blob: 64ed28ea24fd85c651c5af441ec8ac14e1a8364f [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
drhe53831d2007-08-17 01:14:38 +000046#ifndef SQLITE_OMIT_SHARED_CACHE
47/*
danielk1977502b4e02008-09-02 14:07:24 +000048** A list of BtShared objects that are eligible for participation
49** in shared cache. This variable has file scope during normal builds,
50** but the test harness needs to access it so we make it global for
51** test builds.
drh7555d8e2009-03-20 13:15:30 +000052**
53** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000054*/
55#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000056BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000057#else
drh78f82d12008-09-02 00:52:52 +000058static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000059#endif
drhe53831d2007-08-17 01:14:38 +000060#endif /* SQLITE_OMIT_SHARED_CACHE */
61
62#ifndef SQLITE_OMIT_SHARED_CACHE
63/*
64** Enable or disable the shared pager and schema features.
65**
66** This routine has no effect on existing database connections.
67** The shared cache setting effects only future calls to
68** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
69*/
70int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000071 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000072 return SQLITE_OK;
73}
74#endif
75
drhd677b3d2007-08-20 22:48:41 +000076
danielk1977aef0bf62005-12-30 16:28:01 +000077
78#ifdef SQLITE_OMIT_SHARED_CACHE
79 /*
drhc25eabe2009-02-24 18:57:31 +000080 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
81 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000082 ** manipulate entries in the BtShared.pLock linked list used to store
83 ** shared-cache table level locks. If the library is compiled with the
84 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000085 ** of each BtShared structure and so this locking is not necessary.
86 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000087 */
drhc25eabe2009-02-24 18:57:31 +000088 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
89 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
90 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000091 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000092 #define hasSharedCacheTableLock(a,b,c,d) 1
93 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000094#endif
danielk1977aef0bf62005-12-30 16:28:01 +000095
drhe53831d2007-08-17 01:14:38 +000096#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000097
98#ifdef SQLITE_DEBUG
99/*
drh0ee3dbe2009-10-16 15:05:18 +0000100**** This function is only used as part of an assert() statement. ***
101**
102** Check to see if pBtree holds the required locks to read or write to the
103** table with root page iRoot. Return 1 if it does and 0 if not.
104**
105** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000106** Btree connection pBtree:
107**
108** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
109**
drh0ee3dbe2009-10-16 15:05:18 +0000110** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000111** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000112** the corresponding table. This makes things a bit more complicated,
113** as this module treats each table as a separate structure. To determine
114** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000115** function has to search through the database schema.
116**
drh0ee3dbe2009-10-16 15:05:18 +0000117** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000118** hold a write-lock on the schema table (root page 1). This is also
119** acceptable.
120*/
121static int hasSharedCacheTableLock(
122 Btree *pBtree, /* Handle that must hold lock */
123 Pgno iRoot, /* Root page of b-tree */
124 int isIndex, /* True if iRoot is the root of an index b-tree */
125 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
126){
127 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
128 Pgno iTab = 0;
129 BtLock *pLock;
130
drh0ee3dbe2009-10-16 15:05:18 +0000131 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000132 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000133 ** Return true immediately.
134 */
danielk197796d48e92009-06-29 06:00:37 +0000135 if( (pBtree->sharable==0)
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000137 ){
138 return 1;
139 }
140
drh0ee3dbe2009-10-16 15:05:18 +0000141 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow.
145 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
147 return 1;
148 }
149
danielk197796d48e92009-06-29 06:00:37 +0000150 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated
153 ** table. */
154 if( isIndex ){
155 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
157 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000158 if( pIdx->tnum==(int)iRoot ){
159 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000160 }
161 }
162 }else{
163 iTab = iRoot;
164 }
165
166 /* Search for the required lock. Either a write-lock on root-page iTab, a
167 ** write-lock on the schema table, or (if the client is reading) a
168 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
169 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
170 if( pLock->pBtree==pBtree
171 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
172 && pLock->eLock>=eLockType
173 ){
174 return 1;
175 }
176 }
177
178 /* Failed to find the required lock. */
179 return 0;
180}
drh0ee3dbe2009-10-16 15:05:18 +0000181#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000182
drh0ee3dbe2009-10-16 15:05:18 +0000183#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000184/*
drh0ee3dbe2009-10-16 15:05:18 +0000185**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000186**
drh0ee3dbe2009-10-16 15:05:18 +0000187** Return true if it would be illegal for pBtree to write into the
188** table or index rooted at iRoot because other shared connections are
189** simultaneously reading that same table or index.
190**
191** It is illegal for pBtree to write if some other Btree object that
192** shares the same BtShared object is currently reading or writing
193** the iRoot table. Except, if the other Btree object has the
194** read-uncommitted flag set, then it is OK for the other object to
195** have a read cursor.
196**
197** For example, before writing to any part of the table or index
198** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000199**
200** assert( !hasReadConflicts(pBtree, iRoot) );
201*/
202static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
203 BtCursor *p;
204 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
205 if( p->pgnoRoot==iRoot
206 && p->pBtree!=pBtree
207 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
208 ){
209 return 1;
210 }
211 }
212 return 0;
213}
214#endif /* #ifdef SQLITE_DEBUG */
215
danielk1977da184232006-01-05 11:34:32 +0000216/*
drh0ee3dbe2009-10-16 15:05:18 +0000217** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000218** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000219** SQLITE_OK if the lock may be obtained (by calling
220** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000221*/
drhc25eabe2009-02-24 18:57:31 +0000222static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000223 BtShared *pBt = p->pBt;
224 BtLock *pIter;
225
drh1fee73e2007-08-29 04:00:57 +0000226 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000227 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
228 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000229 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000230
danielk19775b413d72009-04-01 09:41:54 +0000231 /* If requesting a write-lock, then the Btree must have an open write
232 ** transaction on this file. And, obviously, for this to be so there
233 ** must be an open write transaction on the file itself.
234 */
235 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237
drh0ee3dbe2009-10-16 15:05:18 +0000238 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000239 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000240 return SQLITE_OK;
241 }
242
danielk1977641b0f42007-12-21 04:47:25 +0000243 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained.
245 */
drhc9166342012-01-05 23:32:06 +0000246 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000249 }
250
danielk1977e0d9e6f2009-07-03 16:25:06 +0000251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of:
254 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer).
260 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000267 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000268 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000269 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000270 }
271 }
272 return SQLITE_OK;
273}
drhe53831d2007-08-17 01:14:38 +0000274#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000275
drhe53831d2007-08-17 01:14:38 +0000276#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000277/*
278** Add a lock on the table with root-page iTable to the shared-btree used
279** by Btree handle p. Parameter eLock must be either READ_LOCK or
280** WRITE_LOCK.
281**
danielk19779d104862009-07-09 08:27:14 +0000282** This function assumes the following:
283**
drh0ee3dbe2009-10-16 15:05:18 +0000284** (a) The specified Btree object p is connected to a sharable
285** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000286**
drh0ee3dbe2009-10-16 15:05:18 +0000287** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000288** with the requested lock (i.e. querySharedCacheTableLock() has
289** already been called and returned SQLITE_OK).
290**
291** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
292** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000293*/
drhc25eabe2009-02-24 18:57:31 +0000294static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000295 BtShared *pBt = p->pBt;
296 BtLock *pLock = 0;
297 BtLock *pIter;
298
drh1fee73e2007-08-29 04:00:57 +0000299 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000300 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
301 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000302
danielk1977e0d9e6f2009-07-03 16:25:06 +0000303 /* A connection with the read-uncommitted flag set will never try to
304 ** obtain a read-lock using this function. The only read-lock obtained
305 ** by a connection in read-uncommitted mode is on the sqlite_master
306 ** table, and that lock is obtained in BtreeBeginTrans(). */
307 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
308
danielk19779d104862009-07-09 08:27:14 +0000309 /* This function should only be called on a sharable b-tree after it
310 ** has been determined that no other b-tree holds a conflicting lock. */
311 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000312 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 /* First search the list for an existing lock on this table. */
315 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
316 if( pIter->iTable==iTable && pIter->pBtree==p ){
317 pLock = pIter;
318 break;
319 }
320 }
321
322 /* If the above search did not find a BtLock struct associating Btree p
323 ** with table iTable, allocate one and link it into the list.
324 */
325 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000326 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000327 if( !pLock ){
328 return SQLITE_NOMEM;
329 }
330 pLock->iTable = iTable;
331 pLock->pBtree = p;
332 pLock->pNext = pBt->pLock;
333 pBt->pLock = pLock;
334 }
335
336 /* Set the BtLock.eLock variable to the maximum of the current lock
337 ** and the requested lock. This means if a write-lock was already held
338 ** and a read-lock requested, we don't incorrectly downgrade the lock.
339 */
340 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000341 if( eLock>pLock->eLock ){
342 pLock->eLock = eLock;
343 }
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 return SQLITE_OK;
346}
drhe53831d2007-08-17 01:14:38 +0000347#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000348
drhe53831d2007-08-17 01:14:38 +0000349#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000350/*
drhc25eabe2009-02-24 18:57:31 +0000351** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000352** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000353**
drh0ee3dbe2009-10-16 15:05:18 +0000354** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000355** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000356** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000357*/
drhc25eabe2009-02-24 18:57:31 +0000358static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000359 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000361
drh1fee73e2007-08-29 04:00:57 +0000362 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000363 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000364 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000365
danielk1977aef0bf62005-12-30 16:28:01 +0000366 while( *ppIter ){
367 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000368 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000369 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000370 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000372 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock);
375 }
danielk1977aef0bf62005-12-30 16:28:01 +0000376 }else{
377 ppIter = &pLock->pNext;
378 }
379 }
danielk1977641b0f42007-12-21 04:47:25 +0000380
drhc9166342012-01-05 23:32:06 +0000381 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000382 if( pBt->pWriter==p ){
383 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000384 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000385 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000386 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000387 ** transaction. If there currently exists a writer, and p is not
388 ** that writer, then the number of locks held by connections other
389 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000390 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000391 **
drhc9166342012-01-05 23:32:06 +0000392 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000393 ** be zero already. So this next line is harmless in that case.
394 */
drhc9166342012-01-05 23:32:06 +0000395 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397}
danielk197794b30732009-07-02 17:21:57 +0000398
danielk1977e0d9e6f2009-07-03 16:25:06 +0000399/*
drh0ee3dbe2009-10-16 15:05:18 +0000400** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000401*/
danielk197794b30732009-07-02 17:21:57 +0000402static void downgradeAllSharedCacheTableLocks(Btree *p){
403 BtShared *pBt = p->pBt;
404 if( pBt->pWriter==p ){
405 BtLock *pLock;
406 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000407 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000408 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
409 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
410 pLock->eLock = READ_LOCK;
411 }
412 }
413}
414
danielk1977aef0bf62005-12-30 16:28:01 +0000415#endif /* SQLITE_OMIT_SHARED_CACHE */
416
drh980b1a72006-08-16 16:42:48 +0000417static void releasePage(MemPage *pPage); /* Forward reference */
418
drh1fee73e2007-08-29 04:00:57 +0000419/*
drh0ee3dbe2009-10-16 15:05:18 +0000420***** This routine is used inside of assert() only ****
421**
422** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000423*/
drh0ee3dbe2009-10-16 15:05:18 +0000424#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000425static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000426 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000427}
428#endif
429
430
danielk197792d4d7a2007-05-04 12:05:56 +0000431#ifndef SQLITE_OMIT_INCRBLOB
432/*
433** Invalidate the overflow page-list cache for cursor pCur, if any.
434*/
435static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000436 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000437 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000438 pCur->aOverflow = 0;
439}
440
441/*
442** Invalidate the overflow page-list cache for all cursors opened
443** on the shared btree structure pBt.
444*/
445static void invalidateAllOverflowCache(BtShared *pBt){
446 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000447 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000448 for(p=pBt->pCursor; p; p=p->pNext){
449 invalidateOverflowCache(p);
450 }
451}
danielk197796d48e92009-06-29 06:00:37 +0000452
453/*
454** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000455** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000456** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000457**
458** If argument isClearTable is true, then the entire contents of the
459** table is about to be deleted. In this case invalidate all incrblob
460** cursors open on any row within the table with root-page pgnoRoot.
461**
462** Otherwise, if argument isClearTable is false, then the row with
463** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000464** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000465*/
466static void invalidateIncrblobCursors(
467 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000468 i64 iRow, /* The rowid that might be changing */
469 int isClearTable /* True if all rows are being deleted */
470){
471 BtCursor *p;
472 BtShared *pBt = pBtree->pBt;
473 assert( sqlite3BtreeHoldsMutex(pBtree) );
474 for(p=pBt->pCursor; p; p=p->pNext){
475 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
476 p->eState = CURSOR_INVALID;
477 }
478 }
479}
480
danielk197792d4d7a2007-05-04 12:05:56 +0000481#else
drh0ee3dbe2009-10-16 15:05:18 +0000482 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000483 #define invalidateOverflowCache(x)
484 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000485 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000486#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000487
drh980b1a72006-08-16 16:42:48 +0000488/*
danielk1977bea2a942009-01-20 17:06:27 +0000489** Set bit pgno of the BtShared.pHasContent bitvec. This is called
490** when a page that previously contained data becomes a free-list leaf
491** page.
492**
493** The BtShared.pHasContent bitvec exists to work around an obscure
494** bug caused by the interaction of two useful IO optimizations surrounding
495** free-list leaf pages:
496**
497** 1) When all data is deleted from a page and the page becomes
498** a free-list leaf page, the page is not written to the database
499** (as free-list leaf pages contain no meaningful data). Sometimes
500** such a page is not even journalled (as it will not be modified,
501** why bother journalling it?).
502**
503** 2) When a free-list leaf page is reused, its content is not read
504** from the database or written to the journal file (why should it
505** be, if it is not at all meaningful?).
506**
507** By themselves, these optimizations work fine and provide a handy
508** performance boost to bulk delete or insert operations. However, if
509** a page is moved to the free-list and then reused within the same
510** transaction, a problem comes up. If the page is not journalled when
511** it is moved to the free-list and it is also not journalled when it
512** is extracted from the free-list and reused, then the original data
513** may be lost. In the event of a rollback, it may not be possible
514** to restore the database to its original configuration.
515**
516** The solution is the BtShared.pHasContent bitvec. Whenever a page is
517** moved to become a free-list leaf page, the corresponding bit is
518** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000519** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000520** set in BtShared.pHasContent. The contents of the bitvec are cleared
521** at the end of every transaction.
522*/
523static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
524 int rc = SQLITE_OK;
525 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000526 assert( pgno<=pBt->nPage );
527 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000528 if( !pBt->pHasContent ){
529 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000530 }
531 }
532 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
533 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
534 }
535 return rc;
536}
537
538/*
539** Query the BtShared.pHasContent vector.
540**
541** This function is called when a free-list leaf page is removed from the
542** free-list for reuse. It returns false if it is safe to retrieve the
543** page from the pager layer with the 'no-content' flag set. True otherwise.
544*/
545static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
546 Bitvec *p = pBt->pHasContent;
547 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
548}
549
550/*
551** Clear (destroy) the BtShared.pHasContent bitvec. This should be
552** invoked at the conclusion of each write-transaction.
553*/
554static void btreeClearHasContent(BtShared *pBt){
555 sqlite3BitvecDestroy(pBt->pHasContent);
556 pBt->pHasContent = 0;
557}
558
559/*
drh980b1a72006-08-16 16:42:48 +0000560** Save the current cursor position in the variables BtCursor.nKey
561** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000562**
563** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
564** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000565*/
566static int saveCursorPosition(BtCursor *pCur){
567 int rc;
568
569 assert( CURSOR_VALID==pCur->eState );
570 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000571 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000572
573 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000574 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000575
576 /* If this is an intKey table, then the above call to BtreeKeySize()
577 ** stores the integer key in pCur->nKey. In this case this value is
578 ** all that is required. Otherwise, if pCur is not open on an intKey
579 ** table, then malloc space for and store the pCur->nKey bytes of key
580 ** data.
581 */
drh4c301aa2009-07-15 17:25:45 +0000582 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000583 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000584 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000585 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000586 if( rc==SQLITE_OK ){
587 pCur->pKey = pKey;
588 }else{
drh17435752007-08-16 04:30:38 +0000589 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000590 }
591 }else{
592 rc = SQLITE_NOMEM;
593 }
594 }
danielk197771d5d2c2008-09-29 11:49:47 +0000595 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000596
597 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000598 int i;
599 for(i=0; i<=pCur->iPage; i++){
600 releasePage(pCur->apPage[i]);
601 pCur->apPage[i] = 0;
602 }
603 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000604 pCur->eState = CURSOR_REQUIRESEEK;
605 }
606
danielk197792d4d7a2007-05-04 12:05:56 +0000607 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000608 return rc;
609}
610
611/*
drh0ee3dbe2009-10-16 15:05:18 +0000612** Save the positions of all cursors (except pExcept) that are open on
613** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000614** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
615*/
616static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
617 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000618 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000619 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000620 for(p=pBt->pCursor; p; p=p->pNext){
621 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
622 p->eState==CURSOR_VALID ){
623 int rc = saveCursorPosition(p);
624 if( SQLITE_OK!=rc ){
625 return rc;
626 }
627 }
628 }
629 return SQLITE_OK;
630}
631
632/*
drhbf700f32007-03-31 02:36:44 +0000633** Clear the current cursor position.
634*/
danielk1977be51a652008-10-08 17:58:48 +0000635void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000636 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000637 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000638 pCur->pKey = 0;
639 pCur->eState = CURSOR_INVALID;
640}
641
642/*
danielk19773509a652009-07-06 18:56:13 +0000643** In this version of BtreeMoveto, pKey is a packed index record
644** such as is generated by the OP_MakeRecord opcode. Unpack the
645** record and then call BtreeMovetoUnpacked() to do the work.
646*/
647static int btreeMoveto(
648 BtCursor *pCur, /* Cursor open on the btree to be searched */
649 const void *pKey, /* Packed key if the btree is an index */
650 i64 nKey, /* Integer key for tables. Size of pKey for indices */
651 int bias, /* Bias search to the high end */
652 int *pRes /* Write search results here */
653){
654 int rc; /* Status code */
655 UnpackedRecord *pIdxKey; /* Unpacked index key */
656 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000657 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000658
659 if( pKey ){
660 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000661 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
662 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
663 );
danielk19773509a652009-07-06 18:56:13 +0000664 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000665 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000666 }else{
667 pIdxKey = 0;
668 }
669 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000670 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000671 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000672 }
673 return rc;
674}
675
676/*
drh980b1a72006-08-16 16:42:48 +0000677** Restore the cursor to the position it was in (or as close to as possible)
678** when saveCursorPosition() was called. Note that this call deletes the
679** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000680** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000681** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000682*/
danielk197730548662009-07-09 05:07:37 +0000683static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000684 int rc;
drh1fee73e2007-08-29 04:00:57 +0000685 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000686 assert( pCur->eState>=CURSOR_REQUIRESEEK );
687 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000688 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000689 }
drh980b1a72006-08-16 16:42:48 +0000690 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000691 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000692 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000693 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000694 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000695 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000696 }
697 return rc;
698}
699
drha3460582008-07-11 21:02:53 +0000700#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000701 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000702 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000703 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000704
drha3460582008-07-11 21:02:53 +0000705/*
706** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000707** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000708** at is deleted out from under them.
709**
710** This routine returns an error code if something goes wrong. The
711** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
712*/
713int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
714 int rc;
715
716 rc = restoreCursorPosition(pCur);
717 if( rc ){
718 *pHasMoved = 1;
719 return rc;
720 }
drh4c301aa2009-07-15 17:25:45 +0000721 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000722 *pHasMoved = 1;
723 }else{
724 *pHasMoved = 0;
725 }
726 return SQLITE_OK;
727}
728
danielk1977599fcba2004-11-08 07:13:13 +0000729#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000730/*
drha3152892007-05-05 11:48:52 +0000731** Given a page number of a regular database page, return the page
732** number for the pointer-map page that contains the entry for the
733** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000734**
735** Return 0 (not a valid page) for pgno==1 since there is
736** no pointer map associated with page 1. The integrity_check logic
737** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000738*/
danielk1977266664d2006-02-10 08:24:21 +0000739static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000740 int nPagesPerMapPage;
741 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000742 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000743 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000744 nPagesPerMapPage = (pBt->usableSize/5)+1;
745 iPtrMap = (pgno-2)/nPagesPerMapPage;
746 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000747 if( ret==PENDING_BYTE_PAGE(pBt) ){
748 ret++;
749 }
750 return ret;
751}
danielk1977a19df672004-11-03 11:37:07 +0000752
danielk1977afcdd022004-10-31 16:25:42 +0000753/*
danielk1977afcdd022004-10-31 16:25:42 +0000754** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000755**
756** This routine updates the pointer map entry for page number 'key'
757** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000758**
759** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
760** a no-op. If an error occurs, the appropriate error code is written
761** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000762*/
drh98add2e2009-07-20 17:11:49 +0000763static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000764 DbPage *pDbPage; /* The pointer map page */
765 u8 *pPtrmap; /* The pointer map data */
766 Pgno iPtrmap; /* The pointer map page number */
767 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000768 int rc; /* Return code from subfunctions */
769
770 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000771
drh1fee73e2007-08-29 04:00:57 +0000772 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000773 /* The master-journal page number must never be used as a pointer map page */
774 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
775
danielk1977ac11ee62005-01-15 12:45:51 +0000776 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000777 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000778 *pRC = SQLITE_CORRUPT_BKPT;
779 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000780 }
danielk1977266664d2006-02-10 08:24:21 +0000781 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000782 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000783 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000784 *pRC = rc;
785 return;
danielk1977afcdd022004-10-31 16:25:42 +0000786 }
danielk19778c666b12008-07-18 09:34:57 +0000787 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000788 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000789 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000790 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000791 }
drhfc243732011-05-17 15:21:56 +0000792 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000793 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000794
drh615ae552005-01-16 23:21:00 +0000795 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
796 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000797 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000798 if( rc==SQLITE_OK ){
799 pPtrmap[offset] = eType;
800 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000801 }
danielk1977afcdd022004-10-31 16:25:42 +0000802 }
803
drh4925a552009-07-07 11:39:58 +0000804ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000805 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000806}
807
808/*
809** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000810**
811** This routine retrieves the pointer map entry for page 'key', writing
812** the type and parent page number to *pEType and *pPgno respectively.
813** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000814*/
danielk1977aef0bf62005-12-30 16:28:01 +0000815static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000816 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000817 int iPtrmap; /* Pointer map page index */
818 u8 *pPtrmap; /* Pointer map page data */
819 int offset; /* Offset of entry in pointer map */
820 int rc;
821
drh1fee73e2007-08-29 04:00:57 +0000822 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000823
danielk1977266664d2006-02-10 08:24:21 +0000824 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000825 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000826 if( rc!=0 ){
827 return rc;
828 }
danielk19773b8a05f2007-03-19 17:44:26 +0000829 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000830
danielk19778c666b12008-07-18 09:34:57 +0000831 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000832 if( offset<0 ){
833 sqlite3PagerUnref(pDbPage);
834 return SQLITE_CORRUPT_BKPT;
835 }
836 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000837 assert( pEType!=0 );
838 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000839 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000840
danielk19773b8a05f2007-03-19 17:44:26 +0000841 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000842 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000843 return SQLITE_OK;
844}
845
danielk197785d90ca2008-07-19 14:25:15 +0000846#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000847 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000848 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000849 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000850#endif
danielk1977afcdd022004-10-31 16:25:42 +0000851
drh0d316a42002-08-11 20:10:47 +0000852/*
drh271efa52004-05-30 19:19:05 +0000853** Given a btree page and a cell index (0 means the first cell on
854** the page, 1 means the second cell, and so forth) return a pointer
855** to the cell content.
856**
857** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000858*/
drh1688c862008-07-18 02:44:17 +0000859#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000860 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000861#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
862
drh43605152004-05-29 21:46:49 +0000863
864/*
drh93a960a2008-07-10 00:32:42 +0000865** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000866** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000867*/
868static u8 *findOverflowCell(MemPage *pPage, int iCell){
869 int i;
drh1fee73e2007-08-29 04:00:57 +0000870 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000871 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000872 int k;
873 struct _OvflCell *pOvfl;
874 pOvfl = &pPage->aOvfl[i];
875 k = pOvfl->idx;
876 if( k<=iCell ){
877 if( k==iCell ){
878 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000879 }
880 iCell--;
881 }
882 }
danielk19771cc5ed82007-05-16 17:28:43 +0000883 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000884}
885
886/*
887** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000888** are two versions of this function. btreeParseCell() takes a
889** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000890** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000891**
892** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000893** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000894*/
danielk197730548662009-07-09 05:07:37 +0000895static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000896 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000897 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000898 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000899){
drhf49661a2008-12-10 16:45:50 +0000900 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000901 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000902
drh1fee73e2007-08-29 04:00:57 +0000903 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000904
drh43605152004-05-29 21:46:49 +0000905 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000906 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000907 n = pPage->childPtrSize;
908 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000909 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000910 if( pPage->hasData ){
911 n += getVarint32(&pCell[n], nPayload);
912 }else{
913 nPayload = 0;
914 }
drh1bd10f82008-12-10 21:19:56 +0000915 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000916 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000917 }else{
drh79df1f42008-07-18 00:57:33 +0000918 pInfo->nData = 0;
919 n += getVarint32(&pCell[n], nPayload);
920 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000921 }
drh72365832007-03-06 15:53:44 +0000922 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000923 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000924 testcase( nPayload==pPage->maxLocal );
925 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000926 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000927 /* This is the (easy) common case where the entire payload fits
928 ** on the local page. No overflow is required.
929 */
drh41692e92011-01-25 04:34:51 +0000930 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000931 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000932 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000933 }else{
drh271efa52004-05-30 19:19:05 +0000934 /* If the payload will not fit completely on the local page, we have
935 ** to decide how much to store locally and how much to spill onto
936 ** overflow pages. The strategy is to minimize the amount of unused
937 ** space on overflow pages while keeping the amount of local storage
938 ** in between minLocal and maxLocal.
939 **
940 ** Warning: changing the way overflow payload is distributed in any
941 ** way will result in an incompatible file format.
