blob: 70f4039faf9c8f251fd37ce4dd9a2110cae7bf5f [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
drhccb21132020-06-19 11:34:57 +000072** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drh37ccfcf2020-08-31 18:49:04 +0000115#ifdef SQLITE_DEBUG
116/*
drha7fc1682020-11-24 19:55:49 +0000117** Return and reset the seek counter for a Btree object.
drh37ccfcf2020-08-31 18:49:04 +0000118*/
119sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120 u64 n = pBt->nSeek;
121 pBt->nSeek = 0;
122 return n;
123}
124#endif
125
daneebf2f52017-11-18 17:30:08 +0000126/*
127** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128** (MemPage*) as an argument. The (MemPage*) must not be NULL.
129**
130** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133** with the page number and filename associated with the (MemPage*).
134*/
135#ifdef SQLITE_DEBUG
136int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000137 char *zMsg;
138 sqlite3BeginBenignMalloc();
139 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
141 );
drh8bfe66a2018-01-22 15:45:12 +0000142 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000143 if( zMsg ){
144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
145 }
146 sqlite3_free(zMsg);
147 return SQLITE_CORRUPT_BKPT;
148}
149# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150#else
151# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152#endif
153
drhe53831d2007-08-17 01:14:38 +0000154#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000155
156#ifdef SQLITE_DEBUG
157/*
drh0ee3dbe2009-10-16 15:05:18 +0000158**** This function is only used as part of an assert() statement. ***
159**
160** Check to see if pBtree holds the required locks to read or write to the
161** table with root page iRoot. Return 1 if it does and 0 if not.
162**
163** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000164** Btree connection pBtree:
165**
166** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
167**
drh0ee3dbe2009-10-16 15:05:18 +0000168** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000169** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000170** the corresponding table. This makes things a bit more complicated,
171** as this module treats each table as a separate structure. To determine
172** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000173** function has to search through the database schema.
174**
drh0ee3dbe2009-10-16 15:05:18 +0000175** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000176** hold a write-lock on the schema table (root page 1). This is also
177** acceptable.
178*/
179static int hasSharedCacheTableLock(
180 Btree *pBtree, /* Handle that must hold lock */
181 Pgno iRoot, /* Root page of b-tree */
182 int isIndex, /* True if iRoot is the root of an index b-tree */
183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
184){
185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186 Pgno iTab = 0;
187 BtLock *pLock;
188
drh0ee3dbe2009-10-16 15:05:18 +0000189 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000190 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000191 ** Return true immediately.
192 */
danielk197796d48e92009-06-29 06:00:37 +0000193 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000195 ){
196 return 1;
197 }
198
drh0ee3dbe2009-10-16 15:05:18 +0000199 /* If the client is reading or writing an index and the schema is
200 ** not loaded, then it is too difficult to actually check to see if
201 ** the correct locks are held. So do not bother - just return true.
202 ** This case does not come up very often anyhow.
203 */
drh2c5e35f2014-08-05 11:04:21 +0000204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000205 return 1;
206 }
207
danielk197796d48e92009-06-29 06:00:37 +0000208 /* Figure out the root-page that the lock should be held on. For table
209 ** b-trees, this is just the root page of the b-tree being read or
210 ** written. For index b-trees, it is the root page of the associated
211 ** table. */
212 if( isIndex ){
213 HashElem *p;
dan877859f2020-06-17 20:29:56 +0000214 int bSeen = 0;
danielk197796d48e92009-06-29 06:00:37 +0000215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000217 if( pIdx->tnum==(int)iRoot ){
dan877859f2020-06-17 20:29:56 +0000218 if( bSeen ){
drh1ffede82015-01-30 20:59:27 +0000219 /* Two or more indexes share the same root page. There must
220 ** be imposter tables. So just return true. The assert is not
221 ** useful in that case. */
222 return 1;
223 }
shane5eff7cf2009-08-10 03:57:58 +0000224 iTab = pIdx->pTable->tnum;
dan877859f2020-06-17 20:29:56 +0000225 bSeen = 1;
danielk197796d48e92009-06-29 06:00:37 +0000226 }
227 }
228 }else{
229 iTab = iRoot;
230 }
231
232 /* Search for the required lock. Either a write-lock on root-page iTab, a
233 ** write-lock on the schema table, or (if the client is reading) a
234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236 if( pLock->pBtree==pBtree
237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238 && pLock->eLock>=eLockType
239 ){
240 return 1;
241 }
242 }
243
244 /* Failed to find the required lock. */
245 return 0;
246}
drh0ee3dbe2009-10-16 15:05:18 +0000247#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000248
drh0ee3dbe2009-10-16 15:05:18 +0000249#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000250/*
drh0ee3dbe2009-10-16 15:05:18 +0000251**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000252**
drh0ee3dbe2009-10-16 15:05:18 +0000253** Return true if it would be illegal for pBtree to write into the
254** table or index rooted at iRoot because other shared connections are
255** simultaneously reading that same table or index.
256**
257** It is illegal for pBtree to write if some other Btree object that
258** shares the same BtShared object is currently reading or writing
259** the iRoot table. Except, if the other Btree object has the
260** read-uncommitted flag set, then it is OK for the other object to
261** have a read cursor.
262**
263** For example, before writing to any part of the table or index
264** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000265**
266** assert( !hasReadConflicts(pBtree, iRoot) );
267*/
268static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269 BtCursor *p;
270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271 if( p->pgnoRoot==iRoot
272 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000274 ){
275 return 1;
276 }
277 }
278 return 0;
279}
280#endif /* #ifdef SQLITE_DEBUG */
281
danielk1977da184232006-01-05 11:34:32 +0000282/*
drh0ee3dbe2009-10-16 15:05:18 +0000283** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000284** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000285** SQLITE_OK if the lock may be obtained (by calling
286** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000287*/
drhc25eabe2009-02-24 18:57:31 +0000288static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000289 BtShared *pBt = p->pBt;
290 BtLock *pIter;
291
drh1fee73e2007-08-29 04:00:57 +0000292 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000296
danielk19775b413d72009-04-01 09:41:54 +0000297 /* If requesting a write-lock, then the Btree must have an open write
298 ** transaction on this file. And, obviously, for this to be so there
299 ** must be an open write transaction on the file itself.
300 */
301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
303
drh0ee3dbe2009-10-16 15:05:18 +0000304 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000305 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000306 return SQLITE_OK;
307 }
308
danielk1977641b0f42007-12-21 04:47:25 +0000309 /* If some other connection is holding an exclusive lock, the
310 ** requested lock may not be obtained.
311 */
drhc9166342012-01-05 23:32:06 +0000312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000315 }
316
danielk1977e0d9e6f2009-07-03 16:25:06 +0000317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318 /* The condition (pIter->eLock!=eLock) in the following if(...)
319 ** statement is a simplification of:
320 **
321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
322 **
323 ** since we know that if eLock==WRITE_LOCK, then no other connection
324 ** may hold a WRITE_LOCK on any table in this file (since there can
325 ** only be a single writer).
326 */
327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331 if( eLock==WRITE_LOCK ){
332 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000333 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000334 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000335 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000336 }
337 }
338 return SQLITE_OK;
339}
drhe53831d2007-08-17 01:14:38 +0000340#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000341
drhe53831d2007-08-17 01:14:38 +0000342#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000343/*
344** Add a lock on the table with root-page iTable to the shared-btree used
345** by Btree handle p. Parameter eLock must be either READ_LOCK or
346** WRITE_LOCK.
347**
danielk19779d104862009-07-09 08:27:14 +0000348** This function assumes the following:
349**
drh0ee3dbe2009-10-16 15:05:18 +0000350** (a) The specified Btree object p is connected to a sharable
351** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000352**
drh0ee3dbe2009-10-16 15:05:18 +0000353** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000354** with the requested lock (i.e. querySharedCacheTableLock() has
355** already been called and returned SQLITE_OK).
356**
357** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000359*/
drhc25eabe2009-02-24 18:57:31 +0000360static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000361 BtShared *pBt = p->pBt;
362 BtLock *pLock = 0;
363 BtLock *pIter;
364
drh1fee73e2007-08-29 04:00:57 +0000365 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000368
danielk1977e0d9e6f2009-07-03 16:25:06 +0000369 /* A connection with the read-uncommitted flag set will never try to
370 ** obtain a read-lock using this function. The only read-lock obtained
drh1e32bed2020-06-19 13:33:53 +0000371 ** by a connection in read-uncommitted mode is on the sqlite_schema
danielk1977e0d9e6f2009-07-03 16:25:06 +0000372 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000374
danielk19779d104862009-07-09 08:27:14 +0000375 /* This function should only be called on a sharable b-tree after it
376 ** has been determined that no other b-tree holds a conflicting lock. */
377 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000379
380 /* First search the list for an existing lock on this table. */
381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382 if( pIter->iTable==iTable && pIter->pBtree==p ){
383 pLock = pIter;
384 break;
385 }
386 }
387
388 /* If the above search did not find a BtLock struct associating Btree p
389 ** with table iTable, allocate one and link it into the list.
390 */
391 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000393 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000394 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }
396 pLock->iTable = iTable;
397 pLock->pBtree = p;
398 pLock->pNext = pBt->pLock;
399 pBt->pLock = pLock;
400 }
401
402 /* Set the BtLock.eLock variable to the maximum of the current lock
403 ** and the requested lock. This means if a write-lock was already held
404 ** and a read-lock requested, we don't incorrectly downgrade the lock.
405 */
406 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000407 if( eLock>pLock->eLock ){
408 pLock->eLock = eLock;
409 }
danielk1977aef0bf62005-12-30 16:28:01 +0000410
411 return SQLITE_OK;
412}
drhe53831d2007-08-17 01:14:38 +0000413#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000414
drhe53831d2007-08-17 01:14:38 +0000415#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000416/*
drhc25eabe2009-02-24 18:57:31 +0000417** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000418** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000419**
drh0ee3dbe2009-10-16 15:05:18 +0000420** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000421** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000422** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000423*/
drhc25eabe2009-02-24 18:57:31 +0000424static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000425 BtShared *pBt = p->pBt;
426 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000427
drh1fee73e2007-08-29 04:00:57 +0000428 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000429 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000430 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000431
danielk1977aef0bf62005-12-30 16:28:01 +0000432 while( *ppIter ){
433 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000435 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000436 if( pLock->pBtree==p ){
437 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000438 assert( pLock->iTable!=1 || pLock==&p->lock );
439 if( pLock->iTable!=1 ){
440 sqlite3_free(pLock);
441 }
danielk1977aef0bf62005-12-30 16:28:01 +0000442 }else{
443 ppIter = &pLock->pNext;
444 }
445 }
danielk1977641b0f42007-12-21 04:47:25 +0000446
drhc9166342012-01-05 23:32:06 +0000447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000448 if( pBt->pWriter==p ){
449 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000451 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000452 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000453 ** transaction. If there currently exists a writer, and p is not
454 ** that writer, then the number of locks held by connections other
455 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000456 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000457 **
drhc9166342012-01-05 23:32:06 +0000458 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000459 ** be zero already. So this next line is harmless in that case.
460 */
drhc9166342012-01-05 23:32:06 +0000461 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000462 }
danielk1977aef0bf62005-12-30 16:28:01 +0000463}
danielk197794b30732009-07-02 17:21:57 +0000464
danielk1977e0d9e6f2009-07-03 16:25:06 +0000465/*
drh0ee3dbe2009-10-16 15:05:18 +0000466** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000467*/
danielk197794b30732009-07-02 17:21:57 +0000468static void downgradeAllSharedCacheTableLocks(Btree *p){
469 BtShared *pBt = p->pBt;
470 if( pBt->pWriter==p ){
471 BtLock *pLock;
472 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476 pLock->eLock = READ_LOCK;
477 }
478 }
479}
480
danielk1977aef0bf62005-12-30 16:28:01 +0000481#endif /* SQLITE_OMIT_SHARED_CACHE */
482
drh3908fe92017-09-01 14:50:19 +0000483static void releasePage(MemPage *pPage); /* Forward reference */
484static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000485static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000486
drh1fee73e2007-08-29 04:00:57 +0000487/*
drh0ee3dbe2009-10-16 15:05:18 +0000488***** This routine is used inside of assert() only ****
489**
490** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000491*/
drh0ee3dbe2009-10-16 15:05:18 +0000492#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000493static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000494 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000495}
drh5e08d0f2016-06-04 21:05:54 +0000496
497/* Verify that the cursor and the BtShared agree about what is the current
498** database connetion. This is important in shared-cache mode. If the database
499** connection pointers get out-of-sync, it is possible for routines like
500** btreeInitPage() to reference an stale connection pointer that references a
501** a connection that has already closed. This routine is used inside assert()
502** statements only and for the purpose of double-checking that the btree code
503** does keep the database connection pointers up-to-date.
504*/
dan7a2347e2016-01-07 16:43:54 +0000505static int cursorOwnsBtShared(BtCursor *p){
506 assert( cursorHoldsMutex(p) );
507 return (p->pBtree->db==p->pBt->db);
508}
drh1fee73e2007-08-29 04:00:57 +0000509#endif
510
danielk197792d4d7a2007-05-04 12:05:56 +0000511/*
dan5a500af2014-03-11 20:33:04 +0000512** Invalidate the overflow cache of the cursor passed as the first argument.
513** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000514*/
drh036dbec2014-03-11 23:40:44 +0000515#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000516
517/*
518** Invalidate the overflow page-list cache for all cursors opened
519** on the shared btree structure pBt.
520*/
521static void invalidateAllOverflowCache(BtShared *pBt){
522 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000523 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000524 for(p=pBt->pCursor; p; p=p->pNext){
525 invalidateOverflowCache(p);
526 }
527}
danielk197796d48e92009-06-29 06:00:37 +0000528
dan5a500af2014-03-11 20:33:04 +0000529#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000530/*
531** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000532** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000533** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000534**
535** If argument isClearTable is true, then the entire contents of the
536** table is about to be deleted. In this case invalidate all incrblob
537** cursors open on any row within the table with root-page pgnoRoot.
538**
539** Otherwise, if argument isClearTable is false, then the row with
540** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000541** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000542*/
543static void invalidateIncrblobCursors(
544 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000545 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000546 i64 iRow, /* The rowid that might be changing */
547 int isClearTable /* True if all rows are being deleted */
548){
549 BtCursor *p;
drh49bb56e2021-05-14 20:01:36 +0000550 assert( pBtree->hasIncrblobCur );
danielk197796d48e92009-06-29 06:00:37 +0000551 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000552 pBtree->hasIncrblobCur = 0;
553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554 if( (p->curFlags & BTCF_Incrblob)!=0 ){
555 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000557 p->eState = CURSOR_INVALID;
558 }
danielk197796d48e92009-06-29 06:00:37 +0000559 }
560 }
561}
562
danielk197792d4d7a2007-05-04 12:05:56 +0000563#else
dan5a500af2014-03-11 20:33:04 +0000564 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000565 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000566#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000567
drh980b1a72006-08-16 16:42:48 +0000568/*
danielk1977bea2a942009-01-20 17:06:27 +0000569** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570** when a page that previously contained data becomes a free-list leaf
571** page.
572**
573** The BtShared.pHasContent bitvec exists to work around an obscure
574** bug caused by the interaction of two useful IO optimizations surrounding
575** free-list leaf pages:
576**
577** 1) When all data is deleted from a page and the page becomes
578** a free-list leaf page, the page is not written to the database
579** (as free-list leaf pages contain no meaningful data). Sometimes
580** such a page is not even journalled (as it will not be modified,
581** why bother journalling it?).
582**
583** 2) When a free-list leaf page is reused, its content is not read
584** from the database or written to the journal file (why should it
585** be, if it is not at all meaningful?).
586**
587** By themselves, these optimizations work fine and provide a handy
588** performance boost to bulk delete or insert operations. However, if
589** a page is moved to the free-list and then reused within the same
590** transaction, a problem comes up. If the page is not journalled when
591** it is moved to the free-list and it is also not journalled when it
592** is extracted from the free-list and reused, then the original data
593** may be lost. In the event of a rollback, it may not be possible
594** to restore the database to its original configuration.
595**
596** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597** moved to become a free-list leaf page, the corresponding bit is
598** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000599** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000600** set in BtShared.pHasContent. The contents of the bitvec are cleared
601** at the end of every transaction.
602*/
603static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604 int rc = SQLITE_OK;
605 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000606 assert( pgno<=pBt->nPage );
607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000608 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000609 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000610 }
611 }
612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
614 }
615 return rc;
616}
617
618/*
619** Query the BtShared.pHasContent vector.
620**
621** This function is called when a free-list leaf page is removed from the
622** free-list for reuse. It returns false if it is safe to retrieve the
623** page from the pager layer with the 'no-content' flag set. True otherwise.
624*/
625static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626 Bitvec *p = pBt->pHasContent;
pdrdb9cb172020-03-08 13:33:58 +0000627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
danielk1977bea2a942009-01-20 17:06:27 +0000628}
629
630/*
631** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632** invoked at the conclusion of each write-transaction.
633*/
634static void btreeClearHasContent(BtShared *pBt){
635 sqlite3BitvecDestroy(pBt->pHasContent);
636 pBt->pHasContent = 0;
637}
638
639/*
drh138eeeb2013-03-27 03:15:23 +0000640** Release all of the apPage[] pages for a cursor.
641*/
642static void btreeReleaseAllCursorPages(BtCursor *pCur){
643 int i;
drh352a35a2017-08-15 03:46:47 +0000644 if( pCur->iPage>=0 ){
645 for(i=0; i<pCur->iPage; i++){
646 releasePageNotNull(pCur->apPage[i]);
647 }
648 releasePageNotNull(pCur->pPage);
649 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000650 }
drh138eeeb2013-03-27 03:15:23 +0000651}
652
danf0ee1d32015-09-12 19:26:11 +0000653/*
654** The cursor passed as the only argument must point to a valid entry
655** when this function is called (i.e. have eState==CURSOR_VALID). This
656** function saves the current cursor key in variables pCur->nKey and
657** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658** code otherwise.
659**
660** If the cursor is open on an intkey table, then the integer key
661** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663** set to point to a malloced buffer pCur->nKey bytes in size containing
664** the key.
665*/
666static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000667 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000668 assert( CURSOR_VALID==pCur->eState );
669 assert( 0==pCur->pKey );
670 assert( cursorHoldsMutex(pCur) );
671
drha7c90c42016-06-04 20:37:10 +0000672 if( pCur->curIntKey ){
673 /* Only the rowid is required for a table btree */
674 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675 }else{
danfffaf232018-12-14 13:18:35 +0000676 /* For an index btree, save the complete key content. It is possible
677 ** that the current key is corrupt. In that case, it is possible that
678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679 ** up to the size of 1 varint plus 1 8-byte value when the cursor
680 ** position is restored. Hence the 17 bytes of padding allocated
681 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000682 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000683 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000685 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000687 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000689 pCur->pKey = pKey;
690 }else{
691 sqlite3_free(pKey);
692 }
693 }else{
mistachkinfad30392016-02-13 23:43:46 +0000694 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000695 }
696 }
697 assert( !pCur->curIntKey || !pCur->pKey );
698 return rc;
699}
drh138eeeb2013-03-27 03:15:23 +0000700
701/*
drh980b1a72006-08-16 16:42:48 +0000702** Save the current cursor position in the variables BtCursor.nKey
703** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000704**
705** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000707*/
708static int saveCursorPosition(BtCursor *pCur){
709 int rc;
710
drhd2f83132015-03-25 17:35:01 +0000711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000712 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000713 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000714
drh7b14b652019-12-29 22:08:20 +0000715 if( pCur->curFlags & BTCF_Pinned ){
716 return SQLITE_CONSTRAINT_PINNED;
717 }
drhd2f83132015-03-25 17:35:01 +0000718 if( pCur->eState==CURSOR_SKIPNEXT ){
719 pCur->eState = CURSOR_VALID;
720 }else{
721 pCur->skipNext = 0;
722 }
drh980b1a72006-08-16 16:42:48 +0000723
danf0ee1d32015-09-12 19:26:11 +0000724 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000725 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000726 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000727 pCur->eState = CURSOR_REQUIRESEEK;
728 }
729
dane755e102015-09-30 12:59:12 +0000730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000731 return rc;
732}
733
drh637f3d82014-08-22 22:26:07 +0000734/* Forward reference */
735static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
736
drh980b1a72006-08-16 16:42:48 +0000737/*
drh0ee3dbe2009-10-16 15:05:18 +0000738** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000739** the table with root-page iRoot. "Saving the cursor position" means that
740** the location in the btree is remembered in such a way that it can be
741** moved back to the same spot after the btree has been modified. This
742** routine is called just before cursor pExcept is used to modify the
743** table, for example in BtreeDelete() or BtreeInsert().
744**
drh27fb7462015-06-30 02:47:36 +0000745** If there are two or more cursors on the same btree, then all such
746** cursors should have their BTCF_Multiple flag set. The btreeCursor()
747** routine enforces that rule. This routine only needs to be called in
748** the uncommon case when pExpect has the BTCF_Multiple flag set.
749**
750** If pExpect!=NULL and if no other cursors are found on the same root-page,
751** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752** pointless call to this routine.
753**
drh637f3d82014-08-22 22:26:07 +0000754** Implementation note: This routine merely checks to see if any cursors
755** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
756** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000757*/
758static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000760 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000761 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000762 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
764 }
drh27fb7462015-06-30 02:47:36 +0000765 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000768}
769
770/* This helper routine to saveAllCursors does the actual work of saving
771** the cursors if and when a cursor is found that actually requires saving.
772** The common case is that no cursors need to be saved, so this routine is
773** broken out from its caller to avoid unnecessary stack pointer movement.
774*/
775static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000776 BtCursor *p, /* The first cursor that needs saving */
777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
778 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000779){
780 do{
drh138eeeb2013-03-27 03:15:23 +0000781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000783 int rc = saveCursorPosition(p);
784 if( SQLITE_OK!=rc ){
785 return rc;
786 }
787 }else{
drh85ef6302017-08-02 15:50:09 +0000788 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000789 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000790 }
791 }
drh637f3d82014-08-22 22:26:07 +0000792 p = p->pNext;
793 }while( p );
drh980b1a72006-08-16 16:42:48 +0000794 return SQLITE_OK;
795}
796
797/*
drhbf700f32007-03-31 02:36:44 +0000798** Clear the current cursor position.
799*/
danielk1977be51a652008-10-08 17:58:48 +0000800void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000801 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000802 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000803 pCur->pKey = 0;
804 pCur->eState = CURSOR_INVALID;
805}
806
807/*
danielk19773509a652009-07-06 18:56:13 +0000808** In this version of BtreeMoveto, pKey is a packed index record
809** such as is generated by the OP_MakeRecord opcode. Unpack the
810** record and then call BtreeMovetoUnpacked() to do the work.
811*/
812static int btreeMoveto(
813 BtCursor *pCur, /* Cursor open on the btree to be searched */
814 const void *pKey, /* Packed key if the btree is an index */
815 i64 nKey, /* Integer key for tables. Size of pKey for indices */
816 int bias, /* Bias search to the high end */
817 int *pRes /* Write search results here */
818){
819 int rc; /* Status code */
820 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000821
822 if( pKey ){
danb0c4c942019-01-24 15:16:17 +0000823 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +0000824 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +0000825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +0000827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +0000829 rc = SQLITE_CORRUPT_BKPT;
drh42a410d2021-06-19 18:32:20 +0000830 }else{
831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
drh094b7582013-11-30 12:49:28 +0000832 }
drh42a410d2021-06-19 18:32:20 +0000833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000834 }else{
835 pIdxKey = 0;
drh42a410d2021-06-19 18:32:20 +0000836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
danielk19773509a652009-07-06 18:56:13 +0000837 }
838 return rc;
839}
840
841/*
drh980b1a72006-08-16 16:42:48 +0000842** Restore the cursor to the position it was in (or as close to as possible)
843** when saveCursorPosition() was called. Note that this call deletes the
844** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000845** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000846** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000847*/
danielk197730548662009-07-09 05:07:37 +0000848static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000849 int rc;
mistachkin4e2d3d42019-04-01 03:07:21 +0000850 int skipNext = 0;
dan7a2347e2016-01-07 16:43:54 +0000851 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000852 assert( pCur->eState>=CURSOR_REQUIRESEEK );
853 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000854 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000855 }
drh980b1a72006-08-16 16:42:48 +0000856 pCur->eState = CURSOR_INVALID;
drhb336d1a2019-03-30 19:17:35 +0000857 if( sqlite3FaultSim(410) ){
858 rc = SQLITE_IOERR;
859 }else{
860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
861 }
drh980b1a72006-08-16 16:42:48 +0000862 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000863 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000864 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +0000866 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +0000867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
868 pCur->eState = CURSOR_SKIPNEXT;
869 }
drh980b1a72006-08-16 16:42:48 +0000870 }
871 return rc;
872}
873
drha3460582008-07-11 21:02:53 +0000874#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000875 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000876 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000877 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000878
drha3460582008-07-11 21:02:53 +0000879/*
drh6848dad2014-08-22 23:33:03 +0000880** Determine whether or not a cursor has moved from the position where
881** it was last placed, or has been invalidated for any other reason.
882** Cursors can move when the row they are pointing at is deleted out
883** from under them, for example. Cursor might also move if a btree
884** is rebalanced.
drha3460582008-07-11 21:02:53 +0000885**
drh6848dad2014-08-22 23:33:03 +0000886** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000887**
drh6848dad2014-08-22 23:33:03 +0000888** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000890*/
drh6848dad2014-08-22 23:33:03 +0000891int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000892 assert( EIGHT_BYTE_ALIGNMENT(pCur)
893 || pCur==sqlite3BtreeFakeValidCursor() );
894 assert( offsetof(BtCursor, eState)==0 );
895 assert( sizeof(pCur->eState)==1 );
896 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000897}
898
899/*
drhfe0cf7a2017-08-16 19:20:20 +0000900** Return a pointer to a fake BtCursor object that will always answer
901** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
902** cursor returned must not be used with any other Btree interface.
903*/
904BtCursor *sqlite3BtreeFakeValidCursor(void){
905 static u8 fakeCursor = CURSOR_VALID;
906 assert( offsetof(BtCursor, eState)==0 );
907 return (BtCursor*)&fakeCursor;
908}
909
910/*
drh6848dad2014-08-22 23:33:03 +0000911** This routine restores a cursor back to its original position after it
912** has been moved by some outside activity (such as a btree rebalance or
913** a row having been deleted out from under the cursor).
914**
915** On success, the *pDifferentRow parameter is false if the cursor is left
916** pointing at exactly the same row. *pDifferntRow is the row the cursor
917** was pointing to has been deleted, forcing the cursor to point to some
918** nearby row.
919**
920** This routine should only be called for a cursor that just returned
921** TRUE from sqlite3BtreeCursorHasMoved().
922*/
923int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000924 int rc;
925
drh6848dad2014-08-22 23:33:03 +0000926 assert( pCur!=0 );
927 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000928 rc = restoreCursorPosition(pCur);
929 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000930 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000931 return rc;
932 }
drh606a3572015-03-25 18:29:10 +0000933 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000934 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000935 }else{
drh6848dad2014-08-22 23:33:03 +0000936 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000937 }
938 return SQLITE_OK;
939}
940
drhf7854c72015-10-27 13:24:37 +0000941#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000942/*
drh0df57012015-08-14 15:05:55 +0000943** Provide hints to the cursor. The particular hint given (and the type
944** and number of the varargs parameters) is determined by the eHintType
945** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000946*/
drh0df57012015-08-14 15:05:55 +0000947void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000948 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000949}
drhf7854c72015-10-27 13:24:37 +0000950#endif
951
952/*
953** Provide flag hints to the cursor.
954*/
955void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
957 pCur->hints = x;
958}
959
drh28935362013-12-07 20:39:19 +0000960
danielk1977599fcba2004-11-08 07:13:13 +0000961#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000962/*
drha3152892007-05-05 11:48:52 +0000963** Given a page number of a regular database page, return the page
964** number for the pointer-map page that contains the entry for the
965** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000966**
967** Return 0 (not a valid page) for pgno==1 since there is
968** no pointer map associated with page 1. The integrity_check logic
969** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000970*/
danielk1977266664d2006-02-10 08:24:21 +0000971static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000972 int nPagesPerMapPage;
973 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000974 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000975 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000976 nPagesPerMapPage = (pBt->usableSize/5)+1;
977 iPtrMap = (pgno-2)/nPagesPerMapPage;
978 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000979 if( ret==PENDING_BYTE_PAGE(pBt) ){
980 ret++;
981 }
982 return ret;
983}
danielk1977a19df672004-11-03 11:37:07 +0000984
danielk1977afcdd022004-10-31 16:25:42 +0000985/*
danielk1977afcdd022004-10-31 16:25:42 +0000986** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000987**
988** This routine updates the pointer map entry for page number 'key'
989** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000990**
991** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992** a no-op. If an error occurs, the appropriate error code is written
993** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000994*/
drh98add2e2009-07-20 17:11:49 +0000995static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000996 DbPage *pDbPage; /* The pointer map page */
997 u8 *pPtrmap; /* The pointer map data */
998 Pgno iPtrmap; /* The pointer map page number */
999 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +00001000 int rc; /* Return code from subfunctions */
1001
1002 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +00001003
drh1fee73e2007-08-29 04:00:57 +00001004 assert( sqlite3_mutex_held(pBt->mutex) );
drh067b92b2020-06-19 15:24:12 +00001005 /* The super-journal page number must never be used as a pointer map page */
danielk1977266664d2006-02-10 08:24:21 +00001006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1007
danielk1977ac11ee62005-01-15 12:45:51 +00001008 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +00001009 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +00001010 *pRC = SQLITE_CORRUPT_BKPT;
1011 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +00001012 }
danielk1977266664d2006-02-10 08:24:21 +00001013 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00001015 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00001016 *pRC = rc;
1017 return;
danielk1977afcdd022004-10-31 16:25:42 +00001018 }
drh203b1ea2018-12-14 03:14:18 +00001019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1020 /* The first byte of the extra data is the MemPage.isInit byte.
1021 ** If that byte is set, it means this page is also being used
1022 ** as a btree page. */
1023 *pRC = SQLITE_CORRUPT_BKPT;
1024 goto ptrmap_exit;
1025 }
danielk19778c666b12008-07-18 09:34:57 +00001026 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001027 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001028 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001029 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001030 }
drhfc243732011-05-17 15:21:56 +00001031 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001033
drh615ae552005-01-16 23:21:00 +00001034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001036 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001037 if( rc==SQLITE_OK ){
1038 pPtrmap[offset] = eType;
1039 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001040 }
danielk1977afcdd022004-10-31 16:25:42 +00001041 }
1042
drh4925a552009-07-07 11:39:58 +00001043ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001044 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001045}
1046
1047/*
1048** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001049**
1050** This routine retrieves the pointer map entry for page 'key', writing
1051** the type and parent page number to *pEType and *pPgno respectively.
1052** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001053*/
danielk1977aef0bf62005-12-30 16:28:01 +00001054static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001055 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001056 int iPtrmap; /* Pointer map page index */
1057 u8 *pPtrmap; /* Pointer map page data */
1058 int offset; /* Offset of entry in pointer map */
1059 int rc;
1060
drh1fee73e2007-08-29 04:00:57 +00001061 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001062
danielk1977266664d2006-02-10 08:24:21 +00001063 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001065 if( rc!=0 ){
1066 return rc;
1067 }
danielk19773b8a05f2007-03-19 17:44:26 +00001068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001069
danielk19778c666b12008-07-18 09:34:57 +00001070 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001071 if( offset<0 ){
1072 sqlite3PagerUnref(pDbPage);
1073 return SQLITE_CORRUPT_BKPT;
1074 }
1075 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001076 assert( pEType!=0 );
1077 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001079
danielk19773b8a05f2007-03-19 17:44:26 +00001080 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001082 return SQLITE_OK;
1083}
1084
danielk197785d90ca2008-07-19 14:25:15 +00001085#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001086 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001087 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001088 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001089#endif
danielk1977afcdd022004-10-31 16:25:42 +00001090
drh0d316a42002-08-11 20:10:47 +00001091/*
drh271efa52004-05-30 19:19:05 +00001092** Given a btree page and a cell index (0 means the first cell on
1093** the page, 1 means the second cell, and so forth) return a pointer
1094** to the cell content.
1095**
drhf44890a2015-06-27 03:58:15 +00001096** findCellPastPtr() does the same except it skips past the initial
1097** 4-byte child pointer found on interior pages, if there is one.
1098**
drh271efa52004-05-30 19:19:05 +00001099** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001100*/
drh1688c862008-07-18 02:44:17 +00001101#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001103#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001105
drh43605152004-05-29 21:46:49 +00001106
1107/*
drh5fa60512015-06-19 17:19:34 +00001108** This is common tail processing for btreeParseCellPtr() and
1109** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110** on a single B-tree page. Make necessary adjustments to the CellInfo
1111** structure.
drh43605152004-05-29 21:46:49 +00001112*/
drh5fa60512015-06-19 17:19:34 +00001113static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1114 MemPage *pPage, /* Page containing the cell */
1115 u8 *pCell, /* Pointer to the cell text. */
1116 CellInfo *pInfo /* Fill in this structure */
1117){
1118 /* If the payload will not fit completely on the local page, we have
1119 ** to decide how much to store locally and how much to spill onto
1120 ** overflow pages. The strategy is to minimize the amount of unused
1121 ** space on overflow pages while keeping the amount of local storage
1122 ** in between minLocal and maxLocal.
1123 **
1124 ** Warning: changing the way overflow payload is distributed in any
1125 ** way will result in an incompatible file format.
1126 */
1127 int minLocal; /* Minimum amount of payload held locally */
1128 int maxLocal; /* Maximum amount of payload held locally */
1129 int surplus; /* Overflow payload available for local storage */
1130
1131 minLocal = pPage->minLocal;
1132 maxLocal = pPage->maxLocal;
1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1134 testcase( surplus==maxLocal );
1135 testcase( surplus==maxLocal+1 );
1136 if( surplus <= maxLocal ){
1137 pInfo->nLocal = (u16)surplus;
1138 }else{
1139 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001140 }
drh45ac1c72015-12-18 03:59:16 +00001141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001142}
1143
1144/*
danebbf3682020-12-09 16:32:11 +00001145** Given a record with nPayload bytes of payload stored within btree
1146** page pPage, return the number of bytes of payload stored locally.
1147*/
dan59964b42020-12-14 15:25:14 +00001148static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
danebbf3682020-12-09 16:32:11 +00001149 int maxLocal; /* Maximum amount of payload held locally */
1150 maxLocal = pPage->maxLocal;
1151 if( nPayload<=maxLocal ){
1152 return nPayload;
1153 }else{
1154 int minLocal; /* Minimum amount of payload held locally */
1155 int surplus; /* Overflow payload available for local storage */
1156 minLocal = pPage->minLocal;
1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1158 return ( surplus <= maxLocal ) ? surplus : minLocal;
1159 }
1160}
1161
1162/*
drh5fa60512015-06-19 17:19:34 +00001163** The following routines are implementations of the MemPage.xParseCell()
1164** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001165**
drh5fa60512015-06-19 17:19:34 +00001166** Parse a cell content block and fill in the CellInfo structure.
1167**
1168** btreeParseCellPtr() => table btree leaf nodes
1169** btreeParseCellNoPayload() => table btree internal nodes
1170** btreeParseCellPtrIndex() => index btree nodes
1171**
1172** There is also a wrapper function btreeParseCell() that works for
1173** all MemPage types and that references the cell by index rather than
1174** by pointer.
drh43605152004-05-29 21:46:49 +00001175*/
drh5fa60512015-06-19 17:19:34 +00001176static void btreeParseCellPtrNoPayload(
1177 MemPage *pPage, /* Page containing the cell */
1178 u8 *pCell, /* Pointer to the cell text. */
1179 CellInfo *pInfo /* Fill in this structure */
1180){
1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001183 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001184#ifndef SQLITE_DEBUG
1185 UNUSED_PARAMETER(pPage);
1186#endif
drh5fa60512015-06-19 17:19:34 +00001187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1188 pInfo->nPayload = 0;
1189 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001190 pInfo->pPayload = 0;
1191 return;
1192}
danielk197730548662009-07-09 05:07:37 +00001193static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001194 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001195 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001196 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001197){
drh3e28ff52014-09-24 00:59:08 +00001198 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001199 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001200 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001201
drh1fee73e2007-08-29 04:00:57 +00001202 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001203 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001204 assert( pPage->intKeyLeaf );
1205 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001206 pIter = pCell;
1207
1208 /* The next block of code is equivalent to:
1209 **
1210 ** pIter += getVarint32(pIter, nPayload);
1211 **
1212 ** The code is inlined to avoid a function call.
1213 */
1214 nPayload = *pIter;
1215 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001216 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001217 nPayload &= 0x7f;
1218 do{
1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1220 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001221 }
drh56cb04e2015-06-19 18:24:37 +00001222 pIter++;
1223
1224 /* The next block of code is equivalent to:
1225 **
1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1227 **
drh29bbc2b2022-01-02 16:48:00 +00001228 ** The code is inlined and the loop is unrolled for performance.
1229 ** This routine is a high-runner.
drh56cb04e2015-06-19 18:24:37 +00001230 */
1231 iKey = *pIter;
1232 if( iKey>=0x80 ){
drh29bbc2b2022-01-02 16:48:00 +00001233 u8 x;
1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f);
1235 if( x>=0x80 ){
1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f);
1237 if( x>=0x80 ){
1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1239 if( x>=0x80 ){
1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1241 if( x>=0x80 ){
1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1243 if( x>=0x80 ){
1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1245 if( x>=0x80 ){
1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1247 if( x>=0x80 ){
1248 iKey = (iKey<<8) | (*++pIter);
1249 }
1250 }
1251 }
1252 }
1253 }
drh56cb04e2015-06-19 18:24:37 +00001254 }
1255 }
1256 }
1257 pIter++;
1258
1259 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001260 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001261 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001262 testcase( nPayload==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001263 testcase( nPayload==(u32)pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001264 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001265 /* This is the (easy) common case where the entire payload fits
1266 ** on the local page. No overflow is required.
1267 */
drhab1cc582014-09-23 21:25:19 +00001268 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1269 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001270 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001271 }else{
drh5fa60512015-06-19 17:19:34 +00001272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001273 }
drh3aac2dd2004-04-26 14:10:20 +00001274}
drh5fa60512015-06-19 17:19:34 +00001275static void btreeParseCellPtrIndex(
1276 MemPage *pPage, /* Page containing the cell */
1277 u8 *pCell, /* Pointer to the cell text. */
1278 CellInfo *pInfo /* Fill in this structure */
1279){
1280 u8 *pIter; /* For scanning through pCell */
1281 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001282
drh5fa60512015-06-19 17:19:34 +00001283 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1284 assert( pPage->leaf==0 || pPage->leaf==1 );
1285 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001286 pIter = pCell + pPage->childPtrSize;
1287 nPayload = *pIter;
1288 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001289 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001290 nPayload &= 0x7f;
1291 do{
1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1293 }while( *(pIter)>=0x80 && pIter<pEnd );
1294 }
1295 pIter++;
1296 pInfo->nKey = nPayload;
1297 pInfo->nPayload = nPayload;
1298 pInfo->pPayload = pIter;
1299 testcase( nPayload==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001300 testcase( nPayload==(u32)pPage->maxLocal+1 );
drh5fa60512015-06-19 17:19:34 +00001301 if( nPayload<=pPage->maxLocal ){
1302 /* This is the (easy) common case where the entire payload fits
1303 ** on the local page. No overflow is required.
1304 */
1305 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1306 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1307 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001308 }else{
1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001310 }
1311}
danielk197730548662009-07-09 05:07:37 +00001312static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001313 MemPage *pPage, /* Page containing the cell */
1314 int iCell, /* The cell index. First cell is 0 */
1315 CellInfo *pInfo /* Fill in this structure */
1316){
drh5fa60512015-06-19 17:19:34 +00001317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001318}
drh3aac2dd2004-04-26 14:10:20 +00001319
1320/*
drh5fa60512015-06-19 17:19:34 +00001321** The following routines are implementations of the MemPage.xCellSize
1322** method.
1323**
drh43605152004-05-29 21:46:49 +00001324** Compute the total number of bytes that a Cell needs in the cell
1325** data area of the btree-page. The return number includes the cell
1326** data header and the local payload, but not any overflow page or
1327** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001328**
drh5fa60512015-06-19 17:19:34 +00001329** cellSizePtrNoPayload() => table internal nodes
1330** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001331*/
danielk1977ae5558b2009-04-29 11:31:47 +00001332static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001333 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1334 u8 *pEnd; /* End mark for a varint */
1335 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001336
1337#ifdef SQLITE_DEBUG
1338 /* The value returned by this function should always be the same as
1339 ** the (CellInfo.nSize) value found by doing a full parse of the
1340 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1341 ** this function verifies that this invariant is not violated. */
1342 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001343 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001344#endif
1345
drh3e28ff52014-09-24 00:59:08 +00001346 nSize = *pIter;
1347 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001348 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001349 nSize &= 0x7f;
1350 do{
1351 nSize = (nSize<<7) | (*++pIter & 0x7f);
1352 }while( *(pIter)>=0x80 && pIter<pEnd );
1353 }
1354 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001355 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001356 /* pIter now points at the 64-bit integer key value, a variable length
1357 ** integer. The following block moves pIter to point at the first byte
1358 ** past the end of the key value. */
1359 pEnd = &pIter[9];
1360 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001361 }
drh0a45c272009-07-08 01:49:11 +00001362 testcase( nSize==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001363 testcase( nSize==(u32)pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001364 if( nSize<=pPage->maxLocal ){
1365 nSize += (u32)(pIter - pCell);
1366 if( nSize<4 ) nSize = 4;
1367 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001368 int minLocal = pPage->minLocal;
1369 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001370 testcase( nSize==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001371 testcase( nSize==(u32)pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001372 if( nSize>pPage->maxLocal ){
1373 nSize = minLocal;
1374 }
drh3e28ff52014-09-24 00:59:08 +00001375 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001376 }
drhdc41d602014-09-22 19:51:35 +00001377 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001378 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001379}
drh25ada072015-06-19 15:07:14 +00001380static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1381 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1382 u8 *pEnd; /* End mark for a varint */
1383
1384#ifdef SQLITE_DEBUG
1385 /* The value returned by this function should always be the same as
1386 ** the (CellInfo.nSize) value found by doing a full parse of the
1387 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1388 ** this function verifies that this invariant is not violated. */
1389 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001390 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001391#else
1392 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001393#endif
1394
1395 assert( pPage->childPtrSize==4 );
1396 pEnd = pIter + 9;
1397 while( (*pIter++)&0x80 && pIter<pEnd );
1398 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1399 return (u16)(pIter - pCell);
1400}
1401
drh0ee3dbe2009-10-16 15:05:18 +00001402
1403#ifdef SQLITE_DEBUG
1404/* This variation on cellSizePtr() is used inside of assert() statements
1405** only. */
drha9121e42008-02-19 14:59:35 +00001406static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001407 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001408}
danielk1977bc6ada42004-06-30 08:20:16 +00001409#endif
drh3b7511c2001-05-26 13:15:44 +00001410
danielk197779a40da2005-01-16 08:00:01 +00001411#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001412/*
drh0f1bf4c2019-01-13 20:17:21 +00001413** The cell pCell is currently part of page pSrc but will ultimately be part
1414** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1415** pointer to an overflow page, insert an entry into the pointer-map for
1416** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001417*/
drh0f1bf4c2019-01-13 20:17:21 +00001418static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001419 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001420 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001421 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001422 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001423 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001424 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001425 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1426 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001427 *pRC = SQLITE_CORRUPT_BKPT;
1428 return;
1429 }
1430 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001431 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001432 }
danielk1977ac11ee62005-01-15 12:45:51 +00001433}
danielk197779a40da2005-01-16 08:00:01 +00001434#endif
1435
danielk1977ac11ee62005-01-15 12:45:51 +00001436
drhda200cc2004-05-09 11:51:38 +00001437/*
dane6d065a2017-02-24 19:58:22 +00001438** Defragment the page given. This routine reorganizes cells within the
1439** page so that there are no free-blocks on the free-block list.
1440**
1441** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1442** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001443**
1444** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1445** b-tree page so that there are no freeblocks or fragment bytes, all
1446** unused bytes are contained in the unallocated space region, and all
1447** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001448*/
dane6d065a2017-02-24 19:58:22 +00001449static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001450 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001451 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001452 int hdr; /* Offset to the page header */
1453 int size; /* Size of a cell */
1454 int usableSize; /* Number of usable bytes on a page */
1455 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001456 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001457 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001458 unsigned char *data; /* The page data */
1459 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001460 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001461 int iCellFirst; /* First allowable cell index */
1462 int iCellLast; /* Last possible cell index */
dan7f65b7a2021-04-10 20:27:06 +00001463 int iCellStart; /* First cell offset in input */
drh17146622009-07-07 17:38:38 +00001464
danielk19773b8a05f2007-03-19 17:44:26 +00001465 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001466 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001467 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001468 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001469 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001470 temp = 0;
1471 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001472 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001473 cellOffset = pPage->cellOffset;
1474 nCell = pPage->nCell;
drh45616c72019-02-28 13:21:36 +00001475 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001476 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001477 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001478
1479 /* This block handles pages with two or fewer free blocks and nMaxFrag
1480 ** or fewer fragmented bytes. In this case it is faster to move the
1481 ** two (or one) blocks of cells using memmove() and add the required
1482 ** offsets to each pointer in the cell-pointer array than it is to
1483 ** reconstruct the entire page. */
1484 if( (int)data[hdr+7]<=nMaxFrag ){
1485 int iFree = get2byte(&data[hdr+1]);
drh119e1ff2019-03-30 18:39:13 +00001486 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001487 if( iFree ){
1488 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001489 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001490 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1491 u8 *pEnd = &data[cellOffset + nCell*2];
1492 u8 *pAddr;
1493 int sz2 = 0;
1494 int sz = get2byte(&data[iFree+2]);
1495 int top = get2byte(&data[hdr+5]);
drh4b9e7362020-02-18 23:58:58 +00001496 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001497 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001498 }
dane6d065a2017-02-24 19:58:22 +00001499 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001500 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001501 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001502 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001503 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1504 sz += sz2;
drh46c425b2021-11-10 10:59:10 +00001505 }else if( NEVER(iFree+sz>usableSize) ){
dandcc427c2019-03-21 21:18:36 +00001506 return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001507 }
dandcc427c2019-03-21 21:18:36 +00001508
dane6d065a2017-02-24 19:58:22 +00001509 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001510 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001511 memmove(&data[cbrk], &data[top], iFree-top);
1512 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1513 pc = get2byte(pAddr);
1514 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1515 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1516 }
1517 goto defragment_out;
1518 }
1519 }
1520 }
1521
drh281b21d2008-08-22 12:57:08 +00001522 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001523 iCellLast = usableSize - 4;
dan7f65b7a2021-04-10 20:27:06 +00001524 iCellStart = get2byte(&data[hdr+5]);
drh43605152004-05-29 21:46:49 +00001525 for(i=0; i<nCell; i++){
1526 u8 *pAddr; /* The i-th cell pointer */
1527 pAddr = &data[cellOffset + i*2];
1528 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001529 testcase( pc==iCellFirst );
1530 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001531 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001532 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001533 */
dan7f65b7a2021-04-10 20:27:06 +00001534 if( pc<iCellStart || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001535 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001536 }
dan7f65b7a2021-04-10 20:27:06 +00001537 assert( pc>=iCellStart && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001538 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001539 cbrk -= size;
dan7f65b7a2021-04-10 20:27:06 +00001540 if( cbrk<iCellStart || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001541 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001542 }
dan7f65b7a2021-04-10 20:27:06 +00001543 assert( cbrk+size<=usableSize && cbrk>=iCellStart );
drh0a45c272009-07-08 01:49:11 +00001544 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001545 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001546 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001547 if( temp==0 ){
drh588400b2014-09-27 05:00:25 +00001548 if( cbrk==pc ) continue;
1549 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drhccf0bb42021-06-07 13:50:36 +00001550 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
drh588400b2014-09-27 05:00:25 +00001551 src = temp;
1552 }
1553 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001554 }
dane6d065a2017-02-24 19:58:22 +00001555 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001556
1557 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001558 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001559 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001560 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001561 }
drh17146622009-07-07 17:38:38 +00001562 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001563 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001564 data[hdr+1] = 0;
1565 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001566 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001567 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001568 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001569}
1570
drha059ad02001-04-17 20:09:11 +00001571/*
dan8e9ba0c2014-10-14 17:27:04 +00001572** Search the free-list on page pPg for space to store a cell nByte bytes in
1573** size. If one can be found, return a pointer to the space and remove it
1574** from the free-list.
