLITE_OK if the lock may be obtained (by calling
220** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000221*/
drhc25eabe2009-02-24 18:57:31 +0000222static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000223 BtShared *pBt = p->pBt;
224 BtLock *pIter;
225
drh1fee73e2007-08-29 04:00:57 +0000226 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000227 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
228 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000229 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000230
danielk19775b413d72009-04-01 09:41:54 +0000231 /* If requesting a write-lock, then the Btree must have an open write
232 ** transaction on this file. And, obviously, for this to be so there
233 ** must be an open write transaction on the file itself.
234 */
235 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237
drh0ee3dbe2009-10-16 15:05:18 +0000238 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000239 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000240 return SQLITE_OK;
241 }
242
danielk1977641b0f42007-12-21 04:47:25 +0000243 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained.
245 */
danielk1977404ca072009-03-16 13:19:36 +0000246 if( pBt->pWriter!=p && pBt->isExclusive ){
247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000249 }
250
danielk1977e0d9e6f2009-07-03 16:25:06 +0000251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of:
254 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer).
260 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter );
267 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000268 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000269 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000270 }
271 }
272 return SQLITE_OK;
273}
drhe53831d2007-08-17 01:14:38 +0000274#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000275
drhe53831d2007-08-17 01:14:38 +0000276#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000277/*
278** Add a lock on the table with root-page iTable to the shared-btree used
279** by Btree handle p. Parameter eLock must be either READ_LOCK or
280** WRITE_LOCK.
281**
danielk19779d104862009-07-09 08:27:14 +0000282** This function assumes the following:
283**
drh0ee3dbe2009-10-16 15:05:18 +0000284** (a) The specified Btree object p is connected to a sharable
285** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000286**
drh0ee3dbe2009-10-16 15:05:18 +0000287** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000288** with the requested lock (i.e. querySharedCacheTableLock() has
289** already been called and returned SQLITE_OK).
290**
291** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
292** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000293*/
drhc25eabe2009-02-24 18:57:31 +0000294static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000295 BtShared *pBt = p->pBt;
296 BtLock *pLock = 0;
297 BtLock *pIter;
298
drh1fee73e2007-08-29 04:00:57 +0000299 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000300 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
301 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000302
danielk1977e0d9e6f2009-07-03 16:25:06 +0000303 /* A connection with the read-uncommitted flag set will never try to
304 ** obtain a read-lock using this function. The only read-lock obtained
305 ** by a connection in read-uncommitted mode is on the sqlite_master
306 ** table, and that lock is obtained in BtreeBeginTrans(). */
307 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
308
danielk19779d104862009-07-09 08:27:14 +0000309 /* This function should only be called on a sharable b-tree after it
310 ** has been determined that no other b-tree holds a conflicting lock. */
311 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000312 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 /* First search the list for an existing lock on this table. */
315 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
316 if( pIter->iTable==iTable && pIter->pBtree==p ){
317 pLock = pIter;
318 break;
319 }
320 }
321
322 /* If the above search did not find a BtLock struct associating Btree p
323 ** with table iTable, allocate one and link it into the list.
324 */
325 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000326 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000327 if( !pLock ){
328 return SQLITE_NOMEM;
329 }
330 pLock->iTable = iTable;
331 pLock->pBtree = p;
332 pLock->pNext = pBt->pLock;
333 pBt->pLock = pLock;
334 }
335
336 /* Set the BtLock.eLock variable to the maximum of the current lock
337 ** and the requested lock. This means if a write-lock was already held
338 ** and a read-lock requested, we don't incorrectly downgrade the lock.
339 */
340 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000341 if( eLock>pLock->eLock ){
342 pLock->eLock = eLock;
343 }
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 return SQLITE_OK;
346}
drhe53831d2007-08-17 01:14:38 +0000347#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000348
drhe53831d2007-08-17 01:14:38 +0000349#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000350/*
drhc25eabe2009-02-24 18:57:31 +0000351** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000352** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000353**
drh0ee3dbe2009-10-16 15:05:18 +0000354** This function assumes that Btree p has an open read or write
danielk1977fa542f12009-04-02 18:28:08 +0000355** transaction. If it does not, then the BtShared.isPending variable
356** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000357*/
drhc25eabe2009-02-24 18:57:31 +0000358static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000359 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000361
drh1fee73e2007-08-29 04:00:57 +0000362 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000363 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000364 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000365
danielk1977aef0bf62005-12-30 16:28:01 +0000366 while( *ppIter ){
367 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000368 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000369 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000370 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000372 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock);
375 }
danielk1977aef0bf62005-12-30 16:28:01 +0000376 }else{
377 ppIter = &pLock->pNext;
378 }
379 }
danielk1977641b0f42007-12-21 04:47:25 +0000380
danielk1977404ca072009-03-16 13:19:36 +0000381 assert( pBt->isPending==0 || pBt->pWriter );
382 if( pBt->pWriter==p ){
383 pBt->pWriter = 0;
384 pBt->isExclusive = 0;
385 pBt->isPending = 0;
386 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000387 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000388 ** transaction. If there currently exists a writer, and p is not
389 ** that writer, then the number of locks held by connections other
390 ** than the writer must be about to drop to zero. In this case
391 ** set the isPending flag to 0.
392 **
393 ** If there is not currently a writer, then BtShared.isPending must
394 ** be zero already. So this next line is harmless in that case.
395 */
396 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000397 }
danielk1977aef0bf62005-12-30 16:28:01 +0000398}
danielk197794b30732009-07-02 17:21:57 +0000399
danielk1977e0d9e6f2009-07-03 16:25:06 +0000400/*
drh0ee3dbe2009-10-16 15:05:18 +0000401** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000402*/
danielk197794b30732009-07-02 17:21:57 +0000403static void downgradeAllSharedCacheTableLocks(Btree *p){
404 BtShared *pBt = p->pBt;
405 if( pBt->pWriter==p ){
406 BtLock *pLock;
407 pBt->pWriter = 0;
408 pBt->isExclusive = 0;
409 pBt->isPending = 0;
410 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
411 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
412 pLock->eLock = READ_LOCK;
413 }
414 }
415}
416
danielk1977aef0bf62005-12-30 16:28:01 +0000417#endif /* SQLITE_OMIT_SHARED_CACHE */
418
drh980b1a72006-08-16 16:42:48 +0000419static void releasePage(MemPage *pPage); /* Forward reference */
420
drh1fee73e2007-08-29 04:00:57 +0000421/*
drh0ee3dbe2009-10-16 15:05:18 +0000422***** This routine is used inside of assert() only ****
423**
424** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000425*/
drh0ee3dbe2009-10-16 15:05:18 +0000426#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000427static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000428 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000429}
430#endif
431
432
danielk197792d4d7a2007-05-04 12:05:56 +0000433#ifndef SQLITE_OMIT_INCRBLOB
434/*
435** Invalidate the overflow page-list cache for cursor pCur, if any.
436*/
437static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000438 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000439 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000440 pCur->aOverflow = 0;
441}
442
443/*
444** Invalidate the overflow page-list cache for all cursors opened
445** on the shared btree structure pBt.
446*/
447static void invalidateAllOverflowCache(BtShared *pBt){
448 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000449 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000450 for(p=pBt->pCursor; p; p=p->pNext){
451 invalidateOverflowCache(p);
452 }
453}
danielk197796d48e92009-06-29 06:00:37 +0000454
455/*
456** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000457** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000458** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000459**
460** If argument isClearTable is true, then the entire contents of the
461** table is about to be deleted. In this case invalidate all incrblob
462** cursors open on any row within the table with root-page pgnoRoot.
463**
464** Otherwise, if argument isClearTable is false, then the row with
465** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000466** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000467*/
468static void invalidateIncrblobCursors(
469 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000470 i64 iRow, /* The rowid that might be changing */
471 int isClearTable /* True if all rows are being deleted */
472){
473 BtCursor *p;
474 BtShared *pBt = pBtree->pBt;
475 assert( sqlite3BtreeHoldsMutex(pBtree) );
476 for(p=pBt->pCursor; p; p=p->pNext){
477 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
478 p->eState = CURSOR_INVALID;
479 }
480 }
481}
482
danielk197792d4d7a2007-05-04 12:05:56 +0000483#else
drh0ee3dbe2009-10-16 15:05:18 +0000484 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000485 #define invalidateOverflowCache(x)
486 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000487 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000488#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000489
drh980b1a72006-08-16 16:42:48 +0000490/*
danielk1977bea2a942009-01-20 17:06:27 +0000491** Set bit pgno of the BtShared.pHasContent bitvec. This is called
492** when a page that previously contained data becomes a free-list leaf
493** page.
494**
495** The BtShared.pHasContent bitvec exists to work around an obscure
496** bug caused by the interaction of two useful IO optimizations surrounding
497** free-list leaf pages:
498**
499** 1) When all data is deleted from a page and the page becomes
500** a free-list leaf page, the page is not written to the database
501** (as free-list leaf pages contain no meaningful data). Sometimes
502** such a page is not even journalled (as it will not be modified,
503** why bother journalling it?).
504**
505** 2) When a free-list leaf page is reused, its content is not read
506** from the database or written to the journal file (why should it
507** be, if it is not at all meaningful?).
508**
509** By themselves, these optimizations work fine and provide a handy
510** performance boost to bulk delete or insert operations. However, if
511** a page is moved to the free-list and then reused within the same
512** transaction, a problem comes up. If the page is not journalled when
513** it is moved to the free-list and it is also not journalled when it
514** is extracted from the free-list and reused, then the original data
515** may be lost. In the event of a rollback, it may not be possible
516** to restore the database to its original configuration.
517**
518** The solution is the BtShared.pHasContent bitvec. Whenever a page is
519** moved to become a free-list leaf page, the corresponding bit is
520** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000521** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000522** set in BtShared.pHasContent. The contents of the bitvec are cleared
523** at the end of every transaction.
524*/
525static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
526 int rc = SQLITE_OK;
527 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000528 assert( pgno<=pBt->nPage );
529 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000530 if( !pBt->pHasContent ){
531 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000532 }
533 }
534 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
535 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
536 }
537 return rc;
538}
539
540/*
541** Query the BtShared.pHasContent vector.
542**
543** This function is called when a free-list leaf page is removed from the
544** free-list for reuse. It returns false if it is safe to retrieve the
545** page from the pager layer with the 'no-content' flag set. True otherwise.
546*/
547static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
548 Bitvec *p = pBt->pHasContent;
549 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
550}
551
552/*
553** Clear (destroy) the BtShared.pHasContent bitvec. This should be
554** invoked at the conclusion of each write-transaction.
555*/
556static void btreeClearHasContent(BtShared *pBt){
557 sqlite3BitvecDestroy(pBt->pHasContent);
558 pBt->pHasContent = 0;
559}
560
561/*
drh980b1a72006-08-16 16:42:48 +0000562** Save the current cursor position in the variables BtCursor.nKey
563** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000564**
565** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
566** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000567*/
568static int saveCursorPosition(BtCursor *pCur){
569 int rc;
570
571 assert( CURSOR_VALID==pCur->eState );
572 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000573 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000574
575 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000576 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000577
578 /* If this is an intKey table, then the above call to BtreeKeySize()
579 ** stores the integer key in pCur->nKey. In this case this value is
580 ** all that is required. Otherwise, if pCur is not open on an intKey
581 ** table, then malloc space for and store the pCur->nKey bytes of key
582 ** data.
583 */
drh4c301aa2009-07-15 17:25:45 +0000584 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000585 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000586 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000587 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000588 if( rc==SQLITE_OK ){
589 pCur->pKey = pKey;
590 }else{
drh17435752007-08-16 04:30:38 +0000591 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000592 }
593 }else{
594 rc = SQLITE_NOMEM;
595 }
596 }
danielk197771d5d2c2008-09-29 11:49:47 +0000597 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000598
599 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000600 int i;
601 for(i=0; i<=pCur->iPage; i++){
602 releasePage(pCur->apPage[i]);
603 pCur->apPage[i] = 0;
604 }
605 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000606 pCur->eState = CURSOR_REQUIRESEEK;
607 }
608
danielk197792d4d7a2007-05-04 12:05:56 +0000609 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000610 return rc;
611}
612
613/*
drh0ee3dbe2009-10-16 15:05:18 +0000614** Save the positions of all cursors (except pExcept) that are open on
615** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000616** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
617*/
618static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
619 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000620 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000621 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000622 for(p=pBt->pCursor; p; p=p->pNext){
623 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
624 p->eState==CURSOR_VALID ){
625 int rc = saveCursorPosition(p);
626 if( SQLITE_OK!=rc ){
627 return rc;
628 }
629 }
630 }
631 return SQLITE_OK;
632}
633
634/*
drhbf700f32007-03-31 02:36:44 +0000635** Clear the current cursor position.
636*/
danielk1977be51a652008-10-08 17:58:48 +0000637void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000638 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000639 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000640 pCur->pKey = 0;
641 pCur->eState = CURSOR_INVALID;
642}
643
644/*
danielk19773509a652009-07-06 18:56:13 +0000645** In this version of BtreeMoveto, pKey is a packed index record
646** such as is generated by the OP_MakeRecord opcode. Unpack the
647** record and then call BtreeMovetoUnpacked() to do the work.
648*/
649static int btreeMoveto(
650 BtCursor *pCur, /* Cursor open on the btree to be searched */
651 const void *pKey, /* Packed key if the btree is an index */
652 i64 nKey, /* Integer key for tables. Size of pKey for indices */
653 int bias, /* Bias search to the high end */
654 int *pRes /* Write search results here */
655){
656 int rc; /* Status code */
657 UnpackedRecord *pIdxKey; /* Unpacked index key */
658 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000659 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000660
661 if( pKey ){
662 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000663 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
664 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
665 );
danielk19773509a652009-07-06 18:56:13 +0000666 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000667 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000668 }else{
669 pIdxKey = 0;
670 }
671 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000672 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000673 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000674 }
675 return rc;
676}
677
678/*
drh980b1a72006-08-16 16:42:48 +0000679** Restore the cursor to the position it was in (or as close to as possible)
680** when saveCursorPosition() was called. Note that this call deletes the
681** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000682** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000683** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000684*/
danielk197730548662009-07-09 05:07:37 +0000685static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000686 int rc;
drh1fee73e2007-08-29 04:00:57 +0000687 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000688 assert( pCur->eState>=CURSOR_REQUIRESEEK );
689 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000690 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000691 }
drh980b1a72006-08-16 16:42:48 +0000692 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000693 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000694 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000695 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000696 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000697 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000698 }
699 return rc;
700}
701
drha3460582008-07-11 21:02:53 +0000702#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000703 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000704 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000705 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000706
drha3460582008-07-11 21:02:53 +0000707/*
708** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000709** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000710** at is deleted out from under them.
711**
712** This routine returns an error code if something goes wrong. The
713** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
714*/
715int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
716 int rc;
717
718 rc = restoreCursorPosition(pCur);
719 if( rc ){
720 *pHasMoved = 1;
721 return rc;
722 }
drh4c301aa2009-07-15 17:25:45 +0000723 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000724 *pHasMoved = 1;
725 }else{
726 *pHasMoved = 0;
727 }
728 return SQLITE_OK;
729}
730
danielk1977599fcba2004-11-08 07:13:13 +0000731#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000732/*
drha3152892007-05-05 11:48:52 +0000733** Given a page number of a regular database page, return the page
734** number for the pointer-map page that contains the entry for the
735** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000736**
737** Return 0 (not a valid page) for pgno==1 since there is
738** no pointer map associated with page 1. The integrity_check logic
739** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000740*/
danielk1977266664d2006-02-10 08:24:21 +0000741static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000742 int nPagesPerMapPage;
743 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000744 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000745 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000746 nPagesPerMapPage = (pBt->usableSize/5)+1;
747 iPtrMap = (pgno-2)/nPagesPerMapPage;
748 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000749 if( ret==PENDING_BYTE_PAGE(pBt) ){
750 ret++;
751 }
752 return ret;
753}
danielk1977a19df672004-11-03 11:37:07 +0000754
danielk1977afcdd022004-10-31 16:25:42 +0000755/*
danielk1977afcdd022004-10-31 16:25:42 +0000756** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000757**
758** This routine updates the pointer map entry for page number 'key'
759** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000760**
761** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
762** a no-op. If an error occurs, the appropriate error code is written
763** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000764*/
drh98add2e2009-07-20 17:11:49 +0000765static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000766 DbPage *pDbPage; /* The pointer map page */
767 u8 *pPtrmap; /* The pointer map data */
768 Pgno iPtrmap; /* The pointer map page number */
769 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000770 int rc; /* Return code from subfunctions */
771
772 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000773
drh1fee73e2007-08-29 04:00:57 +0000774 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000775 /* The master-journal page number must never be used as a pointer map page */
776 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
777
danielk1977ac11ee62005-01-15 12:45:51 +0000778 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000779 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000780 *pRC = SQLITE_CORRUPT_BKPT;
781 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000782 }
danielk1977266664d2006-02-10 08:24:21 +0000783 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000784 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000785 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000786 *pRC = rc;
787 return;
danielk1977afcdd022004-10-31 16:25:42 +0000788 }
danielk19778c666b12008-07-18 09:34:57 +0000789 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000790 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000791 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000792 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000793 }
drhfc243732011-05-17 15:21:56 +0000794 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000795 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000796
drh615ae552005-01-16 23:21:00 +0000797 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
798 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000799 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000800 if( rc==SQLITE_OK ){
801 pPtrmap[offset] = eType;
802 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000803 }
danielk1977afcdd022004-10-31 16:25:42 +0000804 }
805
drh4925a552009-07-07 11:39:58 +0000806ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000807 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000808}
809
810/*
811** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000812**
813** This routine retrieves the pointer map entry for page 'key', writing
814** the type and parent page number to *pEType and *pPgno respectively.
815** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000816*/
danielk1977aef0bf62005-12-30 16:28:01 +0000817static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000818 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000819 int iPtrmap; /* Pointer map page index */
820 u8 *pPtrmap; /* Pointer map page data */
821 int offset; /* Offset of entry in pointer map */
822 int rc;
823
drh1fee73e2007-08-29 04:00:57 +0000824 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000825
danielk1977266664d2006-02-10 08:24:21 +0000826 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000827 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000828 if( rc!=0 ){
829 return rc;
830 }
danielk19773b8a05f2007-03-19 17:44:26 +0000831 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000832
danielk19778c666b12008-07-18 09:34:57 +0000833 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000834 if( offset<0 ){
835 sqlite3PagerUnref(pDbPage);
836 return SQLITE_CORRUPT_BKPT;
837 }
838 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000839 assert( pEType!=0 );
840 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000841 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000842
danielk19773b8a05f2007-03-19 17:44:26 +0000843 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000844 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000845 return SQLITE_OK;
846}
847
danielk197785d90ca2008-07-19 14:25:15 +0000848#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000849 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000850 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000851 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000852#endif
danielk1977afcdd022004-10-31 16:25:42 +0000853
drh0d316a42002-08-11 20:10:47 +0000854/*
drh271efa52004-05-30 19:19:05 +0000855** Given a btree page and a cell index (0 means the first cell on
856** the page, 1 means the second cell, and so forth) return a pointer
857** to the cell content.
858**
859** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000860*/
drh1688c862008-07-18 02:44:17 +0000861#define findCell(P,I) \
862 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000863#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
864
drh43605152004-05-29 21:46:49 +0000865
866/*
drh93a960a2008-07-10 00:32:42 +0000867** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000868** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000869*/
870static u8 *findOverflowCell(MemPage *pPage, int iCell){
871 int i;
drh1fee73e2007-08-29 04:00:57 +0000872 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000873 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000874 int k;
875 struct _OvflCell *pOvfl;
876 pOvfl = &pPage->aOvfl[i];
877 k = pOvfl->idx;
878 if( k<=iCell ){
879 if( k==iCell ){
880 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000881 }
882 iCell--;
883 }
884 }
danielk19771cc5ed82007-05-16 17:28:43 +0000885 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000886}
887
888/*
889** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000890** are two versions of this function. btreeParseCell() takes a
891** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000892** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000893**
894** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000895** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000896*/
danielk197730548662009-07-09 05:07:37 +0000897static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000898 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000899 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000900 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000901){
drhf49661a2008-12-10 16:45:50 +0000902 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000903 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000904
drh1fee73e2007-08-29 04:00:57 +0000905 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000906
drh43605152004-05-29 21:46:49 +0000907 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000908 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000909 n = pPage->childPtrSize;
910 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000911 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000912 if( pPage->hasData ){
913 n += getVarint32(&pCell[n], nPayload);
914 }else{
915 nPayload = 0;
916 }
drh1bd10f82008-12-10 21:19:56 +0000917 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000918 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000919 }else{
drh79df1f42008-07-18 00:57:33 +0000920 pInfo->nData = 0;
921 n += getVarint32(&pCell[n], nPayload);
922 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000923 }
drh72365832007-03-06 15:53:44 +0000924 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000925 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000926 testcase( nPayload==pPage->maxLocal );
927 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000928 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000929 /* This is the (easy) common case where the entire payload fits
930 ** on the local page. No overflow is required.
931 */
drh41692e92011-01-25 04:34:51 +0000932 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000933 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000934 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000935 }else{
drh271efa52004-05-30 19:19:05 +0000936 /* If the payload will not fit completely on the local page, we have
937 ** to decide how much to store locally and how much to spill onto
938 ** overflow pages. The strategy is to minimize the amount of unused
939 ** space on overflow pages while keeping the amount of local storage
940 ** in between minLocal and maxLocal.
941 **
942 ** Warning: changing the way overflow payload is distributed in any
943 ** way will result in an incompatible file format.
944 */
945 int minLocal; /* Minimum amount of payload held locally */
946 int maxLocal; /* Maximum amount of payload held locally */
947 int surplus; /* Overflow payload available for local storage */
948
949 minLocal = pPage->minLocal;
950 maxLocal = pPage->maxLocal;
951 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000952 testcase( surplus==maxLocal );
953 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000954 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000955 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000956 }else{
drhf49661a2008-12-10 16:45:50 +0000957 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000958 }
drhf49661a2008-12-10 16:45:50 +0000959 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000960 pInfo->nSize = pInfo->iOverflow + 4;
961 }
drh3aac2dd2004-04-26 14:10:20 +0000962}
danielk19771cc5ed82007-05-16 17:28:43 +0000963#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000964 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
965static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000966 MemPage *pPage, /* Page containing the cell */
967 int iCell, /* The cell index. First cell is 0 */
968 CellInfo *pInfo /* Fill in this structure */
969){
danielk19771cc5ed82007-05-16 17:28:43 +0000970 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000971}
drh3aac2dd2004-04-26 14:10:20 +0000972
973/*
drh43605152004-05-29 21:46:49 +0000974** Compute the total number of bytes that a Cell needs in the cell
975** data area of the btree-page. The return number includes the cell
976** data header and the local payload, but not any overflow page or
977** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000978*/
danielk1977ae5558b2009-04-29 11:31:47 +0000979static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
980 u8 *pIter = &pCell[pPage->childPtrSize];
981 u32 nSize;
982
983#ifdef SQLITE_DEBUG
984 /* The value returned by this function should always be the same as
985 ** the (CellInfo.nSize) value found by doing a full parse of the
986 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
987 ** this function verifies that this invariant is not violated. */
988 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000989 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000990#endif
991
992 if( pPage->intKey ){
993 u8 *pEnd;
994 if( pPage->hasData ){
995 pIter += getVarint32(pIter, nSize);
996 }else{
997 nSize = 0;
998 }
999
1000 /* pIter now points at the 64-bit integer key value, a variable length
1001 ** integer. The following block moves pIter to point at the first byte
1002 ** past the end of the key value. */
1003 pEnd = &pIter[9];
1004 while( (*pIter++)&0x80 && pIter<pEnd );
1005 }else{
1006 pIter += getVarint32(pIter, nSize);
1007 }
1008
drh0a45c272009-07-08 01:49:11 +00001009 testcase( nSize==pPage->maxLocal );
1010 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001011 if( nSize>pPage->maxLocal ){
1012 int minLocal = pPage->minLocal;
1013 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001014 testcase( nSize==pPage->maxLocal );
1015 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001016 if( nSize>pPage->maxLocal ){
1017 nSize = minLocal;
1018 }
1019 nSize += 4;
1020 }
shane75ac1de2009-06-09 18:58:52 +00001021 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001022
1023 /* The minimum size of any cell is 4 bytes. */
1024 if( nSize<4 ){
1025 nSize = 4;
1026 }
1027
1028 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001029 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001030}
drh0ee3dbe2009-10-16 15:05:18 +00001031
1032#ifdef SQLITE_DEBUG
1033/* This variation on cellSizePtr() is used inside of assert() statements
1034** only. */
drha9121e42008-02-19 14:59:35 +00001035static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001036 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001037}
danielk1977bc6ada42004-06-30 08:20:16 +00001038#endif
drh3b7511c2001-05-26 13:15:44 +00001039
danielk197779a40da2005-01-16 08:00:01 +00001040#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001041/*
danielk197726836652005-01-17 01:33:13 +00001042** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001043** to an overflow page, insert an entry into the pointer-map
1044** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001045*/
drh98add2e2009-07-20 17:11:49 +00001046static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001047 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001048 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001049 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001050 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001051 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001052 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001053 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001054 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001055 }
danielk1977ac11ee62005-01-15 12:45:51 +00001056}
danielk197779a40da2005-01-16 08:00:01 +00001057#endif
1058
danielk1977ac11ee62005-01-15 12:45:51 +00001059
drhda200cc2004-05-09 11:51:38 +00001060/*
drh72f82862001-05-24 21:06:34 +00001061** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001062** end of the page and all free space is collected into one
1063** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001064** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001065*/
shane0af3f892008-11-12 04:55:34 +00001066static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001067 int i; /* Loop counter */
1068 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001069 int hdr; /* Offset to the page header */
1070 int size; /* Size of a cell */
1071 int usableSize; /* Number of usable bytes on a page */
1072 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001073 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001074 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001075 unsigned char *data; /* The page data */
1076 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001077 int iCellFirst; /* First allowable cell index */
1078 int iCellLast; /* Last possible cell index */
1079
drh2af926b2001-05-15 00:39:25 +00001080
danielk19773b8a05f2007-03-19 17:44:26 +00001081 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001082 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001083 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001084 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001085 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001086 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001087 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001088 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001089 cellOffset = pPage->cellOffset;
1090 nCell = pPage->nCell;
1091 assert( nCell==get2byte(&data[hdr+3]) );
1092 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001093 cbrk = get2byte(&data[hdr+5]);
1094 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1095 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001096 iCellFirst = cellOffset + 2*nCell;
1097 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001098 for(i=0; i<nCell; i++){
1099 u8 *pAddr; /* The i-th cell pointer */
1100 pAddr = &data[cellOffset + i*2];
1101 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001102 testcase( pc==iCellFirst );
1103 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001104#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001105 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001106 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1107 */
1108 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001109 return SQLITE_CORRUPT_BKPT;
1110 }
drh17146622009-07-07 17:38:38 +00001111#endif
1112 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001113 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001114 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001115#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1116 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001117 return SQLITE_CORRUPT_BKPT;
1118 }
drh17146622009-07-07 17:38:38 +00001119#else
1120 if( cbrk<iCellFirst || pc+size>usableSize ){
1121 return SQLITE_CORRUPT_BKPT;
1122 }
1123#endif
drh7157e1d2009-07-09 13:25:32 +00001124 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001125 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001126 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001127 memcpy(&data[cbrk], &temp[pc], size);
1128 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001129 }
drh17146622009-07-07 17:38:38 +00001130 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001131 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001132 data[hdr+1] = 0;
1133 data[hdr+2] = 0;
1134 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001135 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001136 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001137 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001138 return SQLITE_CORRUPT_BKPT;
1139 }
shane0af3f892008-11-12 04:55:34 +00001140 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001141}
1142
drha059ad02001-04-17 20:09:11 +00001143/*
danielk19776011a752009-04-01 16:25:32 +00001144** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001145** as the first argument. Write into *pIdx the index into pPage->aData[]
1146** of the first byte of allocated space. Return either SQLITE_OK or
1147** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001148**
drh0a45c272009-07-08 01:49:11 +00001149** The caller guarantees that there is sufficient space to make the
1150** allocation. This routine might need to defragment in order to bring
1151** all the space together, however. This routine will avoid using
1152** the first two bytes past the cell pointer area since presumably this
1153** allocation is being made in order to insert a new cell, so we will
1154** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001155*/
drh0a45c272009-07-08 01:49:11 +00001156static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001157 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1158 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1159 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001160 int top; /* First byte of cell content area */
1161 int gap; /* First byte of gap between cell pointers and cell content */
1162 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001163 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001164
danielk19773b8a05f2007-03-19 17:44:26 +00001165 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001166 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001167 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001168 assert( nByte>=0 ); /* Minimum cell size is 4 */
1169 assert( pPage->nFree>=nByte );
1170 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001171 usableSize = pPage->pBt->usableSize;
1172 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001173
1174 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001175 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1176 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001177 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001178 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001179 testcase( gap+2==top );
1180 testcase( gap+1==top );
1181 testcase( gap==top );
1182
danielk19776011a752009-04-01 16:25:32 +00001183 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001184 /* Always defragment highly fragmented pages */
1185 rc = defragmentPage(pPage);
1186 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001187 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001188 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001189 /* Search the freelist looking for a free slot big enough to satisfy
1190 ** the request. The allocation is made from the first free slot in
1191 ** the list that is large enough to accomadate it.
1192 */
1193 int pc, addr;
1194 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001195 int size; /* Size of the free slot */
1196 if( pc>usableSize-4 || pc<addr+4 ){
1197 return SQLITE_CORRUPT_BKPT;
1198 }
1199 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001200 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001201 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001202 testcase( x==4 );
1203 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001204 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001205 /* Remove the slot from the free-list. Update the number of
1206 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001207 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001208 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001209 }else if( size+pc > usableSize ){
1210 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001211 }else{
danielk1977fad91942009-04-29 17:49:59 +00001212 /* The slot remains on the free-list. Reduce its size to account
1213 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001214 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001215 }
drh0a45c272009-07-08 01:49:11 +00001216 *pIdx = pc + x;
1217 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001218 }
drh9e572e62004-04-23 23:43:10 +00001219 }
1220 }
drh43605152004-05-29 21:46:49 +00001221
drh0a45c272009-07-08 01:49:11 +00001222 /* Check to make sure there is enough space in the gap to satisfy
1223 ** the allocation. If not, defragment.
1224 */
1225 testcase( gap+2+nByte==top );
1226 if( gap+2+nByte>top ){
1227 rc = defragmentPage(pPage);
1228 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001229 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001230 assert( gap+nByte<=top );
1231 }
1232
1233
drh43605152004-05-29 21:46:49 +00001234 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001235 ** and the cell content area. The btreeInitPage() call has already
1236 ** validated the freelist. Given that the freelist is valid, there
1237 ** is no way that the allocation can extend off the end of the page.
1238 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001239 */
drh0a45c272009-07-08 01:49:11 +00001240 top -= nByte;
drh43605152004-05-29 21:46:49 +00001241 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001242 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001243 *pIdx = top;
1244 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001245}
1246
1247/*
drh9e572e62004-04-23 23:43:10 +00001248** Return a section of the pPage->aData to the freelist.