942 */
943 int minLocal; /* Minimum amount of payload held locally */
944 int maxLocal; /* Maximum amount of payload held locally */
945 int surplus; /* Overflow payload available for local storage */
946
947 minLocal = pPage->minLocal;
948 maxLocal = pPage->maxLocal;
949 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000950 testcase( surplus==maxLocal );
951 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000952 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000953 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000954 }else{
drhf49661a2008-12-10 16:45:50 +0000955 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000956 }
drhf49661a2008-12-10 16:45:50 +0000957 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000958 pInfo->nSize = pInfo->iOverflow + 4;
959 }
drh3aac2dd2004-04-26 14:10:20 +0000960}
danielk19771cc5ed82007-05-16 17:28:43 +0000961#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000962 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
963static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000964 MemPage *pPage, /* Page containing the cell */
965 int iCell, /* The cell index. First cell is 0 */
966 CellInfo *pInfo /* Fill in this structure */
967){
danielk19771cc5ed82007-05-16 17:28:43 +0000968 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000969}
drh3aac2dd2004-04-26 14:10:20 +0000970
971/*
drh43605152004-05-29 21:46:49 +0000972** Compute the total number of bytes that a Cell needs in the cell
973** data area of the btree-page. The return number includes the cell
974** data header and the local payload, but not any overflow page or
975** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000976*/
danielk1977ae5558b2009-04-29 11:31:47 +0000977static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
978 u8 *pIter = &pCell[pPage->childPtrSize];
979 u32 nSize;
980
981#ifdef SQLITE_DEBUG
982 /* The value returned by this function should always be the same as
983 ** the (CellInfo.nSize) value found by doing a full parse of the
984 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
985 ** this function verifies that this invariant is not violated. */
986 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000987 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000988#endif
989
990 if( pPage->intKey ){
991 u8 *pEnd;
992 if( pPage->hasData ){
993 pIter += getVarint32(pIter, nSize);
994 }else{
995 nSize = 0;
996 }
997
998 /* pIter now points at the 64-bit integer key value, a variable length
999 ** integer. The following block moves pIter to point at the first byte
1000 ** past the end of the key value. */
1001 pEnd = &pIter[9];
1002 while( (*pIter++)&0x80 && pIter<pEnd );
1003 }else{
1004 pIter += getVarint32(pIter, nSize);
1005 }
1006
drh0a45c272009-07-08 01:49:11 +00001007 testcase( nSize==pPage->maxLocal );
1008 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001009 if( nSize>pPage->maxLocal ){
1010 int minLocal = pPage->minLocal;
1011 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001012 testcase( nSize==pPage->maxLocal );
1013 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001014 if( nSize>pPage->maxLocal ){
1015 nSize = minLocal;
1016 }
1017 nSize += 4;
1018 }
shane75ac1de2009-06-09 18:58:52 +00001019 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001020
1021 /* The minimum size of any cell is 4 bytes. */
1022 if( nSize<4 ){
1023 nSize = 4;
1024 }
1025
1026 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001027 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001028}
drh0ee3dbe2009-10-16 15:05:18 +00001029
1030#ifdef SQLITE_DEBUG
1031/* This variation on cellSizePtr() is used inside of assert() statements
1032** only. */
drha9121e42008-02-19 14:59:35 +00001033static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001034 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001035}
danielk1977bc6ada42004-06-30 08:20:16 +00001036#endif
drh3b7511c2001-05-26 13:15:44 +00001037
danielk197779a40da2005-01-16 08:00:01 +00001038#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001039/*
danielk197726836652005-01-17 01:33:13 +00001040** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001041** to an overflow page, insert an entry into the pointer-map
1042** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001043*/
drh98add2e2009-07-20 17:11:49 +00001044static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001045 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001046 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001047 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001048 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001049 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001050 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001051 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001052 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001053 }
danielk1977ac11ee62005-01-15 12:45:51 +00001054}
danielk197779a40da2005-01-16 08:00:01 +00001055#endif
1056
danielk1977ac11ee62005-01-15 12:45:51 +00001057
drhda200cc2004-05-09 11:51:38 +00001058/*
drh72f82862001-05-24 21:06:34 +00001059** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001060** end of the page and all free space is collected into one
1061** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001062** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001063*/
shane0af3f892008-11-12 04:55:34 +00001064static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001065 int i; /* Loop counter */
1066 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001067 int hdr; /* Offset to the page header */
1068 int size; /* Size of a cell */
1069 int usableSize; /* Number of usable bytes on a page */
1070 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001071 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001072 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001073 unsigned char *data; /* The page data */
1074 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001075 int iCellFirst; /* First allowable cell index */
1076 int iCellLast; /* Last possible cell index */
1077
drh2af926b2001-05-15 00:39:25 +00001078
danielk19773b8a05f2007-03-19 17:44:26 +00001079 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001080 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001081 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001082 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001083 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001084 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001085 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001086 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001087 cellOffset = pPage->cellOffset;
1088 nCell = pPage->nCell;
1089 assert( nCell==get2byte(&data[hdr+3]) );
1090 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001091 cbrk = get2byte(&data[hdr+5]);
1092 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1093 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001094 iCellFirst = cellOffset + 2*nCell;
1095 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001096 for(i=0; i<nCell; i++){
1097 u8 *pAddr; /* The i-th cell pointer */
1098 pAddr = &data[cellOffset + i*2];
1099 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001100 testcase( pc==iCellFirst );
1101 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001102#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001103 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001104 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1105 */
1106 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001107 return SQLITE_CORRUPT_BKPT;
1108 }
drh17146622009-07-07 17:38:38 +00001109#endif
1110 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001111 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001112 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001113#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1114 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001115 return SQLITE_CORRUPT_BKPT;
1116 }
drh17146622009-07-07 17:38:38 +00001117#else
1118 if( cbrk<iCellFirst || pc+size>usableSize ){
1119 return SQLITE_CORRUPT_BKPT;
1120 }
1121#endif
drh7157e1d2009-07-09 13:25:32 +00001122 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001123 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001124 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001125 memcpy(&data[cbrk], &temp[pc], size);
1126 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001127 }
drh17146622009-07-07 17:38:38 +00001128 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001129 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001130 data[hdr+1] = 0;
1131 data[hdr+2] = 0;
1132 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001133 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001134 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001135 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001136 return SQLITE_CORRUPT_BKPT;
1137 }
shane0af3f892008-11-12 04:55:34 +00001138 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001139}
1140
drha059ad02001-04-17 20:09:11 +00001141/*
danielk19776011a752009-04-01 16:25:32 +00001142** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001143** as the first argument. Write into *pIdx the index into pPage->aData[]
1144** of the first byte of allocated space. Return either SQLITE_OK or
1145** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001146**
drh0a45c272009-07-08 01:49:11 +00001147** The caller guarantees that there is sufficient space to make the
1148** allocation. This routine might need to defragment in order to bring
1149** all the space together, however. This routine will avoid using
1150** the first two bytes past the cell pointer area since presumably this
1151** allocation is being made in order to insert a new cell, so we will
1152** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001153*/
drh0a45c272009-07-08 01:49:11 +00001154static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001155 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1156 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1157 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001158 int top; /* First byte of cell content area */
1159 int gap; /* First byte of gap between cell pointers and cell content */
1160 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001161 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001162
danielk19773b8a05f2007-03-19 17:44:26 +00001163 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001164 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001165 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001166 assert( nByte>=0 ); /* Minimum cell size is 4 */
1167 assert( pPage->nFree>=nByte );
1168 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001169 usableSize = pPage->pBt->usableSize;
1170 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001171
1172 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001173 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1174 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001175 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001176 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001177 testcase( gap+2==top );
1178 testcase( gap+1==top );
1179 testcase( gap==top );
1180
danielk19776011a752009-04-01 16:25:32 +00001181 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001182 /* Always defragment highly fragmented pages */
1183 rc = defragmentPage(pPage);
1184 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001185 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001186 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001187 /* Search the freelist looking for a free slot big enough to satisfy
1188 ** the request. The allocation is made from the first free slot in
1189 ** the list that is large enough to accomadate it.
1190 */
1191 int pc, addr;
1192 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001193 int size; /* Size of the free slot */
1194 if( pc>usableSize-4 || pc<addr+4 ){
1195 return SQLITE_CORRUPT_BKPT;
1196 }
1197 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001198 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001199 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001200 testcase( x==4 );
1201 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001202 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001203 /* Remove the slot from the free-list. Update the number of
1204 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001205 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001206 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001207 }else if( size+pc > usableSize ){
1208 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001209 }else{
danielk1977fad91942009-04-29 17:49:59 +00001210 /* The slot remains on the free-list. Reduce its size to account
1211 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001212 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001213 }
drh0a45c272009-07-08 01:49:11 +00001214 *pIdx = pc + x;
1215 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001216 }
drh9e572e62004-04-23 23:43:10 +00001217 }
1218 }
drh43605152004-05-29 21:46:49 +00001219
drh0a45c272009-07-08 01:49:11 +00001220 /* Check to make sure there is enough space in the gap to satisfy
1221 ** the allocation. If not, defragment.
1222 */
1223 testcase( gap+2+nByte==top );
1224 if( gap+2+nByte>top ){
1225 rc = defragmentPage(pPage);
1226 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001227 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001228 assert( gap+nByte<=top );
1229 }
1230
1231
drh43605152004-05-29 21:46:49 +00001232 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001233 ** and the cell content area. The btreeInitPage() call has already
1234 ** validated the freelist. Given that the freelist is valid, there
1235 ** is no way that the allocation can extend off the end of the page.
1236 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001237 */
drh0a45c272009-07-08 01:49:11 +00001238 top -= nByte;
drh43605152004-05-29 21:46:49 +00001239 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001240 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001241 *pIdx = top;
1242 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001243}
1244
1245/*
drh9e572e62004-04-23 23:43:10 +00001246** Return a section of the pPage->aData to the freelist.
1247** The first byte of the new free block is pPage->aDisk[start]
1248** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001249**
1250** Most of the effort here is involved in coalesing adjacent
1251** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001252*/
shanedcc50b72008-11-13 18:29:50 +00001253static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001254 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001255 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001256 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001257
drh9e572e62004-04-23 23:43:10 +00001258 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001259 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001260 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001261 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001262 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001263 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001264
drhc9166342012-01-05 23:32:06 +00001265 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001266 /* Overwrite deleted information with zeros when the secure_delete
1267 ** option is enabled */
1268 memset(&data[start], 0, size);
1269 }
drhfcce93f2006-02-22 03:08:32 +00001270
drh0a45c272009-07-08 01:49:11 +00001271 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001272 ** even though the freeblock list was checked by btreeInitPage(),
1273 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001274 ** freeblocks that overlapped cells. Nor does it detect when the
1275 ** cell content area exceeds the value in the page header. If these
1276 ** situations arise, then subsequent insert operations might corrupt
1277 ** the freelist. So we do need to check for corruption while scanning
1278 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001279 */
drh43605152004-05-29 21:46:49 +00001280 hdr = pPage->hdrOffset;
1281 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001282 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001283 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001284 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001285 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001286 return SQLITE_CORRUPT_BKPT;
1287 }
drh3aac2dd2004-04-26 14:10:20 +00001288 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001289 }
drh0a45c272009-07-08 01:49:11 +00001290 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001291 return SQLITE_CORRUPT_BKPT;
1292 }
drh3aac2dd2004-04-26 14:10:20 +00001293 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001294 put2byte(&data[addr], start);
1295 put2byte(&data[start], pbegin);
1296 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001297 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001298
1299 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001300 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001301 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001302 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001303 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001304 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001305 pnext = get2byte(&data[pbegin]);
1306 psize = get2byte(&data[pbegin+2]);
1307 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1308 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001309 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001310 return SQLITE_CORRUPT_BKPT;
1311 }
drh0a45c272009-07-08 01:49:11 +00001312 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001313 x = get2byte(&data[pnext]);
1314 put2byte(&data[pbegin], x);
1315 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1316 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001317 }else{
drh3aac2dd2004-04-26 14:10:20 +00001318 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001319 }
1320 }
drh7e3b0a02001-04-28 16:52:40 +00001321
drh43605152004-05-29 21:46:49 +00001322 /* If the cell content area begins with a freeblock, remove it. */
1323 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1324 int top;
1325 pbegin = get2byte(&data[hdr+1]);
1326 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001327 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1328 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001329 }
drhc5053fb2008-11-27 02:22:10 +00001330 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001331 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001332}
1333
1334/*
drh271efa52004-05-30 19:19:05 +00001335** Decode the flags byte (the first byte of the header) for a page
1336** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001337**
1338** Only the following combinations are supported. Anything different
1339** indicates a corrupt database files:
1340**
1341** PTF_ZERODATA
1342** PTF_ZERODATA | PTF_LEAF
1343** PTF_LEAFDATA | PTF_INTKEY
1344** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001345*/
drh44845222008-07-17 18:39:57 +00001346static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001347 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001348
1349 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001350 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001351 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001352 flagByte &= ~PTF_LEAF;
1353 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001354 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001355 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1356 pPage->intKey = 1;
1357 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001358 pPage->maxLocal = pBt->maxLeaf;
1359 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001360 }else if( flagByte==PTF_ZERODATA ){
1361 pPage->intKey = 0;
1362 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001363 pPage->maxLocal = pBt->maxLocal;
1364 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001365 }else{
1366 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001367 }
drhc9166342012-01-05 23:32:06 +00001368 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001369 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001370}
1371
1372/*
drh7e3b0a02001-04-28 16:52:40 +00001373** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001374**
1375** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001376** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001377** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1378** guarantee that the page is well-formed. It only shows that
1379** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001380*/
danielk197730548662009-07-09 05:07:37 +00001381static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001382
danielk197771d5d2c2008-09-29 11:49:47 +00001383 assert( pPage->pBt!=0 );
1384 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001385 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001386 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1387 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001388
1389 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001390 u16 pc; /* Address of a freeblock within pPage->aData[] */
1391 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001392 u8 *data; /* Equal to pPage->aData */
1393 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001394 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001395 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001396 int nFree; /* Number of unused bytes on the page */
1397 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001398 int iCellFirst; /* First allowable cell or freeblock offset */
1399 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001400
1401 pBt = pPage->pBt;
1402
danielk1977eaa06f62008-09-18 17:34:44 +00001403 hdr = pPage->hdrOffset;
1404 data = pPage->aData;
1405 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001406 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1407 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001408 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001409 usableSize = pBt->usableSize;
1410 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001411 pPage->aDataEnd = &data[usableSize];
1412 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001413 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001414 pPage->nCell = get2byte(&data[hdr+3]);
1415 if( pPage->nCell>MX_CELL(pBt) ){
1416 /* To many cells for a single page. The page must be corrupt */
1417 return SQLITE_CORRUPT_BKPT;
1418 }
drhb908d762009-07-08 16:54:40 +00001419 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001420
shane5eff7cf2009-08-10 03:57:58 +00001421 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001422 ** of page when parsing a cell.
1423 **
1424 ** The following block of code checks early to see if a cell extends
1425 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1426 ** returned if it does.
1427 */
drh0a45c272009-07-08 01:49:11 +00001428 iCellFirst = cellOffset + 2*pPage->nCell;
1429 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001430#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001431 {
drh69e931e2009-06-03 21:04:35 +00001432 int i; /* Index into the cell pointer array */
1433 int sz; /* Size of a cell */
1434
drh69e931e2009-06-03 21:04:35 +00001435 if( !pPage->leaf ) iCellLast--;
1436 for(i=0; i<pPage->nCell; i++){
1437 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001438 testcase( pc==iCellFirst );
1439 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001440 if( pc<iCellFirst || pc>iCellLast ){
1441 return SQLITE_CORRUPT_BKPT;
1442 }
1443 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001444 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001445 if( pc+sz>usableSize ){
1446 return SQLITE_CORRUPT_BKPT;
1447 }
1448 }
drh0a45c272009-07-08 01:49:11 +00001449 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001450 }
1451#endif
1452
danielk1977eaa06f62008-09-18 17:34:44 +00001453 /* Compute the total free space on the page */
1454 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001455 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001456 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001457 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001458 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001459 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001460 return SQLITE_CORRUPT_BKPT;
1461 }
1462 next = get2byte(&data[pc]);
1463 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001464 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1465 /* Free blocks must be in ascending order. And the last byte of
1466 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001467 return SQLITE_CORRUPT_BKPT;
1468 }
shane85095702009-06-15 16:27:08 +00001469 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001470 pc = next;
1471 }
danielk197793c829c2009-06-03 17:26:17 +00001472
1473 /* At this point, nFree contains the sum of the offset to the start
1474 ** of the cell-content area plus the number of free bytes within
1475 ** the cell-content area. If this is greater than the usable-size
1476 ** of the page, then the page must be corrupted. This check also
1477 ** serves to verify that the offset to the start of the cell-content
1478 ** area, according to the page header, lies within the page.
1479 */
1480 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001481 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001482 }
shane5eff7cf2009-08-10 03:57:58 +00001483 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001484 pPage->isInit = 1;
1485 }
drh9e572e62004-04-23 23:43:10 +00001486 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001487}
1488
1489/*
drh8b2f49b2001-06-08 00:21:52 +00001490** Set up a raw page so that it looks like a database page holding
1491** no entries.
drhbd03cae2001-06-02 02:40:57 +00001492*/
drh9e572e62004-04-23 23:43:10 +00001493static void zeroPage(MemPage *pPage, int flags){
1494 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001495 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001496 u8 hdr = pPage->hdrOffset;
1497 u16 first;
drh9e572e62004-04-23 23:43:10 +00001498
danielk19773b8a05f2007-03-19 17:44:26 +00001499 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001500 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1501 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001502 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001503 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001504 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001505 memset(&data[hdr], 0, pBt->usableSize - hdr);
1506 }
drh1bd10f82008-12-10 21:19:56 +00001507 data[hdr] = (char)flags;
1508 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001509 memset(&data[hdr+1], 0, 4);
1510 data[hdr+7] = 0;
1511 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001512 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001513 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001514 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001515 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001516 pPage->aDataEnd = &data[pBt->usableSize];
1517 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001518 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001519 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1520 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001521 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001522 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001523}
1524
drh897a8202008-09-18 01:08:15 +00001525
1526/*
1527** Convert a DbPage obtained from the pager into a MemPage used by
1528** the btree layer.
1529*/
1530static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1531 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1532 pPage->aData = sqlite3PagerGetData(pDbPage);
1533 pPage->pDbPage = pDbPage;
1534 pPage->pBt = pBt;
1535 pPage->pgno = pgno;
1536 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1537 return pPage;
1538}
1539
drhbd03cae2001-06-02 02:40:57 +00001540/*
drh3aac2dd2004-04-26 14:10:20 +00001541** Get a page from the pager. Initialize the MemPage.pBt and
1542** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001543**
1544** If the noContent flag is set, it means that we do not care about
1545** the content of the page at this time. So do not go to the disk
1546** to fetch the content. Just fill in the content with zeros for now.
1547** If in the future we call sqlite3PagerWrite() on this page, that
1548** means we have started to be concerned about content and the disk
1549** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001550*/
danielk197730548662009-07-09 05:07:37 +00001551static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001552 BtShared *pBt, /* The btree */
1553 Pgno pgno, /* Number of the page to fetch */
1554 MemPage **ppPage, /* Return the page in this parameter */
1555 int noContent /* Do not load page content if true */
1556){
drh3aac2dd2004-04-26 14:10:20 +00001557 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001558 DbPage *pDbPage;
1559
drh1fee73e2007-08-29 04:00:57 +00001560 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001561 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001562 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001563 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001564 return SQLITE_OK;
1565}
1566
1567/*
danielk1977bea2a942009-01-20 17:06:27 +00001568** Retrieve a page from the pager cache. If the requested page is not
1569** already in the pager cache return NULL. Initialize the MemPage.pBt and
1570** MemPage.aData elements if needed.
1571*/
1572static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1573 DbPage *pDbPage;
1574 assert( sqlite3_mutex_held(pBt->mutex) );
1575 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1576 if( pDbPage ){
1577 return btreePageFromDbPage(pDbPage, pgno, pBt);
1578 }
1579 return 0;
1580}
1581
1582/*
danielk197789d40042008-11-17 14:20:56 +00001583** Return the size of the database file in pages. If there is any kind of
1584** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001585*/
drhb1299152010-03-30 22:58:33 +00001586static Pgno btreePagecount(BtShared *pBt){
1587 return pBt->nPage;
1588}
1589u32 sqlite3BtreeLastPage(Btree *p){
1590 assert( sqlite3BtreeHoldsMutex(p) );
1591 assert( ((p->pBt->nPage)&0x8000000)==0 );
1592 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001593}
1594
1595/*
danielk197789bc4bc2009-07-21 19:25:24 +00001596** Get a page from the pager and initialize it. This routine is just a
1597** convenience wrapper around separate calls to btreeGetPage() and
1598** btreeInitPage().
1599**
1600** If an error occurs, then the value *ppPage is set to is undefined. It
1601** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001602*/
1603static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001604 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001605 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001606 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001607){
1608 int rc;
drh1fee73e2007-08-29 04:00:57 +00001609 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001610
danba3cbf32010-06-30 04:29:03 +00001611 if( pgno>btreePagecount(pBt) ){
1612 rc = SQLITE_CORRUPT_BKPT;
1613 }else{
1614 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1615 if( rc==SQLITE_OK ){
1616 rc = btreeInitPage(*ppPage);
1617 if( rc!=SQLITE_OK ){
1618 releasePage(*ppPage);
1619 }
danielk197789bc4bc2009-07-21 19:25:24 +00001620 }
drhee696e22004-08-30 16:52:17 +00001621 }
danba3cbf32010-06-30 04:29:03 +00001622
1623 testcase( pgno==0 );
1624 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001625 return rc;
1626}
1627
1628/*
drh3aac2dd2004-04-26 14:10:20 +00001629** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001630** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001631*/
drh4b70f112004-05-02 21:12:19 +00001632static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001633 if( pPage ){
1634 assert( pPage->aData );
1635 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001636 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1637 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001638 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001639 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001640 }
1641}
1642
1643/*
drha6abd042004-06-09 17:37:22 +00001644** During a rollback, when the pager reloads information into the cache
1645** so that the cache is restored to its original state at the start of
1646** the transaction, for each page restored this routine is called.
1647**
1648** This routine needs to reset the extra data section at the end of the
1649** page to agree with the restored data.
1650*/
danielk1977eaa06f62008-09-18 17:34:44 +00001651static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001652 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001653 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001654 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001655 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001656 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001657 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001658 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001659 /* pPage might not be a btree page; it might be an overflow page
1660 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001661 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001662 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001663 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001664 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001665 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001666 }
drha6abd042004-06-09 17:37:22 +00001667 }
1668}
1669
1670/*
drhe5fe6902007-12-07 18:55:28 +00001671** Invoke the busy handler for a btree.
1672*/
danielk19771ceedd32008-11-19 10:22:33 +00001673static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001674 BtShared *pBt = (BtShared*)pArg;
1675 assert( pBt->db );
1676 assert( sqlite3_mutex_held(pBt->db->mutex) );
1677 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1678}
1679
1680/*
drhad3e0102004-09-03 23:32:18 +00001681** Open a database file.
1682**
drh382c0242001-10-06 16:33:02 +00001683** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001684** then an ephemeral database is created. The ephemeral database might
1685** be exclusively in memory, or it might use a disk-based memory cache.
1686** Either way, the ephemeral database will be automatically deleted
1687** when sqlite3BtreeClose() is called.
1688**
drhe53831d2007-08-17 01:14:38 +00001689** If zFilename is ":memory:" then an in-memory database is created
1690** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001691**
drh75c014c2010-08-30 15:02:28 +00001692** The "flags" parameter is a bitmask that might contain bits
1693** BTREE_OMIT_JOURNAL and/or BTREE_NO_READLOCK. The BTREE_NO_READLOCK
1694** bit is also set if the SQLITE_NoReadlock flags is set in db->flags.
1695** These flags are passed through into sqlite3PagerOpen() and must
1696** be the same values as PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK.
1697**
drhc47fd8e2009-04-30 13:30:32 +00001698** If the database is already opened in the same database connection
1699** and we are in shared cache mode, then the open will fail with an
1700** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1701** objects in the same database connection since doing so will lead
1702** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001703*/
drh23e11ca2004-05-04 17:27:28 +00001704int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001705 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001706 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001707 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001708 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001709 int flags, /* Options */
1710 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001711){
drh7555d8e2009-03-20 13:15:30 +00001712 BtShared *pBt = 0; /* Shared part of btree structure */
1713 Btree *p; /* Handle to return */
1714 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1715 int rc = SQLITE_OK; /* Result code from this function */
1716 u8 nReserve; /* Byte of unused space on each page */
1717 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001718
drh75c014c2010-08-30 15:02:28 +00001719 /* True if opening an ephemeral, temporary database */
1720 const int isTempDb = zFilename==0 || zFilename[0]==0;
1721
danielk1977aef0bf62005-12-30 16:28:01 +00001722 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001723 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001724 */
drhb0a7c9c2010-12-06 21:09:59 +00001725#ifdef SQLITE_OMIT_MEMORYDB
1726 const int isMemdb = 0;
1727#else
1728 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
1729 || (isTempDb && sqlite3TempInMemory(db));
danielk1977aef0bf62005-12-30 16:28:01 +00001730#endif
1731
drhe5fe6902007-12-07 18:55:28 +00001732 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001733 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001734 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001735 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1736
1737 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1738 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1739
1740 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1741 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001742
drh75c014c2010-08-30 15:02:28 +00001743 if( db->flags & SQLITE_NoReadlock ){
1744 flags |= BTREE_NO_READLOCK;
1745 }
1746 if( isMemdb ){
1747 flags |= BTREE_MEMORY;
1748 }
1749 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1750 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1751 }
drh17435752007-08-16 04:30:38 +00001752 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001753 if( !p ){
1754 return SQLITE_NOMEM;
1755 }
1756 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001757 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001758#ifndef SQLITE_OMIT_SHARED_CACHE
1759 p->lock.pBtree = p;
1760 p->lock.iTable = 1;
1761#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001762
drh198bf392006-01-06 21:52:49 +00001763#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001764 /*
1765 ** If this Btree is a candidate for shared cache, try to find an
1766 ** existing BtShared object that we can share with
1767 */
drh75c014c2010-08-30 15:02:28 +00001768 if( isMemdb==0 && isTempDb==0 ){
drhf1f12682009-09-09 14:17:52 +00001769 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001770 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001771 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001772 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001773 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001774 if( !zFullPathname ){
1775 sqlite3_free(p);
1776 return SQLITE_NOMEM;
1777 }
drh070ad6b2011-11-17 11:43:19 +00001778 rc = sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
1779 if( rc ){
1780 sqlite3_free(zFullPathname);
1781 sqlite3_free(p);
1782 return rc;
1783 }
drh30ddce62011-10-15 00:16:30 +00001784#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001785 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1786 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001787 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001788 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001789#endif
drh78f82d12008-09-02 00:52:52 +00001790 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001791 assert( pBt->nRef>0 );
1792 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1793 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001794 int iDb;
1795 for(iDb=db->nDb-1; iDb>=0; iDb--){
1796 Btree *pExisting = db->aDb[iDb].pBt;
1797 if( pExisting && pExisting->pBt==pBt ){
1798 sqlite3_mutex_leave(mutexShared);
1799 sqlite3_mutex_leave(mutexOpen);
1800 sqlite3_free(zFullPathname);
1801 sqlite3_free(p);
1802 return SQLITE_CONSTRAINT;
1803 }
1804 }
drhff0587c2007-08-29 17:43:19 +00001805 p->pBt = pBt;
1806 pBt->nRef++;
1807 break;
1808 }
1809 }
1810 sqlite3_mutex_leave(mutexShared);
1811 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001812 }
drhff0587c2007-08-29 17:43:19 +00001813#ifdef SQLITE_DEBUG
1814 else{
1815 /* In debug mode, we mark all persistent databases as sharable
1816 ** even when they are not. This exercises the locking code and
1817 ** gives more opportunity for asserts(sqlite3_mutex_held())
1818 ** statements to find locking problems.