1575**
1576** If no suitable space can be found on the free-list, return NULL.
1577**
drhba0f9992014-10-30 20:48:44 +00001578** This function may detect corruption within pPg. If corruption is
1579** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001580**
drhb7580e82015-06-25 18:36:13 +00001581** Slots on the free list that are between 1 and 3 bytes larger than nByte
1582** will be ignored if adding the extra space to the fragmentation count
1583** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001584*/
drhb7580e82015-06-25 18:36:13 +00001585static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001586 const int hdr = pPg->hdrOffset; /* Offset to page header */
1587 u8 * const aData = pPg->aData; /* Page data */
1588 int iAddr = hdr + 1; /* Address of ptr to pc */
1589 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */
1590 int x; /* Excess size of the slot */
1591 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1592 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001593
drhb7580e82015-06-25 18:36:13 +00001594 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001595 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001596 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1597 ** freeblock form a big-endian integer which is the size of the freeblock
1598 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001599 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001600 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001601 testcase( x==4 );
1602 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001603 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001604 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1605 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001606 if( aData[hdr+7]>57 ) return 0;
1607
dan8e9ba0c2014-10-14 17:27:04 +00001608 /* Remove the slot from the free-list. Update the number of
1609 ** fragmented bytes within the page. */
1610 memcpy(&aData[iAddr], &aData[pc], 2);
1611 aData[hdr+7] += (u8)x;
drh298f45c2019-02-08 22:34:59 +00001612 }else if( x+pc > maxPC ){
1613 /* This slot extends off the end of the usable part of the page */
1614 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1615 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001616 }else{
1617 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001618 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001619 put2byte(&aData[pc+2], x);
1620 }
1621 return &aData[pc + x];
1622 }
drhb7580e82015-06-25 18:36:13 +00001623 iAddr = pc;
1624 pc = get2byte(&aData[pc]);
drh2a934d72019-03-13 10:29:16 +00001625 if( pc<=iAddr+size ){
drh298f45c2019-02-08 22:34:59 +00001626 if( pc ){
1627 /* The next slot in the chain is not past the end of the current slot */
1628 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1629 }
1630 return 0;
1631 }
drh87d63c92017-08-23 23:09:03 +00001632 }
drh298f45c2019-02-08 22:34:59 +00001633 if( pc>maxPC+nByte-4 ){
1634 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001635 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001636 }
dan8e9ba0c2014-10-14 17:27:04 +00001637 return 0;
1638}
1639
1640/*
danielk19776011a752009-04-01 16:25:32 +00001641** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001642** as the first argument. Write into *pIdx the index into pPage->aData[]
1643** of the first byte of allocated space. Return either SQLITE_OK or
1644** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001645**
drh0a45c272009-07-08 01:49:11 +00001646** The caller guarantees that there is sufficient space to make the
1647** allocation. This routine might need to defragment in order to bring
1648** all the space together, however. This routine will avoid using
1649** the first two bytes past the cell pointer area since presumably this
1650** allocation is being made in order to insert a new cell, so we will
1651** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001652*/
drh0a45c272009-07-08 01:49:11 +00001653static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001654 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1655 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001656 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001657 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001658 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001659
danielk19773b8a05f2007-03-19 17:44:26 +00001660 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001661 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001662 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001663 assert( nByte>=0 ); /* Minimum cell size is 4 */
1664 assert( pPage->nFree>=nByte );
1665 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001666 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001667
drh0a45c272009-07-08 01:49:11 +00001668 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1669 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001670 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001671 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1672 ** and the reserved space is zero (the usual value for reserved space)
1673 ** then the cell content offset of an empty page wants to be 65536.
1674 ** However, that integer is too large to be stored in a 2-byte unsigned
1675 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001676 top = get2byte(&data[hdr+5]);
drhdfcecdf2019-05-08 00:17:45 +00001677 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
drhded340e2015-06-25 15:04:56 +00001678 if( gap>top ){
drh291508f2019-05-08 04:33:17 +00001679 if( top==0 && pPage->pBt->usableSize==65536 ){
drhded340e2015-06-25 15:04:56 +00001680 top = 65536;
1681 }else{
daneebf2f52017-11-18 17:30:08 +00001682 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001683 }
1684 }
drh43605152004-05-29 21:46:49 +00001685
drhd4a67442019-02-11 19:27:36 +00001686 /* If there is enough space between gap and top for one more cell pointer,
1687 ** and if the freelist is not empty, then search the
1688 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001689 */
drh5e2f8b92001-05-28 00:41:15 +00001690 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001691 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001692 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001693 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001694 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001695 if( pSpace ){
drh3b76c452020-01-03 17:40:30 +00001696 int g2;
drh2b96b692019-08-05 16:22:20 +00001697 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
drh3b76c452020-01-03 17:40:30 +00001698 *pIdx = g2 = (int)(pSpace-data);
drhb9154182021-06-20 22:49:26 +00001699 if( g2<=gap ){
drh2b96b692019-08-05 16:22:20 +00001700 return SQLITE_CORRUPT_PAGE(pPage);
1701 }else{
1702 return SQLITE_OK;
1703 }
drhb7580e82015-06-25 18:36:13 +00001704 }else if( rc ){
1705 return rc;
drh9e572e62004-04-23 23:43:10 +00001706 }
1707 }
drh43605152004-05-29 21:46:49 +00001708
drh4c04f3c2014-08-20 11:56:14 +00001709 /* The request could not be fulfilled using a freelist slot. Check
1710 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001711 */
1712 testcase( gap+2+nByte==top );
1713 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001714 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001715 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001716 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001717 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001718 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001719 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001720 }
1721
1722
drh43605152004-05-29 21:46:49 +00001723 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001724 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001725 ** validated the freelist. Given that the freelist is valid, there
1726 ** is no way that the allocation can extend off the end of the page.
1727 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001728 */
drh0a45c272009-07-08 01:49:11 +00001729 top -= nByte;
drh43605152004-05-29 21:46:49 +00001730 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001731 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001732 *pIdx = top;
1733 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001734}
1735
1736/*
drh9e572e62004-04-23 23:43:10 +00001737** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001738** The first byte of the new free block is pPage->aData[iStart]
1739** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001740**
drh5f5c7532014-08-20 17:56:27 +00001741** Adjacent freeblocks are coalesced.
1742**
drh5860a612019-02-12 16:58:26 +00001743** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001744** that routine will not detect overlap between cells or freeblocks. Nor
1745** does it detect cells or freeblocks that encrouch into the reserved bytes
1746** at the end of the page. So do additional corruption checks inside this
1747** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001748*/
drh5f5c7532014-08-20 17:56:27 +00001749static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001750 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001751 u16 iFreeBlk; /* Address of the next freeblock */
1752 u8 hdr; /* Page header size. 0 or 100 */
1753 u8 nFrag = 0; /* Reduction in fragmentation */
1754 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001755 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001756 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001757 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001758
drh9e572e62004-04-23 23:43:10 +00001759 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001760 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001761 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001762 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001763 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001764 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001765 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001766
drh5f5c7532014-08-20 17:56:27 +00001767 /* The list of freeblocks must be in ascending order. Find the
1768 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001769 */
drh43605152004-05-29 21:46:49 +00001770 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001771 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001772 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1773 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1774 }else{
drh85f071b2016-09-17 19:34:32 +00001775 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1776 if( iFreeBlk<iPtr+4 ){
drh05e8c542020-01-14 16:39:54 +00001777 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
daneebf2f52017-11-18 17:30:08 +00001778 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001779 }
drh7bc4c452014-08-20 18:43:44 +00001780 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001781 }
drh628b1a32020-01-05 21:53:15 +00001782 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
daneebf2f52017-11-18 17:30:08 +00001783 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001784 }
drh7bc4c452014-08-20 18:43:44 +00001785 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1786
1787 /* At this point:
1788 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001789 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001790 **
1791 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1792 */
1793 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1794 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001795 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001796 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drh6aa75152020-06-12 00:31:52 +00001797 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001798 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001799 }
drh7bc4c452014-08-20 18:43:44 +00001800 iSize = iEnd - iStart;
1801 iFreeBlk = get2byte(&data[iFreeBlk]);
1802 }
1803
drh3f387402014-09-24 01:23:00 +00001804 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1805 ** pointer in the page header) then check to see if iStart should be
1806 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001807 */
1808 if( iPtr>hdr+1 ){
1809 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1810 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001811 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001812 nFrag += iStart - iPtrEnd;
1813 iSize = iEnd - iPtr;
1814 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001815 }
drh9e572e62004-04-23 23:43:10 +00001816 }
daneebf2f52017-11-18 17:30:08 +00001817 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001818 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001819 }
drh5e398e42017-08-23 20:36:06 +00001820 x = get2byte(&data[hdr+5]);
1821 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001822 /* The new freeblock is at the beginning of the cell content area,
1823 ** so just extend the cell content area rather than create another
1824 ** freelist entry */
drh3b76c452020-01-03 17:40:30 +00001825 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
drh48118e42020-01-29 13:50:11 +00001826 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001827 put2byte(&data[hdr+1], iFreeBlk);
1828 put2byte(&data[hdr+5], iEnd);
1829 }else{
1830 /* Insert the new freeblock into the freelist */
1831 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001832 }
drh5e398e42017-08-23 20:36:06 +00001833 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1834 /* Overwrite deleted information with zeros when the secure_delete
1835 ** option is enabled */
1836 memset(&data[iStart], 0, iSize);
1837 }
1838 put2byte(&data[iStart], iFreeBlk);
1839 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001840 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001841 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001842}
1843
1844/*
drh271efa52004-05-30 19:19:05 +00001845** Decode the flags byte (the first byte of the header) for a page
1846** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001847**
1848** Only the following combinations are supported. Anything different
1849** indicates a corrupt database files:
1850**
1851** PTF_ZERODATA
1852** PTF_ZERODATA | PTF_LEAF
1853** PTF_LEAFDATA | PTF_INTKEY
1854** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001855*/
drh44845222008-07-17 18:39:57 +00001856static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001857 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001858
1859 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001860 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001861 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001862 flagByte &= ~PTF_LEAF;
1863 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001864 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001865 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001866 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001867 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1868 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001869 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001870 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1871 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001872 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001873 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001874 if( pPage->leaf ){
1875 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001876 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001877 }else{
1878 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001879 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001880 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001881 }
drh271efa52004-05-30 19:19:05 +00001882 pPage->maxLocal = pBt->maxLeaf;
1883 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001884 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001885 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1886 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001887 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001888 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1889 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001890 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001891 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001892 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001893 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001894 pPage->maxLocal = pBt->maxLocal;
1895 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001896 }else{
drhfdab0262014-11-20 15:30:50 +00001897 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1898 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001899 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001900 }
drhc9166342012-01-05 23:32:06 +00001901 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001902 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001903}
1904
1905/*
drhb0ea9432019-02-09 21:06:40 +00001906** Compute the amount of freespace on the page. In other words, fill
1907** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00001908*/
drhb0ea9432019-02-09 21:06:40 +00001909static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001910 int pc; /* Address of a freeblock within pPage->aData[] */
1911 u8 hdr; /* Offset to beginning of page header */
1912 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00001913 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00001914 int nFree; /* Number of unused bytes on the page */
1915 int top; /* First byte of the cell content area */
1916 int iCellFirst; /* First allowable cell or freeblock offset */
1917 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001918
danielk197771d5d2c2008-09-29 11:49:47 +00001919 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001920 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001921 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001922 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001923 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1924 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00001925 assert( pPage->isInit==1 );
1926 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001927
drhb0ea9432019-02-09 21:06:40 +00001928 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00001929 hdr = pPage->hdrOffset;
1930 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00001931 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1932 ** the start of the cell content area. A zero value for this integer is
1933 ** interpreted as 65536. */
1934 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00001935 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00001936 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00001937
drh14e845a2017-05-25 21:35:56 +00001938 /* Compute the total free space on the page
1939 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1940 ** start of the first freeblock on the page, or is zero if there are no
1941 ** freeblocks. */
1942 pc = get2byte(&data[hdr+1]);
1943 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1944 if( pc>0 ){
1945 u32 next, size;
dan9a20ea92020-01-03 15:51:23 +00001946 if( pc<top ){
drh14e845a2017-05-25 21:35:56 +00001947 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1948 ** always be at least one cell before the first freeblock.
1949 */
daneebf2f52017-11-18 17:30:08 +00001950 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001951 }
drh14e845a2017-05-25 21:35:56 +00001952 while( 1 ){
1953 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001954 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001955 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001956 }
1957 next = get2byte(&data[pc]);
1958 size = get2byte(&data[pc+2]);
1959 nFree = nFree + size;
1960 if( next<=pc+size+3 ) break;
1961 pc = next;
1962 }
1963 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001964 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001965 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001966 }
1967 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001968 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001969 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001970 }
danielk197771d5d2c2008-09-29 11:49:47 +00001971 }
drh14e845a2017-05-25 21:35:56 +00001972
1973 /* At this point, nFree contains the sum of the offset to the start
1974 ** of the cell-content area plus the number of free bytes within
1975 ** the cell-content area. If this is greater than the usable-size
1976 ** of the page, then the page must be corrupted. This check also
1977 ** serves to verify that the offset to the start of the cell-content
1978 ** area, according to the page header, lies within the page.
1979 */
drhdfcecdf2019-05-08 00:17:45 +00001980 if( nFree>usableSize || nFree<iCellFirst ){
daneebf2f52017-11-18 17:30:08 +00001981 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001982 }
1983 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00001984 return SQLITE_OK;
1985}
1986
1987/*
drh5860a612019-02-12 16:58:26 +00001988** Do additional sanity check after btreeInitPage() if
1989** PRAGMA cell_size_check=ON
1990*/
1991static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1992 int iCellFirst; /* First allowable cell or freeblock offset */
1993 int iCellLast; /* Last possible cell or freeblock offset */
1994 int i; /* Index into the cell pointer array */
1995 int sz; /* Size of a cell */
1996 int pc; /* Address of a freeblock within pPage->aData[] */
1997 u8 *data; /* Equal to pPage->aData */
1998 int usableSize; /* Maximum usable space on the page */
1999 int cellOffset; /* Start of cell content area */
2000
2001 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
2002 usableSize = pPage->pBt->usableSize;
2003 iCellLast = usableSize - 4;
2004 data = pPage->aData;
2005 cellOffset = pPage->cellOffset;
2006 if( !pPage->leaf ) iCellLast--;
2007 for(i=0; i<pPage->nCell; i++){
2008 pc = get2byteAligned(&data[cellOffset+i*2]);
2009 testcase( pc==iCellFirst );
2010 testcase( pc==iCellLast );
2011 if( pc<iCellFirst || pc>iCellLast ){
2012 return SQLITE_CORRUPT_PAGE(pPage);
2013 }
2014 sz = pPage->xCellSize(pPage, &data[pc]);
2015 testcase( pc+sz==usableSize );
2016 if( pc+sz>usableSize ){
2017 return SQLITE_CORRUPT_PAGE(pPage);
2018 }
2019 }
2020 return SQLITE_OK;
2021}
2022
2023/*
drhb0ea9432019-02-09 21:06:40 +00002024** Initialize the auxiliary information for a disk block.
2025**
2026** Return SQLITE_OK on success. If we see that the page does
2027** not contain a well-formed database page, then return
2028** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2029** guarantee that the page is well-formed. It only shows that
2030** we failed to detect any corruption.
2031*/
2032static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00002033 u8 *data; /* Equal to pPage->aData */
2034 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00002035
2036 assert( pPage->pBt!=0 );
2037 assert( pPage->pBt->db!=0 );
2038 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2039 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2040 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2041 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2042 assert( pPage->isInit==0 );
2043
2044 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00002045 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00002046 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2047 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00002048 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00002049 return SQLITE_CORRUPT_PAGE(pPage);
2050 }
2051 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2052 pPage->maskPage = (u16)(pBt->pageSize - 1);
2053 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00002054 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2055 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2056 pPage->aDataEnd = pPage->aData + pBt->usableSize;
2057 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002058 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2059 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002060 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002061 if( pPage->nCell>MX_CELL(pBt) ){
2062 /* To many cells for a single page. The page must be corrupt */
2063 return SQLITE_CORRUPT_PAGE(pPage);
2064 }
2065 testcase( pPage->nCell==MX_CELL(pBt) );
2066 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2067 ** possible for a root page of a table that contains no rows) then the
2068 ** offset to the cell content area will equal the page size minus the
2069 ** bytes of reserved space. */
2070 assert( pPage->nCell>0
mistachkin065f3bf2019-03-20 05:45:03 +00002071 || get2byteNotZero(&data[5])==(int)pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002072 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002073 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002074 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002075 if( pBt->db->flags & SQLITE_CellSizeCk ){
2076 return btreeCellSizeCheck(pPage);
2077 }
drh9e572e62004-04-23 23:43:10 +00002078 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002079}
2080
2081/*
drh8b2f49b2001-06-08 00:21:52 +00002082** Set up a raw page so that it looks like a database page holding
2083** no entries.
drhbd03cae2001-06-02 02:40:57 +00002084*/
drh9e572e62004-04-23 23:43:10 +00002085static void zeroPage(MemPage *pPage, int flags){
2086 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002087 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002088 u8 hdr = pPage->hdrOffset;
2089 u16 first;
drh9e572e62004-04-23 23:43:10 +00002090
danielk19773b8a05f2007-03-19 17:44:26 +00002091 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00002092 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2093 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002094 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002095 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002096 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002097 memset(&data[hdr], 0, pBt->usableSize - hdr);
2098 }
drh1bd10f82008-12-10 21:19:56 +00002099 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002100 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002101 memset(&data[hdr+1], 0, 4);
2102 data[hdr+7] = 0;
2103 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002104 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002105 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002106 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002107 pPage->aDataEnd = &data[pBt->usableSize];
2108 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002109 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002110 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002111 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2112 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002113 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002114 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002115}
2116
drh897a8202008-09-18 01:08:15 +00002117
2118/*
2119** Convert a DbPage obtained from the pager into a MemPage used by
2120** the btree layer.
2121*/
2122static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2123 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002124 if( pgno!=pPage->pgno ){
2125 pPage->aData = sqlite3PagerGetData(pDbPage);
2126 pPage->pDbPage = pDbPage;
2127 pPage->pBt = pBt;
2128 pPage->pgno = pgno;
2129 pPage->hdrOffset = pgno==1 ? 100 : 0;
2130 }
2131 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002132 return pPage;
2133}
2134
drhbd03cae2001-06-02 02:40:57 +00002135/*
drh3aac2dd2004-04-26 14:10:20 +00002136** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002137** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002138**
drh7e8c6f12015-05-28 03:28:27 +00002139** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2140** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002141** to fetch the content. Just fill in the content with zeros for now.
2142** If in the future we call sqlite3PagerWrite() on this page, that
2143** means we have started to be concerned about content and the disk
2144** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002145*/
danielk197730548662009-07-09 05:07:37 +00002146static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002147 BtShared *pBt, /* The btree */
2148 Pgno pgno, /* Number of the page to fetch */
2149 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002150 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002151){
drh3aac2dd2004-04-26 14:10:20 +00002152 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002153 DbPage *pDbPage;
2154
drhb00fc3b2013-08-21 23:42:32 +00002155 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002156 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002157 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002158 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002159 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002160 return SQLITE_OK;
2161}
2162
2163/*
danielk1977bea2a942009-01-20 17:06:27 +00002164** Retrieve a page from the pager cache. If the requested page is not
2165** already in the pager cache return NULL. Initialize the MemPage.pBt and
2166** MemPage.aData elements if needed.
2167*/
2168static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2169 DbPage *pDbPage;
2170 assert( sqlite3_mutex_held(pBt->mutex) );
2171 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2172 if( pDbPage ){
2173 return btreePageFromDbPage(pDbPage, pgno, pBt);
2174 }
2175 return 0;
2176}
2177
2178/*
danielk197789d40042008-11-17 14:20:56 +00002179** Return the size of the database file in pages. If there is any kind of
2180** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002181*/
drhb1299152010-03-30 22:58:33 +00002182static Pgno btreePagecount(BtShared *pBt){
drh406dfcb2020-01-07 18:10:01 +00002183 return pBt->nPage;
drhb1299152010-03-30 22:58:33 +00002184}
drh584e8b72020-07-22 17:12:59 +00002185Pgno sqlite3BtreeLastPage(Btree *p){
drhb1299152010-03-30 22:58:33 +00002186 assert( sqlite3BtreeHoldsMutex(p) );
drh584e8b72020-07-22 17:12:59 +00002187 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002188}
2189
2190/*
drh28f58dd2015-06-27 19:45:03 +00002191** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002192**
drh15a00212015-06-27 20:55:00 +00002193** If pCur!=0 then the page is being fetched as part of a moveToChild()
2194** call. Do additional sanity checking on the page in this case.
2195** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002196**
2197** The page is fetched as read-write unless pCur is not NULL and is
2198** a read-only cursor.
2199**
2200** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002201** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002202*/
2203static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002204 BtShared *pBt, /* The database file */
2205 Pgno pgno, /* Number of the page to get */
2206 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002207 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2208 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002209){
2210 int rc;
drh28f58dd2015-06-27 19:45:03 +00002211 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002212 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002213 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002214 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002215 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002216
danba3cbf32010-06-30 04:29:03 +00002217 if( pgno>btreePagecount(pBt) ){
2218 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002219 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002220 }
drh9584f582015-11-04 20:22:37 +00002221 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002222 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002223 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002224 }
drh8dd1c252015-11-04 22:31:02 +00002225 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002226 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002227 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002228 rc = btreeInitPage(*ppPage);
2229 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002230 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002231 }
drhee696e22004-08-30 16:52:17 +00002232 }
drh8dd1c252015-11-04 22:31:02 +00002233 assert( (*ppPage)->pgno==pgno );
2234 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002235
drh15a00212015-06-27 20:55:00 +00002236 /* If obtaining a child page for a cursor, we must verify that the page is
2237 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002238 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002239 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002240 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002241 }
drh28f58dd2015-06-27 19:45:03 +00002242 return SQLITE_OK;
2243
drhb0ea9432019-02-09 21:06:40 +00002244getAndInitPage_error2:
2245 releasePage(*ppPage);
2246getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002247 if( pCur ){
2248 pCur->iPage--;
2249 pCur->pPage = pCur->apPage[pCur->iPage];
2250 }
danba3cbf32010-06-30 04:29:03 +00002251 testcase( pgno==0 );
2252 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002253 return rc;
2254}
2255
2256/*
drh3aac2dd2004-04-26 14:10:20 +00002257** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002258** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002259**
2260** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002261*/
drhbbf0f862015-06-27 14:59:26 +00002262static void releasePageNotNull(MemPage *pPage){
2263 assert( pPage->aData );
2264 assert( pPage->pBt );
2265 assert( pPage->pDbPage!=0 );
2266 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2267 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2268 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2269 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002270}
drh3aac2dd2004-04-26 14:10:20 +00002271static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002272 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002273}
drh3908fe92017-09-01 14:50:19 +00002274static void releasePageOne(MemPage *pPage){
2275 assert( pPage!=0 );
2276 assert( pPage->aData );
2277 assert( pPage->pBt );
2278 assert( pPage->pDbPage!=0 );
2279 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2280 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2281 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2282 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2283}
drh3aac2dd2004-04-26 14:10:20 +00002284
2285/*
drh7e8c6f12015-05-28 03:28:27 +00002286** Get an unused page.
2287**
2288** This works just like btreeGetPage() with the addition:
2289**
2290** * If the page is already in use for some other purpose, immediately
2291** release it and return an SQLITE_CURRUPT error.
2292** * Make sure the isInit flag is clear
2293*/
2294static int btreeGetUnusedPage(
2295 BtShared *pBt, /* The btree */
2296 Pgno pgno, /* Number of the page to fetch */
2297 MemPage **ppPage, /* Return the page in this parameter */
2298 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2299){
2300 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2301 if( rc==SQLITE_OK ){
2302 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2303 releasePage(*ppPage);
2304 *ppPage = 0;
2305 return SQLITE_CORRUPT_BKPT;
2306 }
2307 (*ppPage)->isInit = 0;
2308 }else{
2309 *ppPage = 0;
2310 }
2311 return rc;
2312}
2313
drha059ad02001-04-17 20:09:11 +00002314
2315/*
drha6abd042004-06-09 17:37:22 +00002316** During a rollback, when the pager reloads information into the cache
2317** so that the cache is restored to its original state at the start of
2318** the transaction, for each page restored this routine is called.
2319**
2320** This routine needs to reset the extra data section at the end of the
2321** page to agree with the restored data.
2322*/
danielk1977eaa06f62008-09-18 17:34:44 +00002323static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002324 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002325 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002326 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002327 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002328 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002329 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002330 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002331 /* pPage might not be a btree page; it might be an overflow page
2332 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002333 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002334 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002335 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002336 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002337 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002338 }
drha6abd042004-06-09 17:37:22 +00002339 }
2340}
2341
2342/*
drhe5fe6902007-12-07 18:55:28 +00002343** Invoke the busy handler for a btree.
2344*/
danielk19771ceedd32008-11-19 10:22:33 +00002345static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002346 BtShared *pBt = (BtShared*)pArg;
2347 assert( pBt->db );
2348 assert( sqlite3_mutex_held(pBt->db->mutex) );
drh783e1592020-05-06 20:55:38 +00002349 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
drhe5fe6902007-12-07 18:55:28 +00002350}
2351
2352/*
drhad3e0102004-09-03 23:32:18 +00002353** Open a database file.
2354**
drh382c0242001-10-06 16:33:02 +00002355** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002356** then an ephemeral database is created. The ephemeral database might
2357** be exclusively in memory, or it might use a disk-based memory cache.
2358** Either way, the ephemeral database will be automatically deleted
2359** when sqlite3BtreeClose() is called.
2360**
drhe53831d2007-08-17 01:14:38 +00002361** If zFilename is ":memory:" then an in-memory database is created
2362** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002363**
drh33f111d2012-01-17 15:29:14 +00002364** The "flags" parameter is a bitmask that might contain bits like
2365** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002366**
drhc47fd8e2009-04-30 13:30:32 +00002367** If the database is already opened in the same database connection
2368** and we are in shared cache mode, then the open will fail with an
2369** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2370** objects in the same database connection since doing so will lead
2371** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002372*/
drh23e11ca2004-05-04 17:27:28 +00002373int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002374 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002375 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002376 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002377 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002378 int flags, /* Options */
2379 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002380){
drh7555d8e2009-03-20 13:15:30 +00002381 BtShared *pBt = 0; /* Shared part of btree structure */
2382 Btree *p; /* Handle to return */
2383 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2384 int rc = SQLITE_OK; /* Result code from this function */
2385 u8 nReserve; /* Byte of unused space on each page */
2386 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002387
drh75c014c2010-08-30 15:02:28 +00002388 /* True if opening an ephemeral, temporary database */
2389 const int isTempDb = zFilename==0 || zFilename[0]==0;
2390
danielk1977aef0bf62005-12-30 16:28:01 +00002391 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002392 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002393 */
drhb0a7c9c2010-12-06 21:09:59 +00002394#ifdef SQLITE_OMIT_MEMORYDB
2395 const int isMemdb = 0;
2396#else
2397 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002398 || (isTempDb && sqlite3TempInMemory(db))
2399 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002400#endif
2401
drhe5fe6902007-12-07 18:55:28 +00002402 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002403 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002404 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002405 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2406
2407 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2408 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2409
2410 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2411 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002412
drh75c014c2010-08-30 15:02:28 +00002413 if( isMemdb ){
2414 flags |= BTREE_MEMORY;
2415 }
2416 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2417 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2418 }
drh17435752007-08-16 04:30:38 +00002419 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002420 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002421 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002422 }
2423 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002424 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002425#ifndef SQLITE_OMIT_SHARED_CACHE
2426 p->lock.pBtree = p;
2427 p->lock.iTable = 1;
2428#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002429
drh198bf392006-01-06 21:52:49 +00002430#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002431 /*
2432 ** If this Btree is a candidate for shared cache, try to find an
2433 ** existing BtShared object that we can share with
2434 */
drh4ab9d252012-05-26 20:08:49 +00002435 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002436 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002437 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002438 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002439 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002440 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002441
drhff0587c2007-08-29 17:43:19 +00002442 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002443 if( !zFullPathname ){
2444 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002445 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002446 }
drhafc8b7f2012-05-26 18:06:38 +00002447 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002448 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002449 }else{
2450 rc = sqlite3OsFullPathname(pVfs, zFilename,
2451 nFullPathname, zFullPathname);
2452 if( rc ){
drhc398c652019-11-22 00:42:01 +00002453 if( rc==SQLITE_OK_SYMLINK ){
2454 rc = SQLITE_OK;
2455 }else{
2456 sqlite3_free(zFullPathname);
2457 sqlite3_free(p);
2458 return rc;
2459 }
drhafc8b7f2012-05-26 18:06:38 +00002460 }
drh070ad6b2011-11-17 11:43:19 +00002461 }
drh30ddce62011-10-15 00:16:30 +00002462#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002463 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2464 sqlite3_mutex_enter(mutexOpen);
drhccb21132020-06-19 11:34:57 +00002465 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
drhff0587c2007-08-29 17:43:19 +00002466 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002467#endif
drh78f82d12008-09-02 00:52:52 +00002468 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002469 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002470 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002471 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002472 int iDb;
2473 for(iDb=db->nDb-1; iDb>=0; iDb--){
2474 Btree *pExisting = db->aDb[iDb].pBt;
2475 if( pExisting && pExisting->pBt==pBt ){
2476 sqlite3_mutex_leave(mutexShared);
2477 sqlite3_mutex_leave(mutexOpen);
2478 sqlite3_free(zFullPathname);
2479 sqlite3_free(p);
2480 return SQLITE_CONSTRAINT;
2481 }
2482 }
drhff0587c2007-08-29 17:43:19 +00002483 p->pBt = pBt;
2484 pBt->nRef++;
2485 break;
2486 }
2487 }
2488 sqlite3_mutex_leave(mutexShared);
2489 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002490 }
drhff0587c2007-08-29 17:43:19 +00002491#ifdef SQLITE_DEBUG
2492 else{
2493 /* In debug mode, we mark all persistent databases as sharable
2494 ** even when they are not. This exercises the locking code and
2495 ** gives more opportunity for asserts(sqlite3_mutex_held())
2496 ** statements to find locking problems.
2497 */
2498 p->sharable = 1;
2499 }
2500#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002501 }
2502#endif
drha059ad02001-04-17 20:09:11 +00002503 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002504 /*
2505 ** The following asserts make sure that structures used by the btree are
2506 ** the right size. This is to guard against size changes that result
2507 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002508 */
drh062cf272015-03-23 19:03:51 +00002509 assert( sizeof(i64)==8 );
2510 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002511 assert( sizeof(u32)==4 );
2512 assert( sizeof(u16)==2 );
2513 assert( sizeof(Pgno)==4 );
2514
2515 pBt = sqlite3MallocZero( sizeof(*pBt) );
2516 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002517 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002518 goto btree_open_out;
2519 }
danielk197771d5d2c2008-09-29 11:49:47 +00002520 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002521 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002522 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002523 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002524 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2525 }
2526 if( rc!=SQLITE_OK ){
2527 goto btree_open_out;
2528 }
shanehbd2aaf92010-09-01 02:38:21 +00002529 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002530 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002531 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002532 p->pBt = pBt;
2533
drhe53831d2007-08-17 01:14:38 +00002534 pBt->pCursor = 0;
2535 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002536 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002537#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002538 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002539#elif defined(SQLITE_FAST_SECURE_DELETE)
2540 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002541#endif
drh113762a2014-11-19 16:36:25 +00002542 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2543 ** determined by the 2-byte integer located at an offset of 16 bytes from
2544 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002545 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002546 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2547 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002548 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002549#ifndef SQLITE_OMIT_AUTOVACUUM
2550 /* If the magic name ":memory:" will create an in-memory database, then
2551 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2552 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2553 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2554 ** regular file-name. In this case the auto-vacuum applies as per normal.
2555 */
2556 if( zFilename && !isMemdb ){
2557 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2558 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2559 }
2560#endif
2561 nReserve = 0;
2562 }else{
drh113762a2014-11-19 16:36:25 +00002563 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2564 ** determined by the one-byte unsigned integer found at an offset of 20
2565 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002566 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002567 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002568#ifndef SQLITE_OMIT_AUTOVACUUM
2569 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2570 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2571#endif
2572 }
drhfa9601a2009-06-18 17:22:39 +00002573 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002574 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002575 pBt->usableSize = pBt->pageSize - nReserve;
2576 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002577
2578#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2579 /* Add the new BtShared object to the linked list sharable BtShareds.
2580 */
dan272989b2016-07-06 10:12:02 +00002581 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002582 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002583 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhccb21132020-06-19 11:34:57 +00002584 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
danielk1977075c23a2008-09-01 18:34:20 +00002585 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002586 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002587 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002588 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002589 goto btree_open_out;
2590 }
drhff0587c2007-08-29 17:43:19 +00002591 }
drhe53831d2007-08-17 01:14:38 +00002592 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002593 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2594 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002595 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002596 }
drheee46cf2004-11-06 00:02:48 +00002597#endif
drh90f5ecb2004-07-22 01:19:35 +00002598 }
danielk1977aef0bf62005-12-30 16:28:01 +00002599
drhcfed7bc2006-03-13 14:28:05 +00002600#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002601 /* If the new Btree uses a sharable pBtShared, then link the new
2602 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002603 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002604 */
drhe53831d2007-08-17 01:14:38 +00002605 if( p->sharable ){
2606 int i;
2607 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002608 for(i=0; i<db->nDb; i++){
2609 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002610 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002611 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002612 p->pNext = pSib;
2613 p->pPrev = 0;
2614 pSib->pPrev = p;
2615 }else{
drh3bfa7e82016-03-22 14:37:59 +00002616 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002617 pSib = pSib->pNext;
2618 }
2619 p->pNext = pSib->pNext;
2620 p->pPrev = pSib;
2621 if( p->pNext ){
2622 p->pNext->pPrev = p;
2623 }
2624 pSib->pNext = p;
2625 }
2626 break;
2627 }
2628 }
danielk1977aef0bf62005-12-30 16:28:01 +00002629 }
danielk1977aef0bf62005-12-30 16:28:01 +00002630#endif
2631 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002632
2633btree_open_out:
2634 if( rc!=SQLITE_OK ){
2635 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002636 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002637 }
drh17435752007-08-16 04:30:38 +00002638 sqlite3_free(pBt);
2639 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002640 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002641 }else{
dan0f5a1862016-08-13 14:30:23 +00002642 sqlite3_file *pFile;
2643
drh75c014c2010-08-30 15:02:28 +00002644 /* If the B-Tree was successfully opened, set the pager-cache size to the
2645 ** default value. Except, when opening on an existing shared pager-cache,
2646 ** do not change the pager-cache size.
2647 */
2648 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
dan78f04752020-09-04 19:10:43 +00002649 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
drh75c014c2010-08-30 15:02:28 +00002650 }
dan0f5a1862016-08-13 14:30:23 +00002651
2652 pFile = sqlite3PagerFile(pBt->pPager);
2653 if( pFile->pMethods ){
2654 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2655 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002656 }
drh7555d8e2009-03-20 13:15:30 +00002657 if( mutexOpen ){
2658 assert( sqlite3_mutex_held(mutexOpen) );
2659 sqlite3_mutex_leave(mutexOpen);
2660 }
dan272989b2016-07-06 10:12:02 +00002661 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002662 return rc;
drha059ad02001-04-17 20:09:11 +00002663}
2664
2665/*
drhe53831d2007-08-17 01:14:38 +00002666** Decrement the BtShared.nRef counter. When it reaches zero,
2667** remove the BtShared structure from the sharing list. Return
2668** true if the BtShared.nRef counter reaches zero and return
2669** false if it is still positive.
2670*/
2671static int removeFromSharingList(BtShared *pBt){
2672#ifndef SQLITE_OMIT_SHARED_CACHE
drh067b92b2020-06-19 15:24:12 +00002673 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
drhe53831d2007-08-17 01:14:38 +00002674 BtShared *pList;
2675 int removed = 0;
2676
drhd677b3d2007-08-20 22:48:41 +00002677 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh067b92b2020-06-19 15:24:12 +00002678 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2679 sqlite3_mutex_enter(pMainMtx);
drhe53831d2007-08-17 01:14:38 +00002680 pBt->nRef--;
2681 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002682 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2683 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002684 }else{
drh78f82d12008-09-02 00:52:52 +00002685 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002686 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002687 pList=pList->pNext;
2688 }
drh34004ce2008-07-11 16:15:17 +00002689 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002690 pList->pNext = pBt->pNext;
2691 }
2692 }
drh3285db22007-09-03 22:00:39 +00002693 if( SQLITE_THREADSAFE ){
2694 sqlite3_mutex_free(pBt->mutex);
2695 }
drhe53831d2007-08-17 01:14:38 +00002696 removed = 1;
2697 }
drh067b92b2020-06-19 15:24:12 +00002698 sqlite3_mutex_leave(pMainMtx);
drhe53831d2007-08-17 01:14:38 +00002699 return removed;
2700#else
2701 return 1;
2702#endif
2703}
2704
2705/*
drhf7141992008-06-19 00:16:08 +00002706** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002707** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2708** pointer.
drhf7141992008-06-19 00:16:08 +00002709*/
drh2f0bc1d2021-12-03 13:42:41 +00002710static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
2711 assert( pBt!=0 );
2712 assert( pBt->pTmpSpace==0 );
2713 /* This routine is called only by btreeCursor() when allocating the
2714 ** first write cursor for the BtShared object */
2715 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
2716 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2717 if( pBt->pTmpSpace==0 ){
2718 BtCursor *pCur = pBt->pCursor;
2719 pBt->pCursor = pCur->pNext; /* Unlink the cursor */
2720 memset(pCur, 0, sizeof(*pCur));
2721 return SQLITE_NOMEM_BKPT;
drhf7141992008-06-19 00:16:08 +00002722 }
drh2f0bc1d2021-12-03 13:42:41 +00002723
2724 /* One of the uses of pBt->pTmpSpace is to format cells before
2725 ** inserting them into a leaf page (function fillInCell()). If
2726 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2727 ** by the various routines that manipulate binary cells. Which
2728 ** can mean that fillInCell() only initializes the first 2 or 3
2729 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2730 ** it into a database page. This is not actually a problem, but it
2731 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2732 ** data is passed to system call write(). So to avoid this error,
2733 ** zero the first 4 bytes of temp space here.
2734 **
2735 ** Also: Provide four bytes of initialized space before the
2736 ** beginning of pTmpSpace as an area available to prepend the
2737 ** left-child pointer to the beginning of a cell.
2738 */
drh11e4fdb2021-12-03 14:57:05 +00002739 memset(pBt->pTmpSpace, 0, 8);
2740 pBt->pTmpSpace += 4;
drh2f0bc1d2021-12-03 13:42:41 +00002741 return SQLITE_OK;
drhf7141992008-06-19 00:16:08 +00002742}
2743
2744/*
2745** Free the pBt->pTmpSpace allocation
2746*/
2747static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002748 if( pBt->pTmpSpace ){
2749 pBt->pTmpSpace -= 4;
2750 sqlite3PageFree(pBt->pTmpSpace);
2751 pBt->pTmpSpace = 0;
2752 }
drhf7141992008-06-19 00:16:08 +00002753}
2754
2755/*
drha059ad02001-04-17 20:09:11 +00002756** Close an open database and invalidate all cursors.
2757*/
danielk1977aef0bf62005-12-30 16:28:01 +00002758int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002759 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00002760
danielk1977aef0bf62005-12-30 16:28:01 +00002761 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002762 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002763 sqlite3BtreeEnter(p);
drh5a4a15f2021-03-18 15:42:59 +00002764
2765 /* Verify that no other cursors have this Btree open */
2766#ifdef SQLITE_DEBUG
2767 {
2768 BtCursor *pCur = pBt->pCursor;
2769 while( pCur ){
2770 BtCursor *pTmp = pCur;
2771 pCur = pCur->pNext;
2772 assert( pTmp->pBtree!=p );
2773
danielk1977aef0bf62005-12-30 16:28:01 +00002774 }
drha059ad02001-04-17 20:09:11 +00002775 }
drh5a4a15f2021-03-18 15:42:59 +00002776#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002777
danielk19778d34dfd2006-01-24 16:37:57 +00002778 /* Rollback any active transaction and free the handle structure.
2779 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2780 ** this handle.
2781 */
drh47b7fc72014-11-11 01:33:57 +00002782 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002783 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002784
danielk1977aef0bf62005-12-30 16:28:01 +00002785 /* If there are still other outstanding references to the shared-btree
2786 ** structure, return now. The remainder of this procedure cleans
2787 ** up the shared-btree.
2788 */
drhe53831d2007-08-17 01:14:38 +00002789 assert( p->wantToLock==0 && p->locked==0 );
2790 if( !p->sharable || removeFromSharingList(pBt) ){
2791 /* The pBt is no longer on the sharing list, so we can access
2792 ** it without having to hold the mutex.
2793 **
2794 ** Clean out and delete the BtShared object.
2795 */
2796 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002797 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002798 if( pBt->xFreeSchema && pBt->pSchema ){
2799 pBt->xFreeSchema(pBt->pSchema);
2800 }
drhb9755982010-07-24 16:34:37 +00002801 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002802 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002803 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002804 }
2805
drhe53831d2007-08-17 01:14:38 +00002806#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002807 assert( p->wantToLock==0 );
2808 assert( p->locked==0 );
2809 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2810 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002811#endif
2812
drhe53831d2007-08-17 01:14:38 +00002813 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002814 return SQLITE_OK;
2815}
2816
2817/*
drh9b0cf342015-11-12 14:57:19 +00002818** Change the "soft" limit on the number of pages in the cache.
2819** Unused and unmodified pages will be recycled when the number of
2820** pages in the cache exceeds this soft limit. But the size of the
2821** cache is allowed to grow larger than this limit if it contains
2822** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002823*/
danielk1977aef0bf62005-12-30 16:28:01 +00002824int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2825 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002826 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002827 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002828 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002829 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002830 return SQLITE_OK;
2831}
2832
drh9b0cf342015-11-12 14:57:19 +00002833/*
2834** Change the "spill" limit on the number of pages in the cache.
2835** If the number of pages exceeds this limit during a write transaction,
2836** the pager might attempt to "spill" pages to the journal early in
2837** order to free up memory.
2838**
2839** The value returned is the current spill size. If zero is passed
2840** as an argument, no changes are made to the spill size setting, so
2841** using mxPage of 0 is a way to query the current spill size.
2842*/
2843int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2844 BtShared *pBt = p->pBt;
2845 int res;
2846 assert( sqlite3_mutex_held(p->db->mutex) );
2847 sqlite3BtreeEnter(p);
2848 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2849 sqlite3BtreeLeave(p);
2850 return res;
2851}
2852
drh18c7e402014-03-14 11:46:10 +00002853#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002854/*
dan5d8a1372013-03-19 19:28:06 +00002855** Change the limit on the amount of the database file that may be
2856** memory mapped.
2857*/
drh9b4c59f2013-04-15 17:03:42 +00002858int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002859 BtShared *pBt = p->pBt;
2860 assert( sqlite3_mutex_held(p->db->mutex) );
2861 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002862 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002863 sqlite3BtreeLeave(p);
2864 return SQLITE_OK;
2865}
drh18c7e402014-03-14 11:46:10 +00002866#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002867
2868/*
drh973b6e32003-02-12 14:09:42 +00002869** Change the way data is synced to disk in order to increase or decrease
2870** how well the database resists damage due to OS crashes and power
2871** failures. Level 1 is the same as asynchronous (no syncs() occur and
2872** there is a high probability of damage) Level 2 is the default. There
2873** is a very low but non-zero probability of damage. Level 3 reduces the
2874** probability of damage to near zero but with a write performance reduction.
2875*/
danielk197793758c82005-01-21 08:13:14 +00002876#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002877int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002878 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002879 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002880){
danielk1977aef0bf62005-12-30 16:28:01 +00002881 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002882 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002883 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002884 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002885 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002886 return SQLITE_OK;
2887}
danielk197793758c82005-01-21 08:13:14 +00002888#endif
drh973b6e32003-02-12 14:09:42 +00002889
drh2c8997b2005-08-27 16:36:48 +00002890/*
drh90f5ecb2004-07-22 01:19:35 +00002891** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002892** Or, if the page size has already been fixed, return SQLITE_READONLY
2893** without changing anything.
drh06f50212004-11-02 14:24:33 +00002894**
2895** The page size must be a power of 2 between 512 and 65536. If the page
2896** size supplied does not meet this constraint then the page size is not
2897** changed.
2898**
2899** Page sizes are constrained to be a power of two so that the region
2900** of the database file used for locking (beginning at PENDING_BYTE,
2901** the first byte past the 1GB boundary, 0x40000000) needs to occur
2902** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002903**
2904** If parameter nReserve is less than zero, then the number of reserved
2905** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002906**
drhc9166342012-01-05 23:32:06 +00002907** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002908** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002909*/
drhce4869f2009-04-02 20:16:58 +00002910int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002911 int rc = SQLITE_OK;
drhe937df82020-05-07 01:56:57 +00002912 int x;
danielk1977aef0bf62005-12-30 16:28:01 +00002913 BtShared *pBt = p->pBt;
drhe937df82020-05-07 01:56:57 +00002914 assert( nReserve>=0 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002915 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00002916 pBt->nReserveWanted = nReserve;
2917 x = pBt->pageSize - pBt->usableSize;
2918 if( nReserve<x ) nReserve = x;
drhc9166342012-01-05 23:32:06 +00002919 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002920 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002921 return SQLITE_READONLY;
2922 }
drhf49661a2008-12-10 16:45:50 +00002923 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002924 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2925 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002926 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002927 assert( !pBt->pCursor );
drh906602a2021-01-21 21:36:25 +00002928 if( nReserve>32 && pageSize==512 ) pageSize = 1024;
drhb2eced52010-08-12 02:41:12 +00002929 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002930 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002931 }
drhfa9601a2009-06-18 17:22:39 +00002932 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002933 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002934 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002935 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002936 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002937}
2938
2939/*
2940** Return the currently defined page size
2941*/
danielk1977aef0bf62005-12-30 16:28:01 +00002942int sqlite3BtreeGetPageSize(Btree *p){
2943 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002944}
drh7f751222009-03-17 22:33:00 +00002945
dan0094f372012-09-28 20:23:42 +00002946/*
2947** This function is similar to sqlite3BtreeGetReserve(), except that it
2948** may only be called if it is guaranteed that the b-tree mutex is already
2949** held.