1249** The first byte of the new free block is pPage->aDisk[start]
1250** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001251**
1252** Most of the effort here is involved in coalesing adjacent
1253** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001254*/
shanedcc50b72008-11-13 18:29:50 +00001255static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001256 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001257 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001258 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001259
drh9e572e62004-04-23 23:43:10 +00001260 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001261 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001262 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001263 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001264 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001265 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001266
drh5b47efa2010-02-12 18:18:39 +00001267 if( pPage->pBt->secureDelete ){
1268 /* Overwrite deleted information with zeros when the secure_delete
1269 ** option is enabled */
1270 memset(&data[start], 0, size);
1271 }
drhfcce93f2006-02-22 03:08:32 +00001272
drh0a45c272009-07-08 01:49:11 +00001273 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001274 ** even though the freeblock list was checked by btreeInitPage(),
1275 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001276 ** freeblocks that overlapped cells. Nor does it detect when the
1277 ** cell content area exceeds the value in the page header. If these
1278 ** situations arise, then subsequent insert operations might corrupt
1279 ** the freelist. So we do need to check for corruption while scanning
1280 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001281 */
drh43605152004-05-29 21:46:49 +00001282 hdr = pPage->hdrOffset;
1283 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001284 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001285 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001286 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001287 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001288 return SQLITE_CORRUPT_BKPT;
1289 }
drh3aac2dd2004-04-26 14:10:20 +00001290 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001291 }
drh0a45c272009-07-08 01:49:11 +00001292 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001293 return SQLITE_CORRUPT_BKPT;
1294 }
drh3aac2dd2004-04-26 14:10:20 +00001295 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001296 put2byte(&data[addr], start);
1297 put2byte(&data[start], pbegin);
1298 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001299 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001300
1301 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001302 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001303 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001304 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001305 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001306 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001307 pnext = get2byte(&data[pbegin]);
1308 psize = get2byte(&data[pbegin+2]);
1309 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1310 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001311 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001312 return SQLITE_CORRUPT_BKPT;
1313 }
drh0a45c272009-07-08 01:49:11 +00001314 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001315 x = get2byte(&data[pnext]);
1316 put2byte(&data[pbegin], x);
1317 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1318 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001319 }else{
drh3aac2dd2004-04-26 14:10:20 +00001320 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001321 }
1322 }
drh7e3b0a02001-04-28 16:52:40 +00001323
drh43605152004-05-29 21:46:49 +00001324 /* If the cell content area begins with a freeblock, remove it. */
1325 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1326 int top;
1327 pbegin = get2byte(&data[hdr+1]);
1328 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001329 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1330 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001331 }
drhc5053fb2008-11-27 02:22:10 +00001332 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001333 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001334}
1335
1336/*
drh271efa52004-05-30 19:19:05 +00001337** Decode the flags byte (the first byte of the header) for a page
1338** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001339**
1340** Only the following combinations are supported. Anything different
1341** indicates a corrupt database files:
1342**
1343** PTF_ZERODATA
1344** PTF_ZERODATA | PTF_LEAF
1345** PTF_LEAFDATA | PTF_INTKEY
1346** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001347*/
drh44845222008-07-17 18:39:57 +00001348static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001349 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001350
1351 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001352 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001353 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001354 flagByte &= ~PTF_LEAF;
1355 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001356 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001357 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1358 pPage->intKey = 1;
1359 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001360 pPage->maxLocal = pBt->maxLeaf;
1361 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001362 }else if( flagByte==PTF_ZERODATA ){
1363 pPage->intKey = 0;
1364 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001365 pPage->maxLocal = pBt->maxLocal;
1366 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001367 }else{
1368 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001369 }
drh44845222008-07-17 18:39:57 +00001370 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001371}
1372
1373/*
drh7e3b0a02001-04-28 16:52:40 +00001374** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001375**
1376** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001377** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001378** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1379** guarantee that the page is well-formed. It only shows that
1380** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001381*/
danielk197730548662009-07-09 05:07:37 +00001382static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001383
danielk197771d5d2c2008-09-29 11:49:47 +00001384 assert( pPage->pBt!=0 );
1385 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001386 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001387 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1388 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001389
1390 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001391 u16 pc; /* Address of a freeblock within pPage->aData[] */
1392 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001393 u8 *data; /* Equal to pPage->aData */
1394 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001395 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001396 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001397 int nFree; /* Number of unused bytes on the page */
1398 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001399 int iCellFirst; /* First allowable cell or freeblock offset */
1400 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001401
1402 pBt = pPage->pBt;
1403
danielk1977eaa06f62008-09-18 17:34:44 +00001404 hdr = pPage->hdrOffset;
1405 data = pPage->aData;
1406 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001407 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1408 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001409 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001410 usableSize = pBt->usableSize;
1411 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh5d433ce2010-08-14 16:02:52 +00001412 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001413 pPage->nCell = get2byte(&data[hdr+3]);
1414 if( pPage->nCell>MX_CELL(pBt) ){
1415 /* To many cells for a single page. The page must be corrupt */
1416 return SQLITE_CORRUPT_BKPT;
1417 }
drhb908d762009-07-08 16:54:40 +00001418 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001419
shane5eff7cf2009-08-10 03:57:58 +00001420 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001421 ** of page when parsing a cell.
1422 **
1423 ** The following block of code checks early to see if a cell extends
1424 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1425 ** returned if it does.
1426 */
drh0a45c272009-07-08 01:49:11 +00001427 iCellFirst = cellOffset + 2*pPage->nCell;
1428 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001429#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001430 {
drh69e931e2009-06-03 21:04:35 +00001431 int i; /* Index into the cell pointer array */
1432 int sz; /* Size of a cell */
1433
drh69e931e2009-06-03 21:04:35 +00001434 if( !pPage->leaf ) iCellLast--;
1435 for(i=0; i<pPage->nCell; i++){
1436 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001437 testcase( pc==iCellFirst );
1438 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001439 if( pc<iCellFirst || pc>iCellLast ){
1440 return SQLITE_CORRUPT_BKPT;
1441 }
1442 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001443 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001444 if( pc+sz>usableSize ){
1445 return SQLITE_CORRUPT_BKPT;
1446 }
1447 }
drh0a45c272009-07-08 01:49:11 +00001448 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001449 }
1450#endif
1451
danielk1977eaa06f62008-09-18 17:34:44 +00001452 /* Compute the total free space on the page */
1453 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001454 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001455 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001456 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001457 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001458 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001459 return SQLITE_CORRUPT_BKPT;
1460 }
1461 next = get2byte(&data[pc]);
1462 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001463 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1464 /* Free blocks must be in ascending order. And the last byte of
1465 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001466 return SQLITE_CORRUPT_BKPT;
1467 }
shane85095702009-06-15 16:27:08 +00001468 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001469 pc = next;
1470 }
danielk197793c829c2009-06-03 17:26:17 +00001471
1472 /* At this point, nFree contains the sum of the offset to the start
1473 ** of the cell-content area plus the number of free bytes within
1474 ** the cell-content area. If this is greater than the usable-size
1475 ** of the page, then the page must be corrupted. This check also
1476 ** serves to verify that the offset to the start of the cell-content
1477 ** area, according to the page header, lies within the page.
1478 */
1479 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001480 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001481 }
shane5eff7cf2009-08-10 03:57:58 +00001482 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001483 pPage->isInit = 1;
1484 }
drh9e572e62004-04-23 23:43:10 +00001485 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001486}
1487
1488/*
drh8b2f49b2001-06-08 00:21:52 +00001489** Set up a raw page so that it looks like a database page holding
1490** no entries.
drhbd03cae2001-06-02 02:40:57 +00001491*/
drh9e572e62004-04-23 23:43:10 +00001492static void zeroPage(MemPage *pPage, int flags){
1493 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001494 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001495 u8 hdr = pPage->hdrOffset;
1496 u16 first;
drh9e572e62004-04-23 23:43:10 +00001497
danielk19773b8a05f2007-03-19 17:44:26 +00001498 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001499 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1500 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001501 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001502 assert( sqlite3_mutex_held(pBt->mutex) );
drh5b47efa2010-02-12 18:18:39 +00001503 if( pBt->secureDelete ){
1504 memset(&data[hdr], 0, pBt->usableSize - hdr);
1505 }
drh1bd10f82008-12-10 21:19:56 +00001506 data[hdr] = (char)flags;
1507 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001508 memset(&data[hdr+1], 0, 4);
1509 data[hdr+7] = 0;
1510 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001511 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001512 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001513 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001514 pPage->cellOffset = first;
1515 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001516 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1517 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001518 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001519 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001520}
1521
drh897a8202008-09-18 01:08:15 +00001522
1523/*
1524** Convert a DbPage obtained from the pager into a MemPage used by
1525** the btree layer.
1526*/
1527static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1528 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1529 pPage->aData = sqlite3PagerGetData(pDbPage);
1530 pPage->pDbPage = pDbPage;
1531 pPage->pBt = pBt;
1532 pPage->pgno = pgno;
1533 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1534 return pPage;
1535}
1536
drhbd03cae2001-06-02 02:40:57 +00001537/*
drh3aac2dd2004-04-26 14:10:20 +00001538** Get a page from the pager. Initialize the MemPage.pBt and
1539** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001540**
1541** If the noContent flag is set, it means that we do not care about
1542** the content of the page at this time. So do not go to the disk
1543** to fetch the content. Just fill in the content with zeros for now.
1544** If in the future we call sqlite3PagerWrite() on this page, that
1545** means we have started to be concerned about content and the disk
1546** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001547*/
danielk197730548662009-07-09 05:07:37 +00001548static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001549 BtShared *pBt, /* The btree */
1550 Pgno pgno, /* Number of the page to fetch */
1551 MemPage **ppPage, /* Return the page in this parameter */
1552 int noContent /* Do not load page content if true */
1553){
drh3aac2dd2004-04-26 14:10:20 +00001554 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001555 DbPage *pDbPage;
1556
drh1fee73e2007-08-29 04:00:57 +00001557 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001558 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001559 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001560 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001561 return SQLITE_OK;
1562}
1563
1564/*
danielk1977bea2a942009-01-20 17:06:27 +00001565** Retrieve a page from the pager cache. If the requested page is not
1566** already in the pager cache return NULL. Initialize the MemPage.pBt and
1567** MemPage.aData elements if needed.
1568*/
1569static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1570 DbPage *pDbPage;
1571 assert( sqlite3_mutex_held(pBt->mutex) );
1572 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1573 if( pDbPage ){
1574 return btreePageFromDbPage(pDbPage, pgno, pBt);
1575 }
1576 return 0;
1577}
1578
1579/*
danielk197789d40042008-11-17 14:20:56 +00001580** Return the size of the database file in pages. If there is any kind of
1581** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001582*/
drhb1299152010-03-30 22:58:33 +00001583static Pgno btreePagecount(BtShared *pBt){
1584 return pBt->nPage;
1585}
1586u32 sqlite3BtreeLastPage(Btree *p){
1587 assert( sqlite3BtreeHoldsMutex(p) );
1588 assert( ((p->pBt->nPage)&0x8000000)==0 );
1589 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001590}
1591
1592/*
danielk197789bc4bc2009-07-21 19:25:24 +00001593** Get a page from the pager and initialize it. This routine is just a
1594** convenience wrapper around separate calls to btreeGetPage() and
1595** btreeInitPage().
1596**
1597** If an error occurs, then the value *ppPage is set to is undefined. It
1598** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001599*/
1600static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001601 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001602 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001603 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001604){
1605 int rc;
drh1fee73e2007-08-29 04:00:57 +00001606 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001607
danba3cbf32010-06-30 04:29:03 +00001608 if( pgno>btreePagecount(pBt) ){
1609 rc = SQLITE_CORRUPT_BKPT;
1610 }else{
1611 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1612 if( rc==SQLITE_OK ){
1613 rc = btreeInitPage(*ppPage);
1614 if( rc!=SQLITE_OK ){
1615 releasePage(*ppPage);
1616 }
danielk197789bc4bc2009-07-21 19:25:24 +00001617 }
drhee696e22004-08-30 16:52:17 +00001618 }
danba3cbf32010-06-30 04:29:03 +00001619
1620 testcase( pgno==0 );
1621 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001622 return rc;
1623}
1624
1625/*
drh3aac2dd2004-04-26 14:10:20 +00001626** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001627** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001628*/
drh4b70f112004-05-02 21:12:19 +00001629static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001630 if( pPage ){
1631 assert( pPage->aData );
1632 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001633 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1634 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001635 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001636 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001637 }
1638}
1639
1640/*
drha6abd042004-06-09 17:37:22 +00001641** During a rollback, when the pager reloads information into the cache
1642** so that the cache is restored to its original state at the start of
1643** the transaction, for each page restored this routine is called.
1644**
1645** This routine needs to reset the extra data section at the end of the
1646** page to agree with the restored data.
1647*/
danielk1977eaa06f62008-09-18 17:34:44 +00001648static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001649 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001650 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001651 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001652 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001653 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001654 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001655 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001656 /* pPage might not be a btree page; it might be an overflow page
1657 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001658 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001659 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001660 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001661 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001662 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001663 }
drha6abd042004-06-09 17:37:22 +00001664 }
1665}
1666
1667/*
drhe5fe6902007-12-07 18:55:28 +00001668** Invoke the busy handler for a btree.
1669*/
danielk19771ceedd32008-11-19 10:22:33 +00001670static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001671 BtShared *pBt = (BtShared*)pArg;
1672 assert( pBt->db );
1673 assert( sqlite3_mutex_held(pBt->db->mutex) );
1674 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1675}
1676
1677/*
drhad3e0102004-09-03 23:32:18 +00001678** Open a database file.
1679**
drh382c0242001-10-06 16:33:02 +00001680** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001681** then an ephemeral database is created. The ephemeral database might
1682** be exclusively in memory, or it might use a disk-based memory cache.
1683** Either way, the ephemeral database will be automatically deleted
1684** when sqlite3BtreeClose() is called.
1685**
drhe53831d2007-08-17 01:14:38 +00001686** If zFilename is ":memory:" then an in-memory database is created
1687** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001688**
drh75c014c2010-08-30 15:02:28 +00001689** The "flags" parameter is a bitmask that might contain bits
1690** BTREE_OMIT_JOURNAL and/or BTREE_NO_READLOCK. The BTREE_NO_READLOCK
1691** bit is also set if the SQLITE_NoReadlock flags is set in db->flags.
1692** These flags are passed through into sqlite3PagerOpen() and must
1693** be the same values as PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK.
1694**
drhc47fd8e2009-04-30 13:30:32 +00001695** If the database is already opened in the same database connection
1696** and we are in shared cache mode, then the open will fail with an
1697** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1698** objects in the same database connection since doing so will lead
1699** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001700*/
drh23e11ca2004-05-04 17:27:28 +00001701int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001702 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001703 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001704 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001705 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001706 int flags, /* Options */
1707 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001708){
drh7555d8e2009-03-20 13:15:30 +00001709 BtShared *pBt = 0; /* Shared part of btree structure */
1710 Btree *p; /* Handle to return */
1711 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1712 int rc = SQLITE_OK; /* Result code from this function */
1713 u8 nReserve; /* Byte of unused space on each page */
1714 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001715
drh75c014c2010-08-30 15:02:28 +00001716 /* True if opening an ephemeral, temporary database */
1717 const int isTempDb = zFilename==0 || zFilename[0]==0;
1718
danielk1977aef0bf62005-12-30 16:28:01 +00001719 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001720 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001721 */
drhb0a7c9c2010-12-06 21:09:59 +00001722#ifdef SQLITE_OMIT_MEMORYDB
1723 const int isMemdb = 0;
1724#else
1725 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
1726 || (isTempDb && sqlite3TempInMemory(db));
danielk1977aef0bf62005-12-30 16:28:01 +00001727#endif
1728
drhe5fe6902007-12-07 18:55:28 +00001729 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001730 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001731 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001732 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1733
1734 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1735 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1736
1737 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1738 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001739
drh75c014c2010-08-30 15:02:28 +00001740 if( db->flags & SQLITE_NoReadlock ){
1741 flags |= BTREE_NO_READLOCK;
1742 }
1743 if( isMemdb ){
1744 flags |= BTREE_MEMORY;
1745 }
1746 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1747 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1748 }
drh17435752007-08-16 04:30:38 +00001749 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001750 if( !p ){
1751 return SQLITE_NOMEM;
1752 }
1753 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001754 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001755#ifndef SQLITE_OMIT_SHARED_CACHE
1756 p->lock.pBtree = p;
1757 p->lock.iTable = 1;
1758#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001759
drh198bf392006-01-06 21:52:49 +00001760#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001761 /*
1762 ** If this Btree is a candidate for shared cache, try to find an
1763 ** existing BtShared object that we can share with
1764 */
drh75c014c2010-08-30 15:02:28 +00001765 if( isMemdb==0 && isTempDb==0 ){
drhf1f12682009-09-09 14:17:52 +00001766 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001767 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001768 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001769 sqlite3_mutex *mutexShared;
1770 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001771 if( !zFullPathname ){
1772 sqlite3_free(p);
1773 return SQLITE_NOMEM;
1774 }
danielk1977adfb9b02007-09-17 07:02:56 +00001775 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001776 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1777 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001778 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001779 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001780 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001781 assert( pBt->nRef>0 );
1782 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1783 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001784 int iDb;
1785 for(iDb=db->nDb-1; iDb>=0; iDb--){
1786 Btree *pExisting = db->aDb[iDb].pBt;
1787 if( pExisting && pExisting->pBt==pBt ){
1788 sqlite3_mutex_leave(mutexShared);
1789 sqlite3_mutex_leave(mutexOpen);
1790 sqlite3_free(zFullPathname);
1791 sqlite3_free(p);
1792 return SQLITE_CONSTRAINT;
1793 }
1794 }
drhff0587c2007-08-29 17:43:19 +00001795 p->pBt = pBt;
1796 pBt->nRef++;
1797 break;
1798 }
1799 }
1800 sqlite3_mutex_leave(mutexShared);
1801 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001802 }
drhff0587c2007-08-29 17:43:19 +00001803#ifdef SQLITE_DEBUG
1804 else{
1805 /* In debug mode, we mark all persistent databases as sharable
1806 ** even when they are not. This exercises the locking code and
1807 ** gives more opportunity for asserts(sqlite3_mutex_held())
1808 ** statements to find locking problems.
1809 */
1810 p->sharable = 1;
1811 }
1812#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001813 }
1814#endif
drha059ad02001-04-17 20:09:11 +00001815 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001816 /*
1817 ** The following asserts make sure that structures used by the btree are
1818 ** the right size. This is to guard against size changes that result
1819 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001820 */
drhe53831d2007-08-17 01:14:38 +00001821 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1822 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1823 assert( sizeof(u32)==4 );
1824 assert( sizeof(u16)==2 );
1825 assert( sizeof(Pgno)==4 );
1826
1827 pBt = sqlite3MallocZero( sizeof(*pBt) );
1828 if( pBt==0 ){
1829 rc = SQLITE_NOMEM;
1830 goto btree_open_out;
1831 }
danielk197771d5d2c2008-09-29 11:49:47 +00001832 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001833 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001834 if( rc==SQLITE_OK ){
1835 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1836 }
1837 if( rc!=SQLITE_OK ){
1838 goto btree_open_out;
1839 }
shanehbd2aaf92010-09-01 02:38:21 +00001840 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001841 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001842 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001843 p->pBt = pBt;
1844
drhe53831d2007-08-17 01:14:38 +00001845 pBt->pCursor = 0;
1846 pBt->pPage1 = 0;
1847 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
drh5b47efa2010-02-12 18:18:39 +00001848#ifdef SQLITE_SECURE_DELETE
1849 pBt->secureDelete = 1;
1850#endif
drhb2eced52010-08-12 02:41:12 +00001851 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001852 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1853 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001854 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001855#ifndef SQLITE_OMIT_AUTOVACUUM
1856 /* If the magic name ":memory:" will create an in-memory database, then
1857 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1858 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1859 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1860 ** regular file-name. In this case the auto-vacuum applies as per normal.
1861 */
1862 if( zFilename && !isMemdb ){
1863 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1864 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1865 }
1866#endif
1867 nReserve = 0;
1868 }else{
1869 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001870 pBt->pageSizeFixed = 1;
1871#ifndef SQLITE_OMIT_AUTOVACUUM
1872 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1873 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1874#endif
1875 }
drhfa9601a2009-06-18 17:22:39 +00001876 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001877 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001878 pBt->usableSize = pBt->pageSize - nReserve;
1879 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001880
1881#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1882 /* Add the new BtShared object to the linked list sharable BtShareds.
1883 */
1884 if( p->sharable ){
1885 sqlite3_mutex *mutexShared;
1886 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001887 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001888 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001889 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001890 if( pBt->mutex==0 ){
1891 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001892 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001893 goto btree_open_out;
1894 }
drhff0587c2007-08-29 17:43:19 +00001895 }
drhe53831d2007-08-17 01:14:38 +00001896 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001897 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1898 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001899 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001900 }
drheee46cf2004-11-06 00:02:48 +00001901#endif
drh90f5ecb2004-07-22 01:19:35 +00001902 }
danielk1977aef0bf62005-12-30 16:28:01 +00001903
drhcfed7bc2006-03-13 14:28:05 +00001904#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001905 /* If the new Btree uses a sharable pBtShared, then link the new
1906 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001907 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001908 */
drhe53831d2007-08-17 01:14:38 +00001909 if( p->sharable ){
1910 int i;
1911 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001912 for(i=0; i<db->nDb; i++){
1913 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001914 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1915 if( p->pBt<pSib->pBt ){
1916 p->pNext = pSib;
1917 p->pPrev = 0;
1918 pSib->pPrev = p;
1919 }else{
drhabddb0c2007-08-20 13:14:28 +00001920 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001921 pSib = pSib->pNext;
1922 }
1923 p->pNext = pSib->pNext;
1924 p->pPrev = pSib;
1925 if( p->pNext ){
1926 p->pNext->pPrev = p;
1927 }
1928 pSib->pNext = p;
1929 }
1930 break;
1931 }
1932 }
danielk1977aef0bf62005-12-30 16:28:01 +00001933 }
danielk1977aef0bf62005-12-30 16:28:01 +00001934#endif
1935 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001936
1937btree_open_out:
1938 if( rc!=SQLITE_OK ){
1939 if( pBt && pBt->pPager ){
1940 sqlite3PagerClose(pBt->pPager);
1941 }
drh17435752007-08-16 04:30:38 +00001942 sqlite3_free(pBt);
1943 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001944 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001945 }else{
1946 /* If the B-Tree was successfully opened, set the pager-cache size to the
1947 ** default value. Except, when opening on an existing shared pager-cache,
1948 ** do not change the pager-cache size.
1949 */
1950 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1951 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1952 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001953 }
drh7555d8e2009-03-20 13:15:30 +00001954 if( mutexOpen ){
1955 assert( sqlite3_mutex_held(mutexOpen) );
1956 sqlite3_mutex_leave(mutexOpen);
1957 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001958 return rc;
drha059ad02001-04-17 20:09:11 +00001959}
1960
1961/*
drhe53831d2007-08-17 01:14:38 +00001962** Decrement the BtShared.nRef counter. When it reaches zero,
1963** remove the BtShared structure from the sharing list. Return
1964** true if the BtShared.nRef counter reaches zero and return
1965** false if it is still positive.
1966*/
1967static int removeFromSharingList(BtShared *pBt){
1968#ifndef SQLITE_OMIT_SHARED_CACHE
1969 sqlite3_mutex *pMaster;
1970 BtShared *pList;
1971 int removed = 0;
1972
drhd677b3d2007-08-20 22:48:41 +00001973 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001974 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001975 sqlite3_mutex_enter(pMaster);
1976 pBt->nRef--;
1977 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001978 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1979 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001980 }else{
drh78f82d12008-09-02 00:52:52 +00001981 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001982 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001983 pList=pList->pNext;
1984 }
drh34004ce2008-07-11 16:15:17 +00001985 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001986 pList->pNext = pBt->pNext;
1987 }
1988 }
drh3285db22007-09-03 22:00:39 +00001989 if( SQLITE_THREADSAFE ){
1990 sqlite3_mutex_free(pBt->mutex);
1991 }
drhe53831d2007-08-17 01:14:38 +00001992 removed = 1;
1993 }
1994 sqlite3_mutex_leave(pMaster);
1995 return removed;
1996#else
1997 return 1;
1998#endif
1999}
2000
2001/*
drhf7141992008-06-19 00:16:08 +00002002** Make sure pBt->pTmpSpace points to an allocation of
2003** MX_CELL_SIZE(pBt) bytes.
2004*/
2005static void allocateTempSpace(BtShared *pBt){
2006 if( !pBt->pTmpSpace ){
2007 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2008 }
2009}
2010
2011/*
2012** Free the pBt->pTmpSpace allocation
2013*/
2014static void freeTempSpace(BtShared *pBt){
2015 sqlite3PageFree( pBt->pTmpSpace);
2016 pBt->pTmpSpace = 0;
2017}
2018
2019/*
drha059ad02001-04-17 20:09:11 +00002020** Close an open database and invalidate all cursors.
2021*/
danielk1977aef0bf62005-12-30 16:28:01 +00002022int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002023 BtShared *pBt = p->pBt;
2024 BtCursor *pCur;
2025
danielk1977aef0bf62005-12-30 16:28:01 +00002026 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002027 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002028 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002029 pCur = pBt->pCursor;
2030 while( pCur ){
2031 BtCursor *pTmp = pCur;
2032 pCur = pCur->pNext;
2033 if( pTmp->pBtree==p ){
2034 sqlite3BtreeCloseCursor(pTmp);
2035 }
drha059ad02001-04-17 20:09:11 +00002036 }
danielk1977aef0bf62005-12-30 16:28:01 +00002037
danielk19778d34dfd2006-01-24 16:37:57 +00002038 /* Rollback any active transaction and free the handle structure.
2039 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2040 ** this handle.
2041 */
danielk1977b597f742006-01-15 11:39:18 +00002042 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00002043 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002044
danielk1977aef0bf62005-12-30 16:28:01 +00002045 /* If there are still other outstanding references to the shared-btree
2046 ** structure, return now. The remainder of this procedure cleans
2047 ** up the shared-btree.
2048 */
drhe53831d2007-08-17 01:14:38 +00002049 assert( p->wantToLock==0 && p->locked==0 );
2050 if( !p->sharable || removeFromSharingList(pBt) ){
2051 /* The pBt is no longer on the sharing list, so we can access
2052 ** it without having to hold the mutex.
2053 **
2054 ** Clean out and delete the BtShared object.
2055 */
2056 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002057 sqlite3PagerClose(pBt->pPager);
2058 if( pBt->xFreeSchema && pBt->pSchema ){
2059 pBt->xFreeSchema(pBt->pSchema);
2060 }
drhb9755982010-07-24 16:34:37 +00002061 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002062 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002063 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002064 }
2065
drhe53831d2007-08-17 01:14:38 +00002066#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002067 assert( p->wantToLock==0 );
2068 assert( p->locked==0 );
2069 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2070 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002071#endif
2072
drhe53831d2007-08-17 01:14:38 +00002073 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002074 return SQLITE_OK;
2075}
2076
2077/*
drhda47d772002-12-02 04:25:19 +00002078** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002079**
2080** The maximum number of cache pages is set to the absolute
2081** value of mxPage. If mxPage is negative, the pager will
2082** operate asynchronously - it will not stop to do fsync()s
2083** to insure data is written to the disk surface before
2084** continuing. Transactions still work if synchronous is off,
2085** and the database cannot be corrupted if this program
2086** crashes. But if the operating system crashes or there is
2087** an abrupt power failure when synchronous is off, the database
2088** could be left in an inconsistent and unrecoverable state.
2089** Synchronous is on by default so database corruption is not
2090** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002091*/
danielk1977aef0bf62005-12-30 16:28:01 +00002092int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2093 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002094 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002095 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002096 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002097 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002098 return SQLITE_OK;
2099}
2100
2101/*
drh973b6e32003-02-12 14:09:42 +00002102** Change the way data is synced to disk in order to increase or decrease
2103** how well the database resists damage due to OS crashes and power
2104** failures. Level 1 is the same as asynchronous (no syncs() occur and
2105** there is a high probability of damage) Level 2 is the default. There
2106** is a very low but non-zero probability of damage. Level 3 reduces the
2107** probability of damage to near zero but with a write performance reduction.
2108*/
danielk197793758c82005-01-21 08:13:14 +00002109#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhc97d8462010-11-19 18:23:35 +00002110int sqlite3BtreeSetSafetyLevel(
2111 Btree *p, /* The btree to set the safety level on */
2112 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
2113 int fullSync, /* PRAGMA fullfsync. */
2114 int ckptFullSync /* PRAGMA checkpoint_fullfync */
2115){
danielk1977aef0bf62005-12-30 16:28:01 +00002116 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002117 assert( sqlite3_mutex_held(p->db->mutex) );
drhc97d8462010-11-19 18:23:35 +00002118 assert( level>=1 && level<=3 );
drhd677b3d2007-08-20 22:48:41 +00002119 sqlite3BtreeEnter(p);
drhc97d8462010-11-19 18:23:35 +00002120 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
drhd677b3d2007-08-20 22:48:41 +00002121 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002122 return SQLITE_OK;
2123}
danielk197793758c82005-01-21 08:13:14 +00002124#endif
drh973b6e32003-02-12 14:09:42 +00002125
drh2c8997b2005-08-27 16:36:48 +00002126/*
2127** Return TRUE if the given btree is set to safety level 1. In other
2128** words, return TRUE if no sync() occurs on the disk files.
2129*/
danielk1977aef0bf62005-12-30 16:28:01 +00002130int sqlite3BtreeSyncDisabled(Btree *p){
2131 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002132 int rc;
drhe5fe6902007-12-07 18:55:28 +00002133 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002134 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002135 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002136 rc = sqlite3PagerNosync(pBt->pPager);
2137 sqlite3BtreeLeave(p);
2138 return rc;
drh2c8997b2005-08-27 16:36:48 +00002139}
2140
drh973b6e32003-02-12 14:09:42 +00002141/*
drh90f5ecb2004-07-22 01:19:35 +00002142** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002143** Or, if the page size has already been fixed, return SQLITE_READONLY
2144** without changing anything.
drh06f50212004-11-02 14:24:33 +00002145**
2146** The page size must be a power of 2 between 512 and 65536. If the page
2147** size supplied does not meet this constraint then the page size is not
2148** changed.
2149**
2150** Page sizes are constrained to be a power of two so that the region
2151** of the database file used for locking (beginning at PENDING_BYTE,
2152** the first byte past the 1GB boundary, 0x40000000) needs to occur
2153** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002154**
2155** If parameter nReserve is less than zero, then the number of reserved
2156** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002157**
2158** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2159** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002160*/
drhce4869f2009-04-02 20:16:58 +00002161int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002162 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002163 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002164 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002165 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002166 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002167 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002168 return SQLITE_READONLY;
2169 }
2170 if( nReserve<0 ){
2171 nReserve = pBt->pageSize - pBt->usableSize;
2172 }
drhf49661a2008-12-10 16:45:50 +00002173 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002174 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2175 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002176 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002177 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002178 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002179 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002180 }
drhfa9601a2009-06-18 17:22:39 +00002181 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002182 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002183 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002184 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002185 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002186}
2187
2188/*
2189** Return the currently defined page size
2190*/
danielk1977aef0bf62005-12-30 16:28:01 +00002191int sqlite3BtreeGetPageSize(Btree *p){
2192 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002193}
drh7f751222009-03-17 22:33:00 +00002194
danbb2b4412011-04-06 17:54:31 +00002195#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002196/*
2197** Return the number of bytes of space at the end of every page that
2198** are intentually left unused. This is the "reserved" space that is
2199** sometimes used by extensions.
2200*/
danielk1977aef0bf62005-12-30 16:28:01 +00002201int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002202 int n;
2203 sqlite3BtreeEnter(p);
2204 n = p->pBt->pageSize - p->pBt->usableSize;
2205 sqlite3BtreeLeave(p);
2206 return n;
drh2011d5f2004-07-22 02:40:37 +00002207}
drhf8e632b2007-05-08 14:51:36 +00002208
2209/*
2210** Set the maximum page count for a database if mxPage is positive.
2211** No changes are made if mxPage is 0 or negative.
2212** Regardless of the value of mxPage, return the maximum page count.
2213*/
2214int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002215 int n;
2216 sqlite3BtreeEnter(p);
2217 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2218 sqlite3BtreeLeave(p);
2219 return n;
drhf8e632b2007-05-08 14:51:36 +00002220}
drh5b47efa2010-02-12 18:18:39 +00002221
2222/*
2223** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1,
2224** then make no changes. Always return the value of the secureDelete
2225** setting after the change.
2226*/
2227int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2228 int b;
drhaf034ed2010-02-12 19:46:26 +00002229 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002230 sqlite3BtreeEnter(p);
2231 if( newFlag>=0 ){
2232 p->pBt->secureDelete = (newFlag!=0) ? 1 : 0;
2233 }
2234 b = p->pBt->secureDelete;
2235 sqlite3BtreeLeave(p);
2236 return b;
2237}
danielk1977576ec6b2005-01-21 11:55:25 +00002238#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002239
2240/*
danielk1977951af802004-11-05 15:45:09 +00002241** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2242** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2243** is disabled. The default value for the auto-vacuum property is
2244** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2245*/
danielk1977aef0bf62005-12-30 16:28:01 +00002246int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002247#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002248 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002249#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002250 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002251 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002252 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002253
2254 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002255 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002256 rc = SQLITE_READONLY;
2257 }else{
drh076d4662009-02-18 20:31:18 +00002258 pBt->autoVacuum = av ?1:0;
2259 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002260 }
drhd677b3d2007-08-20 22:48:41 +00002261 sqlite3BtreeLeave(p);
2262 return rc;
danielk1977951af802004-11-05 15:45:09 +00002263#endif
2264}
2265
2266/*
2267** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2268** enabled 1 is returned. Otherwise 0.