1819 */
1820 p->sharable = 1;
1821 }
1822#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001823 }
1824#endif
drha059ad02001-04-17 20:09:11 +00001825 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001826 /*
1827 ** The following asserts make sure that structures used by the btree are
1828 ** the right size. This is to guard against size changes that result
1829 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001830 */
drhe53831d2007-08-17 01:14:38 +00001831 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1832 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1833 assert( sizeof(u32)==4 );
1834 assert( sizeof(u16)==2 );
1835 assert( sizeof(Pgno)==4 );
1836
1837 pBt = sqlite3MallocZero( sizeof(*pBt) );
1838 if( pBt==0 ){
1839 rc = SQLITE_NOMEM;
1840 goto btree_open_out;
1841 }
danielk197771d5d2c2008-09-29 11:49:47 +00001842 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001843 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001844 if( rc==SQLITE_OK ){
1845 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1846 }
1847 if( rc!=SQLITE_OK ){
1848 goto btree_open_out;
1849 }
shanehbd2aaf92010-09-01 02:38:21 +00001850 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001851 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001852 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001853 p->pBt = pBt;
1854
drhe53831d2007-08-17 01:14:38 +00001855 pBt->pCursor = 0;
1856 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001857 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001858#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001859 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001860#endif
drhb2eced52010-08-12 02:41:12 +00001861 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001862 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1863 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001864 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001865#ifndef SQLITE_OMIT_AUTOVACUUM
1866 /* If the magic name ":memory:" will create an in-memory database, then
1867 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1868 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1869 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1870 ** regular file-name. In this case the auto-vacuum applies as per normal.
1871 */
1872 if( zFilename && !isMemdb ){
1873 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1874 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1875 }
1876#endif
1877 nReserve = 0;
1878 }else{
1879 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001880 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001881#ifndef SQLITE_OMIT_AUTOVACUUM
1882 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1883 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1884#endif
1885 }
drhfa9601a2009-06-18 17:22:39 +00001886 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001887 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001888 pBt->usableSize = pBt->pageSize - nReserve;
1889 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001890
1891#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1892 /* Add the new BtShared object to the linked list sharable BtShareds.
1893 */
1894 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001895 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001896 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001897 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001898 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001899 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001900 if( pBt->mutex==0 ){
1901 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001902 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001903 goto btree_open_out;
1904 }
drhff0587c2007-08-29 17:43:19 +00001905 }
drhe53831d2007-08-17 01:14:38 +00001906 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001907 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1908 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001909 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001910 }
drheee46cf2004-11-06 00:02:48 +00001911#endif
drh90f5ecb2004-07-22 01:19:35 +00001912 }
danielk1977aef0bf62005-12-30 16:28:01 +00001913
drhcfed7bc2006-03-13 14:28:05 +00001914#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001915 /* If the new Btree uses a sharable pBtShared, then link the new
1916 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001917 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001918 */
drhe53831d2007-08-17 01:14:38 +00001919 if( p->sharable ){
1920 int i;
1921 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001922 for(i=0; i<db->nDb; i++){
1923 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001924 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1925 if( p->pBt<pSib->pBt ){
1926 p->pNext = pSib;
1927 p->pPrev = 0;
1928 pSib->pPrev = p;
1929 }else{
drhabddb0c2007-08-20 13:14:28 +00001930 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001931 pSib = pSib->pNext;
1932 }
1933 p->pNext = pSib->pNext;
1934 p->pPrev = pSib;
1935 if( p->pNext ){
1936 p->pNext->pPrev = p;
1937 }
1938 pSib->pNext = p;
1939 }
1940 break;
1941 }
1942 }
danielk1977aef0bf62005-12-30 16:28:01 +00001943 }
danielk1977aef0bf62005-12-30 16:28:01 +00001944#endif
1945 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001946
1947btree_open_out:
1948 if( rc!=SQLITE_OK ){
1949 if( pBt && pBt->pPager ){
1950 sqlite3PagerClose(pBt->pPager);
1951 }
drh17435752007-08-16 04:30:38 +00001952 sqlite3_free(pBt);
1953 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001954 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001955 }else{
1956 /* If the B-Tree was successfully opened, set the pager-cache size to the
1957 ** default value. Except, when opening on an existing shared pager-cache,
1958 ** do not change the pager-cache size.
1959 */
1960 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1961 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1962 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001963 }
drh7555d8e2009-03-20 13:15:30 +00001964 if( mutexOpen ){
1965 assert( sqlite3_mutex_held(mutexOpen) );
1966 sqlite3_mutex_leave(mutexOpen);
1967 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001968 return rc;
drha059ad02001-04-17 20:09:11 +00001969}
1970
1971/*
drhe53831d2007-08-17 01:14:38 +00001972** Decrement the BtShared.nRef counter. When it reaches zero,
1973** remove the BtShared structure from the sharing list. Return
1974** true if the BtShared.nRef counter reaches zero and return
1975** false if it is still positive.
1976*/
1977static int removeFromSharingList(BtShared *pBt){
1978#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00001979 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00001980 BtShared *pList;
1981 int removed = 0;
1982
drhd677b3d2007-08-20 22:48:41 +00001983 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00001984 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00001985 sqlite3_mutex_enter(pMaster);
1986 pBt->nRef--;
1987 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001988 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1989 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001990 }else{
drh78f82d12008-09-02 00:52:52 +00001991 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001992 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001993 pList=pList->pNext;
1994 }
drh34004ce2008-07-11 16:15:17 +00001995 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001996 pList->pNext = pBt->pNext;
1997 }
1998 }
drh3285db22007-09-03 22:00:39 +00001999 if( SQLITE_THREADSAFE ){
2000 sqlite3_mutex_free(pBt->mutex);
2001 }
drhe53831d2007-08-17 01:14:38 +00002002 removed = 1;
2003 }
2004 sqlite3_mutex_leave(pMaster);
2005 return removed;
2006#else
2007 return 1;
2008#endif
2009}
2010
2011/*
drhf7141992008-06-19 00:16:08 +00002012** Make sure pBt->pTmpSpace points to an allocation of
2013** MX_CELL_SIZE(pBt) bytes.
2014*/
2015static void allocateTempSpace(BtShared *pBt){
2016 if( !pBt->pTmpSpace ){
2017 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2018 }
2019}
2020
2021/*
2022** Free the pBt->pTmpSpace allocation
2023*/
2024static void freeTempSpace(BtShared *pBt){
2025 sqlite3PageFree( pBt->pTmpSpace);
2026 pBt->pTmpSpace = 0;
2027}
2028
2029/*
drha059ad02001-04-17 20:09:11 +00002030** Close an open database and invalidate all cursors.
2031*/
danielk1977aef0bf62005-12-30 16:28:01 +00002032int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002033 BtShared *pBt = p->pBt;
2034 BtCursor *pCur;
2035
danielk1977aef0bf62005-12-30 16:28:01 +00002036 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002037 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002038 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002039 pCur = pBt->pCursor;
2040 while( pCur ){
2041 BtCursor *pTmp = pCur;
2042 pCur = pCur->pNext;
2043 if( pTmp->pBtree==p ){
2044 sqlite3BtreeCloseCursor(pTmp);
2045 }
drha059ad02001-04-17 20:09:11 +00002046 }
danielk1977aef0bf62005-12-30 16:28:01 +00002047
danielk19778d34dfd2006-01-24 16:37:57 +00002048 /* Rollback any active transaction and free the handle structure.
2049 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2050 ** this handle.
2051 */
danielk1977b597f742006-01-15 11:39:18 +00002052 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00002053 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002054
danielk1977aef0bf62005-12-30 16:28:01 +00002055 /* If there are still other outstanding references to the shared-btree
2056 ** structure, return now. The remainder of this procedure cleans
2057 ** up the shared-btree.
2058 */
drhe53831d2007-08-17 01:14:38 +00002059 assert( p->wantToLock==0 && p->locked==0 );
2060 if( !p->sharable || removeFromSharingList(pBt) ){
2061 /* The pBt is no longer on the sharing list, so we can access
2062 ** it without having to hold the mutex.
2063 **
2064 ** Clean out and delete the BtShared object.
2065 */
2066 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002067 sqlite3PagerClose(pBt->pPager);
2068 if( pBt->xFreeSchema && pBt->pSchema ){
2069 pBt->xFreeSchema(pBt->pSchema);
2070 }
drhb9755982010-07-24 16:34:37 +00002071 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002072 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002073 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002074 }
2075
drhe53831d2007-08-17 01:14:38 +00002076#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002077 assert( p->wantToLock==0 );
2078 assert( p->locked==0 );
2079 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2080 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002081#endif
2082
drhe53831d2007-08-17 01:14:38 +00002083 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002084 return SQLITE_OK;
2085}
2086
2087/*
drhda47d772002-12-02 04:25:19 +00002088** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002089**
2090** The maximum number of cache pages is set to the absolute
2091** value of mxPage. If mxPage is negative, the pager will
2092** operate asynchronously - it will not stop to do fsync()s
2093** to insure data is written to the disk surface before
2094** continuing. Transactions still work if synchronous is off,
2095** and the database cannot be corrupted if this program
2096** crashes. But if the operating system crashes or there is
2097** an abrupt power failure when synchronous is off, the database
2098** could be left in an inconsistent and unrecoverable state.
2099** Synchronous is on by default so database corruption is not
2100** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002101*/
danielk1977aef0bf62005-12-30 16:28:01 +00002102int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2103 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002104 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002105 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002106 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002107 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002108 return SQLITE_OK;
2109}
2110
2111/*
drh973b6e32003-02-12 14:09:42 +00002112** Change the way data is synced to disk in order to increase or decrease
2113** how well the database resists damage due to OS crashes and power
2114** failures. Level 1 is the same as asynchronous (no syncs() occur and
2115** there is a high probability of damage) Level 2 is the default. There
2116** is a very low but non-zero probability of damage. Level 3 reduces the
2117** probability of damage to near zero but with a write performance reduction.
2118*/
danielk197793758c82005-01-21 08:13:14 +00002119#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhc97d8462010-11-19 18:23:35 +00002120int sqlite3BtreeSetSafetyLevel(
2121 Btree *p, /* The btree to set the safety level on */
2122 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
2123 int fullSync, /* PRAGMA fullfsync. */
2124 int ckptFullSync /* PRAGMA checkpoint_fullfync */
2125){
danielk1977aef0bf62005-12-30 16:28:01 +00002126 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002127 assert( sqlite3_mutex_held(p->db->mutex) );
drhc97d8462010-11-19 18:23:35 +00002128 assert( level>=1 && level<=3 );
drhd677b3d2007-08-20 22:48:41 +00002129 sqlite3BtreeEnter(p);
drhc97d8462010-11-19 18:23:35 +00002130 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
drhd677b3d2007-08-20 22:48:41 +00002131 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002132 return SQLITE_OK;
2133}
danielk197793758c82005-01-21 08:13:14 +00002134#endif
drh973b6e32003-02-12 14:09:42 +00002135
drh2c8997b2005-08-27 16:36:48 +00002136/*
2137** Return TRUE if the given btree is set to safety level 1. In other
2138** words, return TRUE if no sync() occurs on the disk files.
2139*/
danielk1977aef0bf62005-12-30 16:28:01 +00002140int sqlite3BtreeSyncDisabled(Btree *p){
2141 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002142 int rc;
drhe5fe6902007-12-07 18:55:28 +00002143 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002144 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002145 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002146 rc = sqlite3PagerNosync(pBt->pPager);
2147 sqlite3BtreeLeave(p);
2148 return rc;
drh2c8997b2005-08-27 16:36:48 +00002149}
2150
drh973b6e32003-02-12 14:09:42 +00002151/*
drh90f5ecb2004-07-22 01:19:35 +00002152** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002153** Or, if the page size has already been fixed, return SQLITE_READONLY
2154** without changing anything.
drh06f50212004-11-02 14:24:33 +00002155**
2156** The page size must be a power of 2 between 512 and 65536. If the page
2157** size supplied does not meet this constraint then the page size is not
2158** changed.
2159**
2160** Page sizes are constrained to be a power of two so that the region
2161** of the database file used for locking (beginning at PENDING_BYTE,
2162** the first byte past the 1GB boundary, 0x40000000) needs to occur
2163** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002164**
2165** If parameter nReserve is less than zero, then the number of reserved
2166** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002167**
drhc9166342012-01-05 23:32:06 +00002168** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002169** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002170*/
drhce4869f2009-04-02 20:16:58 +00002171int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002172 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002173 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002174 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002175 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002176 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002177 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002178 return SQLITE_READONLY;
2179 }
2180 if( nReserve<0 ){
2181 nReserve = pBt->pageSize - pBt->usableSize;
2182 }
drhf49661a2008-12-10 16:45:50 +00002183 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002184 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2185 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002186 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002187 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002188 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002189 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002190 }
drhfa9601a2009-06-18 17:22:39 +00002191 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002192 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002193 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002194 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002195 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002196}
2197
2198/*
2199** Return the currently defined page size
2200*/
danielk1977aef0bf62005-12-30 16:28:01 +00002201int sqlite3BtreeGetPageSize(Btree *p){
2202 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002203}
drh7f751222009-03-17 22:33:00 +00002204
danbb2b4412011-04-06 17:54:31 +00002205#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002206/*
2207** Return the number of bytes of space at the end of every page that
2208** are intentually left unused. This is the "reserved" space that is
2209** sometimes used by extensions.
2210*/
danielk1977aef0bf62005-12-30 16:28:01 +00002211int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002212 int n;
2213 sqlite3BtreeEnter(p);
2214 n = p->pBt->pageSize - p->pBt->usableSize;
2215 sqlite3BtreeLeave(p);
2216 return n;
drh2011d5f2004-07-22 02:40:37 +00002217}
drhf8e632b2007-05-08 14:51:36 +00002218
2219/*
2220** Set the maximum page count for a database if mxPage is positive.
2221** No changes are made if mxPage is 0 or negative.
2222** Regardless of the value of mxPage, return the maximum page count.
2223*/
2224int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002225 int n;
2226 sqlite3BtreeEnter(p);
2227 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2228 sqlite3BtreeLeave(p);
2229 return n;
drhf8e632b2007-05-08 14:51:36 +00002230}
drh5b47efa2010-02-12 18:18:39 +00002231
2232/*
drhc9166342012-01-05 23:32:06 +00002233** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2234** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002235** setting after the change.
2236*/
2237int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2238 int b;
drhaf034ed2010-02-12 19:46:26 +00002239 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002240 sqlite3BtreeEnter(p);
2241 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002242 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2243 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002244 }
drhc9166342012-01-05 23:32:06 +00002245 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002246 sqlite3BtreeLeave(p);
2247 return b;
2248}
danielk1977576ec6b2005-01-21 11:55:25 +00002249#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002250
2251/*
danielk1977951af802004-11-05 15:45:09 +00002252** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2253** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2254** is disabled. The default value for the auto-vacuum property is
2255** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2256*/
danielk1977aef0bf62005-12-30 16:28:01 +00002257int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002258#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002259 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002260#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002261 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002262 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002263 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002264
2265 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002266 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002267 rc = SQLITE_READONLY;
2268 }else{
drh076d4662009-02-18 20:31:18 +00002269 pBt->autoVacuum = av ?1:0;
2270 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002271 }
drhd677b3d2007-08-20 22:48:41 +00002272 sqlite3BtreeLeave(p);
2273 return rc;
danielk1977951af802004-11-05 15:45:09 +00002274#endif
2275}
2276
2277/*
2278** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2279** enabled 1 is returned. Otherwise 0.
2280*/
danielk1977aef0bf62005-12-30 16:28:01 +00002281int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002282#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002283 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002284#else
drhd677b3d2007-08-20 22:48:41 +00002285 int rc;
2286 sqlite3BtreeEnter(p);
2287 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002288 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2289 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2290 BTREE_AUTOVACUUM_INCR
2291 );
drhd677b3d2007-08-20 22:48:41 +00002292 sqlite3BtreeLeave(p);
2293 return rc;
danielk1977951af802004-11-05 15:45:09 +00002294#endif
2295}
2296
2297
2298/*
drha34b6762004-05-07 13:30:42 +00002299** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002300** also acquire a readlock on that file.
2301**
2302** SQLITE_OK is returned on success. If the file is not a
2303** well-formed database file, then SQLITE_CORRUPT is returned.
2304** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002305** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002306*/
danielk1977aef0bf62005-12-30 16:28:01 +00002307static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002308 int rc; /* Result code from subfunctions */
2309 MemPage *pPage1; /* Page 1 of the database file */
2310 int nPage; /* Number of pages in the database */
2311 int nPageFile = 0; /* Number of pages in the database file */
2312 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002313
drh1fee73e2007-08-29 04:00:57 +00002314 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002315 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002316 rc = sqlite3PagerSharedLock(pBt->pPager);
2317 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002318 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002319 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002320
2321 /* Do some checking to help insure the file we opened really is
2322 ** a valid database file.
2323 */
drhc2a4bab2010-04-02 12:46:45 +00002324 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002325 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002326 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002327 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002328 }
2329 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002330 u32 pageSize;
2331 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002332 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002333 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002334 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002335 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002336 }
dan5cf53532010-05-01 16:40:20 +00002337
2338#ifdef SQLITE_OMIT_WAL
2339 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002340 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002341 }
2342 if( page1[19]>1 ){
2343 goto page1_init_failed;
2344 }
2345#else
dane04dc882010-04-20 18:53:15 +00002346 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002347 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002348 }
dane04dc882010-04-20 18:53:15 +00002349 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002350 goto page1_init_failed;
2351 }
drhe5ae5732008-06-15 02:51:47 +00002352
dana470aeb2010-04-21 11:43:38 +00002353 /* If the write version is set to 2, this database should be accessed
2354 ** in WAL mode. If the log is not already open, open it now. Then
2355 ** return SQLITE_OK and return without populating BtShared.pPage1.
2356 ** The caller detects this and calls this function again. This is
2357 ** required as the version of page 1 currently in the page1 buffer
2358 ** may not be the latest version - there may be a newer one in the log
2359 ** file.
2360 */
drhc9166342012-01-05 23:32:06 +00002361 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002362 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002363 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002364 if( rc!=SQLITE_OK ){
2365 goto page1_init_failed;
2366 }else if( isOpen==0 ){
2367 releasePage(pPage1);
2368 return SQLITE_OK;
2369 }
dan8b5444b2010-04-27 14:37:47 +00002370 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002371 }
dan5cf53532010-05-01 16:40:20 +00002372#endif
dane04dc882010-04-20 18:53:15 +00002373
drhe5ae5732008-06-15 02:51:47 +00002374 /* The maximum embedded fraction must be exactly 25%. And the minimum
2375 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2376 ** The original design allowed these amounts to vary, but as of
2377 ** version 3.6.0, we require them to be fixed.
2378 */
2379 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2380 goto page1_init_failed;
2381 }
drhb2eced52010-08-12 02:41:12 +00002382 pageSize = (page1[16]<<8) | (page1[17]<<16);
2383 if( ((pageSize-1)&pageSize)!=0
2384 || pageSize>SQLITE_MAX_PAGE_SIZE
2385 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002386 ){
drh07d183d2005-05-01 22:52:42 +00002387 goto page1_init_failed;
2388 }
2389 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002390 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002391 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002392 /* After reading the first page of the database assuming a page size
2393 ** of BtShared.pageSize, we have discovered that the page-size is
2394 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2395 ** zero and return SQLITE_OK. The caller will call this function
2396 ** again with the correct page-size.
2397 */
2398 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002399 pBt->usableSize = usableSize;
2400 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002401 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002402 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2403 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002404 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002405 }
danecac6702011-02-09 18:19:20 +00002406 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002407 rc = SQLITE_CORRUPT_BKPT;
2408 goto page1_init_failed;
2409 }
drhb33e1b92009-06-18 11:29:20 +00002410 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002411 goto page1_init_failed;
2412 }
drh43b18e12010-08-17 19:40:08 +00002413 pBt->pageSize = pageSize;
2414 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002415#ifndef SQLITE_OMIT_AUTOVACUUM
2416 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002417 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002418#endif
drh306dc212001-05-21 13:45:10 +00002419 }
drhb6f41482004-05-14 01:58:11 +00002420
2421 /* maxLocal is the maximum amount of payload to store locally for
2422 ** a cell. Make sure it is small enough so that at least minFanout
2423 ** cells can will fit on one page. We assume a 10-byte page header.
2424 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002425 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002426 ** 4-byte child pointer
2427 ** 9-byte nKey value
2428 ** 4-byte nData value
2429 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002430 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002431 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2432 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002433 */
shaneh1df2db72010-08-18 02:28:48 +00002434 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2435 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2436 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2437 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002438 if( pBt->maxLocal>127 ){
2439 pBt->max1bytePayload = 127;
2440 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002441 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002442 }
drh2e38c322004-09-03 18:38:44 +00002443 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002444 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002445 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002446 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002447
drh72f82862001-05-24 21:06:34 +00002448page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002449 releasePage(pPage1);
2450 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002451 return rc;
drh306dc212001-05-21 13:45:10 +00002452}
2453
2454/*
drhb8ca3072001-12-05 00:21:20 +00002455** If there are no outstanding cursors and we are not in the middle
2456** of a transaction but there is a read lock on the database, then
2457** this routine unrefs the first page of the database file which
2458** has the effect of releasing the read lock.
2459**
drhb8ca3072001-12-05 00:21:20 +00002460** If there is a transaction in progress, this routine is a no-op.
2461*/
danielk1977aef0bf62005-12-30 16:28:01 +00002462static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002463 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002464 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2465 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002466 assert( pBt->pPage1->aData );
2467 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2468 assert( pBt->pPage1->aData );
2469 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002470 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002471 }
2472}
2473
2474/*
drhe39f2f92009-07-23 01:43:59 +00002475** If pBt points to an empty file then convert that empty file
2476** into a new empty database by initializing the first page of
2477** the database.
drh8b2f49b2001-06-08 00:21:52 +00002478*/
danielk1977aef0bf62005-12-30 16:28:01 +00002479static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002480 MemPage *pP1;
2481 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002482 int rc;
drhd677b3d2007-08-20 22:48:41 +00002483
drh1fee73e2007-08-29 04:00:57 +00002484 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002485 if( pBt->nPage>0 ){
2486 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002487 }
drh3aac2dd2004-04-26 14:10:20 +00002488 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002489 assert( pP1!=0 );
2490 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002491 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002492 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002493 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2494 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002495 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2496 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002497 data[18] = 1;
2498 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002499 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2500 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002501 data[21] = 64;
2502 data[22] = 32;
2503 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002504 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002505 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002506 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002507#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002508 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002509 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002510 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002511 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002512#endif
drhdd3cd972010-03-27 17:12:36 +00002513 pBt->nPage = 1;
2514 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002515 return SQLITE_OK;
2516}
2517
2518/*
danielk1977ee5741e2004-05-31 10:01:34 +00002519** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002520** is started if the second argument is nonzero, otherwise a read-
2521** transaction. If the second argument is 2 or more and exclusive
2522** transaction is started, meaning that no other process is allowed
2523** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002524** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002525** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002526**
danielk1977ee5741e2004-05-31 10:01:34 +00002527** A write-transaction must be started before attempting any
2528** changes to the database. None of the following routines
2529** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002530**
drh23e11ca2004-05-04 17:27:28 +00002531** sqlite3BtreeCreateTable()
2532** sqlite3BtreeCreateIndex()
2533** sqlite3BtreeClearTable()
2534** sqlite3BtreeDropTable()
2535** sqlite3BtreeInsert()
2536** sqlite3BtreeDelete()
2537** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002538**
drhb8ef32c2005-03-14 02:01:49 +00002539** If an initial attempt to acquire the lock fails because of lock contention
2540** and the database was previously unlocked, then invoke the busy handler
2541** if there is one. But if there was previously a read-lock, do not
2542** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2543** returned when there is already a read-lock in order to avoid a deadlock.
2544**
2545** Suppose there are two processes A and B. A has a read lock and B has
2546** a reserved lock. B tries to promote to exclusive but is blocked because
2547** of A's read lock. A tries to promote to reserved but is blocked by B.
2548** One or the other of the two processes must give way or there can be
2549** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2550** when A already has a read lock, we encourage A to give up and let B
2551** proceed.
drha059ad02001-04-17 20:09:11 +00002552*/
danielk1977aef0bf62005-12-30 16:28:01 +00002553int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002554 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002555 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002556 int rc = SQLITE_OK;
2557
drhd677b3d2007-08-20 22:48:41 +00002558 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002559 btreeIntegrity(p);
2560
danielk1977ee5741e2004-05-31 10:01:34 +00002561 /* If the btree is already in a write-transaction, or it
2562 ** is already in a read-transaction and a read-transaction
2563 ** is requested, this is a no-op.
2564 */
danielk1977aef0bf62005-12-30 16:28:01 +00002565 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002566 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002567 }
drhb8ef32c2005-03-14 02:01:49 +00002568
2569 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002570 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002571 rc = SQLITE_READONLY;
2572 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002573 }
2574
danielk1977404ca072009-03-16 13:19:36 +00002575#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002576 /* If another database handle has already opened a write transaction
2577 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002578 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002579 */
drhc9166342012-01-05 23:32:06 +00002580 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2581 || (pBt->btsFlags & BTS_PENDING)!=0
2582 ){
danielk1977404ca072009-03-16 13:19:36 +00002583 pBlock = pBt->pWriter->db;
2584 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002585 BtLock *pIter;
2586 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2587 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002588 pBlock = pIter->pBtree->db;
2589 break;
danielk1977641b0f42007-12-21 04:47:25 +00002590 }
2591 }
2592 }
danielk1977404ca072009-03-16 13:19:36 +00002593 if( pBlock ){
2594 sqlite3ConnectionBlocked(p->db, pBlock);
2595 rc = SQLITE_LOCKED_SHAREDCACHE;
2596 goto trans_begun;
2597 }
danielk1977641b0f42007-12-21 04:47:25 +00002598#endif
2599
danielk1977602b4662009-07-02 07:47:33 +00002600 /* Any read-only or read-write transaction implies a read-lock on
2601 ** page 1. So if some other shared-cache client already has a write-lock
2602 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002603 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2604 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002605
drhc9166342012-01-05 23:32:06 +00002606 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2607 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002608 do {
danielk1977295dc102009-04-01 19:07:03 +00002609 /* Call lockBtree() until either pBt->pPage1 is populated or
2610 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2611 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2612 ** reading page 1 it discovers that the page-size of the database
2613 ** file is not pBt->pageSize. In this case lockBtree() will update
2614 ** pBt->pageSize to the page-size of the file on disk.