2950**
2951** This is useful in one special case in the backup API code where it is
2952** known that the shared b-tree mutex is held, but the mutex on the
2953** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2954** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002955** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002956*/
2957int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002958 int n;
dan0094f372012-09-28 20:23:42 +00002959 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002960 n = p->pBt->pageSize - p->pBt->usableSize;
2961 return n;
dan0094f372012-09-28 20:23:42 +00002962}
2963
drh7f751222009-03-17 22:33:00 +00002964/*
2965** Return the number of bytes of space at the end of every page that
2966** are intentually left unused. This is the "reserved" space that is
2967** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002968**
drh4d347662020-04-22 00:50:21 +00002969** The value returned is the larger of the current reserve size and
2970** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2971** The amount of reserve can only grow - never shrink.
drh7f751222009-03-17 22:33:00 +00002972*/
drh45248de2020-04-20 15:18:43 +00002973int sqlite3BtreeGetRequestedReserve(Btree *p){
drhe937df82020-05-07 01:56:57 +00002974 int n1, n2;
drhd677b3d2007-08-20 22:48:41 +00002975 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00002976 n1 = (int)p->pBt->nReserveWanted;
2977 n2 = sqlite3BtreeGetReserveNoMutex(p);
drhd677b3d2007-08-20 22:48:41 +00002978 sqlite3BtreeLeave(p);
drhe937df82020-05-07 01:56:57 +00002979 return n1>n2 ? n1 : n2;
drh2011d5f2004-07-22 02:40:37 +00002980}
drhf8e632b2007-05-08 14:51:36 +00002981
drhad0961b2015-02-21 00:19:25 +00002982
drhf8e632b2007-05-08 14:51:36 +00002983/*
2984** Set the maximum page count for a database if mxPage is positive.
2985** No changes are made if mxPage is 0 or negative.
2986** Regardless of the value of mxPage, return the maximum page count.
2987*/
drhe9261db2020-07-20 12:47:32 +00002988Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
2989 Pgno n;
drhd677b3d2007-08-20 22:48:41 +00002990 sqlite3BtreeEnter(p);
2991 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2992 sqlite3BtreeLeave(p);
2993 return n;
drhf8e632b2007-05-08 14:51:36 +00002994}
drh5b47efa2010-02-12 18:18:39 +00002995
2996/*
drha5907a82017-06-19 11:44:22 +00002997** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2998**
2999** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3000** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3001** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3002** newFlag==(-1) No changes
3003**
3004** This routine acts as a query if newFlag is less than zero
3005**
3006** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3007** freelist leaf pages are not written back to the database. Thus in-page
3008** deleted content is cleared, but freelist deleted content is not.
3009**
3010** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3011** that freelist leaf pages are written back into the database, increasing
3012** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00003013*/
3014int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
3015 int b;
drhaf034ed2010-02-12 19:46:26 +00003016 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00003017 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00003018 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
3019 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00003020 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00003021 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3022 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3023 }
3024 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00003025 sqlite3BtreeLeave(p);
3026 return b;
3027}
drh90f5ecb2004-07-22 01:19:35 +00003028
3029/*
danielk1977951af802004-11-05 15:45:09 +00003030** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3031** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3032** is disabled. The default value for the auto-vacuum property is
3033** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3034*/
danielk1977aef0bf62005-12-30 16:28:01 +00003035int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00003036#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00003037 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00003038#else
danielk1977dddbcdc2007-04-26 14:42:34 +00003039 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003040 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00003041 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00003042
3043 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00003044 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003045 rc = SQLITE_READONLY;
3046 }else{
drh076d4662009-02-18 20:31:18 +00003047 pBt->autoVacuum = av ?1:0;
3048 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00003049 }
drhd677b3d2007-08-20 22:48:41 +00003050 sqlite3BtreeLeave(p);
3051 return rc;
danielk1977951af802004-11-05 15:45:09 +00003052#endif
3053}
3054
3055/*
3056** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3057** enabled 1 is returned. Otherwise 0.
3058*/
danielk1977aef0bf62005-12-30 16:28:01 +00003059int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00003060#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003061 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00003062#else
drhd677b3d2007-08-20 22:48:41 +00003063 int rc;
3064 sqlite3BtreeEnter(p);
3065 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003066 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3067 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3068 BTREE_AUTOVACUUM_INCR
3069 );
drhd677b3d2007-08-20 22:48:41 +00003070 sqlite3BtreeLeave(p);
3071 return rc;
danielk1977951af802004-11-05 15:45:09 +00003072#endif
3073}
3074
danf5da7db2017-03-16 18:14:39 +00003075/*
3076** If the user has not set the safety-level for this database connection
3077** using "PRAGMA synchronous", and if the safety-level is not already
3078** set to the value passed to this function as the second parameter,
3079** set it so.
3080*/
drh2ed57372017-10-05 20:57:38 +00003081#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3082 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003083static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3084 sqlite3 *db;
3085 Db *pDb;
3086 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3087 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3088 if( pDb->bSyncSet==0
3089 && pDb->safety_level!=safety_level
3090 && pDb!=&db->aDb[1]
3091 ){
3092 pDb->safety_level = safety_level;
3093 sqlite3PagerSetFlags(pBt->pPager,
3094 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3095 }
3096 }
3097}
3098#else
danfc8f4b62017-03-16 18:54:42 +00003099# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003100#endif
danielk1977951af802004-11-05 15:45:09 +00003101
drh0314cf32018-04-28 01:27:09 +00003102/* Forward declaration */
3103static int newDatabase(BtShared*);
3104
3105
danielk1977951af802004-11-05 15:45:09 +00003106/*
drha34b6762004-05-07 13:30:42 +00003107** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003108** also acquire a readlock on that file.
3109**
3110** SQLITE_OK is returned on success. If the file is not a
3111** well-formed database file, then SQLITE_CORRUPT is returned.
3112** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003113** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003114*/
danielk1977aef0bf62005-12-30 16:28:01 +00003115static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003116 int rc; /* Result code from subfunctions */
3117 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003118 u32 nPage; /* Number of pages in the database */
3119 u32 nPageFile = 0; /* Number of pages in the database file */
drhd677b3d2007-08-20 22:48:41 +00003120
drh1fee73e2007-08-29 04:00:57 +00003121 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003122 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003123 rc = sqlite3PagerSharedLock(pBt->pPager);
3124 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003125 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003126 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003127
3128 /* Do some checking to help insure the file we opened really is
3129 ** a valid database file.
3130 */
drh7d4c94b2021-10-04 22:34:38 +00003131 nPage = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003132 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003133 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003134 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003135 }
drh0314cf32018-04-28 01:27:09 +00003136 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3137 nPage = 0;
3138 }
drh97b59a52010-03-31 02:31:33 +00003139 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003140 u32 pageSize;
3141 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003142 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003143 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003144 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3145 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3146 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003147 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003148 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003149 }
dan5cf53532010-05-01 16:40:20 +00003150
3151#ifdef SQLITE_OMIT_WAL
3152 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003153 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003154 }
3155 if( page1[19]>1 ){
3156 goto page1_init_failed;
3157 }
3158#else
dane04dc882010-04-20 18:53:15 +00003159 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003160 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003161 }
dane04dc882010-04-20 18:53:15 +00003162 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003163 goto page1_init_failed;
3164 }
drhe5ae5732008-06-15 02:51:47 +00003165
drh0ccda522021-08-23 15:56:01 +00003166 /* If the read version is set to 2, this database should be accessed
dana470aeb2010-04-21 11:43:38 +00003167 ** in WAL mode. If the log is not already open, open it now. Then
3168 ** return SQLITE_OK and return without populating BtShared.pPage1.
3169 ** The caller detects this and calls this function again. This is
3170 ** required as the version of page 1 currently in the page1 buffer
3171 ** may not be the latest version - there may be a newer one in the log
3172 ** file.
3173 */
drhc9166342012-01-05 23:32:06 +00003174 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003175 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003176 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003177 if( rc!=SQLITE_OK ){
3178 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003179 }else{
danf5da7db2017-03-16 18:14:39 +00003180 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003181 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003182 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003183 return SQLITE_OK;
3184 }
dane04dc882010-04-20 18:53:15 +00003185 }
dan8b5444b2010-04-27 14:37:47 +00003186 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003187 }else{
3188 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003189 }
dan5cf53532010-05-01 16:40:20 +00003190#endif
dane04dc882010-04-20 18:53:15 +00003191
drh113762a2014-11-19 16:36:25 +00003192 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3193 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3194 **
drhe5ae5732008-06-15 02:51:47 +00003195 ** The original design allowed these amounts to vary, but as of
3196 ** version 3.6.0, we require them to be fixed.
3197 */
3198 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3199 goto page1_init_failed;
3200 }
drh113762a2014-11-19 16:36:25 +00003201 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3202 ** determined by the 2-byte integer located at an offset of 16 bytes from
3203 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003204 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003205 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3206 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003207 if( ((pageSize-1)&pageSize)!=0
3208 || pageSize>SQLITE_MAX_PAGE_SIZE
3209 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003210 ){
drh07d183d2005-05-01 22:52:42 +00003211 goto page1_init_failed;
3212 }
drhdcc27002019-01-06 02:06:31 +00003213 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003214 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003215 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3216 ** integer at offset 20 is the number of bytes of space at the end of
3217 ** each page to reserve for extensions.
3218 **
3219 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3220 ** determined by the one-byte unsigned integer found at an offset of 20
3221 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003222 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003223 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003224 /* After reading the first page of the database assuming a page size
3225 ** of BtShared.pageSize, we have discovered that the page-size is
3226 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3227 ** zero and return SQLITE_OK. The caller will call this function
3228 ** again with the correct page-size.
3229 */
drh3908fe92017-09-01 14:50:19 +00003230 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003231 pBt->usableSize = usableSize;
3232 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003233 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003234 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3235 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003236 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003237 }
drh0f1c2eb2018-11-03 17:31:48 +00003238 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003239 rc = SQLITE_CORRUPT_BKPT;
3240 goto page1_init_failed;
3241 }
drh113762a2014-11-19 16:36:25 +00003242 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3243 ** be less than 480. In other words, if the page size is 512, then the
3244 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003245 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003246 goto page1_init_failed;
3247 }
drh43b18e12010-08-17 19:40:08 +00003248 pBt->pageSize = pageSize;
3249 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003250#ifndef SQLITE_OMIT_AUTOVACUUM
3251 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003252 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003253#endif
drh306dc212001-05-21 13:45:10 +00003254 }
drhb6f41482004-05-14 01:58:11 +00003255
3256 /* maxLocal is the maximum amount of payload to store locally for
3257 ** a cell. Make sure it is small enough so that at least minFanout
3258 ** cells can will fit on one page. We assume a 10-byte page header.
3259 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003260 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003261 ** 4-byte child pointer
3262 ** 9-byte nKey value
3263 ** 4-byte nData value
3264 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003265 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003266 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3267 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003268 */
shaneh1df2db72010-08-18 02:28:48 +00003269 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3270 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3271 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3272 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003273 if( pBt->maxLocal>127 ){
3274 pBt->max1bytePayload = 127;
3275 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003276 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003277 }
drh2e38c322004-09-03 18:38:44 +00003278 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003279 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003280 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003281 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003282
drh72f82862001-05-24 21:06:34 +00003283page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003284 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003285 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003286 return rc;
drh306dc212001-05-21 13:45:10 +00003287}
3288
drh85ec3b62013-05-14 23:12:06 +00003289#ifndef NDEBUG
3290/*
3291** Return the number of cursors open on pBt. This is for use
3292** in assert() expressions, so it is only compiled if NDEBUG is not
3293** defined.
3294**
3295** Only write cursors are counted if wrOnly is true. If wrOnly is
3296** false then all cursors are counted.
3297**
3298** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003299** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003300** have been tripped into the CURSOR_FAULT state are not counted.
3301*/
3302static int countValidCursors(BtShared *pBt, int wrOnly){
3303 BtCursor *pCur;
3304 int r = 0;
3305 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003306 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3307 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003308 }
3309 return r;
3310}
3311#endif
3312
drh306dc212001-05-21 13:45:10 +00003313/*
drhb8ca3072001-12-05 00:21:20 +00003314** If there are no outstanding cursors and we are not in the middle
3315** of a transaction but there is a read lock on the database, then
3316** this routine unrefs the first page of the database file which
3317** has the effect of releasing the read lock.
3318**
drhb8ca3072001-12-05 00:21:20 +00003319** If there is a transaction in progress, this routine is a no-op.
3320*/
danielk1977aef0bf62005-12-30 16:28:01 +00003321static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003322 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003323 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003324 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003325 MemPage *pPage1 = pBt->pPage1;
3326 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003327 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003328 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003329 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003330 }
3331}
3332
3333/*
drhe39f2f92009-07-23 01:43:59 +00003334** If pBt points to an empty file then convert that empty file
3335** into a new empty database by initializing the first page of
3336** the database.
drh8b2f49b2001-06-08 00:21:52 +00003337*/
danielk1977aef0bf62005-12-30 16:28:01 +00003338static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003339 MemPage *pP1;
3340 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003341 int rc;
drhd677b3d2007-08-20 22:48:41 +00003342
drh1fee73e2007-08-29 04:00:57 +00003343 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003344 if( pBt->nPage>0 ){
3345 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003346 }
drh3aac2dd2004-04-26 14:10:20 +00003347 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003348 assert( pP1!=0 );
3349 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003350 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003351 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003352 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3353 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003354 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3355 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003356 data[18] = 1;
3357 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003358 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3359 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003360 data[21] = 64;
3361 data[22] = 32;
3362 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003363 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003364 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003365 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003366#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003367 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003368 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003369 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003370 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003371#endif
drhdd3cd972010-03-27 17:12:36 +00003372 pBt->nPage = 1;
3373 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003374 return SQLITE_OK;
3375}
3376
3377/*
danb483eba2012-10-13 19:58:11 +00003378** Initialize the first page of the database file (creating a database
3379** consisting of a single page and no schema objects). Return SQLITE_OK
3380** if successful, or an SQLite error code otherwise.
3381*/
3382int sqlite3BtreeNewDb(Btree *p){
3383 int rc;
3384 sqlite3BtreeEnter(p);
3385 p->pBt->nPage = 0;
3386 rc = newDatabase(p->pBt);
3387 sqlite3BtreeLeave(p);
3388 return rc;
3389}
3390
3391/*
danielk1977ee5741e2004-05-31 10:01:34 +00003392** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003393** is started if the second argument is nonzero, otherwise a read-
3394** transaction. If the second argument is 2 or more and exclusive
3395** transaction is started, meaning that no other process is allowed
3396** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003397** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003398** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003399**
danielk1977ee5741e2004-05-31 10:01:34 +00003400** A write-transaction must be started before attempting any
3401** changes to the database. None of the following routines
3402** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003403**
drh23e11ca2004-05-04 17:27:28 +00003404** sqlite3BtreeCreateTable()
3405** sqlite3BtreeCreateIndex()
3406** sqlite3BtreeClearTable()
3407** sqlite3BtreeDropTable()
3408** sqlite3BtreeInsert()
3409** sqlite3BtreeDelete()
3410** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003411**
drhb8ef32c2005-03-14 02:01:49 +00003412** If an initial attempt to acquire the lock fails because of lock contention
3413** and the database was previously unlocked, then invoke the busy handler
3414** if there is one. But if there was previously a read-lock, do not
3415** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3416** returned when there is already a read-lock in order to avoid a deadlock.
3417**
3418** Suppose there are two processes A and B. A has a read lock and B has
3419** a reserved lock. B tries to promote to exclusive but is blocked because
3420** of A's read lock. A tries to promote to reserved but is blocked by B.
3421** One or the other of the two processes must give way or there can be
3422** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3423** when A already has a read lock, we encourage A to give up and let B
3424** proceed.
drha059ad02001-04-17 20:09:11 +00003425*/
drhbb2d9b12018-06-06 16:28:40 +00003426int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003427 BtShared *pBt = p->pBt;
dan7bb8b8a2020-05-06 20:27:18 +00003428 Pager *pPager = pBt->pPager;
danielk1977ee5741e2004-05-31 10:01:34 +00003429 int rc = SQLITE_OK;
3430
drhd677b3d2007-08-20 22:48:41 +00003431 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003432 btreeIntegrity(p);
3433
danielk1977ee5741e2004-05-31 10:01:34 +00003434 /* If the btree is already in a write-transaction, or it
3435 ** is already in a read-transaction and a read-transaction
3436 ** is requested, this is a no-op.
3437 */
danielk1977aef0bf62005-12-30 16:28:01 +00003438 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003439 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003440 }
dan56c517a2013-09-26 11:04:33 +00003441 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003442
danea933f02018-07-19 11:44:02 +00003443 if( (p->db->flags & SQLITE_ResetDatabase)
dan7bb8b8a2020-05-06 20:27:18 +00003444 && sqlite3PagerIsreadonly(pPager)==0
danea933f02018-07-19 11:44:02 +00003445 ){
3446 pBt->btsFlags &= ~BTS_READ_ONLY;
3447 }
3448
drhb8ef32c2005-03-14 02:01:49 +00003449 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003450 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003451 rc = SQLITE_READONLY;
3452 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003453 }
3454
danielk1977404ca072009-03-16 13:19:36 +00003455#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003456 {
3457 sqlite3 *pBlock = 0;
3458 /* If another database handle has already opened a write transaction
3459 ** on this shared-btree structure and a second write transaction is
3460 ** requested, return SQLITE_LOCKED.
3461 */
3462 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3463 || (pBt->btsFlags & BTS_PENDING)!=0
3464 ){
3465 pBlock = pBt->pWriter->db;
3466 }else if( wrflag>1 ){
3467 BtLock *pIter;
3468 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3469 if( pIter->pBtree!=p ){
3470 pBlock = pIter->pBtree->db;
3471 break;
3472 }
danielk1977641b0f42007-12-21 04:47:25 +00003473 }
3474 }
drh5a1fb182016-01-08 19:34:39 +00003475 if( pBlock ){
3476 sqlite3ConnectionBlocked(p->db, pBlock);
3477 rc = SQLITE_LOCKED_SHAREDCACHE;
3478 goto trans_begun;
3479 }
danielk1977404ca072009-03-16 13:19:36 +00003480 }
danielk1977641b0f42007-12-21 04:47:25 +00003481#endif
3482
danielk1977602b4662009-07-02 07:47:33 +00003483 /* Any read-only or read-write transaction implies a read-lock on
3484 ** page 1. So if some other shared-cache client already has a write-lock
3485 ** on page 1, the transaction cannot be opened. */
drh346a70c2020-06-15 20:27:35 +00003486 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
drh4c301aa2009-07-15 17:25:45 +00003487 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003488
drhc9166342012-01-05 23:32:06 +00003489 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3490 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003491 do {
dan11a81822020-05-07 14:26:40 +00003492 sqlite3PagerWalDb(pPager, p->db);
dan58021b22020-05-05 20:30:07 +00003493
3494#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3495 /* If transitioning from no transaction directly to a write transaction,
3496 ** block for the WRITER lock first if possible. */
3497 if( pBt->pPage1==0 && wrflag ){
3498 assert( pBt->inTransaction==TRANS_NONE );
dan861fb1e2020-05-06 19:14:41 +00003499 rc = sqlite3PagerWalWriteLock(pPager, 1);
dan7bb8b8a2020-05-06 20:27:18 +00003500 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
dan58021b22020-05-05 20:30:07 +00003501 }
3502#endif
3503
danielk1977295dc102009-04-01 19:07:03 +00003504 /* Call lockBtree() until either pBt->pPage1 is populated or
3505 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3506 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3507 ** reading page 1 it discovers that the page-size of the database
3508 ** file is not pBt->pageSize. In this case lockBtree() will update
3509 ** pBt->pageSize to the page-size of the file on disk.
3510 */
3511 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003512
drhb8ef32c2005-03-14 02:01:49 +00003513 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003514 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003515 rc = SQLITE_READONLY;
3516 }else{
dan58021b22020-05-05 20:30:07 +00003517 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003518 if( rc==SQLITE_OK ){
3519 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003520 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3521 /* if there was no transaction opened when this function was
3522 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3523 ** code to SQLITE_BUSY. */
3524 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003525 }
drhb8ef32c2005-03-14 02:01:49 +00003526 }
3527 }
3528
danielk1977bd434552009-03-18 10:33:00 +00003529 if( rc!=SQLITE_OK ){
danfc87ab82020-05-06 19:22:59 +00003530 (void)sqlite3PagerWalWriteLock(pPager, 0);
drhb8ef32c2005-03-14 02:01:49 +00003531 unlockBtreeIfUnused(pBt);
3532 }
danf9b76712010-06-01 14:12:45 +00003533 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003534 btreeInvokeBusyHandler(pBt) );
dan7bb8b8a2020-05-06 20:27:18 +00003535 sqlite3PagerWalDb(pPager, 0);
3536#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3537 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3538#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003539
3540 if( rc==SQLITE_OK ){
3541 if( p->inTrans==TRANS_NONE ){
3542 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003543#ifndef SQLITE_OMIT_SHARED_CACHE
3544 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003545 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003546 p->lock.eLock = READ_LOCK;
3547 p->lock.pNext = pBt->pLock;
3548 pBt->pLock = &p->lock;
3549 }
3550#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003551 }
3552 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3553 if( p->inTrans>pBt->inTransaction ){
3554 pBt->inTransaction = p->inTrans;
3555 }
danielk1977404ca072009-03-16 13:19:36 +00003556 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003557 MemPage *pPage1 = pBt->pPage1;
3558#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003559 assert( !pBt->pWriter );
3560 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003561 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3562 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003563#endif
dan59257dc2010-08-04 11:34:31 +00003564
3565 /* If the db-size header field is incorrect (as it may be if an old
3566 ** client has been writing the database file), update it now. Doing
3567 ** this sooner rather than later means the database size can safely
3568 ** re-read the database size from page 1 if a savepoint or transaction
3569 ** rollback occurs within the transaction.
3570 */
3571 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3572 rc = sqlite3PagerWrite(pPage1->pDbPage);
3573 if( rc==SQLITE_OK ){
3574 put4byte(&pPage1->aData[28], pBt->nPage);
3575 }
3576 }
3577 }
danielk1977aef0bf62005-12-30 16:28:01 +00003578 }
3579
drhd677b3d2007-08-20 22:48:41 +00003580trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003581 if( rc==SQLITE_OK ){
3582 if( pSchemaVersion ){
3583 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3584 }
3585 if( wrflag ){
3586 /* This call makes sure that the pager has the correct number of
3587 ** open savepoints. If the second parameter is greater than 0 and
3588 ** the sub-journal is not already open, then it will be opened here.
3589 */
dan7bb8b8a2020-05-06 20:27:18 +00003590 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
drhbb2d9b12018-06-06 16:28:40 +00003591 }
danielk1977fd7f0452008-12-17 17:30:26 +00003592 }
danielk197712dd5492008-12-18 15:45:07 +00003593
danielk1977aef0bf62005-12-30 16:28:01 +00003594 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003595 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003596 return rc;
drha059ad02001-04-17 20:09:11 +00003597}
3598
danielk1977687566d2004-11-02 12:56:41 +00003599#ifndef SQLITE_OMIT_AUTOVACUUM
3600
3601/*
3602** Set the pointer-map entries for all children of page pPage. Also, if
3603** pPage contains cells that point to overflow pages, set the pointer
3604** map entries for the overflow pages as well.
3605*/
3606static int setChildPtrmaps(MemPage *pPage){
3607 int i; /* Counter variable */
3608 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003609 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003610 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003611 Pgno pgno = pPage->pgno;
3612
drh1fee73e2007-08-29 04:00:57 +00003613 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003614 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003615 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003616 nCell = pPage->nCell;
3617
3618 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003619 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003620
drh0f1bf4c2019-01-13 20:17:21 +00003621 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003622
danielk1977687566d2004-11-02 12:56:41 +00003623 if( !pPage->leaf ){
3624 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003625 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003626 }
3627 }
3628
3629 if( !pPage->leaf ){
3630 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003631 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003632 }
3633
danielk1977687566d2004-11-02 12:56:41 +00003634 return rc;
3635}
3636
3637/*
drhf3aed592009-07-08 18:12:49 +00003638** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3639** that it points to iTo. Parameter eType describes the type of pointer to
3640** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003641**
3642** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3643** page of pPage.
3644**
3645** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3646** page pointed to by one of the cells on pPage.
3647**
3648** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3649** overflow page in the list.
3650*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003651static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003652 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003653 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003654 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003655 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003656 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003657 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003658 }
danielk1977f78fc082004-11-02 14:40:32 +00003659 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003660 }else{
danielk1977687566d2004-11-02 12:56:41 +00003661 int i;
3662 int nCell;
drha1f75d92015-05-24 10:18:12 +00003663 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003664
drh14e845a2017-05-25 21:35:56 +00003665 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003666 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003667 nCell = pPage->nCell;
3668
danielk1977687566d2004-11-02 12:56:41 +00003669 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003670 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003671 if( eType==PTRMAP_OVERFLOW1 ){
3672 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003673 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003674 if( info.nLocal<info.nPayload ){
3675 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003676 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003677 }
3678 if( iFrom==get4byte(pCell+info.nSize-4) ){
3679 put4byte(pCell+info.nSize-4, iTo);
3680 break;
3681 }
danielk1977687566d2004-11-02 12:56:41 +00003682 }
3683 }else{
3684 if( get4byte(pCell)==iFrom ){
3685 put4byte(pCell, iTo);
3686 break;
3687 }
3688 }
3689 }
3690
3691 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003692 if( eType!=PTRMAP_BTREE ||
3693 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003694 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003695 }
danielk1977687566d2004-11-02 12:56:41 +00003696 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3697 }
danielk1977687566d2004-11-02 12:56:41 +00003698 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003699 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003700}
3701
danielk1977003ba062004-11-04 02:57:33 +00003702
danielk19777701e812005-01-10 12:59:51 +00003703/*
3704** Move the open database page pDbPage to location iFreePage in the
3705** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003706**
3707** The isCommit flag indicates that there is no need to remember that
3708** the journal needs to be sync()ed before database page pDbPage->pgno
3709** can be written to. The caller has already promised not to write to that
3710** page.
danielk19777701e812005-01-10 12:59:51 +00003711*/
danielk1977003ba062004-11-04 02:57:33 +00003712static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003713 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003714 MemPage *pDbPage, /* Open page to move */
3715 u8 eType, /* Pointer map 'type' entry for pDbPage */
3716 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003717 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003718 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003719){
3720 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3721 Pgno iDbPage = pDbPage->pgno;
3722 Pager *pPager = pBt->pPager;
3723 int rc;
3724
danielk1977a0bf2652004-11-04 14:30:04 +00003725 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3726 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003727 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003728 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003729 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003730
drh85b623f2007-12-13 21:54:09 +00003731 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003732 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3733 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003734 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003735 if( rc!=SQLITE_OK ){
3736 return rc;
3737 }
3738 pDbPage->pgno = iFreePage;
3739
3740 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3741 ** that point to overflow pages. The pointer map entries for all these
3742 ** pages need to be changed.
3743 **
3744 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3745 ** pointer to a subsequent overflow page. If this is the case, then
3746 ** the pointer map needs to be updated for the subsequent overflow page.
3747 */
danielk1977a0bf2652004-11-04 14:30:04 +00003748 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003749 rc = setChildPtrmaps(pDbPage);
3750 if( rc!=SQLITE_OK ){
3751 return rc;
3752 }
3753 }else{
3754 Pgno nextOvfl = get4byte(pDbPage->aData);
3755 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003756 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003757 if( rc!=SQLITE_OK ){
3758 return rc;
3759 }
3760 }
3761 }
3762
3763 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3764 ** that it points at iFreePage. Also fix the pointer map entry for
3765 ** iPtrPage.
3766 */
danielk1977a0bf2652004-11-04 14:30:04 +00003767 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003768 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003769 if( rc!=SQLITE_OK ){
3770 return rc;
3771 }
danielk19773b8a05f2007-03-19 17:44:26 +00003772 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003773 if( rc!=SQLITE_OK ){
3774 releasePage(pPtrPage);
3775 return rc;
3776 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003777 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003778 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003779 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003780 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003781 }
danielk1977003ba062004-11-04 02:57:33 +00003782 }
danielk1977003ba062004-11-04 02:57:33 +00003783 return rc;
3784}
3785
danielk1977dddbcdc2007-04-26 14:42:34 +00003786/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003787static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003788
3789/*
dan51f0b6d2013-02-22 20:16:34 +00003790** Perform a single step of an incremental-vacuum. If successful, return
3791** SQLITE_OK. If there is no work to do (and therefore no point in
3792** calling this function again), return SQLITE_DONE. Or, if an error
3793** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003794**
peter.d.reid60ec9142014-09-06 16:39:46 +00003795** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003796** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003797**
dan51f0b6d2013-02-22 20:16:34 +00003798** Parameter nFin is the number of pages that this database would contain
3799** were this function called until it returns SQLITE_DONE.
3800**
3801** If the bCommit parameter is non-zero, this function assumes that the
3802** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003803** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003804** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003805*/
dan51f0b6d2013-02-22 20:16:34 +00003806static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003807 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003808 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003809
drh1fee73e2007-08-29 04:00:57 +00003810 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003811 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003812
3813 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003814 u8 eType;
3815 Pgno iPtrPage;
3816
3817 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003818 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003819 return SQLITE_DONE;
3820 }
3821
3822 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3823 if( rc!=SQLITE_OK ){
3824 return rc;
3825 }
3826 if( eType==PTRMAP_ROOTPAGE ){
3827 return SQLITE_CORRUPT_BKPT;
3828 }
3829
3830 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003831 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003832 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003833 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003834 ** truncated to zero after this function returns, so it doesn't
3835 ** matter if it still contains some garbage entries.
3836 */
3837 Pgno iFreePg;
3838 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003839 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003840 if( rc!=SQLITE_OK ){
3841 return rc;
3842 }
3843 assert( iFreePg==iLastPg );
3844 releasePage(pFreePg);
3845 }
3846 } else {
3847 Pgno iFreePg; /* Index of free page to move pLastPg to */
3848 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003849 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3850 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003851
drhb00fc3b2013-08-21 23:42:32 +00003852 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003853 if( rc!=SQLITE_OK ){
3854 return rc;
3855 }
3856
dan51f0b6d2013-02-22 20:16:34 +00003857 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003858 ** is swapped with the first free page pulled off the free list.
3859 **
dan51f0b6d2013-02-22 20:16:34 +00003860 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003861 ** looping until a free-page located within the first nFin pages
3862 ** of the file is found.
3863 */
dan51f0b6d2013-02-22 20:16:34 +00003864 if( bCommit==0 ){
3865 eMode = BTALLOC_LE;
3866 iNear = nFin;
3867 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003868 do {
3869 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003870 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003871 if( rc!=SQLITE_OK ){
3872 releasePage(pLastPg);
3873 return rc;
3874 }
3875 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003876 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003877 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003878
dane1df4e32013-03-05 11:27:04 +00003879 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003880 releasePage(pLastPg);
3881 if( rc!=SQLITE_OK ){
3882 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003883 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003884 }
3885 }
3886
dan51f0b6d2013-02-22 20:16:34 +00003887 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003888 do {
danielk19773460d192008-12-27 15:23:13 +00003889 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003890 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3891 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003892 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003893 }
3894 return SQLITE_OK;
3895}
3896
3897/*
dan51f0b6d2013-02-22 20:16:34 +00003898** The database opened by the first argument is an auto-vacuum database
3899** nOrig pages in size containing nFree free pages. Return the expected
3900** size of the database in pages following an auto-vacuum operation.
3901*/
3902static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3903 int nEntry; /* Number of entries on one ptrmap page */
3904 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3905 Pgno nFin; /* Return value */
3906
3907 nEntry = pBt->usableSize/5;
3908 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3909 nFin = nOrig - nFree - nPtrmap;
3910 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3911 nFin--;
3912 }
3913 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3914 nFin--;
3915 }
dan51f0b6d2013-02-22 20:16:34 +00003916
3917 return nFin;
3918}
3919
3920/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003921** A write-transaction must be opened before calling this function.
3922** It performs a single unit of work towards an incremental vacuum.
3923**
3924** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003925** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003926** SQLITE_OK is returned. Otherwise an SQLite error code.
3927*/
3928int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003929 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003930 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003931
3932 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003933 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3934 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003935 rc = SQLITE_DONE;
3936 }else{
dan51f0b6d2013-02-22 20:16:34 +00003937 Pgno nOrig = btreePagecount(pBt);
3938 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3939 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3940
drhbc2cf3b2020-07-14 12:40:53 +00003941 if( nOrig<nFin || nFree>=nOrig ){
dan91384712013-02-24 11:50:43 +00003942 rc = SQLITE_CORRUPT_BKPT;
3943 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003944 rc = saveAllCursors(pBt, 0, 0);
3945 if( rc==SQLITE_OK ){
3946 invalidateAllOverflowCache(pBt);
3947 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3948 }
dan51f0b6d2013-02-22 20:16:34 +00003949 if( rc==SQLITE_OK ){
3950 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3951 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3952 }
3953 }else{
3954 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003955 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003956 }
drhd677b3d2007-08-20 22:48:41 +00003957 sqlite3BtreeLeave(p);
3958 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003959}
3960
3961/*
danielk19773b8a05f2007-03-19 17:44:26 +00003962** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003963** is committed for an auto-vacuum database.
danielk1977687566d2004-11-02 12:56:41 +00003964*/
drh1bbfc672021-10-15 23:02:27 +00003965static int autoVacuumCommit(Btree *p){
danielk1977dddbcdc2007-04-26 14:42:34 +00003966 int rc = SQLITE_OK;
drh1bbfc672021-10-15 23:02:27 +00003967 Pager *pPager;
3968 BtShared *pBt;
3969 sqlite3 *db;
3970 VVA_ONLY( int nRef );
3971
3972 assert( p!=0 );
3973 pBt = p->pBt;
3974 pPager = pBt->pPager;
3975 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003976
drh1fee73e2007-08-29 04:00:57 +00003977 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003978 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003979 assert(pBt->autoVacuum);
3980 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003981 Pgno nFin; /* Number of pages in database after autovacuuming */
3982 Pgno nFree; /* Number of pages on the freelist initially */
drh1bbfc672021-10-15 23:02:27 +00003983 Pgno nVac; /* Number of pages to vacuum */
drh41d628c2009-07-11 17:04:08 +00003984 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003985 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003986
drhb1299152010-03-30 22:58:33 +00003987 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003988 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3989 /* It is not possible to create a database for which the final page
3990 ** is either a pointer-map page or the pending-byte page. If one
3991 ** is encountered, this indicates corruption.
3992 */
danielk19773460d192008-12-27 15:23:13 +00003993 return SQLITE_CORRUPT_BKPT;
3994 }
danielk1977ef165ce2009-04-06 17:50:03 +00003995
danielk19773460d192008-12-27 15:23:13 +00003996 nFree = get4byte(&pBt->pPage1->aData[36]);
drh1bbfc672021-10-15 23:02:27 +00003997 db = p->db;
3998 if( db->xAutovacPages ){
3999 int iDb;
4000 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
4001 if( db->aDb[iDb].pBt==p ) break;
4002 }
4003 nVac = db->xAutovacPages(
4004 db->pAutovacPagesArg,
4005 db->aDb[iDb].zDbSName,
4006 nOrig,
4007 nFree,
4008 pBt->pageSize
4009 );
4010 if( nVac>nFree ){
4011 nVac = nFree;
4012 }
4013 if( nVac==0 ){
4014 return SQLITE_OK;
4015 }
4016 }else{
4017 nVac = nFree;
4018 }
4019 nFin = finalDbSize(pBt, nOrig, nVac);
drhc5e47ac2009-06-04 00:11:56 +00004020 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00004021 if( nFin<nOrig ){
4022 rc = saveAllCursors(pBt, 0, 0);
4023 }
danielk19773460d192008-12-27 15:23:13 +00004024 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
drh1bbfc672021-10-15 23:02:27 +00004025 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00004026 }
danielk19773460d192008-12-27 15:23:13 +00004027 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00004028 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
drh1bbfc672021-10-15 23:02:27 +00004029 if( nVac==nFree ){
4030 put4byte(&pBt->pPage1->aData[32], 0);
4031 put4byte(&pBt->pPage1->aData[36], 0);
4032 }
drhdd3cd972010-03-27 17:12:36 +00004033 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00004034 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00004035 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00004036 }
4037 if( rc!=SQLITE_OK ){
4038 sqlite3PagerRollback(pPager);
4039 }
danielk1977687566d2004-11-02 12:56:41 +00004040 }
4041
dan0aed84d2013-03-26 14:16:20 +00004042 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00004043 return rc;
4044}
danielk1977dddbcdc2007-04-26 14:42:34 +00004045
danielk1977a50d9aa2009-06-08 14:49:45 +00004046#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4047# define setChildPtrmaps(x) SQLITE_OK
4048#endif
danielk1977687566d2004-11-02 12:56:41 +00004049
4050/*
drh80e35f42007-03-30 14:06:34 +00004051** This routine does the first phase of a two-phase commit. This routine
4052** causes a rollback journal to be created (if it does not already exist)
4053** and populated with enough information so that if a power loss occurs
4054** the database can be restored to its original state by playing back
4055** the journal. Then the contents of the journal are flushed out to
4056** the disk. After the journal is safely on oxide, the changes to the
4057** database are written into the database file and flushed to oxide.
4058** At the end of this call, the rollback journal still exists on the
4059** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00004060** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00004061** commit process.
4062**
4063** This call is a no-op if no write-transaction is currently active on pBt.
4064**
drh067b92b2020-06-19 15:24:12 +00004065** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4066** the name of a super-journal file that should be written into the
4067** individual journal file, or is NULL, indicating no super-journal file
drh80e35f42007-03-30 14:06:34 +00004068** (single database transaction).
4069**
drh067b92b2020-06-19 15:24:12 +00004070** When this is called, the super-journal should already have been
drh80e35f42007-03-30 14:06:34 +00004071** created, populated with this journal pointer and synced to disk.
4072**
4073** Once this is routine has returned, the only thing required to commit
4074** the write-transaction for this database file is to delete the journal.
4075*/
drh067b92b2020-06-19 15:24:12 +00004076int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
drh80e35f42007-03-30 14:06:34 +00004077 int rc = SQLITE_OK;
4078 if( p->inTrans==TRANS_WRITE ){
4079 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004080 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004081#ifndef SQLITE_OMIT_AUTOVACUUM
4082 if( pBt->autoVacuum ){
drh1bbfc672021-10-15 23:02:27 +00004083 rc = autoVacuumCommit(p);
drh80e35f42007-03-30 14:06:34 +00004084 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00004085 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004086 return rc;
4087 }
4088 }
danbc1a3c62013-02-23 16:40:46 +00004089 if( pBt->bDoTruncate ){
4090 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4091 }
drh80e35f42007-03-30 14:06:34 +00004092#endif
drh067b92b2020-06-19 15:24:12 +00004093 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
drhd677b3d2007-08-20 22:48:41 +00004094 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004095 }
4096 return rc;
4097}
4098
4099/*
danielk197794b30732009-07-02 17:21:57 +00004100** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4101** at the conclusion of a transaction.
4102*/
4103static void btreeEndTransaction(Btree *p){
4104 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00004105 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004106 assert( sqlite3BtreeHoldsMutex(p) );
4107
danbc1a3c62013-02-23 16:40:46 +00004108#ifndef SQLITE_OMIT_AUTOVACUUM
4109 pBt->bDoTruncate = 0;
4110#endif
danc0537fe2013-06-28 19:41:43 +00004111 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004112 /* If there are other active statements that belong to this database
4113 ** handle, downgrade to a read-only transaction. The other statements
4114 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004115 downgradeAllSharedCacheTableLocks(p);
4116 p->inTrans = TRANS_READ;
4117 }else{
4118 /* If the handle had any kind of transaction open, decrement the
4119 ** transaction count of the shared btree. If the transaction count
4120 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4121 ** call below will unlock the pager. */
4122 if( p->inTrans!=TRANS_NONE ){
4123 clearAllSharedCacheTableLocks(p);
4124 pBt->nTransaction--;
4125 if( 0==pBt->nTransaction ){
4126 pBt->inTransaction = TRANS_NONE;
4127 }
4128 }
4129
4130 /* Set the current transaction state to TRANS_NONE and unlock the
4131 ** pager if this call closed the only read or write transaction. */
4132 p->inTrans = TRANS_NONE;
4133 unlockBtreeIfUnused(pBt);
4134 }
4135
4136 btreeIntegrity(p);
4137}
4138
4139/*
drh2aa679f2001-06-25 02:11:07 +00004140** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004141**
drh6e345992007-03-30 11:12:08 +00004142** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004143** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4144** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4145** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004146** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004147** routine has to do is delete or truncate or zero the header in the
4148** the rollback journal (which causes the transaction to commit) and
4149** drop locks.
drh6e345992007-03-30 11:12:08 +00004150**
dan60939d02011-03-29 15:40:55 +00004151** Normally, if an error occurs while the pager layer is attempting to
4152** finalize the underlying journal file, this function returns an error and
4153** the upper layer will attempt a rollback. However, if the second argument
4154** is non-zero then this b-tree transaction is part of a multi-file
4155** transaction. In this case, the transaction has already been committed
drh067b92b2020-06-19 15:24:12 +00004156** (by deleting a super-journal file) and the caller will ignore this
dan60939d02011-03-29 15:40:55 +00004157** functions return code. So, even if an error occurs in the pager layer,
4158** reset the b-tree objects internal state to indicate that the write
4159** transaction has been closed. This is quite safe, as the pager will have
4160** transitioned to the error state.
4161**
drh5e00f6c2001-09-13 13:46:56 +00004162** This will release the write lock on the database file. If there
4163** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004164*/
dan60939d02011-03-29 15:40:55 +00004165int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004166
drh075ed302010-10-14 01:17:30 +00004167 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004168 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004169 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004170
4171 /* If the handle has a write-transaction open, commit the shared-btrees
4172 ** transaction and set the shared state to TRANS_READ.
4173 */
4174 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004175 int rc;
drh075ed302010-10-14 01:17:30 +00004176 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004177 assert( pBt->inTransaction==TRANS_WRITE );
4178 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004179 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004180 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004181 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004182 return rc;
4183 }
drh2b994ce2021-03-18 12:36:09 +00004184 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004185 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004186 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004187 }
danielk1977aef0bf62005-12-30 16:28:01 +00004188
danielk197794b30732009-07-02 17:21:57 +00004189 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004190 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004191 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004192}
4193
drh80e35f42007-03-30 14:06:34 +00004194/*
4195** Do both phases of a commit.
4196*/
4197int sqlite3BtreeCommit(Btree *p){
4198 int rc;
drhd677b3d2007-08-20 22:48:41 +00004199 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004200 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4201 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004202 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004203 }
drhd677b3d2007-08-20 22:48:41 +00004204 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004205 return rc;
4206}
4207
drhc39e0002004-05-07 23:50:57 +00004208/*
drhfb982642007-08-30 01:19:59 +00004209** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004210** code to errCode for every cursor on any BtShared that pBtree
4211** references. Or if the writeOnly flag is set to 1, then only
4212** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004213**
drh47b7fc72014-11-11 01:33:57 +00004214** Every cursor is a candidate to be tripped, including cursors
4215** that belong to other database connections that happen to be
4216** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004217**
dan80231042014-11-12 14:56:02 +00004218** This routine gets called when a rollback occurs. If the writeOnly
4219** flag is true, then only write-cursors need be tripped - read-only
4220** cursors save their current positions so that they may continue
4221** following the rollback. Or, if writeOnly is false, all cursors are
4222** tripped. In general, writeOnly is false if the transaction being
4223** rolled back modified the database schema. In this case b-tree root
4224** pages may be moved or deleted from the database altogether, making
4225** it unsafe for read cursors to continue.
4226**
4227** If the writeOnly flag is true and an error is encountered while
4228** saving the current position of a read-only cursor, all cursors,
4229** including all read-cursors are tripped.
4230**
4231** SQLITE_OK is returned if successful, or if an error occurs while
4232** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004233*/
dan80231042014-11-12 14:56:02 +00004234int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004235 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004236 int rc = SQLITE_OK;
4237
drh47b7fc72014-11-11 01:33:57 +00004238 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004239 if( pBtree ){
4240 sqlite3BtreeEnter(pBtree);
4241 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004242 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004243 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004244 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004245 if( rc!=SQLITE_OK ){
4246 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4247 break;
4248 }
4249 }
4250 }else{
4251 sqlite3BtreeClearCursor(p);
4252 p->eState = CURSOR_FAULT;
4253 p->skipNext = errCode;
4254 }
drh85ef6302017-08-02 15:50:09 +00004255 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004256 }
dan80231042014-11-12 14:56:02 +00004257 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004258 }
dan80231042014-11-12 14:56:02 +00004259 return rc;
drhfb982642007-08-30 01:19:59 +00004260}
4261
4262/*
drh41422652019-05-10 14:34:18 +00004263** Set the pBt->nPage field correctly, according to the current
4264** state of the database. Assume pBt->pPage1 is valid.
4265*/
4266static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4267 int nPage = get4byte(&pPage1->aData[28]);
4268 testcase( nPage==0 );
4269 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
mistachkin2b5fbb22021-12-31 18:26:50 +00004270 testcase( pBt->nPage!=(u32)nPage );
drh41422652019-05-10 14:34:18 +00004271 pBt->nPage = nPage;
4272}
4273
4274/*
drh47b7fc72014-11-11 01:33:57 +00004275** Rollback the transaction in progress.