2269*/
danielk1977aef0bf62005-12-30 16:28:01 +00002270int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002271#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002272 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002273#else
drhd677b3d2007-08-20 22:48:41 +00002274 int rc;
2275 sqlite3BtreeEnter(p);
2276 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002277 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2278 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2279 BTREE_AUTOVACUUM_INCR
2280 );
drhd677b3d2007-08-20 22:48:41 +00002281 sqlite3BtreeLeave(p);
2282 return rc;
danielk1977951af802004-11-05 15:45:09 +00002283#endif
2284}
2285
2286
2287/*
drha34b6762004-05-07 13:30:42 +00002288** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002289** also acquire a readlock on that file.
2290**
2291** SQLITE_OK is returned on success. If the file is not a
2292** well-formed database file, then SQLITE_CORRUPT is returned.
2293** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002294** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002295*/
danielk1977aef0bf62005-12-30 16:28:01 +00002296static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002297 int rc; /* Result code from subfunctions */
2298 MemPage *pPage1; /* Page 1 of the database file */
2299 int nPage; /* Number of pages in the database */
2300 int nPageFile = 0; /* Number of pages in the database file */
2301 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002302
drh1fee73e2007-08-29 04:00:57 +00002303 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002304 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002305 rc = sqlite3PagerSharedLock(pBt->pPager);
2306 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002307 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002308 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002309
2310 /* Do some checking to help insure the file we opened really is
2311 ** a valid database file.
2312 */
drhc2a4bab2010-04-02 12:46:45 +00002313 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002314 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002315 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002316 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002317 }
2318 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002319 u32 pageSize;
2320 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002321 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002322 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002323 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002324 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002325 }
dan5cf53532010-05-01 16:40:20 +00002326
2327#ifdef SQLITE_OMIT_WAL
2328 if( page1[18]>1 ){
2329 pBt->readOnly = 1;
2330 }
2331 if( page1[19]>1 ){
2332 goto page1_init_failed;
2333 }
2334#else
dane04dc882010-04-20 18:53:15 +00002335 if( page1[18]>2 ){
drh309169a2007-04-24 17:27:51 +00002336 pBt->readOnly = 1;
2337 }
dane04dc882010-04-20 18:53:15 +00002338 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002339 goto page1_init_failed;
2340 }
drhe5ae5732008-06-15 02:51:47 +00002341
dana470aeb2010-04-21 11:43:38 +00002342 /* If the write version is set to 2, this database should be accessed
2343 ** in WAL mode. If the log is not already open, open it now. Then
2344 ** return SQLITE_OK and return without populating BtShared.pPage1.
2345 ** The caller detects this and calls this function again. This is
2346 ** required as the version of page 1 currently in the page1 buffer
2347 ** may not be the latest version - there may be a newer one in the log
2348 ** file.
2349 */
danb9780022010-04-21 18:37:57 +00002350 if( page1[19]==2 && pBt->doNotUseWAL==0 ){
dane04dc882010-04-20 18:53:15 +00002351 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002352 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002353 if( rc!=SQLITE_OK ){
2354 goto page1_init_failed;
2355 }else if( isOpen==0 ){
2356 releasePage(pPage1);
2357 return SQLITE_OK;
2358 }
dan8b5444b2010-04-27 14:37:47 +00002359 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002360 }
dan5cf53532010-05-01 16:40:20 +00002361#endif
dane04dc882010-04-20 18:53:15 +00002362
drhe5ae5732008-06-15 02:51:47 +00002363 /* The maximum embedded fraction must be exactly 25%. And the minimum
2364 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2365 ** The original design allowed these amounts to vary, but as of
2366 ** version 3.6.0, we require them to be fixed.
2367 */
2368 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2369 goto page1_init_failed;
2370 }
drhb2eced52010-08-12 02:41:12 +00002371 pageSize = (page1[16]<<8) | (page1[17]<<16);
2372 if( ((pageSize-1)&pageSize)!=0
2373 || pageSize>SQLITE_MAX_PAGE_SIZE
2374 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002375 ){
drh07d183d2005-05-01 22:52:42 +00002376 goto page1_init_failed;
2377 }
2378 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002379 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002380 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002381 /* After reading the first page of the database assuming a page size
2382 ** of BtShared.pageSize, we have discovered that the page-size is
2383 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2384 ** zero and return SQLITE_OK. The caller will call this function
2385 ** again with the correct page-size.
2386 */
2387 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002388 pBt->usableSize = usableSize;
2389 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002390 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002391 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2392 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002393 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002394 }
danecac6702011-02-09 18:19:20 +00002395 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002396 rc = SQLITE_CORRUPT_BKPT;
2397 goto page1_init_failed;
2398 }
drhb33e1b92009-06-18 11:29:20 +00002399 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002400 goto page1_init_failed;
2401 }
drh43b18e12010-08-17 19:40:08 +00002402 pBt->pageSize = pageSize;
2403 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002404#ifndef SQLITE_OMIT_AUTOVACUUM
2405 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002406 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002407#endif
drh306dc212001-05-21 13:45:10 +00002408 }
drhb6f41482004-05-14 01:58:11 +00002409
2410 /* maxLocal is the maximum amount of payload to store locally for
2411 ** a cell. Make sure it is small enough so that at least minFanout
2412 ** cells can will fit on one page. We assume a 10-byte page header.
2413 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002414 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002415 ** 4-byte child pointer
2416 ** 9-byte nKey value
2417 ** 4-byte nData value
2418 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002419 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002420 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2421 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002422 */
shaneh1df2db72010-08-18 02:28:48 +00002423 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2424 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2425 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2426 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drh2e38c322004-09-03 18:38:44 +00002427 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002428 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002429 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002430 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002431
drh72f82862001-05-24 21:06:34 +00002432page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002433 releasePage(pPage1);
2434 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002435 return rc;
drh306dc212001-05-21 13:45:10 +00002436}
2437
2438/*
drhb8ca3072001-12-05 00:21:20 +00002439** If there are no outstanding cursors and we are not in the middle
2440** of a transaction but there is a read lock on the database, then
2441** this routine unrefs the first page of the database file which
2442** has the effect of releasing the read lock.
2443**
drhb8ca3072001-12-05 00:21:20 +00002444** If there is a transaction in progress, this routine is a no-op.
2445*/
danielk1977aef0bf62005-12-30 16:28:01 +00002446static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002447 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002448 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2449 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002450 assert( pBt->pPage1->aData );
2451 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2452 assert( pBt->pPage1->aData );
2453 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002454 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002455 }
2456}
2457
2458/*
drhe39f2f92009-07-23 01:43:59 +00002459** If pBt points to an empty file then convert that empty file
2460** into a new empty database by initializing the first page of
2461** the database.
drh8b2f49b2001-06-08 00:21:52 +00002462*/
danielk1977aef0bf62005-12-30 16:28:01 +00002463static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002464 MemPage *pP1;
2465 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002466 int rc;
drhd677b3d2007-08-20 22:48:41 +00002467
drh1fee73e2007-08-29 04:00:57 +00002468 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002469 if( pBt->nPage>0 ){
2470 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002471 }
drh3aac2dd2004-04-26 14:10:20 +00002472 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002473 assert( pP1!=0 );
2474 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002475 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002476 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002477 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2478 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002479 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2480 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002481 data[18] = 1;
2482 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002483 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2484 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002485 data[21] = 64;
2486 data[22] = 32;
2487 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002488 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002489 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002490 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002491#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002492 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002493 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002494 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002495 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002496#endif
drhdd3cd972010-03-27 17:12:36 +00002497 pBt->nPage = 1;
2498 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002499 return SQLITE_OK;
2500}
2501
2502/*
danielk1977ee5741e2004-05-31 10:01:34 +00002503** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002504** is started if the second argument is nonzero, otherwise a read-
2505** transaction. If the second argument is 2 or more and exclusive
2506** transaction is started, meaning that no other process is allowed
2507** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002508** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002509** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002510**
danielk1977ee5741e2004-05-31 10:01:34 +00002511** A write-transaction must be started before attempting any
2512** changes to the database. None of the following routines
2513** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002514**
drh23e11ca2004-05-04 17:27:28 +00002515** sqlite3BtreeCreateTable()
2516** sqlite3BtreeCreateIndex()
2517** sqlite3BtreeClearTable()
2518** sqlite3BtreeDropTable()
2519** sqlite3BtreeInsert()
2520** sqlite3BtreeDelete()
2521** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002522**
drhb8ef32c2005-03-14 02:01:49 +00002523** If an initial attempt to acquire the lock fails because of lock contention
2524** and the database was previously unlocked, then invoke the busy handler
2525** if there is one. But if there was previously a read-lock, do not
2526** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2527** returned when there is already a read-lock in order to avoid a deadlock.
2528**
2529** Suppose there are two processes A and B. A has a read lock and B has
2530** a reserved lock. B tries to promote to exclusive but is blocked because
2531** of A's read lock. A tries to promote to reserved but is blocked by B.
2532** One or the other of the two processes must give way or there can be
2533** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2534** when A already has a read lock, we encourage A to give up and let B
2535** proceed.
drha059ad02001-04-17 20:09:11 +00002536*/
danielk1977aef0bf62005-12-30 16:28:01 +00002537int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002538 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002539 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002540 int rc = SQLITE_OK;
2541
drhd677b3d2007-08-20 22:48:41 +00002542 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002543 btreeIntegrity(p);
2544
danielk1977ee5741e2004-05-31 10:01:34 +00002545 /* If the btree is already in a write-transaction, or it
2546 ** is already in a read-transaction and a read-transaction
2547 ** is requested, this is a no-op.
2548 */
danielk1977aef0bf62005-12-30 16:28:01 +00002549 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002550 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002551 }
drhb8ef32c2005-03-14 02:01:49 +00002552
2553 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002554 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002555 rc = SQLITE_READONLY;
2556 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002557 }
2558
danielk1977404ca072009-03-16 13:19:36 +00002559#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002560 /* If another database handle has already opened a write transaction
2561 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002562 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002563 */
danielk1977404ca072009-03-16 13:19:36 +00002564 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2565 pBlock = pBt->pWriter->db;
2566 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002567 BtLock *pIter;
2568 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2569 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002570 pBlock = pIter->pBtree->db;
2571 break;
danielk1977641b0f42007-12-21 04:47:25 +00002572 }
2573 }
2574 }
danielk1977404ca072009-03-16 13:19:36 +00002575 if( pBlock ){
2576 sqlite3ConnectionBlocked(p->db, pBlock);
2577 rc = SQLITE_LOCKED_SHAREDCACHE;
2578 goto trans_begun;
2579 }
danielk1977641b0f42007-12-21 04:47:25 +00002580#endif
2581
danielk1977602b4662009-07-02 07:47:33 +00002582 /* Any read-only or read-write transaction implies a read-lock on
2583 ** page 1. So if some other shared-cache client already has a write-lock
2584 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002585 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2586 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002587
shaneh5eba1f62010-07-02 17:05:03 +00002588 pBt->initiallyEmpty = (u8)(pBt->nPage==0);
drhb8ef32c2005-03-14 02:01:49 +00002589 do {
danielk1977295dc102009-04-01 19:07:03 +00002590 /* Call lockBtree() until either pBt->pPage1 is populated or
2591 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2592 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2593 ** reading page 1 it discovers that the page-size of the database
2594 ** file is not pBt->pageSize. In this case lockBtree() will update
2595 ** pBt->pageSize to the page-size of the file on disk.
2596 */
2597 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002598
drhb8ef32c2005-03-14 02:01:49 +00002599 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002600 if( pBt->readOnly ){
2601 rc = SQLITE_READONLY;
2602 }else{
danielk1977d8293352009-04-30 09:10:37 +00002603 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002604 if( rc==SQLITE_OK ){
2605 rc = newDatabase(pBt);
2606 }
drhb8ef32c2005-03-14 02:01:49 +00002607 }
2608 }
2609
danielk1977bd434552009-03-18 10:33:00 +00002610 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002611 unlockBtreeIfUnused(pBt);
2612 }
danf9b76712010-06-01 14:12:45 +00002613 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002614 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002615
2616 if( rc==SQLITE_OK ){
2617 if( p->inTrans==TRANS_NONE ){
2618 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002619#ifndef SQLITE_OMIT_SHARED_CACHE
2620 if( p->sharable ){
2621 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2622 p->lock.eLock = READ_LOCK;
2623 p->lock.pNext = pBt->pLock;
2624 pBt->pLock = &p->lock;
2625 }
2626#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002627 }
2628 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2629 if( p->inTrans>pBt->inTransaction ){
2630 pBt->inTransaction = p->inTrans;
2631 }
danielk1977404ca072009-03-16 13:19:36 +00002632 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002633 MemPage *pPage1 = pBt->pPage1;
2634#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002635 assert( !pBt->pWriter );
2636 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002637 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002638#endif
dan59257dc2010-08-04 11:34:31 +00002639
2640 /* If the db-size header field is incorrect (as it may be if an old
2641 ** client has been writing the database file), update it now. Doing
2642 ** this sooner rather than later means the database size can safely
2643 ** re-read the database size from page 1 if a savepoint or transaction
2644 ** rollback occurs within the transaction.
2645 */
2646 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2647 rc = sqlite3PagerWrite(pPage1->pDbPage);
2648 if( rc==SQLITE_OK ){
2649 put4byte(&pPage1->aData[28], pBt->nPage);
2650 }
2651 }
2652 }
danielk1977aef0bf62005-12-30 16:28:01 +00002653 }
2654
drhd677b3d2007-08-20 22:48:41 +00002655
2656trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002657 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002658 /* This call makes sure that the pager has the correct number of
2659 ** open savepoints. If the second parameter is greater than 0 and
2660 ** the sub-journal is not already open, then it will be opened here.
2661 */
danielk1977fd7f0452008-12-17 17:30:26 +00002662 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2663 }
danielk197712dd5492008-12-18 15:45:07 +00002664
danielk1977aef0bf62005-12-30 16:28:01 +00002665 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002666 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002667 return rc;
drha059ad02001-04-17 20:09:11 +00002668}
2669
danielk1977687566d2004-11-02 12:56:41 +00002670#ifndef SQLITE_OMIT_AUTOVACUUM
2671
2672/*
2673** Set the pointer-map entries for all children of page pPage. Also, if
2674** pPage contains cells that point to overflow pages, set the pointer
2675** map entries for the overflow pages as well.
2676*/
2677static int setChildPtrmaps(MemPage *pPage){
2678 int i; /* Counter variable */
2679 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002680 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002681 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002682 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002683 Pgno pgno = pPage->pgno;
2684
drh1fee73e2007-08-29 04:00:57 +00002685 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002686 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002687 if( rc!=SQLITE_OK ){
2688 goto set_child_ptrmaps_out;
2689 }
danielk1977687566d2004-11-02 12:56:41 +00002690 nCell = pPage->nCell;
2691
2692 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002693 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002694
drh98add2e2009-07-20 17:11:49 +00002695 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002696
danielk1977687566d2004-11-02 12:56:41 +00002697 if( !pPage->leaf ){
2698 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002699 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002700 }
2701 }
2702
2703 if( !pPage->leaf ){
2704 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002705 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002706 }
2707
2708set_child_ptrmaps_out:
2709 pPage->isInit = isInitOrig;
2710 return rc;
2711}
2712
2713/*
drhf3aed592009-07-08 18:12:49 +00002714** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2715** that it points to iTo. Parameter eType describes the type of pointer to
2716** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002717**
2718** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2719** page of pPage.
2720**
2721** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2722** page pointed to by one of the cells on pPage.
2723**
2724** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2725** overflow page in the list.
2726*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002727static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002728 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002729 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002730 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002731 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002732 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002733 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002734 }
danielk1977f78fc082004-11-02 14:40:32 +00002735 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002736 }else{
drhf49661a2008-12-10 16:45:50 +00002737 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002738 int i;
2739 int nCell;
2740
danielk197730548662009-07-09 05:07:37 +00002741 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002742 nCell = pPage->nCell;
2743
danielk1977687566d2004-11-02 12:56:41 +00002744 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002745 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002746 if( eType==PTRMAP_OVERFLOW1 ){
2747 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002748 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002749 if( info.iOverflow
2750 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2751 && iFrom==get4byte(&pCell[info.iOverflow])
2752 ){
2753 put4byte(&pCell[info.iOverflow], iTo);
2754 break;
danielk1977687566d2004-11-02 12:56:41 +00002755 }
2756 }else{
2757 if( get4byte(pCell)==iFrom ){
2758 put4byte(pCell, iTo);
2759 break;
2760 }
2761 }
2762 }
2763
2764 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002765 if( eType!=PTRMAP_BTREE ||
2766 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002767 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002768 }
danielk1977687566d2004-11-02 12:56:41 +00002769 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2770 }
2771
2772 pPage->isInit = isInitOrig;
2773 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002774 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002775}
2776
danielk1977003ba062004-11-04 02:57:33 +00002777
danielk19777701e812005-01-10 12:59:51 +00002778/*
2779** Move the open database page pDbPage to location iFreePage in the
2780** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002781**
2782** The isCommit flag indicates that there is no need to remember that
2783** the journal needs to be sync()ed before database page pDbPage->pgno
2784** can be written to. The caller has already promised not to write to that
2785** page.
danielk19777701e812005-01-10 12:59:51 +00002786*/
danielk1977003ba062004-11-04 02:57:33 +00002787static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002788 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002789 MemPage *pDbPage, /* Open page to move */
2790 u8 eType, /* Pointer map 'type' entry for pDbPage */
2791 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002792 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002793 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002794){
2795 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2796 Pgno iDbPage = pDbPage->pgno;
2797 Pager *pPager = pBt->pPager;
2798 int rc;
2799
danielk1977a0bf2652004-11-04 14:30:04 +00002800 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2801 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002802 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002803 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002804
drh85b623f2007-12-13 21:54:09 +00002805 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002806 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2807 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002808 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002809 if( rc!=SQLITE_OK ){
2810 return rc;
2811 }
2812 pDbPage->pgno = iFreePage;
2813
2814 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2815 ** that point to overflow pages. The pointer map entries for all these
2816 ** pages need to be changed.
2817 **
2818 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2819 ** pointer to a subsequent overflow page. If this is the case, then
2820 ** the pointer map needs to be updated for the subsequent overflow page.
2821 */
danielk1977a0bf2652004-11-04 14:30:04 +00002822 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002823 rc = setChildPtrmaps(pDbPage);
2824 if( rc!=SQLITE_OK ){
2825 return rc;
2826 }
2827 }else{
2828 Pgno nextOvfl = get4byte(pDbPage->aData);
2829 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002830 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002831 if( rc!=SQLITE_OK ){
2832 return rc;
2833 }
2834 }
2835 }
2836
2837 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2838 ** that it points at iFreePage. Also fix the pointer map entry for
2839 ** iPtrPage.
2840 */
danielk1977a0bf2652004-11-04 14:30:04 +00002841 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002842 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002843 if( rc!=SQLITE_OK ){
2844 return rc;
2845 }
danielk19773b8a05f2007-03-19 17:44:26 +00002846 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002847 if( rc!=SQLITE_OK ){
2848 releasePage(pPtrPage);
2849 return rc;
2850 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002851 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002852 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002853 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002854 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002855 }
danielk1977003ba062004-11-04 02:57:33 +00002856 }
danielk1977003ba062004-11-04 02:57:33 +00002857 return rc;
2858}
2859
danielk1977dddbcdc2007-04-26 14:42:34 +00002860/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002861static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002862
2863/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002864** Perform a single step of an incremental-vacuum. If successful,
2865** return SQLITE_OK. If there is no work to do (and therefore no
2866** point in calling this function again), return SQLITE_DONE.
2867**
2868** More specificly, this function attempts to re-organize the
2869** database so that the last page of the file currently in use
2870** is no longer in use.
2871**
drhea8ffdf2009-07-22 00:35:23 +00002872** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002873** that the caller will keep calling incrVacuumStep() until
2874** it returns SQLITE_DONE or an error, and that nFin is the
2875** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002876** process is complete. If nFin is zero, it is assumed that
2877** incrVacuumStep() will be called a finite amount of times
2878** which may or may not empty the freelist. A full autovacuum
2879** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002880*/
danielk19773460d192008-12-27 15:23:13 +00002881static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002882 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002883 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002884
drh1fee73e2007-08-29 04:00:57 +00002885 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002886 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002887
2888 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002889 u8 eType;
2890 Pgno iPtrPage;
2891
2892 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002893 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002894 return SQLITE_DONE;
2895 }
2896
2897 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2898 if( rc!=SQLITE_OK ){
2899 return rc;
2900 }
2901 if( eType==PTRMAP_ROOTPAGE ){
2902 return SQLITE_CORRUPT_BKPT;
2903 }
2904
2905 if( eType==PTRMAP_FREEPAGE ){
2906 if( nFin==0 ){
2907 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002908 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002909 ** truncated to zero after this function returns, so it doesn't
2910 ** matter if it still contains some garbage entries.
2911 */
2912 Pgno iFreePg;
2913 MemPage *pFreePg;
2914 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2915 if( rc!=SQLITE_OK ){
2916 return rc;
2917 }
2918 assert( iFreePg==iLastPg );
2919 releasePage(pFreePg);
2920 }
2921 } else {
2922 Pgno iFreePg; /* Index of free page to move pLastPg to */
2923 MemPage *pLastPg;
2924
danielk197730548662009-07-09 05:07:37 +00002925 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002926 if( rc!=SQLITE_OK ){
2927 return rc;
2928 }
2929
danielk1977b4626a32007-04-28 15:47:43 +00002930 /* If nFin is zero, this loop runs exactly once and page pLastPg
2931 ** is swapped with the first free page pulled off the free list.
2932 **
2933 ** On the other hand, if nFin is greater than zero, then keep
2934 ** looping until a free-page located within the first nFin pages
2935 ** of the file is found.
2936 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002937 do {
2938 MemPage *pFreePg;
2939 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2940 if( rc!=SQLITE_OK ){
2941 releasePage(pLastPg);
2942 return rc;
2943 }
2944 releasePage(pFreePg);
2945 }while( nFin!=0 && iFreePg>nFin );
2946 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002947
2948 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002949 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002950 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002951 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002952 releasePage(pLastPg);
2953 if( rc!=SQLITE_OK ){
2954 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002955 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002956 }
2957 }
2958
danielk19773460d192008-12-27 15:23:13 +00002959 if( nFin==0 ){
2960 iLastPg--;
2961 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002962 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2963 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002964 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002965 if( rc!=SQLITE_OK ){
2966 return rc;
2967 }
2968 rc = sqlite3PagerWrite(pPg->pDbPage);
2969 releasePage(pPg);
2970 if( rc!=SQLITE_OK ){
2971 return rc;
2972 }
2973 }
danielk19773460d192008-12-27 15:23:13 +00002974 iLastPg--;
2975 }
2976 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002977 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002978 }
2979 return SQLITE_OK;
2980}
2981
2982/*
2983** A write-transaction must be opened before calling this function.
2984** It performs a single unit of work towards an incremental vacuum.
2985**
2986** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002987** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002988** SQLITE_OK is returned. Otherwise an SQLite error code.
2989*/
2990int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002991 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002992 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002993
2994 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002995 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2996 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002997 rc = SQLITE_DONE;
2998 }else{
2999 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00003000 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00003001 if( rc==SQLITE_OK ){
3002 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3003 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3004 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003005 }
drhd677b3d2007-08-20 22:48:41 +00003006 sqlite3BtreeLeave(p);
3007 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003008}
3009
3010/*
danielk19773b8a05f2007-03-19 17:44:26 +00003011** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003012** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003013**
3014** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3015** the database file should be truncated to during the commit process.
3016** i.e. the database has been reorganized so that only the first *pnTrunc
3017** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003018*/
danielk19773460d192008-12-27 15:23:13 +00003019static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003020 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003021 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003022 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003023
drh1fee73e2007-08-29 04:00:57 +00003024 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003025 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003026 assert(pBt->autoVacuum);
3027 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003028 Pgno nFin; /* Number of pages in database after autovacuuming */
3029 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003030 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3031 Pgno iFree; /* The next page to be freed */
3032 int nEntry; /* Number of entries on one ptrmap page */
3033 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003034
drhb1299152010-03-30 22:58:33 +00003035 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003036 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3037 /* It is not possible to create a database for which the final page
3038 ** is either a pointer-map page or the pending-byte page. If one
3039 ** is encountered, this indicates corruption.
3040 */
danielk19773460d192008-12-27 15:23:13 +00003041 return SQLITE_CORRUPT_BKPT;
3042 }
danielk1977ef165ce2009-04-06 17:50:03 +00003043
danielk19773460d192008-12-27 15:23:13 +00003044 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00003045 nEntry = pBt->usableSize/5;
3046 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00003047 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00003048 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00003049 nFin--;
3050 }
3051 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3052 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00003053 }
drhc5e47ac2009-06-04 00:11:56 +00003054 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003055
danielk19773460d192008-12-27 15:23:13 +00003056 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3057 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00003058 }
danielk19773460d192008-12-27 15:23:13 +00003059 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003060 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3061 put4byte(&pBt->pPage1->aData[32], 0);
3062 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003063 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00003064 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00003065 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003066 }
3067 if( rc!=SQLITE_OK ){
3068 sqlite3PagerRollback(pPager);
3069 }
danielk1977687566d2004-11-02 12:56:41 +00003070 }
3071
danielk19773b8a05f2007-03-19 17:44:26 +00003072 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003073 return rc;
3074}
danielk1977dddbcdc2007-04-26 14:42:34 +00003075
danielk1977a50d9aa2009-06-08 14:49:45 +00003076#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3077# define setChildPtrmaps(x) SQLITE_OK
3078#endif
danielk1977687566d2004-11-02 12:56:41 +00003079
3080/*
drh80e35f42007-03-30 14:06:34 +00003081** This routine does the first phase of a two-phase commit. This routine
3082** causes a rollback journal to be created (if it does not already exist)
3083** and populated with enough information so that if a power loss occurs
3084** the database can be restored to its original state by playing back
3085** the journal. Then the contents of the journal are flushed out to
3086** the disk. After the journal is safely on oxide, the changes to the
3087** database are written into the database file and flushed to oxide.
3088** At the end of this call, the rollback journal still exists on the
3089** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003090** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003091** commit process.
3092**
3093** This call is a no-op if no write-transaction is currently active on pBt.
3094**
3095** Otherwise, sync the database file for the btree pBt. zMaster points to
3096** the name of a master journal file that should be written into the
3097** individual journal file, or is NULL, indicating no master journal file
3098** (single database transaction).
3099**
3100** When this is called, the master journal should already have been
3101** created, populated with this journal pointer and synced to disk.
3102**
3103** Once this is routine has returned, the only thing required to commit
3104** the write-transaction for this database file is to delete the journal.
3105*/
3106int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3107 int rc = SQLITE_OK;
3108 if( p->inTrans==TRANS_WRITE ){
3109 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003110 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003111#ifndef SQLITE_OMIT_AUTOVACUUM
3112 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003113 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003114 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003115 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003116 return rc;
3117 }
3118 }
3119#endif
drh49b9d332009-01-02 18:10:42 +00003120 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003121 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003122 }
3123 return rc;
3124}
3125
3126/*
danielk197794b30732009-07-02 17:21:57 +00003127** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3128** at the conclusion of a transaction.
3129*/
3130static void btreeEndTransaction(Btree *p){
3131 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003132 assert( sqlite3BtreeHoldsMutex(p) );
3133
danielk197794b30732009-07-02 17:21:57 +00003134 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003135 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3136 /* If there are other active statements that belong to this database
3137 ** handle, downgrade to a read-only transaction. The other statements
3138 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003139 downgradeAllSharedCacheTableLocks(p);
3140 p->inTrans = TRANS_READ;
3141 }else{
3142 /* If the handle had any kind of transaction open, decrement the
3143 ** transaction count of the shared btree. If the transaction count
3144 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3145 ** call below will unlock the pager. */
3146 if( p->inTrans!=TRANS_NONE ){
3147 clearAllSharedCacheTableLocks(p);
3148 pBt->nTransaction--;
3149 if( 0==pBt->nTransaction ){
3150 pBt->inTransaction = TRANS_NONE;
3151 }
3152 }
3153
3154 /* Set the current transaction state to TRANS_NONE and unlock the
3155 ** pager if this call closed the only read or write transaction. */
3156 p->inTrans = TRANS_NONE;
3157 unlockBtreeIfUnused(pBt);
3158 }
3159
3160 btreeIntegrity(p);
3161}
3162
3163/*
drh2aa679f2001-06-25 02:11:07 +00003164** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003165**
drh6e345992007-03-30 11:12:08 +00003166** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003167** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3168** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3169** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003170** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003171** routine has to do is delete or truncate or zero the header in the
3172** the rollback journal (which causes the transaction to commit) and
3173** drop locks.
drh6e345992007-03-30 11:12:08 +00003174**
dan60939d02011-03-29 15:40:55 +00003175** Normally, if an error occurs while the pager layer is attempting to
3176** finalize the underlying journal file, this function returns an error and
3177** the upper layer will attempt a rollback. However, if the second argument
3178** is non-zero then this b-tree transaction is part of a multi-file
3179** transaction. In this case, the transaction has already been committed
3180** (by deleting a master journal file) and the caller will ignore this
3181** functions return code. So, even if an error occurs in the pager layer,
3182** reset the b-tree objects internal state to indicate that the write
3183** transaction has been closed. This is quite safe, as the pager will have
3184** transitioned to the error state.
3185**
drh5e00f6c2001-09-13 13:46:56 +00003186** This will release the write lock on the database file. If there
3187** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003188*/
dan60939d02011-03-29 15:40:55 +00003189int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003190
drh075ed302010-10-14 01:17:30 +00003191 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003192 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003193 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003194
3195 /* If the handle has a write-transaction open, commit the shared-btrees
3196 ** transaction and set the shared state to TRANS_READ.
3197 */
3198 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003199 int rc;
drh075ed302010-10-14 01:17:30 +00003200 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003201 assert( pBt->inTransaction==TRANS_WRITE );
3202 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003203 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003204 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003205 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003206 return rc;
3207 }
danielk1977aef0bf62005-12-30 16:28:01 +00003208 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003209 }
danielk1977aef0bf62005-12-30 16:28:01 +00003210
danielk197794b30732009-07-02 17:21:57 +00003211 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003212 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003213 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003214}
3215
drh80e35f42007-03-30 14:06:34 +00003216/*
3217** Do both phases of a commit.
3218*/
3219int sqlite3BtreeCommit(Btree *p){
3220 int rc;
drhd677b3d2007-08-20 22:48:41 +00003221 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003222 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3223 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003224 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003225 }
drhd677b3d2007-08-20 22:48:41 +00003226 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003227 return rc;
3228}
3229
danielk1977fbcd5852004-06-15 02:44:18 +00003230#ifndef NDEBUG
3231/*
3232** Return the number of write-cursors open on this handle. This is for use
3233** in assert() expressions, so it is only compiled if NDEBUG is not
3234** defined.
drhfb982642007-08-30 01:19:59 +00003235**
3236** For the purposes of this routine, a write-cursor is any cursor that
3237** is capable of writing to the databse. That means the cursor was
3238** originally opened for writing and the cursor has not be disabled
3239** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003240*/
danielk1977aef0bf62005-12-30 16:28:01 +00003241static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003242 BtCursor *pCur;
3243 int r = 0;
3244 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003245 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003246 }
3247 return r;
3248}
3249#endif
3250
drhc39e0002004-05-07 23:50:57 +00003251/*
drhfb982642007-08-30 01:19:59 +00003252** This routine sets the state to CURSOR_FAULT and the error
3253** code to errCode for every cursor on BtShared that pBtree
3254** references.
3255**
3256** Every cursor is tripped, including cursors that belong
3257** to other database connections that happen to be sharing
3258** the cache with pBtree.
3259**
3260** This routine gets called when a rollback occurs.
3261** All cursors using the same cache must be tripped
3262** to prevent them from trying to use the btree after
3263** the rollback. The rollback may have deleted tables
3264** or moved root pages, so it is not sufficient to
3265** save the state of the cursor. The cursor must be
3266** invalidated.