2615 */
2616 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002617
drhb8ef32c2005-03-14 02:01:49 +00002618 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002619 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002620 rc = SQLITE_READONLY;
2621 }else{
danielk1977d8293352009-04-30 09:10:37 +00002622 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002623 if( rc==SQLITE_OK ){
2624 rc = newDatabase(pBt);
2625 }
drhb8ef32c2005-03-14 02:01:49 +00002626 }
2627 }
2628
danielk1977bd434552009-03-18 10:33:00 +00002629 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002630 unlockBtreeIfUnused(pBt);
2631 }
danf9b76712010-06-01 14:12:45 +00002632 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002633 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002634
2635 if( rc==SQLITE_OK ){
2636 if( p->inTrans==TRANS_NONE ){
2637 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002638#ifndef SQLITE_OMIT_SHARED_CACHE
2639 if( p->sharable ){
2640 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2641 p->lock.eLock = READ_LOCK;
2642 p->lock.pNext = pBt->pLock;
2643 pBt->pLock = &p->lock;
2644 }
2645#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002646 }
2647 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2648 if( p->inTrans>pBt->inTransaction ){
2649 pBt->inTransaction = p->inTrans;
2650 }
danielk1977404ca072009-03-16 13:19:36 +00002651 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002652 MemPage *pPage1 = pBt->pPage1;
2653#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002654 assert( !pBt->pWriter );
2655 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002656 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2657 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002658#endif
dan59257dc2010-08-04 11:34:31 +00002659
2660 /* If the db-size header field is incorrect (as it may be if an old
2661 ** client has been writing the database file), update it now. Doing
2662 ** this sooner rather than later means the database size can safely
2663 ** re-read the database size from page 1 if a savepoint or transaction
2664 ** rollback occurs within the transaction.
2665 */
2666 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2667 rc = sqlite3PagerWrite(pPage1->pDbPage);
2668 if( rc==SQLITE_OK ){
2669 put4byte(&pPage1->aData[28], pBt->nPage);
2670 }
2671 }
2672 }
danielk1977aef0bf62005-12-30 16:28:01 +00002673 }
2674
drhd677b3d2007-08-20 22:48:41 +00002675
2676trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002677 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002678 /* This call makes sure that the pager has the correct number of
2679 ** open savepoints. If the second parameter is greater than 0 and
2680 ** the sub-journal is not already open, then it will be opened here.
2681 */
danielk1977fd7f0452008-12-17 17:30:26 +00002682 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2683 }
danielk197712dd5492008-12-18 15:45:07 +00002684
danielk1977aef0bf62005-12-30 16:28:01 +00002685 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002686 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002687 return rc;
drha059ad02001-04-17 20:09:11 +00002688}
2689
danielk1977687566d2004-11-02 12:56:41 +00002690#ifndef SQLITE_OMIT_AUTOVACUUM
2691
2692/*
2693** Set the pointer-map entries for all children of page pPage. Also, if
2694** pPage contains cells that point to overflow pages, set the pointer
2695** map entries for the overflow pages as well.
2696*/
2697static int setChildPtrmaps(MemPage *pPage){
2698 int i; /* Counter variable */
2699 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002700 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002701 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002702 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002703 Pgno pgno = pPage->pgno;
2704
drh1fee73e2007-08-29 04:00:57 +00002705 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002706 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002707 if( rc!=SQLITE_OK ){
2708 goto set_child_ptrmaps_out;
2709 }
danielk1977687566d2004-11-02 12:56:41 +00002710 nCell = pPage->nCell;
2711
2712 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002713 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002714
drh98add2e2009-07-20 17:11:49 +00002715 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002716
danielk1977687566d2004-11-02 12:56:41 +00002717 if( !pPage->leaf ){
2718 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002719 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002720 }
2721 }
2722
2723 if( !pPage->leaf ){
2724 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002725 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002726 }
2727
2728set_child_ptrmaps_out:
2729 pPage->isInit = isInitOrig;
2730 return rc;
2731}
2732
2733/*
drhf3aed592009-07-08 18:12:49 +00002734** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2735** that it points to iTo. Parameter eType describes the type of pointer to
2736** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002737**
2738** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2739** page of pPage.
2740**
2741** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2742** page pointed to by one of the cells on pPage.
2743**
2744** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2745** overflow page in the list.
2746*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002747static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002748 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002749 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002750 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002751 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002752 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002753 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002754 }
danielk1977f78fc082004-11-02 14:40:32 +00002755 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002756 }else{
drhf49661a2008-12-10 16:45:50 +00002757 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002758 int i;
2759 int nCell;
2760
danielk197730548662009-07-09 05:07:37 +00002761 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002762 nCell = pPage->nCell;
2763
danielk1977687566d2004-11-02 12:56:41 +00002764 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002765 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002766 if( eType==PTRMAP_OVERFLOW1 ){
2767 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002768 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002769 if( info.iOverflow
2770 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2771 && iFrom==get4byte(&pCell[info.iOverflow])
2772 ){
2773 put4byte(&pCell[info.iOverflow], iTo);
2774 break;
danielk1977687566d2004-11-02 12:56:41 +00002775 }
2776 }else{
2777 if( get4byte(pCell)==iFrom ){
2778 put4byte(pCell, iTo);
2779 break;
2780 }
2781 }
2782 }
2783
2784 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002785 if( eType!=PTRMAP_BTREE ||
2786 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002787 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002788 }
danielk1977687566d2004-11-02 12:56:41 +00002789 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2790 }
2791
2792 pPage->isInit = isInitOrig;
2793 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002794 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002795}
2796
danielk1977003ba062004-11-04 02:57:33 +00002797
danielk19777701e812005-01-10 12:59:51 +00002798/*
2799** Move the open database page pDbPage to location iFreePage in the
2800** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002801**
2802** The isCommit flag indicates that there is no need to remember that
2803** the journal needs to be sync()ed before database page pDbPage->pgno
2804** can be written to. The caller has already promised not to write to that
2805** page.
danielk19777701e812005-01-10 12:59:51 +00002806*/
danielk1977003ba062004-11-04 02:57:33 +00002807static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002808 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002809 MemPage *pDbPage, /* Open page to move */
2810 u8 eType, /* Pointer map 'type' entry for pDbPage */
2811 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002812 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002813 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002814){
2815 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2816 Pgno iDbPage = pDbPage->pgno;
2817 Pager *pPager = pBt->pPager;
2818 int rc;
2819
danielk1977a0bf2652004-11-04 14:30:04 +00002820 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2821 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002822 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002823 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002824
drh85b623f2007-12-13 21:54:09 +00002825 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002826 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2827 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002828 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002829 if( rc!=SQLITE_OK ){
2830 return rc;
2831 }
2832 pDbPage->pgno = iFreePage;
2833
2834 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2835 ** that point to overflow pages. The pointer map entries for all these
2836 ** pages need to be changed.
2837 **
2838 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2839 ** pointer to a subsequent overflow page. If this is the case, then
2840 ** the pointer map needs to be updated for the subsequent overflow page.
2841 */
danielk1977a0bf2652004-11-04 14:30:04 +00002842 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002843 rc = setChildPtrmaps(pDbPage);
2844 if( rc!=SQLITE_OK ){
2845 return rc;
2846 }
2847 }else{
2848 Pgno nextOvfl = get4byte(pDbPage->aData);
2849 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002850 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002851 if( rc!=SQLITE_OK ){
2852 return rc;
2853 }
2854 }
2855 }
2856
2857 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2858 ** that it points at iFreePage. Also fix the pointer map entry for
2859 ** iPtrPage.
2860 */
danielk1977a0bf2652004-11-04 14:30:04 +00002861 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002862 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002863 if( rc!=SQLITE_OK ){
2864 return rc;
2865 }
danielk19773b8a05f2007-03-19 17:44:26 +00002866 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002867 if( rc!=SQLITE_OK ){
2868 releasePage(pPtrPage);
2869 return rc;
2870 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002871 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002872 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002873 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002874 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002875 }
danielk1977003ba062004-11-04 02:57:33 +00002876 }
danielk1977003ba062004-11-04 02:57:33 +00002877 return rc;
2878}
2879
danielk1977dddbcdc2007-04-26 14:42:34 +00002880/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002881static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002882
2883/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002884** Perform a single step of an incremental-vacuum. If successful,
2885** return SQLITE_OK. If there is no work to do (and therefore no
2886** point in calling this function again), return SQLITE_DONE.
2887**
2888** More specificly, this function attempts to re-organize the
2889** database so that the last page of the file currently in use
2890** is no longer in use.
2891**
drhea8ffdf2009-07-22 00:35:23 +00002892** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002893** that the caller will keep calling incrVacuumStep() until
2894** it returns SQLITE_DONE or an error, and that nFin is the
2895** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002896** process is complete. If nFin is zero, it is assumed that
2897** incrVacuumStep() will be called a finite amount of times
2898** which may or may not empty the freelist. A full autovacuum
2899** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002900*/
danielk19773460d192008-12-27 15:23:13 +00002901static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002902 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002903 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002904
drh1fee73e2007-08-29 04:00:57 +00002905 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002906 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002907
2908 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002909 u8 eType;
2910 Pgno iPtrPage;
2911
2912 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002913 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002914 return SQLITE_DONE;
2915 }
2916
2917 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2918 if( rc!=SQLITE_OK ){
2919 return rc;
2920 }
2921 if( eType==PTRMAP_ROOTPAGE ){
2922 return SQLITE_CORRUPT_BKPT;
2923 }
2924
2925 if( eType==PTRMAP_FREEPAGE ){
2926 if( nFin==0 ){
2927 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002928 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002929 ** truncated to zero after this function returns, so it doesn't
2930 ** matter if it still contains some garbage entries.
2931 */
2932 Pgno iFreePg;
2933 MemPage *pFreePg;
2934 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2935 if( rc!=SQLITE_OK ){
2936 return rc;
2937 }
2938 assert( iFreePg==iLastPg );
2939 releasePage(pFreePg);
2940 }
2941 } else {
2942 Pgno iFreePg; /* Index of free page to move pLastPg to */
2943 MemPage *pLastPg;
2944
danielk197730548662009-07-09 05:07:37 +00002945 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002946 if( rc!=SQLITE_OK ){
2947 return rc;
2948 }
2949
danielk1977b4626a32007-04-28 15:47:43 +00002950 /* If nFin is zero, this loop runs exactly once and page pLastPg
2951 ** is swapped with the first free page pulled off the free list.
2952 **
2953 ** On the other hand, if nFin is greater than zero, then keep
2954 ** looping until a free-page located within the first nFin pages
2955 ** of the file is found.
2956 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002957 do {
2958 MemPage *pFreePg;
2959 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2960 if( rc!=SQLITE_OK ){
2961 releasePage(pLastPg);
2962 return rc;
2963 }
2964 releasePage(pFreePg);
2965 }while( nFin!=0 && iFreePg>nFin );
2966 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002967
2968 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002969 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002970 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002971 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002972 releasePage(pLastPg);
2973 if( rc!=SQLITE_OK ){
2974 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002975 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002976 }
2977 }
2978
danielk19773460d192008-12-27 15:23:13 +00002979 if( nFin==0 ){
2980 iLastPg--;
2981 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002982 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2983 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002984 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002985 if( rc!=SQLITE_OK ){
2986 return rc;
2987 }
2988 rc = sqlite3PagerWrite(pPg->pDbPage);
2989 releasePage(pPg);
2990 if( rc!=SQLITE_OK ){
2991 return rc;
2992 }
2993 }
danielk19773460d192008-12-27 15:23:13 +00002994 iLastPg--;
2995 }
2996 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002997 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002998 }
2999 return SQLITE_OK;
3000}
3001
3002/*
3003** A write-transaction must be opened before calling this function.
3004** It performs a single unit of work towards an incremental vacuum.
3005**
3006** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003007** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003008** SQLITE_OK is returned. Otherwise an SQLite error code.
3009*/
3010int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003011 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003012 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003013
3014 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003015 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3016 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003017 rc = SQLITE_DONE;
3018 }else{
3019 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00003020 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00003021 if( rc==SQLITE_OK ){
3022 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3023 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3024 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003025 }
drhd677b3d2007-08-20 22:48:41 +00003026 sqlite3BtreeLeave(p);
3027 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003028}
3029
3030/*
danielk19773b8a05f2007-03-19 17:44:26 +00003031** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003032** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003033**
3034** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3035** the database file should be truncated to during the commit process.
3036** i.e. the database has been reorganized so that only the first *pnTrunc
3037** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003038*/
danielk19773460d192008-12-27 15:23:13 +00003039static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003040 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003041 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003042 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003043
drh1fee73e2007-08-29 04:00:57 +00003044 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003045 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003046 assert(pBt->autoVacuum);
3047 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003048 Pgno nFin; /* Number of pages in database after autovacuuming */
3049 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003050 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3051 Pgno iFree; /* The next page to be freed */
3052 int nEntry; /* Number of entries on one ptrmap page */
3053 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003054
drhb1299152010-03-30 22:58:33 +00003055 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003056 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3057 /* It is not possible to create a database for which the final page
3058 ** is either a pointer-map page or the pending-byte page. If one
3059 ** is encountered, this indicates corruption.
3060 */
danielk19773460d192008-12-27 15:23:13 +00003061 return SQLITE_CORRUPT_BKPT;
3062 }
danielk1977ef165ce2009-04-06 17:50:03 +00003063
danielk19773460d192008-12-27 15:23:13 +00003064 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00003065 nEntry = pBt->usableSize/5;
3066 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00003067 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00003068 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00003069 nFin--;
3070 }
3071 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3072 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00003073 }
drhc5e47ac2009-06-04 00:11:56 +00003074 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003075
danielk19773460d192008-12-27 15:23:13 +00003076 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3077 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00003078 }
danielk19773460d192008-12-27 15:23:13 +00003079 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003080 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3081 put4byte(&pBt->pPage1->aData[32], 0);
3082 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003083 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00003084 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00003085 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003086 }
3087 if( rc!=SQLITE_OK ){
3088 sqlite3PagerRollback(pPager);
3089 }
danielk1977687566d2004-11-02 12:56:41 +00003090 }
3091
danielk19773b8a05f2007-03-19 17:44:26 +00003092 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003093 return rc;
3094}
danielk1977dddbcdc2007-04-26 14:42:34 +00003095
danielk1977a50d9aa2009-06-08 14:49:45 +00003096#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3097# define setChildPtrmaps(x) SQLITE_OK
3098#endif
danielk1977687566d2004-11-02 12:56:41 +00003099
3100/*
drh80e35f42007-03-30 14:06:34 +00003101** This routine does the first phase of a two-phase commit. This routine
3102** causes a rollback journal to be created (if it does not already exist)
3103** and populated with enough information so that if a power loss occurs
3104** the database can be restored to its original state by playing back
3105** the journal. Then the contents of the journal are flushed out to
3106** the disk. After the journal is safely on oxide, the changes to the
3107** database are written into the database file and flushed to oxide.
3108** At the end of this call, the rollback journal still exists on the
3109** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003110** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003111** commit process.
3112**
3113** This call is a no-op if no write-transaction is currently active on pBt.
3114**
3115** Otherwise, sync the database file for the btree pBt. zMaster points to
3116** the name of a master journal file that should be written into the
3117** individual journal file, or is NULL, indicating no master journal file
3118** (single database transaction).
3119**
3120** When this is called, the master journal should already have been
3121** created, populated with this journal pointer and synced to disk.
3122**
3123** Once this is routine has returned, the only thing required to commit
3124** the write-transaction for this database file is to delete the journal.
3125*/
3126int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3127 int rc = SQLITE_OK;
3128 if( p->inTrans==TRANS_WRITE ){
3129 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003130 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003131#ifndef SQLITE_OMIT_AUTOVACUUM
3132 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003133 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003134 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003135 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003136 return rc;
3137 }
3138 }
3139#endif
drh49b9d332009-01-02 18:10:42 +00003140 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003141 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003142 }
3143 return rc;
3144}
3145
3146/*
danielk197794b30732009-07-02 17:21:57 +00003147** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3148** at the conclusion of a transaction.
3149*/
3150static void btreeEndTransaction(Btree *p){
3151 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003152 assert( sqlite3BtreeHoldsMutex(p) );
3153
danielk197794b30732009-07-02 17:21:57 +00003154 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003155 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3156 /* If there are other active statements that belong to this database
3157 ** handle, downgrade to a read-only transaction. The other statements
3158 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003159 downgradeAllSharedCacheTableLocks(p);
3160 p->inTrans = TRANS_READ;
3161 }else{
3162 /* If the handle had any kind of transaction open, decrement the
3163 ** transaction count of the shared btree. If the transaction count
3164 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3165 ** call below will unlock the pager. */
3166 if( p->inTrans!=TRANS_NONE ){
3167 clearAllSharedCacheTableLocks(p);
3168 pBt->nTransaction--;
3169 if( 0==pBt->nTransaction ){
3170 pBt->inTransaction = TRANS_NONE;
3171 }
3172 }
3173
3174 /* Set the current transaction state to TRANS_NONE and unlock the
3175 ** pager if this call closed the only read or write transaction. */
3176 p->inTrans = TRANS_NONE;
3177 unlockBtreeIfUnused(pBt);
3178 }
3179
3180 btreeIntegrity(p);
3181}
3182
3183/*
drh2aa679f2001-06-25 02:11:07 +00003184** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003185**
drh6e345992007-03-30 11:12:08 +00003186** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003187** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3188** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3189** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003190** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003191** routine has to do is delete or truncate or zero the header in the
3192** the rollback journal (which causes the transaction to commit) and
3193** drop locks.
drh6e345992007-03-30 11:12:08 +00003194**
dan60939d02011-03-29 15:40:55 +00003195** Normally, if an error occurs while the pager layer is attempting to
3196** finalize the underlying journal file, this function returns an error and
3197** the upper layer will attempt a rollback. However, if the second argument
3198** is non-zero then this b-tree transaction is part of a multi-file
3199** transaction. In this case, the transaction has already been committed
3200** (by deleting a master journal file) and the caller will ignore this
3201** functions return code. So, even if an error occurs in the pager layer,
3202** reset the b-tree objects internal state to indicate that the write
3203** transaction has been closed. This is quite safe, as the pager will have
3204** transitioned to the error state.
3205**
drh5e00f6c2001-09-13 13:46:56 +00003206** This will release the write lock on the database file. If there
3207** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003208*/
dan60939d02011-03-29 15:40:55 +00003209int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003210
drh075ed302010-10-14 01:17:30 +00003211 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003212 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003213 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003214
3215 /* If the handle has a write-transaction open, commit the shared-btrees
3216 ** transaction and set the shared state to TRANS_READ.
3217 */
3218 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003219 int rc;
drh075ed302010-10-14 01:17:30 +00003220 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003221 assert( pBt->inTransaction==TRANS_WRITE );
3222 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003223 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003224 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003225 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003226 return rc;
3227 }
danielk1977aef0bf62005-12-30 16:28:01 +00003228 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003229 }
danielk1977aef0bf62005-12-30 16:28:01 +00003230
danielk197794b30732009-07-02 17:21:57 +00003231 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003232 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003233 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003234}
3235
drh80e35f42007-03-30 14:06:34 +00003236/*
3237** Do both phases of a commit.
3238*/
3239int sqlite3BtreeCommit(Btree *p){
3240 int rc;
drhd677b3d2007-08-20 22:48:41 +00003241 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003242 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3243 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003244 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003245 }
drhd677b3d2007-08-20 22:48:41 +00003246 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003247 return rc;
3248}
3249
danielk1977fbcd5852004-06-15 02:44:18 +00003250#ifndef NDEBUG
3251/*
3252** Return the number of write-cursors open on this handle. This is for use
3253** in assert() expressions, so it is only compiled if NDEBUG is not
3254** defined.
drhfb982642007-08-30 01:19:59 +00003255**
3256** For the purposes of this routine, a write-cursor is any cursor that
3257** is capable of writing to the databse. That means the cursor was
3258** originally opened for writing and the cursor has not be disabled
3259** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003260*/
danielk1977aef0bf62005-12-30 16:28:01 +00003261static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003262 BtCursor *pCur;
3263 int r = 0;
3264 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003265 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003266 }
3267 return r;
3268}
3269#endif
3270
drhc39e0002004-05-07 23:50:57 +00003271/*
drhfb982642007-08-30 01:19:59 +00003272** This routine sets the state to CURSOR_FAULT and the error
3273** code to errCode for every cursor on BtShared that pBtree
3274** references.
3275**
3276** Every cursor is tripped, including cursors that belong
3277** to other database connections that happen to be sharing
3278** the cache with pBtree.
3279**
3280** This routine gets called when a rollback occurs.
3281** All cursors using the same cache must be tripped
3282** to prevent them from trying to use the btree after
3283** the rollback. The rollback may have deleted tables
3284** or moved root pages, so it is not sufficient to
3285** save the state of the cursor. The cursor must be
3286** invalidated.
3287*/
3288void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3289 BtCursor *p;
3290 sqlite3BtreeEnter(pBtree);
3291 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003292 int i;
danielk1977be51a652008-10-08 17:58:48 +00003293 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003294 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003295 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003296 for(i=0; i<=p->iPage; i++){
3297 releasePage(p->apPage[i]);
3298 p->apPage[i] = 0;
3299 }
drhfb982642007-08-30 01:19:59 +00003300 }
3301 sqlite3BtreeLeave(pBtree);
3302}
3303
3304/*
drhecdc7532001-09-23 02:35:53 +00003305** Rollback the transaction in progress. All cursors will be
3306** invalided by this operation. Any attempt to use a cursor
3307** that was open at the beginning of this operation will result
3308** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003309**
3310** This will release the write lock on the database file. If there
3311** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003312*/
danielk1977aef0bf62005-12-30 16:28:01 +00003313int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003314 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003315 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003316 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003317
drhd677b3d2007-08-20 22:48:41 +00003318 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003319 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003320#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003321 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003322 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003323 ** trying to save cursor positions. If this is an automatic rollback (as
3324 ** the result of a constraint, malloc() failure or IO error) then
3325 ** the cache may be internally inconsistent (not contain valid trees) so
3326 ** we cannot simply return the error to the caller. Instead, abort
3327 ** all queries that may be using any of the cursors that failed to save.
3328 */
drhfb982642007-08-30 01:19:59 +00003329 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003330 }
danielk19778d34dfd2006-01-24 16:37:57 +00003331#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003332 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003333
3334 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003335 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003336
danielk19778d34dfd2006-01-24 16:37:57 +00003337 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003338 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003339 if( rc2!=SQLITE_OK ){
3340 rc = rc2;
3341 }
3342
drh24cd67e2004-05-10 16:18:47 +00003343 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003344 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003345 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003346 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003347 int nPage = get4byte(28+(u8*)pPage1->aData);
3348 testcase( nPage==0 );
3349 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3350 testcase( pBt->nPage!=nPage );
3351 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003352 releasePage(pPage1);
3353 }
danielk1977fbcd5852004-06-15 02:44:18 +00003354 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003355 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003356 }
danielk1977aef0bf62005-12-30 16:28:01 +00003357
danielk197794b30732009-07-02 17:21:57 +00003358 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003359 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003360 return rc;
3361}
3362
3363/*
danielk1977bd434552009-03-18 10:33:00 +00003364** Start a statement subtransaction. The subtransaction can can be rolled
3365** back independently of the main transaction. You must start a transaction
3366** before starting a subtransaction. The subtransaction is ended automatically
3367** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003368**
3369** Statement subtransactions are used around individual SQL statements
3370** that are contained within a BEGIN...COMMIT block. If a constraint
3371** error occurs within the statement, the effect of that one statement
3372** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003373**
3374** A statement sub-transaction is implemented as an anonymous savepoint. The
3375** value passed as the second parameter is the total number of savepoints,
3376** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3377** are no active savepoints and no other statement-transactions open,
3378** iStatement is 1. This anonymous savepoint can be released or rolled back
3379** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003380*/
danielk1977bd434552009-03-18 10:33:00 +00003381int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003382 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003383 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003384 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003385 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003386 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003387 assert( iStatement>0 );
3388 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003389 assert( pBt->inTransaction==TRANS_WRITE );
3390 /* At the pager level, a statement transaction is a savepoint with
3391 ** an index greater than all savepoints created explicitly using
3392 ** SQL statements. It is illegal to open, release or rollback any
3393 ** such savepoints while the statement transaction savepoint is active.
3394 */
3395 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003396 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003397 return rc;
3398}
3399
3400/*
danielk1977fd7f0452008-12-17 17:30:26 +00003401** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3402** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003403** savepoint identified by parameter iSavepoint, depending on the value
3404** of op.
3405**
3406** Normally, iSavepoint is greater than or equal to zero. However, if op is
3407** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3408** contents of the entire transaction are rolled back. This is different
3409** from a normal transaction rollback, as no locks are released and the
3410** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003411*/
3412int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3413 int rc = SQLITE_OK;
3414 if( p && p->inTrans==TRANS_WRITE ){
3415 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003416 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3417 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3418 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003419 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003420 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003421 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3422 pBt->nPage = 0;
3423 }
drh9f0bbf92009-01-02 21:08:09 +00003424 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003425 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003426
3427 /* The database size was written into the offset 28 of the header
3428 ** when the transaction started, so we know that the value at offset
3429 ** 28 is nonzero. */
3430 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003431 }
danielk1977fd7f0452008-12-17 17:30:26 +00003432 sqlite3BtreeLeave(p);
3433 }
3434 return rc;
3435}
3436
3437/*
drh8b2f49b2001-06-08 00:21:52 +00003438** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003439** iTable. If a read-only cursor is requested, it is assumed that
3440** the caller already has at least a read-only transaction open
3441** on the database already. If a write-cursor is requested, then
3442** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003443**
3444** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003445** If wrFlag==1, then the cursor can be used for reading or for
3446** writing if other conditions for writing are also met. These
3447** are the conditions that must be met in order for writing to
3448** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003449**
drhf74b8d92002-09-01 23:20:45 +00003450** 1: The cursor must have been opened with wrFlag==1
3451**
drhfe5d71d2007-03-19 11:54:10 +00003452** 2: Other database connections that share the same pager cache
3453** but which are not in the READ_UNCOMMITTED state may not have
3454** cursors open with wrFlag==0 on the same table. Otherwise
3455** the changes made by this write cursor would be visible to
3456** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003457**
3458** 3: The database must be writable (not on read-only media)
3459**
3460** 4: There must be an active transaction.