4276**
4277** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4278** Only write cursors are tripped if writeOnly is true but all cursors are
4279** tripped if writeOnly is false. Any attempt to use
4280** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004281**
4282** This will release the write lock on the database file. If there
4283** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004284*/
drh47b7fc72014-11-11 01:33:57 +00004285int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004286 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004287 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004288 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004289
drh47b7fc72014-11-11 01:33:57 +00004290 assert( writeOnly==1 || writeOnly==0 );
4291 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004292 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004293 if( tripCode==SQLITE_OK ){
4294 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004295 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004296 }else{
4297 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004298 }
drh0f198a72012-02-13 16:43:16 +00004299 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004300 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4301 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4302 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004303 }
danielk1977aef0bf62005-12-30 16:28:01 +00004304 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004305
4306 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004307 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004308
danielk19778d34dfd2006-01-24 16:37:57 +00004309 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004310 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004311 if( rc2!=SQLITE_OK ){
4312 rc = rc2;
4313 }
4314
drh24cd67e2004-05-10 16:18:47 +00004315 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004316 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004317 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004318 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh41422652019-05-10 14:34:18 +00004319 btreeSetNPage(pBt, pPage1);
drh3908fe92017-09-01 14:50:19 +00004320 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004321 }
drh85ec3b62013-05-14 23:12:06 +00004322 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004323 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004324 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004325 }
danielk1977aef0bf62005-12-30 16:28:01 +00004326
danielk197794b30732009-07-02 17:21:57 +00004327 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004328 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004329 return rc;
4330}
4331
4332/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004333** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004334** back independently of the main transaction. You must start a transaction
4335** before starting a subtransaction. The subtransaction is ended automatically
4336** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004337**
4338** Statement subtransactions are used around individual SQL statements
4339** that are contained within a BEGIN...COMMIT block. If a constraint
4340** error occurs within the statement, the effect of that one statement
4341** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004342**
4343** A statement sub-transaction is implemented as an anonymous savepoint. The
4344** value passed as the second parameter is the total number of savepoints,
4345** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4346** are no active savepoints and no other statement-transactions open,
4347** iStatement is 1. This anonymous savepoint can be released or rolled back
4348** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004349*/
danielk1977bd434552009-03-18 10:33:00 +00004350int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004351 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004352 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004353 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004354 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004355 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004356 assert( iStatement>0 );
4357 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004358 assert( pBt->inTransaction==TRANS_WRITE );
4359 /* At the pager level, a statement transaction is a savepoint with
4360 ** an index greater than all savepoints created explicitly using
4361 ** SQL statements. It is illegal to open, release or rollback any
4362 ** such savepoints while the statement transaction savepoint is active.
4363 */
4364 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004365 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004366 return rc;
4367}
4368
4369/*
danielk1977fd7f0452008-12-17 17:30:26 +00004370** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4371** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004372** savepoint identified by parameter iSavepoint, depending on the value
4373** of op.
4374**
4375** Normally, iSavepoint is greater than or equal to zero. However, if op is
4376** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4377** contents of the entire transaction are rolled back. This is different
4378** from a normal transaction rollback, as no locks are released and the
4379** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004380*/
4381int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4382 int rc = SQLITE_OK;
4383 if( p && p->inTrans==TRANS_WRITE ){
4384 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004385 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4386 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4387 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004388 if( op==SAVEPOINT_ROLLBACK ){
4389 rc = saveAllCursors(pBt, 0, 0);
4390 }
4391 if( rc==SQLITE_OK ){
4392 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4393 }
drh9f0bbf92009-01-02 21:08:09 +00004394 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004395 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4396 pBt->nPage = 0;
4397 }
drh9f0bbf92009-01-02 21:08:09 +00004398 rc = newDatabase(pBt);
drh41422652019-05-10 14:34:18 +00004399 btreeSetNPage(pBt, pBt->pPage1);
drhb9b49bf2010-08-05 03:21:39 +00004400
dana9a54652019-04-22 11:47:40 +00004401 /* pBt->nPage might be zero if the database was corrupt when
4402 ** the transaction was started. Otherwise, it must be at least 1. */
4403 assert( CORRUPT_DB || pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004404 }
danielk1977fd7f0452008-12-17 17:30:26 +00004405 sqlite3BtreeLeave(p);
4406 }
4407 return rc;
4408}
4409
4410/*
drh8b2f49b2001-06-08 00:21:52 +00004411** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004412** iTable. If a read-only cursor is requested, it is assumed that
4413** the caller already has at least a read-only transaction open
4414** on the database already. If a write-cursor is requested, then
4415** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004416**
drhe807bdb2016-01-21 17:06:33 +00004417** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4418** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4419** can be used for reading or for writing if other conditions for writing
4420** are also met. These are the conditions that must be met in order
4421** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004422**
drhe807bdb2016-01-21 17:06:33 +00004423** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004424**
drhfe5d71d2007-03-19 11:54:10 +00004425** 2: Other database connections that share the same pager cache
4426** but which are not in the READ_UNCOMMITTED state may not have
4427** cursors open with wrFlag==0 on the same table. Otherwise
4428** the changes made by this write cursor would be visible to
4429** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004430**
4431** 3: The database must be writable (not on read-only media)
4432**
4433** 4: There must be an active transaction.
4434**
drhe807bdb2016-01-21 17:06:33 +00004435** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4436** is set. If FORDELETE is set, that is a hint to the implementation that
4437** this cursor will only be used to seek to and delete entries of an index
4438** as part of a larger DELETE statement. The FORDELETE hint is not used by
4439** this implementation. But in a hypothetical alternative storage engine
4440** in which index entries are automatically deleted when corresponding table
4441** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4442** operations on this cursor can be no-ops and all READ operations can
4443** return a null row (2-bytes: 0x01 0x00).
4444**
drh6446c4d2001-12-15 14:22:18 +00004445** No checking is done to make sure that page iTable really is the
4446** root page of a b-tree. If it is not, then the cursor acquired
4447** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004448**
drhf25a5072009-11-18 23:01:25 +00004449** It is assumed that the sqlite3BtreeCursorZero() has been called
4450** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004451*/
drhd677b3d2007-08-20 22:48:41 +00004452static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004453 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004454 Pgno iTable, /* Root page of table to open */
danielk1977cd3e8f72008-03-25 09:47:35 +00004455 int wrFlag, /* 1 to write. 0 read-only */
4456 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4457 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004458){
danielk19773e8add92009-07-04 17:16:00 +00004459 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004460 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004461
drh1fee73e2007-08-29 04:00:57 +00004462 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004463 assert( wrFlag==0
4464 || wrFlag==BTREE_WRCSR
4465 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4466 );
danielk197796d48e92009-06-29 06:00:37 +00004467
danielk1977602b4662009-07-02 07:47:33 +00004468 /* The following assert statements verify that if this is a sharable
4469 ** b-tree database, the connection is holding the required table locks,
4470 ** and that no other connection has any open cursor that conflicts with
drhac801802019-11-17 11:47:50 +00004471 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4472 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4473 || iTable<1 );
danielk197796d48e92009-06-29 06:00:37 +00004474 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4475
danielk19773e8add92009-07-04 17:16:00 +00004476 /* Assert that the caller has opened the required transaction. */
4477 assert( p->inTrans>TRANS_NONE );
4478 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4479 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004480 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004481
drhdb561bc2019-10-25 14:46:05 +00004482 if( iTable<=1 ){
4483 if( iTable<1 ){
4484 return SQLITE_CORRUPT_BKPT;
4485 }else if( btreePagecount(pBt)==0 ){
4486 assert( wrFlag==0 );
4487 iTable = 0;
4488 }
danielk19773e8add92009-07-04 17:16:00 +00004489 }
danielk1977aef0bf62005-12-30 16:28:01 +00004490
danielk1977aef0bf62005-12-30 16:28:01 +00004491 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004492 ** variables and link the cursor into the BtShared list. */
drhabc38152020-07-22 13:38:04 +00004493 pCur->pgnoRoot = iTable;
danielk1977172114a2009-07-07 15:47:12 +00004494 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004495 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004496 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004497 pCur->pBt = pBt;
drh2f0bc1d2021-12-03 13:42:41 +00004498 pCur->curFlags = 0;
drh27fb7462015-06-30 02:47:36 +00004499 /* If there are two or more cursors on the same btree, then all such
4500 ** cursors *must* have the BTCF_Multiple flag set. */
4501 for(pX=pBt->pCursor; pX; pX=pX->pNext){
drhabc38152020-07-22 13:38:04 +00004502 if( pX->pgnoRoot==iTable ){
drh27fb7462015-06-30 02:47:36 +00004503 pX->curFlags |= BTCF_Multiple;
drh2f0bc1d2021-12-03 13:42:41 +00004504 pCur->curFlags = BTCF_Multiple;
drh27fb7462015-06-30 02:47:36 +00004505 }
drha059ad02001-04-17 20:09:11 +00004506 }
drh2f0bc1d2021-12-03 13:42:41 +00004507 pCur->eState = CURSOR_INVALID;
drh27fb7462015-06-30 02:47:36 +00004508 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004509 pBt->pCursor = pCur;
drh2f0bc1d2021-12-03 13:42:41 +00004510 if( wrFlag ){
4511 pCur->curFlags |= BTCF_WriteFlag;
4512 pCur->curPagerFlags = 0;
4513 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
4514 }else{
4515 pCur->curPagerFlags = PAGER_GET_READONLY;
4516 }
danielk1977aef0bf62005-12-30 16:28:01 +00004517 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004518}
drhdb561bc2019-10-25 14:46:05 +00004519static int btreeCursorWithLock(
4520 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004521 Pgno iTable, /* Root page of table to open */
drhdb561bc2019-10-25 14:46:05 +00004522 int wrFlag, /* 1 to write. 0 read-only */
4523 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4524 BtCursor *pCur /* Space for new cursor */
4525){
4526 int rc;
4527 sqlite3BtreeEnter(p);
4528 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4529 sqlite3BtreeLeave(p);
4530 return rc;
4531}
drhd677b3d2007-08-20 22:48:41 +00004532int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004533 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004534 Pgno iTable, /* Root page of table to open */
danielk1977cd3e8f72008-03-25 09:47:35 +00004535 int wrFlag, /* 1 to write. 0 read-only */
4536 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4537 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004538){
drhdb561bc2019-10-25 14:46:05 +00004539 if( p->sharable ){
4540 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004541 }else{
drhdb561bc2019-10-25 14:46:05 +00004542 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004543 }
drhd677b3d2007-08-20 22:48:41 +00004544}
drh7f751222009-03-17 22:33:00 +00004545
4546/*
4547** Return the size of a BtCursor object in bytes.
4548**
4549** This interfaces is needed so that users of cursors can preallocate
4550** sufficient storage to hold a cursor. The BtCursor object is opaque
4551** to users so they cannot do the sizeof() themselves - they must call
4552** this routine.
4553*/
4554int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004555 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004556}
4557
drh7f751222009-03-17 22:33:00 +00004558/*
drhf25a5072009-11-18 23:01:25 +00004559** Initialize memory that will be converted into a BtCursor object.
4560**
4561** The simple approach here would be to memset() the entire object
4562** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4563** do not need to be zeroed and they are large, so we can save a lot
4564** of run-time by skipping the initialization of those elements.
4565*/
4566void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004567 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004568}
4569
4570/*
drh5e00f6c2001-09-13 13:46:56 +00004571** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004572** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004573*/
drh3aac2dd2004-04-26 14:10:20 +00004574int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004575 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004576 if( pBtree ){
4577 BtShared *pBt = pCur->pBt;
4578 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004579 assert( pBt->pCursor!=0 );
4580 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004581 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004582 }else{
4583 BtCursor *pPrev = pBt->pCursor;
4584 do{
4585 if( pPrev->pNext==pCur ){
4586 pPrev->pNext = pCur->pNext;
4587 break;
4588 }
4589 pPrev = pPrev->pNext;
4590 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004591 }
drh352a35a2017-08-15 03:46:47 +00004592 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004593 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004594 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004595 sqlite3_free(pCur->pKey);
daneeee8a52021-03-18 14:31:37 +00004596 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4597 /* Since the BtShared is not sharable, there is no need to
4598 ** worry about the missing sqlite3BtreeLeave() call here. */
4599 assert( pBtree->sharable==0 );
4600 sqlite3BtreeClose(pBtree);
4601 }else{
4602 sqlite3BtreeLeave(pBtree);
4603 }
dan97c8cb32019-01-01 18:00:17 +00004604 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004605 }
drh8c42ca92001-06-22 19:15:00 +00004606 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004607}
4608
drh5e2f8b92001-05-28 00:41:15 +00004609/*
drh86057612007-06-26 01:04:48 +00004610** Make sure the BtCursor* given in the argument has a valid
4611** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004612** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004613**
4614** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004615** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004616*/
drh9188b382004-05-14 21:12:22 +00004617#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004618 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4619 if( a->nKey!=b->nKey ) return 0;
4620 if( a->pPayload!=b->pPayload ) return 0;
4621 if( a->nPayload!=b->nPayload ) return 0;
4622 if( a->nLocal!=b->nLocal ) return 0;
4623 if( a->nSize!=b->nSize ) return 0;
4624 return 1;
4625 }
danielk19771cc5ed82007-05-16 17:28:43 +00004626 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004627 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004628 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004629 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004630 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004631 }
danielk19771cc5ed82007-05-16 17:28:43 +00004632#else
4633 #define assertCellInfo(x)
4634#endif
drhc5b41ac2015-06-17 02:11:46 +00004635static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4636 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004637 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004638 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004639 }else{
4640 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004641 }
drhc5b41ac2015-06-17 02:11:46 +00004642}
drh9188b382004-05-14 21:12:22 +00004643
drhea8ffdf2009-07-22 00:35:23 +00004644#ifndef NDEBUG /* The next routine used only within assert() statements */
4645/*
4646** Return true if the given BtCursor is valid. A valid cursor is one
4647** that is currently pointing to a row in a (non-empty) table.
4648** This is a verification routine is used only within assert() statements.
4649*/
4650int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4651 return pCur && pCur->eState==CURSOR_VALID;
4652}
4653#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004654int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4655 assert( pCur!=0 );
4656 return pCur->eState==CURSOR_VALID;
4657}
drhea8ffdf2009-07-22 00:35:23 +00004658
drh9188b382004-05-14 21:12:22 +00004659/*
drha7c90c42016-06-04 20:37:10 +00004660** Return the value of the integer key or "rowid" for a table btree.
4661** This routine is only valid for a cursor that is pointing into a
4662** ordinary table btree. If the cursor points to an index btree or
4663** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004664*/
drha7c90c42016-06-04 20:37:10 +00004665i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004666 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004667 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004668 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004669 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004670 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004671}
drh2af926b2001-05-15 00:39:25 +00004672
drh7b14b652019-12-29 22:08:20 +00004673/*
4674** Pin or unpin a cursor.
4675*/
4676void sqlite3BtreeCursorPin(BtCursor *pCur){
4677 assert( (pCur->curFlags & BTCF_Pinned)==0 );
4678 pCur->curFlags |= BTCF_Pinned;
4679}
4680void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4681 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4682 pCur->curFlags &= ~BTCF_Pinned;
4683}
4684
drh092457b2017-12-29 15:04:49 +00004685#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004686/*
drh2fc865c2017-12-16 20:20:37 +00004687** Return the offset into the database file for the start of the
4688** payload to which the cursor is pointing.
4689*/
drh092457b2017-12-29 15:04:49 +00004690i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004691 assert( cursorHoldsMutex(pCur) );
4692 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004693 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004694 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004695 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4696}
drh092457b2017-12-29 15:04:49 +00004697#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004698
4699/*
drha7c90c42016-06-04 20:37:10 +00004700** Return the number of bytes of payload for the entry that pCur is
4701** currently pointing to. For table btrees, this will be the amount
4702** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004703**
4704** The caller must guarantee that the cursor is pointing to a non-NULL
4705** valid entry. In other words, the calling procedure must guarantee
4706** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004707*/
drha7c90c42016-06-04 20:37:10 +00004708u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4709 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004710 assert( pCur->eState==CURSOR_VALID );
4711 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004712 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004713}
4714
4715/*
drh53d30dd2019-02-04 21:10:24 +00004716** Return an upper bound on the size of any record for the table
4717** that the cursor is pointing into.
4718**
4719** This is an optimization. Everything will still work if this
4720** routine always returns 2147483647 (which is the largest record
4721** that SQLite can handle) or more. But returning a smaller value might
4722** prevent large memory allocations when trying to interpret a
4723** corrupt datrabase.
4724**
4725** The current implementation merely returns the size of the underlying
4726** database file.
4727*/
4728sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4729 assert( cursorHoldsMutex(pCur) );
4730 assert( pCur->eState==CURSOR_VALID );
4731 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4732}
4733
4734/*
danielk1977d04417962007-05-02 13:16:30 +00004735** Given the page number of an overflow page in the database (parameter
4736** ovfl), this function finds the page number of the next page in the
4737** linked list of overflow pages. If possible, it uses the auto-vacuum
4738** pointer-map data instead of reading the content of page ovfl to do so.
4739**
4740** If an error occurs an SQLite error code is returned. Otherwise:
4741**
danielk1977bea2a942009-01-20 17:06:27 +00004742** The page number of the next overflow page in the linked list is
4743** written to *pPgnoNext. If page ovfl is the last page in its linked
4744** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004745**
danielk1977bea2a942009-01-20 17:06:27 +00004746** If ppPage is not NULL, and a reference to the MemPage object corresponding
4747** to page number pOvfl was obtained, then *ppPage is set to point to that
4748** reference. It is the responsibility of the caller to call releasePage()
4749** on *ppPage to free the reference. In no reference was obtained (because
4750** the pointer-map was used to obtain the value for *pPgnoNext), then
4751** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004752*/
4753static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004754 BtShared *pBt, /* The database file */
4755 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004756 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004757 Pgno *pPgnoNext /* OUT: Next overflow page number */
4758){
4759 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004760 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004761 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004762
drh1fee73e2007-08-29 04:00:57 +00004763 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004764 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004765
4766#ifndef SQLITE_OMIT_AUTOVACUUM
4767 /* Try to find the next page in the overflow list using the
4768 ** autovacuum pointer-map pages. Guess that the next page in
4769 ** the overflow list is page number (ovfl+1). If that guess turns
4770 ** out to be wrong, fall back to loading the data of page
4771 ** number ovfl to determine the next page number.
4772 */
4773 if( pBt->autoVacuum ){
4774 Pgno pgno;
4775 Pgno iGuess = ovfl+1;
4776 u8 eType;
4777
4778 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4779 iGuess++;
4780 }
4781
drhb1299152010-03-30 22:58:33 +00004782 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004783 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004784 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004785 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004786 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004787 }
4788 }
4789 }
4790#endif
4791
danielk1977d8a3f3d2009-07-11 11:45:23 +00004792 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004793 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004794 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004795 assert( rc==SQLITE_OK || pPage==0 );
4796 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004797 next = get4byte(pPage->aData);
4798 }
danielk1977443c0592009-01-16 15:21:05 +00004799 }
danielk197745d68822009-01-16 16:23:38 +00004800
danielk1977bea2a942009-01-20 17:06:27 +00004801 *pPgnoNext = next;
4802 if( ppPage ){
4803 *ppPage = pPage;
4804 }else{
4805 releasePage(pPage);
4806 }
4807 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004808}
4809
danielk1977da107192007-05-04 08:32:13 +00004810/*
4811** Copy data from a buffer to a page, or from a page to a buffer.
4812**
4813** pPayload is a pointer to data stored on database page pDbPage.
4814** If argument eOp is false, then nByte bytes of data are copied
4815** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4816** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4817** of data are copied from the buffer pBuf to pPayload.
4818**
4819** SQLITE_OK is returned on success, otherwise an error code.
4820*/
4821static int copyPayload(
4822 void *pPayload, /* Pointer to page data */
4823 void *pBuf, /* Pointer to buffer */
4824 int nByte, /* Number of bytes to copy */
4825 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4826 DbPage *pDbPage /* Page containing pPayload */
4827){
4828 if( eOp ){
4829 /* Copy data from buffer to page (a write operation) */
4830 int rc = sqlite3PagerWrite(pDbPage);
4831 if( rc!=SQLITE_OK ){
4832 return rc;
4833 }
4834 memcpy(pPayload, pBuf, nByte);
4835 }else{
4836 /* Copy data from page to buffer (a read operation) */
4837 memcpy(pBuf, pPayload, nByte);
4838 }
4839 return SQLITE_OK;
4840}
danielk1977d04417962007-05-02 13:16:30 +00004841
4842/*
danielk19779f8d6402007-05-02 17:48:45 +00004843** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004844** for the entry that the pCur cursor is pointing to. The eOp
4845** argument is interpreted as follows:
4846**
4847** 0: The operation is a read. Populate the overflow cache.
4848** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004849**
4850** A total of "amt" bytes are read or written beginning at "offset".
4851** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004852**
drh3bcdfd22009-07-12 02:32:21 +00004853** The content being read or written might appear on the main page
4854** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004855**
drh42e28f12017-01-27 00:31:59 +00004856** If the current cursor entry uses one or more overflow pages
4857** this function may allocate space for and lazily populate
4858** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004859** Subsequent calls use this cache to make seeking to the supplied offset
4860** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004861**
drh42e28f12017-01-27 00:31:59 +00004862** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004863** invalidated if some other cursor writes to the same table, or if
4864** the cursor is moved to a different row. Additionally, in auto-vacuum
4865** mode, the following events may invalidate an overflow page-list cache.
4866**
4867** * An incremental vacuum,
4868** * A commit in auto_vacuum="full" mode,
4869** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004870*/
danielk19779f8d6402007-05-02 17:48:45 +00004871static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004872 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004873 u32 offset, /* Begin reading this far into payload */
4874 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004875 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004876 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004877){
4878 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004879 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004880 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004881 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004882 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004883#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004884 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004885#endif
drh3aac2dd2004-04-26 14:10:20 +00004886
danielk1977da107192007-05-04 08:32:13 +00004887 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004888 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004889 assert( pCur->eState==CURSOR_VALID );
drha7149082021-10-13 20:11:30 +00004890 if( pCur->ix>=pPage->nCell ){
4891 return SQLITE_CORRUPT_PAGE(pPage);
4892 }
drh1fee73e2007-08-29 04:00:57 +00004893 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004894
drh86057612007-06-26 01:04:48 +00004895 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004896 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004897 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004898
drh0b982072016-03-22 14:10:45 +00004899 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004900 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004901 /* Trying to read or write past the end of the data is an error. The
4902 ** conditional above is really:
4903 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4904 ** but is recast into its current form to avoid integer overflow problems
4905 */
daneebf2f52017-11-18 17:30:08 +00004906 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004907 }
danielk1977da107192007-05-04 08:32:13 +00004908
4909 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004910 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004911 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004912 if( a+offset>pCur->info.nLocal ){
4913 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004914 }
drh42e28f12017-01-27 00:31:59 +00004915 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004916 offset = 0;
drha34b6762004-05-07 13:30:42 +00004917 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004918 amt -= a;
drhdd793422001-06-28 01:54:48 +00004919 }else{
drhfa1a98a2004-05-14 19:08:17 +00004920 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004921 }
danielk1977da107192007-05-04 08:32:13 +00004922
dan85753662014-12-11 16:38:18 +00004923
danielk1977da107192007-05-04 08:32:13 +00004924 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004925 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004926 Pgno nextPage;
4927
drhfa1a98a2004-05-14 19:08:17 +00004928 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
drh584e8b72020-07-22 17:12:59 +00004929
drha38c9512014-04-01 01:24:34 +00004930 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004931 **
4932 ** The aOverflow[] array is sized at one entry for each overflow page
4933 ** in the overflow chain. The page number of the first overflow page is
4934 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4935 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004936 */
drh42e28f12017-01-27 00:31:59 +00004937 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004938 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004939 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004940 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004941 ){
dan85753662014-12-11 16:38:18 +00004942 Pgno *aNew = (Pgno*)sqlite3Realloc(
4943 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004944 );
4945 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004946 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004947 }else{
dan5a500af2014-03-11 20:33:04 +00004948 pCur->aOverflow = aNew;
4949 }
4950 }
drhcd645532017-01-20 20:43:14 +00004951 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4952 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004953 }else{
4954 /* If the overflow page-list cache has been allocated and the
4955 ** entry for the first required overflow page is valid, skip
4956 ** directly to it.
4957 */
4958 if( pCur->aOverflow[offset/ovflSize] ){
4959 iIdx = (offset/ovflSize);
4960 nextPage = pCur->aOverflow[iIdx];
4961 offset = (offset%ovflSize);
4962 }
danielk19772dec9702007-05-02 16:48:37 +00004963 }
danielk1977da107192007-05-04 08:32:13 +00004964
drhcd645532017-01-20 20:43:14 +00004965 assert( rc==SQLITE_OK && amt>0 );
4966 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004967 /* If required, populate the overflow page-list cache. */
drh584e8b72020-07-22 17:12:59 +00004968 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
drh42e28f12017-01-27 00:31:59 +00004969 assert( pCur->aOverflow[iIdx]==0
4970 || pCur->aOverflow[iIdx]==nextPage
4971 || CORRUPT_DB );
4972 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004973
danielk1977d04417962007-05-02 13:16:30 +00004974 if( offset>=ovflSize ){
4975 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004976 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004977 ** data is not required. So first try to lookup the overflow
4978 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004979 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004980 */
drha38c9512014-04-01 01:24:34 +00004981 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004982 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004983 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004984 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004985 }else{
danielk1977da107192007-05-04 08:32:13 +00004986 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004987 }
danielk1977da107192007-05-04 08:32:13 +00004988 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004989 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004990 /* Need to read this page properly. It contains some of the
4991 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004992 */
danielk1977cfe9a692004-06-16 12:00:29 +00004993 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004994 if( a + offset > ovflSize ){
4995 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004996 }
danf4ba1092011-10-08 14:57:07 +00004997
4998#ifdef SQLITE_DIRECT_OVERFLOW_READ
4999 /* If all the following are true:
5000 **
5001 ** 1) this is a read operation, and
5002 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00005003 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00005004 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00005005 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00005006 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00005007 **
5008 ** then data can be read directly from the database file into the
5009 ** output buffer, bypassing the page-cache altogether. This speeds
5010 ** up loading large records that span many overflow pages.
5011 */
drh42e28f12017-01-27 00:31:59 +00005012 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00005013 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00005014 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00005015 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00005016 ){
dan09236752018-11-22 19:10:14 +00005017 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00005018 u8 aSave[4];
5019 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00005020 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00005021 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00005022 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
drhb9fc4552019-08-15 00:04:44 +00005023 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
danf4ba1092011-10-08 14:57:07 +00005024 nextPage = get4byte(aWrite);
5025 memcpy(aWrite, aSave, 4);
5026 }else
5027#endif
5028
5029 {
5030 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00005031 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00005032 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00005033 );
danf4ba1092011-10-08 14:57:07 +00005034 if( rc==SQLITE_OK ){
5035 aPayload = sqlite3PagerGetData(pDbPage);
5036 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00005037 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00005038 sqlite3PagerUnref(pDbPage);
5039 offset = 0;
5040 }
5041 }
5042 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00005043 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00005044 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00005045 }
drhcd645532017-01-20 20:43:14 +00005046 if( rc ) break;
5047 iIdx++;
drh2af926b2001-05-15 00:39:25 +00005048 }
drh2af926b2001-05-15 00:39:25 +00005049 }
danielk1977cfe9a692004-06-16 12:00:29 +00005050
danielk1977da107192007-05-04 08:32:13 +00005051 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00005052 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00005053 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00005054 }
danielk1977da107192007-05-04 08:32:13 +00005055 return rc;
drh2af926b2001-05-15 00:39:25 +00005056}
5057
drh72f82862001-05-24 21:06:34 +00005058/*
drhcb3cabd2016-11-25 19:18:28 +00005059** Read part of the payload for the row at which that cursor pCur is currently
5060** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00005061** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00005062**
drhcb3cabd2016-11-25 19:18:28 +00005063** pCur can be pointing to either a table or an index b-tree.
5064** If pointing to a table btree, then the content section is read. If
5065** pCur is pointing to an index b-tree then the key section is read.
5066**
5067** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5068** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5069** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00005070**
drh3aac2dd2004-04-26 14:10:20 +00005071** Return SQLITE_OK on success or an error code if anything goes
5072** wrong. An error is returned if "offset+amt" is larger than
5073** the available payload.
drh72f82862001-05-24 21:06:34 +00005074*/
drhcb3cabd2016-11-25 19:18:28 +00005075int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00005076 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00005077 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005078 assert( pCur->iPage>=0 && pCur->pPage );
drh5d1a8722009-07-22 18:07:40 +00005079 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00005080}
drh83ec2762017-01-26 16:54:47 +00005081
5082/*
5083** This variant of sqlite3BtreePayload() works even if the cursor has not
5084** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5085** interface.
5086*/
danielk19773588ceb2008-06-10 17:30:26 +00005087#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00005088static SQLITE_NOINLINE int accessPayloadChecked(
5089 BtCursor *pCur,
5090 u32 offset,
5091 u32 amt,
5092 void *pBuf
5093){
drhcb3cabd2016-11-25 19:18:28 +00005094 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00005095 if ( pCur->eState==CURSOR_INVALID ){
5096 return SQLITE_ABORT;
5097 }
dan7a2347e2016-01-07 16:43:54 +00005098 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00005099 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00005100 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5101}
5102int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5103 if( pCur->eState==CURSOR_VALID ){
5104 assert( cursorOwnsBtShared(pCur) );
5105 return accessPayload(pCur, offset, amt, pBuf, 0);
5106 }else{
5107 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00005108 }
drh2af926b2001-05-15 00:39:25 +00005109}
drhcb3cabd2016-11-25 19:18:28 +00005110#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00005111
drh72f82862001-05-24 21:06:34 +00005112/*
drh0e1c19e2004-05-11 00:58:56 +00005113** Return a pointer to payload information from the entry that the
5114** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00005115** the key if index btrees (pPage->intKey==0) and is the data for
5116** table btrees (pPage->intKey==1). The number of bytes of available
5117** key/data is written into *pAmt. If *pAmt==0, then the value
5118** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00005119**
5120** This routine is an optimization. It is common for the entire key
5121** and data to fit on the local page and for there to be no overflow
5122** pages. When that is so, this routine can be used to access the
5123** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00005124** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00005125** the key/data and copy it into a preallocated buffer.
5126**
5127** The pointer returned by this routine looks directly into the cached
5128** page of the database. The data might change or move the next time
5129** any btree routine is called.
5130*/
drh2a8d2262013-12-09 20:43:22 +00005131static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00005132 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00005133 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00005134){
danf2f72a02017-10-19 15:17:38 +00005135 int amt;
drh352a35a2017-08-15 03:46:47 +00005136 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00005137 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00005138 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00005139 assert( cursorOwnsBtShared(pCur) );
drhcd789f92021-10-11 09:39:42 +00005140 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
drh86dd3712014-03-25 11:00:21 +00005141 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00005142 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5143 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00005144 amt = pCur->info.nLocal;
5145 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5146 /* There is too little space on the page for the expected amount
5147 ** of local content. Database must be corrupt. */
5148 assert( CORRUPT_DB );
5149 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5150 }
5151 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00005152 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00005153}
5154
5155
5156/*
drhe51c44f2004-05-30 20:46:09 +00005157** For the entry that cursor pCur is point to, return as
5158** many bytes of the key or data as are available on the local
5159** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005160**
5161** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005162** or be destroyed on the next call to any Btree routine,
5163** including calls from other threads against the same cache.
5164** Hence, a mutex on the BtShared should be held prior to calling
5165** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005166**
5167** These routines is used to get quick access to key and data
5168** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005169*/
drha7c90c42016-06-04 20:37:10 +00005170const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005171 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005172}
5173
5174
5175/*
drh8178a752003-01-05 21:41:40 +00005176** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005177** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005178**
5179** This function returns SQLITE_CORRUPT if the page-header flags field of
5180** the new child page does not match the flags field of the parent (i.e.
5181** if an intkey page appears to be the parent of a non-intkey page, or
5182** vice-versa).
drh72f82862001-05-24 21:06:34 +00005183*/
drh3aac2dd2004-04-26 14:10:20 +00005184static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005185 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005186
dan7a2347e2016-01-07 16:43:54 +00005187 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005188 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005189 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005190 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005191 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5192 return SQLITE_CORRUPT_BKPT;
5193 }
drh271efa52004-05-30 19:19:05 +00005194 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005195 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005196 pCur->aiIdx[pCur->iPage] = pCur->ix;
5197 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005198 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005199 pCur->iPage++;
5200 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005201}
5202
drhd879e3e2017-02-13 13:35:55 +00005203#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005204/*
5205** Page pParent is an internal (non-leaf) tree page. This function
5206** asserts that page number iChild is the left-child if the iIdx'th
5207** cell in page pParent. Or, if iIdx is equal to the total number of
5208** cells in pParent, that page number iChild is the right-child of
5209** the page.
5210*/
5211static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005212 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5213 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005214 assert( iIdx<=pParent->nCell );
5215 if( iIdx==pParent->nCell ){
5216 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5217 }else{
5218 assert( get4byte(findCell(pParent, iIdx))==iChild );
5219 }
5220}
5221#else
5222# define assertParentIndex(x,y,z)
5223#endif
5224
drh72f82862001-05-24 21:06:34 +00005225/*
drh5e2f8b92001-05-28 00:41:15 +00005226** Move the cursor up to the parent page.
5227**
5228** pCur->idx is set to the cell index that contains the pointer
5229** to the page we are coming from. If we are coming from the
5230** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005231** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005232*/
danielk197730548662009-07-09 05:07:37 +00005233static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005234 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005235 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005236 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005237 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005238 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005239 assertParentIndex(
5240 pCur->apPage[pCur->iPage-1],
5241 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005242 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005243 );
dan6c2688c2012-01-12 15:05:03 +00005244 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005245 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005246 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005247 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005248 pLeaf = pCur->pPage;
5249 pCur->pPage = pCur->apPage[--pCur->iPage];
5250 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005251}
5252
5253/*
danielk19778f880a82009-07-13 09:41:45 +00005254** Move the cursor to point to the root page of its b-tree structure.
5255**
5256** If the table has a virtual root page, then the cursor is moved to point
5257** to the virtual root page instead of the actual root page. A table has a
5258** virtual root page when the actual root page contains no cells and a
5259** single child page. This can only happen with the table rooted at page 1.
5260**
5261** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005262** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5263** the cursor is set to point to the first cell located on the root
5264** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005265**
5266** If this function returns successfully, it may be assumed that the
5267** page-header flags indicate that the [virtual] root-page is the expected
5268** kind of b-tree page (i.e. if when opening the cursor the caller did not
5269** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5270** indicating a table b-tree, or if the caller did specify a KeyInfo
5271** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5272** b-tree).
drh72f82862001-05-24 21:06:34 +00005273*/
drh5e2f8b92001-05-28 00:41:15 +00005274static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005275 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005276 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005277
dan7a2347e2016-01-07 16:43:54 +00005278 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005279 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5280 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5281 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005282 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005283 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005284
5285 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005286 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005287 releasePageNotNull(pCur->pPage);
5288 while( --pCur->iPage ){
5289 releasePageNotNull(pCur->apPage[pCur->iPage]);
5290 }
drh7f8f6592021-12-13 19:59:55 +00005291 pRoot = pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005292 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005293 }
dana205a482011-08-27 18:48:57 +00005294 }else if( pCur->pgnoRoot==0 ){
5295 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005296 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005297 }else{
drh28f58dd2015-06-27 19:45:03 +00005298 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005299 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5300 if( pCur->eState==CURSOR_FAULT ){
5301 assert( pCur->skipNext!=SQLITE_OK );
5302 return pCur->skipNext;
5303 }
5304 sqlite3BtreeClearCursor(pCur);
5305 }
drh352a35a2017-08-15 03:46:47 +00005306 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005307 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005308 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005309 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005310 return rc;
drh777e4c42006-01-13 04:31:58 +00005311 }
danielk1977172114a2009-07-07 15:47:12 +00005312 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005313 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005314 }
drh352a35a2017-08-15 03:46:47 +00005315 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005316 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005317
5318 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5319 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5320 ** NULL, the caller expects a table b-tree. If this is not the case,
5321 ** return an SQLITE_CORRUPT error.
5322 **
5323 ** Earlier versions of SQLite assumed that this test could not fail
5324 ** if the root page was already loaded when this function was called (i.e.
5325 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5326 ** in such a way that page pRoot is linked into a second b-tree table
5327 ** (or the freelist). */
5328 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5329 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005330 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005331 }
danielk19778f880a82009-07-13 09:41:45 +00005332
drh7ad3eb62016-10-24 01:01:09 +00005333skip_init:
drh75e96b32017-04-01 00:20:06 +00005334 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005335 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005336 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005337
drh4e8fe3f2013-12-06 23:25:27 +00005338 if( pRoot->nCell>0 ){
5339 pCur->eState = CURSOR_VALID;
5340 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005341 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005342 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005343 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005344 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005345 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005346 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005347 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005348 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005349 }
5350 return rc;
drh72f82862001-05-24 21:06:34 +00005351}
drh2af926b2001-05-15 00:39:25 +00005352
drh5e2f8b92001-05-28 00:41:15 +00005353/*
5354** Move the cursor down to the left-most leaf entry beneath the
5355** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005356**
5357** The left-most leaf is the one with the smallest key - the first
5358** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005359*/
5360static int moveToLeftmost(BtCursor *pCur){
5361 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005362 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005363 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005364
dan7a2347e2016-01-07 16:43:54 +00005365 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005366 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005367 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005368 assert( pCur->ix<pPage->nCell );
5369 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005370 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005371 }
drhd677b3d2007-08-20 22:48:41 +00005372 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005373}
5374
drh2dcc9aa2002-12-04 13:40:25 +00005375/*
5376** Move the cursor down to the right-most leaf entry beneath the
5377** page to which it is currently pointing. Notice the difference
5378** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5379** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5380** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005381**
5382** The right-most entry is the one with the largest key - the last
5383** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005384*/
5385static int moveToRightmost(BtCursor *pCur){
5386 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005387 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005388 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005389
dan7a2347e2016-01-07 16:43:54 +00005390 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005391 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005392 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005393 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005394 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005395 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005396 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005397 }
drh75e96b32017-04-01 00:20:06 +00005398 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005399 assert( pCur->info.nSize==0 );
5400 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5401 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005402}
5403
drh5e00f6c2001-09-13 13:46:56 +00005404/* Move the cursor to the first entry in the table. Return SQLITE_OK
5405** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005406** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005407*/
drh3aac2dd2004-04-26 14:10:20 +00005408int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005409 int rc;
drhd677b3d2007-08-20 22:48:41 +00005410
dan7a2347e2016-01-07 16:43:54 +00005411 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005412 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005413 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005414 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005415 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005416 *pRes = 0;
5417 rc = moveToLeftmost(pCur);
5418 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005419 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005420 *pRes = 1;
5421 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005422 }
drh5e00f6c2001-09-13 13:46:56 +00005423 return rc;
5424}
drh5e2f8b92001-05-28 00:41:15 +00005425
drh9562b552002-02-19 15:00:07 +00005426/* Move the cursor to the last entry in the table. Return SQLITE_OK
5427** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005428** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005429*/
drh3aac2dd2004-04-26 14:10:20 +00005430int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005431 int rc;
drhd677b3d2007-08-20 22:48:41 +00005432
dan7a2347e2016-01-07 16:43:54 +00005433 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005434 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005435
5436 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005437 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005438#ifdef SQLITE_DEBUG
5439 /* This block serves to assert() that the cursor really does point
5440 ** to the last entry in the b-tree. */
5441 int ii;
5442 for(ii=0; ii<pCur->iPage; ii++){
5443 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5444 }
drh319deef2021-04-04 23:56:15 +00005445 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5446 testcase( pCur->ix!=pCur->pPage->nCell-1 );
5447 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
drh352a35a2017-08-15 03:46:47 +00005448 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005449#endif
drheb265342019-05-08 23:55:04 +00005450 *pRes = 0;
danielk19773f632d52009-05-02 10:03:09 +00005451 return SQLITE_OK;
5452 }
5453
drh9562b552002-02-19 15:00:07 +00005454 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005455 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005456 assert( pCur->eState==CURSOR_VALID );
5457 *pRes = 0;
5458 rc = moveToRightmost(pCur);
5459 if( rc==SQLITE_OK ){
5460 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005461 }else{
drh44548e72017-08-14 18:13:52 +00005462 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005463 }
drh44548e72017-08-14 18:13:52 +00005464 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005465 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005466 *pRes = 1;
5467 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005468 }
drh9562b552002-02-19 15:00:07 +00005469 return rc;
5470}
5471
drh42a410d2021-06-19 18:32:20 +00005472/* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5473** table near the key intKey. Return a success code.
drh3aac2dd2004-04-26 14:10:20 +00005474**
drh5e2f8b92001-05-28 00:41:15 +00005475** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005476** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005477** were present. The cursor might point to an entry that comes
5478** before or after the key.
5479**
drh64022502009-01-09 14:11:04 +00005480** An integer is written into *pRes which is the result of
5481** comparing the key with the entry to which the cursor is
5482** pointing. The meaning of the integer written into
5483** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005484**
5485** *pRes<0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005486** is smaller than intKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005487** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005488**
5489** *pRes==0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005490** exactly matches intKey.
drhbd03cae2001-06-02 02:40:57 +00005491**
5492** *pRes>0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005493** is larger than intKey.
drha059ad02001-04-17 20:09:11 +00005494*/
drh42a410d2021-06-19 18:32:20 +00005495int sqlite3BtreeTableMoveto(
drhe63d9992008-08-13 19:11:48 +00005496 BtCursor *pCur, /* The cursor to be moved */
drhe63d9992008-08-13 19:11:48 +00005497 i64 intKey, /* The table key */
5498 int biasRight, /* If true, bias the search to the high end */
5499 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005500){
drh72f82862001-05-24 21:06:34 +00005501 int rc;
drhd677b3d2007-08-20 22:48:41 +00005502
dan7a2347e2016-01-07 16:43:54 +00005503 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005504 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005505 assert( pRes );
drh42a410d2021-06-19 18:32:20 +00005506 assert( pCur->pKeyInfo==0 );
5507 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
drha2c20e42008-03-29 16:01:04 +00005508
5509 /* If the cursor is already positioned at the point we are trying
5510 ** to move to, then just return without doing any work */
drh42a410d2021-06-19 18:32:20 +00005511 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
drhe63d9992008-08-13 19:11:48 +00005512 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005513 *pRes = 0;
5514 return SQLITE_OK;
5515 }
drh451e76d2017-01-21 16:54:19 +00005516 if( pCur->info.nKey<intKey ){
5517 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5518 *pRes = -1;
5519 return SQLITE_OK;
5520 }
drh7f11afa2017-01-21 21:47:54 +00005521 /* If the requested key is one more than the previous key, then
5522 ** try to get there using sqlite3BtreeNext() rather than a full
5523 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005524 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005525 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005526 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005527 rc = sqlite3BtreeNext(pCur, 0);
5528 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005529 getCellInfo(pCur);
5530 if( pCur->info.nKey==intKey ){
5531 return SQLITE_OK;
5532 }
drhe85e1da2021-10-01 21:01:07 +00005533 }else if( rc!=SQLITE_DONE ){
drh2ab792e2017-05-30 18:34:07 +00005534 return rc;
drh451e76d2017-01-21 16:54:19 +00005535 }
5536 }
drha2c20e42008-03-29 16:01:04 +00005537 }
5538 }
5539
drh37ccfcf2020-08-31 18:49:04 +00005540#ifdef SQLITE_DEBUG
5541 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5542#endif
5543
drh42a410d2021-06-19 18:32:20 +00005544 rc = moveToRoot(pCur);
5545 if( rc ){
5546 if( rc==SQLITE_EMPTY ){
5547 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5548 *pRes = -1;
5549 return SQLITE_OK;
5550 }
5551 return rc;
dan1fed5da2014-02-25 21:01:25 +00005552 }
drh42a410d2021-06-19 18:32:20 +00005553 assert( pCur->pPage );
5554 assert( pCur->pPage->isInit );
5555 assert( pCur->eState==CURSOR_VALID );
5556 assert( pCur->pPage->nCell > 0 );
5557 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5558 assert( pCur->curIntKey );
5559
5560 for(;;){
5561 int lwr, upr, idx, c;
5562 Pgno chldPg;
5563 MemPage *pPage = pCur->pPage;
5564 u8 *pCell; /* Pointer to current cell in pPage */
5565
5566 /* pPage->nCell must be greater than zero. If this is the root-page
5567 ** the cursor would have been INVALID above and this for(;;) loop
5568 ** not run. If this is not the root-page, then the moveToChild() routine
5569 ** would have already detected db corruption. Similarly, pPage must
5570 ** be the right kind (index or table) of b-tree page. Otherwise
5571 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5572 assert( pPage->nCell>0 );
5573 assert( pPage->intKey );
5574 lwr = 0;
5575 upr = pPage->nCell-1;
5576 assert( biasRight==0 || biasRight==1 );
5577 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh42a410d2021-06-19 18:32:20 +00005578 for(;;){
5579 i64 nCellKey;
5580 pCell = findCellPastPtr(pPage, idx);
5581 if( pPage->intKeyLeaf ){
5582 while( 0x80 <= *(pCell++) ){
5583 if( pCell>=pPage->aDataEnd ){
5584 return SQLITE_CORRUPT_PAGE(pPage);
5585 }
5586 }
5587 }
5588 getVarint(pCell, (u64*)&nCellKey);
5589 if( nCellKey<intKey ){
5590 lwr = idx+1;
5591 if( lwr>upr ){ c = -1; break; }
5592 }else if( nCellKey>intKey ){
5593 upr = idx-1;
5594 if( lwr>upr ){ c = +1; break; }
5595 }else{
5596 assert( nCellKey==intKey );
5597 pCur->ix = (u16)idx;
5598 if( !pPage->leaf ){
5599 lwr = idx;
5600 goto moveto_table_next_layer;
5601 }else{
5602 pCur->curFlags |= BTCF_ValidNKey;
5603 pCur->info.nKey = nCellKey;
5604 pCur->info.nSize = 0;
5605 *pRes = 0;
5606 return SQLITE_OK;
5607 }
5608 }
5609 assert( lwr+upr>=0 );
5610 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
5611 }
5612 assert( lwr==upr+1 || !pPage->leaf );
5613 assert( pPage->isInit );
5614 if( pPage->leaf ){
5615 assert( pCur->ix<pCur->pPage->nCell );
5616 pCur->ix = (u16)idx;
5617 *pRes = c;
5618 rc = SQLITE_OK;
5619 goto moveto_table_finish;
5620 }
5621moveto_table_next_layer:
5622 if( lwr>=pPage->nCell ){
5623 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5624 }else{
5625 chldPg = get4byte(findCell(pPage, lwr));
5626 }
5627 pCur->ix = (u16)lwr;
5628 rc = moveToChild(pCur, chldPg);
5629 if( rc ) break;
5630 }
5631moveto_table_finish:
5632 pCur->info.nSize = 0;
5633 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5634 return rc;
5635}
5636
5637/* Move the cursor so that it points to an entry in an index table
5638** near the key pIdxKey. Return a success code.
5639**
5640** If an exact match is not found, then the cursor is always
5641** left pointing at a leaf page which would hold the entry if it
5642** were present. The cursor might point to an entry that comes
5643** before or after the key.
5644**
5645** An integer is written into *pRes which is the result of
5646** comparing the key with the entry to which the cursor is
5647** pointing. The meaning of the integer written into
5648** *pRes is as follows:
5649**
5650** *pRes<0 The cursor is left pointing at an entry that
5651** is smaller than pIdxKey or if the table is empty
5652** and the cursor is therefore left point to nothing.
5653**
5654** *pRes==0 The cursor is left pointing at an entry that
5655** exactly matches pIdxKey.
5656**
5657** *pRes>0 The cursor is left pointing at an entry that
5658** is larger than pIdxKey.
5659**
5660** The pIdxKey->eqSeen field is set to 1 if there
5661** exists an entry in the table that exactly matches pIdxKey.