3267*/
3268void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3269 BtCursor *p;
3270 sqlite3BtreeEnter(pBtree);
3271 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003272 int i;
danielk1977be51a652008-10-08 17:58:48 +00003273 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003274 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003275 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003276 for(i=0; i<=p->iPage; i++){
3277 releasePage(p->apPage[i]);
3278 p->apPage[i] = 0;
3279 }
drhfb982642007-08-30 01:19:59 +00003280 }
3281 sqlite3BtreeLeave(pBtree);
3282}
3283
3284/*
drhecdc7532001-09-23 02:35:53 +00003285** Rollback the transaction in progress. All cursors will be
3286** invalided by this operation. Any attempt to use a cursor
3287** that was open at the beginning of this operation will result
3288** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003289**
3290** This will release the write lock on the database file. If there
3291** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003292*/
danielk1977aef0bf62005-12-30 16:28:01 +00003293int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003294 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003295 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003296 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003297
drhd677b3d2007-08-20 22:48:41 +00003298 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003299 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003300#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003301 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003302 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003303 ** trying to save cursor positions. If this is an automatic rollback (as
3304 ** the result of a constraint, malloc() failure or IO error) then
3305 ** the cache may be internally inconsistent (not contain valid trees) so
3306 ** we cannot simply return the error to the caller. Instead, abort
3307 ** all queries that may be using any of the cursors that failed to save.
3308 */
drhfb982642007-08-30 01:19:59 +00003309 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003310 }
danielk19778d34dfd2006-01-24 16:37:57 +00003311#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003312 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003313
3314 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003315 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003316
danielk19778d34dfd2006-01-24 16:37:57 +00003317 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003318 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003319 if( rc2!=SQLITE_OK ){
3320 rc = rc2;
3321 }
3322
drh24cd67e2004-05-10 16:18:47 +00003323 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003324 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003325 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003326 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003327 int nPage = get4byte(28+(u8*)pPage1->aData);
3328 testcase( nPage==0 );
3329 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3330 testcase( pBt->nPage!=nPage );
3331 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003332 releasePage(pPage1);
3333 }
danielk1977fbcd5852004-06-15 02:44:18 +00003334 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003335 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003336 }
danielk1977aef0bf62005-12-30 16:28:01 +00003337
danielk197794b30732009-07-02 17:21:57 +00003338 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003339 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003340 return rc;
3341}
3342
3343/*
danielk1977bd434552009-03-18 10:33:00 +00003344** Start a statement subtransaction. The subtransaction can can be rolled
3345** back independently of the main transaction. You must start a transaction
3346** before starting a subtransaction. The subtransaction is ended automatically
3347** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003348**
3349** Statement subtransactions are used around individual SQL statements
3350** that are contained within a BEGIN...COMMIT block. If a constraint
3351** error occurs within the statement, the effect of that one statement
3352** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003353**
3354** A statement sub-transaction is implemented as an anonymous savepoint. The
3355** value passed as the second parameter is the total number of savepoints,
3356** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3357** are no active savepoints and no other statement-transactions open,
3358** iStatement is 1. This anonymous savepoint can be released or rolled back
3359** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003360*/
danielk1977bd434552009-03-18 10:33:00 +00003361int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003362 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003363 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003364 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003365 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003366 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003367 assert( iStatement>0 );
3368 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003369 assert( pBt->inTransaction==TRANS_WRITE );
3370 /* At the pager level, a statement transaction is a savepoint with
3371 ** an index greater than all savepoints created explicitly using
3372 ** SQL statements. It is illegal to open, release or rollback any
3373 ** such savepoints while the statement transaction savepoint is active.
3374 */
3375 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003376 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003377 return rc;
3378}
3379
3380/*
danielk1977fd7f0452008-12-17 17:30:26 +00003381** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3382** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003383** savepoint identified by parameter iSavepoint, depending on the value
3384** of op.
3385**
3386** Normally, iSavepoint is greater than or equal to zero. However, if op is
3387** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3388** contents of the entire transaction are rolled back. This is different
3389** from a normal transaction rollback, as no locks are released and the
3390** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003391*/
3392int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3393 int rc = SQLITE_OK;
3394 if( p && p->inTrans==TRANS_WRITE ){
3395 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003396 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3397 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3398 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003399 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003400 if( rc==SQLITE_OK ){
drh25a80ad2010-03-29 21:13:12 +00003401 if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0;
drh9f0bbf92009-01-02 21:08:09 +00003402 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003403 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003404
3405 /* The database size was written into the offset 28 of the header
3406 ** when the transaction started, so we know that the value at offset
3407 ** 28 is nonzero. */
3408 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003409 }
danielk1977fd7f0452008-12-17 17:30:26 +00003410 sqlite3BtreeLeave(p);
3411 }
3412 return rc;
3413}
3414
3415/*
drh8b2f49b2001-06-08 00:21:52 +00003416** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003417** iTable. If a read-only cursor is requested, it is assumed that
3418** the caller already has at least a read-only transaction open
3419** on the database already. If a write-cursor is requested, then
3420** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003421**
3422** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003423** If wrFlag==1, then the cursor can be used for reading or for
3424** writing if other conditions for writing are also met. These
3425** are the conditions that must be met in order for writing to
3426** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003427**
drhf74b8d92002-09-01 23:20:45 +00003428** 1: The cursor must have been opened with wrFlag==1
3429**
drhfe5d71d2007-03-19 11:54:10 +00003430** 2: Other database connections that share the same pager cache
3431** but which are not in the READ_UNCOMMITTED state may not have
3432** cursors open with wrFlag==0 on the same table. Otherwise
3433** the changes made by this write cursor would be visible to
3434** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003435**
3436** 3: The database must be writable (not on read-only media)
3437**
3438** 4: There must be an active transaction.
3439**
drh6446c4d2001-12-15 14:22:18 +00003440** No checking is done to make sure that page iTable really is the
3441** root page of a b-tree. If it is not, then the cursor acquired
3442** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003443**
drhf25a5072009-11-18 23:01:25 +00003444** It is assumed that the sqlite3BtreeCursorZero() has been called
3445** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003446*/
drhd677b3d2007-08-20 22:48:41 +00003447static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003448 Btree *p, /* The btree */
3449 int iTable, /* Root page of table to open */
3450 int wrFlag, /* 1 to write. 0 read-only */
3451 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3452 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003453){
danielk19773e8add92009-07-04 17:16:00 +00003454 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003455
drh1fee73e2007-08-29 04:00:57 +00003456 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003457 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003458
danielk1977602b4662009-07-02 07:47:33 +00003459 /* The following assert statements verify that if this is a sharable
3460 ** b-tree database, the connection is holding the required table locks,
3461 ** and that no other connection has any open cursor that conflicts with
3462 ** this lock. */
3463 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003464 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3465
danielk19773e8add92009-07-04 17:16:00 +00003466 /* Assert that the caller has opened the required transaction. */
3467 assert( p->inTrans>TRANS_NONE );
3468 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3469 assert( pBt->pPage1 && pBt->pPage1->aData );
3470
danielk197796d48e92009-06-29 06:00:37 +00003471 if( NEVER(wrFlag && pBt->readOnly) ){
3472 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003473 }
drhb1299152010-03-30 22:58:33 +00003474 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003475 assert( wrFlag==0 );
3476 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003477 }
danielk1977aef0bf62005-12-30 16:28:01 +00003478
danielk1977aef0bf62005-12-30 16:28:01 +00003479 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003480 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003481 pCur->pgnoRoot = (Pgno)iTable;
3482 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003483 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003484 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003485 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003486 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003487 pCur->pNext = pBt->pCursor;
3488 if( pCur->pNext ){
3489 pCur->pNext->pPrev = pCur;
3490 }
3491 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003492 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003493 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003494 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003495}
drhd677b3d2007-08-20 22:48:41 +00003496int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003497 Btree *p, /* The btree */
3498 int iTable, /* Root page of table to open */
3499 int wrFlag, /* 1 to write. 0 read-only */
3500 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3501 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003502){
3503 int rc;
3504 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003505 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003506 sqlite3BtreeLeave(p);
3507 return rc;
3508}
drh7f751222009-03-17 22:33:00 +00003509
3510/*
3511** Return the size of a BtCursor object in bytes.
3512**
3513** This interfaces is needed so that users of cursors can preallocate
3514** sufficient storage to hold a cursor. The BtCursor object is opaque
3515** to users so they cannot do the sizeof() themselves - they must call
3516** this routine.
3517*/
3518int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003519 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003520}
3521
drh7f751222009-03-17 22:33:00 +00003522/*
drhf25a5072009-11-18 23:01:25 +00003523** Initialize memory that will be converted into a BtCursor object.
3524**
3525** The simple approach here would be to memset() the entire object
3526** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3527** do not need to be zeroed and they are large, so we can save a lot
3528** of run-time by skipping the initialization of those elements.
3529*/
3530void sqlite3BtreeCursorZero(BtCursor *p){
3531 memset(p, 0, offsetof(BtCursor, iPage));
3532}
3533
3534/*
drh7f751222009-03-17 22:33:00 +00003535** Set the cached rowid value of every cursor in the same database file
3536** as pCur and having the same root page number as pCur. The value is
3537** set to iRowid.
3538**
3539** Only positive rowid values are considered valid for this cache.
3540** The cache is initialized to zero, indicating an invalid cache.
3541** A btree will work fine with zero or negative rowids. We just cannot
3542** cache zero or negative rowids, which means tables that use zero or
3543** negative rowids might run a little slower. But in practice, zero
3544** or negative rowids are very uncommon so this should not be a problem.
3545*/
3546void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3547 BtCursor *p;
3548 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3549 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3550 }
3551 assert( pCur->cachedRowid==iRowid );
3552}
drhd677b3d2007-08-20 22:48:41 +00003553
drh7f751222009-03-17 22:33:00 +00003554/*
3555** Return the cached rowid for the given cursor. A negative or zero
3556** return value indicates that the rowid cache is invalid and should be
3557** ignored. If the rowid cache has never before been set, then a
3558** zero is returned.
3559*/
3560sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3561 return pCur->cachedRowid;
3562}
drha059ad02001-04-17 20:09:11 +00003563
3564/*
drh5e00f6c2001-09-13 13:46:56 +00003565** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003566** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003567*/
drh3aac2dd2004-04-26 14:10:20 +00003568int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003569 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003570 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003571 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003572 BtShared *pBt = pCur->pBt;
3573 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003574 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003575 if( pCur->pPrev ){
3576 pCur->pPrev->pNext = pCur->pNext;
3577 }else{
3578 pBt->pCursor = pCur->pNext;
3579 }
3580 if( pCur->pNext ){
3581 pCur->pNext->pPrev = pCur->pPrev;
3582 }
danielk197771d5d2c2008-09-29 11:49:47 +00003583 for(i=0; i<=pCur->iPage; i++){
3584 releasePage(pCur->apPage[i]);
3585 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003586 unlockBtreeIfUnused(pBt);
3587 invalidateOverflowCache(pCur);
3588 /* sqlite3_free(pCur); */
3589 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003590 }
drh8c42ca92001-06-22 19:15:00 +00003591 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003592}
3593
drh5e2f8b92001-05-28 00:41:15 +00003594/*
drh86057612007-06-26 01:04:48 +00003595** Make sure the BtCursor* given in the argument has a valid
3596** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003597** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003598**
3599** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003600** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003601**
3602** 2007-06-25: There is a bug in some versions of MSVC that cause the
3603** compiler to crash when getCellInfo() is implemented as a macro.
3604** But there is a measureable speed advantage to using the macro on gcc
3605** (when less compiler optimizations like -Os or -O0 are used and the
3606** compiler is not doing agressive inlining.) So we use a real function
3607** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003608*/
drh9188b382004-05-14 21:12:22 +00003609#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003610 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003611 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003612 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003613 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003614 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003615 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003616 }
danielk19771cc5ed82007-05-16 17:28:43 +00003617#else
3618 #define assertCellInfo(x)
3619#endif
drh86057612007-06-26 01:04:48 +00003620#ifdef _MSC_VER
3621 /* Use a real function in MSVC to work around bugs in that compiler. */
3622 static void getCellInfo(BtCursor *pCur){
3623 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003624 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003625 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003626 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003627 }else{
3628 assertCellInfo(pCur);
3629 }
3630 }
3631#else /* if not _MSC_VER */
3632 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003633#define getCellInfo(pCur) \
3634 if( pCur->info.nSize==0 ){ \
3635 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003636 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003637 pCur->validNKey = 1; \
3638 }else{ \
3639 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003640 }
3641#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003642
drhea8ffdf2009-07-22 00:35:23 +00003643#ifndef NDEBUG /* The next routine used only within assert() statements */
3644/*
3645** Return true if the given BtCursor is valid. A valid cursor is one
3646** that is currently pointing to a row in a (non-empty) table.
3647** This is a verification routine is used only within assert() statements.
3648*/
3649int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3650 return pCur && pCur->eState==CURSOR_VALID;
3651}
3652#endif /* NDEBUG */
3653
drh9188b382004-05-14 21:12:22 +00003654/*
drh3aac2dd2004-04-26 14:10:20 +00003655** Set *pSize to the size of the buffer needed to hold the value of
3656** the key for the current entry. If the cursor is not pointing
3657** to a valid entry, *pSize is set to 0.
3658**
drh4b70f112004-05-02 21:12:19 +00003659** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003660** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003661**
3662** The caller must position the cursor prior to invoking this routine.
3663**
3664** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003665*/
drh4a1c3802004-05-12 15:15:47 +00003666int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003667 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003668 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3669 if( pCur->eState!=CURSOR_VALID ){
3670 *pSize = 0;
3671 }else{
3672 getCellInfo(pCur);
3673 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003674 }
drhea8ffdf2009-07-22 00:35:23 +00003675 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003676}
drh2af926b2001-05-15 00:39:25 +00003677
drh72f82862001-05-24 21:06:34 +00003678/*
drh0e1c19e2004-05-11 00:58:56 +00003679** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003680** cursor currently points to.
3681**
3682** The caller must guarantee that the cursor is pointing to a non-NULL
3683** valid entry. In other words, the calling procedure must guarantee
3684** that the cursor has Cursor.eState==CURSOR_VALID.
3685**
3686** Failure is not possible. This function always returns SQLITE_OK.
3687** It might just as well be a procedure (returning void) but we continue
3688** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003689*/
3690int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003691 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003692 assert( pCur->eState==CURSOR_VALID );
3693 getCellInfo(pCur);
3694 *pSize = pCur->info.nData;
3695 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003696}
3697
3698/*
danielk1977d04417962007-05-02 13:16:30 +00003699** Given the page number of an overflow page in the database (parameter
3700** ovfl), this function finds the page number of the next page in the
3701** linked list of overflow pages. If possible, it uses the auto-vacuum
3702** pointer-map data instead of reading the content of page ovfl to do so.
3703**
3704** If an error occurs an SQLite error code is returned. Otherwise:
3705**
danielk1977bea2a942009-01-20 17:06:27 +00003706** The page number of the next overflow page in the linked list is
3707** written to *pPgnoNext. If page ovfl is the last page in its linked
3708** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003709**
danielk1977bea2a942009-01-20 17:06:27 +00003710** If ppPage is not NULL, and a reference to the MemPage object corresponding
3711** to page number pOvfl was obtained, then *ppPage is set to point to that
3712** reference. It is the responsibility of the caller to call releasePage()
3713** on *ppPage to free the reference. In no reference was obtained (because
3714** the pointer-map was used to obtain the value for *pPgnoNext), then
3715** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003716*/
3717static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003718 BtShared *pBt, /* The database file */
3719 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003720 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003721 Pgno *pPgnoNext /* OUT: Next overflow page number */
3722){
3723 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003724 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003725 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003726
drh1fee73e2007-08-29 04:00:57 +00003727 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003728 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003729
3730#ifndef SQLITE_OMIT_AUTOVACUUM
3731 /* Try to find the next page in the overflow list using the
3732 ** autovacuum pointer-map pages. Guess that the next page in
3733 ** the overflow list is page number (ovfl+1). If that guess turns
3734 ** out to be wrong, fall back to loading the data of page
3735 ** number ovfl to determine the next page number.
3736 */
3737 if( pBt->autoVacuum ){
3738 Pgno pgno;
3739 Pgno iGuess = ovfl+1;
3740 u8 eType;
3741
3742 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3743 iGuess++;
3744 }
3745
drhb1299152010-03-30 22:58:33 +00003746 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003747 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003748 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003749 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003750 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003751 }
3752 }
3753 }
3754#endif
3755
danielk1977d8a3f3d2009-07-11 11:45:23 +00003756 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003757 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003758 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003759 assert( rc==SQLITE_OK || pPage==0 );
3760 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003761 next = get4byte(pPage->aData);
3762 }
danielk1977443c0592009-01-16 15:21:05 +00003763 }
danielk197745d68822009-01-16 16:23:38 +00003764
danielk1977bea2a942009-01-20 17:06:27 +00003765 *pPgnoNext = next;
3766 if( ppPage ){
3767 *ppPage = pPage;
3768 }else{
3769 releasePage(pPage);
3770 }
3771 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003772}
3773
danielk1977da107192007-05-04 08:32:13 +00003774/*
3775** Copy data from a buffer to a page, or from a page to a buffer.
3776**
3777** pPayload is a pointer to data stored on database page pDbPage.
3778** If argument eOp is false, then nByte bytes of data are copied
3779** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3780** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3781** of data are copied from the buffer pBuf to pPayload.
3782**
3783** SQLITE_OK is returned on success, otherwise an error code.
3784*/
3785static int copyPayload(
3786 void *pPayload, /* Pointer to page data */
3787 void *pBuf, /* Pointer to buffer */
3788 int nByte, /* Number of bytes to copy */
3789 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3790 DbPage *pDbPage /* Page containing pPayload */
3791){
3792 if( eOp ){
3793 /* Copy data from buffer to page (a write operation) */
3794 int rc = sqlite3PagerWrite(pDbPage);
3795 if( rc!=SQLITE_OK ){
3796 return rc;
3797 }
3798 memcpy(pPayload, pBuf, nByte);
3799 }else{
3800 /* Copy data from page to buffer (a read operation) */
3801 memcpy(pBuf, pPayload, nByte);
3802 }
3803 return SQLITE_OK;
3804}
danielk1977d04417962007-05-02 13:16:30 +00003805
3806/*
danielk19779f8d6402007-05-02 17:48:45 +00003807** This function is used to read or overwrite payload information
3808** for the entry that the pCur cursor is pointing to. If the eOp
3809** parameter is 0, this is a read operation (data copied into
3810** buffer pBuf). If it is non-zero, a write (data copied from
3811** buffer pBuf).
3812**
3813** A total of "amt" bytes are read or written beginning at "offset".
3814** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003815**
drh3bcdfd22009-07-12 02:32:21 +00003816** The content being read or written might appear on the main page
3817** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003818**
danielk1977dcbb5d32007-05-04 18:36:44 +00003819** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003820** cursor entry uses one or more overflow pages, this function
3821** allocates space for and lazily popluates the overflow page-list
3822** cache array (BtCursor.aOverflow). Subsequent calls use this
3823** cache to make seeking to the supplied offset more efficient.
3824**
3825** Once an overflow page-list cache has been allocated, it may be
3826** invalidated if some other cursor writes to the same table, or if
3827** the cursor is moved to a different row. Additionally, in auto-vacuum
3828** mode, the following events may invalidate an overflow page-list cache.
3829**
3830** * An incremental vacuum,
3831** * A commit in auto_vacuum="full" mode,
3832** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003833*/
danielk19779f8d6402007-05-02 17:48:45 +00003834static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003835 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003836 u32 offset, /* Begin reading this far into payload */
3837 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003838 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003839 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003840){
3841 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003842 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003843 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003844 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003845 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003846 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003847
danielk1977da107192007-05-04 08:32:13 +00003848 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003849 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003850 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003851 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003852
drh86057612007-06-26 01:04:48 +00003853 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003854 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003855 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003856
drh3bcdfd22009-07-12 02:32:21 +00003857 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003858 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3859 ){
danielk1977da107192007-05-04 08:32:13 +00003860 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003861 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003862 }
danielk1977da107192007-05-04 08:32:13 +00003863
3864 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003865 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003866 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003867 if( a+offset>pCur->info.nLocal ){
3868 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003869 }
danielk1977da107192007-05-04 08:32:13 +00003870 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003871 offset = 0;
drha34b6762004-05-07 13:30:42 +00003872 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003873 amt -= a;
drhdd793422001-06-28 01:54:48 +00003874 }else{
drhfa1a98a2004-05-14 19:08:17 +00003875 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003876 }
danielk1977da107192007-05-04 08:32:13 +00003877
3878 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003879 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003880 Pgno nextPage;
3881
drhfa1a98a2004-05-14 19:08:17 +00003882 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003883
danielk19772dec9702007-05-02 16:48:37 +00003884#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003885 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003886 ** has not been allocated, allocate it now. The array is sized at
3887 ** one entry for each overflow page in the overflow chain. The
3888 ** page number of the first overflow page is stored in aOverflow[0],
3889 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3890 ** (the cache is lazily populated).
3891 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003892 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003893 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003894 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003895 /* nOvfl is always positive. If it were zero, fetchPayload would have
3896 ** been used instead of this routine. */
3897 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003898 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003899 }
3900 }
danielk1977da107192007-05-04 08:32:13 +00003901
3902 /* If the overflow page-list cache has been allocated and the
3903 ** entry for the first required overflow page is valid, skip
3904 ** directly to it.
3905 */
danielk19772dec9702007-05-02 16:48:37 +00003906 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3907 iIdx = (offset/ovflSize);
3908 nextPage = pCur->aOverflow[iIdx];
3909 offset = (offset%ovflSize);
3910 }
3911#endif
danielk1977da107192007-05-04 08:32:13 +00003912
3913 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3914
3915#ifndef SQLITE_OMIT_INCRBLOB
3916 /* If required, populate the overflow page-list cache. */
3917 if( pCur->aOverflow ){
3918 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3919 pCur->aOverflow[iIdx] = nextPage;
3920 }
3921#endif
3922
danielk1977d04417962007-05-02 13:16:30 +00003923 if( offset>=ovflSize ){
3924 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003925 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003926 ** data is not required. So first try to lookup the overflow
3927 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003928 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003929 */
danielk19772dec9702007-05-02 16:48:37 +00003930#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003931 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3932 nextPage = pCur->aOverflow[iIdx+1];
3933 } else
danielk19772dec9702007-05-02 16:48:37 +00003934#endif
danielk1977da107192007-05-04 08:32:13 +00003935 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003936 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003937 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003938 /* Need to read this page properly. It contains some of the
3939 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003940 */
danf4ba1092011-10-08 14:57:07 +00003941#ifdef SQLITE_DIRECT_OVERFLOW_READ
3942 sqlite3_file *fd;
3943#endif
danielk1977cfe9a692004-06-16 12:00:29 +00003944 int a = amt;
danf4ba1092011-10-08 14:57:07 +00003945 if( a + offset > ovflSize ){
3946 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003947 }
danf4ba1092011-10-08 14:57:07 +00003948
3949#ifdef SQLITE_DIRECT_OVERFLOW_READ
3950 /* If all the following are true:
3951 **
3952 ** 1) this is a read operation, and
3953 ** 2) data is required from the start of this overflow page, and
3954 ** 3) the database is file-backed, and
3955 ** 4) there is no open write-transaction, and
3956 ** 5) the database is not a WAL database,
3957 **
3958 ** then data can be read directly from the database file into the
3959 ** output buffer, bypassing the page-cache altogether. This speeds
3960 ** up loading large records that span many overflow pages.
3961 */
3962 if( eOp==0 /* (1) */
3963 && offset==0 /* (2) */
3964 && pBt->inTransaction==TRANS_READ /* (4) */
3965 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
3966 && pBt->pPage1->aData[19]==0x01 /* (5) */
3967 ){
3968 u8 aSave[4];
3969 u8 *aWrite = &pBuf[-4];
3970 memcpy(aSave, aWrite, 4);
3971 rc = sqlite3OsRead(fd, aWrite, a+4, pBt->pageSize * (nextPage-1));
3972 nextPage = get4byte(aWrite);
3973 memcpy(aWrite, aSave, 4);
3974 }else
3975#endif
3976
3977 {
3978 DbPage *pDbPage;
3979 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
3980 if( rc==SQLITE_OK ){
3981 aPayload = sqlite3PagerGetData(pDbPage);
3982 nextPage = get4byte(aPayload);
3983 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3984 sqlite3PagerUnref(pDbPage);
3985 offset = 0;
3986 }
3987 }
3988 amt -= a;
3989 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00003990 }
drh2af926b2001-05-15 00:39:25 +00003991 }
drh2af926b2001-05-15 00:39:25 +00003992 }
danielk1977cfe9a692004-06-16 12:00:29 +00003993
danielk1977da107192007-05-04 08:32:13 +00003994 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003995 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003996 }
danielk1977da107192007-05-04 08:32:13 +00003997 return rc;
drh2af926b2001-05-15 00:39:25 +00003998}
3999
drh72f82862001-05-24 21:06:34 +00004000/*
drh3aac2dd2004-04-26 14:10:20 +00004001** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004002** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004003** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004004**
drh5d1a8722009-07-22 18:07:40 +00004005** The caller must ensure that pCur is pointing to a valid row
4006** in the table.
4007**
drh3aac2dd2004-04-26 14:10:20 +00004008** Return SQLITE_OK on success or an error code if anything goes
4009** wrong. An error is returned if "offset+amt" is larger than
4010** the available payload.
drh72f82862001-05-24 21:06:34 +00004011*/
drha34b6762004-05-07 13:30:42 +00004012int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004013 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004014 assert( pCur->eState==CURSOR_VALID );
4015 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4016 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4017 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004018}
4019
4020/*
drh3aac2dd2004-04-26 14:10:20 +00004021** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004022** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004023** begins at "offset".
4024**
4025** Return SQLITE_OK on success or an error code if anything goes
4026** wrong. An error is returned if "offset+amt" is larger than
4027** the available payload.
drh72f82862001-05-24 21:06:34 +00004028*/
drh3aac2dd2004-04-26 14:10:20 +00004029int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004030 int rc;
4031
danielk19773588ceb2008-06-10 17:30:26 +00004032#ifndef SQLITE_OMIT_INCRBLOB
4033 if ( pCur->eState==CURSOR_INVALID ){
4034 return SQLITE_ABORT;
4035 }
4036#endif
4037
drh1fee73e2007-08-29 04:00:57 +00004038 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004039 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004040 if( rc==SQLITE_OK ){
4041 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004042 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4043 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004044 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004045 }
4046 return rc;
drh2af926b2001-05-15 00:39:25 +00004047}
4048
drh72f82862001-05-24 21:06:34 +00004049/*
drh0e1c19e2004-05-11 00:58:56 +00004050** Return a pointer to payload information from the entry that the
4051** pCur cursor is pointing to. The pointer is to the beginning of
4052** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004053** skipKey==1. The number of bytes of available key/data is written
4054** into *pAmt. If *pAmt==0, then the value returned will not be
4055** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004056**
4057** This routine is an optimization. It is common for the entire key
4058** and data to fit on the local page and for there to be no overflow
4059** pages. When that is so, this routine can be used to access the
4060** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004061** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004062** the key/data and copy it into a preallocated buffer.
4063**
4064** The pointer returned by this routine looks directly into the cached
4065** page of the database. The data might change or move the next time
4066** any btree routine is called.
4067*/
4068static const unsigned char *fetchPayload(
4069 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004070 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004071 int skipKey /* read beginning at data if this is true */
4072){
4073 unsigned char *aPayload;
4074 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004075 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004076 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004077
danielk197771d5d2c2008-09-29 11:49:47 +00004078 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004079 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004080 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004081 pPage = pCur->apPage[pCur->iPage];
4082 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004083 if( NEVER(pCur->info.nSize==0) ){
4084 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4085 &pCur->info);
4086 }
drh43605152004-05-29 21:46:49 +00004087 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004088 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004089 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004090 nKey = 0;
4091 }else{
drhf49661a2008-12-10 16:45:50 +00004092 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004093 }
drh0e1c19e2004-05-11 00:58:56 +00004094 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004095 aPayload += nKey;
4096 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004097 }else{
drhfa1a98a2004-05-14 19:08:17 +00004098 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004099 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004100 }
drhe51c44f2004-05-30 20:46:09 +00004101 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004102 return aPayload;
4103}
4104
4105
4106/*
drhe51c44f2004-05-30 20:46:09 +00004107** For the entry that cursor pCur is point to, return as
4108** many bytes of the key or data as are available on the local
4109** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004110**
4111** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004112** or be destroyed on the next call to any Btree routine,
4113** including calls from other threads against the same cache.
4114** Hence, a mutex on the BtShared should be held prior to calling
4115** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004116**
4117** These routines is used to get quick access to key and data
4118** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004119*/
drhe51c44f2004-05-30 20:46:09 +00004120const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004121 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004122 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004123 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004124 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4125 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004126 }
drhfe3313f2009-07-21 19:02:20 +00004127 return p;
drh0e1c19e2004-05-11 00:58:56 +00004128}
drhe51c44f2004-05-30 20:46:09 +00004129const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004130 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004131 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004132 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004133 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4134 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004135 }
drhfe3313f2009-07-21 19:02:20 +00004136 return p;
drh0e1c19e2004-05-11 00:58:56 +00004137}
4138
4139
4140/*
drh8178a752003-01-05 21:41:40 +00004141** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004142** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004143**
4144** This function returns SQLITE_CORRUPT if the page-header flags field of
4145** the new child page does not match the flags field of the parent (i.e.
4146** if an intkey page appears to be the parent of a non-intkey page, or
4147** vice-versa).
drh72f82862001-05-24 21:06:34 +00004148*/
drh3aac2dd2004-04-26 14:10:20 +00004149static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004150 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004151 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004152 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004153 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004154
drh1fee73e2007-08-29 04:00:57 +00004155 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004156 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004157 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4158 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4159 return SQLITE_CORRUPT_BKPT;
4160 }
4161 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004162 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004163 pCur->apPage[i+1] = pNewPage;
4164 pCur->aiIdx[i+1] = 0;
4165 pCur->iPage++;
4166
drh271efa52004-05-30 19:19:05 +00004167 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004168 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004169 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004170 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004171 }
drh72f82862001-05-24 21:06:34 +00004172 return SQLITE_OK;
4173}
4174
danielk1977bf93c562008-09-29 15:53:25 +00004175#ifndef NDEBUG
4176/*
4177** Page pParent is an internal (non-leaf) tree page. This function
4178** asserts that page number iChild is the left-child if the iIdx'th
4179** cell in page pParent. Or, if iIdx is equal to the total number of
4180** cells in pParent, that page number iChild is the right-child of
4181** the page.
4182*/
4183static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4184 assert( iIdx<=pParent->nCell );
4185 if( iIdx==pParent->nCell ){
4186 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4187 }else{
4188 assert( get4byte(findCell(pParent, iIdx))==iChild );
4189 }
4190}
4191#else
4192# define assertParentIndex(x,y,z)
4193#endif
4194
drh72f82862001-05-24 21:06:34 +00004195/*
drh5e2f8b92001-05-28 00:41:15 +00004196** Move the cursor up to the parent page.
4197**
4198** pCur->idx is set to the cell index that contains the pointer
4199** to the page we are coming from. If we are coming from the
4200** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004201** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004202*/
danielk197730548662009-07-09 05:07:37 +00004203static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004204 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004205 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004206 assert( pCur->iPage>0 );
4207 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004208 assertParentIndex(
4209 pCur->apPage[pCur->iPage-1],
4210 pCur->aiIdx[pCur->iPage-1],
4211 pCur->apPage[pCur->iPage]->pgno
4212 );
danielk197771d5d2c2008-09-29 11:49:47 +00004213 releasePage(pCur->apPage[pCur->iPage]);
4214 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004215 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004216 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004217}
4218
4219/*
danielk19778f880a82009-07-13 09:41:45 +00004220** Move the cursor to point to the root page of its b-tree structure.
4221**
4222** If the table has a virtual root page, then the cursor is moved to point
4223** to the virtual root page instead of the actual root page. A table has a
4224** virtual root page when the actual root page contains no cells and a
4225** single child page. This can only happen with the table rooted at page 1.
4226**
4227** If the b-tree structure is empty, the cursor state is set to
4228** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4229** cell located on the root (or virtual root) page and the cursor state
4230** is set to CURSOR_VALID.