3461**
drh6446c4d2001-12-15 14:22:18 +00003462** No checking is done to make sure that page iTable really is the
3463** root page of a b-tree. If it is not, then the cursor acquired
3464** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003465**
drhf25a5072009-11-18 23:01:25 +00003466** It is assumed that the sqlite3BtreeCursorZero() has been called
3467** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003468*/
drhd677b3d2007-08-20 22:48:41 +00003469static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003470 Btree *p, /* The btree */
3471 int iTable, /* Root page of table to open */
3472 int wrFlag, /* 1 to write. 0 read-only */
3473 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3474 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003475){
danielk19773e8add92009-07-04 17:16:00 +00003476 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003477
drh1fee73e2007-08-29 04:00:57 +00003478 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003479 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003480
danielk1977602b4662009-07-02 07:47:33 +00003481 /* The following assert statements verify that if this is a sharable
3482 ** b-tree database, the connection is holding the required table locks,
3483 ** and that no other connection has any open cursor that conflicts with
3484 ** this lock. */
3485 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003486 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3487
danielk19773e8add92009-07-04 17:16:00 +00003488 /* Assert that the caller has opened the required transaction. */
3489 assert( p->inTrans>TRANS_NONE );
3490 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3491 assert( pBt->pPage1 && pBt->pPage1->aData );
3492
drhc9166342012-01-05 23:32:06 +00003493 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003494 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003495 }
drhb1299152010-03-30 22:58:33 +00003496 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003497 assert( wrFlag==0 );
3498 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003499 }
danielk1977aef0bf62005-12-30 16:28:01 +00003500
danielk1977aef0bf62005-12-30 16:28:01 +00003501 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003502 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003503 pCur->pgnoRoot = (Pgno)iTable;
3504 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003505 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003506 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003507 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003508 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003509 pCur->pNext = pBt->pCursor;
3510 if( pCur->pNext ){
3511 pCur->pNext->pPrev = pCur;
3512 }
3513 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003514 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003515 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003516 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003517}
drhd677b3d2007-08-20 22:48:41 +00003518int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003519 Btree *p, /* The btree */
3520 int iTable, /* Root page of table to open */
3521 int wrFlag, /* 1 to write. 0 read-only */
3522 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3523 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003524){
3525 int rc;
3526 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003527 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003528 sqlite3BtreeLeave(p);
3529 return rc;
3530}
drh7f751222009-03-17 22:33:00 +00003531
3532/*
3533** Return the size of a BtCursor object in bytes.
3534**
3535** This interfaces is needed so that users of cursors can preallocate
3536** sufficient storage to hold a cursor. The BtCursor object is opaque
3537** to users so they cannot do the sizeof() themselves - they must call
3538** this routine.
3539*/
3540int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003541 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003542}
3543
drh7f751222009-03-17 22:33:00 +00003544/*
drhf25a5072009-11-18 23:01:25 +00003545** Initialize memory that will be converted into a BtCursor object.
3546**
3547** The simple approach here would be to memset() the entire object
3548** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3549** do not need to be zeroed and they are large, so we can save a lot
3550** of run-time by skipping the initialization of those elements.
3551*/
3552void sqlite3BtreeCursorZero(BtCursor *p){
3553 memset(p, 0, offsetof(BtCursor, iPage));
3554}
3555
3556/*
drh7f751222009-03-17 22:33:00 +00003557** Set the cached rowid value of every cursor in the same database file
3558** as pCur and having the same root page number as pCur. The value is
3559** set to iRowid.
3560**
3561** Only positive rowid values are considered valid for this cache.
3562** The cache is initialized to zero, indicating an invalid cache.
3563** A btree will work fine with zero or negative rowids. We just cannot
3564** cache zero or negative rowids, which means tables that use zero or
3565** negative rowids might run a little slower. But in practice, zero
3566** or negative rowids are very uncommon so this should not be a problem.
3567*/
3568void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3569 BtCursor *p;
3570 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3571 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3572 }
3573 assert( pCur->cachedRowid==iRowid );
3574}
drhd677b3d2007-08-20 22:48:41 +00003575
drh7f751222009-03-17 22:33:00 +00003576/*
3577** Return the cached rowid for the given cursor. A negative or zero
3578** return value indicates that the rowid cache is invalid and should be
3579** ignored. If the rowid cache has never before been set, then a
3580** zero is returned.
3581*/
3582sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3583 return pCur->cachedRowid;
3584}
drha059ad02001-04-17 20:09:11 +00003585
3586/*
drh5e00f6c2001-09-13 13:46:56 +00003587** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003588** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003589*/
drh3aac2dd2004-04-26 14:10:20 +00003590int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003591 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003592 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003593 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003594 BtShared *pBt = pCur->pBt;
3595 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003596 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003597 if( pCur->pPrev ){
3598 pCur->pPrev->pNext = pCur->pNext;
3599 }else{
3600 pBt->pCursor = pCur->pNext;
3601 }
3602 if( pCur->pNext ){
3603 pCur->pNext->pPrev = pCur->pPrev;
3604 }
danielk197771d5d2c2008-09-29 11:49:47 +00003605 for(i=0; i<=pCur->iPage; i++){
3606 releasePage(pCur->apPage[i]);
3607 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003608 unlockBtreeIfUnused(pBt);
3609 invalidateOverflowCache(pCur);
3610 /* sqlite3_free(pCur); */
3611 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003612 }
drh8c42ca92001-06-22 19:15:00 +00003613 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003614}
3615
drh5e2f8b92001-05-28 00:41:15 +00003616/*
drh86057612007-06-26 01:04:48 +00003617** Make sure the BtCursor* given in the argument has a valid
3618** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003619** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003620**
3621** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003622** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003623**
3624** 2007-06-25: There is a bug in some versions of MSVC that cause the
3625** compiler to crash when getCellInfo() is implemented as a macro.
3626** But there is a measureable speed advantage to using the macro on gcc
3627** (when less compiler optimizations like -Os or -O0 are used and the
3628** compiler is not doing agressive inlining.) So we use a real function
3629** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003630*/
drh9188b382004-05-14 21:12:22 +00003631#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003632 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003633 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003634 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003635 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003636 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003637 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003638 }
danielk19771cc5ed82007-05-16 17:28:43 +00003639#else
3640 #define assertCellInfo(x)
3641#endif
drh86057612007-06-26 01:04:48 +00003642#ifdef _MSC_VER
3643 /* Use a real function in MSVC to work around bugs in that compiler. */
3644 static void getCellInfo(BtCursor *pCur){
3645 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003646 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003647 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003648 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003649 }else{
3650 assertCellInfo(pCur);
3651 }
3652 }
3653#else /* if not _MSC_VER */
3654 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003655#define getCellInfo(pCur) \
3656 if( pCur->info.nSize==0 ){ \
3657 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003658 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003659 pCur->validNKey = 1; \
3660 }else{ \
3661 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003662 }
3663#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003664
drhea8ffdf2009-07-22 00:35:23 +00003665#ifndef NDEBUG /* The next routine used only within assert() statements */
3666/*
3667** Return true if the given BtCursor is valid. A valid cursor is one
3668** that is currently pointing to a row in a (non-empty) table.
3669** This is a verification routine is used only within assert() statements.
3670*/
3671int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3672 return pCur && pCur->eState==CURSOR_VALID;
3673}
3674#endif /* NDEBUG */
3675
drh9188b382004-05-14 21:12:22 +00003676/*
drh3aac2dd2004-04-26 14:10:20 +00003677** Set *pSize to the size of the buffer needed to hold the value of
3678** the key for the current entry. If the cursor is not pointing
3679** to a valid entry, *pSize is set to 0.
3680**
drh4b70f112004-05-02 21:12:19 +00003681** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003682** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003683**
3684** The caller must position the cursor prior to invoking this routine.
3685**
3686** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003687*/
drh4a1c3802004-05-12 15:15:47 +00003688int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003689 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003690 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3691 if( pCur->eState!=CURSOR_VALID ){
3692 *pSize = 0;
3693 }else{
3694 getCellInfo(pCur);
3695 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003696 }
drhea8ffdf2009-07-22 00:35:23 +00003697 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003698}
drh2af926b2001-05-15 00:39:25 +00003699
drh72f82862001-05-24 21:06:34 +00003700/*
drh0e1c19e2004-05-11 00:58:56 +00003701** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003702** cursor currently points to.
3703**
3704** The caller must guarantee that the cursor is pointing to a non-NULL
3705** valid entry. In other words, the calling procedure must guarantee
3706** that the cursor has Cursor.eState==CURSOR_VALID.
3707**
3708** Failure is not possible. This function always returns SQLITE_OK.
3709** It might just as well be a procedure (returning void) but we continue
3710** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003711*/
3712int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003713 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003714 assert( pCur->eState==CURSOR_VALID );
3715 getCellInfo(pCur);
3716 *pSize = pCur->info.nData;
3717 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003718}
3719
3720/*
danielk1977d04417962007-05-02 13:16:30 +00003721** Given the page number of an overflow page in the database (parameter
3722** ovfl), this function finds the page number of the next page in the
3723** linked list of overflow pages. If possible, it uses the auto-vacuum
3724** pointer-map data instead of reading the content of page ovfl to do so.
3725**
3726** If an error occurs an SQLite error code is returned. Otherwise:
3727**
danielk1977bea2a942009-01-20 17:06:27 +00003728** The page number of the next overflow page in the linked list is
3729** written to *pPgnoNext. If page ovfl is the last page in its linked
3730** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003731**
danielk1977bea2a942009-01-20 17:06:27 +00003732** If ppPage is not NULL, and a reference to the MemPage object corresponding
3733** to page number pOvfl was obtained, then *ppPage is set to point to that
3734** reference. It is the responsibility of the caller to call releasePage()
3735** on *ppPage to free the reference. In no reference was obtained (because
3736** the pointer-map was used to obtain the value for *pPgnoNext), then
3737** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003738*/
3739static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003740 BtShared *pBt, /* The database file */
3741 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003742 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003743 Pgno *pPgnoNext /* OUT: Next overflow page number */
3744){
3745 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003746 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003747 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003748
drh1fee73e2007-08-29 04:00:57 +00003749 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003750 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003751
3752#ifndef SQLITE_OMIT_AUTOVACUUM
3753 /* Try to find the next page in the overflow list using the
3754 ** autovacuum pointer-map pages. Guess that the next page in
3755 ** the overflow list is page number (ovfl+1). If that guess turns
3756 ** out to be wrong, fall back to loading the data of page
3757 ** number ovfl to determine the next page number.
3758 */
3759 if( pBt->autoVacuum ){
3760 Pgno pgno;
3761 Pgno iGuess = ovfl+1;
3762 u8 eType;
3763
3764 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3765 iGuess++;
3766 }
3767
drhb1299152010-03-30 22:58:33 +00003768 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003769 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003770 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003771 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003772 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003773 }
3774 }
3775 }
3776#endif
3777
danielk1977d8a3f3d2009-07-11 11:45:23 +00003778 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003779 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003780 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003781 assert( rc==SQLITE_OK || pPage==0 );
3782 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003783 next = get4byte(pPage->aData);
3784 }
danielk1977443c0592009-01-16 15:21:05 +00003785 }
danielk197745d68822009-01-16 16:23:38 +00003786
danielk1977bea2a942009-01-20 17:06:27 +00003787 *pPgnoNext = next;
3788 if( ppPage ){
3789 *ppPage = pPage;
3790 }else{
3791 releasePage(pPage);
3792 }
3793 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003794}
3795
danielk1977da107192007-05-04 08:32:13 +00003796/*
3797** Copy data from a buffer to a page, or from a page to a buffer.
3798**
3799** pPayload is a pointer to data stored on database page pDbPage.
3800** If argument eOp is false, then nByte bytes of data are copied
3801** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3802** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3803** of data are copied from the buffer pBuf to pPayload.
3804**
3805** SQLITE_OK is returned on success, otherwise an error code.
3806*/
3807static int copyPayload(
3808 void *pPayload, /* Pointer to page data */
3809 void *pBuf, /* Pointer to buffer */
3810 int nByte, /* Number of bytes to copy */
3811 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3812 DbPage *pDbPage /* Page containing pPayload */
3813){
3814 if( eOp ){
3815 /* Copy data from buffer to page (a write operation) */
3816 int rc = sqlite3PagerWrite(pDbPage);
3817 if( rc!=SQLITE_OK ){
3818 return rc;
3819 }
3820 memcpy(pPayload, pBuf, nByte);
3821 }else{
3822 /* Copy data from page to buffer (a read operation) */
3823 memcpy(pBuf, pPayload, nByte);
3824 }
3825 return SQLITE_OK;
3826}
danielk1977d04417962007-05-02 13:16:30 +00003827
3828/*
danielk19779f8d6402007-05-02 17:48:45 +00003829** This function is used to read or overwrite payload information
3830** for the entry that the pCur cursor is pointing to. If the eOp
3831** parameter is 0, this is a read operation (data copied into
3832** buffer pBuf). If it is non-zero, a write (data copied from
3833** buffer pBuf).
3834**
3835** A total of "amt" bytes are read or written beginning at "offset".
3836** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003837**
drh3bcdfd22009-07-12 02:32:21 +00003838** The content being read or written might appear on the main page
3839** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003840**
danielk1977dcbb5d32007-05-04 18:36:44 +00003841** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003842** cursor entry uses one or more overflow pages, this function
3843** allocates space for and lazily popluates the overflow page-list
3844** cache array (BtCursor.aOverflow). Subsequent calls use this
3845** cache to make seeking to the supplied offset more efficient.
3846**
3847** Once an overflow page-list cache has been allocated, it may be
3848** invalidated if some other cursor writes to the same table, or if
3849** the cursor is moved to a different row. Additionally, in auto-vacuum
3850** mode, the following events may invalidate an overflow page-list cache.
3851**
3852** * An incremental vacuum,
3853** * A commit in auto_vacuum="full" mode,
3854** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003855*/
danielk19779f8d6402007-05-02 17:48:45 +00003856static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003857 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003858 u32 offset, /* Begin reading this far into payload */
3859 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003860 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003861 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003862){
3863 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003864 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003865 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003866 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003867 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003868 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003869
danielk1977da107192007-05-04 08:32:13 +00003870 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003871 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003872 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003873 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003874
drh86057612007-06-26 01:04:48 +00003875 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003876 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003877 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003878
drh3bcdfd22009-07-12 02:32:21 +00003879 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003880 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3881 ){
danielk1977da107192007-05-04 08:32:13 +00003882 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003883 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003884 }
danielk1977da107192007-05-04 08:32:13 +00003885
3886 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003887 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003888 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003889 if( a+offset>pCur->info.nLocal ){
3890 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003891 }
danielk1977da107192007-05-04 08:32:13 +00003892 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003893 offset = 0;
drha34b6762004-05-07 13:30:42 +00003894 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003895 amt -= a;
drhdd793422001-06-28 01:54:48 +00003896 }else{
drhfa1a98a2004-05-14 19:08:17 +00003897 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003898 }
danielk1977da107192007-05-04 08:32:13 +00003899
3900 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003901 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003902 Pgno nextPage;
3903
drhfa1a98a2004-05-14 19:08:17 +00003904 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003905
danielk19772dec9702007-05-02 16:48:37 +00003906#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003907 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003908 ** has not been allocated, allocate it now. The array is sized at
3909 ** one entry for each overflow page in the overflow chain. The
3910 ** page number of the first overflow page is stored in aOverflow[0],
3911 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3912 ** (the cache is lazily populated).
3913 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003914 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003915 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003916 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003917 /* nOvfl is always positive. If it were zero, fetchPayload would have
3918 ** been used instead of this routine. */
3919 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003920 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003921 }
3922 }
danielk1977da107192007-05-04 08:32:13 +00003923
3924 /* If the overflow page-list cache has been allocated and the
3925 ** entry for the first required overflow page is valid, skip
3926 ** directly to it.
3927 */
danielk19772dec9702007-05-02 16:48:37 +00003928 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3929 iIdx = (offset/ovflSize);
3930 nextPage = pCur->aOverflow[iIdx];
3931 offset = (offset%ovflSize);
3932 }
3933#endif
danielk1977da107192007-05-04 08:32:13 +00003934
3935 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3936
3937#ifndef SQLITE_OMIT_INCRBLOB
3938 /* If required, populate the overflow page-list cache. */
3939 if( pCur->aOverflow ){
3940 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3941 pCur->aOverflow[iIdx] = nextPage;
3942 }
3943#endif
3944
danielk1977d04417962007-05-02 13:16:30 +00003945 if( offset>=ovflSize ){
3946 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003947 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003948 ** data is not required. So first try to lookup the overflow
3949 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003950 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003951 */
danielk19772dec9702007-05-02 16:48:37 +00003952#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003953 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3954 nextPage = pCur->aOverflow[iIdx+1];
3955 } else
danielk19772dec9702007-05-02 16:48:37 +00003956#endif
danielk1977da107192007-05-04 08:32:13 +00003957 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003958 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003959 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003960 /* Need to read this page properly. It contains some of the
3961 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003962 */
danf4ba1092011-10-08 14:57:07 +00003963#ifdef SQLITE_DIRECT_OVERFLOW_READ
3964 sqlite3_file *fd;
3965#endif
danielk1977cfe9a692004-06-16 12:00:29 +00003966 int a = amt;
danf4ba1092011-10-08 14:57:07 +00003967 if( a + offset > ovflSize ){
3968 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003969 }
danf4ba1092011-10-08 14:57:07 +00003970
3971#ifdef SQLITE_DIRECT_OVERFLOW_READ
3972 /* If all the following are true:
3973 **
3974 ** 1) this is a read operation, and
3975 ** 2) data is required from the start of this overflow page, and
3976 ** 3) the database is file-backed, and
3977 ** 4) there is no open write-transaction, and
3978 ** 5) the database is not a WAL database,
3979 **
3980 ** then data can be read directly from the database file into the
3981 ** output buffer, bypassing the page-cache altogether. This speeds
3982 ** up loading large records that span many overflow pages.
3983 */
3984 if( eOp==0 /* (1) */
3985 && offset==0 /* (2) */
3986 && pBt->inTransaction==TRANS_READ /* (4) */
3987 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
3988 && pBt->pPage1->aData[19]==0x01 /* (5) */
3989 ){
3990 u8 aSave[4];
3991 u8 *aWrite = &pBuf[-4];
3992 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00003993 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00003994 nextPage = get4byte(aWrite);
3995 memcpy(aWrite, aSave, 4);
3996 }else
3997#endif
3998
3999 {
4000 DbPage *pDbPage;
4001 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
4002 if( rc==SQLITE_OK ){
4003 aPayload = sqlite3PagerGetData(pDbPage);
4004 nextPage = get4byte(aPayload);
4005 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4006 sqlite3PagerUnref(pDbPage);
4007 offset = 0;
4008 }
4009 }
4010 amt -= a;
4011 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004012 }
drh2af926b2001-05-15 00:39:25 +00004013 }
drh2af926b2001-05-15 00:39:25 +00004014 }
danielk1977cfe9a692004-06-16 12:00:29 +00004015
danielk1977da107192007-05-04 08:32:13 +00004016 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004017 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004018 }
danielk1977da107192007-05-04 08:32:13 +00004019 return rc;
drh2af926b2001-05-15 00:39:25 +00004020}
4021
drh72f82862001-05-24 21:06:34 +00004022/*
drh3aac2dd2004-04-26 14:10:20 +00004023** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004024** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004025** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004026**
drh5d1a8722009-07-22 18:07:40 +00004027** The caller must ensure that pCur is pointing to a valid row
4028** in the table.
4029**
drh3aac2dd2004-04-26 14:10:20 +00004030** Return SQLITE_OK on success or an error code if anything goes
4031** wrong. An error is returned if "offset+amt" is larger than
4032** the available payload.
drh72f82862001-05-24 21:06:34 +00004033*/
drha34b6762004-05-07 13:30:42 +00004034int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004035 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004036 assert( pCur->eState==CURSOR_VALID );
4037 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4038 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4039 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004040}
4041
4042/*
drh3aac2dd2004-04-26 14:10:20 +00004043** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004044** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004045** begins at "offset".
4046**
4047** Return SQLITE_OK on success or an error code if anything goes
4048** wrong. An error is returned if "offset+amt" is larger than
4049** the available payload.
drh72f82862001-05-24 21:06:34 +00004050*/
drh3aac2dd2004-04-26 14:10:20 +00004051int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004052 int rc;
4053
danielk19773588ceb2008-06-10 17:30:26 +00004054#ifndef SQLITE_OMIT_INCRBLOB
4055 if ( pCur->eState==CURSOR_INVALID ){
4056 return SQLITE_ABORT;
4057 }
4058#endif
4059
drh1fee73e2007-08-29 04:00:57 +00004060 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004061 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004062 if( rc==SQLITE_OK ){
4063 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004064 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4065 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004066 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004067 }
4068 return rc;
drh2af926b2001-05-15 00:39:25 +00004069}
4070
drh72f82862001-05-24 21:06:34 +00004071/*
drh0e1c19e2004-05-11 00:58:56 +00004072** Return a pointer to payload information from the entry that the
4073** pCur cursor is pointing to. The pointer is to the beginning of
4074** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004075** skipKey==1. The number of bytes of available key/data is written
4076** into *pAmt. If *pAmt==0, then the value returned will not be
4077** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004078**
4079** This routine is an optimization. It is common for the entire key
4080** and data to fit on the local page and for there to be no overflow
4081** pages. When that is so, this routine can be used to access the
4082** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004083** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004084** the key/data and copy it into a preallocated buffer.
4085**
4086** The pointer returned by this routine looks directly into the cached
4087** page of the database. The data might change or move the next time
4088** any btree routine is called.
4089*/
4090static const unsigned char *fetchPayload(
4091 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004092 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004093 int skipKey /* read beginning at data if this is true */
4094){
4095 unsigned char *aPayload;
4096 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004097 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004098 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004099
danielk197771d5d2c2008-09-29 11:49:47 +00004100 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004101 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004102 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004103 pPage = pCur->apPage[pCur->iPage];
4104 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004105 if( NEVER(pCur->info.nSize==0) ){
4106 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4107 &pCur->info);
4108 }
drh43605152004-05-29 21:46:49 +00004109 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004110 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004111 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004112 nKey = 0;
4113 }else{
drhf49661a2008-12-10 16:45:50 +00004114 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004115 }
drh0e1c19e2004-05-11 00:58:56 +00004116 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004117 aPayload += nKey;
4118 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004119 }else{
drhfa1a98a2004-05-14 19:08:17 +00004120 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004121 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004122 }
drhe51c44f2004-05-30 20:46:09 +00004123 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004124 return aPayload;
4125}
4126
4127
4128/*
drhe51c44f2004-05-30 20:46:09 +00004129** For the entry that cursor pCur is point to, return as
4130** many bytes of the key or data as are available on the local
4131** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004132**
4133** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004134** or be destroyed on the next call to any Btree routine,
4135** including calls from other threads against the same cache.
4136** Hence, a mutex on the BtShared should be held prior to calling
4137** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004138**
4139** These routines is used to get quick access to key and data
4140** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004141*/
drhe51c44f2004-05-30 20:46:09 +00004142const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004143 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004144 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004145 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004146 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4147 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004148 }
drhfe3313f2009-07-21 19:02:20 +00004149 return p;
drh0e1c19e2004-05-11 00:58:56 +00004150}
drhe51c44f2004-05-30 20:46:09 +00004151const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004152 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004153 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004154 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004155 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4156 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004157 }
drhfe3313f2009-07-21 19:02:20 +00004158 return p;
drh0e1c19e2004-05-11 00:58:56 +00004159}
4160
4161
4162/*
drh8178a752003-01-05 21:41:40 +00004163** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004164** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004165**
4166** This function returns SQLITE_CORRUPT if the page-header flags field of
4167** the new child page does not match the flags field of the parent (i.e.
4168** if an intkey page appears to be the parent of a non-intkey page, or
4169** vice-versa).
drh72f82862001-05-24 21:06:34 +00004170*/
drh3aac2dd2004-04-26 14:10:20 +00004171static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004172 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004173 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004174 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004175 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004176
drh1fee73e2007-08-29 04:00:57 +00004177 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004178 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004179 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4180 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4181 return SQLITE_CORRUPT_BKPT;
4182 }
4183 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004184 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004185 pCur->apPage[i+1] = pNewPage;
4186 pCur->aiIdx[i+1] = 0;
4187 pCur->iPage++;
4188
drh271efa52004-05-30 19:19:05 +00004189 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004190 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004191 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004192 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004193 }
drh72f82862001-05-24 21:06:34 +00004194 return SQLITE_OK;
4195}
4196
danielk1977bf93c562008-09-29 15:53:25 +00004197#ifndef NDEBUG
4198/*
4199** Page pParent is an internal (non-leaf) tree page. This function
4200** asserts that page number iChild is the left-child if the iIdx'th
4201** cell in page pParent. Or, if iIdx is equal to the total number of
4202** cells in pParent, that page number iChild is the right-child of
4203** the page.
4204*/
4205static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4206 assert( iIdx<=pParent->nCell );
4207 if( iIdx==pParent->nCell ){
4208 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4209 }else{
4210 assert( get4byte(findCell(pParent, iIdx))==iChild );
4211 }
4212}
4213#else
4214# define assertParentIndex(x,y,z)
4215#endif
4216
drh72f82862001-05-24 21:06:34 +00004217/*
drh5e2f8b92001-05-28 00:41:15 +00004218** Move the cursor up to the parent page.
4219**
4220** pCur->idx is set to the cell index that contains the pointer
4221** to the page we are coming from. If we are coming from the
4222** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004223** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004224*/
danielk197730548662009-07-09 05:07:37 +00004225static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004226 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004227 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004228 assert( pCur->iPage>0 );
4229 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004230 assertParentIndex(
4231 pCur->apPage[pCur->iPage-1],
4232 pCur->aiIdx[pCur->iPage-1],
4233 pCur->apPage[pCur->iPage]->pgno
4234 );
danielk197771d5d2c2008-09-29 11:49:47 +00004235 releasePage(pCur->apPage[pCur->iPage]);
4236 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004237 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004238 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004239}
4240
4241/*
danielk19778f880a82009-07-13 09:41:45 +00004242** Move the cursor to point to the root page of its b-tree structure.
4243**
4244** If the table has a virtual root page, then the cursor is moved to point
4245** to the virtual root page instead of the actual root page. A table has a
4246** virtual root page when the actual root page contains no cells and a
4247** single child page. This can only happen with the table rooted at page 1.
4248**
4249** If the b-tree structure is empty, the cursor state is set to
4250** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4251** cell located on the root (or virtual root) page and the cursor state
4252** is set to CURSOR_VALID.