5662*/
5663int sqlite3BtreeIndexMoveto(
5664 BtCursor *pCur, /* The cursor to be moved */
5665 UnpackedRecord *pIdxKey, /* Unpacked index key */
5666 int *pRes /* Write search results here */
5667){
5668 int rc;
5669 RecordCompare xRecordCompare;
5670
5671 assert( cursorOwnsBtShared(pCur) );
5672 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5673 assert( pRes );
5674 assert( pCur->pKeyInfo!=0 );
5675
5676#ifdef SQLITE_DEBUG
5677 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5678#endif
5679
5680 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5681 pIdxKey->errCode = 0;
5682 assert( pIdxKey->default_rc==1
5683 || pIdxKey->default_rc==0
5684 || pIdxKey->default_rc==-1
5685 );
dan1fed5da2014-02-25 21:01:25 +00005686
drh5e2f8b92001-05-28 00:41:15 +00005687 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005688 if( rc ){
drh44548e72017-08-14 18:13:52 +00005689 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005690 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005691 *pRes = -1;
5692 return SQLITE_OK;
5693 }
drhd677b3d2007-08-20 22:48:41 +00005694 return rc;
5695 }
drh352a35a2017-08-15 03:46:47 +00005696 assert( pCur->pPage );
5697 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005698 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005699 assert( pCur->pPage->nCell > 0 );
5700 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005701 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005702 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005703 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005704 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005705 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005706 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005707
5708 /* pPage->nCell must be greater than zero. If this is the root-page
5709 ** the cursor would have been INVALID above and this for(;;) loop
5710 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005711 ** would have already detected db corruption. Similarly, pPage must
5712 ** be the right kind (index or table) of b-tree page. Otherwise
5713 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005714 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005715 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005716 lwr = 0;
5717 upr = pPage->nCell-1;
drh42a410d2021-06-19 18:32:20 +00005718 idx = upr>>1; /* idx = (lwr+upr)/2; */
drh42a410d2021-06-19 18:32:20 +00005719 for(;;){
5720 int nCell; /* Size of the pCell cell in bytes */
5721 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005722
drh42a410d2021-06-19 18:32:20 +00005723 /* The maximum supported page-size is 65536 bytes. This means that
5724 ** the maximum number of record bytes stored on an index B-Tree
5725 ** page is less than 16384 bytes and may be stored as a 2-byte
5726 ** varint. This information is used to attempt to avoid parsing
5727 ** the entire cell by checking for the cases where the record is
5728 ** stored entirely within the b-tree page by inspecting the first
5729 ** 2 bytes of the cell.
5730 */
5731 nCell = pCell[0];
5732 if( nCell<=pPage->max1bytePayload ){
5733 /* This branch runs if the record-size field of the cell is a
5734 ** single byte varint and the record fits entirely on the main
5735 ** b-tree page. */
5736 testcase( pCell+nCell+1==pPage->aDataEnd );
5737 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5738 }else if( !(pCell[1] & 0x80)
5739 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5740 ){
5741 /* The record-size field is a 2 byte varint and the record
5742 ** fits entirely on the main b-tree page. */
5743 testcase( pCell+nCell+2==pPage->aDataEnd );
5744 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5745 }else{
5746 /* The record flows over onto one or more overflow pages. In
5747 ** this case the whole cell needs to be parsed, a buffer allocated
5748 ** and accessPayload() used to retrieve the record into the
5749 ** buffer before VdbeRecordCompare() can be called.
5750 **
5751 ** If the record is corrupt, the xRecordCompare routine may read
5752 ** up to two varints past the end of the buffer. An extra 18
5753 ** bytes of padding is allocated at the end of the buffer in
5754 ** case this happens. */
5755 void *pCellKey;
5756 u8 * const pCellBody = pCell - pPage->childPtrSize;
5757 const int nOverrun = 18; /* Size of the overrun padding */
5758 pPage->xParseCell(pPage, pCellBody, &pCur->info);
5759 nCell = (int)pCur->info.nKey;
5760 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5761 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5762 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5763 testcase( nCell==2 ); /* Minimum legal index key size */
5764 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5765 rc = SQLITE_CORRUPT_PAGE(pPage);
5766 goto moveto_index_finish;
5767 }
5768 pCellKey = sqlite3Malloc( nCell+nOverrun );
5769 if( pCellKey==0 ){
5770 rc = SQLITE_NOMEM_BKPT;
5771 goto moveto_index_finish;
5772 }
5773 pCur->ix = (u16)idx;
5774 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5775 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5776 pCur->curFlags &= ~BTCF_ValidOvfl;
5777 if( rc ){
drhfacf0302008-06-17 15:12:00 +00005778 sqlite3_free(pCellKey);
drh42a410d2021-06-19 18:32:20 +00005779 goto moveto_index_finish;
drhe51c44f2004-05-30 20:46:09 +00005780 }
drh42a410d2021-06-19 18:32:20 +00005781 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5782 sqlite3_free(pCellKey);
drh72f82862001-05-24 21:06:34 +00005783 }
drh42a410d2021-06-19 18:32:20 +00005784 assert(
5785 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5786 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5787 );
5788 if( c<0 ){
5789 lwr = idx+1;
5790 }else if( c>0 ){
5791 upr = idx-1;
5792 }else{
5793 assert( c==0 );
5794 *pRes = 0;
5795 rc = SQLITE_OK;
5796 pCur->ix = (u16)idx;
5797 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5798 goto moveto_index_finish;
5799 }
5800 if( lwr>upr ) break;
5801 assert( lwr+upr>=0 );
5802 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005803 }
drhb07028f2011-10-14 21:49:18 +00005804 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005805 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005806 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005807 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005808 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005809 *pRes = c;
5810 rc = SQLITE_OK;
drh42a410d2021-06-19 18:32:20 +00005811 goto moveto_index_finish;
drhebf10b12013-11-25 17:38:26 +00005812 }
drhebf10b12013-11-25 17:38:26 +00005813 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005814 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005815 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005816 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005817 }
drh75e96b32017-04-01 00:20:06 +00005818 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005819 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005820 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005821 }
drh42a410d2021-06-19 18:32:20 +00005822moveto_index_finish:
drhd2022b02013-11-25 16:23:52 +00005823 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005824 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005825 return rc;
5826}
5827
drhd677b3d2007-08-20 22:48:41 +00005828
drh72f82862001-05-24 21:06:34 +00005829/*
drhc39e0002004-05-07 23:50:57 +00005830** Return TRUE if the cursor is not pointing at an entry of the table.
5831**
5832** TRUE will be returned after a call to sqlite3BtreeNext() moves
5833** past the last entry in the table or sqlite3BtreePrev() moves past
5834** the first entry. TRUE is also returned if the table is empty.
5835*/
5836int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005837 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5838 ** have been deleted? This API will need to change to return an error code
5839 ** as well as the boolean result value.
5840 */
5841 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005842}
5843
5844/*
drh5e98e832017-02-17 19:24:06 +00005845** Return an estimate for the number of rows in the table that pCur is
5846** pointing to. Return a negative number if no estimate is currently
5847** available.
5848*/
5849i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5850 i64 n;
5851 u8 i;
5852
5853 assert( cursorOwnsBtShared(pCur) );
5854 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005855
5856 /* Currently this interface is only called by the OP_IfSmaller
5857 ** opcode, and it that case the cursor will always be valid and
5858 ** will always point to a leaf node. */
5859 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005860 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005861
drh352a35a2017-08-15 03:46:47 +00005862 n = pCur->pPage->nCell;
5863 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005864 n *= pCur->apPage[i]->nCell;
5865 }
5866 return n;
5867}
5868
5869/*
drh2ab792e2017-05-30 18:34:07 +00005870** Advance the cursor to the next entry in the database.
5871** Return value:
5872**
5873** SQLITE_OK success
5874** SQLITE_DONE cursor is already pointing at the last element
5875** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005876**
drhee6438d2014-09-01 13:29:32 +00005877** The main entry point is sqlite3BtreeNext(). That routine is optimized
5878** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5879** to the next cell on the current page. The (slower) btreeNext() helper
5880** routine is called when it is necessary to move to a different page or
5881** to restore the cursor.
5882**
drh89997982017-07-11 18:11:33 +00005883** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5884** cursor corresponds to an SQL index and this routine could have been
5885** skipped if the SQL index had been a unique index. The F argument
5886** is a hint to the implement. SQLite btree implementation does not use
5887** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005888*/
drh89997982017-07-11 18:11:33 +00005889static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005890 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005891 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005892 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005893
dan7a2347e2016-01-07 16:43:54 +00005894 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00005895 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005896 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005897 rc = restoreCursorPosition(pCur);
5898 if( rc!=SQLITE_OK ){
5899 return rc;
5900 }
5901 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005902 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005903 }
drh0c873bf2019-01-28 00:42:06 +00005904 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00005905 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005906 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005907 }
danielk1977da184232006-01-05 11:34:32 +00005908 }
danielk1977da184232006-01-05 11:34:32 +00005909
drh352a35a2017-08-15 03:46:47 +00005910 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005911 idx = ++pCur->ix;
drha957e222020-09-30 00:48:45 +00005912 if( !pPage->isInit || sqlite3FaultSim(412) ){
drhf3cd0c82018-06-08 19:13:57 +00005913 /* The only known way for this to happen is for there to be a
5914 ** recursive SQL function that does a DELETE operation as part of a
5915 ** SELECT which deletes content out from under an active cursor
5916 ** in a corrupt database file where the table being DELETE-ed from
5917 ** has pages in common with the table being queried. See TH3
5918 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5919 ** example. */
5920 return SQLITE_CORRUPT_BKPT;
5921 }
danbb246c42012-01-12 14:25:55 +00005922
danielk197771d5d2c2008-09-29 11:49:47 +00005923 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005924 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005925 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005926 if( rc ) return rc;
5927 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005928 }
drh5e2f8b92001-05-28 00:41:15 +00005929 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005930 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005931 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005932 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005933 }
danielk197730548662009-07-09 05:07:37 +00005934 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005935 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005936 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005937 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005938 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005939 }else{
drhee6438d2014-09-01 13:29:32 +00005940 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005941 }
drh8178a752003-01-05 21:41:40 +00005942 }
drh3aac2dd2004-04-26 14:10:20 +00005943 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005944 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005945 }else{
5946 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005947 }
drh72f82862001-05-24 21:06:34 +00005948}
drh2ab792e2017-05-30 18:34:07 +00005949int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005950 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005951 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005952 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005953 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005954 pCur->info.nSize = 0;
5955 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005956 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005957 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005958 if( (++pCur->ix)>=pPage->nCell ){
5959 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005960 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005961 }
5962 if( pPage->leaf ){
5963 return SQLITE_OK;
5964 }else{
5965 return moveToLeftmost(pCur);
5966 }
5967}
drh72f82862001-05-24 21:06:34 +00005968
drh3b7511c2001-05-26 13:15:44 +00005969/*
drh2ab792e2017-05-30 18:34:07 +00005970** Step the cursor to the back to the previous entry in the database.
5971** Return values:
5972**
5973** SQLITE_OK success
5974** SQLITE_DONE the cursor is already on the first element of the table
5975** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005976**
drhee6438d2014-09-01 13:29:32 +00005977** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5978** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005979** to the previous cell on the current page. The (slower) btreePrevious()
5980** helper routine is called when it is necessary to move to a different page
5981** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005982**
drh89997982017-07-11 18:11:33 +00005983** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5984** the cursor corresponds to an SQL index and this routine could have been
5985** skipped if the SQL index had been a unique index. The F argument is a
5986** hint to the implement. The native SQLite btree implementation does not
5987** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005988*/
drh89997982017-07-11 18:11:33 +00005989static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005990 int rc;
drh8178a752003-01-05 21:41:40 +00005991 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005992
dan7a2347e2016-01-07 16:43:54 +00005993 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005994 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5995 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005996 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005997 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005998 if( rc!=SQLITE_OK ){
5999 return rc;
drhf66f26a2013-08-19 20:04:10 +00006000 }
6001 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00006002 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00006003 }
drh0c873bf2019-01-28 00:42:06 +00006004 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00006005 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00006006 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00006007 }
danielk1977da184232006-01-05 11:34:32 +00006008 }
danielk1977da184232006-01-05 11:34:32 +00006009
drh352a35a2017-08-15 03:46:47 +00006010 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00006011 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00006012 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00006013 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00006014 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00006015 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00006016 rc = moveToRightmost(pCur);
6017 }else{
drh75e96b32017-04-01 00:20:06 +00006018 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00006019 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00006020 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00006021 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00006022 }
danielk197730548662009-07-09 05:07:37 +00006023 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00006024 }
drhee6438d2014-09-01 13:29:32 +00006025 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00006026 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006027
drh75e96b32017-04-01 00:20:06 +00006028 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00006029 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00006030 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00006031 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00006032 }else{
6033 rc = SQLITE_OK;
6034 }
drh2dcc9aa2002-12-04 13:40:25 +00006035 }
drh2dcc9aa2002-12-04 13:40:25 +00006036 return rc;
6037}
drh2ab792e2017-05-30 18:34:07 +00006038int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00006039 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00006040 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00006041 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00006042 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
6043 pCur->info.nSize = 0;
6044 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00006045 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00006046 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00006047 ){
drh89997982017-07-11 18:11:33 +00006048 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00006049 }
drh75e96b32017-04-01 00:20:06 +00006050 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00006051 return SQLITE_OK;
6052}
drh2dcc9aa2002-12-04 13:40:25 +00006053
6054/*
drh3b7511c2001-05-26 13:15:44 +00006055** Allocate a new page from the database file.
6056**
danielk19773b8a05f2007-03-19 17:44:26 +00006057** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00006058** has already been called on the new page.) The new page has also
6059** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00006060** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00006061**
6062** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00006063** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00006064**
drh82e647d2013-03-02 03:25:55 +00006065** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00006066** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00006067** attempt to keep related pages close to each other in the database file,
6068** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00006069**
drh82e647d2013-03-02 03:25:55 +00006070** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6071** anywhere on the free-list, then it is guaranteed to be returned. If
6072** eMode is BTALLOC_LT then the page returned will be less than or equal
6073** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
6074** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00006075*/
drh4f0c5872007-03-26 22:05:01 +00006076static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00006077 BtShared *pBt, /* The btree */
6078 MemPage **ppPage, /* Store pointer to the allocated page here */
6079 Pgno *pPgno, /* Store the page number here */
6080 Pgno nearby, /* Search for a page near this one */
6081 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006082){
drh3aac2dd2004-04-26 14:10:20 +00006083 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00006084 int rc;
drh35cd6432009-06-05 14:17:21 +00006085 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00006086 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00006087 MemPage *pTrunk = 0;
6088 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00006089 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00006090
drh1fee73e2007-08-29 04:00:57 +00006091 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00006092 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00006093 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00006094 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00006095 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
6096 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00006097 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00006098 testcase( n==mxPage-1 );
6099 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00006100 return SQLITE_CORRUPT_BKPT;
6101 }
drh3aac2dd2004-04-26 14:10:20 +00006102 if( n>0 ){
drh91025292004-05-03 19:49:32 +00006103 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006104 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006105 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00006106 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006107
drh82e647d2013-03-02 03:25:55 +00006108 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006109 ** shows that the page 'nearby' is somewhere on the free-list, then
6110 ** the entire-list will be searched for that page.
6111 */
6112#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006113 if( eMode==BTALLOC_EXACT ){
drh41af5b32020-07-31 02:07:16 +00006114 if( nearby<=mxPage ){
dan51f0b6d2013-02-22 20:16:34 +00006115 u8 eType;
6116 assert( nearby>0 );
6117 assert( pBt->autoVacuum );
6118 rc = ptrmapGet(pBt, nearby, &eType, 0);
6119 if( rc ) return rc;
6120 if( eType==PTRMAP_FREEPAGE ){
6121 searchList = 1;
6122 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006123 }
dan51f0b6d2013-02-22 20:16:34 +00006124 }else if( eMode==BTALLOC_LE ){
6125 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006126 }
6127#endif
6128
6129 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6130 ** first free-list trunk page. iPrevTrunk is initially 1.
6131 */
danielk19773b8a05f2007-03-19 17:44:26 +00006132 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00006133 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00006134 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006135
6136 /* The code within this loop is run only once if the 'searchList' variable
6137 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00006138 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6139 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00006140 */
6141 do {
6142 pPrevTrunk = pTrunk;
6143 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00006144 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6145 ** is the page number of the next freelist trunk page in the list or
6146 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006147 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00006148 }else{
drh113762a2014-11-19 16:36:25 +00006149 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6150 ** stores the page number of the first page of the freelist, or zero if
6151 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006152 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00006153 }
drhdf35a082009-07-09 02:24:35 +00006154 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00006155 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00006156 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00006157 }else{
drh7e8c6f12015-05-28 03:28:27 +00006158 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00006159 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006160 if( rc ){
drhd3627af2006-12-18 18:34:51 +00006161 pTrunk = 0;
6162 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006163 }
drhb07028f2011-10-14 21:49:18 +00006164 assert( pTrunk!=0 );
6165 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00006166 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6167 ** is the number of leaf page pointers to follow. */
6168 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006169 if( k==0 && !searchList ){
6170 /* The trunk has no leaves and the list is not being searched.
6171 ** So extract the trunk page itself and use it as the newly
6172 ** allocated page */
6173 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006174 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006175 if( rc ){
6176 goto end_allocate_page;
6177 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006178 *pPgno = iTrunk;
6179 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6180 *ppPage = pTrunk;
6181 pTrunk = 0;
6182 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00006183 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006184 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00006185 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00006186 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006187#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006188 }else if( searchList
6189 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6190 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006191 /* The list is being searched and this trunk page is the page
6192 ** to allocate, regardless of whether it has leaves.
6193 */
dan51f0b6d2013-02-22 20:16:34 +00006194 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006195 *ppPage = pTrunk;
6196 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006197 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006198 if( rc ){
6199 goto end_allocate_page;
6200 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006201 if( k==0 ){
6202 if( !pPrevTrunk ){
6203 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6204 }else{
danf48c3552010-08-23 15:41:24 +00006205 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6206 if( rc!=SQLITE_OK ){
6207 goto end_allocate_page;
6208 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006209 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6210 }
6211 }else{
6212 /* The trunk page is required by the caller but it contains
6213 ** pointers to free-list leaves. The first leaf becomes a trunk
6214 ** page in this case.
6215 */
6216 MemPage *pNewTrunk;
6217 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00006218 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006219 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006220 goto end_allocate_page;
6221 }
drhdf35a082009-07-09 02:24:35 +00006222 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00006223 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006224 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00006225 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006226 }
danielk19773b8a05f2007-03-19 17:44:26 +00006227 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006228 if( rc!=SQLITE_OK ){
6229 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00006230 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006231 }
6232 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6233 put4byte(&pNewTrunk->aData[4], k-1);
6234 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006235 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006236 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006237 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006238 put4byte(&pPage1->aData[32], iNewTrunk);
6239 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006240 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006241 if( rc ){
6242 goto end_allocate_page;
6243 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006244 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6245 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006246 }
6247 pTrunk = 0;
6248 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6249#endif
danielk1977e5765212009-06-17 11:13:28 +00006250 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006251 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006252 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006253 Pgno iPage;
6254 unsigned char *aData = pTrunk->aData;
6255 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006256 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006257 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006258 if( eMode==BTALLOC_LE ){
6259 for(i=0; i<k; i++){
6260 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006261 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006262 closest = i;
6263 break;
6264 }
6265 }
6266 }else{
6267 int dist;
6268 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6269 for(i=1; i<k; i++){
6270 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6271 if( d2<dist ){
6272 closest = i;
6273 dist = d2;
6274 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006275 }
6276 }
6277 }else{
6278 closest = 0;
6279 }
6280
6281 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006282 testcase( iPage==mxPage );
drh07812192021-04-07 12:21:35 +00006283 if( iPage>mxPage || iPage<2 ){
drhcc97ca42017-06-07 22:32:59 +00006284 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006285 goto end_allocate_page;
6286 }
drhdf35a082009-07-09 02:24:35 +00006287 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006288 if( !searchList
6289 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6290 ){
danielk1977bea2a942009-01-20 17:06:27 +00006291 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006292 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006293 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6294 ": %d more free pages\n",
6295 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006296 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6297 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006298 if( closest<k-1 ){
6299 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6300 }
6301 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006302 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006303 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006304 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006305 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006306 if( rc!=SQLITE_OK ){
6307 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006308 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006309 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006310 }
6311 searchList = 0;
6312 }
drhee696e22004-08-30 16:52:17 +00006313 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006314 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006315 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006316 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006317 }else{
danbc1a3c62013-02-23 16:40:46 +00006318 /* There are no pages on the freelist, so append a new page to the
6319 ** database image.
6320 **
6321 ** Normally, new pages allocated by this block can be requested from the
6322 ** pager layer with the 'no-content' flag set. This prevents the pager
6323 ** from trying to read the pages content from disk. However, if the
6324 ** current transaction has already run one or more incremental-vacuum
6325 ** steps, then the page we are about to allocate may contain content
6326 ** that is required in the event of a rollback. In this case, do
6327 ** not set the no-content flag. This causes the pager to load and journal
6328 ** the current page content before overwriting it.
6329 **
6330 ** Note that the pager will not actually attempt to load or journal
6331 ** content for any page that really does lie past the end of the database
6332 ** file on disk. So the effects of disabling the no-content optimization
6333 ** here are confined to those pages that lie between the end of the
6334 ** database image and the end of the database file.
6335 */
drh3f387402014-09-24 01:23:00 +00006336 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006337
drhdd3cd972010-03-27 17:12:36 +00006338 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6339 if( rc ) return rc;
6340 pBt->nPage++;
6341 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006342
danielk1977afcdd022004-10-31 16:25:42 +00006343#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006344 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006345 /* If *pPgno refers to a pointer-map page, allocate two new pages
6346 ** at the end of the file instead of one. The first allocated page
6347 ** becomes a new pointer-map page, the second is used by the caller.
6348 */
danielk1977ac861692009-03-28 10:54:22 +00006349 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006350 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6351 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006352 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006353 if( rc==SQLITE_OK ){
6354 rc = sqlite3PagerWrite(pPg->pDbPage);
6355 releasePage(pPg);
6356 }
6357 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006358 pBt->nPage++;
6359 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006360 }
6361#endif
drhdd3cd972010-03-27 17:12:36 +00006362 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6363 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006364
danielk1977599fcba2004-11-08 07:13:13 +00006365 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006366 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006367 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006368 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006369 if( rc!=SQLITE_OK ){
6370 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006371 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006372 }
drh3a4c1412004-05-09 20:40:11 +00006373 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006374 }
danielk1977599fcba2004-11-08 07:13:13 +00006375
danba14c692019-01-25 13:42:12 +00006376 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006377
6378end_allocate_page:
6379 releasePage(pTrunk);
6380 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006381 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6382 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006383 return rc;
6384}
6385
6386/*
danielk1977bea2a942009-01-20 17:06:27 +00006387** This function is used to add page iPage to the database file free-list.
6388** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006389**
danielk1977bea2a942009-01-20 17:06:27 +00006390** The value passed as the second argument to this function is optional.
6391** If the caller happens to have a pointer to the MemPage object
6392** corresponding to page iPage handy, it may pass it as the second value.
6393** Otherwise, it may pass NULL.
6394**
6395** If a pointer to a MemPage object is passed as the second argument,
6396** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006397*/
danielk1977bea2a942009-01-20 17:06:27 +00006398static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6399 MemPage *pTrunk = 0; /* Free-list trunk page */
6400 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6401 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6402 MemPage *pPage; /* Page being freed. May be NULL. */
6403 int rc; /* Return Code */
drh25050f22019-04-09 01:26:31 +00006404 u32 nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006405
danielk1977bea2a942009-01-20 17:06:27 +00006406 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006407 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006408 assert( !pMemPage || pMemPage->pgno==iPage );
6409
drhda125362021-10-16 18:53:36 +00006410 if( NEVER(iPage<2) || iPage>pBt->nPage ){
drh58b42ad2019-03-25 19:50:19 +00006411 return SQLITE_CORRUPT_BKPT;
6412 }
danielk1977bea2a942009-01-20 17:06:27 +00006413 if( pMemPage ){
6414 pPage = pMemPage;
6415 sqlite3PagerRef(pPage->pDbPage);
6416 }else{
6417 pPage = btreePageLookup(pBt, iPage);
6418 }
drh3aac2dd2004-04-26 14:10:20 +00006419
drha34b6762004-05-07 13:30:42 +00006420 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006421 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006422 if( rc ) goto freepage_out;
6423 nFree = get4byte(&pPage1->aData[36]);
6424 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006425
drhc9166342012-01-05 23:32:06 +00006426 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006427 /* If the secure_delete option is enabled, then
6428 ** always fully overwrite deleted information with zeros.
6429 */
drhb00fc3b2013-08-21 23:42:32 +00006430 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006431 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006432 ){
6433 goto freepage_out;
6434 }
6435 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006436 }
drhfcce93f2006-02-22 03:08:32 +00006437
danielk1977687566d2004-11-02 12:56:41 +00006438 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006439 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006440 */
danielk197785d90ca2008-07-19 14:25:15 +00006441 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006442 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006443 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006444 }
danielk1977687566d2004-11-02 12:56:41 +00006445
danielk1977bea2a942009-01-20 17:06:27 +00006446 /* Now manipulate the actual database free-list structure. There are two
6447 ** possibilities. If the free-list is currently empty, or if the first
6448 ** trunk page in the free-list is full, then this page will become a
6449 ** new free-list trunk page. Otherwise, it will become a leaf of the
6450 ** first trunk page in the current free-list. This block tests if it
6451 ** is possible to add the page as a new free-list leaf.
6452 */
6453 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006454 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006455
6456 iTrunk = get4byte(&pPage1->aData[32]);
drh10248222020-07-28 20:32:12 +00006457 if( iTrunk>btreePagecount(pBt) ){
6458 rc = SQLITE_CORRUPT_BKPT;
6459 goto freepage_out;
6460 }
drhb00fc3b2013-08-21 23:42:32 +00006461 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006462 if( rc!=SQLITE_OK ){
6463 goto freepage_out;
6464 }
6465
6466 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006467 assert( pBt->usableSize>32 );
6468 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006469 rc = SQLITE_CORRUPT_BKPT;
6470 goto freepage_out;
6471 }
drheeb844a2009-08-08 18:01:07 +00006472 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006473 /* In this case there is room on the trunk page to insert the page
6474 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006475 **
6476 ** Note that the trunk page is not really full until it contains
6477 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6478 ** coded. But due to a coding error in versions of SQLite prior to
6479 ** 3.6.0, databases with freelist trunk pages holding more than
6480 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6481 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006482 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006483 ** for now. At some point in the future (once everyone has upgraded
6484 ** to 3.6.0 or later) we should consider fixing the conditional above
6485 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006486 **
6487 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6488 ** avoid using the last six entries in the freelist trunk page array in
6489 ** order that database files created by newer versions of SQLite can be
6490 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006491 */
danielk19773b8a05f2007-03-19 17:44:26 +00006492 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006493 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006494 put4byte(&pTrunk->aData[4], nLeaf+1);
6495 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006496 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006497 sqlite3PagerDontWrite(pPage->pDbPage);
6498 }
danielk1977bea2a942009-01-20 17:06:27 +00006499 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006500 }
drh3a4c1412004-05-09 20:40:11 +00006501 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006502 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006503 }
drh3b7511c2001-05-26 13:15:44 +00006504 }
danielk1977bea2a942009-01-20 17:06:27 +00006505
6506 /* If control flows to this point, then it was not possible to add the
6507 ** the page being freed as a leaf page of the first trunk in the free-list.
6508 ** Possibly because the free-list is empty, or possibly because the
6509 ** first trunk in the free-list is full. Either way, the page being freed
6510 ** will become the new first trunk page in the free-list.
6511 */
drhb00fc3b2013-08-21 23:42:32 +00006512 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006513 goto freepage_out;
6514 }
6515 rc = sqlite3PagerWrite(pPage->pDbPage);
6516 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006517 goto freepage_out;
6518 }
6519 put4byte(pPage->aData, iTrunk);
6520 put4byte(&pPage->aData[4], 0);
6521 put4byte(&pPage1->aData[32], iPage);
6522 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6523
6524freepage_out:
6525 if( pPage ){
6526 pPage->isInit = 0;
6527 }
6528 releasePage(pPage);
6529 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006530 return rc;
6531}
drhc314dc72009-07-21 11:52:34 +00006532static void freePage(MemPage *pPage, int *pRC){
6533 if( (*pRC)==SQLITE_OK ){
6534 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6535 }
danielk1977bea2a942009-01-20 17:06:27 +00006536}
drh3b7511c2001-05-26 13:15:44 +00006537
6538/*
drh86c779f2021-05-15 13:08:44 +00006539** Free the overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00006540*/
drh86c779f2021-05-15 13:08:44 +00006541static SQLITE_NOINLINE int clearCellOverflow(
drh9bfdc252014-09-24 02:05:41 +00006542 MemPage *pPage, /* The page that contains the Cell */
6543 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006544 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006545){
drh60172a52017-08-02 18:27:50 +00006546 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006547 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006548 int rc;
drh94440812007-03-06 11:42:19 +00006549 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006550 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006551
drh1fee73e2007-08-29 04:00:57 +00006552 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh86c779f2021-05-15 13:08:44 +00006553 assert( pInfo->nLocal!=pInfo->nPayload );
drh6fcf83a2018-05-05 01:23:28 +00006554 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6555 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6556 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006557 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006558 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006559 }
drh80159da2016-12-09 17:32:51 +00006560 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006561 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006562 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006563 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006564 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006565 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006566 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006567 );
drh72365832007-03-06 15:53:44 +00006568 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006569 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006570 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006571 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006572 /* 0 is not a legal page number and page 1 cannot be an
6573 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6574 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006575 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006576 }
danielk1977bea2a942009-01-20 17:06:27 +00006577 if( nOvfl ){
6578 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6579 if( rc ) return rc;
6580 }
dan887d4b22010-02-25 12:09:16 +00006581
shaneh1da207e2010-03-09 14:41:12 +00006582 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006583 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6584 ){
6585 /* There is no reason any cursor should have an outstanding reference
6586 ** to an overflow page belonging to a cell that is being deleted/updated.
6587 ** So if there exists more than one reference to this page, then it
6588 ** must not really be an overflow page and the database must be corrupt.
6589 ** It is helpful to detect this before calling freePage2(), as
6590 ** freePage2() may zero the page contents if secure-delete mode is
6591 ** enabled. If this 'overflow' page happens to be a page that the
6592 ** caller is iterating through or using in some other way, this
6593 ** can be problematic.
6594 */
6595 rc = SQLITE_CORRUPT_BKPT;
6596 }else{
6597 rc = freePage2(pBt, pOvfl, ovflPgno);
6598 }
6599
danielk1977bea2a942009-01-20 17:06:27 +00006600 if( pOvfl ){
6601 sqlite3PagerUnref(pOvfl->pDbPage);
6602 }
drh3b7511c2001-05-26 13:15:44 +00006603 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006604 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006605 }
drh5e2f8b92001-05-28 00:41:15 +00006606 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006607}
6608
drh86c779f2021-05-15 13:08:44 +00006609/* Call xParseCell to compute the size of a cell. If the cell contains
6610** overflow, then invoke cellClearOverflow to clear out that overflow.
6611** STore the result code (SQLITE_OK or some error code) in rc.
6612**
6613** Implemented as macro to force inlining for performance.
6614*/
6615#define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
6616 pPage->xParseCell(pPage, pCell, &sInfo); \
6617 if( sInfo.nLocal!=sInfo.nPayload ){ \
6618 rc = clearCellOverflow(pPage, pCell, &sInfo); \
6619 }else{ \
6620 rc = SQLITE_OK; \
6621 }
6622
6623
drh3b7511c2001-05-26 13:15:44 +00006624/*
drh91025292004-05-03 19:49:32 +00006625** Create the byte sequence used to represent a cell on page pPage
6626** and write that byte sequence into pCell[]. Overflow pages are
6627** allocated and filled in as necessary. The calling procedure
6628** is responsible for making sure sufficient space has been allocated
6629** for pCell[].
6630**
6631** Note that pCell does not necessary need to point to the pPage->aData
6632** area. pCell might point to some temporary storage. The cell will
6633** be constructed in this temporary area then copied into pPage->aData
6634** later.
drh3b7511c2001-05-26 13:15:44 +00006635*/
6636static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006637 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006638 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006639 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006640 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006641){
drh3b7511c2001-05-26 13:15:44 +00006642 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006643 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006644 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006645 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006646 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006647 unsigned char *pPrior;
6648 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006649 BtShared *pBt;
6650 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006651 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006652
drh1fee73e2007-08-29 04:00:57 +00006653 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006654
drhc5053fb2008-11-27 02:22:10 +00006655 /* pPage is not necessarily writeable since pCell might be auxiliary
6656 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006657 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006658 || sqlite3PagerIswriteable(pPage->pDbPage) );
6659
drh91025292004-05-03 19:49:32 +00006660 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006661 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006662 if( pPage->intKey ){
6663 nPayload = pX->nData + pX->nZero;
6664 pSrc = pX->pData;
6665 nSrc = pX->nData;
6666 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006667 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006668 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006669 }else{
drh8eeb4462016-05-21 20:03:42 +00006670 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6671 nSrc = nPayload = (int)pX->nKey;
6672 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006673 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006674 }
drhdfc2daa2016-05-21 23:25:29 +00006675
6676 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006677 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006678 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006679 /* This is the common case where everything fits on the btree page
6680 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006681 n = nHeader + nPayload;
6682 testcase( n==3 );
6683 testcase( n==4 );
6684 if( n<4 ) n = 4;
6685 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006686 assert( nSrc<=nPayload );
6687 testcase( nSrc<nPayload );
6688 memcpy(pPayload, pSrc, nSrc);
6689 memset(pPayload+nSrc, 0, nPayload-nSrc);
6690 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006691 }
drh5e27e1d2017-08-23 14:45:59 +00006692
6693 /* If we reach this point, it means that some of the content will need
6694 ** to spill onto overflow pages.
6695 */
6696 mn = pPage->minLocal;
6697 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6698 testcase( n==pPage->maxLocal );
6699 testcase( n==pPage->maxLocal+1 );
6700 if( n > pPage->maxLocal ) n = mn;
6701 spaceLeft = n;
6702 *pnSize = n + nHeader + 4;
6703 pPrior = &pCell[nHeader+n];
6704 pToRelease = 0;
6705 pgnoOvfl = 0;
6706 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006707
drh6200c882014-09-23 22:36:25 +00006708 /* At this point variables should be set as follows:
6709 **
6710 ** nPayload Total payload size in bytes
6711 ** pPayload Begin writing payload here
6712 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6713 ** that means content must spill into overflow pages.
6714 ** *pnSize Size of the local cell (not counting overflow pages)
6715 ** pPrior Where to write the pgno of the first overflow page
6716 **
6717 ** Use a call to btreeParseCellPtr() to verify that the values above
6718 ** were computed correctly.
6719 */
drhd879e3e2017-02-13 13:35:55 +00006720#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006721 {
6722 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006723 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006724 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006725 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006726 assert( *pnSize == info.nSize );
6727 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006728 }
6729#endif
6730
6731 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006732 while( 1 ){
6733 n = nPayload;
6734 if( n>spaceLeft ) n = spaceLeft;
6735
6736 /* If pToRelease is not zero than pPayload points into the data area
6737 ** of pToRelease. Make sure pToRelease is still writeable. */
6738 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6739
6740 /* If pPayload is part of the data area of pPage, then make sure pPage
6741 ** is still writeable */
6742 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6743 || sqlite3PagerIswriteable(pPage->pDbPage) );
6744
6745 if( nSrc>=n ){
6746 memcpy(pPayload, pSrc, n);
6747 }else if( nSrc>0 ){
6748 n = nSrc;
6749 memcpy(pPayload, pSrc, n);
6750 }else{
6751 memset(pPayload, 0, n);
6752 }
6753 nPayload -= n;
6754 if( nPayload<=0 ) break;
6755 pPayload += n;
6756 pSrc += n;
6757 nSrc -= n;
6758 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006759 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006760 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006761#ifndef SQLITE_OMIT_AUTOVACUUM
6762 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006763 if( pBt->autoVacuum ){
6764 do{
6765 pgnoOvfl++;
6766 } while(
6767 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6768 );
danielk1977b39f70b2007-05-17 18:28:11 +00006769 }
danielk1977afcdd022004-10-31 16:25:42 +00006770#endif
drhf49661a2008-12-10 16:45:50 +00006771 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006772#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006773 /* If the database supports auto-vacuum, and the second or subsequent
6774 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006775 ** for that page now.
6776 **
6777 ** If this is the first overflow page, then write a partial entry
6778 ** to the pointer-map. If we write nothing to this pointer-map slot,
6779 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006780 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006781 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006782 */
danielk19774ef24492007-05-23 09:52:41 +00006783 if( pBt->autoVacuum && rc==SQLITE_OK ){
6784 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006785 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006786 if( rc ){
6787 releasePage(pOvfl);
6788 }
danielk1977afcdd022004-10-31 16:25:42 +00006789 }
6790#endif
drh3b7511c2001-05-26 13:15:44 +00006791 if( rc ){
drh9b171272004-05-08 02:03:22 +00006792 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006793 return rc;
6794 }
drhc5053fb2008-11-27 02:22:10 +00006795
6796 /* If pToRelease is not zero than pPrior points into the data area
6797 ** of pToRelease. Make sure pToRelease is still writeable. */
6798 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6799
6800 /* If pPrior is part of the data area of pPage, then make sure pPage
6801 ** is still writeable */
6802 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6803 || sqlite3PagerIswriteable(pPage->pDbPage) );
6804
drh3aac2dd2004-04-26 14:10:20 +00006805 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006806 releasePage(pToRelease);
6807 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006808 pPrior = pOvfl->aData;
6809 put4byte(pPrior, 0);
6810 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006811 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006812 }
drhdd793422001-06-28 01:54:48 +00006813 }
drh9b171272004-05-08 02:03:22 +00006814 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006815 return SQLITE_OK;
6816}
6817
drh14acc042001-06-10 19:56:58 +00006818/*
6819** Remove the i-th cell from pPage. This routine effects pPage only.
6820** The cell content is not freed or deallocated. It is assumed that
6821** the cell content has been copied someplace else. This routine just
6822** removes the reference to the cell from pPage.
6823**
6824** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006825*/
drh98add2e2009-07-20 17:11:49 +00006826static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006827 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006828 u8 *data; /* pPage->aData */
6829 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006830 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006831 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006832
drh98add2e2009-07-20 17:11:49 +00006833 if( *pRC ) return;
drh2dfe9662022-01-02 11:25:51 +00006834 assert( idx>=0 );
6835 assert( idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006836 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006837 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006838 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00006839 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00006840 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006841 ptr = &pPage->aCellIdx[2*idx];
drh2dfe9662022-01-02 11:25:51 +00006842 assert( pPage->pBt->usableSize > (int)(ptr-data) );
shane0af3f892008-11-12 04:55:34 +00006843 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006844 hdr = pPage->hdrOffset;
mistachkin2b5fbb22021-12-31 18:26:50 +00006845 testcase( pc==(u32)get2byte(&data[hdr+5]) );
drhc314dc72009-07-21 11:52:34 +00006846 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006847 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006848 *pRC = SQLITE_CORRUPT_BKPT;
6849 return;
shane0af3f892008-11-12 04:55:34 +00006850 }
shanedcc50b72008-11-13 18:29:50 +00006851 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006852 if( rc ){
6853 *pRC = rc;
6854 return;
shanedcc50b72008-11-13 18:29:50 +00006855 }
drh14acc042001-06-10 19:56:58 +00006856 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006857 if( pPage->nCell==0 ){
6858 memset(&data[hdr+1], 0, 4);
6859 data[hdr+7] = 0;
6860 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6861 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6862 - pPage->childPtrSize - 8;
6863 }else{
6864 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6865 put2byte(&data[hdr+3], pPage->nCell);
6866 pPage->nFree += 2;
6867 }
drh14acc042001-06-10 19:56:58 +00006868}
6869
6870/*
6871** Insert a new cell on pPage at cell index "i". pCell points to the
6872** content of the cell.
6873**
6874** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006875** will not fit, then make a copy of the cell content into pTemp if
6876** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006877** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006878** in pTemp or the original pCell) and also record its index.
6879** Allocating a new entry in pPage->aCell[] implies that
6880** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006881**
6882** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006883*/
drh98add2e2009-07-20 17:11:49 +00006884static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006885 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006886 int i, /* New cell becomes the i-th cell of the page */
6887 u8 *pCell, /* Content of the new cell */
6888 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006889 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006890 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6891 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006892){
drh383d30f2010-02-26 13:07:37 +00006893 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006894 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006895 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006896 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006897
drhcb89f4a2016-05-21 11:23:26 +00006898 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006899 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006900 assert( MX_CELL(pPage->pBt)<=10921 );
6901 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006902 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6903 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006904 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh996f5cc2019-07-17 16:18:01 +00006905 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00006906 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00006907 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006908 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006909 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006910 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006911 }
danielk19774dbaa892009-06-16 16:50:22 +00006912 if( iChild ){
6913 put4byte(pCell, iChild);
6914 }
drh43605152004-05-29 21:46:49 +00006915 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006916 /* Comparison against ArraySize-1 since we hold back one extra slot
6917 ** as a contingency. In other words, never need more than 3 overflow
6918 ** slots but 4 are allocated, just to be safe. */
6919 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006920 pPage->apOvfl[j] = pCell;
6921 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006922
6923 /* When multiple overflows occur, they are always sequential and in
6924 ** sorted order. This invariants arise because multiple overflows can
6925 ** only occur when inserting divider cells into the parent page during
6926 ** balancing, and the dividers are adjacent and sorted.
6927 */
6928 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6929 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006930 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006931 int rc = sqlite3PagerWrite(pPage->pDbPage);
6932 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006933 *pRC = rc;
6934 return;
danielk19776e465eb2007-08-21 13:11:00 +00006935 }
6936 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006937 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006938 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006939 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006940 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006941 /* The allocateSpace() routine guarantees the following properties
6942 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006943 assert( idx >= 0 );
6944 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006945 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006946 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00006947 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00006948 /* In a corrupt database where an entry in the cell index section of
6949 ** a btree page has a value of 3 or less, the pCell value might point
6950 ** as many as 4 bytes in front of the start of the aData buffer for
6951 ** the source page. Make sure this does not cause problems by not
6952 ** reading the first 4 bytes */
6953 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00006954 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00006955 }else{
6956 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006957 }
drh2c8fb922015-06-25 19:53:48 +00006958 pIns = pPage->aCellIdx + i*2;
6959 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6960 put2byte(pIns, idx);
6961 pPage->nCell++;
6962 /* increment the cell count */
6963 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00006964 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
danielk1977a19df672004-11-03 11:37:07 +00006965#ifndef SQLITE_OMIT_AUTOVACUUM
6966 if( pPage->pBt->autoVacuum ){
6967 /* The cell may contain a pointer to an overflow page. If so, write
6968 ** the entry for the overflow page into the pointer map.
6969 */
drh0f1bf4c2019-01-13 20:17:21 +00006970 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006971 }
6972#endif
drh14acc042001-06-10 19:56:58 +00006973 }
6974}
6975
6976/*
drhe3dadac2019-01-23 19:25:59 +00006977** The following parameters determine how many adjacent pages get involved
6978** in a balancing operation. NN is the number of neighbors on either side
6979** of the page that participate in the balancing operation. NB is the
6980** total number of pages that participate, including the target page and
6981** NN neighbors on either side.
6982**
6983** The minimum value of NN is 1 (of course). Increasing NN above 1
6984** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6985** in exchange for a larger degradation in INSERT and UPDATE performance.
6986** The value of NN appears to give the best results overall.
6987**
6988** (Later:) The description above makes it seem as if these values are
6989** tunable - as if you could change them and recompile and it would all work.
6990** But that is unlikely. NB has been 3 since the inception of SQLite and
6991** we have never tested any other value.
6992*/
6993#define NN 1 /* Number of neighbors on either side of pPage */
6994#define NB 3 /* (NN*2+1): Total pages involved in the balance */
6995
6996/*
drh1ffd2472015-06-23 02:37:30 +00006997** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006998** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00006999**
7000** The cells in this array are the divider cell or cells from the pParent
7001** page plus up to three child pages. There are a total of nCell cells.
7002**
7003** pRef is a pointer to one of the pages that contributes cells. This is
7004** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7005** which should be common to all pages that contribute cells to this array.
7006**
7007** apCell[] and szCell[] hold, respectively, pointers to the start of each
7008** cell and the size of each cell. Some of the apCell[] pointers might refer
7009** to overflow cells. In other words, some apCel[] pointers might not point
7010** to content area of the pages.
7011**
7012** A szCell[] of zero means the size of that cell has not yet been computed.
7013**
7014** The cells come from as many as four different pages:
7015**
7016** -----------
7017** | Parent |
7018** -----------
7019** / | \
7020** / | \
7021** --------- --------- ---------
7022** |Child-1| |Child-2| |Child-3|
7023** --------- --------- ---------
7024**
drh26b7ec82019-02-01 14:50:43 +00007025** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00007026**
7027** 1. All cells from Child-1 in order
7028** 2. The first divider cell from Parent
7029** 3. All cells from Child-2 in order
7030** 4. The second divider cell from Parent
7031** 5. All cells from Child-3 in order
7032**
drh26b7ec82019-02-01 14:50:43 +00007033** For a table-btree (with rowids) the items 2 and 4 are empty because
7034** content exists only in leaves and there are no divider cells.
7035**
7036** For an index btree, the apEnd[] array holds pointer to the end of page
7037** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7038** respectively. The ixNx[] array holds the number of cells contained in
7039** each of these 5 stages, and all stages to the left. Hence:
7040**
drhe3dadac2019-01-23 19:25:59 +00007041** ixNx[0] = Number of cells in Child-1.
7042** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7043** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7044** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7045** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00007046**
7047** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7048** are used and they point to the leaf pages only, and the ixNx value are:
7049**
7050** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00007051** ixNx[1] = Number of cells in Child-1 and Child-2.
7052** ixNx[2] = Total number of cells.
7053**
7054** Sometimes when deleting, a child page can have zero cells. In those
7055** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7056** entries, shift down. The end result is that each ixNx[] entry should
7057** be larger than the previous
drhfa1a98a2004-05-14 19:08:17 +00007058*/
drh1ffd2472015-06-23 02:37:30 +00007059typedef struct CellArray CellArray;
7060struct CellArray {
7061 int nCell; /* Number of cells in apCell[] */
7062 MemPage *pRef; /* Reference page */
7063 u8 **apCell; /* All cells begin balanced */
7064 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00007065 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
7066 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00007067};
drhfa1a98a2004-05-14 19:08:17 +00007068
drh1ffd2472015-06-23 02:37:30 +00007069/*
7070** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7071** computed.