4231**
4232** If this function returns successfully, it may be assumed that the
4233** page-header flags indicate that the [virtual] root-page is the expected
4234** kind of b-tree page (i.e. if when opening the cursor the caller did not
4235** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4236** indicating a table b-tree, or if the caller did specify a KeyInfo
4237** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4238** b-tree).
drh72f82862001-05-24 21:06:34 +00004239*/
drh5e2f8b92001-05-28 00:41:15 +00004240static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004241 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004242 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004243 Btree *p = pCur->pBtree;
4244 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004245
drh1fee73e2007-08-29 04:00:57 +00004246 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004247 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4248 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4249 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4250 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4251 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004252 assert( pCur->skipNext!=SQLITE_OK );
4253 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004254 }
danielk1977be51a652008-10-08 17:58:48 +00004255 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004256 }
danielk197771d5d2c2008-09-29 11:49:47 +00004257
4258 if( pCur->iPage>=0 ){
4259 int i;
4260 for(i=1; i<=pCur->iPage; i++){
4261 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004262 }
danielk1977172114a2009-07-07 15:47:12 +00004263 pCur->iPage = 0;
dana205a482011-08-27 18:48:57 +00004264 }else if( pCur->pgnoRoot==0 ){
4265 pCur->eState = CURSOR_INVALID;
4266 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004267 }else{
drh4c301aa2009-07-15 17:25:45 +00004268 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4269 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004270 pCur->eState = CURSOR_INVALID;
4271 return rc;
4272 }
danielk1977172114a2009-07-07 15:47:12 +00004273 pCur->iPage = 0;
4274
4275 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4276 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4277 ** NULL, the caller expects a table b-tree. If this is not the case,
4278 ** return an SQLITE_CORRUPT error. */
4279 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4280 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4281 return SQLITE_CORRUPT_BKPT;
4282 }
drhc39e0002004-05-07 23:50:57 +00004283 }
danielk197771d5d2c2008-09-29 11:49:47 +00004284
danielk19778f880a82009-07-13 09:41:45 +00004285 /* Assert that the root page is of the correct type. This must be the
4286 ** case as the call to this function that loaded the root-page (either
4287 ** this call or a previous invocation) would have detected corruption
4288 ** if the assumption were not true, and it is not possible for the flags
4289 ** byte to have been modified while this cursor is holding a reference
4290 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004291 pRoot = pCur->apPage[0];
4292 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004293 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4294
danielk197771d5d2c2008-09-29 11:49:47 +00004295 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004296 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004297 pCur->atLast = 0;
4298 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004299
drh8856d6a2004-04-29 14:42:46 +00004300 if( pRoot->nCell==0 && !pRoot->leaf ){
4301 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004302 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004303 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004304 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004305 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004306 }else{
4307 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004308 }
4309 return rc;
drh72f82862001-05-24 21:06:34 +00004310}
drh2af926b2001-05-15 00:39:25 +00004311
drh5e2f8b92001-05-28 00:41:15 +00004312/*
4313** Move the cursor down to the left-most leaf entry beneath the
4314** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004315**
4316** The left-most leaf is the one with the smallest key - the first
4317** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004318*/
4319static int moveToLeftmost(BtCursor *pCur){
4320 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004321 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004322 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004323
drh1fee73e2007-08-29 04:00:57 +00004324 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004325 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004326 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4327 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4328 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004329 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004330 }
drhd677b3d2007-08-20 22:48:41 +00004331 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004332}
4333
drh2dcc9aa2002-12-04 13:40:25 +00004334/*
4335** Move the cursor down to the right-most leaf entry beneath the
4336** page to which it is currently pointing. Notice the difference
4337** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4338** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4339** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004340**
4341** The right-most entry is the one with the largest key - the last
4342** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004343*/
4344static int moveToRightmost(BtCursor *pCur){
4345 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004346 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004347 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004348
drh1fee73e2007-08-29 04:00:57 +00004349 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004350 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004351 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004352 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004353 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004354 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004355 }
drhd677b3d2007-08-20 22:48:41 +00004356 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004357 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004358 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004359 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004360 }
danielk1977518002e2008-09-05 05:02:46 +00004361 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004362}
4363
drh5e00f6c2001-09-13 13:46:56 +00004364/* Move the cursor to the first entry in the table. Return SQLITE_OK
4365** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004366** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004367*/
drh3aac2dd2004-04-26 14:10:20 +00004368int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004369 int rc;
drhd677b3d2007-08-20 22:48:41 +00004370
drh1fee73e2007-08-29 04:00:57 +00004371 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004372 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004373 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004374 if( rc==SQLITE_OK ){
4375 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004376 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004377 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004378 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004379 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004380 *pRes = 0;
4381 rc = moveToLeftmost(pCur);
4382 }
drh5e00f6c2001-09-13 13:46:56 +00004383 }
drh5e00f6c2001-09-13 13:46:56 +00004384 return rc;
4385}
drh5e2f8b92001-05-28 00:41:15 +00004386
drh9562b552002-02-19 15:00:07 +00004387/* Move the cursor to the last entry in the table. Return SQLITE_OK
4388** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004389** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004390*/
drh3aac2dd2004-04-26 14:10:20 +00004391int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004392 int rc;
drhd677b3d2007-08-20 22:48:41 +00004393
drh1fee73e2007-08-29 04:00:57 +00004394 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004395 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004396
4397 /* If the cursor already points to the last entry, this is a no-op. */
4398 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4399#ifdef SQLITE_DEBUG
4400 /* This block serves to assert() that the cursor really does point
4401 ** to the last entry in the b-tree. */
4402 int ii;
4403 for(ii=0; ii<pCur->iPage; ii++){
4404 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4405 }
4406 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4407 assert( pCur->apPage[pCur->iPage]->leaf );
4408#endif
4409 return SQLITE_OK;
4410 }
4411
drh9562b552002-02-19 15:00:07 +00004412 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004413 if( rc==SQLITE_OK ){
4414 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004415 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004416 *pRes = 1;
4417 }else{
4418 assert( pCur->eState==CURSOR_VALID );
4419 *pRes = 0;
4420 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004421 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004422 }
drh9562b552002-02-19 15:00:07 +00004423 }
drh9562b552002-02-19 15:00:07 +00004424 return rc;
4425}
4426
drhe14006d2008-03-25 17:23:32 +00004427/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004428** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004429**
drhe63d9992008-08-13 19:11:48 +00004430** For INTKEY tables, the intKey parameter is used. pIdxKey
4431** must be NULL. For index tables, pIdxKey is used and intKey
4432** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004433**
drh5e2f8b92001-05-28 00:41:15 +00004434** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004435** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004436** were present. The cursor might point to an entry that comes
4437** before or after the key.
4438**
drh64022502009-01-09 14:11:04 +00004439** An integer is written into *pRes which is the result of
4440** comparing the key with the entry to which the cursor is
4441** pointing. The meaning of the integer written into
4442** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004443**
4444** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004445** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004446** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004447**
4448** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004449** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004450**
4451** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004452** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004453**
drha059ad02001-04-17 20:09:11 +00004454*/
drhe63d9992008-08-13 19:11:48 +00004455int sqlite3BtreeMovetoUnpacked(
4456 BtCursor *pCur, /* The cursor to be moved */
4457 UnpackedRecord *pIdxKey, /* Unpacked index key */
4458 i64 intKey, /* The table key */
4459 int biasRight, /* If true, bias the search to the high end */
4460 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004461){
drh72f82862001-05-24 21:06:34 +00004462 int rc;
drhd677b3d2007-08-20 22:48:41 +00004463
drh1fee73e2007-08-29 04:00:57 +00004464 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004465 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004466 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004467 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004468
4469 /* If the cursor is already positioned at the point we are trying
4470 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004471 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4472 && pCur->apPage[0]->intKey
4473 ){
drhe63d9992008-08-13 19:11:48 +00004474 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004475 *pRes = 0;
4476 return SQLITE_OK;
4477 }
drhe63d9992008-08-13 19:11:48 +00004478 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004479 *pRes = -1;
4480 return SQLITE_OK;
4481 }
4482 }
4483
drh5e2f8b92001-05-28 00:41:15 +00004484 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004485 if( rc ){
4486 return rc;
4487 }
dana205a482011-08-27 18:48:57 +00004488 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4489 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4490 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004491 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004492 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004493 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004494 return SQLITE_OK;
4495 }
danielk197771d5d2c2008-09-29 11:49:47 +00004496 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004497 for(;;){
drhafb98172011-06-04 01:43:53 +00004498 int lwr, upr, idx;
drh72f82862001-05-24 21:06:34 +00004499 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004500 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004501 int c;
4502
4503 /* pPage->nCell must be greater than zero. If this is the root-page
4504 ** the cursor would have been INVALID above and this for(;;) loop
4505 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004506 ** would have already detected db corruption. Similarly, pPage must
4507 ** be the right kind (index or table) of b-tree page. Otherwise
4508 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004509 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004510 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004511 lwr = 0;
4512 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004513 if( biasRight ){
drhafb98172011-06-04 01:43:53 +00004514 pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
drhe4d90812007-03-29 05:51:49 +00004515 }else{
drhafb98172011-06-04 01:43:53 +00004516 pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004517 }
drh64022502009-01-09 14:11:04 +00004518 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004519 u8 *pCell; /* Pointer to current cell in pPage */
4520
drhafb98172011-06-04 01:43:53 +00004521 assert( idx==pCur->aiIdx[pCur->iPage] );
drh366fda62006-01-13 02:35:09 +00004522 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004523 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004524 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004525 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004526 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004527 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004528 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004529 }
drha2c20e42008-03-29 16:01:04 +00004530 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004531 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004532 c = 0;
drhe63d9992008-08-13 19:11:48 +00004533 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004534 c = -1;
4535 }else{
drhe63d9992008-08-13 19:11:48 +00004536 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004537 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004538 }
danielk197711c327a2009-05-04 19:01:26 +00004539 pCur->validNKey = 1;
4540 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004541 }else{
drhb2eced52010-08-12 02:41:12 +00004542 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004543 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004544 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004545 ** varint. This information is used to attempt to avoid parsing
4546 ** the entire cell by checking for the cases where the record is
4547 ** stored entirely within the b-tree page by inspecting the first
4548 ** 2 bytes of the cell.
4549 */
4550 int nCell = pCell[0];
4551 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4552 /* This branch runs if the record-size field of the cell is a
4553 ** single byte varint and the record fits entirely on the main
4554 ** b-tree page. */
4555 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4556 }else if( !(pCell[1] & 0x80)
4557 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4558 ){
4559 /* The record-size field is a 2 byte varint and the record
4560 ** fits entirely on the main b-tree page. */
4561 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004562 }else{
danielk197711c327a2009-05-04 19:01:26 +00004563 /* The record flows over onto one or more overflow pages. In
4564 ** this case the whole cell needs to be parsed, a buffer allocated
4565 ** and accessPayload() used to retrieve the record into the
4566 ** buffer before VdbeRecordCompare() can be called. */
4567 void *pCellKey;
4568 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004569 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004570 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004571 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004572 if( pCellKey==0 ){
4573 rc = SQLITE_NOMEM;
4574 goto moveto_finish;
4575 }
drhfb192682009-07-11 18:26:28 +00004576 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004577 if( rc ){
4578 sqlite3_free(pCellKey);
4579 goto moveto_finish;
4580 }
danielk197711c327a2009-05-04 19:01:26 +00004581 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004582 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004583 }
drh3aac2dd2004-04-26 14:10:20 +00004584 }
drh72f82862001-05-24 21:06:34 +00004585 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004586 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004587 lwr = idx;
drh8b18dd42004-05-12 19:18:15 +00004588 break;
4589 }else{
drh64022502009-01-09 14:11:04 +00004590 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004591 rc = SQLITE_OK;
4592 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004593 }
drh72f82862001-05-24 21:06:34 +00004594 }
4595 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004596 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004597 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004598 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004599 }
drhf1d68b32007-03-29 04:43:26 +00004600 if( lwr>upr ){
4601 break;
4602 }
drhafb98172011-06-04 01:43:53 +00004603 pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004604 }
drhb07028f2011-10-14 21:49:18 +00004605 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004606 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004607 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004608 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004609 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004610 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004611 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004612 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004613 }
4614 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004615 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004616 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004617 rc = SQLITE_OK;
4618 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004619 }
drhf49661a2008-12-10 16:45:50 +00004620 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004621 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004622 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004623 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004624 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004625 }
drh1e968a02008-03-25 00:22:21 +00004626moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004627 return rc;
4628}
4629
drhd677b3d2007-08-20 22:48:41 +00004630
drh72f82862001-05-24 21:06:34 +00004631/*
drhc39e0002004-05-07 23:50:57 +00004632** Return TRUE if the cursor is not pointing at an entry of the table.
4633**
4634** TRUE will be returned after a call to sqlite3BtreeNext() moves
4635** past the last entry in the table or sqlite3BtreePrev() moves past
4636** the first entry. TRUE is also returned if the table is empty.
4637*/
4638int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004639 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4640 ** have been deleted? This API will need to change to return an error code
4641 ** as well as the boolean result value.
4642 */
4643 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004644}
4645
4646/*
drhbd03cae2001-06-02 02:40:57 +00004647** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004648** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004649** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004650** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004651*/
drhd094db12008-04-03 21:46:57 +00004652int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004653 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004654 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004655 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004656
drh1fee73e2007-08-29 04:00:57 +00004657 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004658 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004659 if( rc!=SQLITE_OK ){
4660 return rc;
4661 }
drh8c4d3a62007-04-06 01:03:32 +00004662 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004663 if( CURSOR_INVALID==pCur->eState ){
4664 *pRes = 1;
4665 return SQLITE_OK;
4666 }
drh4c301aa2009-07-15 17:25:45 +00004667 if( pCur->skipNext>0 ){
4668 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004669 *pRes = 0;
4670 return SQLITE_OK;
4671 }
drh4c301aa2009-07-15 17:25:45 +00004672 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004673
danielk197771d5d2c2008-09-29 11:49:47 +00004674 pPage = pCur->apPage[pCur->iPage];
4675 idx = ++pCur->aiIdx[pCur->iPage];
4676 assert( pPage->isInit );
4677 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004678
drh271efa52004-05-30 19:19:05 +00004679 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004680 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004681 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004682 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004683 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004684 if( rc ) return rc;
4685 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004686 *pRes = 0;
4687 return rc;
drh72f82862001-05-24 21:06:34 +00004688 }
drh5e2f8b92001-05-28 00:41:15 +00004689 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004690 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004691 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004692 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004693 return SQLITE_OK;
4694 }
danielk197730548662009-07-09 05:07:37 +00004695 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004696 pPage = pCur->apPage[pCur->iPage];
4697 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004698 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004699 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004700 rc = sqlite3BtreeNext(pCur, pRes);
4701 }else{
4702 rc = SQLITE_OK;
4703 }
4704 return rc;
drh8178a752003-01-05 21:41:40 +00004705 }
4706 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004707 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004708 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004709 }
drh5e2f8b92001-05-28 00:41:15 +00004710 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004711 return rc;
drh72f82862001-05-24 21:06:34 +00004712}
drhd677b3d2007-08-20 22:48:41 +00004713
drh72f82862001-05-24 21:06:34 +00004714
drh3b7511c2001-05-26 13:15:44 +00004715/*
drh2dcc9aa2002-12-04 13:40:25 +00004716** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004717** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004718** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004719** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004720*/
drhd094db12008-04-03 21:46:57 +00004721int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004722 int rc;
drh8178a752003-01-05 21:41:40 +00004723 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004724
drh1fee73e2007-08-29 04:00:57 +00004725 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004726 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004727 if( rc!=SQLITE_OK ){
4728 return rc;
4729 }
drha2c20e42008-03-29 16:01:04 +00004730 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004731 if( CURSOR_INVALID==pCur->eState ){
4732 *pRes = 1;
4733 return SQLITE_OK;
4734 }
drh4c301aa2009-07-15 17:25:45 +00004735 if( pCur->skipNext<0 ){
4736 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004737 *pRes = 0;
4738 return SQLITE_OK;
4739 }
drh4c301aa2009-07-15 17:25:45 +00004740 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004741
danielk197771d5d2c2008-09-29 11:49:47 +00004742 pPage = pCur->apPage[pCur->iPage];
4743 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004744 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004745 int idx = pCur->aiIdx[pCur->iPage];
4746 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004747 if( rc ){
4748 return rc;
4749 }
drh2dcc9aa2002-12-04 13:40:25 +00004750 rc = moveToRightmost(pCur);
4751 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004752 while( pCur->aiIdx[pCur->iPage]==0 ){
4753 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004754 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004755 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004756 return SQLITE_OK;
4757 }
danielk197730548662009-07-09 05:07:37 +00004758 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004759 }
drh271efa52004-05-30 19:19:05 +00004760 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004761 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004762
4763 pCur->aiIdx[pCur->iPage]--;
4764 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004765 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004766 rc = sqlite3BtreePrevious(pCur, pRes);
4767 }else{
4768 rc = SQLITE_OK;
4769 }
drh2dcc9aa2002-12-04 13:40:25 +00004770 }
drh8178a752003-01-05 21:41:40 +00004771 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004772 return rc;
4773}
4774
4775/*
drh3b7511c2001-05-26 13:15:44 +00004776** Allocate a new page from the database file.
4777**
danielk19773b8a05f2007-03-19 17:44:26 +00004778** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004779** has already been called on the new page.) The new page has also
4780** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004781** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004782**
4783** SQLITE_OK is returned on success. Any other return value indicates
4784** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004785** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004786**
drh199e3cf2002-07-18 11:01:47 +00004787** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4788** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004789** attempt to keep related pages close to each other in the database file,
4790** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004791**
4792** If the "exact" parameter is not 0, and the page-number nearby exists
4793** anywhere on the free-list, then it is guarenteed to be returned. This
4794** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004795*/
drh4f0c5872007-03-26 22:05:01 +00004796static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004797 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004798 MemPage **ppPage,
4799 Pgno *pPgno,
4800 Pgno nearby,
4801 u8 exact
4802){
drh3aac2dd2004-04-26 14:10:20 +00004803 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004804 int rc;
drh35cd6432009-06-05 14:17:21 +00004805 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004806 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004807 MemPage *pTrunk = 0;
4808 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004809 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004810
drh1fee73e2007-08-29 04:00:57 +00004811 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004812 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004813 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004814 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004815 testcase( n==mxPage-1 );
4816 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004817 return SQLITE_CORRUPT_BKPT;
4818 }
drh3aac2dd2004-04-26 14:10:20 +00004819 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004820 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004821 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004822 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4823
4824 /* If the 'exact' parameter was true and a query of the pointer-map
4825 ** shows that the page 'nearby' is somewhere on the free-list, then
4826 ** the entire-list will be searched for that page.
4827 */
4828#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004829 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004830 u8 eType;
4831 assert( nearby>0 );
4832 assert( pBt->autoVacuum );
4833 rc = ptrmapGet(pBt, nearby, &eType, 0);
4834 if( rc ) return rc;
4835 if( eType==PTRMAP_FREEPAGE ){
4836 searchList = 1;
4837 }
4838 *pPgno = nearby;
4839 }
4840#endif
4841
4842 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4843 ** first free-list trunk page. iPrevTrunk is initially 1.
4844 */
danielk19773b8a05f2007-03-19 17:44:26 +00004845 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004846 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004847 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004848
4849 /* The code within this loop is run only once if the 'searchList' variable
4850 ** is not true. Otherwise, it runs once for each trunk-page on the
4851 ** free-list until the page 'nearby' is located.
4852 */
4853 do {
4854 pPrevTrunk = pTrunk;
4855 if( pPrevTrunk ){
4856 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004857 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004858 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004859 }
drhdf35a082009-07-09 02:24:35 +00004860 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004861 if( iTrunk>mxPage ){
4862 rc = SQLITE_CORRUPT_BKPT;
4863 }else{
danielk197730548662009-07-09 05:07:37 +00004864 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004865 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004866 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004867 pTrunk = 0;
4868 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004869 }
drhb07028f2011-10-14 21:49:18 +00004870 assert( pTrunk!=0 );
4871 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004872
drh93b4fc72011-04-07 14:47:01 +00004873 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004874 if( k==0 && !searchList ){
4875 /* The trunk has no leaves and the list is not being searched.
4876 ** So extract the trunk page itself and use it as the newly
4877 ** allocated page */
4878 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004879 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004880 if( rc ){
4881 goto end_allocate_page;
4882 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004883 *pPgno = iTrunk;
4884 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4885 *ppPage = pTrunk;
4886 pTrunk = 0;
4887 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004888 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004889 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004890 rc = SQLITE_CORRUPT_BKPT;
4891 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004892#ifndef SQLITE_OMIT_AUTOVACUUM
4893 }else if( searchList && nearby==iTrunk ){
4894 /* The list is being searched and this trunk page is the page
4895 ** to allocate, regardless of whether it has leaves.
4896 */
4897 assert( *pPgno==iTrunk );
4898 *ppPage = pTrunk;
4899 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004900 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004901 if( rc ){
4902 goto end_allocate_page;
4903 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004904 if( k==0 ){
4905 if( !pPrevTrunk ){
4906 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4907 }else{
danf48c3552010-08-23 15:41:24 +00004908 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
4909 if( rc!=SQLITE_OK ){
4910 goto end_allocate_page;
4911 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004912 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4913 }
4914 }else{
4915 /* The trunk page is required by the caller but it contains
4916 ** pointers to free-list leaves. The first leaf becomes a trunk
4917 ** page in this case.
4918 */
4919 MemPage *pNewTrunk;
4920 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004921 if( iNewTrunk>mxPage ){
4922 rc = SQLITE_CORRUPT_BKPT;
4923 goto end_allocate_page;
4924 }
drhdf35a082009-07-09 02:24:35 +00004925 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004926 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004927 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004928 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004929 }
danielk19773b8a05f2007-03-19 17:44:26 +00004930 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004931 if( rc!=SQLITE_OK ){
4932 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004933 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004934 }
4935 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4936 put4byte(&pNewTrunk->aData[4], k-1);
4937 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004938 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004939 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004940 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004941 put4byte(&pPage1->aData[32], iNewTrunk);
4942 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004943 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004944 if( rc ){
4945 goto end_allocate_page;
4946 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004947 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4948 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004949 }
4950 pTrunk = 0;
4951 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4952#endif
danielk1977e5765212009-06-17 11:13:28 +00004953 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004954 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004955 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004956 Pgno iPage;
4957 unsigned char *aData = pTrunk->aData;
4958 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004959 u32 i;
4960 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004961 closest = 0;
drhd50ffc42011-03-08 02:38:28 +00004962 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004963 for(i=1; i<k; i++){
drhd50ffc42011-03-08 02:38:28 +00004964 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004965 if( d2<dist ){
4966 closest = i;
4967 dist = d2;
4968 }
4969 }
4970 }else{
4971 closest = 0;
4972 }
4973
4974 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004975 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004976 if( iPage>mxPage ){
4977 rc = SQLITE_CORRUPT_BKPT;
4978 goto end_allocate_page;
4979 }
drhdf35a082009-07-09 02:24:35 +00004980 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004981 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004982 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004983 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004984 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4985 ": %d more free pages\n",
4986 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00004987 rc = sqlite3PagerWrite(pTrunk->pDbPage);
4988 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004989 if( closest<k-1 ){
4990 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4991 }
4992 put4byte(&aData[4], k-1);
danielk1977bea2a942009-01-20 17:06:27 +00004993 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004994 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004995 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004996 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004997 if( rc!=SQLITE_OK ){
4998 releasePage(*ppPage);
4999 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005000 }
5001 searchList = 0;
5002 }
drhee696e22004-08-30 16:52:17 +00005003 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005004 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005005 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005006 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005007 }else{
drh3aac2dd2004-04-26 14:10:20 +00005008 /* There are no pages on the freelist, so create a new page at the
5009 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00005010 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5011 if( rc ) return rc;
5012 pBt->nPage++;
5013 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005014
danielk1977afcdd022004-10-31 16:25:42 +00005015#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005016 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005017 /* If *pPgno refers to a pointer-map page, allocate two new pages
5018 ** at the end of the file instead of one. The first allocated page
5019 ** becomes a new pointer-map page, the second is used by the caller.
5020 */
danielk1977ac861692009-03-28 10:54:22 +00005021 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005022 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5023 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005024 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00005025 if( rc==SQLITE_OK ){
5026 rc = sqlite3PagerWrite(pPg->pDbPage);
5027 releasePage(pPg);
5028 }
5029 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005030 pBt->nPage++;
5031 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005032 }
5033#endif
drhdd3cd972010-03-27 17:12:36 +00005034 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5035 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005036
danielk1977599fcba2004-11-08 07:13:13 +00005037 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005038 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00005039 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005040 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005041 if( rc!=SQLITE_OK ){
5042 releasePage(*ppPage);
5043 }
drh3a4c1412004-05-09 20:40:11 +00005044 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005045 }
danielk1977599fcba2004-11-08 07:13:13 +00005046
5047 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005048
5049end_allocate_page:
5050 releasePage(pTrunk);
5051 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005052 if( rc==SQLITE_OK ){
5053 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5054 releasePage(*ppPage);
5055 return SQLITE_CORRUPT_BKPT;
5056 }
5057 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005058 }else{
5059 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005060 }
drh93b4fc72011-04-07 14:47:01 +00005061 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005062 return rc;
5063}
5064
5065/*
danielk1977bea2a942009-01-20 17:06:27 +00005066** This function is used to add page iPage to the database file free-list.
5067** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005068**
danielk1977bea2a942009-01-20 17:06:27 +00005069** The value passed as the second argument to this function is optional.
5070** If the caller happens to have a pointer to the MemPage object
5071** corresponding to page iPage handy, it may pass it as the second value.
5072** Otherwise, it may pass NULL.
5073**
5074** If a pointer to a MemPage object is passed as the second argument,
5075** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005076*/
danielk1977bea2a942009-01-20 17:06:27 +00005077static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5078 MemPage *pTrunk = 0; /* Free-list trunk page */
5079 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5080 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5081 MemPage *pPage; /* Page being freed. May be NULL. */
5082 int rc; /* Return Code */
5083 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005084
danielk1977bea2a942009-01-20 17:06:27 +00005085 assert( sqlite3_mutex_held(pBt->mutex) );
5086 assert( iPage>1 );
5087 assert( !pMemPage || pMemPage->pgno==iPage );
5088
5089 if( pMemPage ){
5090 pPage = pMemPage;
5091 sqlite3PagerRef(pPage->pDbPage);
5092 }else{
5093 pPage = btreePageLookup(pBt, iPage);
5094 }
drh3aac2dd2004-04-26 14:10:20 +00005095
drha34b6762004-05-07 13:30:42 +00005096 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005097 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005098 if( rc ) goto freepage_out;
5099 nFree = get4byte(&pPage1->aData[36]);
5100 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005101
drh5b47efa2010-02-12 18:18:39 +00005102 if( pBt->secureDelete ){
5103 /* If the secure_delete option is enabled, then
5104 ** always fully overwrite deleted information with zeros.
5105 */
shaneh84f4b2f2010-02-26 01:46:54 +00005106 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5107 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005108 ){
5109 goto freepage_out;
5110 }
5111 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005112 }
drhfcce93f2006-02-22 03:08:32 +00005113
danielk1977687566d2004-11-02 12:56:41 +00005114 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005115 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005116 */
danielk197785d90ca2008-07-19 14:25:15 +00005117 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005118 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005119 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005120 }
danielk1977687566d2004-11-02 12:56:41 +00005121
danielk1977bea2a942009-01-20 17:06:27 +00005122 /* Now manipulate the actual database free-list structure. There are two
5123 ** possibilities. If the free-list is currently empty, or if the first
5124 ** trunk page in the free-list is full, then this page will become a
5125 ** new free-list trunk page. Otherwise, it will become a leaf of the
5126 ** first trunk page in the current free-list. This block tests if it
5127 ** is possible to add the page as a new free-list leaf.
5128 */
5129 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005130 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005131
5132 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005133 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005134 if( rc!=SQLITE_OK ){
5135 goto freepage_out;
5136 }
5137
5138 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005139 assert( pBt->usableSize>32 );
5140 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005141 rc = SQLITE_CORRUPT_BKPT;
5142 goto freepage_out;
5143 }
drheeb844a2009-08-08 18:01:07 +00005144 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005145 /* In this case there is room on the trunk page to insert the page
5146 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005147 **
5148 ** Note that the trunk page is not really full until it contains
5149 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5150 ** coded. But due to a coding error in versions of SQLite prior to
5151 ** 3.6.0, databases with freelist trunk pages holding more than
5152 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5153 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005154 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005155 ** for now. At some point in the future (once everyone has upgraded
5156 ** to 3.6.0 or later) we should consider fixing the conditional above
5157 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5158 */
danielk19773b8a05f2007-03-19 17:44:26 +00005159 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005160 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005161 put4byte(&pTrunk->aData[4], nLeaf+1);
5162 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drh5b47efa2010-02-12 18:18:39 +00005163 if( pPage && !pBt->secureDelete ){
danielk1977bea2a942009-01-20 17:06:27 +00005164 sqlite3PagerDontWrite(pPage->pDbPage);
5165 }
danielk1977bea2a942009-01-20 17:06:27 +00005166 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005167 }
drh3a4c1412004-05-09 20:40:11 +00005168 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005169 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005170 }
drh3b7511c2001-05-26 13:15:44 +00005171 }
danielk1977bea2a942009-01-20 17:06:27 +00005172
5173 /* If control flows to this point, then it was not possible to add the
5174 ** the page being freed as a leaf page of the first trunk in the free-list.
5175 ** Possibly because the free-list is empty, or possibly because the
5176 ** first trunk in the free-list is full. Either way, the page being freed
5177 ** will become the new first trunk page in the free-list.
5178 */
drhc046e3e2009-07-15 11:26:44 +00005179 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5180 goto freepage_out;
5181 }
5182 rc = sqlite3PagerWrite(pPage->pDbPage);
5183 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005184 goto freepage_out;
5185 }
5186 put4byte(pPage->aData, iTrunk);
5187 put4byte(&pPage->aData[4], 0);
5188 put4byte(&pPage1->aData[32], iPage);
5189 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5190
5191freepage_out:
5192 if( pPage ){
5193 pPage->isInit = 0;
5194 }
5195 releasePage(pPage);
5196 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005197 return rc;
5198}
drhc314dc72009-07-21 11:52:34 +00005199static void freePage(MemPage *pPage, int *pRC){
5200 if( (*pRC)==SQLITE_OK ){
5201 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5202 }
danielk1977bea2a942009-01-20 17:06:27 +00005203}
drh3b7511c2001-05-26 13:15:44 +00005204
5205/*
drh3aac2dd2004-04-26 14:10:20 +00005206** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005207*/
drh3aac2dd2004-04-26 14:10:20 +00005208static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005209 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005210 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005211 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005212 int rc;
drh94440812007-03-06 11:42:19 +00005213 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005214 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005215
drh1fee73e2007-08-29 04:00:57 +00005216 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005217 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005218 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005219 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005220 }
drhe42a9b42011-08-31 13:27:19 +00005221 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
5222 return SQLITE_CORRUPT; /* Cell extends past end of page */
5223 }
drh6f11bef2004-05-13 01:12:56 +00005224 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005225 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005226 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005227 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5228 assert( ovflPgno==0 || nOvfl>0 );
5229 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005230 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005231 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005232 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005233 /* 0 is not a legal page number and page 1 cannot be an
5234 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5235 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005236 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005237 }
danielk1977bea2a942009-01-20 17:06:27 +00005238 if( nOvfl ){
5239 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5240 if( rc ) return rc;
5241 }
dan887d4b22010-02-25 12:09:16 +00005242
shaneh1da207e2010-03-09 14:41:12 +00005243 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005244 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5245 ){
5246 /* There is no reason any cursor should have an outstanding reference
5247 ** to an overflow page belonging to a cell that is being deleted/updated.
5248 ** So if there exists more than one reference to this page, then it
5249 ** must not really be an overflow page and the database must be corrupt.
5250 ** It is helpful to detect this before calling freePage2(), as
5251 ** freePage2() may zero the page contents if secure-delete mode is
5252 ** enabled. If this 'overflow' page happens to be a page that the
5253 ** caller is iterating through or using in some other way, this
5254 ** can be problematic.