4253**
4254** If this function returns successfully, it may be assumed that the
4255** page-header flags indicate that the [virtual] root-page is the expected
4256** kind of b-tree page (i.e. if when opening the cursor the caller did not
4257** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4258** indicating a table b-tree, or if the caller did specify a KeyInfo
4259** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4260** b-tree).
drh72f82862001-05-24 21:06:34 +00004261*/
drh5e2f8b92001-05-28 00:41:15 +00004262static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004263 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004264 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004265 Btree *p = pCur->pBtree;
4266 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004267
drh1fee73e2007-08-29 04:00:57 +00004268 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004269 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4270 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4271 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4272 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4273 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004274 assert( pCur->skipNext!=SQLITE_OK );
4275 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004276 }
danielk1977be51a652008-10-08 17:58:48 +00004277 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004278 }
danielk197771d5d2c2008-09-29 11:49:47 +00004279
4280 if( pCur->iPage>=0 ){
4281 int i;
4282 for(i=1; i<=pCur->iPage; i++){
4283 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004284 }
danielk1977172114a2009-07-07 15:47:12 +00004285 pCur->iPage = 0;
dana205a482011-08-27 18:48:57 +00004286 }else if( pCur->pgnoRoot==0 ){
4287 pCur->eState = CURSOR_INVALID;
4288 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004289 }else{
drh4c301aa2009-07-15 17:25:45 +00004290 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4291 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004292 pCur->eState = CURSOR_INVALID;
4293 return rc;
4294 }
danielk1977172114a2009-07-07 15:47:12 +00004295 pCur->iPage = 0;
4296
4297 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4298 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4299 ** NULL, the caller expects a table b-tree. If this is not the case,
4300 ** return an SQLITE_CORRUPT error. */
4301 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4302 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4303 return SQLITE_CORRUPT_BKPT;
4304 }
drhc39e0002004-05-07 23:50:57 +00004305 }
danielk197771d5d2c2008-09-29 11:49:47 +00004306
danielk19778f880a82009-07-13 09:41:45 +00004307 /* Assert that the root page is of the correct type. This must be the
4308 ** case as the call to this function that loaded the root-page (either
4309 ** this call or a previous invocation) would have detected corruption
4310 ** if the assumption were not true, and it is not possible for the flags
4311 ** byte to have been modified while this cursor is holding a reference
4312 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004313 pRoot = pCur->apPage[0];
4314 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004315 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4316
danielk197771d5d2c2008-09-29 11:49:47 +00004317 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004318 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004319 pCur->atLast = 0;
4320 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004321
drh8856d6a2004-04-29 14:42:46 +00004322 if( pRoot->nCell==0 && !pRoot->leaf ){
4323 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004324 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004325 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004326 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004327 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004328 }else{
4329 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004330 }
4331 return rc;
drh72f82862001-05-24 21:06:34 +00004332}
drh2af926b2001-05-15 00:39:25 +00004333
drh5e2f8b92001-05-28 00:41:15 +00004334/*
4335** Move the cursor down to the left-most leaf entry beneath the
4336** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004337**
4338** The left-most leaf is the one with the smallest key - the first
4339** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004340*/
4341static int moveToLeftmost(BtCursor *pCur){
4342 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004343 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004344 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004345
drh1fee73e2007-08-29 04:00:57 +00004346 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004347 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004348 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4349 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4350 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004351 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004352 }
drhd677b3d2007-08-20 22:48:41 +00004353 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004354}
4355
drh2dcc9aa2002-12-04 13:40:25 +00004356/*
4357** Move the cursor down to the right-most leaf entry beneath the
4358** page to which it is currently pointing. Notice the difference
4359** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4360** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4361** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004362**
4363** The right-most entry is the one with the largest key - the last
4364** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004365*/
4366static int moveToRightmost(BtCursor *pCur){
4367 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004368 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004369 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004370
drh1fee73e2007-08-29 04:00:57 +00004371 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004372 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004373 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004374 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004375 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004376 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004377 }
drhd677b3d2007-08-20 22:48:41 +00004378 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004379 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004380 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004381 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004382 }
danielk1977518002e2008-09-05 05:02:46 +00004383 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004384}
4385
drh5e00f6c2001-09-13 13:46:56 +00004386/* Move the cursor to the first entry in the table. Return SQLITE_OK
4387** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004388** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004389*/
drh3aac2dd2004-04-26 14:10:20 +00004390int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004391 int rc;
drhd677b3d2007-08-20 22:48:41 +00004392
drh1fee73e2007-08-29 04:00:57 +00004393 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004394 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004395 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004396 if( rc==SQLITE_OK ){
4397 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004398 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004399 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004400 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004401 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004402 *pRes = 0;
4403 rc = moveToLeftmost(pCur);
4404 }
drh5e00f6c2001-09-13 13:46:56 +00004405 }
drh5e00f6c2001-09-13 13:46:56 +00004406 return rc;
4407}
drh5e2f8b92001-05-28 00:41:15 +00004408
drh9562b552002-02-19 15:00:07 +00004409/* Move the cursor to the last entry in the table. Return SQLITE_OK
4410** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004411** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004412*/
drh3aac2dd2004-04-26 14:10:20 +00004413int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004414 int rc;
drhd677b3d2007-08-20 22:48:41 +00004415
drh1fee73e2007-08-29 04:00:57 +00004416 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004417 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004418
4419 /* If the cursor already points to the last entry, this is a no-op. */
4420 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4421#ifdef SQLITE_DEBUG
4422 /* This block serves to assert() that the cursor really does point
4423 ** to the last entry in the b-tree. */
4424 int ii;
4425 for(ii=0; ii<pCur->iPage; ii++){
4426 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4427 }
4428 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4429 assert( pCur->apPage[pCur->iPage]->leaf );
4430#endif
4431 return SQLITE_OK;
4432 }
4433
drh9562b552002-02-19 15:00:07 +00004434 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004435 if( rc==SQLITE_OK ){
4436 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004437 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004438 *pRes = 1;
4439 }else{
4440 assert( pCur->eState==CURSOR_VALID );
4441 *pRes = 0;
4442 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004443 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004444 }
drh9562b552002-02-19 15:00:07 +00004445 }
drh9562b552002-02-19 15:00:07 +00004446 return rc;
4447}
4448
drhe14006d2008-03-25 17:23:32 +00004449/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004450** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004451**
drhe63d9992008-08-13 19:11:48 +00004452** For INTKEY tables, the intKey parameter is used. pIdxKey
4453** must be NULL. For index tables, pIdxKey is used and intKey
4454** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004455**
drh5e2f8b92001-05-28 00:41:15 +00004456** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004457** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004458** were present. The cursor might point to an entry that comes
4459** before or after the key.
4460**
drh64022502009-01-09 14:11:04 +00004461** An integer is written into *pRes which is the result of
4462** comparing the key with the entry to which the cursor is
4463** pointing. The meaning of the integer written into
4464** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004465**
4466** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004467** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004468** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004469**
4470** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004471** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004472**
4473** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004474** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004475**
drha059ad02001-04-17 20:09:11 +00004476*/
drhe63d9992008-08-13 19:11:48 +00004477int sqlite3BtreeMovetoUnpacked(
4478 BtCursor *pCur, /* The cursor to be moved */
4479 UnpackedRecord *pIdxKey, /* Unpacked index key */
4480 i64 intKey, /* The table key */
4481 int biasRight, /* If true, bias the search to the high end */
4482 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004483){
drh72f82862001-05-24 21:06:34 +00004484 int rc;
drhd677b3d2007-08-20 22:48:41 +00004485
drh1fee73e2007-08-29 04:00:57 +00004486 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004487 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004488 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004489 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004490
4491 /* If the cursor is already positioned at the point we are trying
4492 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004493 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4494 && pCur->apPage[0]->intKey
4495 ){
drhe63d9992008-08-13 19:11:48 +00004496 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004497 *pRes = 0;
4498 return SQLITE_OK;
4499 }
drhe63d9992008-08-13 19:11:48 +00004500 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004501 *pRes = -1;
4502 return SQLITE_OK;
4503 }
4504 }
4505
drh5e2f8b92001-05-28 00:41:15 +00004506 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004507 if( rc ){
4508 return rc;
4509 }
dana205a482011-08-27 18:48:57 +00004510 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4511 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4512 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004513 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004514 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004515 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004516 return SQLITE_OK;
4517 }
danielk197771d5d2c2008-09-29 11:49:47 +00004518 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004519 for(;;){
drhafb98172011-06-04 01:43:53 +00004520 int lwr, upr, idx;
drh72f82862001-05-24 21:06:34 +00004521 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004522 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004523 int c;
4524
4525 /* pPage->nCell must be greater than zero. If this is the root-page
4526 ** the cursor would have been INVALID above and this for(;;) loop
4527 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004528 ** would have already detected db corruption. Similarly, pPage must
4529 ** be the right kind (index or table) of b-tree page. Otherwise
4530 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004531 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004532 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004533 lwr = 0;
4534 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004535 if( biasRight ){
drhafb98172011-06-04 01:43:53 +00004536 pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
drhe4d90812007-03-29 05:51:49 +00004537 }else{
drhafb98172011-06-04 01:43:53 +00004538 pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004539 }
drh64022502009-01-09 14:11:04 +00004540 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004541 u8 *pCell; /* Pointer to current cell in pPage */
4542
drhafb98172011-06-04 01:43:53 +00004543 assert( idx==pCur->aiIdx[pCur->iPage] );
drh366fda62006-01-13 02:35:09 +00004544 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004545 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004546 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004547 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004548 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004549 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004550 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004551 }
drha2c20e42008-03-29 16:01:04 +00004552 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004553 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004554 c = 0;
drhe63d9992008-08-13 19:11:48 +00004555 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004556 c = -1;
4557 }else{
drhe63d9992008-08-13 19:11:48 +00004558 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004559 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004560 }
danielk197711c327a2009-05-04 19:01:26 +00004561 pCur->validNKey = 1;
4562 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004563 }else{
drhb2eced52010-08-12 02:41:12 +00004564 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004565 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004566 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004567 ** varint. This information is used to attempt to avoid parsing
4568 ** the entire cell by checking for the cases where the record is
4569 ** stored entirely within the b-tree page by inspecting the first
4570 ** 2 bytes of the cell.
4571 */
4572 int nCell = pCell[0];
drhc9166342012-01-05 23:32:06 +00004573 if( nCell<=pPage->max1bytePayload
4574 /* && (pCell+nCell)<pPage->aDataEnd */
drh3def2352011-11-11 00:27:15 +00004575 ){
danielk197711c327a2009-05-04 19:01:26 +00004576 /* This branch runs if the record-size field of the cell is a
4577 ** single byte varint and the record fits entirely on the main
4578 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004579 testcase( pCell+nCell+1==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004580 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4581 }else if( !(pCell[1] & 0x80)
4582 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
drhc9166342012-01-05 23:32:06 +00004583 /* && (pCell+nCell+2)<=pPage->aDataEnd */
danielk197711c327a2009-05-04 19:01:26 +00004584 ){
4585 /* The record-size field is a 2 byte varint and the record
4586 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004587 testcase( pCell+nCell+2==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004588 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004589 }else{
danielk197711c327a2009-05-04 19:01:26 +00004590 /* The record flows over onto one or more overflow pages. In
4591 ** this case the whole cell needs to be parsed, a buffer allocated
4592 ** and accessPayload() used to retrieve the record into the
4593 ** buffer before VdbeRecordCompare() can be called. */
4594 void *pCellKey;
4595 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004596 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004597 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004598 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004599 if( pCellKey==0 ){
4600 rc = SQLITE_NOMEM;
4601 goto moveto_finish;
4602 }
drhfb192682009-07-11 18:26:28 +00004603 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004604 if( rc ){
4605 sqlite3_free(pCellKey);
4606 goto moveto_finish;
4607 }
danielk197711c327a2009-05-04 19:01:26 +00004608 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004609 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004610 }
drh3aac2dd2004-04-26 14:10:20 +00004611 }
drh72f82862001-05-24 21:06:34 +00004612 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004613 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004614 lwr = idx;
drh8b18dd42004-05-12 19:18:15 +00004615 break;
4616 }else{
drh64022502009-01-09 14:11:04 +00004617 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004618 rc = SQLITE_OK;
4619 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004620 }
drh72f82862001-05-24 21:06:34 +00004621 }
4622 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004623 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004624 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004625 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004626 }
drhf1d68b32007-03-29 04:43:26 +00004627 if( lwr>upr ){
4628 break;
4629 }
drhafb98172011-06-04 01:43:53 +00004630 pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004631 }
drhb07028f2011-10-14 21:49:18 +00004632 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004633 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004634 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004635 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004636 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004637 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004638 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004639 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004640 }
4641 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004642 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004643 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004644 rc = SQLITE_OK;
4645 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004646 }
drhf49661a2008-12-10 16:45:50 +00004647 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004648 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004649 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004650 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004651 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004652 }
drh1e968a02008-03-25 00:22:21 +00004653moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004654 return rc;
4655}
4656
drhd677b3d2007-08-20 22:48:41 +00004657
drh72f82862001-05-24 21:06:34 +00004658/*
drhc39e0002004-05-07 23:50:57 +00004659** Return TRUE if the cursor is not pointing at an entry of the table.
4660**
4661** TRUE will be returned after a call to sqlite3BtreeNext() moves
4662** past the last entry in the table or sqlite3BtreePrev() moves past
4663** the first entry. TRUE is also returned if the table is empty.
4664*/
4665int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004666 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4667 ** have been deleted? This API will need to change to return an error code
4668 ** as well as the boolean result value.
4669 */
4670 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004671}
4672
4673/*
drhbd03cae2001-06-02 02:40:57 +00004674** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004675** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004676** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004677** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004678*/
drhd094db12008-04-03 21:46:57 +00004679int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004680 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004681 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004682 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004683
drh1fee73e2007-08-29 04:00:57 +00004684 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004685 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004686 if( rc!=SQLITE_OK ){
4687 return rc;
4688 }
drh8c4d3a62007-04-06 01:03:32 +00004689 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004690 if( CURSOR_INVALID==pCur->eState ){
4691 *pRes = 1;
4692 return SQLITE_OK;
4693 }
drh4c301aa2009-07-15 17:25:45 +00004694 if( pCur->skipNext>0 ){
4695 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004696 *pRes = 0;
4697 return SQLITE_OK;
4698 }
drh4c301aa2009-07-15 17:25:45 +00004699 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004700
danielk197771d5d2c2008-09-29 11:49:47 +00004701 pPage = pCur->apPage[pCur->iPage];
4702 idx = ++pCur->aiIdx[pCur->iPage];
4703 assert( pPage->isInit );
4704 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004705
drh271efa52004-05-30 19:19:05 +00004706 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004707 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004708 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004709 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004710 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004711 if( rc ) return rc;
4712 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004713 *pRes = 0;
4714 return rc;
drh72f82862001-05-24 21:06:34 +00004715 }
drh5e2f8b92001-05-28 00:41:15 +00004716 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004717 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004718 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004719 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004720 return SQLITE_OK;
4721 }
danielk197730548662009-07-09 05:07:37 +00004722 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004723 pPage = pCur->apPage[pCur->iPage];
4724 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004725 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004726 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004727 rc = sqlite3BtreeNext(pCur, pRes);
4728 }else{
4729 rc = SQLITE_OK;
4730 }
4731 return rc;
drh8178a752003-01-05 21:41:40 +00004732 }
4733 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004734 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004735 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004736 }
drh5e2f8b92001-05-28 00:41:15 +00004737 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004738 return rc;
drh72f82862001-05-24 21:06:34 +00004739}
drhd677b3d2007-08-20 22:48:41 +00004740
drh72f82862001-05-24 21:06:34 +00004741
drh3b7511c2001-05-26 13:15:44 +00004742/*
drh2dcc9aa2002-12-04 13:40:25 +00004743** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004744** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004745** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004746** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004747*/
drhd094db12008-04-03 21:46:57 +00004748int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004749 int rc;
drh8178a752003-01-05 21:41:40 +00004750 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004751
drh1fee73e2007-08-29 04:00:57 +00004752 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004753 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004754 if( rc!=SQLITE_OK ){
4755 return rc;
4756 }
drha2c20e42008-03-29 16:01:04 +00004757 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004758 if( CURSOR_INVALID==pCur->eState ){
4759 *pRes = 1;
4760 return SQLITE_OK;
4761 }
drh4c301aa2009-07-15 17:25:45 +00004762 if( pCur->skipNext<0 ){
4763 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004764 *pRes = 0;
4765 return SQLITE_OK;
4766 }
drh4c301aa2009-07-15 17:25:45 +00004767 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004768
danielk197771d5d2c2008-09-29 11:49:47 +00004769 pPage = pCur->apPage[pCur->iPage];
4770 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004771 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004772 int idx = pCur->aiIdx[pCur->iPage];
4773 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004774 if( rc ){
4775 return rc;
4776 }
drh2dcc9aa2002-12-04 13:40:25 +00004777 rc = moveToRightmost(pCur);
4778 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004779 while( pCur->aiIdx[pCur->iPage]==0 ){
4780 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004781 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004782 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004783 return SQLITE_OK;
4784 }
danielk197730548662009-07-09 05:07:37 +00004785 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004786 }
drh271efa52004-05-30 19:19:05 +00004787 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004788 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004789
4790 pCur->aiIdx[pCur->iPage]--;
4791 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004792 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004793 rc = sqlite3BtreePrevious(pCur, pRes);
4794 }else{
4795 rc = SQLITE_OK;
4796 }
drh2dcc9aa2002-12-04 13:40:25 +00004797 }
drh8178a752003-01-05 21:41:40 +00004798 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004799 return rc;
4800}
4801
4802/*
drh3b7511c2001-05-26 13:15:44 +00004803** Allocate a new page from the database file.
4804**
danielk19773b8a05f2007-03-19 17:44:26 +00004805** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004806** has already been called on the new page.) The new page has also
4807** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004808** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004809**
4810** SQLITE_OK is returned on success. Any other return value indicates
4811** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004812** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004813**
drh199e3cf2002-07-18 11:01:47 +00004814** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4815** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004816** attempt to keep related pages close to each other in the database file,
4817** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004818**
4819** If the "exact" parameter is not 0, and the page-number nearby exists
4820** anywhere on the free-list, then it is guarenteed to be returned. This
4821** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004822*/
drh4f0c5872007-03-26 22:05:01 +00004823static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004824 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004825 MemPage **ppPage,
4826 Pgno *pPgno,
4827 Pgno nearby,
4828 u8 exact
4829){
drh3aac2dd2004-04-26 14:10:20 +00004830 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004831 int rc;
drh35cd6432009-06-05 14:17:21 +00004832 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004833 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004834 MemPage *pTrunk = 0;
4835 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004836 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004837
drh1fee73e2007-08-29 04:00:57 +00004838 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004839 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004840 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004841 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004842 testcase( n==mxPage-1 );
4843 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004844 return SQLITE_CORRUPT_BKPT;
4845 }
drh3aac2dd2004-04-26 14:10:20 +00004846 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004847 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004848 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004849 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4850
4851 /* If the 'exact' parameter was true and a query of the pointer-map
4852 ** shows that the page 'nearby' is somewhere on the free-list, then
4853 ** the entire-list will be searched for that page.
4854 */
4855#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004856 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004857 u8 eType;
4858 assert( nearby>0 );
4859 assert( pBt->autoVacuum );
4860 rc = ptrmapGet(pBt, nearby, &eType, 0);
4861 if( rc ) return rc;
4862 if( eType==PTRMAP_FREEPAGE ){
4863 searchList = 1;
4864 }
4865 *pPgno = nearby;
4866 }
4867#endif
4868
4869 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4870 ** first free-list trunk page. iPrevTrunk is initially 1.
4871 */
danielk19773b8a05f2007-03-19 17:44:26 +00004872 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004873 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004874 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004875
4876 /* The code within this loop is run only once if the 'searchList' variable
4877 ** is not true. Otherwise, it runs once for each trunk-page on the
4878 ** free-list until the page 'nearby' is located.
4879 */
4880 do {
4881 pPrevTrunk = pTrunk;
4882 if( pPrevTrunk ){
4883 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004884 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004885 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004886 }
drhdf35a082009-07-09 02:24:35 +00004887 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004888 if( iTrunk>mxPage ){
4889 rc = SQLITE_CORRUPT_BKPT;
4890 }else{
danielk197730548662009-07-09 05:07:37 +00004891 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004892 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004893 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004894 pTrunk = 0;
4895 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004896 }
drhb07028f2011-10-14 21:49:18 +00004897 assert( pTrunk!=0 );
4898 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004899
drh93b4fc72011-04-07 14:47:01 +00004900 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004901 if( k==0 && !searchList ){
4902 /* The trunk has no leaves and the list is not being searched.
4903 ** So extract the trunk page itself and use it as the newly
4904 ** allocated page */
4905 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004906 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004907 if( rc ){
4908 goto end_allocate_page;
4909 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004910 *pPgno = iTrunk;
4911 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4912 *ppPage = pTrunk;
4913 pTrunk = 0;
4914 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004915 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004916 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004917 rc = SQLITE_CORRUPT_BKPT;
4918 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004919#ifndef SQLITE_OMIT_AUTOVACUUM
4920 }else if( searchList && nearby==iTrunk ){
4921 /* The list is being searched and this trunk page is the page
4922 ** to allocate, regardless of whether it has leaves.
4923 */
4924 assert( *pPgno==iTrunk );
4925 *ppPage = pTrunk;
4926 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004927 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004928 if( rc ){
4929 goto end_allocate_page;
4930 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004931 if( k==0 ){
4932 if( !pPrevTrunk ){
4933 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4934 }else{
danf48c3552010-08-23 15:41:24 +00004935 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
4936 if( rc!=SQLITE_OK ){
4937 goto end_allocate_page;
4938 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004939 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4940 }
4941 }else{
4942 /* The trunk page is required by the caller but it contains
4943 ** pointers to free-list leaves. The first leaf becomes a trunk
4944 ** page in this case.
4945 */
4946 MemPage *pNewTrunk;
4947 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004948 if( iNewTrunk>mxPage ){
4949 rc = SQLITE_CORRUPT_BKPT;
4950 goto end_allocate_page;
4951 }
drhdf35a082009-07-09 02:24:35 +00004952 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004953 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004954 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004955 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004956 }
danielk19773b8a05f2007-03-19 17:44:26 +00004957 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004958 if( rc!=SQLITE_OK ){
4959 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004960 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004961 }
4962 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4963 put4byte(&pNewTrunk->aData[4], k-1);
4964 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004965 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004966 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004967 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004968 put4byte(&pPage1->aData[32], iNewTrunk);
4969 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004970 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004971 if( rc ){
4972 goto end_allocate_page;
4973 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004974 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4975 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004976 }
4977 pTrunk = 0;
4978 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4979#endif
danielk1977e5765212009-06-17 11:13:28 +00004980 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004981 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004982 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004983 Pgno iPage;
4984 unsigned char *aData = pTrunk->aData;
4985 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004986 u32 i;
4987 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004988 closest = 0;
drhd50ffc42011-03-08 02:38:28 +00004989 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004990 for(i=1; i<k; i++){
drhd50ffc42011-03-08 02:38:28 +00004991 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004992 if( d2<dist ){
4993 closest = i;
4994 dist = d2;
4995 }
4996 }
4997 }else{
4998 closest = 0;
4999 }
5000
5001 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005002 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005003 if( iPage>mxPage ){
5004 rc = SQLITE_CORRUPT_BKPT;
5005 goto end_allocate_page;
5006 }
drhdf35a082009-07-09 02:24:35 +00005007 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005008 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00005009 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005010 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005011 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5012 ": %d more free pages\n",
5013 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005014 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5015 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005016 if( closest<k-1 ){
5017 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5018 }
5019 put4byte(&aData[4], k-1);
danielk1977bea2a942009-01-20 17:06:27 +00005020 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00005021 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005022 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005023 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005024 if( rc!=SQLITE_OK ){
5025 releasePage(*ppPage);
5026 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005027 }
5028 searchList = 0;
5029 }
drhee696e22004-08-30 16:52:17 +00005030 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005031 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005032 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005033 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005034 }else{
drh3aac2dd2004-04-26 14:10:20 +00005035 /* There are no pages on the freelist, so create a new page at the
5036 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00005037 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5038 if( rc ) return rc;
5039 pBt->nPage++;
5040 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005041
danielk1977afcdd022004-10-31 16:25:42 +00005042#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005043 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005044 /* If *pPgno refers to a pointer-map page, allocate two new pages
5045 ** at the end of the file instead of one. The first allocated page
5046 ** becomes a new pointer-map page, the second is used by the caller.
5047 */
danielk1977ac861692009-03-28 10:54:22 +00005048 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005049 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5050 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005051 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00005052 if( rc==SQLITE_OK ){
5053 rc = sqlite3PagerWrite(pPg->pDbPage);
5054 releasePage(pPg);
5055 }
5056 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005057 pBt->nPage++;
5058 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005059 }
5060#endif
drhdd3cd972010-03-27 17:12:36 +00005061 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5062 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005063
danielk1977599fcba2004-11-08 07:13:13 +00005064 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005065 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00005066 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005067 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005068 if( rc!=SQLITE_OK ){
5069 releasePage(*ppPage);
5070 }
drh3a4c1412004-05-09 20:40:11 +00005071 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005072 }
danielk1977599fcba2004-11-08 07:13:13 +00005073
5074 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005075
5076end_allocate_page:
5077 releasePage(pTrunk);
5078 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005079 if( rc==SQLITE_OK ){
5080 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5081 releasePage(*ppPage);
5082 return SQLITE_CORRUPT_BKPT;
5083 }
5084 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005085 }else{
5086 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005087 }
drh93b4fc72011-04-07 14:47:01 +00005088 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005089 return rc;
5090}
5091
5092/*
danielk1977bea2a942009-01-20 17:06:27 +00005093** This function is used to add page iPage to the database file free-list.
5094** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005095**
danielk1977bea2a942009-01-20 17:06:27 +00005096** The value passed as the second argument to this function is optional.
5097** If the caller happens to have a pointer to the MemPage object
5098** corresponding to page iPage handy, it may pass it as the second value.
5099** Otherwise, it may pass NULL.
5100**
5101** If a pointer to a MemPage object is passed as the second argument,
5102** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005103*/
danielk1977bea2a942009-01-20 17:06:27 +00005104static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5105 MemPage *pTrunk = 0; /* Free-list trunk page */
5106 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5107 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5108 MemPage *pPage; /* Page being freed. May be NULL. */
5109 int rc; /* Return Code */
5110 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005111
danielk1977bea2a942009-01-20 17:06:27 +00005112 assert( sqlite3_mutex_held(pBt->mutex) );
5113 assert( iPage>1 );
5114 assert( !pMemPage || pMemPage->pgno==iPage );
5115
5116 if( pMemPage ){
5117 pPage = pMemPage;
5118 sqlite3PagerRef(pPage->pDbPage);
5119 }else{
5120 pPage = btreePageLookup(pBt, iPage);
5121 }
drh3aac2dd2004-04-26 14:10:20 +00005122
drha34b6762004-05-07 13:30:42 +00005123 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005124 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005125 if( rc ) goto freepage_out;
5126 nFree = get4byte(&pPage1->aData[36]);
5127 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005128
drhc9166342012-01-05 23:32:06 +00005129 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005130 /* If the secure_delete option is enabled, then
5131 ** always fully overwrite deleted information with zeros.
5132 */
shaneh84f4b2f2010-02-26 01:46:54 +00005133 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5134 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005135 ){
5136 goto freepage_out;
5137 }
5138 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005139 }
drhfcce93f2006-02-22 03:08:32 +00005140
danielk1977687566d2004-11-02 12:56:41 +00005141 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005142 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005143 */
danielk197785d90ca2008-07-19 14:25:15 +00005144 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005145 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005146 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005147 }
danielk1977687566d2004-11-02 12:56:41 +00005148
danielk1977bea2a942009-01-20 17:06:27 +00005149 /* Now manipulate the actual database free-list structure. There are two
5150 ** possibilities. If the free-list is currently empty, or if the first
5151 ** trunk page in the free-list is full, then this page will become a
5152 ** new free-list trunk page. Otherwise, it will become a leaf of the
5153 ** first trunk page in the current free-list. This block tests if it
5154 ** is possible to add the page as a new free-list leaf.