7072*/
7073static void populateCellCache(CellArray *p, int idx, int N){
7074 assert( idx>=0 && idx+N<=p->nCell );
7075 while( N>0 ){
7076 assert( p->apCell[idx]!=0 );
7077 if( p->szCell[idx]==0 ){
7078 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
7079 }else{
7080 assert( CORRUPT_DB ||
7081 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
7082 }
7083 idx++;
7084 N--;
drhfa1a98a2004-05-14 19:08:17 +00007085 }
drh1ffd2472015-06-23 02:37:30 +00007086}
7087
7088/*
7089** Return the size of the Nth element of the cell array
7090*/
7091static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7092 assert( N>=0 && N<p->nCell );
7093 assert( p->szCell[N]==0 );
7094 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7095 return p->szCell[N];
7096}
7097static u16 cachedCellSize(CellArray *p, int N){
7098 assert( N>=0 && N<p->nCell );
7099 if( p->szCell[N] ) return p->szCell[N];
7100 return computeCellSize(p, N);
7101}
7102
7103/*
dan8e9ba0c2014-10-14 17:27:04 +00007104** Array apCell[] contains pointers to nCell b-tree page cells. The
7105** szCell[] array contains the size in bytes of each cell. This function
7106** replaces the current contents of page pPg with the contents of the cell
7107** array.
7108**
7109** Some of the cells in apCell[] may currently be stored in pPg. This
7110** function works around problems caused by this by making a copy of any
7111** such cells before overwriting the page data.
7112**
7113** The MemPage.nFree field is invalidated by this function. It is the
7114** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00007115*/
drh658873b2015-06-22 20:02:04 +00007116static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00007117 CellArray *pCArray, /* Content to be added to page pPg */
7118 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00007119 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00007120 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00007121){
7122 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
7123 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
7124 const int usableSize = pPg->pBt->usableSize;
7125 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00007126 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00007127 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00007128 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00007129 u8 *pCellptr = pPg->aCellIdx;
7130 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7131 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00007132 int k; /* Current slot in pCArray->apEnd[] */
7133 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00007134
drhe3dadac2019-01-23 19:25:59 +00007135 assert( i<iEnd );
7136 j = get2byte(&aData[hdr+5]);
drh10f73652022-01-05 21:01:26 +00007137 if( j>(u32)usableSize ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00007138 memcpy(&pTmp[j], &aData[j], usableSize - j);
7139
7140 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7141 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00007142
dan8e9ba0c2014-10-14 17:27:04 +00007143 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00007144 while( 1/*exit by break*/ ){
7145 u8 *pCell = pCArray->apCell[i];
7146 u16 sz = pCArray->szCell[i];
7147 assert( sz>0 );
drh8cae5a42021-04-20 20:48:15 +00007148 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
drhb2b61bb2020-01-04 14:50:06 +00007149 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00007150 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00007151 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7152 && (uptr)(pCell)<(uptr)pSrcEnd
7153 ){
7154 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00007155 }
drhe3dadac2019-01-23 19:25:59 +00007156
7157 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00007158 put2byte(pCellptr, (pData - aData));
7159 pCellptr += 2;
drhe5cf3e92020-01-04 12:34:44 +00007160 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drheca3c672021-04-22 20:01:02 +00007161 memmove(pData, pCell, sz);
drhe5cf3e92020-01-04 12:34:44 +00007162 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007163 i++;
7164 if( i>=iEnd ) break;
7165 if( pCArray->ixNx[k]<=i ){
7166 k++;
7167 pSrcEnd = pCArray->apEnd[k];
7168 }
dan33ea4862014-10-09 19:35:37 +00007169 }
7170
dand7b545b2014-10-13 18:03:27 +00007171 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00007172 pPg->nCell = nCell;
7173 pPg->nOverflow = 0;
7174
7175 put2byte(&aData[hdr+1], 0);
7176 put2byte(&aData[hdr+3], pPg->nCell);
7177 put2byte(&aData[hdr+5], pData - aData);
7178 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00007179 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00007180}
7181
dan8e9ba0c2014-10-14 17:27:04 +00007182/*
drhe3dadac2019-01-23 19:25:59 +00007183** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7184** This function attempts to add the cells stored in the array to page pPg.
7185** If it cannot (because the page needs to be defragmented before the cells
7186** will fit), non-zero is returned. Otherwise, if the cells are added
7187** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00007188**
7189** Argument pCellptr points to the first entry in the cell-pointer array
7190** (part of page pPg) to populate. After cell apCell[0] is written to the
7191** page body, a 16-bit offset is written to pCellptr. And so on, for each
7192** cell in the array. It is the responsibility of the caller to ensure
7193** that it is safe to overwrite this part of the cell-pointer array.
7194**
7195** When this function is called, *ppData points to the start of the
7196** content area on page pPg. If the size of the content area is extended,
7197** *ppData is updated to point to the new start of the content area
7198** before returning.
7199**
7200** Finally, argument pBegin points to the byte immediately following the
7201** end of the space required by this page for the cell-pointer area (for
7202** all cells - not just those inserted by the current call). If the content
7203** area must be extended to before this point in order to accomodate all
7204** cells in apCell[], then the cells do not fit and non-zero is returned.
7205*/
dand7b545b2014-10-13 18:03:27 +00007206static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00007207 MemPage *pPg, /* Page to add cells to */
7208 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00007209 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00007210 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00007211 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00007212 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00007213 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007214){
drhe3dadac2019-01-23 19:25:59 +00007215 int i = iFirst; /* Loop counter - cell index to insert */
7216 u8 *aData = pPg->aData; /* Complete page */
7217 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7218 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7219 int k; /* Current slot in pCArray->apEnd[] */
7220 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00007221 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00007222 if( iEnd<=iFirst ) return 0;
7223 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7224 pEnd = pCArray->apEnd[k];
7225 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00007226 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00007227 u8 *pSlot;
dan666a42f2019-08-24 21:02:47 +00007228 assert( pCArray->szCell[i]!=0 );
7229 sz = pCArray->szCell[i];
drhb7580e82015-06-25 18:36:13 +00007230 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00007231 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00007232 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00007233 pSlot = pData;
7234 }
drh48310f82015-10-10 16:41:28 +00007235 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7236 ** database. But they might for a corrupt database. Hence use memmove()
7237 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7238 assert( (pSlot+sz)<=pCArray->apCell[i]
7239 || pSlot>=(pCArray->apCell[i]+sz)
7240 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007241 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7242 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7243 ){
7244 assert( CORRUPT_DB );
7245 (void)SQLITE_CORRUPT_BKPT;
7246 return 1;
7247 }
drh48310f82015-10-10 16:41:28 +00007248 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007249 put2byte(pCellptr, (pSlot - aData));
7250 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007251 i++;
7252 if( i>=iEnd ) break;
7253 if( pCArray->ixNx[k]<=i ){
7254 k++;
7255 pEnd = pCArray->apEnd[k];
7256 }
dand7b545b2014-10-13 18:03:27 +00007257 }
7258 *ppData = pData;
7259 return 0;
7260}
7261
dan8e9ba0c2014-10-14 17:27:04 +00007262/*
drhe3dadac2019-01-23 19:25:59 +00007263** The pCArray object contains pointers to b-tree cells and their sizes.
7264**
7265** This function adds the space associated with each cell in the array
7266** that is currently stored within the body of pPg to the pPg free-list.
7267** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007268**
7269** This function returns the total number of cells added to the free-list.
7270*/
dand7b545b2014-10-13 18:03:27 +00007271static int pageFreeArray(
7272 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007273 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007274 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007275 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007276){
7277 u8 * const aData = pPg->aData;
7278 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007279 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007280 int nRet = 0;
7281 int i;
drhf7838932015-06-23 15:36:34 +00007282 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007283 u8 *pFree = 0;
7284 int szFree = 0;
7285
drhf7838932015-06-23 15:36:34 +00007286 for(i=iFirst; i<iEnd; i++){
7287 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007288 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007289 int sz;
7290 /* No need to use cachedCellSize() here. The sizes of all cells that
7291 ** are to be freed have already been computing while deciding which
7292 ** cells need freeing */
7293 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007294 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007295 if( pFree ){
7296 assert( pFree>aData && (pFree - aData)<65536 );
7297 freeSpace(pPg, (u16)(pFree - aData), szFree);
7298 }
dand7b545b2014-10-13 18:03:27 +00007299 pFree = pCell;
7300 szFree = sz;
drhccb897c2021-05-11 10:47:41 +00007301 if( pFree+sz>pEnd ){
7302 return 0;
drhc3c23f32021-05-06 11:02:55 +00007303 }
dand7b545b2014-10-13 18:03:27 +00007304 }else{
7305 pFree = pCell;
7306 szFree += sz;
7307 }
7308 nRet++;
7309 }
7310 }
drhfefa0942014-11-05 21:21:08 +00007311 if( pFree ){
7312 assert( pFree>aData && (pFree - aData)<65536 );
7313 freeSpace(pPg, (u16)(pFree - aData), szFree);
7314 }
dand7b545b2014-10-13 18:03:27 +00007315 return nRet;
7316}
7317
dand7b545b2014-10-13 18:03:27 +00007318/*
drha0466432019-01-29 16:41:13 +00007319** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007320** balanced. The current page, pPg, has pPg->nCell cells starting with
7321** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007322** starting at apCell[iNew].
7323**
7324** This routine makes the necessary adjustments to pPg so that it contains
7325** the correct cells after being balanced.
7326**
dand7b545b2014-10-13 18:03:27 +00007327** The pPg->nFree field is invalid when this function returns. It is the
7328** responsibility of the caller to set it correctly.
7329*/
drh658873b2015-06-22 20:02:04 +00007330static int editPage(
dan09c68402014-10-11 20:00:24 +00007331 MemPage *pPg, /* Edit this page */
7332 int iOld, /* Index of first cell currently on page */
7333 int iNew, /* Index of new first cell on page */
7334 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007335 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007336){
dand7b545b2014-10-13 18:03:27 +00007337 u8 * const aData = pPg->aData;
7338 const int hdr = pPg->hdrOffset;
7339 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7340 int nCell = pPg->nCell; /* Cells stored on pPg */
7341 u8 *pData;
7342 u8 *pCellptr;
7343 int i;
7344 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7345 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007346
7347#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007348 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7349 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007350#endif
7351
dand7b545b2014-10-13 18:03:27 +00007352 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007353 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007354 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007355 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drhfde25922020-05-05 19:54:02 +00007356 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007357 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7358 nCell -= nShift;
7359 }
7360 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007361 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7362 assert( nCell>=nTail );
7363 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007364 }
dan09c68402014-10-11 20:00:24 +00007365
drh5ab63772014-11-27 03:46:04 +00007366 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007367 if( pData<pBegin ) goto editpage_fail;
drh10f73652022-01-05 21:01:26 +00007368 if( pData>pPg->aDataEnd ) goto editpage_fail;
dand7b545b2014-10-13 18:03:27 +00007369
7370 /* Add cells to the start of the page */
7371 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007372 int nAdd = MIN(nNew,iOld-iNew);
7373 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007374 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007375 pCellptr = pPg->aCellIdx;
7376 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7377 if( pageInsertArray(
7378 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007379 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007380 ) ) goto editpage_fail;
7381 nCell += nAdd;
7382 }
7383
7384 /* Add any overflow cells */
7385 for(i=0; i<pPg->nOverflow; i++){
7386 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7387 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007388 pCellptr = &pPg->aCellIdx[iCell * 2];
drh4b986b22019-03-08 14:02:11 +00007389 if( nCell>iCell ){
7390 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7391 }
dand7b545b2014-10-13 18:03:27 +00007392 nCell++;
dan666a42f2019-08-24 21:02:47 +00007393 cachedCellSize(pCArray, iCell+iNew);
dand7b545b2014-10-13 18:03:27 +00007394 if( pageInsertArray(
7395 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007396 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007397 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007398 }
dand7b545b2014-10-13 18:03:27 +00007399 }
dan09c68402014-10-11 20:00:24 +00007400
dand7b545b2014-10-13 18:03:27 +00007401 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007402 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007403 pCellptr = &pPg->aCellIdx[nCell*2];
7404 if( pageInsertArray(
7405 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007406 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007407 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007408
dand7b545b2014-10-13 18:03:27 +00007409 pPg->nCell = nNew;
7410 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007411
dand7b545b2014-10-13 18:03:27 +00007412 put2byte(&aData[hdr+3], pPg->nCell);
7413 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007414
7415#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007416 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007417 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007418 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007419 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007420 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007421 }
drh1ffd2472015-06-23 02:37:30 +00007422 assert( 0==memcmp(pCell, &aData[iOff],
7423 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007424 }
dan09c68402014-10-11 20:00:24 +00007425#endif
7426
drh658873b2015-06-22 20:02:04 +00007427 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007428 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007429 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007430 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007431 return rebuildPage(pCArray, iNew, nNew, pPg);
drhfa1a98a2004-05-14 19:08:17 +00007432}
7433
danielk1977ac245ec2005-01-14 13:50:11 +00007434
drh615ae552005-01-16 23:21:00 +00007435#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007436/*
7437** This version of balance() handles the common special case where
7438** a new entry is being inserted on the extreme right-end of the
7439** tree, in other words, when the new entry will become the largest
7440** entry in the tree.
7441**
drhc314dc72009-07-21 11:52:34 +00007442** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007443** a new page to the right-hand side and put the one new entry in
7444** that page. This leaves the right side of the tree somewhat
7445** unbalanced. But odds are that we will be inserting new entries
7446** at the end soon afterwards so the nearly empty page will quickly
7447** fill up. On average.
7448**
7449** pPage is the leaf page which is the right-most page in the tree.
7450** pParent is its parent. pPage must have a single overflow entry
7451** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007452**
7453** The pSpace buffer is used to store a temporary copy of the divider
7454** cell that will be inserted into pParent. Such a cell consists of a 4
7455** byte page number followed by a variable length integer. In other
7456** words, at most 13 bytes. Hence the pSpace buffer must be at
7457** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007458*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007459static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7460 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007461 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007462 int rc; /* Return Code */
7463 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007464
drh1fee73e2007-08-29 04:00:57 +00007465 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007466 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007467 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007468
drh6301c432018-12-13 21:52:18 +00007469 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007470 assert( pPage->nFree>=0 );
7471 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007472
danielk1977a50d9aa2009-06-08 14:49:45 +00007473 /* Allocate a new page. This page will become the right-sibling of
7474 ** pPage. Make the parent page writable, so that the new divider cell
7475 ** may be inserted. If both these operations are successful, proceed.
7476 */
drh4f0c5872007-03-26 22:05:01 +00007477 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007478
danielk1977eaa06f62008-09-18 17:34:44 +00007479 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007480
7481 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007482 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007483 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007484 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007485 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007486
drhc5053fb2008-11-27 02:22:10 +00007487 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007488 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007489 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007490 b.nCell = 1;
7491 b.pRef = pPage;
7492 b.apCell = &pCell;
7493 b.szCell = &szCell;
7494 b.apEnd[0] = pPage->aDataEnd;
7495 b.ixNx[0] = 2;
7496 rc = rebuildPage(&b, 0, 1, pNew);
7497 if( NEVER(rc) ){
7498 releasePage(pNew);
7499 return rc;
7500 }
dan8e9ba0c2014-10-14 17:27:04 +00007501 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007502
7503 /* If this is an auto-vacuum database, update the pointer map
7504 ** with entries for the new page, and any pointer from the
7505 ** cell on the page to an overflow page. If either of these
7506 ** operations fails, the return code is set, but the contents
7507 ** of the parent page are still manipulated by thh code below.
7508 ** That is Ok, at this point the parent page is guaranteed to
7509 ** be marked as dirty. Returning an error code will cause a
7510 ** rollback, undoing any changes made to the parent page.
7511 */
7512 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007513 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7514 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007515 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007516 }
7517 }
danielk1977eaa06f62008-09-18 17:34:44 +00007518
danielk19776f235cc2009-06-04 14:46:08 +00007519 /* Create a divider cell to insert into pParent. The divider cell
7520 ** consists of a 4-byte page number (the page number of pPage) and
7521 ** a variable length key value (which must be the same value as the
7522 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007523 **
danielk19776f235cc2009-06-04 14:46:08 +00007524 ** To find the largest key value on pPage, first find the right-most
7525 ** cell on pPage. The first two fields of this cell are the
7526 ** record-length (a variable length integer at most 32-bits in size)
7527 ** and the key value (a variable length integer, may have any value).
7528 ** The first of the while(...) loops below skips over the record-length
7529 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007530 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007531 */
danielk1977eaa06f62008-09-18 17:34:44 +00007532 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007533 pStop = &pCell[9];
7534 while( (*(pCell++)&0x80) && pCell<pStop );
7535 pStop = &pCell[9];
7536 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7537
danielk19774dbaa892009-06-16 16:50:22 +00007538 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007539 if( rc==SQLITE_OK ){
7540 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7541 0, pPage->pgno, &rc);
7542 }
danielk19776f235cc2009-06-04 14:46:08 +00007543
7544 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007545 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7546
danielk1977e08a3c42008-09-18 18:17:03 +00007547 /* Release the reference to the new page. */
7548 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007549 }
7550
danielk1977eaa06f62008-09-18 17:34:44 +00007551 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007552}
drh615ae552005-01-16 23:21:00 +00007553#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007554
danielk19774dbaa892009-06-16 16:50:22 +00007555#if 0
drhc3b70572003-01-04 19:44:07 +00007556/*
danielk19774dbaa892009-06-16 16:50:22 +00007557** This function does not contribute anything to the operation of SQLite.
7558** it is sometimes activated temporarily while debugging code responsible
7559** for setting pointer-map entries.
7560*/
7561static int ptrmapCheckPages(MemPage **apPage, int nPage){
7562 int i, j;
7563 for(i=0; i<nPage; i++){
7564 Pgno n;
7565 u8 e;
7566 MemPage *pPage = apPage[i];
7567 BtShared *pBt = pPage->pBt;
7568 assert( pPage->isInit );
7569
7570 for(j=0; j<pPage->nCell; j++){
7571 CellInfo info;
7572 u8 *z;
7573
7574 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007575 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007576 if( info.nLocal<info.nPayload ){
7577 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007578 ptrmapGet(pBt, ovfl, &e, &n);
7579 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7580 }
7581 if( !pPage->leaf ){
7582 Pgno child = get4byte(z);
7583 ptrmapGet(pBt, child, &e, &n);
7584 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7585 }
7586 }
7587 if( !pPage->leaf ){
7588 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7589 ptrmapGet(pBt, child, &e, &n);
7590 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7591 }
7592 }
7593 return 1;
7594}
7595#endif
7596
danielk1977cd581a72009-06-23 15:43:39 +00007597/*
7598** This function is used to copy the contents of the b-tree node stored
7599** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7600** the pointer-map entries for each child page are updated so that the
7601** parent page stored in the pointer map is page pTo. If pFrom contained
7602** any cells with overflow page pointers, then the corresponding pointer
7603** map entries are also updated so that the parent page is page pTo.
7604**
7605** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007606** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007607**
danielk197730548662009-07-09 05:07:37 +00007608** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007609**
7610** The performance of this function is not critical. It is only used by
7611** the balance_shallower() and balance_deeper() procedures, neither of
7612** which are called often under normal circumstances.
7613*/
drhc314dc72009-07-21 11:52:34 +00007614static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7615 if( (*pRC)==SQLITE_OK ){
7616 BtShared * const pBt = pFrom->pBt;
7617 u8 * const aFrom = pFrom->aData;
7618 u8 * const aTo = pTo->aData;
7619 int const iFromHdr = pFrom->hdrOffset;
7620 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007621 int rc;
drhc314dc72009-07-21 11:52:34 +00007622 int iData;
7623
7624
7625 assert( pFrom->isInit );
7626 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007627 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007628
7629 /* Copy the b-tree node content from page pFrom to page pTo. */
7630 iData = get2byte(&aFrom[iFromHdr+5]);
7631 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7632 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7633
7634 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007635 ** match the new data. The initialization of pTo can actually fail under
7636 ** fairly obscure circumstances, even though it is a copy of initialized
7637 ** page pFrom.
7638 */
drhc314dc72009-07-21 11:52:34 +00007639 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007640 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00007641 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00007642 if( rc!=SQLITE_OK ){
7643 *pRC = rc;
7644 return;
7645 }
drhc314dc72009-07-21 11:52:34 +00007646
7647 /* If this is an auto-vacuum database, update the pointer-map entries
7648 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7649 */
7650 if( ISAUTOVACUUM ){
7651 *pRC = setChildPtrmaps(pTo);
7652 }
danielk1977cd581a72009-06-23 15:43:39 +00007653 }
danielk1977cd581a72009-06-23 15:43:39 +00007654}
7655
7656/*
danielk19774dbaa892009-06-16 16:50:22 +00007657** This routine redistributes cells on the iParentIdx'th child of pParent
7658** (hereafter "the page") and up to 2 siblings so that all pages have about the
7659** same amount of free space. Usually a single sibling on either side of the
7660** page are used in the balancing, though both siblings might come from one
7661** side if the page is the first or last child of its parent. If the page
7662** has fewer than 2 siblings (something which can only happen if the page
7663** is a root page or a child of a root page) then all available siblings
7664** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007665**
danielk19774dbaa892009-06-16 16:50:22 +00007666** The number of siblings of the page might be increased or decreased by
7667** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007668**
danielk19774dbaa892009-06-16 16:50:22 +00007669** Note that when this routine is called, some of the cells on the page
7670** might not actually be stored in MemPage.aData[]. This can happen
7671** if the page is overfull. This routine ensures that all cells allocated
7672** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007673**
danielk19774dbaa892009-06-16 16:50:22 +00007674** In the course of balancing the page and its siblings, cells may be
7675** inserted into or removed from the parent page (pParent). Doing so
7676** may cause the parent page to become overfull or underfull. If this
7677** happens, it is the responsibility of the caller to invoke the correct
7678** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007679**
drh5e00f6c2001-09-13 13:46:56 +00007680** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007681** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007682** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007683**
7684** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007685** buffer big enough to hold one page. If while inserting cells into the parent
7686** page (pParent) the parent page becomes overfull, this buffer is
7687** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007688** a maximum of four divider cells into the parent page, and the maximum
7689** size of a cell stored within an internal node is always less than 1/4
7690** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7691** enough for all overflow cells.
7692**
7693** If aOvflSpace is set to a null pointer, this function returns
7694** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007695*/
danielk19774dbaa892009-06-16 16:50:22 +00007696static int balance_nonroot(
7697 MemPage *pParent, /* Parent page of siblings being balanced */
7698 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007699 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007700 int isRoot, /* True if pParent is a root-page */
7701 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007702){
drh16a9b832007-05-05 18:39:25 +00007703 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007704 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007705 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007706 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007707 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007708 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007709 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007710 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007711 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007712 int usableSpace; /* Bytes in pPage beyond the header */
7713 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007714 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007715 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007716 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007717 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007718 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007719 u8 *pRight; /* Location in parent of right-sibling pointer */
7720 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007721 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7722 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007723 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007724 u8 *aSpace1; /* Space for copies of dividers cells */
7725 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007726 u8 abDone[NB+2]; /* True after i'th new page is populated */
7727 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007728 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007729 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh7d4c94b2021-10-04 22:34:38 +00007730 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007731
dan33ea4862014-10-09 19:35:37 +00007732 memset(abDone, 0, sizeof(abDone));
drh7d4c94b2021-10-04 22:34:38 +00007733 memset(&b, 0, sizeof(b));
danielk1977a50d9aa2009-06-08 14:49:45 +00007734 pBt = pParent->pBt;
7735 assert( sqlite3_mutex_held(pBt->mutex) );
7736 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007737
danielk19774dbaa892009-06-16 16:50:22 +00007738 /* At this point pParent may have at most one overflow cell. And if
7739 ** this overflow cell is present, it must be the cell with
7740 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007741 ** is called (indirectly) from sqlite3BtreeDelete().
7742 */
danielk19774dbaa892009-06-16 16:50:22 +00007743 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007744 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007745
danielk197711a8a862009-06-17 11:49:52 +00007746 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007747 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007748 }
drh68133502019-02-11 17:22:30 +00007749 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00007750
danielk1977a50d9aa2009-06-08 14:49:45 +00007751 /* Find the sibling pages to balance. Also locate the cells in pParent
7752 ** that divide the siblings. An attempt is made to find NN siblings on
7753 ** either side of pPage. More siblings are taken from one side, however,
7754 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007755 ** has NB or fewer children then all children of pParent are taken.
7756 **
7757 ** This loop also drops the divider cells from the parent page. This
7758 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007759 ** overflow cells in the parent page, since if any existed they will
7760 ** have already been removed.
7761 */
danielk19774dbaa892009-06-16 16:50:22 +00007762 i = pParent->nOverflow + pParent->nCell;
7763 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007764 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007765 }else{
dan7d6885a2012-08-08 14:04:56 +00007766 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007767 if( iParentIdx==0 ){
7768 nxDiv = 0;
7769 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007770 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007771 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007772 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007773 }
dan7d6885a2012-08-08 14:04:56 +00007774 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007775 }
dan7d6885a2012-08-08 14:04:56 +00007776 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007777 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7778 pRight = &pParent->aData[pParent->hdrOffset+8];
7779 }else{
7780 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7781 }
7782 pgno = get4byte(pRight);
7783 while( 1 ){
dan1f9f5762021-03-01 16:15:41 +00007784 if( rc==SQLITE_OK ){
7785 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7786 }
danielk19774dbaa892009-06-16 16:50:22 +00007787 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007788 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007789 goto balance_cleanup;
7790 }
drh85a379b2019-02-09 22:33:44 +00007791 if( apOld[i]->nFree<0 ){
7792 rc = btreeComputeFreeSpace(apOld[i]);
7793 if( rc ){
7794 memset(apOld, 0, (i)*sizeof(MemPage*));
7795 goto balance_cleanup;
7796 }
7797 }
danb9f8a182021-06-22 14:59:34 +00007798 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
danielk19774dbaa892009-06-16 16:50:22 +00007799 if( (i--)==0 ) break;
7800
drh9cc5b4e2016-12-26 01:41:33 +00007801 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007802 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007803 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007804 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007805 pParent->nOverflow = 0;
7806 }else{
7807 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7808 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007809 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007810
7811 /* Drop the cell from the parent page. apDiv[i] still points to
7812 ** the cell within the parent, even though it has been dropped.
7813 ** This is safe because dropping a cell only overwrites the first
7814 ** four bytes of it, and this function does not need the first
7815 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007816 ** later on.
7817 **
drh8a575d92011-10-12 17:00:28 +00007818 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007819 ** the dropCell() routine will overwrite the entire cell with zeroes.
7820 ** In this case, temporarily copy the cell into the aOvflSpace[]
7821 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7822 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007823 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007824 int iOff;
7825
dan1f9f5762021-03-01 16:15:41 +00007826 /* If the following if() condition is not true, the db is corrupted.
7827 ** The call to dropCell() below will detect this. */
drh8a575d92011-10-12 17:00:28 +00007828 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
dan1f9f5762021-03-01 16:15:41 +00007829 if( (iOff+szNew[i])<=(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007830 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7831 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7832 }
drh5b47efa2010-02-12 18:18:39 +00007833 }
drh98add2e2009-07-20 17:11:49 +00007834 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007835 }
drh8b2f49b2001-06-08 00:21:52 +00007836 }
7837
drha9121e42008-02-19 14:59:35 +00007838 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007839 ** alignment */
drha9121e42008-02-19 14:59:35 +00007840 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007841
drh8b2f49b2001-06-08 00:21:52 +00007842 /*
danielk1977634f2982005-03-28 08:44:07 +00007843 ** Allocate space for memory structures
7844 */
drhfacf0302008-06-17 15:12:00 +00007845 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007846 nMaxCells*sizeof(u8*) /* b.apCell */
7847 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007848 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007849
drhf012dc42019-03-19 15:36:46 +00007850 assert( szScratch<=7*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007851 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007852 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007853 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007854 goto balance_cleanup;
7855 }
drh1ffd2472015-06-23 02:37:30 +00007856 b.szCell = (u16*)&b.apCell[nMaxCells];
7857 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007858 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007859
7860 /*
7861 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007862 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007863 ** into space obtained from aSpace1[]. The divider cells have already
7864 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007865 **
7866 ** If the siblings are on leaf pages, then the child pointers of the
7867 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007868 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007869 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007870 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007871 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007872 **
7873 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7874 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007875 */
drh1ffd2472015-06-23 02:37:30 +00007876 b.pRef = apOld[0];
7877 leafCorrection = b.pRef->leaf*4;
7878 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007879 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007880 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007881 int limit = pOld->nCell;
7882 u8 *aData = pOld->aData;
7883 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007884 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007885 u8 *piEnd;
drhe12ca5a2019-05-02 15:56:39 +00007886 VVA_ONLY( int nCellAtStart = b.nCell; )
danielk19774dbaa892009-06-16 16:50:22 +00007887
drh73d340a2015-05-28 11:23:11 +00007888 /* Verify that all sibling pages are of the same "type" (table-leaf,
7889 ** table-interior, index-leaf, or index-interior).
7890 */
7891 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7892 rc = SQLITE_CORRUPT_BKPT;
7893 goto balance_cleanup;
7894 }
7895
drhfe647dc2015-06-23 18:24:25 +00007896 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007897 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007898 ** in the correct spot.
7899 **
7900 ** Note that when there are multiple overflow cells, it is always the
7901 ** case that they are sequential and adjacent. This invariant arises
7902 ** because multiple overflows can only occurs when inserting divider
7903 ** cells into a parent on a prior balance, and divider cells are always
7904 ** adjacent and are inserted in order. There is an assert() tagged
7905 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7906 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007907 **
7908 ** This must be done in advance. Once the balance starts, the cell
7909 ** offset section of the btree page will be overwritten and we will no
7910 ** long be able to find the cells if a pointer to each cell is not saved
7911 ** first.
7912 */
drh36b78ee2016-01-20 01:32:00 +00007913 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007914 if( pOld->nOverflow>0 ){
drh27e80a32019-08-15 13:17:49 +00007915 if( NEVER(limit<pOld->aiOvfl[0]) ){
drhe12ca5a2019-05-02 15:56:39 +00007916 rc = SQLITE_CORRUPT_BKPT;
7917 goto balance_cleanup;
7918 }
drhfe647dc2015-06-23 18:24:25 +00007919 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007920 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007921 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007922 piCell += 2;
7923 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007924 }
drhfe647dc2015-06-23 18:24:25 +00007925 for(k=0; k<pOld->nOverflow; k++){
7926 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007927 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007928 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007929 }
drh1ffd2472015-06-23 02:37:30 +00007930 }
drhfe647dc2015-06-23 18:24:25 +00007931 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7932 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007933 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007934 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007935 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007936 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007937 }
drhe12ca5a2019-05-02 15:56:39 +00007938 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
drh4edfdd32015-06-23 14:49:42 +00007939
drh1ffd2472015-06-23 02:37:30 +00007940 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007941 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007942 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007943 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007944 assert( b.nCell<nMaxCells );
7945 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007946 pTemp = &aSpace1[iSpace1];
7947 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007948 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007949 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007950 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007951 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007952 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007953 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007954 if( !pOld->leaf ){
7955 assert( leafCorrection==0 );
dan5b482a92021-04-20 13:31:51 +00007956 assert( pOld->hdrOffset==0 || CORRUPT_DB );
danielk19774dbaa892009-06-16 16:50:22 +00007957 /* The right pointer of the child page pOld becomes the left
7958 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007959 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007960 }else{
7961 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007962 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007963 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7964 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007965 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7966 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007967 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007968 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007969 }
7970 }
drh1ffd2472015-06-23 02:37:30 +00007971 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007972 }
drh8b2f49b2001-06-08 00:21:52 +00007973 }
7974
7975 /*
drh1ffd2472015-06-23 02:37:30 +00007976 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007977 ** Store this number in "k". Also compute szNew[] which is the total
7978 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007979 ** in b.apCell[] of the cell that divides page i from page i+1.
7980 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007981 **
drh96f5b762004-05-16 16:24:36 +00007982 ** Values computed by this block:
7983 **
7984 ** k: The total number of sibling pages
7985 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007986 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007987 ** the right of the i-th sibling page.
7988 ** usableSpace: Number of bytes of space available on each sibling.
7989 **
drh8b2f49b2001-06-08 00:21:52 +00007990 */
drh43605152004-05-29 21:46:49 +00007991 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00007992 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00007993 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00007994 b.apEnd[k] = p->aDataEnd;
7995 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00007996 if( k && b.ixNx[k]==b.ixNx[k-1] ){
7997 k--; /* Omit b.ixNx[] entry for child pages with no cells */
7998 }
drh26b7ec82019-02-01 14:50:43 +00007999 if( !leafData ){
8000 k++;
8001 b.apEnd[k] = pParent->aDataEnd;
8002 b.ixNx[k] = cntOld[i]+1;
8003 }
drhb0ea9432019-02-09 21:06:40 +00008004 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00008005 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00008006 for(j=0; j<p->nOverflow; j++){
8007 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
8008 }
8009 cntNew[i] = cntOld[i];
8010 }
8011 k = nOld;
8012 for(i=0; i<k; i++){
8013 int sz;
8014 while( szNew[i]>usableSpace ){
8015 if( i+1>=k ){
8016 k = i+2;
8017 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
8018 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00008019 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00008020 }
drh1ffd2472015-06-23 02:37:30 +00008021 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00008022 szNew[i] -= sz;
8023 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00008024 if( cntNew[i]<b.nCell ){
8025 sz = 2 + cachedCellSize(&b, cntNew[i]);
8026 }else{
8027 sz = 0;
8028 }
drh658873b2015-06-22 20:02:04 +00008029 }
8030 szNew[i+1] += sz;
8031 cntNew[i]--;
8032 }
drh1ffd2472015-06-23 02:37:30 +00008033 while( cntNew[i]<b.nCell ){
8034 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00008035 if( szNew[i]+sz>usableSpace ) break;
8036 szNew[i] += sz;
8037 cntNew[i]++;
8038 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00008039 if( cntNew[i]<b.nCell ){
8040 sz = 2 + cachedCellSize(&b, cntNew[i]);
8041 }else{
8042 sz = 0;
8043 }
drh658873b2015-06-22 20:02:04 +00008044 }
8045 szNew[i+1] -= sz;
8046 }
drh1ffd2472015-06-23 02:37:30 +00008047 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00008048 k = i+1;
drh672073a2015-06-24 12:07:40 +00008049 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00008050 rc = SQLITE_CORRUPT_BKPT;
8051 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00008052 }
8053 }
drh96f5b762004-05-16 16:24:36 +00008054
8055 /*
8056 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00008057 ** on the left side (siblings with smaller keys). The left siblings are
8058 ** always nearly full, while the right-most sibling might be nearly empty.
8059 ** The next block of code attempts to adjust the packing of siblings to
8060 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00008061 **
8062 ** This adjustment is more than an optimization. The packing above might
8063 ** be so out of balance as to be illegal. For example, the right-most
8064 ** sibling might be completely empty. This adjustment is not optional.
8065 */
drh6019e162001-07-02 17:51:45 +00008066 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00008067 int szRight = szNew[i]; /* Size of sibling on the right */
8068 int szLeft = szNew[i-1]; /* Size of sibling on the left */
8069 int r; /* Index of right-most cell in left sibling */
8070 int d; /* Index of first cell to the left of right sibling */
8071
8072 r = cntNew[i-1] - 1;
8073 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00008074 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00008075 do{
drh1ffd2472015-06-23 02:37:30 +00008076 assert( d<nMaxCells );
8077 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008078 (void)cachedCellSize(&b, r);
8079 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00008080 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00008081 break;
8082 }
8083 szRight += b.szCell[d] + 2;
8084 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00008085 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00008086 r--;
8087 d--;
drh672073a2015-06-24 12:07:40 +00008088 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00008089 szNew[i] = szRight;
8090 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00008091 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8092 rc = SQLITE_CORRUPT_BKPT;
8093 goto balance_cleanup;
8094 }
drh6019e162001-07-02 17:51:45 +00008095 }
drh09d0deb2005-08-02 17:13:09 +00008096
drh2a0df922014-10-30 23:14:56 +00008097 /* Sanity check: For a non-corrupt database file one of the follwing
8098 ** must be true:
8099 ** (1) We found one or more cells (cntNew[0])>0), or
8100 ** (2) pPage is a virtual root page. A virtual root page is when
8101 ** the real root page is page 1 and we are the only child of
8102 ** that page.
drh09d0deb2005-08-02 17:13:09 +00008103 */
drh2a0df922014-10-30 23:14:56 +00008104 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00008105 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8106 apOld[0]->pgno, apOld[0]->nCell,
8107 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8108 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00008109 ));
8110
drh8b2f49b2001-06-08 00:21:52 +00008111 /*
drh6b308672002-07-08 02:16:37 +00008112 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00008113 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008114 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00008115 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00008116 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00008117 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00008118 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00008119 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00008120 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00008121 nNew++;
drh41d26392021-06-20 22:17:49 +00008122 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8123 && rc==SQLITE_OK
8124 ){
drh9e673ac2021-02-01 12:39:50 +00008125 rc = SQLITE_CORRUPT_BKPT;
8126 }
danielk197728129562005-01-11 10:25:06 +00008127 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00008128 }else{
drh7aa8f852006-03-28 00:24:44 +00008129 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00008130 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00008131 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008132 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00008133 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00008134 nNew++;
drh1ffd2472015-06-23 02:37:30 +00008135 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00008136
8137 /* Set the pointer-map entry for the new sibling page. */
8138 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00008139 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008140 if( rc!=SQLITE_OK ){
8141 goto balance_cleanup;
8142 }
8143 }
drh6b308672002-07-08 02:16:37 +00008144 }
drh8b2f49b2001-06-08 00:21:52 +00008145 }
8146
8147 /*
dan33ea4862014-10-09 19:35:37 +00008148 ** Reassign page numbers so that the new pages are in ascending order.
8149 ** This helps to keep entries in the disk file in order so that a scan
8150 ** of the table is closer to a linear scan through the file. That in turn
8151 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00008152 **
dan33ea4862014-10-09 19:35:37 +00008153 ** An O(n^2) insertion sort algorithm is used, but since n is never more
8154 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00008155 **
dan33ea4862014-10-09 19:35:37 +00008156 ** When NB==3, this one optimization makes the database about 25% faster
8157 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00008158 */
dan33ea4862014-10-09 19:35:37 +00008159 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00008160 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00008161 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00008162 for(j=0; j<i; j++){
drh8ab79d62021-02-04 13:52:34 +00008163 if( NEVER(aPgno[j]==aPgno[i]) ){
dan89ca0b32014-10-25 20:36:28 +00008164 /* This branch is taken if the set of sibling pages somehow contains
8165 ** duplicate entries. This can happen if the database is corrupt.
8166 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00008167 ** we do the detection here in order to avoid populating the pager
8168 ** cache with two separate objects associated with the same
8169 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00008170 assert( CORRUPT_DB );
8171 rc = SQLITE_CORRUPT_BKPT;
8172 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00008173 }
8174 }
dan33ea4862014-10-09 19:35:37 +00008175 }
8176 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00008177 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00008178 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00008179 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00008180 }
drh00fe08a2014-10-31 00:05:23 +00008181 pgno = aPgOrder[iBest];
8182 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00008183 if( iBest!=i ){
8184 if( iBest>i ){
8185 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
8186 }
8187 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8188 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00008189 }
8190 }
dan33ea4862014-10-09 19:35:37 +00008191
8192 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8193 "%d(%d nc=%d) %d(%d nc=%d)\n",
8194 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00008195 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00008196 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008197 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00008198 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008199 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00008200 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8201 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8202 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8203 ));
danielk19774dbaa892009-06-16 16:50:22 +00008204
8205 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh55f66b32019-07-16 19:44:32 +00008206 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8207 assert( apNew[nNew-1]!=0 );
danielk19774dbaa892009-06-16 16:50:22 +00008208 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00008209
dan33ea4862014-10-09 19:35:37 +00008210 /* If the sibling pages are not leaves, ensure that the right-child pointer
8211 ** of the right-most new sibling page is set to the value that was
8212 ** originally in the same field of the right-most old sibling page. */
8213 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8214 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8215 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8216 }
danielk1977ac11ee62005-01-15 12:45:51 +00008217
dan33ea4862014-10-09 19:35:37 +00008218 /* Make any required updates to pointer map entries associated with
8219 ** cells stored on sibling pages following the balance operation. Pointer
8220 ** map entries associated with divider cells are set by the insertCell()
8221 ** routine. The associated pointer map entries are:
8222 **
8223 ** a) if the cell contains a reference to an overflow chain, the
8224 ** entry associated with the first page in the overflow chain, and
8225 **
8226 ** b) if the sibling pages are not leaves, the child page associated
8227 ** with the cell.
8228 **
8229 ** If the sibling pages are not leaves, then the pointer map entry
8230 ** associated with the right-child of each sibling may also need to be
8231 ** updated. This happens below, after the sibling pages have been
8232 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00008233 */
dan33ea4862014-10-09 19:35:37 +00008234 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00008235 MemPage *pOld;
8236 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00008237 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00008238 int iNew = 0;
8239 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00008240
drh1ffd2472015-06-23 02:37:30 +00008241 for(i=0; i<b.nCell; i++){
8242 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00008243 while( i==cntOldNext ){
8244 iOld++;
8245 assert( iOld<nNew || iOld<nOld );
drhdd2d9a32019-05-07 17:47:43 +00008246 assert( iOld>=0 && iOld<NB );
drh9c7e44c2019-02-14 15:27:12 +00008247 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00008248 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
drh4b70f112004-05-02 21:12:19 +00008249 }
dan33ea4862014-10-09 19:35:37 +00008250 if( i==cntNew[iNew] ){
8251 pNew = apNew[++iNew];
8252 if( !leafData ) continue;
8253 }
danielk197785d90ca2008-07-19 14:25:15 +00008254
dan33ea4862014-10-09 19:35:37 +00008255 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00008256 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00008257 ** or else the divider cell to the left of sibling page iOld. So,
8258 ** if sibling page iOld had the same page number as pNew, and if
8259 ** pCell really was a part of sibling page iOld (not a divider or
8260 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008261 if( iOld>=nNew
8262 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008263 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008264 ){
dan33ea4862014-10-09 19:35:37 +00008265 if( !leafCorrection ){
8266 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8267 }
drh1ffd2472015-06-23 02:37:30 +00008268 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008269 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00008270 }
drhea82b372015-06-23 21:35:28 +00008271 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00008272 }
drh14acc042001-06-10 19:56:58 +00008273 }
8274 }
dan33ea4862014-10-09 19:35:37 +00008275
8276 /* Insert new divider cells into pParent. */
8277 for(i=0; i<nNew-1; i++){
8278 u8 *pCell;
8279 u8 *pTemp;
8280 int sz;
drhc3c23f32021-05-06 11:02:55 +00008281 u8 *pSrcEnd;
dan33ea4862014-10-09 19:35:37 +00008282 MemPage *pNew = apNew[i];
8283 j = cntNew[i];
8284
8285 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008286 assert( b.apCell[j]!=0 );
8287 pCell = b.apCell[j];
8288 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008289 pTemp = &aOvflSpace[iOvflSpace];
8290 if( !pNew->leaf ){
8291 memcpy(&pNew->aData[8], pCell, 4);
8292 }else if( leafData ){
8293 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008294 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008295 ** cell consists of the integer key for the right-most cell of
8296 ** the sibling-page assembled above only.
8297 */
8298 CellInfo info;
8299 j--;
drh1ffd2472015-06-23 02:37:30 +00008300 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008301 pCell = pTemp;
8302 sz = 4 + putVarint(&pCell[4], info.nKey);
8303 pTemp = 0;
8304 }else{
8305 pCell -= 4;
8306 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8307 ** previously stored on a leaf node, and its reported size was 4
8308 ** bytes, then it may actually be smaller than this
8309 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8310 ** any cell). But it is important to pass the correct size to
8311 ** insertCell(), so reparse the cell now.
8312 **
drhc1fb2b82016-03-09 03:29:27 +00008313 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8314 ** and WITHOUT ROWID tables with exactly one column which is the
8315 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008316 */
drh1ffd2472015-06-23 02:37:30 +00008317 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008318 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008319 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008320 }
8321 }
8322 iOvflSpace += sz;
8323 assert( sz<=pBt->maxLocal+23 );
8324 assert( iOvflSpace <= (int)pBt->pageSize );
drhc3c23f32021-05-06 11:02:55 +00008325 for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
8326 pSrcEnd = b.apEnd[k];
8327 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8328 rc = SQLITE_CORRUPT_BKPT;
8329 goto balance_cleanup;
8330 }
dan33ea4862014-10-09 19:35:37 +00008331 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
drhd2cfbea2019-05-08 03:34:53 +00008332 if( rc!=SQLITE_OK ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008333 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8334 }
8335
8336 /* Now update the actual sibling pages. The order in which they are updated
8337 ** is important, as this code needs to avoid disrupting any page from which
8338 ** cells may still to be read. In practice, this means:
8339 **
drhd836d422014-10-31 14:26:36 +00008340 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8341 ** then it is not safe to update page apNew[iPg] until after
8342 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008343 **
drhd836d422014-10-31 14:26:36 +00008344 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8345 ** then it is not safe to update page apNew[iPg] until after
8346 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008347 **
8348 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008349 **
8350 ** The iPg value in the following loop starts at nNew-1 goes down
8351 ** to 0, then back up to nNew-1 again, thus making two passes over
8352 ** the pages. On the initial downward pass, only condition (1) above
8353 ** needs to be tested because (2) will always be true from the previous
8354 ** step. On the upward pass, both conditions are always true, so the
8355 ** upwards pass simply processes pages that were missed on the downward
8356 ** pass.
dan33ea4862014-10-09 19:35:37 +00008357 */
drhbec021b2014-10-31 12:22:00 +00008358 for(i=1-nNew; i<nNew; i++){
8359 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008360 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008361 if( abDone[iPg] ) continue; /* Skip pages already processed */
8362 if( i>=0 /* On the upwards pass, or... */
8363 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008364 ){
dan09c68402014-10-11 20:00:24 +00008365 int iNew;
8366 int iOld;
8367 int nNewCell;
8368
drhd836d422014-10-31 14:26:36 +00008369 /* Verify condition (1): If cells are moving left, update iPg
8370 ** only after iPg-1 has already been updated. */
8371 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8372
8373 /* Verify condition (2): If cells are moving right, update iPg
8374 ** only after iPg+1 has already been updated. */
8375 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8376
dan09c68402014-10-11 20:00:24 +00008377 if( iPg==0 ){
8378 iNew = iOld = 0;
8379 nNewCell = cntNew[0];
8380 }else{
drh1ffd2472015-06-23 02:37:30 +00008381 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008382 iNew = cntNew[iPg-1] + !leafData;
8383 nNewCell = cntNew[iPg] - iNew;
8384 }
8385
drh1ffd2472015-06-23 02:37:30 +00008386 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008387 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008388 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008389 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008390 assert( apNew[iPg]->nOverflow==0 );
8391 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008392 }
8393 }
drhd836d422014-10-31 14:26:36 +00008394
8395 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008396 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8397
drh7aa8f852006-03-28 00:24:44 +00008398 assert( nOld>0 );
8399 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008400
danielk197713bd99f2009-06-24 05:40:34 +00008401 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8402 /* The root page of the b-tree now contains no cells. The only sibling
8403 ** page is the right-child of the parent. Copy the contents of the
8404 ** child page into the parent, decreasing the overall height of the
8405 ** b-tree structure by one. This is described as the "balance-shallower"
8406 ** sub-algorithm in some documentation.
8407 **
8408 ** If this is an auto-vacuum database, the call to copyNodeContent()
8409 ** sets all pointer-map entries corresponding to database image pages
8410 ** for which the pointer is stored within the content being copied.