5255 */
5256 rc = SQLITE_CORRUPT_BKPT;
5257 }else{
5258 rc = freePage2(pBt, pOvfl, ovflPgno);
5259 }
5260
danielk1977bea2a942009-01-20 17:06:27 +00005261 if( pOvfl ){
5262 sqlite3PagerUnref(pOvfl->pDbPage);
5263 }
drh3b7511c2001-05-26 13:15:44 +00005264 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005265 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005266 }
drh5e2f8b92001-05-28 00:41:15 +00005267 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005268}
5269
5270/*
drh91025292004-05-03 19:49:32 +00005271** Create the byte sequence used to represent a cell on page pPage
5272** and write that byte sequence into pCell[]. Overflow pages are
5273** allocated and filled in as necessary. The calling procedure
5274** is responsible for making sure sufficient space has been allocated
5275** for pCell[].
5276**
5277** Note that pCell does not necessary need to point to the pPage->aData
5278** area. pCell might point to some temporary storage. The cell will
5279** be constructed in this temporary area then copied into pPage->aData
5280** later.
drh3b7511c2001-05-26 13:15:44 +00005281*/
5282static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005283 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005284 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005285 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005286 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005287 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005288 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005289){
drh3b7511c2001-05-26 13:15:44 +00005290 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005291 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005292 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005293 int spaceLeft;
5294 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005295 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005296 unsigned char *pPrior;
5297 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005298 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005299 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005300 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005301 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005302
drh1fee73e2007-08-29 04:00:57 +00005303 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005304
drhc5053fb2008-11-27 02:22:10 +00005305 /* pPage is not necessarily writeable since pCell might be auxiliary
5306 ** buffer space that is separate from the pPage buffer area */
5307 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5308 || sqlite3PagerIswriteable(pPage->pDbPage) );
5309
drh91025292004-05-03 19:49:32 +00005310 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005311 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005312 if( !pPage->leaf ){
5313 nHeader += 4;
5314 }
drh8b18dd42004-05-12 19:18:15 +00005315 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005316 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005317 }else{
drhb026e052007-05-02 01:34:31 +00005318 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005319 }
drh6f11bef2004-05-13 01:12:56 +00005320 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005321 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005322 assert( info.nHeader==nHeader );
5323 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005324 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005325
5326 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005327 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005328 if( pPage->intKey ){
5329 pSrc = pData;
5330 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005331 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005332 }else{
danielk197731d31b82009-07-13 13:18:07 +00005333 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5334 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005335 }
drhf49661a2008-12-10 16:45:50 +00005336 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005337 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005338 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005339 }
drh6f11bef2004-05-13 01:12:56 +00005340 *pnSize = info.nSize;
5341 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005342 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005343 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005344
drh3b7511c2001-05-26 13:15:44 +00005345 while( nPayload>0 ){
5346 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005347#ifndef SQLITE_OMIT_AUTOVACUUM
5348 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005349 if( pBt->autoVacuum ){
5350 do{
5351 pgnoOvfl++;
5352 } while(
5353 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5354 );
danielk1977b39f70b2007-05-17 18:28:11 +00005355 }
danielk1977afcdd022004-10-31 16:25:42 +00005356#endif
drhf49661a2008-12-10 16:45:50 +00005357 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005358#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005359 /* If the database supports auto-vacuum, and the second or subsequent
5360 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005361 ** for that page now.
5362 **
5363 ** If this is the first overflow page, then write a partial entry
5364 ** to the pointer-map. If we write nothing to this pointer-map slot,
5365 ** then the optimistic overflow chain processing in clearCell()
5366 ** may misinterpret the uninitialised values and delete the
5367 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005368 */
danielk19774ef24492007-05-23 09:52:41 +00005369 if( pBt->autoVacuum && rc==SQLITE_OK ){
5370 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005371 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005372 if( rc ){
5373 releasePage(pOvfl);
5374 }
danielk1977afcdd022004-10-31 16:25:42 +00005375 }
5376#endif
drh3b7511c2001-05-26 13:15:44 +00005377 if( rc ){
drh9b171272004-05-08 02:03:22 +00005378 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005379 return rc;
5380 }
drhc5053fb2008-11-27 02:22:10 +00005381
5382 /* If pToRelease is not zero than pPrior points into the data area
5383 ** of pToRelease. Make sure pToRelease is still writeable. */
5384 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5385
5386 /* If pPrior is part of the data area of pPage, then make sure pPage
5387 ** is still writeable */
5388 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5389 || sqlite3PagerIswriteable(pPage->pDbPage) );
5390
drh3aac2dd2004-04-26 14:10:20 +00005391 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005392 releasePage(pToRelease);
5393 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005394 pPrior = pOvfl->aData;
5395 put4byte(pPrior, 0);
5396 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005397 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005398 }
5399 n = nPayload;
5400 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005401
5402 /* If pToRelease is not zero than pPayload points into the data area
5403 ** of pToRelease. Make sure pToRelease is still writeable. */
5404 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5405
5406 /* If pPayload is part of the data area of pPage, then make sure pPage
5407 ** is still writeable */
5408 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5409 || sqlite3PagerIswriteable(pPage->pDbPage) );
5410
drhb026e052007-05-02 01:34:31 +00005411 if( nSrc>0 ){
5412 if( n>nSrc ) n = nSrc;
5413 assert( pSrc );
5414 memcpy(pPayload, pSrc, n);
5415 }else{
5416 memset(pPayload, 0, n);
5417 }
drh3b7511c2001-05-26 13:15:44 +00005418 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005419 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005420 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005421 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005422 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005423 if( nSrc==0 ){
5424 nSrc = nData;
5425 pSrc = pData;
5426 }
drhdd793422001-06-28 01:54:48 +00005427 }
drh9b171272004-05-08 02:03:22 +00005428 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005429 return SQLITE_OK;
5430}
5431
drh14acc042001-06-10 19:56:58 +00005432/*
5433** Remove the i-th cell from pPage. This routine effects pPage only.
5434** The cell content is not freed or deallocated. It is assumed that
5435** the cell content has been copied someplace else. This routine just
5436** removes the reference to the cell from pPage.
5437**
5438** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005439*/
drh98add2e2009-07-20 17:11:49 +00005440static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005441 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005442 u8 *data; /* pPage->aData */
5443 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005444 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005445 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005446 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005447
drh98add2e2009-07-20 17:11:49 +00005448 if( *pRC ) return;
5449
drh8c42ca92001-06-22 19:15:00 +00005450 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005451 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005452 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005453 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005454 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005455 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005456 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005457 hdr = pPage->hdrOffset;
5458 testcase( pc==get2byte(&data[hdr+5]) );
5459 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005460 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005461 *pRC = SQLITE_CORRUPT_BKPT;
5462 return;
shane0af3f892008-11-12 04:55:34 +00005463 }
shanedcc50b72008-11-13 18:29:50 +00005464 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005465 if( rc ){
5466 *pRC = rc;
5467 return;
shanedcc50b72008-11-13 18:29:50 +00005468 }
drhc3f1d5f2011-05-30 23:42:16 +00005469 endPtr = &data[pPage->cellOffset + 2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005470 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005471 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005472 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005473 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005474 }
5475 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005476 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005477 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005478}
5479
5480/*
5481** Insert a new cell on pPage at cell index "i". pCell points to the
5482** content of the cell.
5483**
5484** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005485** will not fit, then make a copy of the cell content into pTemp if
5486** pTemp is not null. Regardless of pTemp, allocate a new entry
5487** in pPage->aOvfl[] and make it point to the cell content (either
5488** in pTemp or the original pCell) and also record its index.
5489** Allocating a new entry in pPage->aCell[] implies that
5490** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005491**
5492** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5493** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005494** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005495** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005496*/
drh98add2e2009-07-20 17:11:49 +00005497static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005498 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005499 int i, /* New cell becomes the i-th cell of the page */
5500 u8 *pCell, /* Content of the new cell */
5501 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005502 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005503 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5504 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005505){
drh383d30f2010-02-26 13:07:37 +00005506 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005507 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005508 int end; /* First byte past the last cell pointer in data[] */
5509 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005510 int cellOffset; /* Address of first cell pointer in data[] */
5511 u8 *data; /* The content of the whole page */
5512 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005513 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005514
danielk19774dbaa892009-06-16 16:50:22 +00005515 int nSkip = (iChild ? 4 : 0);
5516
drh98add2e2009-07-20 17:11:49 +00005517 if( *pRC ) return;
5518
drh43605152004-05-29 21:46:49 +00005519 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005520 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drhf49661a2008-12-10 16:45:50 +00005521 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005522 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005523 /* The cell should normally be sized correctly. However, when moving a
5524 ** malformed cell from a leaf page to an interior page, if the cell size
5525 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5526 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5527 ** the term after the || in the following assert(). */
5528 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005529 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005530 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005531 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005532 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005533 }
danielk19774dbaa892009-06-16 16:50:22 +00005534 if( iChild ){
5535 put4byte(pCell, iChild);
5536 }
drh43605152004-05-29 21:46:49 +00005537 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005538 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005539 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005540 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005541 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005542 int rc = sqlite3PagerWrite(pPage->pDbPage);
5543 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005544 *pRC = rc;
5545 return;
danielk19776e465eb2007-08-21 13:11:00 +00005546 }
5547 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005548 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005549 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005550 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005551 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005552 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005553 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005554 /* The allocateSpace() routine guarantees the following two properties
5555 ** if it returns success */
5556 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005557 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005558 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005559 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005560 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005561 if( iChild ){
5562 put4byte(&data[idx], iChild);
5563 }
drh61d2fe92011-06-03 23:28:33 +00005564 ptr = &data[end];
5565 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005566 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005567 while( ptr>endPtr ){
5568 *(u16*)ptr = *(u16*)&ptr[-2];
5569 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005570 }
drh43605152004-05-29 21:46:49 +00005571 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005572 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005573#ifndef SQLITE_OMIT_AUTOVACUUM
5574 if( pPage->pBt->autoVacuum ){
5575 /* The cell may contain a pointer to an overflow page. If so, write
5576 ** the entry for the overflow page into the pointer map.
5577 */
drh98add2e2009-07-20 17:11:49 +00005578 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005579 }
5580#endif
drh14acc042001-06-10 19:56:58 +00005581 }
5582}
5583
5584/*
drhfa1a98a2004-05-14 19:08:17 +00005585** Add a list of cells to a page. The page should be initially empty.
5586** The cells are guaranteed to fit on the page.
5587*/
5588static void assemblePage(
5589 MemPage *pPage, /* The page to be assemblied */
5590 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005591 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005592 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005593){
5594 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005595 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005596 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005597 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5598 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5599 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005600
drh43605152004-05-29 21:46:49 +00005601 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005602 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005603 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5604 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005605 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005606
5607 /* Check that the page has just been zeroed by zeroPage() */
5608 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005609 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005610
5611 pCellptr = &data[pPage->cellOffset + nCell*2];
5612 cellbody = nUsable;
5613 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005614 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005615 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005616 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005617 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005618 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005619 }
danielk1977fad91942009-04-29 17:49:59 +00005620 put2byte(&data[hdr+3], nCell);
5621 put2byte(&data[hdr+5], cellbody);
5622 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005623 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005624}
5625
drh14acc042001-06-10 19:56:58 +00005626/*
drhc3b70572003-01-04 19:44:07 +00005627** The following parameters determine how many adjacent pages get involved
5628** in a balancing operation. NN is the number of neighbors on either side
5629** of the page that participate in the balancing operation. NB is the
5630** total number of pages that participate, including the target page and
5631** NN neighbors on either side.
5632**
5633** The minimum value of NN is 1 (of course). Increasing NN above 1
5634** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5635** in exchange for a larger degradation in INSERT and UPDATE performance.
5636** The value of NN appears to give the best results overall.
5637*/
5638#define NN 1 /* Number of neighbors on either side of pPage */
5639#define NB (NN*2+1) /* Total pages involved in the balance */
5640
danielk1977ac245ec2005-01-14 13:50:11 +00005641
drh615ae552005-01-16 23:21:00 +00005642#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005643/*
5644** This version of balance() handles the common special case where
5645** a new entry is being inserted on the extreme right-end of the
5646** tree, in other words, when the new entry will become the largest
5647** entry in the tree.
5648**
drhc314dc72009-07-21 11:52:34 +00005649** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005650** a new page to the right-hand side and put the one new entry in
5651** that page. This leaves the right side of the tree somewhat
5652** unbalanced. But odds are that we will be inserting new entries
5653** at the end soon afterwards so the nearly empty page will quickly
5654** fill up. On average.
5655**
5656** pPage is the leaf page which is the right-most page in the tree.
5657** pParent is its parent. pPage must have a single overflow entry
5658** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005659**
5660** The pSpace buffer is used to store a temporary copy of the divider
5661** cell that will be inserted into pParent. Such a cell consists of a 4
5662** byte page number followed by a variable length integer. In other
5663** words, at most 13 bytes. Hence the pSpace buffer must be at
5664** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005665*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005666static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5667 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005668 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005669 int rc; /* Return Code */
5670 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005671
drh1fee73e2007-08-29 04:00:57 +00005672 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005673 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005674 assert( pPage->nOverflow==1 );
5675
drh5d433ce2010-08-14 16:02:52 +00005676 /* This error condition is now caught prior to reaching this function */
drh6b47fca2010-08-19 14:22:42 +00005677 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005678
danielk1977a50d9aa2009-06-08 14:49:45 +00005679 /* Allocate a new page. This page will become the right-sibling of
5680 ** pPage. Make the parent page writable, so that the new divider cell
5681 ** may be inserted. If both these operations are successful, proceed.
5682 */
drh4f0c5872007-03-26 22:05:01 +00005683 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005684
danielk1977eaa06f62008-09-18 17:34:44 +00005685 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005686
5687 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005688 u8 *pCell = pPage->aOvfl[0].pCell;
5689 u16 szCell = cellSizePtr(pPage, pCell);
5690 u8 *pStop;
5691
drhc5053fb2008-11-27 02:22:10 +00005692 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005693 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5694 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005695 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005696
5697 /* If this is an auto-vacuum database, update the pointer map
5698 ** with entries for the new page, and any pointer from the
5699 ** cell on the page to an overflow page. If either of these
5700 ** operations fails, the return code is set, but the contents
5701 ** of the parent page are still manipulated by thh code below.
5702 ** That is Ok, at this point the parent page is guaranteed to
5703 ** be marked as dirty. Returning an error code will cause a
5704 ** rollback, undoing any changes made to the parent page.
5705 */
5706 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005707 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5708 if( szCell>pNew->minLocal ){
5709 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005710 }
5711 }
danielk1977eaa06f62008-09-18 17:34:44 +00005712
danielk19776f235cc2009-06-04 14:46:08 +00005713 /* Create a divider cell to insert into pParent. The divider cell
5714 ** consists of a 4-byte page number (the page number of pPage) and
5715 ** a variable length key value (which must be the same value as the
5716 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005717 **
danielk19776f235cc2009-06-04 14:46:08 +00005718 ** To find the largest key value on pPage, first find the right-most
5719 ** cell on pPage. The first two fields of this cell are the
5720 ** record-length (a variable length integer at most 32-bits in size)
5721 ** and the key value (a variable length integer, may have any value).
5722 ** The first of the while(...) loops below skips over the record-length
5723 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005724 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005725 */
danielk1977eaa06f62008-09-18 17:34:44 +00005726 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005727 pStop = &pCell[9];
5728 while( (*(pCell++)&0x80) && pCell<pStop );
5729 pStop = &pCell[9];
5730 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5731
danielk19774dbaa892009-06-16 16:50:22 +00005732 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005733 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5734 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005735
5736 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005737 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5738
danielk1977e08a3c42008-09-18 18:17:03 +00005739 /* Release the reference to the new page. */
5740 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005741 }
5742
danielk1977eaa06f62008-09-18 17:34:44 +00005743 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005744}
drh615ae552005-01-16 23:21:00 +00005745#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005746
danielk19774dbaa892009-06-16 16:50:22 +00005747#if 0
drhc3b70572003-01-04 19:44:07 +00005748/*
danielk19774dbaa892009-06-16 16:50:22 +00005749** This function does not contribute anything to the operation of SQLite.
5750** it is sometimes activated temporarily while debugging code responsible
5751** for setting pointer-map entries.
5752*/
5753static int ptrmapCheckPages(MemPage **apPage, int nPage){
5754 int i, j;
5755 for(i=0; i<nPage; i++){
5756 Pgno n;
5757 u8 e;
5758 MemPage *pPage = apPage[i];
5759 BtShared *pBt = pPage->pBt;
5760 assert( pPage->isInit );
5761
5762 for(j=0; j<pPage->nCell; j++){
5763 CellInfo info;
5764 u8 *z;
5765
5766 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005767 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005768 if( info.iOverflow ){
5769 Pgno ovfl = get4byte(&z[info.iOverflow]);
5770 ptrmapGet(pBt, ovfl, &e, &n);
5771 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5772 }
5773 if( !pPage->leaf ){
5774 Pgno child = get4byte(z);
5775 ptrmapGet(pBt, child, &e, &n);
5776 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5777 }
5778 }
5779 if( !pPage->leaf ){
5780 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5781 ptrmapGet(pBt, child, &e, &n);
5782 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5783 }
5784 }
5785 return 1;
5786}
5787#endif
5788
danielk1977cd581a72009-06-23 15:43:39 +00005789/*
5790** This function is used to copy the contents of the b-tree node stored
5791** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5792** the pointer-map entries for each child page are updated so that the
5793** parent page stored in the pointer map is page pTo. If pFrom contained
5794** any cells with overflow page pointers, then the corresponding pointer
5795** map entries are also updated so that the parent page is page pTo.
5796**
5797** If pFrom is currently carrying any overflow cells (entries in the
5798** MemPage.aOvfl[] array), they are not copied to pTo.
5799**
danielk197730548662009-07-09 05:07:37 +00005800** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005801**
5802** The performance of this function is not critical. It is only used by
5803** the balance_shallower() and balance_deeper() procedures, neither of
5804** which are called often under normal circumstances.
5805*/
drhc314dc72009-07-21 11:52:34 +00005806static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5807 if( (*pRC)==SQLITE_OK ){
5808 BtShared * const pBt = pFrom->pBt;
5809 u8 * const aFrom = pFrom->aData;
5810 u8 * const aTo = pTo->aData;
5811 int const iFromHdr = pFrom->hdrOffset;
5812 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005813 int rc;
drhc314dc72009-07-21 11:52:34 +00005814 int iData;
5815
5816
5817 assert( pFrom->isInit );
5818 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00005819 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00005820
5821 /* Copy the b-tree node content from page pFrom to page pTo. */
5822 iData = get2byte(&aFrom[iFromHdr+5]);
5823 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5824 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5825
5826 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005827 ** match the new data. The initialization of pTo can actually fail under
5828 ** fairly obscure circumstances, even though it is a copy of initialized
5829 ** page pFrom.
5830 */
drhc314dc72009-07-21 11:52:34 +00005831 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005832 rc = btreeInitPage(pTo);
5833 if( rc!=SQLITE_OK ){
5834 *pRC = rc;
5835 return;
5836 }
drhc314dc72009-07-21 11:52:34 +00005837
5838 /* If this is an auto-vacuum database, update the pointer-map entries
5839 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5840 */
5841 if( ISAUTOVACUUM ){
5842 *pRC = setChildPtrmaps(pTo);
5843 }
danielk1977cd581a72009-06-23 15:43:39 +00005844 }
danielk1977cd581a72009-06-23 15:43:39 +00005845}
5846
5847/*
danielk19774dbaa892009-06-16 16:50:22 +00005848** This routine redistributes cells on the iParentIdx'th child of pParent
5849** (hereafter "the page") and up to 2 siblings so that all pages have about the
5850** same amount of free space. Usually a single sibling on either side of the
5851** page are used in the balancing, though both siblings might come from one
5852** side if the page is the first or last child of its parent. If the page
5853** has fewer than 2 siblings (something which can only happen if the page
5854** is a root page or a child of a root page) then all available siblings
5855** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005856**
danielk19774dbaa892009-06-16 16:50:22 +00005857** The number of siblings of the page might be increased or decreased by
5858** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005859**
danielk19774dbaa892009-06-16 16:50:22 +00005860** Note that when this routine is called, some of the cells on the page
5861** might not actually be stored in MemPage.aData[]. This can happen
5862** if the page is overfull. This routine ensures that all cells allocated
5863** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005864**
danielk19774dbaa892009-06-16 16:50:22 +00005865** In the course of balancing the page and its siblings, cells may be
5866** inserted into or removed from the parent page (pParent). Doing so
5867** may cause the parent page to become overfull or underfull. If this
5868** happens, it is the responsibility of the caller to invoke the correct
5869** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005870**
drh5e00f6c2001-09-13 13:46:56 +00005871** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005872** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005873** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005874**
5875** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005876** buffer big enough to hold one page. If while inserting cells into the parent
5877** page (pParent) the parent page becomes overfull, this buffer is
5878** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005879** a maximum of four divider cells into the parent page, and the maximum
5880** size of a cell stored within an internal node is always less than 1/4
5881** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5882** enough for all overflow cells.
5883**
5884** If aOvflSpace is set to a null pointer, this function returns
5885** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005886*/
danielk19774dbaa892009-06-16 16:50:22 +00005887static int balance_nonroot(
5888 MemPage *pParent, /* Parent page of siblings being balanced */
5889 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005890 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5891 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005892){
drh16a9b832007-05-05 18:39:25 +00005893 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005894 int nCell = 0; /* Number of cells in apCell[] */
5895 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005896 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005897 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005898 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005899 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005900 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005901 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005902 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005903 int usableSpace; /* Bytes in pPage beyond the header */
5904 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005905 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005906 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005907 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005908 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005909 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005910 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005911 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005912 u8 *pRight; /* Location in parent of right-sibling pointer */
5913 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005914 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5915 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005916 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005917 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005918 u8 *aSpace1; /* Space for copies of dividers cells */
5919 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005920
danielk1977a50d9aa2009-06-08 14:49:45 +00005921 pBt = pParent->pBt;
5922 assert( sqlite3_mutex_held(pBt->mutex) );
5923 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005924
danielk1977e5765212009-06-17 11:13:28 +00005925#if 0
drh43605152004-05-29 21:46:49 +00005926 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005927#endif
drh2e38c322004-09-03 18:38:44 +00005928
danielk19774dbaa892009-06-16 16:50:22 +00005929 /* At this point pParent may have at most one overflow cell. And if
5930 ** this overflow cell is present, it must be the cell with
5931 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005932 ** is called (indirectly) from sqlite3BtreeDelete().
5933 */
danielk19774dbaa892009-06-16 16:50:22 +00005934 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5935 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5936
danielk197711a8a862009-06-17 11:49:52 +00005937 if( !aOvflSpace ){
5938 return SQLITE_NOMEM;
5939 }
5940
danielk1977a50d9aa2009-06-08 14:49:45 +00005941 /* Find the sibling pages to balance. Also locate the cells in pParent
5942 ** that divide the siblings. An attempt is made to find NN siblings on
5943 ** either side of pPage. More siblings are taken from one side, however,
5944 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005945 ** has NB or fewer children then all children of pParent are taken.
5946 **
5947 ** This loop also drops the divider cells from the parent page. This
5948 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005949 ** overflow cells in the parent page, since if any existed they will
5950 ** have already been removed.
5951 */
danielk19774dbaa892009-06-16 16:50:22 +00005952 i = pParent->nOverflow + pParent->nCell;
5953 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005954 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005955 nOld = i+1;
5956 }else{
5957 nOld = 3;
5958 if( iParentIdx==0 ){
5959 nxDiv = 0;
5960 }else if( iParentIdx==i ){
5961 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005962 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005963 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005964 }
danielk19774dbaa892009-06-16 16:50:22 +00005965 i = 2;
5966 }
5967 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5968 pRight = &pParent->aData[pParent->hdrOffset+8];
5969 }else{
5970 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5971 }
5972 pgno = get4byte(pRight);
5973 while( 1 ){
5974 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5975 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00005976 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00005977 goto balance_cleanup;
5978 }
danielk1977634f2982005-03-28 08:44:07 +00005979 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005980 if( (i--)==0 ) break;
5981
drhcd09c532009-07-20 19:30:00 +00005982 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00005983 apDiv[i] = pParent->aOvfl[0].pCell;
5984 pgno = get4byte(apDiv[i]);
5985 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5986 pParent->nOverflow = 0;
5987 }else{
5988 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5989 pgno = get4byte(apDiv[i]);
5990 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5991
5992 /* Drop the cell from the parent page. apDiv[i] still points to
5993 ** the cell within the parent, even though it has been dropped.
5994 ** This is safe because dropping a cell only overwrites the first
5995 ** four bytes of it, and this function does not need the first
5996 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005997 ** later on.
5998 **
drh8a575d92011-10-12 17:00:28 +00005999 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006000 ** the dropCell() routine will overwrite the entire cell with zeroes.
6001 ** In this case, temporarily copy the cell into the aOvflSpace[]
6002 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6003 ** is allocated. */
drh5b47efa2010-02-12 18:18:39 +00006004 if( pBt->secureDelete ){
drh8a575d92011-10-12 17:00:28 +00006005 int iOff;
6006
6007 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006008 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006009 rc = SQLITE_CORRUPT_BKPT;
6010 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6011 goto balance_cleanup;
6012 }else{
6013 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6014 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6015 }
drh5b47efa2010-02-12 18:18:39 +00006016 }
drh98add2e2009-07-20 17:11:49 +00006017 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006018 }
drh8b2f49b2001-06-08 00:21:52 +00006019 }
6020
drha9121e42008-02-19 14:59:35 +00006021 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006022 ** alignment */
drha9121e42008-02-19 14:59:35 +00006023 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006024
drh8b2f49b2001-06-08 00:21:52 +00006025 /*
danielk1977634f2982005-03-28 08:44:07 +00006026 ** Allocate space for memory structures
6027 */
danielk19774dbaa892009-06-16 16:50:22 +00006028 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006029 szScratch =
drha9121e42008-02-19 14:59:35 +00006030 nMaxCells*sizeof(u8*) /* apCell */
6031 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006032 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006033 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006034 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006035 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006036 rc = SQLITE_NOMEM;
6037 goto balance_cleanup;
6038 }
drha9121e42008-02-19 14:59:35 +00006039 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006040 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006041 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006042
6043 /*
6044 ** Load pointers to all cells on sibling pages and the divider cells
6045 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00006046 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00006047 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006048 **
6049 ** If the siblings are on leaf pages, then the child pointers of the
6050 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006051 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006052 ** child pointers. If siblings are not leaves, then all cell in
6053 ** apCell[] include child pointers. Either way, all cells in apCell[]
6054 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006055 **
6056 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6057 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006058 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006059 leafCorrection = apOld[0]->leaf*4;
6060 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006061 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006062 int limit;
6063
6064 /* Before doing anything else, take a copy of the i'th original sibling
6065 ** The rest of this function will use data from the copies rather
6066 ** that the original pages since the original pages will be in the
6067 ** process of being overwritten. */
6068 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6069 memcpy(pOld, apOld[i], sizeof(MemPage));
6070 pOld->aData = (void*)&pOld[1];
6071 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6072
6073 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006074 if( pOld->nOverflow>0 ){
6075 for(j=0; j<limit; j++){
6076 assert( nCell<nMaxCells );
6077 apCell[nCell] = findOverflowCell(pOld, j);
6078 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6079 nCell++;
6080 }
6081 }else{
6082 u8 *aData = pOld->aData;
6083 u16 maskPage = pOld->maskPage;
6084 u16 cellOffset = pOld->cellOffset;
6085 for(j=0; j<limit; j++){
6086 assert( nCell<nMaxCells );
6087 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6088 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6089 nCell++;
6090 }
6091 }
danielk19774dbaa892009-06-16 16:50:22 +00006092 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006093 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006094 u8 *pTemp;
6095 assert( nCell<nMaxCells );
6096 szCell[nCell] = sz;
6097 pTemp = &aSpace1[iSpace1];
6098 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006099 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006100 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006101 memcpy(pTemp, apDiv[i], sz);
6102 apCell[nCell] = pTemp+leafCorrection;
6103 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006104 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006105 if( !pOld->leaf ){
6106 assert( leafCorrection==0 );
6107 assert( pOld->hdrOffset==0 );
6108 /* The right pointer of the child page pOld becomes the left
6109 ** pointer of the divider cell */
6110 memcpy(apCell[nCell], &pOld->aData[8], 4);
6111 }else{
6112 assert( leafCorrection==4 );
6113 if( szCell[nCell]<4 ){
6114 /* Do not allow any cells smaller than 4 bytes. */
6115 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006116 }
6117 }
drh14acc042001-06-10 19:56:58 +00006118 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006119 }
drh8b2f49b2001-06-08 00:21:52 +00006120 }
6121
6122 /*
drh6019e162001-07-02 17:51:45 +00006123 ** Figure out the number of pages needed to hold all nCell cells.
6124 ** Store this number in "k". Also compute szNew[] which is the total
6125 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006126 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006127 ** cntNew[k] should equal nCell.
6128 **
drh96f5b762004-05-16 16:24:36 +00006129 ** Values computed by this block:
6130 **
6131 ** k: The total number of sibling pages
6132 ** szNew[i]: Spaced used on the i-th sibling page.
6133 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6134 ** the right of the i-th sibling page.
6135 ** usableSpace: Number of bytes of space available on each sibling.
6136 **
drh8b2f49b2001-06-08 00:21:52 +00006137 */
drh43605152004-05-29 21:46:49 +00006138 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006139 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006140 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006141 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006142 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006143 szNew[k] = subtotal - szCell[i];
6144 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006145 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006146 subtotal = 0;
6147 k++;
drh9978c972010-02-23 17:36:32 +00006148 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006149 }
6150 }
6151 szNew[k] = subtotal;
6152 cntNew[k] = nCell;
6153 k++;
drh96f5b762004-05-16 16:24:36 +00006154
6155 /*
6156 ** The packing computed by the previous block is biased toward the siblings
6157 ** on the left side. The left siblings are always nearly full, while the
6158 ** right-most sibling might be nearly empty. This block of code attempts
6159 ** to adjust the packing of siblings to get a better balance.
6160 **
6161 ** This adjustment is more than an optimization. The packing above might
6162 ** be so out of balance as to be illegal. For example, the right-most
6163 ** sibling might be completely empty. This adjustment is not optional.
6164 */
drh6019e162001-07-02 17:51:45 +00006165 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006166 int szRight = szNew[i]; /* Size of sibling on the right */
6167 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6168 int r; /* Index of right-most cell in left sibling */
6169 int d; /* Index of first cell to the left of right sibling */
6170
6171 r = cntNew[i-1] - 1;
6172 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006173 assert( d<nMaxCells );
6174 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00006175 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
6176 szRight += szCell[d] + 2;
6177 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006178 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006179 r = cntNew[i-1] - 1;
6180 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006181 }
drh96f5b762004-05-16 16:24:36 +00006182 szNew[i] = szRight;
6183 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006184 }
drh09d0deb2005-08-02 17:13:09 +00006185
danielk19776f235cc2009-06-04 14:46:08 +00006186 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006187 ** a virtual root page. A virtual root page is when the real root
6188 ** page is page 1 and we are the only child of that page.
6189 */
6190 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00006191
danielk1977e5765212009-06-17 11:13:28 +00006192 TRACE(("BALANCE: old: %d %d %d ",
6193 apOld[0]->pgno,
6194 nOld>=2 ? apOld[1]->pgno : 0,
6195 nOld>=3 ? apOld[2]->pgno : 0
6196 ));
6197
drh8b2f49b2001-06-08 00:21:52 +00006198 /*
drh6b308672002-07-08 02:16:37 +00006199 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006200 */
drheac74422009-06-14 12:47:11 +00006201 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006202 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006203 goto balance_cleanup;
6204 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006205 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006206 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006207 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006208 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006209 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006210 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006211 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006212 nNew++;
danielk197728129562005-01-11 10:25:06 +00006213 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006214 }else{
drh7aa8f852006-03-28 00:24:44 +00006215 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006216 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006217 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006218 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006219 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006220
6221 /* Set the pointer-map entry for the new sibling page. */
6222 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006223 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006224 if( rc!=SQLITE_OK ){
6225 goto balance_cleanup;
6226 }
6227 }
drh6b308672002-07-08 02:16:37 +00006228 }
drh8b2f49b2001-06-08 00:21:52 +00006229 }
6230
danielk1977299b1872004-11-22 10:02:10 +00006231 /* Free any old pages that were not reused as new pages.