5155 */
5156 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005157 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005158
5159 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005160 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005161 if( rc!=SQLITE_OK ){
5162 goto freepage_out;
5163 }
5164
5165 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005166 assert( pBt->usableSize>32 );
5167 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005168 rc = SQLITE_CORRUPT_BKPT;
5169 goto freepage_out;
5170 }
drheeb844a2009-08-08 18:01:07 +00005171 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005172 /* In this case there is room on the trunk page to insert the page
5173 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005174 **
5175 ** Note that the trunk page is not really full until it contains
5176 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5177 ** coded. But due to a coding error in versions of SQLite prior to
5178 ** 3.6.0, databases with freelist trunk pages holding more than
5179 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5180 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005181 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005182 ** for now. At some point in the future (once everyone has upgraded
5183 ** to 3.6.0 or later) we should consider fixing the conditional above
5184 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5185 */
danielk19773b8a05f2007-03-19 17:44:26 +00005186 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005187 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005188 put4byte(&pTrunk->aData[4], nLeaf+1);
5189 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005190 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005191 sqlite3PagerDontWrite(pPage->pDbPage);
5192 }
danielk1977bea2a942009-01-20 17:06:27 +00005193 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005194 }
drh3a4c1412004-05-09 20:40:11 +00005195 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005196 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005197 }
drh3b7511c2001-05-26 13:15:44 +00005198 }
danielk1977bea2a942009-01-20 17:06:27 +00005199
5200 /* If control flows to this point, then it was not possible to add the
5201 ** the page being freed as a leaf page of the first trunk in the free-list.
5202 ** Possibly because the free-list is empty, or possibly because the
5203 ** first trunk in the free-list is full. Either way, the page being freed
5204 ** will become the new first trunk page in the free-list.
5205 */
drhc046e3e2009-07-15 11:26:44 +00005206 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5207 goto freepage_out;
5208 }
5209 rc = sqlite3PagerWrite(pPage->pDbPage);
5210 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005211 goto freepage_out;
5212 }
5213 put4byte(pPage->aData, iTrunk);
5214 put4byte(&pPage->aData[4], 0);
5215 put4byte(&pPage1->aData[32], iPage);
5216 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5217
5218freepage_out:
5219 if( pPage ){
5220 pPage->isInit = 0;
5221 }
5222 releasePage(pPage);
5223 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005224 return rc;
5225}
drhc314dc72009-07-21 11:52:34 +00005226static void freePage(MemPage *pPage, int *pRC){
5227 if( (*pRC)==SQLITE_OK ){
5228 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5229 }
danielk1977bea2a942009-01-20 17:06:27 +00005230}
drh3b7511c2001-05-26 13:15:44 +00005231
5232/*
drh3aac2dd2004-04-26 14:10:20 +00005233** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005234*/
drh3aac2dd2004-04-26 14:10:20 +00005235static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005236 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005237 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005238 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005239 int rc;
drh94440812007-03-06 11:42:19 +00005240 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005241 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005242
drh1fee73e2007-08-29 04:00:57 +00005243 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005244 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005245 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005246 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005247 }
drhe42a9b42011-08-31 13:27:19 +00005248 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
5249 return SQLITE_CORRUPT; /* Cell extends past end of page */
5250 }
drh6f11bef2004-05-13 01:12:56 +00005251 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005252 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005253 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005254 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5255 assert( ovflPgno==0 || nOvfl>0 );
5256 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005257 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005258 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005259 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005260 /* 0 is not a legal page number and page 1 cannot be an
5261 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5262 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005263 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005264 }
danielk1977bea2a942009-01-20 17:06:27 +00005265 if( nOvfl ){
5266 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5267 if( rc ) return rc;
5268 }
dan887d4b22010-02-25 12:09:16 +00005269
shaneh1da207e2010-03-09 14:41:12 +00005270 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005271 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5272 ){
5273 /* There is no reason any cursor should have an outstanding reference
5274 ** to an overflow page belonging to a cell that is being deleted/updated.
5275 ** So if there exists more than one reference to this page, then it
5276 ** must not really be an overflow page and the database must be corrupt.
5277 ** It is helpful to detect this before calling freePage2(), as
5278 ** freePage2() may zero the page contents if secure-delete mode is
5279 ** enabled. If this 'overflow' page happens to be a page that the
5280 ** caller is iterating through or using in some other way, this
5281 ** can be problematic.
5282 */
5283 rc = SQLITE_CORRUPT_BKPT;
5284 }else{
5285 rc = freePage2(pBt, pOvfl, ovflPgno);
5286 }
5287
danielk1977bea2a942009-01-20 17:06:27 +00005288 if( pOvfl ){
5289 sqlite3PagerUnref(pOvfl->pDbPage);
5290 }
drh3b7511c2001-05-26 13:15:44 +00005291 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005292 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005293 }
drh5e2f8b92001-05-28 00:41:15 +00005294 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005295}
5296
5297/*
drh91025292004-05-03 19:49:32 +00005298** Create the byte sequence used to represent a cell on page pPage
5299** and write that byte sequence into pCell[]. Overflow pages are
5300** allocated and filled in as necessary. The calling procedure
5301** is responsible for making sure sufficient space has been allocated
5302** for pCell[].
5303**
5304** Note that pCell does not necessary need to point to the pPage->aData
5305** area. pCell might point to some temporary storage. The cell will
5306** be constructed in this temporary area then copied into pPage->aData
5307** later.
drh3b7511c2001-05-26 13:15:44 +00005308*/
5309static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005310 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005311 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005312 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005313 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005314 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005315 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005316){
drh3b7511c2001-05-26 13:15:44 +00005317 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005318 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005319 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005320 int spaceLeft;
5321 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005322 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005323 unsigned char *pPrior;
5324 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005325 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005326 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005327 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005328 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005329
drh1fee73e2007-08-29 04:00:57 +00005330 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005331
drhc5053fb2008-11-27 02:22:10 +00005332 /* pPage is not necessarily writeable since pCell might be auxiliary
5333 ** buffer space that is separate from the pPage buffer area */
5334 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5335 || sqlite3PagerIswriteable(pPage->pDbPage) );
5336
drh91025292004-05-03 19:49:32 +00005337 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005338 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005339 if( !pPage->leaf ){
5340 nHeader += 4;
5341 }
drh8b18dd42004-05-12 19:18:15 +00005342 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005343 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005344 }else{
drhb026e052007-05-02 01:34:31 +00005345 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005346 }
drh6f11bef2004-05-13 01:12:56 +00005347 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005348 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005349 assert( info.nHeader==nHeader );
5350 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005351 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005352
5353 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005354 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005355 if( pPage->intKey ){
5356 pSrc = pData;
5357 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005358 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005359 }else{
danielk197731d31b82009-07-13 13:18:07 +00005360 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5361 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005362 }
drhf49661a2008-12-10 16:45:50 +00005363 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005364 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005365 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005366 }
drh6f11bef2004-05-13 01:12:56 +00005367 *pnSize = info.nSize;
5368 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005369 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005370 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005371
drh3b7511c2001-05-26 13:15:44 +00005372 while( nPayload>0 ){
5373 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005374#ifndef SQLITE_OMIT_AUTOVACUUM
5375 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005376 if( pBt->autoVacuum ){
5377 do{
5378 pgnoOvfl++;
5379 } while(
5380 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5381 );
danielk1977b39f70b2007-05-17 18:28:11 +00005382 }
danielk1977afcdd022004-10-31 16:25:42 +00005383#endif
drhf49661a2008-12-10 16:45:50 +00005384 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005385#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005386 /* If the database supports auto-vacuum, and the second or subsequent
5387 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005388 ** for that page now.
5389 **
5390 ** If this is the first overflow page, then write a partial entry
5391 ** to the pointer-map. If we write nothing to this pointer-map slot,
5392 ** then the optimistic overflow chain processing in clearCell()
5393 ** may misinterpret the uninitialised values and delete the
5394 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005395 */
danielk19774ef24492007-05-23 09:52:41 +00005396 if( pBt->autoVacuum && rc==SQLITE_OK ){
5397 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005398 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005399 if( rc ){
5400 releasePage(pOvfl);
5401 }
danielk1977afcdd022004-10-31 16:25:42 +00005402 }
5403#endif
drh3b7511c2001-05-26 13:15:44 +00005404 if( rc ){
drh9b171272004-05-08 02:03:22 +00005405 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005406 return rc;
5407 }
drhc5053fb2008-11-27 02:22:10 +00005408
5409 /* If pToRelease is not zero than pPrior points into the data area
5410 ** of pToRelease. Make sure pToRelease is still writeable. */
5411 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5412
5413 /* If pPrior is part of the data area of pPage, then make sure pPage
5414 ** is still writeable */
5415 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5416 || sqlite3PagerIswriteable(pPage->pDbPage) );
5417
drh3aac2dd2004-04-26 14:10:20 +00005418 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005419 releasePage(pToRelease);
5420 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005421 pPrior = pOvfl->aData;
5422 put4byte(pPrior, 0);
5423 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005424 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005425 }
5426 n = nPayload;
5427 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005428
5429 /* If pToRelease is not zero than pPayload points into the data area
5430 ** of pToRelease. Make sure pToRelease is still writeable. */
5431 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5432
5433 /* If pPayload is part of the data area of pPage, then make sure pPage
5434 ** is still writeable */
5435 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5436 || sqlite3PagerIswriteable(pPage->pDbPage) );
5437
drhb026e052007-05-02 01:34:31 +00005438 if( nSrc>0 ){
5439 if( n>nSrc ) n = nSrc;
5440 assert( pSrc );
5441 memcpy(pPayload, pSrc, n);
5442 }else{
5443 memset(pPayload, 0, n);
5444 }
drh3b7511c2001-05-26 13:15:44 +00005445 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005446 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005447 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005448 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005449 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005450 if( nSrc==0 ){
5451 nSrc = nData;
5452 pSrc = pData;
5453 }
drhdd793422001-06-28 01:54:48 +00005454 }
drh9b171272004-05-08 02:03:22 +00005455 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005456 return SQLITE_OK;
5457}
5458
drh14acc042001-06-10 19:56:58 +00005459/*
5460** Remove the i-th cell from pPage. This routine effects pPage only.
5461** The cell content is not freed or deallocated. It is assumed that
5462** the cell content has been copied someplace else. This routine just
5463** removes the reference to the cell from pPage.
5464**
5465** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005466*/
drh98add2e2009-07-20 17:11:49 +00005467static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005468 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005469 u8 *data; /* pPage->aData */
5470 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005471 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005472 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005473 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005474
drh98add2e2009-07-20 17:11:49 +00005475 if( *pRC ) return;
5476
drh8c42ca92001-06-22 19:15:00 +00005477 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005478 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005479 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005480 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005481 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005482 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005483 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005484 hdr = pPage->hdrOffset;
5485 testcase( pc==get2byte(&data[hdr+5]) );
5486 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005487 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005488 *pRC = SQLITE_CORRUPT_BKPT;
5489 return;
shane0af3f892008-11-12 04:55:34 +00005490 }
shanedcc50b72008-11-13 18:29:50 +00005491 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005492 if( rc ){
5493 *pRC = rc;
5494 return;
shanedcc50b72008-11-13 18:29:50 +00005495 }
drh3def2352011-11-11 00:27:15 +00005496 endPtr = &pPage->aCellIdx[2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005497 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005498 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005499 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005500 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005501 }
5502 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005503 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005504 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005505}
5506
5507/*
5508** Insert a new cell on pPage at cell index "i". pCell points to the
5509** content of the cell.
5510**
5511** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005512** will not fit, then make a copy of the cell content into pTemp if
5513** pTemp is not null. Regardless of pTemp, allocate a new entry
5514** in pPage->aOvfl[] and make it point to the cell content (either
5515** in pTemp or the original pCell) and also record its index.
5516** Allocating a new entry in pPage->aCell[] implies that
5517** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005518**
5519** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5520** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005521** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005522** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005523*/
drh98add2e2009-07-20 17:11:49 +00005524static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005525 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005526 int i, /* New cell becomes the i-th cell of the page */
5527 u8 *pCell, /* Content of the new cell */
5528 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005529 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005530 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5531 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005532){
drh383d30f2010-02-26 13:07:37 +00005533 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005534 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005535 int end; /* First byte past the last cell pointer in data[] */
5536 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005537 int cellOffset; /* Address of first cell pointer in data[] */
5538 u8 *data; /* The content of the whole page */
5539 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005540 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005541
danielk19774dbaa892009-06-16 16:50:22 +00005542 int nSkip = (iChild ? 4 : 0);
5543
drh98add2e2009-07-20 17:11:49 +00005544 if( *pRC ) return;
5545
drh43605152004-05-29 21:46:49 +00005546 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005547 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drhf49661a2008-12-10 16:45:50 +00005548 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005549 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005550 /* The cell should normally be sized correctly. However, when moving a
5551 ** malformed cell from a leaf page to an interior page, if the cell size
5552 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5553 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5554 ** the term after the || in the following assert(). */
5555 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005556 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005557 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005558 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005559 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005560 }
danielk19774dbaa892009-06-16 16:50:22 +00005561 if( iChild ){
5562 put4byte(pCell, iChild);
5563 }
drh43605152004-05-29 21:46:49 +00005564 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005565 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005566 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005567 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005568 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005569 int rc = sqlite3PagerWrite(pPage->pDbPage);
5570 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005571 *pRC = rc;
5572 return;
danielk19776e465eb2007-08-21 13:11:00 +00005573 }
5574 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005575 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005576 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005577 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005578 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005579 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005580 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005581 /* The allocateSpace() routine guarantees the following two properties
5582 ** if it returns success */
5583 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005584 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005585 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005586 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005587 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005588 if( iChild ){
5589 put4byte(&data[idx], iChild);
5590 }
drh61d2fe92011-06-03 23:28:33 +00005591 ptr = &data[end];
5592 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005593 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005594 while( ptr>endPtr ){
5595 *(u16*)ptr = *(u16*)&ptr[-2];
5596 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005597 }
drh43605152004-05-29 21:46:49 +00005598 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005599 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005600#ifndef SQLITE_OMIT_AUTOVACUUM
5601 if( pPage->pBt->autoVacuum ){
5602 /* The cell may contain a pointer to an overflow page. If so, write
5603 ** the entry for the overflow page into the pointer map.
5604 */
drh98add2e2009-07-20 17:11:49 +00005605 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005606 }
5607#endif
drh14acc042001-06-10 19:56:58 +00005608 }
5609}
5610
5611/*
drhfa1a98a2004-05-14 19:08:17 +00005612** Add a list of cells to a page. The page should be initially empty.
5613** The cells are guaranteed to fit on the page.
5614*/
5615static void assemblePage(
5616 MemPage *pPage, /* The page to be assemblied */
5617 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005618 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005619 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005620){
5621 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005622 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005623 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005624 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5625 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5626 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005627
drh43605152004-05-29 21:46:49 +00005628 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005629 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005630 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5631 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005632 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005633
5634 /* Check that the page has just been zeroed by zeroPage() */
5635 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005636 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005637
drh3def2352011-11-11 00:27:15 +00005638 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005639 cellbody = nUsable;
5640 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005641 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005642 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005643 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005644 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005645 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005646 }
danielk1977fad91942009-04-29 17:49:59 +00005647 put2byte(&data[hdr+3], nCell);
5648 put2byte(&data[hdr+5], cellbody);
5649 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005650 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005651}
5652
drh14acc042001-06-10 19:56:58 +00005653/*
drhc3b70572003-01-04 19:44:07 +00005654** The following parameters determine how many adjacent pages get involved
5655** in a balancing operation. NN is the number of neighbors on either side
5656** of the page that participate in the balancing operation. NB is the
5657** total number of pages that participate, including the target page and
5658** NN neighbors on either side.
5659**
5660** The minimum value of NN is 1 (of course). Increasing NN above 1
5661** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5662** in exchange for a larger degradation in INSERT and UPDATE performance.
5663** The value of NN appears to give the best results overall.
5664*/
5665#define NN 1 /* Number of neighbors on either side of pPage */
5666#define NB (NN*2+1) /* Total pages involved in the balance */
5667
danielk1977ac245ec2005-01-14 13:50:11 +00005668
drh615ae552005-01-16 23:21:00 +00005669#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005670/*
5671** This version of balance() handles the common special case where
5672** a new entry is being inserted on the extreme right-end of the
5673** tree, in other words, when the new entry will become the largest
5674** entry in the tree.
5675**
drhc314dc72009-07-21 11:52:34 +00005676** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005677** a new page to the right-hand side and put the one new entry in
5678** that page. This leaves the right side of the tree somewhat
5679** unbalanced. But odds are that we will be inserting new entries
5680** at the end soon afterwards so the nearly empty page will quickly
5681** fill up. On average.
5682**
5683** pPage is the leaf page which is the right-most page in the tree.
5684** pParent is its parent. pPage must have a single overflow entry
5685** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005686**
5687** The pSpace buffer is used to store a temporary copy of the divider
5688** cell that will be inserted into pParent. Such a cell consists of a 4
5689** byte page number followed by a variable length integer. In other
5690** words, at most 13 bytes. Hence the pSpace buffer must be at
5691** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005692*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005693static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5694 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005695 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005696 int rc; /* Return Code */
5697 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005698
drh1fee73e2007-08-29 04:00:57 +00005699 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005700 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005701 assert( pPage->nOverflow==1 );
5702
drh5d433ce2010-08-14 16:02:52 +00005703 /* This error condition is now caught prior to reaching this function */
drh6b47fca2010-08-19 14:22:42 +00005704 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005705
danielk1977a50d9aa2009-06-08 14:49:45 +00005706 /* Allocate a new page. This page will become the right-sibling of
5707 ** pPage. Make the parent page writable, so that the new divider cell
5708 ** may be inserted. If both these operations are successful, proceed.
5709 */
drh4f0c5872007-03-26 22:05:01 +00005710 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005711
danielk1977eaa06f62008-09-18 17:34:44 +00005712 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005713
5714 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005715 u8 *pCell = pPage->aOvfl[0].pCell;
5716 u16 szCell = cellSizePtr(pPage, pCell);
5717 u8 *pStop;
5718
drhc5053fb2008-11-27 02:22:10 +00005719 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005720 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5721 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005722 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005723
5724 /* If this is an auto-vacuum database, update the pointer map
5725 ** with entries for the new page, and any pointer from the
5726 ** cell on the page to an overflow page. If either of these
5727 ** operations fails, the return code is set, but the contents
5728 ** of the parent page are still manipulated by thh code below.
5729 ** That is Ok, at this point the parent page is guaranteed to
5730 ** be marked as dirty. Returning an error code will cause a
5731 ** rollback, undoing any changes made to the parent page.
5732 */
5733 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005734 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5735 if( szCell>pNew->minLocal ){
5736 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005737 }
5738 }
danielk1977eaa06f62008-09-18 17:34:44 +00005739
danielk19776f235cc2009-06-04 14:46:08 +00005740 /* Create a divider cell to insert into pParent. The divider cell
5741 ** consists of a 4-byte page number (the page number of pPage) and
5742 ** a variable length key value (which must be the same value as the
5743 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005744 **
danielk19776f235cc2009-06-04 14:46:08 +00005745 ** To find the largest key value on pPage, first find the right-most
5746 ** cell on pPage. The first two fields of this cell are the
5747 ** record-length (a variable length integer at most 32-bits in size)
5748 ** and the key value (a variable length integer, may have any value).
5749 ** The first of the while(...) loops below skips over the record-length
5750 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005751 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005752 */
danielk1977eaa06f62008-09-18 17:34:44 +00005753 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005754 pStop = &pCell[9];
5755 while( (*(pCell++)&0x80) && pCell<pStop );
5756 pStop = &pCell[9];
5757 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5758
danielk19774dbaa892009-06-16 16:50:22 +00005759 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005760 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5761 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005762
5763 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005764 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5765
danielk1977e08a3c42008-09-18 18:17:03 +00005766 /* Release the reference to the new page. */
5767 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005768 }
5769
danielk1977eaa06f62008-09-18 17:34:44 +00005770 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005771}
drh615ae552005-01-16 23:21:00 +00005772#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005773
danielk19774dbaa892009-06-16 16:50:22 +00005774#if 0
drhc3b70572003-01-04 19:44:07 +00005775/*
danielk19774dbaa892009-06-16 16:50:22 +00005776** This function does not contribute anything to the operation of SQLite.
5777** it is sometimes activated temporarily while debugging code responsible
5778** for setting pointer-map entries.
5779*/
5780static int ptrmapCheckPages(MemPage **apPage, int nPage){
5781 int i, j;
5782 for(i=0; i<nPage; i++){
5783 Pgno n;
5784 u8 e;
5785 MemPage *pPage = apPage[i];
5786 BtShared *pBt = pPage->pBt;
5787 assert( pPage->isInit );
5788
5789 for(j=0; j<pPage->nCell; j++){
5790 CellInfo info;
5791 u8 *z;
5792
5793 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005794 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005795 if( info.iOverflow ){
5796 Pgno ovfl = get4byte(&z[info.iOverflow]);
5797 ptrmapGet(pBt, ovfl, &e, &n);
5798 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5799 }
5800 if( !pPage->leaf ){
5801 Pgno child = get4byte(z);
5802 ptrmapGet(pBt, child, &e, &n);
5803 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5804 }
5805 }
5806 if( !pPage->leaf ){
5807 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5808 ptrmapGet(pBt, child, &e, &n);
5809 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5810 }
5811 }
5812 return 1;
5813}
5814#endif
5815
danielk1977cd581a72009-06-23 15:43:39 +00005816/*
5817** This function is used to copy the contents of the b-tree node stored
5818** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5819** the pointer-map entries for each child page are updated so that the
5820** parent page stored in the pointer map is page pTo. If pFrom contained
5821** any cells with overflow page pointers, then the corresponding pointer
5822** map entries are also updated so that the parent page is page pTo.
5823**
5824** If pFrom is currently carrying any overflow cells (entries in the
5825** MemPage.aOvfl[] array), they are not copied to pTo.
5826**
danielk197730548662009-07-09 05:07:37 +00005827** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005828**
5829** The performance of this function is not critical. It is only used by
5830** the balance_shallower() and balance_deeper() procedures, neither of
5831** which are called often under normal circumstances.
5832*/
drhc314dc72009-07-21 11:52:34 +00005833static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5834 if( (*pRC)==SQLITE_OK ){
5835 BtShared * const pBt = pFrom->pBt;
5836 u8 * const aFrom = pFrom->aData;
5837 u8 * const aTo = pTo->aData;
5838 int const iFromHdr = pFrom->hdrOffset;
5839 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005840 int rc;
drhc314dc72009-07-21 11:52:34 +00005841 int iData;
5842
5843
5844 assert( pFrom->isInit );
5845 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00005846 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00005847
5848 /* Copy the b-tree node content from page pFrom to page pTo. */
5849 iData = get2byte(&aFrom[iFromHdr+5]);
5850 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5851 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5852
5853 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005854 ** match the new data. The initialization of pTo can actually fail under
5855 ** fairly obscure circumstances, even though it is a copy of initialized
5856 ** page pFrom.
5857 */
drhc314dc72009-07-21 11:52:34 +00005858 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005859 rc = btreeInitPage(pTo);
5860 if( rc!=SQLITE_OK ){
5861 *pRC = rc;
5862 return;
5863 }
drhc314dc72009-07-21 11:52:34 +00005864
5865 /* If this is an auto-vacuum database, update the pointer-map entries
5866 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5867 */
5868 if( ISAUTOVACUUM ){
5869 *pRC = setChildPtrmaps(pTo);
5870 }
danielk1977cd581a72009-06-23 15:43:39 +00005871 }
danielk1977cd581a72009-06-23 15:43:39 +00005872}
5873
5874/*
danielk19774dbaa892009-06-16 16:50:22 +00005875** This routine redistributes cells on the iParentIdx'th child of pParent
5876** (hereafter "the page") and up to 2 siblings so that all pages have about the
5877** same amount of free space. Usually a single sibling on either side of the
5878** page are used in the balancing, though both siblings might come from one
5879** side if the page is the first or last child of its parent. If the page
5880** has fewer than 2 siblings (something which can only happen if the page
5881** is a root page or a child of a root page) then all available siblings
5882** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005883**
danielk19774dbaa892009-06-16 16:50:22 +00005884** The number of siblings of the page might be increased or decreased by
5885** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005886**
danielk19774dbaa892009-06-16 16:50:22 +00005887** Note that when this routine is called, some of the cells on the page
5888** might not actually be stored in MemPage.aData[]. This can happen
5889** if the page is overfull. This routine ensures that all cells allocated
5890** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005891**
danielk19774dbaa892009-06-16 16:50:22 +00005892** In the course of balancing the page and its siblings, cells may be
5893** inserted into or removed from the parent page (pParent). Doing so
5894** may cause the parent page to become overfull or underfull. If this
5895** happens, it is the responsibility of the caller to invoke the correct
5896** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005897**
drh5e00f6c2001-09-13 13:46:56 +00005898** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005899** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005900** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005901**
5902** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005903** buffer big enough to hold one page. If while inserting cells into the parent
5904** page (pParent) the parent page becomes overfull, this buffer is
5905** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005906** a maximum of four divider cells into the parent page, and the maximum
5907** size of a cell stored within an internal node is always less than 1/4
5908** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5909** enough for all overflow cells.
5910**
5911** If aOvflSpace is set to a null pointer, this function returns
5912** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005913*/
danielk19774dbaa892009-06-16 16:50:22 +00005914static int balance_nonroot(
5915 MemPage *pParent, /* Parent page of siblings being balanced */
5916 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005917 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5918 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005919){
drh16a9b832007-05-05 18:39:25 +00005920 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005921 int nCell = 0; /* Number of cells in apCell[] */
5922 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005923 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005924 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005925 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005926 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005927 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005928 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005929 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005930 int usableSpace; /* Bytes in pPage beyond the header */
5931 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005932 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005933 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005934 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005935 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005936 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005937 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005938 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005939 u8 *pRight; /* Location in parent of right-sibling pointer */
5940 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005941 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5942 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005943 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005944 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005945 u8 *aSpace1; /* Space for copies of dividers cells */
5946 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005947
danielk1977a50d9aa2009-06-08 14:49:45 +00005948 pBt = pParent->pBt;
5949 assert( sqlite3_mutex_held(pBt->mutex) );
5950 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005951
danielk1977e5765212009-06-17 11:13:28 +00005952#if 0
drh43605152004-05-29 21:46:49 +00005953 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005954#endif
drh2e38c322004-09-03 18:38:44 +00005955
danielk19774dbaa892009-06-16 16:50:22 +00005956 /* At this point pParent may have at most one overflow cell. And if
5957 ** this overflow cell is present, it must be the cell with
5958 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005959 ** is called (indirectly) from sqlite3BtreeDelete().
5960 */
danielk19774dbaa892009-06-16 16:50:22 +00005961 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5962 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5963
danielk197711a8a862009-06-17 11:49:52 +00005964 if( !aOvflSpace ){
5965 return SQLITE_NOMEM;
5966 }
5967
danielk1977a50d9aa2009-06-08 14:49:45 +00005968 /* Find the sibling pages to balance. Also locate the cells in pParent
5969 ** that divide the siblings. An attempt is made to find NN siblings on
5970 ** either side of pPage. More siblings are taken from one side, however,
5971 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005972 ** has NB or fewer children then all children of pParent are taken.