8411 **
drh768f2902014-10-31 02:51:41 +00008412 ** It is critical that the child page be defragmented before being
8413 ** copied into the parent, because if the parent is page 1 then it will
8414 ** by smaller than the child due to the database header, and so all the
8415 ** free space needs to be up front.
8416 */
drh9b5351d2015-09-30 14:19:08 +00008417 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008418 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008419 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00008420 assert( apNew[0]->nFree ==
drh1c960262019-03-25 18:44:08 +00008421 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8422 - apNew[0]->nCell*2)
drh768f2902014-10-31 02:51:41 +00008423 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00008424 );
drhc314dc72009-07-21 11:52:34 +00008425 copyNodeContent(apNew[0], pParent, &rc);
8426 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00008427 }else if( ISAUTOVACUUM && !leafCorrection ){
8428 /* Fix the pointer map entries associated with the right-child of each
8429 ** sibling page. All other pointer map entries have already been taken
8430 ** care of. */
8431 for(i=0; i<nNew; i++){
8432 u32 key = get4byte(&apNew[i]->aData[8]);
8433 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008434 }
dan33ea4862014-10-09 19:35:37 +00008435 }
danielk19774dbaa892009-06-16 16:50:22 +00008436
dan33ea4862014-10-09 19:35:37 +00008437 assert( pParent->isInit );
8438 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008439 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008440
dan33ea4862014-10-09 19:35:37 +00008441 /* Free any old pages that were not reused as new pages.
8442 */
8443 for(i=nNew; i<nOld; i++){
8444 freePage(apOld[i], &rc);
8445 }
danielk19774dbaa892009-06-16 16:50:22 +00008446
8447#if 0
dan33ea4862014-10-09 19:35:37 +00008448 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008449 /* The ptrmapCheckPages() contains assert() statements that verify that
8450 ** all pointer map pages are set correctly. This is helpful while
8451 ** debugging. This is usually disabled because a corrupt database may
8452 ** cause an assert() statement to fail. */
8453 ptrmapCheckPages(apNew, nNew);
8454 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008455 }
dan33ea4862014-10-09 19:35:37 +00008456#endif
danielk1977cd581a72009-06-23 15:43:39 +00008457
drh8b2f49b2001-06-08 00:21:52 +00008458 /*
drh14acc042001-06-10 19:56:58 +00008459 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008460 */
drh14acc042001-06-10 19:56:58 +00008461balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008462 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008463 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008464 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008465 }
drh14acc042001-06-10 19:56:58 +00008466 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008467 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008468 }
danielk1977eaa06f62008-09-18 17:34:44 +00008469
drh8b2f49b2001-06-08 00:21:52 +00008470 return rc;
8471}
8472
drh43605152004-05-29 21:46:49 +00008473
8474/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008475** This function is called when the root page of a b-tree structure is
8476** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008477**
danielk1977a50d9aa2009-06-08 14:49:45 +00008478** A new child page is allocated and the contents of the current root
8479** page, including overflow cells, are copied into the child. The root
8480** page is then overwritten to make it an empty page with the right-child
8481** pointer pointing to the new page.
8482**
8483** Before returning, all pointer-map entries corresponding to pages
8484** that the new child-page now contains pointers to are updated. The
8485** entry corresponding to the new right-child pointer of the root
8486** page is also updated.
8487**
8488** If successful, *ppChild is set to contain a reference to the child
8489** page and SQLITE_OK is returned. In this case the caller is required
8490** to call releasePage() on *ppChild exactly once. If an error occurs,
8491** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008492*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008493static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8494 int rc; /* Return value from subprocedures */
8495 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008496 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008497 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008498
danielk1977a50d9aa2009-06-08 14:49:45 +00008499 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008500 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008501
danielk1977a50d9aa2009-06-08 14:49:45 +00008502 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8503 ** page that will become the new right-child of pPage. Copy the contents
8504 ** of the node stored on pRoot into the new child page.
8505 */
drh98add2e2009-07-20 17:11:49 +00008506 rc = sqlite3PagerWrite(pRoot->pDbPage);
8507 if( rc==SQLITE_OK ){
8508 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008509 copyNodeContent(pRoot, pChild, &rc);
8510 if( ISAUTOVACUUM ){
8511 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008512 }
8513 }
8514 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008515 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008516 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008517 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008518 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008519 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8520 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drh12fe9a02019-02-19 16:42:54 +00008521 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00008522
danielk1977a50d9aa2009-06-08 14:49:45 +00008523 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8524
8525 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008526 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8527 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8528 memcpy(pChild->apOvfl, pRoot->apOvfl,
8529 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008530 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008531
8532 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8533 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8534 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8535
8536 *ppChild = pChild;
8537 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008538}
8539
8540/*
drha2d50282019-12-23 18:02:15 +00008541** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8542** on the same B-tree as pCur.
8543**
drh87463962021-10-05 22:51:26 +00008544** This can occur if a database is corrupt with two or more SQL tables
drha2d50282019-12-23 18:02:15 +00008545** pointing to the same b-tree. If an insert occurs on one SQL table
8546** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8547** table linked to the same b-tree. If the secondary insert causes a
8548** rebalance, that can change content out from under the cursor on the
8549** first SQL table, violating invariants on the first insert.
8550*/
8551static int anotherValidCursor(BtCursor *pCur){
8552 BtCursor *pOther;
8553 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8554 if( pOther!=pCur
8555 && pOther->eState==CURSOR_VALID
8556 && pOther->pPage==pCur->pPage
8557 ){
8558 return SQLITE_CORRUPT_BKPT;
8559 }
8560 }
8561 return SQLITE_OK;
8562}
8563
8564/*
danielk197771d5d2c2008-09-29 11:49:47 +00008565** The page that pCur currently points to has just been modified in
8566** some way. This function figures out if this modification means the
8567** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008568** routine. Balancing routines are:
8569**
8570** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008571** balance_deeper()
8572** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008573*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008574static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008575 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008576 const int nMin = pCur->pBt->usableSize * 2 / 3;
8577 u8 aBalanceQuickSpace[13];
8578 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008579
drhcc5f8a42016-02-06 22:32:06 +00008580 VVA_ONLY( int balance_quick_called = 0 );
8581 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008582
8583 do {
dan01fd42b2019-07-13 09:55:33 +00008584 int iPage;
drh352a35a2017-08-15 03:46:47 +00008585 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008586
drha941ff72019-02-12 00:58:10 +00008587 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
dan01fd42b2019-07-13 09:55:33 +00008588 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8589 break;
8590 }else if( (iPage = pCur->iPage)==0 ){
drha2d50282019-12-23 18:02:15 +00008591 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008592 /* The root page of the b-tree is overfull. In this case call the
8593 ** balance_deeper() function to create a new child for the root-page
8594 ** and copy the current contents of the root-page to it. The
8595 ** next iteration of the do-loop will balance the child page.
8596 */
drhcc5f8a42016-02-06 22:32:06 +00008597 assert( balance_deeper_called==0 );
8598 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008599 rc = balance_deeper(pPage, &pCur->apPage[1]);
8600 if( rc==SQLITE_OK ){
8601 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008602 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008603 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008604 pCur->apPage[0] = pPage;
8605 pCur->pPage = pCur->apPage[1];
8606 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008607 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008608 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008609 break;
8610 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008611 }else{
8612 MemPage * const pParent = pCur->apPage[iPage-1];
8613 int const iIdx = pCur->aiIdx[iPage-1];
8614
8615 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00008616 if( rc==SQLITE_OK && pParent->nFree<0 ){
8617 rc = btreeComputeFreeSpace(pParent);
8618 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008619 if( rc==SQLITE_OK ){
8620#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008621 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008622 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008623 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008624 && pParent->pgno!=1
8625 && pParent->nCell==iIdx
8626 ){
8627 /* Call balance_quick() to create a new sibling of pPage on which
8628 ** to store the overflow cell. balance_quick() inserts a new cell
8629 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008630 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008631 ** use either balance_nonroot() or balance_deeper(). Until this
8632 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8633 ** buffer.
8634 **
8635 ** The purpose of the following assert() is to check that only a
8636 ** single call to balance_quick() is made for each call to this
8637 ** function. If this were not verified, a subtle bug involving reuse
8638 ** of the aBalanceQuickSpace[] might sneak in.
8639 */
drhcc5f8a42016-02-06 22:32:06 +00008640 assert( balance_quick_called==0 );
8641 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008642 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8643 }else
8644#endif
8645 {
8646 /* In this case, call balance_nonroot() to redistribute cells
8647 ** between pPage and up to 2 of its sibling pages. This involves
8648 ** modifying the contents of pParent, which may cause pParent to
8649 ** become overfull or underfull. The next iteration of the do-loop
8650 ** will balance the parent page to correct this.
8651 **
8652 ** If the parent page becomes overfull, the overflow cell or cells
8653 ** are stored in the pSpace buffer allocated immediately below.
8654 ** A subsequent iteration of the do-loop will deal with this by
8655 ** calling balance_nonroot() (balance_deeper() may be called first,
8656 ** but it doesn't deal with overflow cells - just moves them to a
8657 ** different page). Once this subsequent call to balance_nonroot()
8658 ** has completed, it is safe to release the pSpace buffer used by
8659 ** the previous call, as the overflow cell data will have been
8660 ** copied either into the body of a database page or into the new
8661 ** pSpace buffer passed to the latter call to balance_nonroot().
8662 */
8663 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008664 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8665 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008666 if( pFree ){
8667 /* If pFree is not NULL, it points to the pSpace buffer used
8668 ** by a previous call to balance_nonroot(). Its contents are
8669 ** now stored either on real database pages or within the
8670 ** new pSpace buffer, so it may be safely freed here. */
8671 sqlite3PageFree(pFree);
8672 }
8673
danielk19774dbaa892009-06-16 16:50:22 +00008674 /* The pSpace buffer will be freed after the next call to
8675 ** balance_nonroot(), or just before this function returns, whichever
8676 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008677 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008678 }
8679 }
8680
8681 pPage->nOverflow = 0;
8682
8683 /* The next iteration of the do-loop balances the parent page. */
8684 releasePage(pPage);
8685 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008686 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008687 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008688 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008689 }while( rc==SQLITE_OK );
8690
8691 if( pFree ){
8692 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008693 }
8694 return rc;
8695}
8696
drh3de5d162018-05-03 03:59:02 +00008697/* Overwrite content from pX into pDest. Only do the write if the
8698** content is different from what is already there.
8699*/
8700static int btreeOverwriteContent(
8701 MemPage *pPage, /* MemPage on which writing will occur */
8702 u8 *pDest, /* Pointer to the place to start writing */
8703 const BtreePayload *pX, /* Source of data to write */
8704 int iOffset, /* Offset of first byte to write */
8705 int iAmt /* Number of bytes to be written */
8706){
8707 int nData = pX->nData - iOffset;
8708 if( nData<=0 ){
8709 /* Overwritting with zeros */
8710 int i;
8711 for(i=0; i<iAmt && pDest[i]==0; i++){}
8712 if( i<iAmt ){
8713 int rc = sqlite3PagerWrite(pPage->pDbPage);
8714 if( rc ) return rc;
8715 memset(pDest + i, 0, iAmt - i);
8716 }
8717 }else{
8718 if( nData<iAmt ){
8719 /* Mixed read data and zeros at the end. Make a recursive call
8720 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008721 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8722 iAmt-nData);
8723 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008724 iAmt = nData;
8725 }
8726 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8727 int rc = sqlite3PagerWrite(pPage->pDbPage);
8728 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00008729 /* In a corrupt database, it is possible for the source and destination
8730 ** buffers to overlap. This is harmless since the database is already
8731 ** corrupt but it does cause valgrind and ASAN warnings. So use
8732 ** memmove(). */
8733 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00008734 }
8735 }
8736 return SQLITE_OK;
8737}
8738
8739/*
8740** Overwrite the cell that cursor pCur is pointing to with fresh content
8741** contained in pX.
8742*/
8743static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8744 int iOffset; /* Next byte of pX->pData to write */
8745 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8746 int rc; /* Return code */
8747 MemPage *pPage = pCur->pPage; /* Page being written */
8748 BtShared *pBt; /* Btree */
8749 Pgno ovflPgno; /* Next overflow page to write */
8750 u32 ovflPageSize; /* Size to write on overflow page */
8751
drh27e80a32019-08-15 13:17:49 +00008752 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8753 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8754 ){
drh4f84e9c2018-05-03 13:56:23 +00008755 return SQLITE_CORRUPT_BKPT;
8756 }
drh3de5d162018-05-03 03:59:02 +00008757 /* Overwrite the local portion first */
8758 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8759 0, pCur->info.nLocal);
8760 if( rc ) return rc;
8761 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8762
8763 /* Now overwrite the overflow pages */
8764 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008765 assert( nTotal>=0 );
8766 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008767 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8768 pBt = pPage->pBt;
8769 ovflPageSize = pBt->usableSize - 4;
8770 do{
8771 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8772 if( rc ) return rc;
drhf9241a52021-11-11 16:26:46 +00008773 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
drhd5aa9262018-05-03 16:56:06 +00008774 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008775 }else{
drh30f7a252018-05-07 11:29:59 +00008776 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008777 ovflPgno = get4byte(pPage->aData);
8778 }else{
8779 ovflPageSize = nTotal - iOffset;
8780 }
8781 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8782 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008783 }
drhd5aa9262018-05-03 16:56:06 +00008784 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008785 if( rc ) return rc;
8786 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008787 }while( iOffset<nTotal );
8788 return SQLITE_OK;
8789}
8790
drhf74b8d92002-09-01 23:20:45 +00008791
8792/*
drh8eeb4462016-05-21 20:03:42 +00008793** Insert a new record into the BTree. The content of the new record
8794** is described by the pX object. The pCur cursor is used only to
8795** define what table the record should be inserted into, and is left
8796** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008797**
drh8eeb4462016-05-21 20:03:42 +00008798** For a table btree (used for rowid tables), only the pX.nKey value of
8799** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8800** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8801** hold the content of the row.
8802**
8803** For an index btree (used for indexes and WITHOUT ROWID tables), the
8804** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8805** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008806**
8807** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008808** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8809** been performed. In other words, if seekResult!=0 then the cursor
8810** is currently pointing to a cell that will be adjacent to the cell
8811** to be inserted. If seekResult<0 then pCur points to a cell that is
8812** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8813** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008814**
drheaf6ae22016-11-09 20:14:34 +00008815** If seekResult==0, that means pCur is pointing at some unknown location.
8816** In that case, this routine must seek the cursor to the correct insertion
8817** point for (pKey,nKey) before doing the insertion. For index btrees,
8818** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8819** key values and pX->aMem can be used instead of pX->pKey to avoid having
8820** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008821*/
drh3aac2dd2004-04-26 14:10:20 +00008822int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008823 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008824 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008825 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008826 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008827){
drh3b7511c2001-05-26 13:15:44 +00008828 int rc;
drh3e9ca092009-09-08 01:14:48 +00008829 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008830 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008831 int idx;
drh3b7511c2001-05-26 13:15:44 +00008832 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008833 Btree *p = pCur->pBtree;
8834 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008835 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008836 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008837
dancd1b2d02020-12-09 20:33:51 +00008838 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
dan7aae7352020-12-10 18:06:24 +00008839 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
danf91c1312017-01-10 20:04:38 +00008840
danf5ea93b2021-04-08 19:39:00 +00008841 if( pCur->eState==CURSOR_FAULT ){
8842 assert( pCur->skipNext!=SQLITE_OK );
8843 return pCur->skipNext;
drh98add2e2009-07-20 17:11:49 +00008844 }
8845
dan7a2347e2016-01-07 16:43:54 +00008846 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008847 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8848 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008849 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008850 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8851
danielk197731d31b82009-07-13 13:18:07 +00008852 /* Assert that the caller has been consistent. If this cursor was opened
8853 ** expecting an index b-tree, then the caller should be inserting blob
8854 ** keys with no associated data. If the cursor was opened expecting an
8855 ** intkey table, the caller should be inserting integer keys with a
8856 ** blob of associated data. */
dan855aed12020-12-11 19:01:24 +00008857 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008858
danielk19779c3acf32009-05-02 07:36:49 +00008859 /* Save the positions of any other cursors open on this table.
8860 **
danielk19773509a652009-07-06 18:56:13 +00008861 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008862 ** example, when inserting data into a table with auto-generated integer
8863 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8864 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008865 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008866 ** that the cursor is already where it needs to be and returns without
8867 ** doing any work. To avoid thwarting these optimizations, it is important
8868 ** not to clear the cursor here.
8869 */
drh27fb7462015-06-30 02:47:36 +00008870 if( pCur->curFlags & BTCF_Multiple ){
8871 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8872 if( rc ) return rc;
danf5ea93b2021-04-08 19:39:00 +00008873 if( loc && pCur->iPage<0 ){
8874 /* This can only happen if the schema is corrupt such that there is more
8875 ** than one table or index with the same root page as used by the cursor.
8876 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
8877 ** the schema was loaded. This cannot be asserted though, as a user might
8878 ** set the flag, load the schema, and then unset the flag. */
8879 return SQLITE_CORRUPT_BKPT;
8880 }
drhd60f4f42012-03-23 14:23:52 +00008881 }
8882
danielk197771d5d2c2008-09-29 11:49:47 +00008883 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008884 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008885 /* If this is an insert into a table b-tree, invalidate any incrblob
8886 ** cursors open on the row being replaced */
drh49bb56e2021-05-14 20:01:36 +00008887 if( p->hasIncrblobCur ){
8888 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8889 }
drhe0670b62014-02-12 21:31:12 +00008890
danf91c1312017-01-10 20:04:38 +00008891 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008892 ** to a row with the same key as the new entry being inserted.
8893 */
8894#ifdef SQLITE_DEBUG
8895 if( flags & BTREE_SAVEPOSITION ){
8896 assert( pCur->curFlags & BTCF_ValidNKey );
8897 assert( pX->nKey==pCur->info.nKey );
drhd720d392018-05-07 17:27:04 +00008898 assert( loc==0 );
8899 }
8900#endif
danf91c1312017-01-10 20:04:38 +00008901
drhd720d392018-05-07 17:27:04 +00008902 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8903 ** that the cursor is not pointing to a row to be overwritten.
8904 ** So do a complete check.
8905 */
drh7a1c28d2016-11-10 20:42:08 +00008906 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008907 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008908 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008909 assert( pX->nData>=0 && pX->nZero>=0 );
8910 if( pCur->info.nSize!=0
8911 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8912 ){
drhd720d392018-05-07 17:27:04 +00008913 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008914 return btreeOverwriteCell(pCur, pX);
8915 }
drhd720d392018-05-07 17:27:04 +00008916 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008917 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008918 /* The cursor is *not* pointing to the cell to be overwritten, nor
8919 ** to an adjacent cell. Move the cursor so that it is pointing either
8920 ** to the cell to be overwritten or an adjacent cell.
8921 */
drh42a410d2021-06-19 18:32:20 +00008922 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
8923 (flags & BTREE_APPEND)!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008924 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008925 }
drhd720d392018-05-07 17:27:04 +00008926 }else{
8927 /* This is an index or a WITHOUT ROWID table */
8928
8929 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8930 ** to a row with the same key as the new entry being inserted.
8931 */
8932 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8933
8934 /* If the cursor is not already pointing either to the cell to be
8935 ** overwritten, or if a new cell is being inserted, if the cursor is
8936 ** not pointing to an immediately adjacent cell, then move the cursor
8937 ** so that it does.
8938 */
8939 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8940 if( pX->nMem ){
8941 UnpackedRecord r;
8942 r.pKeyInfo = pCur->pKeyInfo;
8943 r.aMem = pX->aMem;
8944 r.nField = pX->nMem;
8945 r.default_rc = 0;
drhd720d392018-05-07 17:27:04 +00008946 r.eqSeen = 0;
drh42a410d2021-06-19 18:32:20 +00008947 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
drhd720d392018-05-07 17:27:04 +00008948 }else{
drh42a410d2021-06-19 18:32:20 +00008949 rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
8950 (flags & BTREE_APPEND)!=0, &loc);
drhd720d392018-05-07 17:27:04 +00008951 }
8952 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00008953 }
drh89ee2292018-05-07 18:41:19 +00008954
8955 /* If the cursor is currently pointing to an entry to be overwritten
8956 ** and the new content is the same as as the old, then use the
8957 ** overwrite optimization.
8958 */
8959 if( loc==0 ){
8960 getCellInfo(pCur);
8961 if( pCur->info.nKey==pX->nKey ){
8962 BtreePayload x2;
8963 x2.pData = pX->pKey;
8964 x2.nData = pX->nKey;
8965 x2.nZero = 0;
8966 return btreeOverwriteCell(pCur, &x2);
8967 }
8968 }
danielk1977da184232006-01-05 11:34:32 +00008969 }
drh0e5ce802019-12-20 12:33:17 +00008970 assert( pCur->eState==CURSOR_VALID
8971 || (pCur->eState==CURSOR_INVALID && loc)
8972 || CORRUPT_DB );
danielk1977da184232006-01-05 11:34:32 +00008973
drh352a35a2017-08-15 03:46:47 +00008974 pPage = pCur->pPage;
dancd1b2d02020-12-09 20:33:51 +00008975 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
drh44845222008-07-17 18:39:57 +00008976 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00008977 if( pPage->nFree<0 ){
drh21c7ccb2021-04-10 20:21:28 +00008978 if( NEVER(pCur->eState>CURSOR_INVALID) ){
drha1085f02020-07-11 16:42:28 +00008979 rc = SQLITE_CORRUPT_BKPT;
8980 }else{
8981 rc = btreeComputeFreeSpace(pPage);
8982 }
drhb0ea9432019-02-09 21:06:40 +00008983 if( rc ) return rc;
8984 }
danielk19778f880a82009-07-13 09:41:45 +00008985
drh3a4c1412004-05-09 20:40:11 +00008986 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008987 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008988 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008989 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008990 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008991 assert( newCell!=0 );
dancd1b2d02020-12-09 20:33:51 +00008992 if( flags & BTREE_PREFORMAT ){
dancd1b2d02020-12-09 20:33:51 +00008993 rc = SQLITE_OK;
dan7aae7352020-12-10 18:06:24 +00008994 szNew = pBt->nPreformatSize;
8995 if( szNew<4 ) szNew = 4;
8996 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
8997 CellInfo info;
8998 pPage->xParseCell(pPage, newCell, &info);
dan9257ddb2020-12-10 19:54:13 +00008999 if( info.nPayload!=info.nLocal ){
dan7aae7352020-12-10 18:06:24 +00009000 Pgno ovfl = get4byte(&newCell[szNew-4]);
9001 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
9002 }
9003 }
dancd1b2d02020-12-09 20:33:51 +00009004 }else{
9005 rc = fillInCell(pPage, newCell, pX, &szNew);
dancd1b2d02020-12-09 20:33:51 +00009006 }
dan7aae7352020-12-10 18:06:24 +00009007 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00009008 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00009009 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00009010 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00009011 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00009012 CellInfo info;
drh635480e2021-10-08 16:15:17 +00009013 assert( idx>=0 );
9014 if( idx>=pPage->nCell ){
9015 return SQLITE_CORRUPT_BKPT;
9016 }
danielk19776e465eb2007-08-21 13:11:00 +00009017 rc = sqlite3PagerWrite(pPage->pDbPage);
9018 if( rc ){
9019 goto end_insert;
9020 }
danielk197771d5d2c2008-09-29 11:49:47 +00009021 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00009022 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00009023 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00009024 }
drh86c779f2021-05-15 13:08:44 +00009025 BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
drh554a19d2019-08-12 18:26:46 +00009026 testcase( pCur->curFlags & BTCF_ValidOvfl );
9027 invalidateOverflowCache(pCur);
danca66f6c2017-06-08 11:14:08 +00009028 if( info.nSize==szNew && info.nLocal==info.nPayload
9029 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
9030 ){
drhf9238252016-12-09 18:09:42 +00009031 /* Overwrite the old cell with the new if they are the same size.
9032 ** We could also try to do this if the old cell is smaller, then add
9033 ** the leftover space to the free list. But experiments show that
9034 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00009035 ** calling dropCell() and insertCell().
9036 **
9037 ** This optimization cannot be used on an autovacuum database if the
9038 ** new entry uses overflow pages, as the insertCell() call below is
9039 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00009040 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh93788182019-07-22 23:24:01 +00009041 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
9042 return SQLITE_CORRUPT_BKPT;
9043 }
9044 if( oldCell+szNew > pPage->aDataEnd ){
9045 return SQLITE_CORRUPT_BKPT;
9046 }
drh80159da2016-12-09 17:32:51 +00009047 memcpy(oldCell, newCell, szNew);
9048 return SQLITE_OK;
9049 }
9050 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00009051 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00009052 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00009053 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00009054 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00009055 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00009056 }else{
drh4b70f112004-05-02 21:12:19 +00009057 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00009058 }
drh98add2e2009-07-20 17:11:49 +00009059 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00009060 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00009061 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00009062
mistachkin48864df2013-03-21 21:20:32 +00009063 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00009064 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00009065 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00009066 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00009067 **
danielk1977a50d9aa2009-06-08 14:49:45 +00009068 ** Previous versions of SQLite called moveToRoot() to move the cursor
9069 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00009070 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9071 ** set the cursor state to "invalid". This makes common insert operations
9072 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00009073 **
danielk1977a50d9aa2009-06-08 14:49:45 +00009074 ** There is a subtle but important optimization here too. When inserting
9075 ** multiple records into an intkey b-tree using a single cursor (as can
9076 ** happen while processing an "INSERT INTO ... SELECT" statement), it
9077 ** is advantageous to leave the cursor pointing to the last entry in
9078 ** the b-tree if possible. If the cursor is left pointing to the last
9079 ** entry in the table, and the next row inserted has an integer key
9080 ** larger than the largest existing key, it is possible to insert the
9081 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00009082 */
danielk1977a50d9aa2009-06-08 14:49:45 +00009083 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00009084 if( pPage->nOverflow ){
9085 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00009086 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00009087 rc = balance(pCur);
9088
9089 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00009090 ** fails. Internal data structure corruption will result otherwise.
9091 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9092 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00009093 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00009094 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00009095 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00009096 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00009097 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00009098 assert( pCur->pKey==0 );
9099 pCur->pKey = sqlite3Malloc( pX->nKey );
9100 if( pCur->pKey==0 ){
9101 rc = SQLITE_NOMEM;
9102 }else{
9103 memcpy(pCur->pKey, pX->pKey, pX->nKey);
9104 }
9105 }
9106 pCur->eState = CURSOR_REQUIRESEEK;
9107 pCur->nKey = pX->nKey;
9108 }
danielk19773f632d52009-05-02 10:03:09 +00009109 }
drh352a35a2017-08-15 03:46:47 +00009110 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00009111
drh2e38c322004-09-03 18:38:44 +00009112end_insert:
drh5e2f8b92001-05-28 00:41:15 +00009113 return rc;
9114}
9115
dand2ffc972020-12-10 19:20:15 +00009116/*
9117** This function is used as part of copying the current row from cursor
9118** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9119** parameter iKey is used as the rowid value when the record is copied
9120** into pDest. Otherwise, the record is copied verbatim.
9121**
9122** This function does not actually write the new value to cursor pDest.
9123** Instead, it creates and populates any required overflow pages and
9124** writes the data for the new cell into the BtShared.pTmpSpace buffer
9125** for the destination database. The size of the cell, in bytes, is left
9126** in BtShared.nPreformatSize. The caller completes the insertion by
9127** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9128**
9129** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9130*/
dan7aae7352020-12-10 18:06:24 +00009131int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
dan036e0672020-12-08 20:19:07 +00009132 int rc = SQLITE_OK;
dan7aae7352020-12-10 18:06:24 +00009133 BtShared *pBt = pDest->pBt;
9134 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */
danebbf3682020-12-09 16:32:11 +00009135 const u8 *aIn; /* Pointer to next input buffer */
drhe5baf5c2020-12-16 14:20:45 +00009136 u32 nIn; /* Size of input buffer aIn[] */
dan7f607062020-12-15 19:27:20 +00009137 u32 nRem; /* Bytes of data still to copy */
dan036e0672020-12-08 20:19:07 +00009138
dan036e0672020-12-08 20:19:07 +00009139 getCellInfo(pSrc);
dan7aae7352020-12-10 18:06:24 +00009140 aOut += putVarint32(aOut, pSrc->info.nPayload);
9141 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
danebbf3682020-12-09 16:32:11 +00009142 nIn = pSrc->info.nLocal;
9143 aIn = pSrc->info.pPayload;
drh0a8b6a92020-12-16 21:09:45 +00009144 if( aIn+nIn>pSrc->pPage->aDataEnd ){
9145 return SQLITE_CORRUPT_BKPT;
9146 }
danebbf3682020-12-09 16:32:11 +00009147 nRem = pSrc->info.nPayload;
dan7aae7352020-12-10 18:06:24 +00009148 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9149 memcpy(aOut, aIn, nIn);
9150 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9151 }else{
9152 Pager *pSrcPager = pSrc->pBt->pPager;
9153 u8 *pPgnoOut = 0;
9154 Pgno ovflIn = 0;
9155 DbPage *pPageIn = 0;
9156 MemPage *pPageOut = 0;
drhe5baf5c2020-12-16 14:20:45 +00009157 u32 nOut; /* Size of output buffer aOut[] */
danebbf3682020-12-09 16:32:11 +00009158
dan7aae7352020-12-10 18:06:24 +00009159 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9160 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9161 if( nOut<pSrc->info.nPayload ){
9162 pPgnoOut = &aOut[nOut];
9163 pBt->nPreformatSize += 4;
9164 }
9165
9166 if( nRem>nIn ){
drh0a8b6a92020-12-16 21:09:45 +00009167 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9168 return SQLITE_CORRUPT_BKPT;
9169 }
dan7aae7352020-12-10 18:06:24 +00009170 ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9171 }
9172
9173 do {
9174 nRem -= nOut;
9175 do{
9176 assert( nOut>0 );
9177 if( nIn>0 ){
9178 int nCopy = MIN(nOut, nIn);
9179 memcpy(aOut, aIn, nCopy);
9180 nOut -= nCopy;
9181 nIn -= nCopy;
9182 aOut += nCopy;
9183 aIn += nCopy;
9184 }
9185 if( nOut>0 ){
9186 sqlite3PagerUnref(pPageIn);
9187 pPageIn = 0;
9188 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9189 if( rc==SQLITE_OK ){
9190 aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9191 ovflIn = get4byte(aIn);
9192 aIn += 4;
9193 nIn = pSrc->pBt->usableSize - 4;
9194 }
9195 }
9196 }while( rc==SQLITE_OK && nOut>0 );
9197
drhad1188b2021-10-02 18:22:24 +00009198 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
dan7aae7352020-12-10 18:06:24 +00009199 Pgno pgnoNew;
9200 MemPage *pNew = 0;
9201 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9202 put4byte(pPgnoOut, pgnoNew);
9203 if( ISAUTOVACUUM && pPageOut ){
9204 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9205 }
9206 releasePage(pPageOut);
9207 pPageOut = pNew;
9208 if( pPageOut ){
9209 pPgnoOut = pPageOut->aData;
9210 put4byte(pPgnoOut, 0);
9211 aOut = &pPgnoOut[4];
9212 nOut = MIN(pBt->usableSize - 4, nRem);
danebbf3682020-12-09 16:32:11 +00009213 }
9214 }
dan7aae7352020-12-10 18:06:24 +00009215 }while( nRem>0 && rc==SQLITE_OK );
9216
9217 releasePage(pPageOut);
9218 sqlite3PagerUnref(pPageIn);
dan036e0672020-12-08 20:19:07 +00009219 }
9220
9221 return rc;
9222}
9223
drh5e2f8b92001-05-28 00:41:15 +00009224/*
danf0ee1d32015-09-12 19:26:11 +00009225** Delete the entry that the cursor is pointing to.
9226**
drhe807bdb2016-01-21 17:06:33 +00009227** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9228** the cursor is left pointing at an arbitrary location after the delete.
9229** But if that bit is set, then the cursor is left in a state such that
9230** the next call to BtreeNext() or BtreePrev() moves it to the same row
9231** as it would have been on if the call to BtreeDelete() had been omitted.
9232**
drhdef19e32016-01-27 16:26:25 +00009233** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9234** associated with a single table entry and its indexes. Only one of those
9235** deletes is considered the "primary" delete. The primary delete occurs
9236** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9237** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9238** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00009239** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00009240*/
drhe807bdb2016-01-21 17:06:33 +00009241int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00009242 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00009243 BtShared *pBt = p->pBt;
drh7e17a3a2022-01-02 14:55:43 +00009244 int rc; /* Return code */
9245 MemPage *pPage; /* Page to delete cell from */
9246 unsigned char *pCell; /* Pointer to cell to delete */
9247 int iCellIdx; /* Index of cell to delete */
9248 int iCellDepth; /* Depth of node containing pCell */
9249 CellInfo info; /* Size of the cell being deleted */
9250 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
drh8b2f49b2001-06-08 00:21:52 +00009251
dan7a2347e2016-01-07 16:43:54 +00009252 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00009253 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009254 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00009255 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00009256 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9257 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drhdef19e32016-01-27 16:26:25 +00009258 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danb560a712019-03-13 15:29:14 +00009259 if( pCur->eState==CURSOR_REQUIRESEEK ){
9260 rc = btreeRestoreCursorPosition(pCur);
danf0ac2902021-04-26 15:32:36 +00009261 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9262 if( rc || pCur->eState!=CURSOR_VALID ) return rc;
danb560a712019-03-13 15:29:14 +00009263 }
dan112501f2021-04-06 18:02:17 +00009264 assert( CORRUPT_DB || pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00009265
danielk19774dbaa892009-06-16 16:50:22 +00009266 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00009267 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00009268 pPage = pCur->pPage;
drh7e17a3a2022-01-02 14:55:43 +00009269 if( pPage->nCell<=iCellIdx ){
9270 return SQLITE_CORRUPT_BKPT;
9271 }
danielk19774dbaa892009-06-16 16:50:22 +00009272 pCell = findCell(pPage, iCellIdx);
drh2dfe9662022-01-02 11:25:51 +00009273 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
9274 return SQLITE_CORRUPT_BKPT;
9275 }
danielk19774dbaa892009-06-16 16:50:22 +00009276
drh7e17a3a2022-01-02 14:55:43 +00009277 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
drhbfc7a8b2016-04-09 17:04:05 +00009278 ** be preserved following this delete operation. If the current delete
9279 ** will cause a b-tree rebalance, then this is done by saving the cursor
9280 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9281 ** returning.
9282 **
drh7e17a3a2022-01-02 14:55:43 +00009283 ** If the current delete will not cause a rebalance, then the cursor
drhbfc7a8b2016-04-09 17:04:05 +00009284 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
drh7e17a3a2022-01-02 14:55:43 +00009285 ** before or after the deleted entry.
9286 **
9287 ** The bPreserve value records which path is required:
9288 **
9289 ** bPreserve==0 Not necessary to save the cursor position
9290 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
9291 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
9292 */
9293 bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
drhbfc7a8b2016-04-09 17:04:05 +00009294 if( bPreserve ){
9295 if( !pPage->leaf
9296 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00009297 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00009298 ){
9299 /* A b-tree rebalance will be required after deleting this entry.
9300 ** Save the cursor key. */
9301 rc = saveCursorKey(pCur);
9302 if( rc ) return rc;
9303 }else{
drh7e17a3a2022-01-02 14:55:43 +00009304 bPreserve = 2;
drhbfc7a8b2016-04-09 17:04:05 +00009305 }
9306 }
9307
danielk19774dbaa892009-06-16 16:50:22 +00009308 /* If the page containing the entry to delete is not a leaf page, move
9309 ** the cursor to the largest entry in the tree that is smaller than
9310 ** the entry being deleted. This cell will replace the cell being deleted
9311 ** from the internal node. The 'previous' entry is used for this instead
9312 ** of the 'next' entry, as the previous entry is always a part of the
9313 ** sub-tree headed by the child page of the cell being deleted. This makes
9314 ** balancing the tree following the delete operation easier. */
9315 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00009316 rc = sqlite3BtreePrevious(pCur, 0);
9317 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00009318 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00009319 }
9320
9321 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00009322 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00009323 if( pCur->curFlags & BTCF_Multiple ){
9324 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9325 if( rc ) return rc;
9326 }
drhd60f4f42012-03-23 14:23:52 +00009327
9328 /* If this is a delete operation to remove a row from a table b-tree,
9329 ** invalidate any incrblob cursors open on the row being deleted. */
drh49bb56e2021-05-14 20:01:36 +00009330 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
drh9ca431a2017-03-29 18:03:50 +00009331 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00009332 }
9333
danf0ee1d32015-09-12 19:26:11 +00009334 /* Make the page containing the entry to be deleted writable. Then free any
9335 ** overflow pages associated with the entry and finally remove the cell
9336 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00009337 rc = sqlite3PagerWrite(pPage->pDbPage);
9338 if( rc ) return rc;
drh86c779f2021-05-15 13:08:44 +00009339 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
drh80159da2016-12-09 17:32:51 +00009340 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00009341 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00009342
danielk19774dbaa892009-06-16 16:50:22 +00009343 /* If the cell deleted was not located on a leaf page, then the cursor
9344 ** is currently pointing to the largest entry in the sub-tree headed
9345 ** by the child-page of the cell that was just deleted from an internal
9346 ** node. The cell from the leaf node needs to be moved to the internal
9347 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00009348 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00009349 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00009350 int nCell;
drh352a35a2017-08-15 03:46:47 +00009351 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00009352 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00009353
drhb0ea9432019-02-09 21:06:40 +00009354 if( pLeaf->nFree<0 ){
9355 rc = btreeComputeFreeSpace(pLeaf);
9356 if( rc ) return rc;
9357 }
drh352a35a2017-08-15 03:46:47 +00009358 if( iCellDepth<pCur->iPage-1 ){
9359 n = pCur->apPage[iCellDepth+1]->pgno;
9360 }else{
9361 n = pCur->pPage->pgno;
9362 }
danielk19774dbaa892009-06-16 16:50:22 +00009363 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00009364 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00009365 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00009366 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00009367 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009368 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00009369 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00009370 if( rc==SQLITE_OK ){
9371 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9372 }
drh98add2e2009-07-20 17:11:49 +00009373 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00009374 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00009375 }
danielk19774dbaa892009-06-16 16:50:22 +00009376
9377 /* Balance the tree. If the entry deleted was located on a leaf page,
9378 ** then the cursor still points to that page. In this case the first
9379 ** call to balance() repairs the tree, and the if(...) condition is
9380 ** never true.
9381 **
9382 ** Otherwise, if the entry deleted was on an internal node page, then
9383 ** pCur is pointing to the leaf page from which a cell was removed to
9384 ** replace the cell deleted from the internal node. This is slightly
9385 ** tricky as the leaf node may be underfull, and the internal node may
9386 ** be either under or overfull. In this case run the balancing algorithm
9387 ** on the leaf node first. If the balance proceeds far enough up the
9388 ** tree that we can be sure that any problem in the internal node has
9389 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9390 ** walk the cursor up the tree to the internal node and balance it as
9391 ** well. */
9392 rc = balance(pCur);
9393 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00009394 releasePageNotNull(pCur->pPage);
9395 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00009396 while( pCur->iPage>iCellDepth ){
9397 releasePage(pCur->apPage[pCur->iPage--]);
9398 }
drh352a35a2017-08-15 03:46:47 +00009399 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00009400 rc = balance(pCur);
9401 }
9402
danielk19776b456a22005-03-21 04:04:02 +00009403 if( rc==SQLITE_OK ){
drh7e17a3a2022-01-02 14:55:43 +00009404 if( bPreserve>1 ){
9405 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00009406 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00009407 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00009408 pCur->eState = CURSOR_SKIPNEXT;
9409 if( iCellIdx>=pPage->nCell ){
9410 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00009411 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00009412 }else{
9413 pCur->skipNext = 1;
9414 }
9415 }else{
9416 rc = moveToRoot(pCur);
9417 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00009418 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00009419 pCur->eState = CURSOR_REQUIRESEEK;
9420 }
drh44548e72017-08-14 18:13:52 +00009421 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00009422 }
danielk19776b456a22005-03-21 04:04:02 +00009423 }
drh5e2f8b92001-05-28 00:41:15 +00009424 return rc;
drh3b7511c2001-05-26 13:15:44 +00009425}
drh8b2f49b2001-06-08 00:21:52 +00009426
9427/*
drhc6b52df2002-01-04 03:09:29 +00009428** Create a new BTree table. Write into *piTable the page
9429** number for the root page of the new table.
9430**
drhab01f612004-05-22 02:55:23 +00009431** The type of type is determined by the flags parameter. Only the
9432** following values of flags are currently in use. Other values for
9433** flags might not work:
9434**
9435** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9436** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00009437*/
drhabc38152020-07-22 13:38:04 +00009438static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00009439 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009440 MemPage *pRoot;
9441 Pgno pgnoRoot;
9442 int rc;
drhd4187c72010-08-30 22:15:45 +00009443 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00009444
drh1fee73e2007-08-29 04:00:57 +00009445 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009446 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009447 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00009448
danielk1977003ba062004-11-04 02:57:33 +00009449#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00009450 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00009451 if( rc ){
9452 return rc;
9453 }
danielk1977003ba062004-11-04 02:57:33 +00009454#else
danielk1977687566d2004-11-02 12:56:41 +00009455 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009456 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9457 MemPage *pPageMove; /* The page to move to. */
9458
danielk197720713f32007-05-03 11:43:33 +00009459 /* Creating a new table may probably require moving an existing database
9460 ** to make room for the new tables root page. In case this page turns
9461 ** out to be an overflow page, delete all overflow page-map caches
9462 ** held by open cursors.
9463 */
danielk197792d4d7a2007-05-04 12:05:56 +00009464 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009465
danielk1977003ba062004-11-04 02:57:33 +00009466 /* Read the value of meta[3] from the database to determine where the
9467 ** root page of the new table should go. meta[3] is the largest root-page
9468 ** created so far, so the new root-page is (meta[3]+1).
9469 */
danielk1977602b4662009-07-02 07:47:33 +00009470 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
drh10248222020-07-28 20:32:12 +00009471 if( pgnoRoot>btreePagecount(pBt) ){
9472 return SQLITE_CORRUPT_BKPT;
9473 }
danielk1977003ba062004-11-04 02:57:33 +00009474 pgnoRoot++;
9475
danielk1977599fcba2004-11-08 07:13:13 +00009476 /* The new root-page may not be allocated on a pointer-map page, or the
9477 ** PENDING_BYTE page.
9478 */
drh72190432008-01-31 14:54:43 +00009479 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009480 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009481 pgnoRoot++;
9482 }
drh48bf2d72020-07-30 17:14:55 +00009483 assert( pgnoRoot>=3 );
danielk1977003ba062004-11-04 02:57:33 +00009484
9485 /* Allocate a page. The page that currently resides at pgnoRoot will
9486 ** be moved to the allocated page (unless the allocated page happens
9487 ** to reside at pgnoRoot).
9488 */
dan51f0b6d2013-02-22 20:16:34 +00009489 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009490 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009491 return rc;
9492 }
danielk1977003ba062004-11-04 02:57:33 +00009493
9494 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009495 /* pgnoRoot is the page that will be used for the root-page of
9496 ** the new table (assuming an error did not occur). But we were
9497 ** allocated pgnoMove. If required (i.e. if it was not allocated
9498 ** by extending the file), the current page at position pgnoMove
9499 ** is already journaled.
9500 */
drheeb844a2009-08-08 18:01:07 +00009501 u8 eType = 0;
9502 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009503
danf7679ad2013-04-03 11:38:36 +00009504 /* Save the positions of any open cursors. This is required in
9505 ** case they are holding a reference to an xFetch reference
9506 ** corresponding to page pgnoRoot. */
9507 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009508 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009509 if( rc!=SQLITE_OK ){
9510 return rc;
9511 }
danielk1977f35843b2007-04-07 15:03:17 +00009512
9513 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009514 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009515 if( rc!=SQLITE_OK ){
9516 return rc;
9517 }
9518 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009519 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9520 rc = SQLITE_CORRUPT_BKPT;
9521 }
9522 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009523 releasePage(pRoot);
9524 return rc;
9525 }
drhccae6022005-02-26 17:31:26 +00009526 assert( eType!=PTRMAP_ROOTPAGE );
9527 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009528 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009529 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009530
9531 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009532 if( rc!=SQLITE_OK ){
9533 return rc;
9534 }
drhb00fc3b2013-08-21 23:42:32 +00009535 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009536 if( rc!=SQLITE_OK ){
9537 return rc;
9538 }
danielk19773b8a05f2007-03-19 17:44:26 +00009539 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009540 if( rc!=SQLITE_OK ){
9541 releasePage(pRoot);
9542 return rc;
9543 }
9544 }else{
9545 pRoot = pPageMove;
9546 }
9547
danielk197742741be2005-01-08 12:42:39 +00009548 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009549 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009550 if( rc ){
9551 releasePage(pRoot);
9552 return rc;
9553 }
drhbf592832010-03-30 15:51:12 +00009554
9555 /* When the new root page was allocated, page 1 was made writable in
9556 ** order either to increase the database filesize, or to decrement the
9557 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9558 */
9559 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009560 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009561 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009562 releasePage(pRoot);
9563 return rc;
9564 }
danielk197742741be2005-01-08 12:42:39 +00009565
danielk1977003ba062004-11-04 02:57:33 +00009566 }else{
drh4f0c5872007-03-26 22:05:01 +00009567 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009568 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009569 }
9570#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009571 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009572 if( createTabFlags & BTREE_INTKEY ){
9573 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9574 }else{
9575 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9576 }
9577 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009578 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009579 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drhabc38152020-07-22 13:38:04 +00009580 *piTable = pgnoRoot;
drh8b2f49b2001-06-08 00:21:52 +00009581 return SQLITE_OK;
9582}
drhabc38152020-07-22 13:38:04 +00009583int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
drhd677b3d2007-08-20 22:48:41 +00009584 int rc;
9585 sqlite3BtreeEnter(p);
9586 rc = btreeCreateTable(p, piTable, flags);
9587 sqlite3BtreeLeave(p);
9588 return rc;
9589}
drh8b2f49b2001-06-08 00:21:52 +00009590
9591/*
9592** Erase the given database page and all its children. Return
9593** the page to the freelist.