6232 */
6233 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006234 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006235 if( rc ) goto balance_cleanup;
6236 releasePage(apOld[i]);
6237 apOld[i] = 0;
6238 i++;
6239 }
6240
drh8b2f49b2001-06-08 00:21:52 +00006241 /*
drhf9ffac92002-03-02 19:00:31 +00006242 ** Put the new pages in accending order. This helps to
6243 ** keep entries in the disk file in order so that a scan
6244 ** of the table is a linear scan through the file. That
6245 ** in turn helps the operating system to deliver pages
6246 ** from the disk more rapidly.
6247 **
6248 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006249 ** n is never more than NB (a small constant), that should
6250 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006251 **
drhc3b70572003-01-04 19:44:07 +00006252 ** When NB==3, this one optimization makes the database
6253 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006254 */
6255 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006256 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006257 int minI = i;
6258 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006259 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006260 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006261 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006262 }
6263 }
6264 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006265 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006266 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006267 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006268 apNew[minI] = pT;
6269 }
6270 }
danielk1977e5765212009-06-17 11:13:28 +00006271 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006272 apNew[0]->pgno, szNew[0],
6273 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6274 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6275 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6276 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6277
6278 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6279 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006280
drhf9ffac92002-03-02 19:00:31 +00006281 /*
drh14acc042001-06-10 19:56:58 +00006282 ** Evenly distribute the data in apCell[] across the new pages.
6283 ** Insert divider cells into pParent as necessary.
6284 */
6285 j = 0;
6286 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006287 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006288 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006289 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006290 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006291 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006292 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006293 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006294
danielk1977ac11ee62005-01-15 12:45:51 +00006295 j = cntNew[i];
6296
6297 /* If the sibling page assembled above was not the right-most sibling,
6298 ** insert a divider cell into the parent page.
6299 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006300 assert( i<nNew-1 || j==nCell );
6301 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006302 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006303 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006304 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006305
6306 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006307 pCell = apCell[j];
6308 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006309 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006310 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006311 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006312 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006313 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006314 ** then there is no divider cell in apCell[]. Instead, the divider
6315 ** cell consists of the integer key for the right-most cell of
6316 ** the sibling-page assembled above only.
6317 */
drh6f11bef2004-05-13 01:12:56 +00006318 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006319 j--;
danielk197730548662009-07-09 05:07:37 +00006320 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006321 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006322 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006323 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006324 }else{
6325 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006326 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006327 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006328 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006329 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006330 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006331 ** insertCell(), so reparse the cell now.
6332 **
6333 ** Note that this can never happen in an SQLite data file, as all
6334 ** cells are at least 4 bytes. It only happens in b-trees used
6335 ** to evaluate "IN (SELECT ...)" and similar clauses.
6336 */
6337 if( szCell[j]==4 ){
6338 assert(leafCorrection==4);
6339 sz = cellSizePtr(pParent, pCell);
6340 }
drh4b70f112004-05-02 21:12:19 +00006341 }
danielk19776067a9b2009-06-09 09:41:00 +00006342 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006343 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006344 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006345 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006346 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006347 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006348
drh14acc042001-06-10 19:56:58 +00006349 j++;
6350 nxDiv++;
6351 }
6352 }
drh6019e162001-07-02 17:51:45 +00006353 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006354 assert( nOld>0 );
6355 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006356 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006357 u8 *zChild = &apCopy[nOld-1]->aData[8];
6358 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006359 }
6360
danielk197713bd99f2009-06-24 05:40:34 +00006361 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6362 /* The root page of the b-tree now contains no cells. The only sibling
6363 ** page is the right-child of the parent. Copy the contents of the
6364 ** child page into the parent, decreasing the overall height of the
6365 ** b-tree structure by one. This is described as the "balance-shallower"
6366 ** sub-algorithm in some documentation.
6367 **
6368 ** If this is an auto-vacuum database, the call to copyNodeContent()
6369 ** sets all pointer-map entries corresponding to database image pages
6370 ** for which the pointer is stored within the content being copied.
6371 **
6372 ** The second assert below verifies that the child page is defragmented
6373 ** (it must be, as it was just reconstructed using assemblePage()). This
6374 ** is important if the parent page happens to be page 1 of the database
6375 ** image. */
6376 assert( nNew==1 );
6377 assert( apNew[0]->nFree ==
6378 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6379 );
drhc314dc72009-07-21 11:52:34 +00006380 copyNodeContent(apNew[0], pParent, &rc);
6381 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006382 }else if( ISAUTOVACUUM ){
6383 /* Fix the pointer-map entries for all the cells that were shifted around.
6384 ** There are several different types of pointer-map entries that need to
6385 ** be dealt with by this routine. Some of these have been set already, but
6386 ** many have not. The following is a summary:
6387 **
6388 ** 1) The entries associated with new sibling pages that were not
6389 ** siblings when this function was called. These have already
6390 ** been set. We don't need to worry about old siblings that were
6391 ** moved to the free-list - the freePage() code has taken care
6392 ** of those.
6393 **
6394 ** 2) The pointer-map entries associated with the first overflow
6395 ** page in any overflow chains used by new divider cells. These
6396 ** have also already been taken care of by the insertCell() code.
6397 **
6398 ** 3) If the sibling pages are not leaves, then the child pages of
6399 ** cells stored on the sibling pages may need to be updated.
6400 **
6401 ** 4) If the sibling pages are not internal intkey nodes, then any
6402 ** overflow pages used by these cells may need to be updated
6403 ** (internal intkey nodes never contain pointers to overflow pages).
6404 **
6405 ** 5) If the sibling pages are not leaves, then the pointer-map
6406 ** entries for the right-child pages of each sibling may need
6407 ** to be updated.
6408 **
6409 ** Cases 1 and 2 are dealt with above by other code. The next
6410 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6411 ** setting a pointer map entry is a relatively expensive operation, this
6412 ** code only sets pointer map entries for child or overflow pages that have
6413 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006414 MemPage *pNew = apNew[0];
6415 MemPage *pOld = apCopy[0];
6416 int nOverflow = pOld->nOverflow;
6417 int iNextOld = pOld->nCell + nOverflow;
6418 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6419 j = 0; /* Current 'old' sibling page */
6420 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006421 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006422 int isDivider = 0;
6423 while( i==iNextOld ){
6424 /* Cell i is the cell immediately following the last cell on old
6425 ** sibling page j. If the siblings are not leaf pages of an
6426 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006427 assert( j+1 < ArraySize(apCopy) );
danielk19774dbaa892009-06-16 16:50:22 +00006428 pOld = apCopy[++j];
6429 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6430 if( pOld->nOverflow ){
6431 nOverflow = pOld->nOverflow;
6432 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6433 }
6434 isDivider = !leafData;
6435 }
6436
6437 assert(nOverflow>0 || iOverflow<i );
6438 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6439 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6440 if( i==iOverflow ){
6441 isDivider = 1;
6442 if( (--nOverflow)>0 ){
6443 iOverflow++;
6444 }
6445 }
6446
6447 if( i==cntNew[k] ){
6448 /* Cell i is the cell immediately following the last cell on new
6449 ** sibling page k. If the siblings are not leaf pages of an
6450 ** intkey b-tree, then cell i is a divider cell. */
6451 pNew = apNew[++k];
6452 if( !leafData ) continue;
6453 }
danielk19774dbaa892009-06-16 16:50:22 +00006454 assert( j<nOld );
6455 assert( k<nNew );
6456
6457 /* If the cell was originally divider cell (and is not now) or
6458 ** an overflow cell, or if the cell was located on a different sibling
6459 ** page before the balancing, then the pointer map entries associated
6460 ** with any child or overflow pages need to be updated. */
6461 if( isDivider || pOld->pgno!=pNew->pgno ){
6462 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006463 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006464 }
drh98add2e2009-07-20 17:11:49 +00006465 if( szCell[i]>pNew->minLocal ){
6466 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006467 }
6468 }
6469 }
6470
6471 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006472 for(i=0; i<nNew; i++){
6473 u32 key = get4byte(&apNew[i]->aData[8]);
6474 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006475 }
6476 }
6477
6478#if 0
6479 /* The ptrmapCheckPages() contains assert() statements that verify that
6480 ** all pointer map pages are set correctly. This is helpful while
6481 ** debugging. This is usually disabled because a corrupt database may
6482 ** cause an assert() statement to fail. */
6483 ptrmapCheckPages(apNew, nNew);
6484 ptrmapCheckPages(&pParent, 1);
6485#endif
6486 }
6487
danielk197771d5d2c2008-09-29 11:49:47 +00006488 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006489 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6490 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006491
drh8b2f49b2001-06-08 00:21:52 +00006492 /*
drh14acc042001-06-10 19:56:58 +00006493 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006494 */
drh14acc042001-06-10 19:56:58 +00006495balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006496 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006497 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006498 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006499 }
drh14acc042001-06-10 19:56:58 +00006500 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006501 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006502 }
danielk1977eaa06f62008-09-18 17:34:44 +00006503
drh8b2f49b2001-06-08 00:21:52 +00006504 return rc;
6505}
6506
drh43605152004-05-29 21:46:49 +00006507
6508/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006509** This function is called when the root page of a b-tree structure is
6510** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006511**
danielk1977a50d9aa2009-06-08 14:49:45 +00006512** A new child page is allocated and the contents of the current root
6513** page, including overflow cells, are copied into the child. The root
6514** page is then overwritten to make it an empty page with the right-child
6515** pointer pointing to the new page.
6516**
6517** Before returning, all pointer-map entries corresponding to pages
6518** that the new child-page now contains pointers to are updated. The
6519** entry corresponding to the new right-child pointer of the root
6520** page is also updated.
6521**
6522** If successful, *ppChild is set to contain a reference to the child
6523** page and SQLITE_OK is returned. In this case the caller is required
6524** to call releasePage() on *ppChild exactly once. If an error occurs,
6525** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006526*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006527static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6528 int rc; /* Return value from subprocedures */
6529 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006530 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006531 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006532
danielk1977a50d9aa2009-06-08 14:49:45 +00006533 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006534 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006535
danielk1977a50d9aa2009-06-08 14:49:45 +00006536 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6537 ** page that will become the new right-child of pPage. Copy the contents
6538 ** of the node stored on pRoot into the new child page.
6539 */
drh98add2e2009-07-20 17:11:49 +00006540 rc = sqlite3PagerWrite(pRoot->pDbPage);
6541 if( rc==SQLITE_OK ){
6542 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006543 copyNodeContent(pRoot, pChild, &rc);
6544 if( ISAUTOVACUUM ){
6545 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006546 }
6547 }
6548 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006549 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006550 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006551 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006552 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006553 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6554 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6555 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006556
danielk1977a50d9aa2009-06-08 14:49:45 +00006557 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6558
6559 /* Copy the overflow cells from pRoot to pChild */
6560 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6561 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006562
6563 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6564 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6565 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6566
6567 *ppChild = pChild;
6568 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006569}
6570
6571/*
danielk197771d5d2c2008-09-29 11:49:47 +00006572** The page that pCur currently points to has just been modified in
6573** some way. This function figures out if this modification means the
6574** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006575** routine. Balancing routines are:
6576**
6577** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006578** balance_deeper()
6579** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006580*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006581static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006582 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006583 const int nMin = pCur->pBt->usableSize * 2 / 3;
6584 u8 aBalanceQuickSpace[13];
6585 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006586
shane75ac1de2009-06-09 18:58:52 +00006587 TESTONLY( int balance_quick_called = 0 );
6588 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006589
6590 do {
6591 int iPage = pCur->iPage;
6592 MemPage *pPage = pCur->apPage[iPage];
6593
6594 if( iPage==0 ){
6595 if( pPage->nOverflow ){
6596 /* The root page of the b-tree is overfull. In this case call the
6597 ** balance_deeper() function to create a new child for the root-page
6598 ** and copy the current contents of the root-page to it. The
6599 ** next iteration of the do-loop will balance the child page.
6600 */
6601 assert( (balance_deeper_called++)==0 );
6602 rc = balance_deeper(pPage, &pCur->apPage[1]);
6603 if( rc==SQLITE_OK ){
6604 pCur->iPage = 1;
6605 pCur->aiIdx[0] = 0;
6606 pCur->aiIdx[1] = 0;
6607 assert( pCur->apPage[1]->nOverflow );
6608 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006609 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006610 break;
6611 }
6612 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6613 break;
6614 }else{
6615 MemPage * const pParent = pCur->apPage[iPage-1];
6616 int const iIdx = pCur->aiIdx[iPage-1];
6617
6618 rc = sqlite3PagerWrite(pParent->pDbPage);
6619 if( rc==SQLITE_OK ){
6620#ifndef SQLITE_OMIT_QUICKBALANCE
6621 if( pPage->hasData
6622 && pPage->nOverflow==1
6623 && pPage->aOvfl[0].idx==pPage->nCell
6624 && pParent->pgno!=1
6625 && pParent->nCell==iIdx
6626 ){
6627 /* Call balance_quick() to create a new sibling of pPage on which
6628 ** to store the overflow cell. balance_quick() inserts a new cell
6629 ** into pParent, which may cause pParent overflow. If this
6630 ** happens, the next interation of the do-loop will balance pParent
6631 ** use either balance_nonroot() or balance_deeper(). Until this
6632 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6633 ** buffer.
6634 **
6635 ** The purpose of the following assert() is to check that only a
6636 ** single call to balance_quick() is made for each call to this
6637 ** function. If this were not verified, a subtle bug involving reuse
6638 ** of the aBalanceQuickSpace[] might sneak in.
6639 */
6640 assert( (balance_quick_called++)==0 );
6641 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6642 }else
6643#endif
6644 {
6645 /* In this case, call balance_nonroot() to redistribute cells
6646 ** between pPage and up to 2 of its sibling pages. This involves
6647 ** modifying the contents of pParent, which may cause pParent to
6648 ** become overfull or underfull. The next iteration of the do-loop
6649 ** will balance the parent page to correct this.
6650 **
6651 ** If the parent page becomes overfull, the overflow cell or cells
6652 ** are stored in the pSpace buffer allocated immediately below.
6653 ** A subsequent iteration of the do-loop will deal with this by
6654 ** calling balance_nonroot() (balance_deeper() may be called first,
6655 ** but it doesn't deal with overflow cells - just moves them to a
6656 ** different page). Once this subsequent call to balance_nonroot()
6657 ** has completed, it is safe to release the pSpace buffer used by
6658 ** the previous call, as the overflow cell data will have been
6659 ** copied either into the body of a database page or into the new
6660 ** pSpace buffer passed to the latter call to balance_nonroot().
6661 */
6662 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006663 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006664 if( pFree ){
6665 /* If pFree is not NULL, it points to the pSpace buffer used
6666 ** by a previous call to balance_nonroot(). Its contents are
6667 ** now stored either on real database pages or within the
6668 ** new pSpace buffer, so it may be safely freed here. */
6669 sqlite3PageFree(pFree);
6670 }
6671
danielk19774dbaa892009-06-16 16:50:22 +00006672 /* The pSpace buffer will be freed after the next call to
6673 ** balance_nonroot(), or just before this function returns, whichever
6674 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006675 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006676 }
6677 }
6678
6679 pPage->nOverflow = 0;
6680
6681 /* The next iteration of the do-loop balances the parent page. */
6682 releasePage(pPage);
6683 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006684 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006685 }while( rc==SQLITE_OK );
6686
6687 if( pFree ){
6688 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006689 }
6690 return rc;
6691}
6692
drhf74b8d92002-09-01 23:20:45 +00006693
6694/*
drh3b7511c2001-05-26 13:15:44 +00006695** Insert a new record into the BTree. The key is given by (pKey,nKey)
6696** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006697** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006698** is left pointing at a random location.
6699**
6700** For an INTKEY table, only the nKey value of the key is used. pKey is
6701** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006702**
6703** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006704** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006705** been performed. seekResult is the search result returned (a negative
6706** number if pCur points at an entry that is smaller than (pKey, nKey), or
6707** a positive value if pCur points at an etry that is larger than
6708** (pKey, nKey)).
6709**
drh3e9ca092009-09-08 01:14:48 +00006710** If the seekResult parameter is non-zero, then the caller guarantees that
6711** cursor pCur is pointing at the existing copy of a row that is to be
6712** overwritten. If the seekResult parameter is 0, then cursor pCur may
6713** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006714** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006715*/
drh3aac2dd2004-04-26 14:10:20 +00006716int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006717 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006718 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006719 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006720 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006721 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006722 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006723){
drh3b7511c2001-05-26 13:15:44 +00006724 int rc;
drh3e9ca092009-09-08 01:14:48 +00006725 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006726 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006727 int idx;
drh3b7511c2001-05-26 13:15:44 +00006728 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006729 Btree *p = pCur->pBtree;
6730 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006731 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006732 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006733
drh98add2e2009-07-20 17:11:49 +00006734 if( pCur->eState==CURSOR_FAULT ){
6735 assert( pCur->skipNext!=SQLITE_OK );
6736 return pCur->skipNext;
6737 }
6738
drh1fee73e2007-08-29 04:00:57 +00006739 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006740 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006741 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6742
danielk197731d31b82009-07-13 13:18:07 +00006743 /* Assert that the caller has been consistent. If this cursor was opened
6744 ** expecting an index b-tree, then the caller should be inserting blob
6745 ** keys with no associated data. If the cursor was opened expecting an
6746 ** intkey table, the caller should be inserting integer keys with a
6747 ** blob of associated data. */
6748 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6749
danielk197796d48e92009-06-29 06:00:37 +00006750 /* If this is an insert into a table b-tree, invalidate any incrblob
6751 ** cursors open on the row being replaced (assuming this is a replace
6752 ** operation - if it is not, the following is a no-op). */
6753 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006754 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006755 }
danielk197796d48e92009-06-29 06:00:37 +00006756
danielk19779c3acf32009-05-02 07:36:49 +00006757 /* Save the positions of any other cursors open on this table.
6758 **
danielk19773509a652009-07-06 18:56:13 +00006759 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006760 ** example, when inserting data into a table with auto-generated integer
6761 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6762 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006763 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006764 ** that the cursor is already where it needs to be and returns without
6765 ** doing any work. To avoid thwarting these optimizations, it is important
6766 ** not to clear the cursor here.
6767 */
drh4c301aa2009-07-15 17:25:45 +00006768 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6769 if( rc ) return rc;
6770 if( !loc ){
6771 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6772 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006773 }
danielk1977b980d2212009-06-22 18:03:51 +00006774 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006775
danielk197771d5d2c2008-09-29 11:49:47 +00006776 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006777 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006778 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006779
drh3a4c1412004-05-09 20:40:11 +00006780 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6781 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6782 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006783 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006784 allocateTempSpace(pBt);
6785 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006786 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006787 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006788 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006789 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00006790 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006791 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006792 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006793 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006794 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006795 rc = sqlite3PagerWrite(pPage->pDbPage);
6796 if( rc ){
6797 goto end_insert;
6798 }
danielk197771d5d2c2008-09-29 11:49:47 +00006799 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006800 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006801 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006802 }
drh43605152004-05-29 21:46:49 +00006803 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006804 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006805 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006806 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006807 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006808 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006809 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006810 }else{
drh4b70f112004-05-02 21:12:19 +00006811 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006812 }
drh98add2e2009-07-20 17:11:49 +00006813 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006814 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006815
danielk1977a50d9aa2009-06-08 14:49:45 +00006816 /* If no error has occured and pPage has an overflow cell, call balance()
6817 ** to redistribute the cells within the tree. Since balance() may move
6818 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6819 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006820 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006821 ** Previous versions of SQLite called moveToRoot() to move the cursor
6822 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006823 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6824 ** set the cursor state to "invalid". This makes common insert operations
6825 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006826 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006827 ** There is a subtle but important optimization here too. When inserting
6828 ** multiple records into an intkey b-tree using a single cursor (as can
6829 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6830 ** is advantageous to leave the cursor pointing to the last entry in
6831 ** the b-tree if possible. If the cursor is left pointing to the last
6832 ** entry in the table, and the next row inserted has an integer key
6833 ** larger than the largest existing key, it is possible to insert the
6834 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006835 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006836 pCur->info.nSize = 0;
6837 pCur->validNKey = 0;
6838 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006839 rc = balance(pCur);
6840
6841 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006842 ** fails. Internal data structure corruption will result otherwise.
6843 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6844 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006845 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006846 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006847 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006848 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006849
drh2e38c322004-09-03 18:38:44 +00006850end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006851 return rc;
6852}
6853
6854/*
drh4b70f112004-05-02 21:12:19 +00006855** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006856** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006857*/
drh3aac2dd2004-04-26 14:10:20 +00006858int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006859 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006860 BtShared *pBt = p->pBt;
6861 int rc; /* Return code */
6862 MemPage *pPage; /* Page to delete cell from */
6863 unsigned char *pCell; /* Pointer to cell to delete */
6864 int iCellIdx; /* Index of cell to delete */
6865 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006866
drh1fee73e2007-08-29 04:00:57 +00006867 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006868 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006869 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006870 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006871 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6872 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6873
danielk19774dbaa892009-06-16 16:50:22 +00006874 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6875 || NEVER(pCur->eState!=CURSOR_VALID)
6876 ){
6877 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006878 }
danielk1977da184232006-01-05 11:34:32 +00006879
danielk197796d48e92009-06-29 06:00:37 +00006880 /* If this is a delete operation to remove a row from a table b-tree,
6881 ** invalidate any incrblob cursors open on the row being deleted. */
6882 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006883 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006884 }
6885
6886 iCellDepth = pCur->iPage;
6887 iCellIdx = pCur->aiIdx[iCellDepth];
6888 pPage = pCur->apPage[iCellDepth];
6889 pCell = findCell(pPage, iCellIdx);
6890
6891 /* If the page containing the entry to delete is not a leaf page, move
6892 ** the cursor to the largest entry in the tree that is smaller than
6893 ** the entry being deleted. This cell will replace the cell being deleted
6894 ** from the internal node. The 'previous' entry is used for this instead
6895 ** of the 'next' entry, as the previous entry is always a part of the
6896 ** sub-tree headed by the child page of the cell being deleted. This makes
6897 ** balancing the tree following the delete operation easier. */
6898 if( !pPage->leaf ){
6899 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006900 rc = sqlite3BtreePrevious(pCur, &notUsed);
6901 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006902 }
6903
6904 /* Save the positions of any other cursors open on this table before
6905 ** making any modifications. Make the page containing the entry to be
6906 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006907 ** entry and finally remove the cell itself from within the page.
6908 */
6909 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6910 if( rc ) return rc;
6911 rc = sqlite3PagerWrite(pPage->pDbPage);
6912 if( rc ) return rc;
6913 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006914 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006915 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006916
danielk19774dbaa892009-06-16 16:50:22 +00006917 /* If the cell deleted was not located on a leaf page, then the cursor
6918 ** is currently pointing to the largest entry in the sub-tree headed
6919 ** by the child-page of the cell that was just deleted from an internal
6920 ** node. The cell from the leaf node needs to be moved to the internal
6921 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006922 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006923 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6924 int nCell;
6925 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6926 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006927
danielk19774dbaa892009-06-16 16:50:22 +00006928 pCell = findCell(pLeaf, pLeaf->nCell-1);
6929 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00006930 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006931
danielk19774dbaa892009-06-16 16:50:22 +00006932 allocateTempSpace(pBt);
6933 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006934
drha4ec1d42009-07-11 13:13:11 +00006935 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006936 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6937 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006938 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006939 }
danielk19774dbaa892009-06-16 16:50:22 +00006940
6941 /* Balance the tree. If the entry deleted was located on a leaf page,
6942 ** then the cursor still points to that page. In this case the first
6943 ** call to balance() repairs the tree, and the if(...) condition is
6944 ** never true.
6945 **
6946 ** Otherwise, if the entry deleted was on an internal node page, then
6947 ** pCur is pointing to the leaf page from which a cell was removed to
6948 ** replace the cell deleted from the internal node. This is slightly
6949 ** tricky as the leaf node may be underfull, and the internal node may
6950 ** be either under or overfull. In this case run the balancing algorithm
6951 ** on the leaf node first. If the balance proceeds far enough up the
6952 ** tree that we can be sure that any problem in the internal node has
6953 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6954 ** walk the cursor up the tree to the internal node and balance it as
6955 ** well. */
6956 rc = balance(pCur);
6957 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6958 while( pCur->iPage>iCellDepth ){
6959 releasePage(pCur->apPage[pCur->iPage--]);
6960 }
6961 rc = balance(pCur);
6962 }
6963
danielk19776b456a22005-03-21 04:04:02 +00006964 if( rc==SQLITE_OK ){
6965 moveToRoot(pCur);
6966 }
drh5e2f8b92001-05-28 00:41:15 +00006967 return rc;
drh3b7511c2001-05-26 13:15:44 +00006968}
drh8b2f49b2001-06-08 00:21:52 +00006969
6970/*
drhc6b52df2002-01-04 03:09:29 +00006971** Create a new BTree table. Write into *piTable the page
6972** number for the root page of the new table.
6973**
drhab01f612004-05-22 02:55:23 +00006974** The type of type is determined by the flags parameter. Only the
6975** following values of flags are currently in use. Other values for
6976** flags might not work:
6977**
6978** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6979** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006980*/
drhd4187c72010-08-30 22:15:45 +00006981static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00006982 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006983 MemPage *pRoot;
6984 Pgno pgnoRoot;
6985 int rc;
drhd4187c72010-08-30 22:15:45 +00006986 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00006987
drh1fee73e2007-08-29 04:00:57 +00006988 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006989 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006990 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006991
danielk1977003ba062004-11-04 02:57:33 +00006992#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006993 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006994 if( rc ){
6995 return rc;
6996 }
danielk1977003ba062004-11-04 02:57:33 +00006997#else
danielk1977687566d2004-11-02 12:56:41 +00006998 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006999 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7000 MemPage *pPageMove; /* The page to move to. */
7001
danielk197720713f32007-05-03 11:43:33 +00007002 /* Creating a new table may probably require moving an existing database
7003 ** to make room for the new tables root page. In case this page turns
7004 ** out to be an overflow page, delete all overflow page-map caches
7005 ** held by open cursors.
7006 */
danielk197792d4d7a2007-05-04 12:05:56 +00007007 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007008
danielk1977003ba062004-11-04 02:57:33 +00007009 /* Read the value of meta[3] from the database to determine where the
7010 ** root page of the new table should go. meta[3] is the largest root-page
7011 ** created so far, so the new root-page is (meta[3]+1).
7012 */
danielk1977602b4662009-07-02 07:47:33 +00007013 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007014 pgnoRoot++;
7015
danielk1977599fcba2004-11-08 07:13:13 +00007016 /* The new root-page may not be allocated on a pointer-map page, or the
7017 ** PENDING_BYTE page.
7018 */
drh72190432008-01-31 14:54:43 +00007019 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007020 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007021 pgnoRoot++;
7022 }
7023 assert( pgnoRoot>=3 );
7024
7025 /* Allocate a page. The page that currently resides at pgnoRoot will
7026 ** be moved to the allocated page (unless the allocated page happens
7027 ** to reside at pgnoRoot).
7028 */
drh4f0c5872007-03-26 22:05:01 +00007029 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00007030 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007031 return rc;
7032 }
danielk1977003ba062004-11-04 02:57:33 +00007033
7034 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007035 /* pgnoRoot is the page that will be used for the root-page of
7036 ** the new table (assuming an error did not occur). But we were
7037 ** allocated pgnoMove. If required (i.e. if it was not allocated
7038 ** by extending the file), the current page at position pgnoMove
7039 ** is already journaled.
7040 */
drheeb844a2009-08-08 18:01:07 +00007041 u8 eType = 0;
7042 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007043
7044 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00007045
7046 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00007047 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007048 if( rc!=SQLITE_OK ){
7049 return rc;
7050 }
7051 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007052 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7053 rc = SQLITE_CORRUPT_BKPT;
7054 }
7055 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007056 releasePage(pRoot);
7057 return rc;
7058 }
drhccae6022005-02-26 17:31:26 +00007059 assert( eType!=PTRMAP_ROOTPAGE );
7060 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007061 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007062 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007063
7064 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007065 if( rc!=SQLITE_OK ){
7066 return rc;
7067 }
danielk197730548662009-07-09 05:07:37 +00007068 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007069 if( rc!=SQLITE_OK ){
7070 return rc;
7071 }
danielk19773b8a05f2007-03-19 17:44:26 +00007072 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007073 if( rc!=SQLITE_OK ){
7074 releasePage(pRoot);
7075 return rc;
7076 }
7077 }else{
7078 pRoot = pPageMove;
7079 }
7080
danielk197742741be2005-01-08 12:42:39 +00007081 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007082 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007083 if( rc ){
7084 releasePage(pRoot);
7085 return rc;
7086 }
drhbf592832010-03-30 15:51:12 +00007087
7088 /* When the new root page was allocated, page 1 was made writable in
7089 ** order either to increase the database filesize, or to decrement the
7090 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7091 */
7092 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007093 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007094 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007095 releasePage(pRoot);
7096 return rc;
7097 }
danielk197742741be2005-01-08 12:42:39 +00007098
danielk1977003ba062004-11-04 02:57:33 +00007099 }else{
drh4f0c5872007-03-26 22:05:01 +00007100 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007101 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007102 }
7103#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007104 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007105 if( createTabFlags & BTREE_INTKEY ){
7106 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7107 }else{
7108 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7109 }
7110 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007111 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007112 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007113 *piTable = (int)pgnoRoot;
7114 return SQLITE_OK;
7115}
drhd677b3d2007-08-20 22:48:41 +00007116int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7117 int rc;
7118 sqlite3BtreeEnter(p);
7119 rc = btreeCreateTable(p, piTable, flags);
7120 sqlite3BtreeLeave(p);
7121 return rc;
7122}
drh8b2f49b2001-06-08 00:21:52 +00007123
7124/*
7125** Erase the given database page and all its children. Return
7126** the page to the freelist.
7127*/
drh4b70f112004-05-02 21:12:19 +00007128static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007129 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007130 Pgno pgno, /* Page number to clear */
7131 int freePageFlag, /* Deallocate page if true */
7132 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007133){
danielk1977146ba992009-07-22 14:08:13 +00007134 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007135 int rc;
drh4b70f112004-05-02 21:12:19 +00007136 unsigned char *pCell;
7137 int i;
drh8b2f49b2001-06-08 00:21:52 +00007138
drh1fee73e2007-08-29 04:00:57 +00007139 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007140 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007141 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007142 }
7143
danielk197771d5d2c2008-09-29 11:49:47 +00007144 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007145 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007146 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007147 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007148 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007149 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007150 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007151 }
drh4b70f112004-05-02 21:12:19 +00007152 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007153 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007154 }
drha34b6762004-05-07 13:30:42 +00007155 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007156 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007157 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007158 }else if( pnChange ){
7159 assert( pPage->intKey );
7160 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007161 }
7162 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007163 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007164 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007165 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007166 }
danielk19776b456a22005-03-21 04:04:02 +00007167
7168cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007169 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007170 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007171}
7172
7173/*
drhab01f612004-05-22 02:55:23 +00007174** Delete all information from a single table in the database. iTable is
7175** the page number of the root of the table. After this routine returns,
7176** the root page is empty, but still exists.
7177**
7178** This routine will fail with SQLITE_LOCKED if there are any open
7179** read cursors on the table. Open write cursors are moved to the
7180** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007181**
7182** If pnChange is not NULL, then table iTable must be an intkey table. The
7183** integer value pointed to by pnChange is incremented by the number of
7184** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007185*/
danielk1977c7af4842008-10-27 13:59:33 +00007186int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007187 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007188 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007189 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007190 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007191
7192 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7193 ** is the root of a table b-tree - if it is not, the following call is
7194 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00007195 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00007196
drhc046e3e2009-07-15 11:26:44 +00007197 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7198 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00007199 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007200 }
drhd677b3d2007-08-20 22:48:41 +00007201 sqlite3BtreeLeave(p);
7202 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007203}
7204
7205/*
7206** Erase all information in a table and add the root of the table to
7207** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007208** page 1) is never added to the freelist.
7209**
7210** This routine will fail with SQLITE_LOCKED if there are any open
7211** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007212**
7213** If AUTOVACUUM is enabled and the page at iTable is not the last
7214** root page in the database file, then the last root page
7215** in the database file is moved into the slot formerly occupied by
7216** iTable and that last slot formerly occupied by the last root page
7217** is added to the freelist instead of iTable. In this say, all
7218** root pages are kept at the beginning of the database file, which
7219** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7220** page number that used to be the last root page in the file before
7221** the move. If no page gets moved, *piMoved is set to 0.
7222** The last root page is recorded in meta[3] and the value of
7223** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007224*/
danielk197789d40042008-11-17 14:20:56 +00007225static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007226 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007227 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007228 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007229
drh1fee73e2007-08-29 04:00:57 +00007230 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007231 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007232
danielk1977e6efa742004-11-10 11:55:10 +00007233 /* It is illegal to drop a table if any cursors are open on the
7234 ** database. This is because in auto-vacuum mode the backend may
7235 ** need to move another root-page to fill a gap left by the deleted
7236 ** root page. If an open cursor was using this page a problem would
7237 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007238 **
7239 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007240 */
drhc046e3e2009-07-15 11:26:44 +00007241 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007242 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7243 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007244 }
danielk1977a0bf2652004-11-04 14:30:04 +00007245
danielk197730548662009-07-09 05:07:37 +00007246 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007247 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007248 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007249 if( rc ){
7250 releasePage(pPage);
7251 return rc;
7252 }
danielk1977a0bf2652004-11-04 14:30:04 +00007253
drh205f48e2004-11-05 00:43:11 +00007254 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007255
drh4b70f112004-05-02 21:12:19 +00007256 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007257#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007258 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007259 releasePage(pPage);
7260#else
7261 if( pBt->autoVacuum ){
7262 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007263 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007264
7265 if( iTable==maxRootPgno ){
7266 /* If the table being dropped is the table with the largest root-page
7267 ** number in the database, put the root page on the free list.
7268 */
drhc314dc72009-07-21 11:52:34 +00007269 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007270 releasePage(pPage);
7271 if( rc!=SQLITE_OK ){
7272 return rc;
7273 }
7274 }else{
7275 /* The table being dropped does not have the largest root-page
7276 ** number in the database. So move the page that does into the
7277 ** gap left by the deleted root-page.
7278 */
7279 MemPage *pMove;
7280 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007281 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007282 if( rc!=SQLITE_OK ){
7283 return rc;
7284 }
danielk19774c999992008-07-16 18:17:55 +00007285 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007286 releasePage(pMove);
7287 if( rc!=SQLITE_OK ){
7288 return rc;
7289 }
drhfe3313f2009-07-21 19:02:20 +00007290 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007291 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007292 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007293 releasePage(pMove);
7294 if( rc!=SQLITE_OK ){
7295 return rc;
7296 }
7297 *piMoved = maxRootPgno;
7298 }
7299
danielk1977599fcba2004-11-08 07:13:13 +00007300 /* Set the new 'max-root-page' value in the database header. This
7301 ** is the old value less one, less one more if that happens to
7302 ** be a root-page number, less one again if that is the
7303 ** PENDING_BYTE_PAGE.
7304 */
danielk197787a6e732004-11-05 12:58:25 +00007305 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007306 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7307 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007308 maxRootPgno--;
7309 }
danielk1977599fcba2004-11-08 07:13:13 +00007310 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7311
danielk1977aef0bf62005-12-30 16:28:01 +00007312 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007313 }else{
drhc314dc72009-07-21 11:52:34 +00007314 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007315 releasePage(pPage);
7316 }
7317#endif
drh2aa679f2001-06-25 02:11:07 +00007318 }else{
drhc046e3e2009-07-15 11:26:44 +00007319 /* If sqlite3BtreeDropTable was called on page 1.
7320 ** This really never should happen except in a corrupt
7321 ** database.
7322 */
drha34b6762004-05-07 13:30:42 +00007323 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007324 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007325 }
drh8b2f49b2001-06-08 00:21:52 +00007326 return rc;
7327}
drhd677b3d2007-08-20 22:48:41 +00007328int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7329 int rc;
7330 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007331 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007332 sqlite3BtreeLeave(p);
7333 return rc;
7334}
drh8b2f49b2001-06-08 00:21:52 +00007335
drh001bbcb2003-03-19 03:14:00 +00007336
drh8b2f49b2001-06-08 00:21:52 +00007337/*
danielk1977602b4662009-07-02 07:47:33 +00007338** This function may only be called if the b-tree connection already
7339** has a read or write transaction open on the database.
7340**
drh23e11ca2004-05-04 17:27:28 +00007341** Read the meta-information out of a database file. Meta[0]
7342** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007343** through meta[15] are available for use by higher layers. Meta[0]
7344** is read-only, the others are read/write.
7345**
7346** The schema layer numbers meta values differently. At the schema
7347** layer (and the SetCookie and ReadCookie opcodes) the number of
7348** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007349*/
danielk1977602b4662009-07-02 07:47:33 +00007350void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007351 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007352
drhd677b3d2007-08-20 22:48:41 +00007353 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007354 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007355 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007356 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007357 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007358
danielk1977602b4662009-07-02 07:47:33 +00007359 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007360
danielk1977602b4662009-07-02 07:47:33 +00007361 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7362 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007363#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007364 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007365#endif
drhae157872004-08-14 19:20:09 +00007366
drhd677b3d2007-08-20 22:48:41 +00007367 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007368}
7369
7370/*
drh23e11ca2004-05-04 17:27:28 +00007371** Write meta-information back into the database. Meta[0] is
7372** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007373*/
danielk1977aef0bf62005-12-30 16:28:01 +00007374int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7375 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007376 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007377 int rc;
drh23e11ca2004-05-04 17:27:28 +00007378 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007379 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007380 assert( p->inTrans==TRANS_WRITE );
7381 assert( pBt->pPage1!=0 );
7382 pP1 = pBt->pPage1->aData;
7383 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7384 if( rc==SQLITE_OK ){
7385 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007386#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007387 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007388 assert( pBt->autoVacuum || iMeta==0 );
7389 assert( iMeta==0 || iMeta==1 );
7390 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007391 }
drh64022502009-01-09 14:11:04 +00007392#endif
drh5df72a52002-06-06 23:16:05 +00007393 }
drhd677b3d2007-08-20 22:48:41 +00007394 sqlite3BtreeLeave(p);
7395 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007396}
drh8c42ca92001-06-22 19:15:00 +00007397
danielk1977a5533162009-02-24 10:01:51 +00007398#ifndef SQLITE_OMIT_BTREECOUNT
7399/*
7400** The first argument, pCur, is a cursor opened on some b-tree. Count the
7401** number of entries in the b-tree and write the result to *pnEntry.
7402**
7403** SQLITE_OK is returned if the operation is successfully executed.
7404** Otherwise, if an error is encountered (i.e. an IO error or database
7405** corruption) an SQLite error code is returned.
7406*/
7407int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7408 i64 nEntry = 0; /* Value to return in *pnEntry */
7409 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007410
7411 if( pCur->pgnoRoot==0 ){
7412 *pnEntry = 0;
7413 return SQLITE_OK;
7414 }
danielk1977a5533162009-02-24 10:01:51 +00007415 rc = moveToRoot(pCur);
7416
7417 /* Unless an error occurs, the following loop runs one iteration for each
7418 ** page in the B-Tree structure (not including overflow pages).
7419 */
7420 while( rc==SQLITE_OK ){
7421 int iIdx; /* Index of child node in parent */
7422 MemPage *pPage; /* Current page of the b-tree */
7423
7424 /* If this is a leaf page or the tree is not an int-key tree, then
7425 ** this page contains countable entries. Increment the entry counter
7426 ** accordingly.
7427 */
7428 pPage = pCur->apPage[pCur->iPage];
7429 if( pPage->leaf || !pPage->intKey ){
7430 nEntry += pPage->nCell;
7431 }
7432
7433 /* pPage is a leaf node. This loop navigates the cursor so that it
7434 ** points to the first interior cell that it points to the parent of
7435 ** the next page in the tree that has not yet been visited. The
7436 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7437 ** of the page, or to the number of cells in the page if the next page
7438 ** to visit is the right-child of its parent.
7439 **
7440 ** If all pages in the tree have been visited, return SQLITE_OK to the
7441 ** caller.
7442 */
7443 if( pPage->leaf ){
7444 do {
7445 if( pCur->iPage==0 ){
7446 /* All pages of the b-tree have been visited. Return successfully. */
7447 *pnEntry = nEntry;
7448 return SQLITE_OK;
7449 }
danielk197730548662009-07-09 05:07:37 +00007450 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007451 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7452
7453 pCur->aiIdx[pCur->iPage]++;
7454 pPage = pCur->apPage[pCur->iPage];
7455 }
7456
7457 /* Descend to the child node of the cell that the cursor currently
7458 ** points at. This is the right-child if (iIdx==pPage->nCell).
7459 */
7460 iIdx = pCur->aiIdx[pCur->iPage];
7461 if( iIdx==pPage->nCell ){
7462 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7463 }else{
7464 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7465 }
7466 }
7467
shanebe217792009-03-05 04:20:31 +00007468 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007469 return rc;
7470}
7471#endif
drhdd793422001-06-28 01:54:48 +00007472
drhdd793422001-06-28 01:54:48 +00007473/*
drh5eddca62001-06-30 21:53:53 +00007474** Return the pager associated with a BTree. This routine is used for
7475** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007476*/
danielk1977aef0bf62005-12-30 16:28:01 +00007477Pager *sqlite3BtreePager(Btree *p){
7478 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007479}
drh5eddca62001-06-30 21:53:53 +00007480
drhb7f91642004-10-31 02:22:47 +00007481#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007482/*
7483** Append a message to the error message string.
7484*/
drh2e38c322004-09-03 18:38:44 +00007485static void checkAppendMsg(
7486 IntegrityCk *pCheck,
7487 char *zMsg1,
7488 const char *zFormat,
7489 ...
7490){
7491 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007492 if( !pCheck->mxErr ) return;
7493 pCheck->mxErr--;
7494 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007495 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007496 if( pCheck->errMsg.nChar ){
7497 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007498 }
drhf089aa42008-07-08 19:34:06 +00007499 if( zMsg1 ){
7500 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7501 }
7502 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7503 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007504 if( pCheck->errMsg.mallocFailed ){
7505 pCheck->mallocFailed = 1;
7506 }
drh5eddca62001-06-30 21:53:53 +00007507}
drhb7f91642004-10-31 02:22:47 +00007508#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007509
drhb7f91642004-10-31 02:22:47 +00007510#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007511/*
7512** Add 1 to the reference count for page iPage. If this is the second
7513** reference to the page, add an error message to pCheck->zErrMsg.
7514** Return 1 if there are 2 ore more references to the page and 0 if
7515** if this is the first reference to the page.
7516**
7517** Also check that the page number is in bounds.
7518*/
danielk197789d40042008-11-17 14:20:56 +00007519static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007520 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007521 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007522 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007523 return 1;
7524 }
7525 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007526 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007527 return 1;
7528 }
7529 return (pCheck->anRef[iPage]++)>1;
7530}
7531
danielk1977afcdd022004-10-31 16:25:42 +00007532#ifndef SQLITE_OMIT_AUTOVACUUM
7533/*
7534** Check that the entry in the pointer-map for page iChild maps to
7535** page iParent, pointer type ptrType. If not, append an error message
7536** to pCheck.
7537*/
7538static void checkPtrmap(
7539 IntegrityCk *pCheck, /* Integrity check context */
7540 Pgno iChild, /* Child page number */
7541 u8 eType, /* Expected pointer map type */
7542 Pgno iParent, /* Expected pointer map parent page number */
7543 char *zContext /* Context description (used for error msg) */
7544){
7545 int rc;
7546 u8 ePtrmapType;
7547 Pgno iPtrmapParent;
7548
7549 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7550 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007551 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007552 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7553 return;
7554 }
7555
7556 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7557 checkAppendMsg(pCheck, zContext,
7558 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7559 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7560 }
7561}
7562#endif
7563
drh5eddca62001-06-30 21:53:53 +00007564/*
7565** Check the integrity of the freelist or of an overflow page list.
7566** Verify that the number of pages on the list is N.
7567*/
drh30e58752002-03-02 20:41:57 +00007568static void checkList(
7569 IntegrityCk *pCheck, /* Integrity checking context */
7570 int isFreeList, /* True for a freelist. False for overflow page list */
7571 int iPage, /* Page number for first page in the list */
7572 int N, /* Expected number of pages in the list */
7573 char *zContext /* Context for error messages */
7574){
7575 int i;
drh3a4c1412004-05-09 20:40:11 +00007576 int expected = N;
7577 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007578 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007579 DbPage *pOvflPage;
7580 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007581 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007582 checkAppendMsg(pCheck, zContext,
7583 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007584 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007585 break;
7586 }
7587 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007588 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007589 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007590 break;
7591 }
danielk19773b8a05f2007-03-19 17:44:26 +00007592 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007593 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007594 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007595#ifndef SQLITE_OMIT_AUTOVACUUM
7596 if( pCheck->pBt->autoVacuum ){
7597 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7598 }
7599#endif
drh43b18e12010-08-17 19:40:08 +00007600 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007601 checkAppendMsg(pCheck, zContext,
7602 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007603 N--;
7604 }else{
7605 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007606 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007607#ifndef SQLITE_OMIT_AUTOVACUUM
7608 if( pCheck->pBt->autoVacuum ){
7609 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7610 }
7611#endif
7612 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007613 }
7614 N -= n;
drh30e58752002-03-02 20:41:57 +00007615 }
drh30e58752002-03-02 20:41:57 +00007616 }
danielk1977afcdd022004-10-31 16:25:42 +00007617#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007618 else{
7619 /* If this database supports auto-vacuum and iPage is not the last
7620 ** page in this overflow list, check that the pointer-map entry for
7621 ** the following page matches iPage.
7622 */
7623 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007624 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007625 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7626 }
danielk1977afcdd022004-10-31 16:25:42 +00007627 }
7628#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007629 iPage = get4byte(pOvflData);
7630 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007631 }
7632}
drhb7f91642004-10-31 02:22:47 +00007633#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007634
drhb7f91642004-10-31 02:22:47 +00007635#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007636/*
7637** Do various sanity checks on a single page of a tree. Return
7638** the tree depth. Root pages return 0. Parents of root pages
7639** return 1, and so forth.
7640**
7641** These checks are done:
7642**
7643** 1. Make sure that cells and freeblocks do not overlap
7644** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007645** NO 2. Make sure cell keys are in order.
7646** NO 3. Make sure no key is less than or equal to zLowerBound.
7647** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007648** 5. Check the integrity of overflow pages.
7649** 6. Recursively call checkTreePage on all children.
7650** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007651** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007652** the root of the tree.
7653*/
7654static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007655 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007656 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007657 char *zParentContext, /* Parent context */
7658 i64 *pnParentMinKey,
7659 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007660){
7661 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007662 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007663 int hdr, cellStart;
7664 int nCell;
drhda200cc2004-05-09 11:51:38 +00007665 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007666 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007667 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007668 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007669 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007670 i64 nMinKey = 0;
7671 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007672
drh5bb3eb92007-05-04 13:15:55 +00007673 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007674
drh5eddca62001-06-30 21:53:53 +00007675 /* Check that the page exists
7676 */
drhd9cb6ac2005-10-20 07:28:17 +00007677 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007678 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007679 if( iPage==0 ) return 0;
7680 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007681 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007682 checkAppendMsg(pCheck, zContext,
7683 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007684 return 0;
7685 }
danielk197793caf5a2009-07-11 06:55:33 +00007686
7687 /* Clear MemPage.isInit to make sure the corruption detection code in
7688 ** btreeInitPage() is executed. */
7689 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007690 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007691 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007692 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007693 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007694 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007695 return 0;
7696 }
7697
7698 /* Check out all the cells.
7699 */
7700 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007701 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007702 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007703 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007704 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007705
7706 /* Check payload overflow pages
7707 */
drh5bb3eb92007-05-04 13:15:55 +00007708 sqlite3_snprintf(sizeof(zContext), zContext,
7709 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007710 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007711 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007712 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007713 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007714 /* For intKey pages, check that the keys are in order.
7715 */
7716 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7717 else{
7718 if( info.nKey <= nMaxKey ){
7719 checkAppendMsg(pCheck, zContext,
7720 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7721 }
7722 nMaxKey = info.nKey;
7723 }
drh72365832007-03-06 15:53:44 +00007724 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007725 if( (sz>info.nLocal)
7726 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7727 ){
drhb6f41482004-05-14 01:58:11 +00007728 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007729 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7730#ifndef SQLITE_OMIT_AUTOVACUUM
7731 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007732 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007733 }
7734#endif
7735 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007736 }
7737
7738 /* Check sanity of left child page.
7739 */
drhda200cc2004-05-09 11:51:38 +00007740 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007741 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007742#ifndef SQLITE_OMIT_AUTOVACUUM
7743 if( pBt->autoVacuum ){
7744 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7745 }
7746#endif
shaneh195475d2010-02-19 04:28:08 +00007747 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007748 if( i>0 && d2!=depth ){
7749 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7750 }
7751 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007752 }
drh5eddca62001-06-30 21:53:53 +00007753 }
shaneh195475d2010-02-19 04:28:08 +00007754
drhda200cc2004-05-09 11:51:38 +00007755 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007756 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007757 sqlite3_snprintf(sizeof(zContext), zContext,
7758 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007759#ifndef SQLITE_OMIT_AUTOVACUUM
7760 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007761 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007762 }
7763#endif
shaneh195475d2010-02-19 04:28:08 +00007764 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007765 }
drh5eddca62001-06-30 21:53:53 +00007766
shaneh195475d2010-02-19 04:28:08 +00007767 /* For intKey leaf pages, check that the min/max keys are in order
7768 ** with any left/parent/right pages.
7769 */
7770 if( pPage->leaf && pPage->intKey ){
7771 /* if we are a left child page */
7772 if( pnParentMinKey ){
7773 /* if we are the left most child page */
7774 if( !pnParentMaxKey ){
7775 if( nMaxKey > *pnParentMinKey ){
7776 checkAppendMsg(pCheck, zContext,
7777 "Rowid %lld out of order (max larger than parent min of %lld)",
7778 nMaxKey, *pnParentMinKey);
7779 }
7780 }else{
7781 if( nMinKey <= *pnParentMinKey ){
7782 checkAppendMsg(pCheck, zContext,
7783 "Rowid %lld out of order (min less than parent min of %lld)",
7784 nMinKey, *pnParentMinKey);
7785 }
7786 if( nMaxKey > *pnParentMaxKey ){
7787 checkAppendMsg(pCheck, zContext,
7788 "Rowid %lld out of order (max larger than parent max of %lld)",
7789 nMaxKey, *pnParentMaxKey);
7790 }
7791 *pnParentMinKey = nMaxKey;
7792 }
7793 /* else if we're a right child page */
7794 } else if( pnParentMaxKey ){
7795 if( nMinKey <= *pnParentMaxKey ){
7796 checkAppendMsg(pCheck, zContext,
7797 "Rowid %lld out of order (min less than parent max of %lld)",
7798 nMinKey, *pnParentMaxKey);
7799 }
7800 }
7801 }
7802
drh5eddca62001-06-30 21:53:53 +00007803 /* Check for complete coverage of the page
7804 */
drhda200cc2004-05-09 11:51:38 +00007805 data = pPage->aData;
7806 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007807 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007808 if( hit==0 ){
7809 pCheck->mallocFailed = 1;
7810 }else{
drh5d433ce2010-08-14 16:02:52 +00007811 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007812 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007813 memset(hit+contentOffset, 0, usableSize-contentOffset);
7814 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007815 nCell = get2byte(&data[hdr+3]);
7816 cellStart = hdr + 12 - 4*pPage->leaf;
7817 for(i=0; i<nCell; i++){
7818 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00007819 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00007820 int j;
drh8c2bbb62009-07-10 02:52:20 +00007821 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007822 size = cellSizePtr(pPage, &data[pc]);
7823 }
drh43b18e12010-08-17 19:40:08 +00007824 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007825 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007826 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007827 }else{
7828 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7829 }
drh2e38c322004-09-03 18:38:44 +00007830 }
drh8c2bbb62009-07-10 02:52:20 +00007831 i = get2byte(&data[hdr+1]);
7832 while( i>0 ){
7833 int size, j;
7834 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7835 size = get2byte(&data[i+2]);
7836 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7837 for(j=i+size-1; j>=i; j--) hit[j]++;
7838 j = get2byte(&data[i]);
7839 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7840 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7841 i = j;
drh2e38c322004-09-03 18:38:44 +00007842 }
7843 for(i=cnt=0; i<usableSize; i++){
7844 if( hit[i]==0 ){
7845 cnt++;
7846 }else if( hit[i]>1 ){
7847 checkAppendMsg(pCheck, 0,
7848 "Multiple uses for byte %d of page %d", i, iPage);
7849 break;
7850 }
7851 }
7852 if( cnt!=data[hdr+7] ){
7853 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007854 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007855 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007856 }
7857 }
drh8c2bbb62009-07-10 02:52:20 +00007858 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007859 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007860 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007861}
drhb7f91642004-10-31 02:22:47 +00007862#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007863
drhb7f91642004-10-31 02:22:47 +00007864#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007865/*
7866** This routine does a complete check of the given BTree file. aRoot[] is
7867** an array of pages numbers were each page number is the root page of
7868** a table. nRoot is the number of entries in aRoot.
7869**
danielk19773509a652009-07-06 18:56:13 +00007870** A read-only or read-write transaction must be opened before calling
7871** this function.
7872**
drhc890fec2008-08-01 20:10:08 +00007873** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007874** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007875** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007876** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007877*/
drh1dcdbc02007-01-27 02:24:54 +00007878char *sqlite3BtreeIntegrityCheck(
7879 Btree *p, /* The btree to be checked */
7880 int *aRoot, /* An array of root pages numbers for individual trees */
7881 int nRoot, /* Number of entries in aRoot[] */
7882 int mxErr, /* Stop reporting errors after this many */
7883 int *pnErr /* Write number of errors seen to this variable */
7884){
danielk197789d40042008-11-17 14:20:56 +00007885 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007886 int nRef;
drhaaab5722002-02-19 13:39:21 +00007887 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007888 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007889 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007890
drhd677b3d2007-08-20 22:48:41 +00007891 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007892 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007893 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007894 sCheck.pBt = pBt;
7895 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007896 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007897 sCheck.mxErr = mxErr;
7898 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007899 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007900 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007901 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007902 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007903 return 0;
7904 }
drhe5ae5732008-06-15 02:51:47 +00007905 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007906 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007907 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007908 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007909 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007910 }
drhda200cc2004-05-09 11:51:38 +00007911 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007912 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007913 if( i<=sCheck.nPage ){
7914 sCheck.anRef[i] = 1;
7915 }
drhf089aa42008-07-08 19:34:06 +00007916 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drhb9755982010-07-24 16:34:37 +00007917 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00007918
7919 /* Check the integrity of the freelist
7920 */
drha34b6762004-05-07 13:30:42 +00007921 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7922 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007923
7924 /* Check all the tables.
7925 */
danielk197789d40042008-11-17 14:20:56 +00007926 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007927 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007928#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007929 if( pBt->autoVacuum && aRoot[i]>1 ){
7930 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7931 }
7932#endif
shaneh195475d2010-02-19 04:28:08 +00007933 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007934 }
7935
7936 /* Make sure every page in the file is referenced
7937 */
drh1dcdbc02007-01-27 02:24:54 +00007938 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007939#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007940 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007941 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007942 }
danielk1977afcdd022004-10-31 16:25:42 +00007943#else
7944 /* If the database supports auto-vacuum, make sure no tables contain
7945 ** references to pointer-map pages.
7946 */
7947 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007948 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007949 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7950 }
7951 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007952 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007953 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7954 }
7955#endif
drh5eddca62001-06-30 21:53:53 +00007956 }
7957
drh64022502009-01-09 14:11:04 +00007958 /* Make sure this analysis did not leave any unref() pages.
7959 ** This is an internal consistency check; an integrity check
7960 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007961 */
drh64022502009-01-09 14:11:04 +00007962 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007963 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007964 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007965 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007966 );
drh5eddca62001-06-30 21:53:53 +00007967 }
7968
7969 /* Clean up and report errors.
7970 */
drhd677b3d2007-08-20 22:48:41 +00007971 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007972 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007973 if( sCheck.mallocFailed ){
7974 sqlite3StrAccumReset(&sCheck.errMsg);
7975 *pnErr = sCheck.nErr+1;
7976 return 0;
7977 }
drh1dcdbc02007-01-27 02:24:54 +00007978 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007979 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7980 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007981}
drhb7f91642004-10-31 02:22:47 +00007982#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007983
drh73509ee2003-04-06 20:44:45 +00007984/*
7985** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007986**
7987** The pager filename is invariant as long as the pager is
7988** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007989*/
danielk1977aef0bf62005-12-30 16:28:01 +00007990const char *sqlite3BtreeGetFilename(Btree *p){
7991 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007992 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007993}
7994
7995/*
danielk19775865e3d2004-06-14 06:03:57 +00007996** Return the pathname of the journal file for this database. The return
7997** value of this routine is the same regardless of whether the journal file
7998** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007999**
8000** The pager journal filename is invariant as long as the pager is
8001** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008002*/
danielk1977aef0bf62005-12-30 16:28:01 +00008003const char *sqlite3BtreeGetJournalname(Btree *p){
8004 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008005 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008006}
8007
danielk19771d850a72004-05-31 08:26:49 +00008008/*
8009** Return non-zero if a transaction is active.
8010*/
danielk1977aef0bf62005-12-30 16:28:01 +00008011int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008012 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008013 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008014}
8015
dana550f2d2010-08-02 10:47:05 +00008016#ifndef SQLITE_OMIT_WAL
8017/*
8018** Run a checkpoint on the Btree passed as the first argument.
8019**
8020** Return SQLITE_LOCKED if this or any other connection has an open
8021** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008022**
dancdc1f042010-11-18 12:11:05 +00008023** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008024*/
dancdc1f042010-11-18 12:11:05 +00008025int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008026 int rc = SQLITE_OK;
8027 if( p ){
8028 BtShared *pBt = p->pBt;
8029 sqlite3BtreeEnter(p);
8030 if( pBt->inTransaction!=TRANS_NONE ){
8031 rc = SQLITE_LOCKED;
8032 }else{
dancdc1f042010-11-18 12:11:05 +00008033 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008034 }
8035 sqlite3BtreeLeave(p);
8036 }
8037 return rc;
8038}
8039#endif
8040
danielk19771d850a72004-05-31 08:26:49 +00008041/*
danielk19772372c2b2006-06-27 16:34:56 +00008042** Return non-zero if a read (or write) transaction is active.
8043*/
8044int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008045 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008046 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008047 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008048}
8049
danielk197704103022009-02-03 16:51:24 +00008050int sqlite3BtreeIsInBackup(Btree *p){
8051 assert( p );
8052 assert( sqlite3_mutex_held(p->db->mutex) );
8053 return p->nBackup!=0;
8054}
8055
danielk19772372c2b2006-06-27 16:34:56 +00008056/*
danielk1977da184232006-01-05 11:34:32 +00008057** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008058** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008059** purposes (for example, to store a high-level schema associated with
8060** the shared-btree). The btree layer manages reference counting issues.
8061**
8062** The first time this is called on a shared-btree, nBytes bytes of memory
8063** are allocated, zeroed, and returned to the caller. For each subsequent
8064** call the nBytes parameter is ignored and a pointer to the same blob
8065** of memory returned.
8066**
danielk1977171bfed2008-06-23 09:50:50 +00008067** If the nBytes parameter is 0 and the blob of memory has not yet been
8068** allocated, a null pointer is returned. If the blob has already been
8069** allocated, it is returned as normal.
8070**
danielk1977da184232006-01-05 11:34:32 +00008071** Just before the shared-btree is closed, the function passed as the
8072** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008073** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008074** on the memory, the btree layer does that.
8075*/
8076void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8077 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008078 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008079 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008080 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008081 pBt->xFreeSchema = xFree;
8082 }
drh27641702007-08-22 02:56:42 +00008083 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008084 return pBt->pSchema;
8085}
8086
danielk1977c87d34d2006-01-06 13:00:28 +00008087/*
danielk1977404ca072009-03-16 13:19:36 +00008088** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8089** btree as the argument handle holds an exclusive lock on the
8090** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008091*/
8092int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008093 int rc;
drhe5fe6902007-12-07 18:55:28 +00008094 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008095 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008096 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8097 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008098 sqlite3BtreeLeave(p);
8099 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008100}
8101
drha154dcd2006-03-22 22:10:07 +00008102
8103#ifndef SQLITE_OMIT_SHARED_CACHE
8104/*
8105** Obtain a lock on the table whose root page is iTab. The
8106** lock is a write lock if isWritelock is true or a read lock
8107** if it is false.
8108*/
danielk1977c00da102006-01-07 13:21:04 +00008109int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008110 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008111 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008112 if( p->sharable ){
8113 u8 lockType = READ_LOCK + isWriteLock;
8114 assert( READ_LOCK+1==WRITE_LOCK );
8115 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008116
drh6a9ad3d2008-04-02 16:29:30 +00008117 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008118 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008119 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008120 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008121 }
8122 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008123 }
8124 return rc;
8125}
drha154dcd2006-03-22 22:10:07 +00008126#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008127
danielk1977b4e9af92007-05-01 17:49:49 +00008128#ifndef SQLITE_OMIT_INCRBLOB
8129/*
8130** Argument pCsr must be a cursor opened for writing on an
8131** INTKEY table currently pointing at a valid table entry.
8132** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008133**
8134** Only the data content may only be modified, it is not possible to
8135** change the length of the data stored. If this function is called with
8136** parameters that attempt to write past the end of the existing data,
8137** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008138*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008139int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008140 int rc;
drh1fee73e2007-08-29 04:00:57 +00008141 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008142 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008143 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008144
danielk1977c9000e62009-07-08 13:55:28 +00008145 rc = restoreCursorPosition(pCsr);
8146 if( rc!=SQLITE_OK ){
8147 return rc;
8148 }
danielk19773588ceb2008-06-10 17:30:26 +00008149 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8150 if( pCsr->eState!=CURSOR_VALID ){
8151 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008152 }
8153
danielk1977c9000e62009-07-08 13:55:28 +00008154 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008155 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008156 ** (b) there is a read/write transaction open,
8157 ** (c) the connection holds a write-lock on the table (if required),
8158 ** (d) there are no conflicting read-locks, and
8159 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008160 */
danielk19774f029602009-07-08 18:45:37 +00008161 if( !pCsr->wrFlag ){
8162 return SQLITE_READONLY;
8163 }
danielk197796d48e92009-06-29 06:00:37 +00008164 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
8165 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8166 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008167 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008168
drhfb192682009-07-11 18:26:28 +00008169 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008170}
danielk19772dec9702007-05-02 16:48:37 +00008171
8172/*
8173** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008174** overflow list for the current row. This is used by cursors opened
8175** for incremental blob IO only.
8176**
8177** This function sets a flag only. The actual page location cache
8178** (stored in BtCursor.aOverflow[]) is allocated and used by function
8179** accessPayload() (the worker function for sqlite3BtreeData() and
8180** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008181*/
8182void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008183 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008184 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008185 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008186 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008187}
danielk1977b4e9af92007-05-01 17:49:49 +00008188#endif
dane04dc882010-04-20 18:53:15 +00008189
8190/*
8191** Set both the "read version" (single byte at byte offset 18) and
8192** "write version" (single byte at byte offset 19) fields in the database
8193** header to iVersion.
8194*/
8195int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8196 BtShared *pBt = pBtree->pBt;
8197 int rc; /* Return code */
8198
dane04dc882010-04-20 18:53:15 +00008199 assert( iVersion==1 || iVersion==2 );
8200
danb9780022010-04-21 18:37:57 +00008201 /* If setting the version fields to 1, do not automatically open the
8202 ** WAL connection, even if the version fields are currently set to 2.
8203 */
shaneh5eba1f62010-07-02 17:05:03 +00008204 pBt->doNotUseWAL = (u8)(iVersion==1);
danb9780022010-04-21 18:37:57 +00008205
8206 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008207 if( rc==SQLITE_OK ){
8208 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008209 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008210 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008211 if( rc==SQLITE_OK ){
8212 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8213 if( rc==SQLITE_OK ){
8214 aData[18] = (u8)iVersion;
8215 aData[19] = (u8)iVersion;
8216 }
8217 }
8218 }
dane04dc882010-04-20 18:53:15 +00008219 }
8220
danb9780022010-04-21 18:37:57 +00008221 pBt->doNotUseWAL = 0;
dane04dc882010-04-20 18:53:15 +00008222 return rc;
8223}