9594*/
drh4b70f112004-05-02 21:12:19 +00009595static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00009596 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00009597 Pgno pgno, /* Page number to clear */
9598 int freePageFlag, /* Deallocate page if true */
dan2c718872021-06-22 18:32:05 +00009599 i64 *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00009600){
danielk1977146ba992009-07-22 14:08:13 +00009601 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00009602 int rc;
drh4b70f112004-05-02 21:12:19 +00009603 unsigned char *pCell;
9604 int i;
dan8ce71842014-01-14 20:14:09 +00009605 int hdr;
drh80159da2016-12-09 17:32:51 +00009606 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00009607
drh1fee73e2007-08-29 04:00:57 +00009608 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00009609 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00009610 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00009611 }
drh28f58dd2015-06-27 19:45:03 +00009612 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00009613 if( rc ) return rc;
dan1273d692021-10-16 17:09:36 +00009614 if( (pBt->openFlags & BTREE_SINGLE)==0
9615 && sqlite3PagerPageRefcount(pPage->pDbPage)!=1
9616 ){
drhccf46d02015-04-01 13:21:33 +00009617 rc = SQLITE_CORRUPT_BKPT;
9618 goto cleardatabasepage_out;
9619 }
dan8ce71842014-01-14 20:14:09 +00009620 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00009621 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00009622 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00009623 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00009624 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009625 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009626 }
drh86c779f2021-05-15 13:08:44 +00009627 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
danielk19776b456a22005-03-21 04:04:02 +00009628 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009629 }
drha34b6762004-05-07 13:30:42 +00009630 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00009631 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009632 if( rc ) goto cleardatabasepage_out;
dan020c4f32021-06-22 18:06:23 +00009633 if( pPage->intKey ) pnChange = 0;
drha6df0e62021-06-03 18:51:51 +00009634 }
9635 if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00009636 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00009637 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00009638 }
9639 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00009640 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00009641 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00009642 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00009643 }
danielk19776b456a22005-03-21 04:04:02 +00009644
9645cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00009646 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00009647 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009648}
9649
9650/*
drhab01f612004-05-22 02:55:23 +00009651** Delete all information from a single table in the database. iTable is
9652** the page number of the root of the table. After this routine returns,
9653** the root page is empty, but still exists.
9654**
9655** This routine will fail with SQLITE_LOCKED if there are any open
9656** read cursors on the table. Open write cursors are moved to the
9657** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00009658**
drha6df0e62021-06-03 18:51:51 +00009659** If pnChange is not NULL, then the integer value pointed to by pnChange
9660** is incremented by the number of entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00009661*/
dan2c718872021-06-22 18:32:05 +00009662int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00009663 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009664 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009665 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009666 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009667
drhc046e3e2009-07-15 11:26:44 +00009668 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009669
drhc046e3e2009-07-15 11:26:44 +00009670 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009671 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9672 ** is the root of a table b-tree - if it is not, the following call is
9673 ** a no-op). */
drh49bb56e2021-05-14 20:01:36 +00009674 if( p->hasIncrblobCur ){
9675 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9676 }
danielk197762c14b32008-11-19 09:05:26 +00009677 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009678 }
drhd677b3d2007-08-20 22:48:41 +00009679 sqlite3BtreeLeave(p);
9680 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009681}
9682
9683/*
drh079a3072014-03-19 14:10:55 +00009684** Delete all information from the single table that pCur is open on.
9685**
9686** This routine only work for pCur on an ephemeral table.
9687*/
9688int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9689 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9690}
9691
9692/*
drh8b2f49b2001-06-08 00:21:52 +00009693** Erase all information in a table and add the root of the table to
9694** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009695** page 1) is never added to the freelist.
9696**
9697** This routine will fail with SQLITE_LOCKED if there are any open
9698** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009699**
9700** If AUTOVACUUM is enabled and the page at iTable is not the last
9701** root page in the database file, then the last root page
9702** in the database file is moved into the slot formerly occupied by
9703** iTable and that last slot formerly occupied by the last root page
9704** is added to the freelist instead of iTable. In this say, all
9705** root pages are kept at the beginning of the database file, which
9706** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9707** page number that used to be the last root page in the file before
9708** the move. If no page gets moved, *piMoved is set to 0.
9709** The last root page is recorded in meta[3] and the value of
9710** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009711*/
danielk197789d40042008-11-17 14:20:56 +00009712static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009713 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009714 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009715 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009716
drh1fee73e2007-08-29 04:00:57 +00009717 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009718 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009719 assert( iTable>=2 );
drh9a518842019-03-08 01:52:30 +00009720 if( iTable>btreePagecount(pBt) ){
9721 return SQLITE_CORRUPT_BKPT;
9722 }
drh055f2982016-01-15 15:06:41 +00009723
danielk1977c7af4842008-10-27 13:59:33 +00009724 rc = sqlite3BtreeClearTable(p, iTable, 0);
dan1273d692021-10-16 17:09:36 +00009725 if( rc ) return rc;
9726 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drhda125362021-10-16 18:53:36 +00009727 if( NEVER(rc) ){
danielk19776b456a22005-03-21 04:04:02 +00009728 releasePage(pPage);
9729 return rc;
9730 }
danielk1977a0bf2652004-11-04 14:30:04 +00009731
drh205f48e2004-11-05 00:43:11 +00009732 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009733
danielk1977a0bf2652004-11-04 14:30:04 +00009734#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009735 freePage(pPage, &rc);
9736 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009737#else
drh055f2982016-01-15 15:06:41 +00009738 if( pBt->autoVacuum ){
9739 Pgno maxRootPgno;
9740 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009741
drh055f2982016-01-15 15:06:41 +00009742 if( iTable==maxRootPgno ){
9743 /* If the table being dropped is the table with the largest root-page
9744 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009745 */
drhc314dc72009-07-21 11:52:34 +00009746 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009747 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009748 if( rc!=SQLITE_OK ){
9749 return rc;
9750 }
9751 }else{
9752 /* The table being dropped does not have the largest root-page
9753 ** number in the database. So move the page that does into the
9754 ** gap left by the deleted root-page.
9755 */
9756 MemPage *pMove;
9757 releasePage(pPage);
9758 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9759 if( rc!=SQLITE_OK ){
9760 return rc;
9761 }
9762 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9763 releasePage(pMove);
9764 if( rc!=SQLITE_OK ){
9765 return rc;
9766 }
9767 pMove = 0;
9768 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9769 freePage(pMove, &rc);
9770 releasePage(pMove);
9771 if( rc!=SQLITE_OK ){
9772 return rc;
9773 }
9774 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009775 }
drh055f2982016-01-15 15:06:41 +00009776
9777 /* Set the new 'max-root-page' value in the database header. This
9778 ** is the old value less one, less one more if that happens to
9779 ** be a root-page number, less one again if that is the
9780 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009781 */
drh055f2982016-01-15 15:06:41 +00009782 maxRootPgno--;
9783 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9784 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9785 maxRootPgno--;
9786 }
9787 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9788
9789 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9790 }else{
9791 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009792 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009793 }
drh055f2982016-01-15 15:06:41 +00009794#endif
drh8b2f49b2001-06-08 00:21:52 +00009795 return rc;
9796}
drhd677b3d2007-08-20 22:48:41 +00009797int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9798 int rc;
9799 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009800 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009801 sqlite3BtreeLeave(p);
9802 return rc;
9803}
drh8b2f49b2001-06-08 00:21:52 +00009804
drh001bbcb2003-03-19 03:14:00 +00009805
drh8b2f49b2001-06-08 00:21:52 +00009806/*
danielk1977602b4662009-07-02 07:47:33 +00009807** This function may only be called if the b-tree connection already
9808** has a read or write transaction open on the database.
9809**
drh23e11ca2004-05-04 17:27:28 +00009810** Read the meta-information out of a database file. Meta[0]
9811** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009812** through meta[15] are available for use by higher layers. Meta[0]
9813** is read-only, the others are read/write.
9814**
9815** The schema layer numbers meta values differently. At the schema
9816** layer (and the SetCookie and ReadCookie opcodes) the number of
9817** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009818**
9819** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9820** of reading the value out of the header, it instead loads the "DataVersion"
9821** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9822** database file. It is a number computed by the pager. But its access
9823** pattern is the same as header meta values, and so it is convenient to
9824** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009825*/
danielk1977602b4662009-07-02 07:47:33 +00009826void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009827 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009828
drhd677b3d2007-08-20 22:48:41 +00009829 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009830 assert( p->inTrans>TRANS_NONE );
drh346a70c2020-06-15 20:27:35 +00009831 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009832 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009833 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009834
drh91618562014-12-19 19:28:02 +00009835 if( idx==BTREE_DATA_VERSION ){
drh2b994ce2021-03-18 12:36:09 +00009836 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
drh91618562014-12-19 19:28:02 +00009837 }else{
9838 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9839 }
drhae157872004-08-14 19:20:09 +00009840
danielk1977602b4662009-07-02 07:47:33 +00009841 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9842 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009843#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009844 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9845 pBt->btsFlags |= BTS_READ_ONLY;
9846 }
danielk1977003ba062004-11-04 02:57:33 +00009847#endif
drhae157872004-08-14 19:20:09 +00009848
drhd677b3d2007-08-20 22:48:41 +00009849 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009850}
9851
9852/*
drh23e11ca2004-05-04 17:27:28 +00009853** Write meta-information back into the database. Meta[0] is
9854** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009855*/
danielk1977aef0bf62005-12-30 16:28:01 +00009856int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9857 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009858 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009859 int rc;
drh23e11ca2004-05-04 17:27:28 +00009860 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009861 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009862 assert( p->inTrans==TRANS_WRITE );
9863 assert( pBt->pPage1!=0 );
9864 pP1 = pBt->pPage1->aData;
9865 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9866 if( rc==SQLITE_OK ){
9867 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009868#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009869 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009870 assert( pBt->autoVacuum || iMeta==0 );
9871 assert( iMeta==0 || iMeta==1 );
9872 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009873 }
drh64022502009-01-09 14:11:04 +00009874#endif
drh5df72a52002-06-06 23:16:05 +00009875 }
drhd677b3d2007-08-20 22:48:41 +00009876 sqlite3BtreeLeave(p);
9877 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009878}
drh8c42ca92001-06-22 19:15:00 +00009879
danielk1977a5533162009-02-24 10:01:51 +00009880/*
9881** The first argument, pCur, is a cursor opened on some b-tree. Count the
9882** number of entries in the b-tree and write the result to *pnEntry.
9883**
9884** SQLITE_OK is returned if the operation is successfully executed.
9885** Otherwise, if an error is encountered (i.e. an IO error or database
9886** corruption) an SQLite error code is returned.
9887*/
drh21f6daa2019-10-11 14:21:48 +00009888int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
danielk1977a5533162009-02-24 10:01:51 +00009889 i64 nEntry = 0; /* Value to return in *pnEntry */
9890 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009891
drh44548e72017-08-14 18:13:52 +00009892 rc = moveToRoot(pCur);
9893 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009894 *pnEntry = 0;
9895 return SQLITE_OK;
9896 }
danielk1977a5533162009-02-24 10:01:51 +00009897
9898 /* Unless an error occurs, the following loop runs one iteration for each
9899 ** page in the B-Tree structure (not including overflow pages).
9900 */
dan892edb62020-03-30 13:35:05 +00009901 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
danielk1977a5533162009-02-24 10:01:51 +00009902 int iIdx; /* Index of child node in parent */
9903 MemPage *pPage; /* Current page of the b-tree */
9904
9905 /* If this is a leaf page or the tree is not an int-key tree, then
9906 ** this page contains countable entries. Increment the entry counter
9907 ** accordingly.
9908 */
drh352a35a2017-08-15 03:46:47 +00009909 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009910 if( pPage->leaf || !pPage->intKey ){
9911 nEntry += pPage->nCell;
9912 }
9913
9914 /* pPage is a leaf node. This loop navigates the cursor so that it
9915 ** points to the first interior cell that it points to the parent of
9916 ** the next page in the tree that has not yet been visited. The
9917 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9918 ** of the page, or to the number of cells in the page if the next page
9919 ** to visit is the right-child of its parent.
9920 **
9921 ** If all pages in the tree have been visited, return SQLITE_OK to the
9922 ** caller.
9923 */
9924 if( pPage->leaf ){
9925 do {
9926 if( pCur->iPage==0 ){
9927 /* All pages of the b-tree have been visited. Return successfully. */
9928 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009929 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009930 }
danielk197730548662009-07-09 05:07:37 +00009931 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009932 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009933
drh75e96b32017-04-01 00:20:06 +00009934 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009935 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009936 }
9937
9938 /* Descend to the child node of the cell that the cursor currently
9939 ** points at. This is the right-child if (iIdx==pPage->nCell).
9940 */
drh75e96b32017-04-01 00:20:06 +00009941 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009942 if( iIdx==pPage->nCell ){
9943 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9944 }else{
9945 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9946 }
9947 }
9948
shanebe217792009-03-05 04:20:31 +00009949 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009950 return rc;
9951}
drhdd793422001-06-28 01:54:48 +00009952
drhdd793422001-06-28 01:54:48 +00009953/*
drh5eddca62001-06-30 21:53:53 +00009954** Return the pager associated with a BTree. This routine is used for
9955** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009956*/
danielk1977aef0bf62005-12-30 16:28:01 +00009957Pager *sqlite3BtreePager(Btree *p){
9958 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009959}
drh5eddca62001-06-30 21:53:53 +00009960
drhb7f91642004-10-31 02:22:47 +00009961#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009962/*
9963** Append a message to the error message string.
9964*/
drh2e38c322004-09-03 18:38:44 +00009965static void checkAppendMsg(
9966 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009967 const char *zFormat,
9968 ...
9969){
9970 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009971 if( !pCheck->mxErr ) return;
9972 pCheck->mxErr--;
9973 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009974 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009975 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +00009976 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009977 }
drh867db832014-09-26 02:41:05 +00009978 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +00009979 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009980 }
drh0cdbe1a2018-05-09 13:46:26 +00009981 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009982 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +00009983 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drh8ddf6352020-06-29 18:30:49 +00009984 pCheck->bOomFault = 1;
drhc890fec2008-08-01 20:10:08 +00009985 }
drh5eddca62001-06-30 21:53:53 +00009986}
drhb7f91642004-10-31 02:22:47 +00009987#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009988
drhb7f91642004-10-31 02:22:47 +00009989#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009990
9991/*
9992** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9993** corresponds to page iPg is already set.
9994*/
9995static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9996 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9997 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9998}
9999
10000/*
10001** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10002*/
10003static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10004 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10005 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
10006}
10007
10008
drh5eddca62001-06-30 21:53:53 +000010009/*
10010** Add 1 to the reference count for page iPage. If this is the second
10011** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +000010012** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +000010013** if this is the first reference to the page.
10014**
10015** Also check that the page number is in bounds.
10016*/
drh867db832014-09-26 02:41:05 +000010017static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +000010018 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +000010019 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010020 return 1;
10021 }
dan1235bb12012-04-03 17:43:28 +000010022 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +000010023 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010024 return 1;
10025 }
dan892edb62020-03-30 13:35:05 +000010026 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
dan1235bb12012-04-03 17:43:28 +000010027 setPageReferenced(pCheck, iPage);
10028 return 0;
drh5eddca62001-06-30 21:53:53 +000010029}
10030
danielk1977afcdd022004-10-31 16:25:42 +000010031#ifndef SQLITE_OMIT_AUTOVACUUM
10032/*
10033** Check that the entry in the pointer-map for page iChild maps to
10034** page iParent, pointer type ptrType. If not, append an error message
10035** to pCheck.
10036*/
10037static void checkPtrmap(
10038 IntegrityCk *pCheck, /* Integrity check context */
10039 Pgno iChild, /* Child page number */
10040 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +000010041 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +000010042){
10043 int rc;
10044 u8 ePtrmapType;
10045 Pgno iPtrmapParent;
10046
10047 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
10048 if( rc!=SQLITE_OK ){
drh8ddf6352020-06-29 18:30:49 +000010049 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
drh867db832014-09-26 02:41:05 +000010050 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +000010051 return;
10052 }
10053
10054 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +000010055 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +000010056 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10057 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
10058 }
10059}
10060#endif
10061
drh5eddca62001-06-30 21:53:53 +000010062/*
10063** Check the integrity of the freelist or of an overflow page list.
10064** Verify that the number of pages on the list is N.
10065*/
drh30e58752002-03-02 20:41:57 +000010066static void checkList(
10067 IntegrityCk *pCheck, /* Integrity checking context */
10068 int isFreeList, /* True for a freelist. False for overflow page list */
drhabc38152020-07-22 13:38:04 +000010069 Pgno iPage, /* Page number for first page in the list */
drheaac9992019-02-26 16:17:06 +000010070 u32 N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +000010071){
10072 int i;
drheaac9992019-02-26 16:17:06 +000010073 u32 expected = N;
drh91d58662018-07-20 13:39:28 +000010074 int nErrAtStart = pCheck->nErr;
10075 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +000010076 DbPage *pOvflPage;
10077 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +000010078 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +000010079 N--;
drh9584f582015-11-04 20:22:37 +000010080 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +000010081 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010082 break;
10083 }
danielk19773b8a05f2007-03-19 17:44:26 +000010084 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +000010085 if( isFreeList ){
drhae104742018-12-14 17:57:01 +000010086 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +000010087#ifndef SQLITE_OMIT_AUTOVACUUM
10088 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010089 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010090 }
10091#endif
drhae104742018-12-14 17:57:01 +000010092 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +000010093 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +000010094 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +000010095 N--;
10096 }else{
drhae104742018-12-14 17:57:01 +000010097 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +000010098 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +000010099#ifndef SQLITE_OMIT_AUTOVACUUM
10100 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010101 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010102 }
10103#endif
drh867db832014-09-26 02:41:05 +000010104 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +000010105 }
10106 N -= n;
drh30e58752002-03-02 20:41:57 +000010107 }
drh30e58752002-03-02 20:41:57 +000010108 }
danielk1977afcdd022004-10-31 16:25:42 +000010109#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010110 else{
10111 /* If this database supports auto-vacuum and iPage is not the last
10112 ** page in this overflow list, check that the pointer-map entry for
10113 ** the following page matches iPage.
10114 */
10115 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +000010116 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +000010117 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +000010118 }
danielk1977afcdd022004-10-31 16:25:42 +000010119 }
10120#endif
danielk19773b8a05f2007-03-19 17:44:26 +000010121 iPage = get4byte(pOvflData);
10122 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +000010123 }
10124 if( N && nErrAtStart==pCheck->nErr ){
10125 checkAppendMsg(pCheck,
10126 "%s is %d but should be %d",
10127 isFreeList ? "size" : "overflow list length",
10128 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +000010129 }
10130}
drhb7f91642004-10-31 02:22:47 +000010131#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010132
drh67731a92015-04-16 11:56:03 +000010133/*
10134** An implementation of a min-heap.
10135**
10136** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +000010137** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +000010138** and aHeap[N*2+1].
10139**
10140** The heap property is this: Every node is less than or equal to both
10141** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +000010142** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +000010143**
10144** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10145** the heap, preserving the heap property. The btreeHeapPull() routine
10146** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +000010147** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +000010148** property.
10149**
10150** This heap is used for cell overlap and coverage testing. Each u32
10151** entry represents the span of a cell or freeblock on a btree page.
10152** The upper 16 bits are the index of the first byte of a range and the
10153** lower 16 bits are the index of the last byte of that range.
10154*/
10155static void btreeHeapInsert(u32 *aHeap, u32 x){
10156 u32 j, i = ++aHeap[0];
10157 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +000010158 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +000010159 x = aHeap[j];
10160 aHeap[j] = aHeap[i];
10161 aHeap[i] = x;
10162 i = j;
10163 }
10164}
10165static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10166 u32 j, i, x;
10167 if( (x = aHeap[0])==0 ) return 0;
10168 *pOut = aHeap[1];
10169 aHeap[1] = aHeap[x];
10170 aHeap[x] = 0xffffffff;
10171 aHeap[0]--;
10172 i = 1;
10173 while( (j = i*2)<=aHeap[0] ){
10174 if( aHeap[j]>aHeap[j+1] ) j++;
10175 if( aHeap[i]<aHeap[j] ) break;
10176 x = aHeap[i];
10177 aHeap[i] = aHeap[j];
10178 aHeap[j] = x;
10179 i = j;
10180 }
10181 return 1;
10182}
10183
drhb7f91642004-10-31 02:22:47 +000010184#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010185/*
10186** Do various sanity checks on a single page of a tree. Return
10187** the tree depth. Root pages return 0. Parents of root pages
10188** return 1, and so forth.
10189**
10190** These checks are done:
10191**
10192** 1. Make sure that cells and freeblocks do not overlap
10193** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +000010194** 2. Make sure integer cell keys are in order.
10195** 3. Check the integrity of overflow pages.
10196** 4. Recursively call checkTreePage on all children.
10197** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +000010198*/
10199static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +000010200 IntegrityCk *pCheck, /* Context for the sanity check */
drhabc38152020-07-22 13:38:04 +000010201 Pgno iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +000010202 i64 *piMinKey, /* Write minimum integer primary key here */
10203 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +000010204){
drhcbc6b712015-07-02 16:17:30 +000010205 MemPage *pPage = 0; /* The page being analyzed */
10206 int i; /* Loop counter */
10207 int rc; /* Result code from subroutine call */
10208 int depth = -1, d2; /* Depth of a subtree */
10209 int pgno; /* Page number */
10210 int nFrag; /* Number of fragmented bytes on the page */
10211 int hdr; /* Offset to the page header */
10212 int cellStart; /* Offset to the start of the cell pointer array */
10213 int nCell; /* Number of cells */
10214 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10215 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
10216 ** False if IPK must be strictly less than maxKey */
10217 u8 *data; /* Page content */
10218 u8 *pCell; /* Cell content */
10219 u8 *pCellIdx; /* Next element of the cell pointer array */
10220 BtShared *pBt; /* The BtShared object that owns pPage */
10221 u32 pc; /* Address of a cell */
10222 u32 usableSize; /* Usable size of the page */
10223 u32 contentOffset; /* Offset to the start of the cell content area */
10224 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +000010225 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +000010226 const char *saved_zPfx = pCheck->zPfx;
10227 int saved_v1 = pCheck->v1;
10228 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +000010229 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +000010230
drh5eddca62001-06-30 21:53:53 +000010231 /* Check that the page exists
10232 */
drhd9cb6ac2005-10-20 07:28:17 +000010233 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +000010234 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +000010235 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +000010236 if( checkRef(pCheck, iPage) ) return 0;
drhabc38152020-07-22 13:38:04 +000010237 pCheck->zPfx = "Page %u: ";
drh867db832014-09-26 02:41:05 +000010238 pCheck->v1 = iPage;
drhabc38152020-07-22 13:38:04 +000010239 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +000010240 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +000010241 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +000010242 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +000010243 }
danielk197793caf5a2009-07-11 06:55:33 +000010244
10245 /* Clear MemPage.isInit to make sure the corruption detection code in
10246 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +000010247 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +000010248 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +000010249 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +000010250 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +000010251 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +000010252 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +000010253 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +000010254 }
drhb0ea9432019-02-09 21:06:40 +000010255 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10256 assert( rc==SQLITE_CORRUPT );
10257 checkAppendMsg(pCheck, "free space corruption", rc);
10258 goto end_of_check;
10259 }
drhcbc6b712015-07-02 16:17:30 +000010260 data = pPage->aData;
10261 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +000010262
drhcbc6b712015-07-02 16:17:30 +000010263 /* Set up for cell analysis */
drhabc38152020-07-22 13:38:04 +000010264 pCheck->zPfx = "On tree page %u cell %d: ";
drhcbc6b712015-07-02 16:17:30 +000010265 contentOffset = get2byteNotZero(&data[hdr+5]);
10266 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
10267
10268 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10269 ** number of cells on the page. */
10270 nCell = get2byte(&data[hdr+3]);
10271 assert( pPage->nCell==nCell );
10272
10273 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10274 ** immediately follows the b-tree page header. */
10275 cellStart = hdr + 12 - 4*pPage->leaf;
10276 assert( pPage->aCellIdx==&data[cellStart] );
10277 pCellIdx = &data[cellStart + 2*(nCell-1)];
10278
10279 if( !pPage->leaf ){
10280 /* Analyze the right-child page of internal pages */
10281 pgno = get4byte(&data[hdr+8]);
10282#ifndef SQLITE_OMIT_AUTOVACUUM
10283 if( pBt->autoVacuum ){
drhabc38152020-07-22 13:38:04 +000010284 pCheck->zPfx = "On page %u at right child: ";
drhcbc6b712015-07-02 16:17:30 +000010285 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10286 }
10287#endif
10288 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10289 keyCanBeEqual = 0;
10290 }else{
10291 /* For leaf pages, the coverage check will occur in the same loop
10292 ** as the other cell checks, so initialize the heap. */
10293 heap = pCheck->heap;
10294 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +000010295 }
10296
drhcbc6b712015-07-02 16:17:30 +000010297 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10298 ** integer offsets to the cell contents. */
10299 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +000010300 CellInfo info;
drh5eddca62001-06-30 21:53:53 +000010301
drhcbc6b712015-07-02 16:17:30 +000010302 /* Check cell size */
drh867db832014-09-26 02:41:05 +000010303 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +000010304 assert( pCellIdx==&data[cellStart + i*2] );
10305 pc = get2byteAligned(pCellIdx);
10306 pCellIdx -= 2;
10307 if( pc<contentOffset || pc>usableSize-4 ){
10308 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10309 pc, contentOffset, usableSize-4);
10310 doCoverageCheck = 0;
10311 continue;
shaneh195475d2010-02-19 04:28:08 +000010312 }
drhcbc6b712015-07-02 16:17:30 +000010313 pCell = &data[pc];
10314 pPage->xParseCell(pPage, pCell, &info);
10315 if( pc+info.nSize>usableSize ){
10316 checkAppendMsg(pCheck, "Extends off end of page");
10317 doCoverageCheck = 0;
10318 continue;
drh5eddca62001-06-30 21:53:53 +000010319 }
10320
drhcbc6b712015-07-02 16:17:30 +000010321 /* Check for integer primary key out of range */
10322 if( pPage->intKey ){
10323 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10324 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10325 }
10326 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +000010327 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +000010328 }
10329
10330 /* Check the content overflow list */
10331 if( info.nPayload>info.nLocal ){
drheaac9992019-02-26 16:17:06 +000010332 u32 nPage; /* Number of pages on the overflow chain */
drhcbc6b712015-07-02 16:17:30 +000010333 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +000010334 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +000010335 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +000010336 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +000010337#ifndef SQLITE_OMIT_AUTOVACUUM
10338 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010339 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +000010340 }
10341#endif
drh867db832014-09-26 02:41:05 +000010342 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +000010343 }
10344
drh5eddca62001-06-30 21:53:53 +000010345 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +000010346 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +000010347 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +000010348#ifndef SQLITE_OMIT_AUTOVACUUM
10349 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010350 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +000010351 }
10352#endif
drhcbc6b712015-07-02 16:17:30 +000010353 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10354 keyCanBeEqual = 0;
10355 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +000010356 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +000010357 depth = d2;
drh5eddca62001-06-30 21:53:53 +000010358 }
drhcbc6b712015-07-02 16:17:30 +000010359 }else{
10360 /* Populate the coverage-checking heap for leaf pages */
10361 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +000010362 }
10363 }
drhcbc6b712015-07-02 16:17:30 +000010364 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +000010365
drh5eddca62001-06-30 21:53:53 +000010366 /* Check for complete coverage of the page
10367 */
drh867db832014-09-26 02:41:05 +000010368 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +000010369 if( doCoverageCheck && pCheck->mxErr>0 ){
10370 /* For leaf pages, the min-heap has already been initialized and the
10371 ** cells have already been inserted. But for internal pages, that has
10372 ** not yet been done, so do it now */
10373 if( !pPage->leaf ){
10374 heap = pCheck->heap;
10375 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +000010376 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +000010377 u32 size;
10378 pc = get2byteAligned(&data[cellStart+i*2]);
10379 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +000010380 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +000010381 }
drh2e38c322004-09-03 18:38:44 +000010382 }
drhcbc6b712015-07-02 16:17:30 +000010383 /* Add the freeblocks to the min-heap
10384 **
10385 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +000010386 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +000010387 ** freeblocks on the page.
10388 */
drh8c2bbb62009-07-10 02:52:20 +000010389 i = get2byte(&data[hdr+1]);
10390 while( i>0 ){
10391 int size, j;
drh5860a612019-02-12 16:58:26 +000010392 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010393 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +000010394 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +000010395 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +000010396 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10397 ** big-endian integer which is the offset in the b-tree page of the next
10398 ** freeblock in the chain, or zero if the freeblock is the last on the
10399 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +000010400 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +000010401 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10402 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +000010403 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10404 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010405 i = j;
drh2e38c322004-09-03 18:38:44 +000010406 }
drhcbc6b712015-07-02 16:17:30 +000010407 /* Analyze the min-heap looking for overlap between cells and/or
10408 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +000010409 **
10410 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10411 ** There is an implied first entry the covers the page header, the cell
10412 ** pointer index, and the gap between the cell pointer index and the start
10413 ** of cell content.
10414 **
10415 ** The loop below pulls entries from the min-heap in order and compares
10416 ** the start_address against the previous end_address. If there is an
10417 ** overlap, that means bytes are used multiple times. If there is a gap,
10418 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +000010419 */
10420 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +000010421 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +000010422 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +000010423 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +000010424 checkAppendMsg(pCheck,
drhabc38152020-07-22 13:38:04 +000010425 "Multiple uses for byte %u of page %u", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +000010426 break;
drh67731a92015-04-16 11:56:03 +000010427 }else{
drhcbc6b712015-07-02 16:17:30 +000010428 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +000010429 prev = x;
drh2e38c322004-09-03 18:38:44 +000010430 }
10431 }
drhcbc6b712015-07-02 16:17:30 +000010432 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +000010433 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10434 ** is stored in the fifth field of the b-tree page header.
10435 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10436 ** number of fragmented free bytes within the cell content area.
10437 */
drhcbc6b712015-07-02 16:17:30 +000010438 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +000010439 checkAppendMsg(pCheck,
drhabc38152020-07-22 13:38:04 +000010440 "Fragmentation of %d bytes reported as %d on page %u",
drhcbc6b712015-07-02 16:17:30 +000010441 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +000010442 }
10443 }
drh867db832014-09-26 02:41:05 +000010444
10445end_of_check:
drh72e191e2015-07-04 11:14:20 +000010446 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +000010447 releasePage(pPage);
drh867db832014-09-26 02:41:05 +000010448 pCheck->zPfx = saved_zPfx;
10449 pCheck->v1 = saved_v1;
10450 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +000010451 return depth+1;
drh5eddca62001-06-30 21:53:53 +000010452}
drhb7f91642004-10-31 02:22:47 +000010453#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010454
drhb7f91642004-10-31 02:22:47 +000010455#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010456/*
10457** This routine does a complete check of the given BTree file. aRoot[] is
10458** an array of pages numbers were each page number is the root page of
10459** a table. nRoot is the number of entries in aRoot.
10460**
danielk19773509a652009-07-06 18:56:13 +000010461** A read-only or read-write transaction must be opened before calling
10462** this function.
10463**
drhc890fec2008-08-01 20:10:08 +000010464** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010465** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010466** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010467** returned. If a memory allocation error occurs, NULL is returned.
drh17d2d592020-07-23 00:45:06 +000010468**
10469** If the first entry in aRoot[] is 0, that indicates that the list of
10470** root pages is incomplete. This is a "partial integrity-check". This
10471** happens when performing an integrity check on a single table. The
10472** zero is skipped, of course. But in addition, the freelist checks
10473** and the checks to make sure every page is referenced are also skipped,
10474** since obviously it is not possible to know which pages are covered by
10475** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10476** checks are still performed.
drh5eddca62001-06-30 21:53:53 +000010477*/
drh1dcdbc02007-01-27 02:24:54 +000010478char *sqlite3BtreeIntegrityCheck(
drh21f6daa2019-10-11 14:21:48 +000010479 sqlite3 *db, /* Database connection that is running the check */
drh1dcdbc02007-01-27 02:24:54 +000010480 Btree *p, /* The btree to be checked */
drhabc38152020-07-22 13:38:04 +000010481 Pgno *aRoot, /* An array of root pages numbers for individual trees */
drh1dcdbc02007-01-27 02:24:54 +000010482 int nRoot, /* Number of entries in aRoot[] */
10483 int mxErr, /* Stop reporting errors after this many */
10484 int *pnErr /* Write number of errors seen to this variable */
10485){
danielk197789d40042008-11-17 14:20:56 +000010486 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010487 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010488 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010489 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010490 char zErr[100];
drh17d2d592020-07-23 00:45:06 +000010491 int bPartial = 0; /* True if not checking all btrees */
10492 int bCkFreelist = 1; /* True to scan the freelist */
drh8deae5a2020-07-29 12:23:20 +000010493 VVA_ONLY( int nRef );
drh17d2d592020-07-23 00:45:06 +000010494 assert( nRoot>0 );
10495
10496 /* aRoot[0]==0 means this is a partial check */
10497 if( aRoot[0]==0 ){
10498 assert( nRoot>1 );
10499 bPartial = 1;
10500 if( aRoot[1]!=1 ) bCkFreelist = 0;
10501 }
drh5eddca62001-06-30 21:53:53 +000010502
drhd677b3d2007-08-20 22:48:41 +000010503 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010504 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010505 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10506 assert( nRef>=0 );
drh21f6daa2019-10-11 14:21:48 +000010507 sCheck.db = db;
drh5eddca62001-06-30 21:53:53 +000010508 sCheck.pBt = pBt;
10509 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010510 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010511 sCheck.mxErr = mxErr;
10512 sCheck.nErr = 0;
drh8ddf6352020-06-29 18:30:49 +000010513 sCheck.bOomFault = 0;
drh867db832014-09-26 02:41:05 +000010514 sCheck.zPfx = 0;
10515 sCheck.v1 = 0;
10516 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010517 sCheck.aPgRef = 0;
10518 sCheck.heap = 0;
10519 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010520 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010521 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010522 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010523 }
dan1235bb12012-04-03 17:43:28 +000010524
10525 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10526 if( !sCheck.aPgRef ){
drh8ddf6352020-06-29 18:30:49 +000010527 sCheck.bOomFault = 1;
drhe05b3f82015-07-01 17:53:49 +000010528 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010529 }
drhe05b3f82015-07-01 17:53:49 +000010530 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10531 if( sCheck.heap==0 ){
drh8ddf6352020-06-29 18:30:49 +000010532 sCheck.bOomFault = 1;
drhe05b3f82015-07-01 17:53:49 +000010533 goto integrity_ck_cleanup;
10534 }
10535
drh42cac6d2004-11-20 20:31:11 +000010536 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010537 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010538
10539 /* Check the integrity of the freelist
10540 */
drh17d2d592020-07-23 00:45:06 +000010541 if( bCkFreelist ){
10542 sCheck.zPfx = "Main freelist: ";
10543 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10544 get4byte(&pBt->pPage1->aData[36]));
10545 sCheck.zPfx = 0;
10546 }
drh5eddca62001-06-30 21:53:53 +000010547
10548 /* Check all the tables.
10549 */
drh040d77a2018-07-20 15:44:09 +000010550#ifndef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010551 if( !bPartial ){
10552 if( pBt->autoVacuum ){
drhed109c02020-07-23 09:14:25 +000010553 Pgno mx = 0;
10554 Pgno mxInHdr;
drh17d2d592020-07-23 00:45:06 +000010555 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10556 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10557 if( mx!=mxInHdr ){
10558 checkAppendMsg(&sCheck,
10559 "max rootpage (%d) disagrees with header (%d)",
10560 mx, mxInHdr
10561 );
10562 }
10563 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
drh040d77a2018-07-20 15:44:09 +000010564 checkAppendMsg(&sCheck,
drh17d2d592020-07-23 00:45:06 +000010565 "incremental_vacuum enabled with a max rootpage of zero"
drh040d77a2018-07-20 15:44:09 +000010566 );
10567 }
drh040d77a2018-07-20 15:44:09 +000010568 }
10569#endif
drhcbc6b712015-07-02 16:17:30 +000010570 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010571 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010572 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010573 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010574 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010575#ifndef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010576 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
drh867db832014-09-26 02:41:05 +000010577 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010578 }
10579#endif
drhcbc6b712015-07-02 16:17:30 +000010580 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000010581 }
drhcbc6b712015-07-02 16:17:30 +000010582 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000010583
10584 /* Make sure every page in the file is referenced
10585 */
drh17d2d592020-07-23 00:45:06 +000010586 if( !bPartial ){
10587 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000010588#ifdef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010589 if( getPageReferenced(&sCheck, i)==0 ){
10590 checkAppendMsg(&sCheck, "Page %d is never used", i);
10591 }
danielk1977afcdd022004-10-31 16:25:42 +000010592#else
drh17d2d592020-07-23 00:45:06 +000010593 /* If the database supports auto-vacuum, make sure no tables contain
10594 ** references to pointer-map pages.
10595 */
10596 if( getPageReferenced(&sCheck, i)==0 &&
10597 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10598 checkAppendMsg(&sCheck, "Page %d is never used", i);
10599 }
10600 if( getPageReferenced(&sCheck, i)!=0 &&
10601 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10602 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10603 }
danielk1977afcdd022004-10-31 16:25:42 +000010604#endif
drh47eb5612020-08-10 21:01:32 +000010605 }
drh5eddca62001-06-30 21:53:53 +000010606 }
10607
drh5eddca62001-06-30 21:53:53 +000010608 /* Clean up and report errors.
10609 */
drhe05b3f82015-07-01 17:53:49 +000010610integrity_ck_cleanup:
10611 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000010612 sqlite3_free(sCheck.aPgRef);
drh8ddf6352020-06-29 18:30:49 +000010613 if( sCheck.bOomFault ){
drh0cdbe1a2018-05-09 13:46:26 +000010614 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010615 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000010616 }
drh1dcdbc02007-01-27 02:24:54 +000010617 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000010618 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010619 /* Make sure this analysis did not leave any unref() pages. */
10620 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10621 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000010622 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000010623}
drhb7f91642004-10-31 02:22:47 +000010624#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000010625
drh73509ee2003-04-06 20:44:45 +000010626/*
drhd4e0bb02012-05-27 01:19:04 +000010627** Return the full pathname of the underlying database file. Return
10628** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000010629**
10630** The pager filename is invariant as long as the pager is
10631** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000010632*/
danielk1977aef0bf62005-12-30 16:28:01 +000010633const char *sqlite3BtreeGetFilename(Btree *p){
10634 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000010635 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000010636}
10637
10638/*
danielk19775865e3d2004-06-14 06:03:57 +000010639** Return the pathname of the journal file for this database. The return
10640** value of this routine is the same regardless of whether the journal file
10641** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000010642**
10643** The pager journal filename is invariant as long as the pager is
10644** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000010645*/
danielk1977aef0bf62005-12-30 16:28:01 +000010646const char *sqlite3BtreeGetJournalname(Btree *p){
10647 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000010648 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000010649}
10650
danielk19771d850a72004-05-31 08:26:49 +000010651/*
drh99744fa2020-08-25 19:09:07 +000010652** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10653** to describe the current transaction state of Btree p.
danielk19771d850a72004-05-31 08:26:49 +000010654*/
drh99744fa2020-08-25 19:09:07 +000010655int sqlite3BtreeTxnState(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000010656 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
drh99744fa2020-08-25 19:09:07 +000010657 return p ? p->inTrans : 0;
danielk19771d850a72004-05-31 08:26:49 +000010658}
10659
dana550f2d2010-08-02 10:47:05 +000010660#ifndef SQLITE_OMIT_WAL
10661/*
10662** Run a checkpoint on the Btree passed as the first argument.
10663**
10664** Return SQLITE_LOCKED if this or any other connection has an open
10665** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000010666**
dancdc1f042010-11-18 12:11:05 +000010667** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000010668*/
dancdc1f042010-11-18 12:11:05 +000010669int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000010670 int rc = SQLITE_OK;
10671 if( p ){
10672 BtShared *pBt = p->pBt;
10673 sqlite3BtreeEnter(p);
10674 if( pBt->inTransaction!=TRANS_NONE ){
10675 rc = SQLITE_LOCKED;
10676 }else{
dan7fb89902016-08-12 16:21:15 +000010677 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000010678 }
10679 sqlite3BtreeLeave(p);
10680 }
10681 return rc;
10682}
10683#endif
10684
danielk19771d850a72004-05-31 08:26:49 +000010685/*
drh99744fa2020-08-25 19:09:07 +000010686** Return true if there is currently a backup running on Btree p.
danielk19772372c2b2006-06-27 16:34:56 +000010687*/
danielk197704103022009-02-03 16:51:24 +000010688int sqlite3BtreeIsInBackup(Btree *p){
10689 assert( p );
10690 assert( sqlite3_mutex_held(p->db->mutex) );
10691 return p->nBackup!=0;
10692}
10693
danielk19772372c2b2006-06-27 16:34:56 +000010694/*
danielk1977da184232006-01-05 11:34:32 +000010695** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010696** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010697** purposes (for example, to store a high-level schema associated with
10698** the shared-btree). The btree layer manages reference counting issues.
10699**
10700** The first time this is called on a shared-btree, nBytes bytes of memory
10701** are allocated, zeroed, and returned to the caller. For each subsequent
10702** call the nBytes parameter is ignored and a pointer to the same blob
10703** of memory returned.
10704**
danielk1977171bfed2008-06-23 09:50:50 +000010705** If the nBytes parameter is 0 and the blob of memory has not yet been
10706** allocated, a null pointer is returned. If the blob has already been
10707** allocated, it is returned as normal.
10708**
danielk1977da184232006-01-05 11:34:32 +000010709** Just before the shared-btree is closed, the function passed as the
10710** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010711** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010712** on the memory, the btree layer does that.
10713*/
10714void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10715 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010716 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010717 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010718 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010719 pBt->xFreeSchema = xFree;
10720 }
drh27641702007-08-22 02:56:42 +000010721 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010722 return pBt->pSchema;
10723}
10724
danielk1977c87d34d2006-01-06 13:00:28 +000010725/*
danielk1977404ca072009-03-16 13:19:36 +000010726** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10727** btree as the argument handle holds an exclusive lock on the
drh1e32bed2020-06-19 13:33:53 +000010728** sqlite_schema table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010729*/
10730int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010731 int rc;
drhe5fe6902007-12-07 18:55:28 +000010732 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010733 sqlite3BtreeEnter(p);
drh346a70c2020-06-15 20:27:35 +000010734 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
danielk1977404ca072009-03-16 13:19:36 +000010735 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010736 sqlite3BtreeLeave(p);
10737 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010738}
10739
drha154dcd2006-03-22 22:10:07 +000010740
10741#ifndef SQLITE_OMIT_SHARED_CACHE
10742/*
10743** Obtain a lock on the table whose root page is iTab. The
10744** lock is a write lock if isWritelock is true or a read lock
10745** if it is false.
10746*/
danielk1977c00da102006-01-07 13:21:04 +000010747int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010748 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010749 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010750 if( p->sharable ){
10751 u8 lockType = READ_LOCK + isWriteLock;
10752 assert( READ_LOCK+1==WRITE_LOCK );
10753 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010754
drh6a9ad3d2008-04-02 16:29:30 +000010755 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010756 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010757 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010758 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010759 }
10760 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010761 }
10762 return rc;
10763}
drha154dcd2006-03-22 22:10:07 +000010764#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010765
danielk1977b4e9af92007-05-01 17:49:49 +000010766#ifndef SQLITE_OMIT_INCRBLOB
10767/*
10768** Argument pCsr must be a cursor opened for writing on an
10769** INTKEY table currently pointing at a valid table entry.
10770** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010771**
10772** Only the data content may only be modified, it is not possible to
10773** change the length of the data stored. If this function is called with
10774** parameters that attempt to write past the end of the existing data,
10775** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010776*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010777int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010778 int rc;
dan7a2347e2016-01-07 16:43:54 +000010779 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010780 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010781 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010782
danielk1977c9000e62009-07-08 13:55:28 +000010783 rc = restoreCursorPosition(pCsr);
10784 if( rc!=SQLITE_OK ){
10785 return rc;
10786 }
danielk19773588ceb2008-06-10 17:30:26 +000010787 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10788 if( pCsr->eState!=CURSOR_VALID ){
10789 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010790 }
10791
dan227a1c42013-04-03 11:17:39 +000010792 /* Save the positions of all other cursors open on this table. This is
10793 ** required in case any of them are holding references to an xFetch
10794 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010795 **
drh3f387402014-09-24 01:23:00 +000010796 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010797 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10798 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010799 */
drh370c9f42013-04-03 20:04:04 +000010800 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10801 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010802
danielk1977c9000e62009-07-08 13:55:28 +000010803 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010804 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010805 ** (b) there is a read/write transaction open,
10806 ** (c) the connection holds a write-lock on the table (if required),
10807 ** (d) there are no conflicting read-locks, and
10808 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010809 */
drh036dbec2014-03-11 23:40:44 +000010810 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010811 return SQLITE_READONLY;
10812 }
drhc9166342012-01-05 23:32:06 +000010813 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10814 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010815 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10816 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010817 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010818
drhfb192682009-07-11 18:26:28 +000010819 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010820}
danielk19772dec9702007-05-02 16:48:37 +000010821
10822/*
dan5a500af2014-03-11 20:33:04 +000010823** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010824*/
dan5a500af2014-03-11 20:33:04 +000010825void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010826 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010827 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010828}
danielk1977b4e9af92007-05-01 17:49:49 +000010829#endif
dane04dc882010-04-20 18:53:15 +000010830
10831/*
10832** Set both the "read version" (single byte at byte offset 18) and
10833** "write version" (single byte at byte offset 19) fields in the database
10834** header to iVersion.
10835*/
10836int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10837 BtShared *pBt = pBtree->pBt;
10838 int rc; /* Return code */
10839
dane04dc882010-04-20 18:53:15 +000010840 assert( iVersion==1 || iVersion==2 );
10841
danb9780022010-04-21 18:37:57 +000010842 /* If setting the version fields to 1, do not automatically open the
10843 ** WAL connection, even if the version fields are currently set to 2.
10844 */
drhc9166342012-01-05 23:32:06 +000010845 pBt->btsFlags &= ~BTS_NO_WAL;
10846 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010847
drhbb2d9b12018-06-06 16:28:40 +000010848 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000010849 if( rc==SQLITE_OK ){
10850 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010851 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000010852 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000010853 if( rc==SQLITE_OK ){
10854 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10855 if( rc==SQLITE_OK ){
10856 aData[18] = (u8)iVersion;
10857 aData[19] = (u8)iVersion;
10858 }
10859 }
10860 }
dane04dc882010-04-20 18:53:15 +000010861 }
10862
drhc9166342012-01-05 23:32:06 +000010863 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010864 return rc;
10865}
dan428c2182012-08-06 18:50:11 +000010866
drhe0997b32015-03-20 14:57:50 +000010867/*
10868** Return true if the cursor has a hint specified. This routine is
10869** only used from within assert() statements
10870*/
10871int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10872 return (pCsr->hints & mask)!=0;
10873}
drhe0997b32015-03-20 14:57:50 +000010874
drh781597f2014-05-21 08:21:07 +000010875/*
10876** Return true if the given Btree is read-only.
10877*/
10878int sqlite3BtreeIsReadonly(Btree *p){
10879 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10880}
drhdef68892014-11-04 12:11:23 +000010881
10882/*
10883** Return the size of the header added to each page by this module.
10884*/
drh37c057b2014-12-30 00:57:29 +000010885int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010886
drh5a1fb182016-01-08 19:34:39 +000010887#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010888/*
10889** Return true if the Btree passed as the only argument is sharable.
10890*/
10891int sqlite3BtreeSharable(Btree *p){
10892 return p->sharable;
10893}
dan272989b2016-07-06 10:12:02 +000010894
10895/*
10896** Return the number of connections to the BtShared object accessed by
10897** the Btree handle passed as the only argument. For private caches
10898** this is always 1. For shared caches it may be 1 or greater.
10899*/
10900int sqlite3BtreeConnectionCount(Btree *p){
10901 testcase( p->sharable );
10902 return p->pBt->nRef;
10903}
drh5a1fb182016-01-08 19:34:39 +000010904#endif