5973 **
5974 ** This loop also drops the divider cells from the parent page. This
5975 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005976 ** overflow cells in the parent page, since if any existed they will
5977 ** have already been removed.
5978 */
danielk19774dbaa892009-06-16 16:50:22 +00005979 i = pParent->nOverflow + pParent->nCell;
5980 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005981 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005982 nOld = i+1;
5983 }else{
5984 nOld = 3;
5985 if( iParentIdx==0 ){
5986 nxDiv = 0;
5987 }else if( iParentIdx==i ){
5988 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005989 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005990 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005991 }
danielk19774dbaa892009-06-16 16:50:22 +00005992 i = 2;
5993 }
5994 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5995 pRight = &pParent->aData[pParent->hdrOffset+8];
5996 }else{
5997 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5998 }
5999 pgno = get4byte(pRight);
6000 while( 1 ){
6001 rc = getAndInitPage(pBt, pgno, &apOld[i]);
6002 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006003 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006004 goto balance_cleanup;
6005 }
danielk1977634f2982005-03-28 08:44:07 +00006006 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006007 if( (i--)==0 ) break;
6008
drhcd09c532009-07-20 19:30:00 +00006009 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00006010 apDiv[i] = pParent->aOvfl[0].pCell;
6011 pgno = get4byte(apDiv[i]);
6012 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6013 pParent->nOverflow = 0;
6014 }else{
6015 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6016 pgno = get4byte(apDiv[i]);
6017 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6018
6019 /* Drop the cell from the parent page. apDiv[i] still points to
6020 ** the cell within the parent, even though it has been dropped.
6021 ** This is safe because dropping a cell only overwrites the first
6022 ** four bytes of it, and this function does not need the first
6023 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006024 ** later on.
6025 **
drh8a575d92011-10-12 17:00:28 +00006026 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006027 ** the dropCell() routine will overwrite the entire cell with zeroes.
6028 ** In this case, temporarily copy the cell into the aOvflSpace[]
6029 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6030 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006031 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006032 int iOff;
6033
6034 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006035 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006036 rc = SQLITE_CORRUPT_BKPT;
6037 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6038 goto balance_cleanup;
6039 }else{
6040 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6041 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6042 }
drh5b47efa2010-02-12 18:18:39 +00006043 }
drh98add2e2009-07-20 17:11:49 +00006044 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006045 }
drh8b2f49b2001-06-08 00:21:52 +00006046 }
6047
drha9121e42008-02-19 14:59:35 +00006048 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006049 ** alignment */
drha9121e42008-02-19 14:59:35 +00006050 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006051
drh8b2f49b2001-06-08 00:21:52 +00006052 /*
danielk1977634f2982005-03-28 08:44:07 +00006053 ** Allocate space for memory structures
6054 */
danielk19774dbaa892009-06-16 16:50:22 +00006055 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006056 szScratch =
drha9121e42008-02-19 14:59:35 +00006057 nMaxCells*sizeof(u8*) /* apCell */
6058 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006059 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006060 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006061 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006062 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006063 rc = SQLITE_NOMEM;
6064 goto balance_cleanup;
6065 }
drha9121e42008-02-19 14:59:35 +00006066 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006067 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006068 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006069
6070 /*
6071 ** Load pointers to all cells on sibling pages and the divider cells
6072 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00006073 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00006074 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006075 **
6076 ** If the siblings are on leaf pages, then the child pointers of the
6077 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006078 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006079 ** child pointers. If siblings are not leaves, then all cell in
6080 ** apCell[] include child pointers. Either way, all cells in apCell[]
6081 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006082 **
6083 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6084 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006085 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006086 leafCorrection = apOld[0]->leaf*4;
6087 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006088 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006089 int limit;
6090
6091 /* Before doing anything else, take a copy of the i'th original sibling
6092 ** The rest of this function will use data from the copies rather
6093 ** that the original pages since the original pages will be in the
6094 ** process of being overwritten. */
6095 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6096 memcpy(pOld, apOld[i], sizeof(MemPage));
6097 pOld->aData = (void*)&pOld[1];
6098 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6099
6100 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006101 if( pOld->nOverflow>0 ){
6102 for(j=0; j<limit; j++){
6103 assert( nCell<nMaxCells );
6104 apCell[nCell] = findOverflowCell(pOld, j);
6105 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6106 nCell++;
6107 }
6108 }else{
6109 u8 *aData = pOld->aData;
6110 u16 maskPage = pOld->maskPage;
6111 u16 cellOffset = pOld->cellOffset;
6112 for(j=0; j<limit; j++){
6113 assert( nCell<nMaxCells );
6114 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6115 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6116 nCell++;
6117 }
6118 }
danielk19774dbaa892009-06-16 16:50:22 +00006119 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006120 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006121 u8 *pTemp;
6122 assert( nCell<nMaxCells );
6123 szCell[nCell] = sz;
6124 pTemp = &aSpace1[iSpace1];
6125 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006126 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006127 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006128 memcpy(pTemp, apDiv[i], sz);
6129 apCell[nCell] = pTemp+leafCorrection;
6130 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006131 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006132 if( !pOld->leaf ){
6133 assert( leafCorrection==0 );
6134 assert( pOld->hdrOffset==0 );
6135 /* The right pointer of the child page pOld becomes the left
6136 ** pointer of the divider cell */
6137 memcpy(apCell[nCell], &pOld->aData[8], 4);
6138 }else{
6139 assert( leafCorrection==4 );
6140 if( szCell[nCell]<4 ){
6141 /* Do not allow any cells smaller than 4 bytes. */
6142 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006143 }
6144 }
drh14acc042001-06-10 19:56:58 +00006145 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006146 }
drh8b2f49b2001-06-08 00:21:52 +00006147 }
6148
6149 /*
drh6019e162001-07-02 17:51:45 +00006150 ** Figure out the number of pages needed to hold all nCell cells.
6151 ** Store this number in "k". Also compute szNew[] which is the total
6152 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006153 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006154 ** cntNew[k] should equal nCell.
6155 **
drh96f5b762004-05-16 16:24:36 +00006156 ** Values computed by this block:
6157 **
6158 ** k: The total number of sibling pages
6159 ** szNew[i]: Spaced used on the i-th sibling page.
6160 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6161 ** the right of the i-th sibling page.
6162 ** usableSpace: Number of bytes of space available on each sibling.
6163 **
drh8b2f49b2001-06-08 00:21:52 +00006164 */
drh43605152004-05-29 21:46:49 +00006165 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006166 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006167 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006168 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006169 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006170 szNew[k] = subtotal - szCell[i];
6171 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006172 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006173 subtotal = 0;
6174 k++;
drh9978c972010-02-23 17:36:32 +00006175 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006176 }
6177 }
6178 szNew[k] = subtotal;
6179 cntNew[k] = nCell;
6180 k++;
drh96f5b762004-05-16 16:24:36 +00006181
6182 /*
6183 ** The packing computed by the previous block is biased toward the siblings
6184 ** on the left side. The left siblings are always nearly full, while the
6185 ** right-most sibling might be nearly empty. This block of code attempts
6186 ** to adjust the packing of siblings to get a better balance.
6187 **
6188 ** This adjustment is more than an optimization. The packing above might
6189 ** be so out of balance as to be illegal. For example, the right-most
6190 ** sibling might be completely empty. This adjustment is not optional.
6191 */
drh6019e162001-07-02 17:51:45 +00006192 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006193 int szRight = szNew[i]; /* Size of sibling on the right */
6194 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6195 int r; /* Index of right-most cell in left sibling */
6196 int d; /* Index of first cell to the left of right sibling */
6197
6198 r = cntNew[i-1] - 1;
6199 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006200 assert( d<nMaxCells );
6201 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00006202 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
6203 szRight += szCell[d] + 2;
6204 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006205 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006206 r = cntNew[i-1] - 1;
6207 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006208 }
drh96f5b762004-05-16 16:24:36 +00006209 szNew[i] = szRight;
6210 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006211 }
drh09d0deb2005-08-02 17:13:09 +00006212
danielk19776f235cc2009-06-04 14:46:08 +00006213 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006214 ** a virtual root page. A virtual root page is when the real root
6215 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006216 **
6217 ** UPDATE: The assert() below is not necessarily true if the database
6218 ** file is corrupt. The corruption will be detected and reported later
6219 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006220 */
drh2f32fba2012-01-02 16:38:57 +00006221#if 0
drh09d0deb2005-08-02 17:13:09 +00006222 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006223#endif
drh8b2f49b2001-06-08 00:21:52 +00006224
danielk1977e5765212009-06-17 11:13:28 +00006225 TRACE(("BALANCE: old: %d %d %d ",
6226 apOld[0]->pgno,
6227 nOld>=2 ? apOld[1]->pgno : 0,
6228 nOld>=3 ? apOld[2]->pgno : 0
6229 ));
6230
drh8b2f49b2001-06-08 00:21:52 +00006231 /*
drh6b308672002-07-08 02:16:37 +00006232 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006233 */
drheac74422009-06-14 12:47:11 +00006234 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006235 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006236 goto balance_cleanup;
6237 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006238 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006239 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006240 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006241 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006242 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006243 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006244 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006245 nNew++;
danielk197728129562005-01-11 10:25:06 +00006246 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006247 }else{
drh7aa8f852006-03-28 00:24:44 +00006248 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006249 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006250 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006251 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006252 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006253
6254 /* Set the pointer-map entry for the new sibling page. */
6255 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006256 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006257 if( rc!=SQLITE_OK ){
6258 goto balance_cleanup;
6259 }
6260 }
drh6b308672002-07-08 02:16:37 +00006261 }
drh8b2f49b2001-06-08 00:21:52 +00006262 }
6263
danielk1977299b1872004-11-22 10:02:10 +00006264 /* Free any old pages that were not reused as new pages.
6265 */
6266 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006267 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006268 if( rc ) goto balance_cleanup;
6269 releasePage(apOld[i]);
6270 apOld[i] = 0;
6271 i++;
6272 }
6273
drh8b2f49b2001-06-08 00:21:52 +00006274 /*
drhf9ffac92002-03-02 19:00:31 +00006275 ** Put the new pages in accending order. This helps to
6276 ** keep entries in the disk file in order so that a scan
6277 ** of the table is a linear scan through the file. That
6278 ** in turn helps the operating system to deliver pages
6279 ** from the disk more rapidly.
6280 **
6281 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006282 ** n is never more than NB (a small constant), that should
6283 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006284 **
drhc3b70572003-01-04 19:44:07 +00006285 ** When NB==3, this one optimization makes the database
6286 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006287 */
6288 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006289 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006290 int minI = i;
6291 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006292 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006293 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006294 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006295 }
6296 }
6297 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006298 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006299 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006300 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006301 apNew[minI] = pT;
6302 }
6303 }
danielk1977e5765212009-06-17 11:13:28 +00006304 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006305 apNew[0]->pgno, szNew[0],
6306 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6307 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6308 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6309 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6310
6311 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6312 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006313
drhf9ffac92002-03-02 19:00:31 +00006314 /*
drh14acc042001-06-10 19:56:58 +00006315 ** Evenly distribute the data in apCell[] across the new pages.
6316 ** Insert divider cells into pParent as necessary.
6317 */
6318 j = 0;
6319 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006320 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006321 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006322 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006323 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006324 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006325 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006326 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006327
danielk1977ac11ee62005-01-15 12:45:51 +00006328 j = cntNew[i];
6329
6330 /* If the sibling page assembled above was not the right-most sibling,
6331 ** insert a divider cell into the parent page.
6332 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006333 assert( i<nNew-1 || j==nCell );
6334 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006335 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006336 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006337 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006338
6339 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006340 pCell = apCell[j];
6341 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006342 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006343 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006344 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006345 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006346 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006347 ** then there is no divider cell in apCell[]. Instead, the divider
6348 ** cell consists of the integer key for the right-most cell of
6349 ** the sibling-page assembled above only.
6350 */
drh6f11bef2004-05-13 01:12:56 +00006351 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006352 j--;
danielk197730548662009-07-09 05:07:37 +00006353 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006354 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006355 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006356 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006357 }else{
6358 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006359 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006360 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006361 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006362 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006363 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006364 ** insertCell(), so reparse the cell now.
6365 **
6366 ** Note that this can never happen in an SQLite data file, as all
6367 ** cells are at least 4 bytes. It only happens in b-trees used
6368 ** to evaluate "IN (SELECT ...)" and similar clauses.
6369 */
6370 if( szCell[j]==4 ){
6371 assert(leafCorrection==4);
6372 sz = cellSizePtr(pParent, pCell);
6373 }
drh4b70f112004-05-02 21:12:19 +00006374 }
danielk19776067a9b2009-06-09 09:41:00 +00006375 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006376 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006377 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006378 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006379 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006380 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006381
drh14acc042001-06-10 19:56:58 +00006382 j++;
6383 nxDiv++;
6384 }
6385 }
drh6019e162001-07-02 17:51:45 +00006386 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006387 assert( nOld>0 );
6388 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006389 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006390 u8 *zChild = &apCopy[nOld-1]->aData[8];
6391 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006392 }
6393
danielk197713bd99f2009-06-24 05:40:34 +00006394 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6395 /* The root page of the b-tree now contains no cells. The only sibling
6396 ** page is the right-child of the parent. Copy the contents of the
6397 ** child page into the parent, decreasing the overall height of the
6398 ** b-tree structure by one. This is described as the "balance-shallower"
6399 ** sub-algorithm in some documentation.
6400 **
6401 ** If this is an auto-vacuum database, the call to copyNodeContent()
6402 ** sets all pointer-map entries corresponding to database image pages
6403 ** for which the pointer is stored within the content being copied.
6404 **
6405 ** The second assert below verifies that the child page is defragmented
6406 ** (it must be, as it was just reconstructed using assemblePage()). This
6407 ** is important if the parent page happens to be page 1 of the database
6408 ** image. */
6409 assert( nNew==1 );
6410 assert( apNew[0]->nFree ==
6411 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6412 );
drhc314dc72009-07-21 11:52:34 +00006413 copyNodeContent(apNew[0], pParent, &rc);
6414 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006415 }else if( ISAUTOVACUUM ){
6416 /* Fix the pointer-map entries for all the cells that were shifted around.
6417 ** There are several different types of pointer-map entries that need to
6418 ** be dealt with by this routine. Some of these have been set already, but
6419 ** many have not. The following is a summary:
6420 **
6421 ** 1) The entries associated with new sibling pages that were not
6422 ** siblings when this function was called. These have already
6423 ** been set. We don't need to worry about old siblings that were
6424 ** moved to the free-list - the freePage() code has taken care
6425 ** of those.
6426 **
6427 ** 2) The pointer-map entries associated with the first overflow
6428 ** page in any overflow chains used by new divider cells. These
6429 ** have also already been taken care of by the insertCell() code.
6430 **
6431 ** 3) If the sibling pages are not leaves, then the child pages of
6432 ** cells stored on the sibling pages may need to be updated.
6433 **
6434 ** 4) If the sibling pages are not internal intkey nodes, then any
6435 ** overflow pages used by these cells may need to be updated
6436 ** (internal intkey nodes never contain pointers to overflow pages).
6437 **
6438 ** 5) If the sibling pages are not leaves, then the pointer-map
6439 ** entries for the right-child pages of each sibling may need
6440 ** to be updated.
6441 **
6442 ** Cases 1 and 2 are dealt with above by other code. The next
6443 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6444 ** setting a pointer map entry is a relatively expensive operation, this
6445 ** code only sets pointer map entries for child or overflow pages that have
6446 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006447 MemPage *pNew = apNew[0];
6448 MemPage *pOld = apCopy[0];
6449 int nOverflow = pOld->nOverflow;
6450 int iNextOld = pOld->nCell + nOverflow;
6451 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6452 j = 0; /* Current 'old' sibling page */
6453 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006454 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006455 int isDivider = 0;
6456 while( i==iNextOld ){
6457 /* Cell i is the cell immediately following the last cell on old
6458 ** sibling page j. If the siblings are not leaf pages of an
6459 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006460 assert( j+1 < ArraySize(apCopy) );
danielk19774dbaa892009-06-16 16:50:22 +00006461 pOld = apCopy[++j];
6462 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6463 if( pOld->nOverflow ){
6464 nOverflow = pOld->nOverflow;
6465 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6466 }
6467 isDivider = !leafData;
6468 }
6469
6470 assert(nOverflow>0 || iOverflow<i );
6471 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6472 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6473 if( i==iOverflow ){
6474 isDivider = 1;
6475 if( (--nOverflow)>0 ){
6476 iOverflow++;
6477 }
6478 }
6479
6480 if( i==cntNew[k] ){
6481 /* Cell i is the cell immediately following the last cell on new
6482 ** sibling page k. If the siblings are not leaf pages of an
6483 ** intkey b-tree, then cell i is a divider cell. */
6484 pNew = apNew[++k];
6485 if( !leafData ) continue;
6486 }
danielk19774dbaa892009-06-16 16:50:22 +00006487 assert( j<nOld );
6488 assert( k<nNew );
6489
6490 /* If the cell was originally divider cell (and is not now) or
6491 ** an overflow cell, or if the cell was located on a different sibling
6492 ** page before the balancing, then the pointer map entries associated
6493 ** with any child or overflow pages need to be updated. */
6494 if( isDivider || pOld->pgno!=pNew->pgno ){
6495 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006496 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006497 }
drh98add2e2009-07-20 17:11:49 +00006498 if( szCell[i]>pNew->minLocal ){
6499 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006500 }
6501 }
6502 }
6503
6504 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006505 for(i=0; i<nNew; i++){
6506 u32 key = get4byte(&apNew[i]->aData[8]);
6507 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006508 }
6509 }
6510
6511#if 0
6512 /* The ptrmapCheckPages() contains assert() statements that verify that
6513 ** all pointer map pages are set correctly. This is helpful while
6514 ** debugging. This is usually disabled because a corrupt database may
6515 ** cause an assert() statement to fail. */
6516 ptrmapCheckPages(apNew, nNew);
6517 ptrmapCheckPages(&pParent, 1);
6518#endif
6519 }
6520
danielk197771d5d2c2008-09-29 11:49:47 +00006521 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006522 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6523 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006524
drh8b2f49b2001-06-08 00:21:52 +00006525 /*
drh14acc042001-06-10 19:56:58 +00006526 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006527 */
drh14acc042001-06-10 19:56:58 +00006528balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006529 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006530 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006531 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006532 }
drh14acc042001-06-10 19:56:58 +00006533 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006534 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006535 }
danielk1977eaa06f62008-09-18 17:34:44 +00006536
drh8b2f49b2001-06-08 00:21:52 +00006537 return rc;
6538}
6539
drh43605152004-05-29 21:46:49 +00006540
6541/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006542** This function is called when the root page of a b-tree structure is
6543** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006544**
danielk1977a50d9aa2009-06-08 14:49:45 +00006545** A new child page is allocated and the contents of the current root
6546** page, including overflow cells, are copied into the child. The root
6547** page is then overwritten to make it an empty page with the right-child
6548** pointer pointing to the new page.
6549**
6550** Before returning, all pointer-map entries corresponding to pages
6551** that the new child-page now contains pointers to are updated. The
6552** entry corresponding to the new right-child pointer of the root
6553** page is also updated.
6554**
6555** If successful, *ppChild is set to contain a reference to the child
6556** page and SQLITE_OK is returned. In this case the caller is required
6557** to call releasePage() on *ppChild exactly once. If an error occurs,
6558** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006559*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006560static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6561 int rc; /* Return value from subprocedures */
6562 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006563 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006564 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006565
danielk1977a50d9aa2009-06-08 14:49:45 +00006566 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006567 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006568
danielk1977a50d9aa2009-06-08 14:49:45 +00006569 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6570 ** page that will become the new right-child of pPage. Copy the contents
6571 ** of the node stored on pRoot into the new child page.
6572 */
drh98add2e2009-07-20 17:11:49 +00006573 rc = sqlite3PagerWrite(pRoot->pDbPage);
6574 if( rc==SQLITE_OK ){
6575 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006576 copyNodeContent(pRoot, pChild, &rc);
6577 if( ISAUTOVACUUM ){
6578 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006579 }
6580 }
6581 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006582 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006583 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006584 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006585 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006586 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6587 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6588 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006589
danielk1977a50d9aa2009-06-08 14:49:45 +00006590 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6591
6592 /* Copy the overflow cells from pRoot to pChild */
6593 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6594 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006595
6596 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6597 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6598 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6599
6600 *ppChild = pChild;
6601 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006602}
6603
6604/*
danielk197771d5d2c2008-09-29 11:49:47 +00006605** The page that pCur currently points to has just been modified in
6606** some way. This function figures out if this modification means the
6607** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006608** routine. Balancing routines are:
6609**
6610** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006611** balance_deeper()
6612** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006613*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006614static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006615 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006616 const int nMin = pCur->pBt->usableSize * 2 / 3;
6617 u8 aBalanceQuickSpace[13];
6618 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006619
shane75ac1de2009-06-09 18:58:52 +00006620 TESTONLY( int balance_quick_called = 0 );
6621 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006622
6623 do {
6624 int iPage = pCur->iPage;
6625 MemPage *pPage = pCur->apPage[iPage];
6626
6627 if( iPage==0 ){
6628 if( pPage->nOverflow ){
6629 /* The root page of the b-tree is overfull. In this case call the
6630 ** balance_deeper() function to create a new child for the root-page
6631 ** and copy the current contents of the root-page to it. The
6632 ** next iteration of the do-loop will balance the child page.
6633 */
6634 assert( (balance_deeper_called++)==0 );
6635 rc = balance_deeper(pPage, &pCur->apPage[1]);
6636 if( rc==SQLITE_OK ){
6637 pCur->iPage = 1;
6638 pCur->aiIdx[0] = 0;
6639 pCur->aiIdx[1] = 0;
6640 assert( pCur->apPage[1]->nOverflow );
6641 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006642 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006643 break;
6644 }
6645 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6646 break;
6647 }else{
6648 MemPage * const pParent = pCur->apPage[iPage-1];
6649 int const iIdx = pCur->aiIdx[iPage-1];
6650
6651 rc = sqlite3PagerWrite(pParent->pDbPage);
6652 if( rc==SQLITE_OK ){
6653#ifndef SQLITE_OMIT_QUICKBALANCE
6654 if( pPage->hasData
6655 && pPage->nOverflow==1
6656 && pPage->aOvfl[0].idx==pPage->nCell
6657 && pParent->pgno!=1
6658 && pParent->nCell==iIdx
6659 ){
6660 /* Call balance_quick() to create a new sibling of pPage on which
6661 ** to store the overflow cell. balance_quick() inserts a new cell
6662 ** into pParent, which may cause pParent overflow. If this
6663 ** happens, the next interation of the do-loop will balance pParent
6664 ** use either balance_nonroot() or balance_deeper(). Until this
6665 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6666 ** buffer.
6667 **
6668 ** The purpose of the following assert() is to check that only a
6669 ** single call to balance_quick() is made for each call to this
6670 ** function. If this were not verified, a subtle bug involving reuse
6671 ** of the aBalanceQuickSpace[] might sneak in.
6672 */
6673 assert( (balance_quick_called++)==0 );
6674 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6675 }else
6676#endif
6677 {
6678 /* In this case, call balance_nonroot() to redistribute cells
6679 ** between pPage and up to 2 of its sibling pages. This involves
6680 ** modifying the contents of pParent, which may cause pParent to
6681 ** become overfull or underfull. The next iteration of the do-loop
6682 ** will balance the parent page to correct this.
6683 **
6684 ** If the parent page becomes overfull, the overflow cell or cells
6685 ** are stored in the pSpace buffer allocated immediately below.
6686 ** A subsequent iteration of the do-loop will deal with this by
6687 ** calling balance_nonroot() (balance_deeper() may be called first,
6688 ** but it doesn't deal with overflow cells - just moves them to a
6689 ** different page). Once this subsequent call to balance_nonroot()
6690 ** has completed, it is safe to release the pSpace buffer used by
6691 ** the previous call, as the overflow cell data will have been
6692 ** copied either into the body of a database page or into the new
6693 ** pSpace buffer passed to the latter call to balance_nonroot().
6694 */
6695 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006696 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006697 if( pFree ){
6698 /* If pFree is not NULL, it points to the pSpace buffer used
6699 ** by a previous call to balance_nonroot(). Its contents are
6700 ** now stored either on real database pages or within the
6701 ** new pSpace buffer, so it may be safely freed here. */
6702 sqlite3PageFree(pFree);
6703 }
6704
danielk19774dbaa892009-06-16 16:50:22 +00006705 /* The pSpace buffer will be freed after the next call to
6706 ** balance_nonroot(), or just before this function returns, whichever
6707 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006708 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006709 }
6710 }
6711
6712 pPage->nOverflow = 0;
6713
6714 /* The next iteration of the do-loop balances the parent page. */
6715 releasePage(pPage);
6716 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006717 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006718 }while( rc==SQLITE_OK );
6719
6720 if( pFree ){
6721 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006722 }
6723 return rc;
6724}
6725
drhf74b8d92002-09-01 23:20:45 +00006726
6727/*
drh3b7511c2001-05-26 13:15:44 +00006728** Insert a new record into the BTree. The key is given by (pKey,nKey)
6729** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006730** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006731** is left pointing at a random location.
6732**
6733** For an INTKEY table, only the nKey value of the key is used. pKey is
6734** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006735**
6736** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006737** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006738** been performed. seekResult is the search result returned (a negative
6739** number if pCur points at an entry that is smaller than (pKey, nKey), or
6740** a positive value if pCur points at an etry that is larger than
6741** (pKey, nKey)).
6742**
drh3e9ca092009-09-08 01:14:48 +00006743** If the seekResult parameter is non-zero, then the caller guarantees that
6744** cursor pCur is pointing at the existing copy of a row that is to be
6745** overwritten. If the seekResult parameter is 0, then cursor pCur may
6746** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006747** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006748*/
drh3aac2dd2004-04-26 14:10:20 +00006749int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006750 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006751 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006752 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006753 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006754 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006755 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006756){
drh3b7511c2001-05-26 13:15:44 +00006757 int rc;
drh3e9ca092009-09-08 01:14:48 +00006758 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006759 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006760 int idx;
drh3b7511c2001-05-26 13:15:44 +00006761 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006762 Btree *p = pCur->pBtree;
6763 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006764 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006765 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006766
drh98add2e2009-07-20 17:11:49 +00006767 if( pCur->eState==CURSOR_FAULT ){
6768 assert( pCur->skipNext!=SQLITE_OK );
6769 return pCur->skipNext;
6770 }
6771
drh1fee73e2007-08-29 04:00:57 +00006772 assert( cursorHoldsMutex(pCur) );
drhc9166342012-01-05 23:32:06 +00006773 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6774 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006775 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6776
danielk197731d31b82009-07-13 13:18:07 +00006777 /* Assert that the caller has been consistent. If this cursor was opened
6778 ** expecting an index b-tree, then the caller should be inserting blob
6779 ** keys with no associated data. If the cursor was opened expecting an
6780 ** intkey table, the caller should be inserting integer keys with a
6781 ** blob of associated data. */
6782 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6783
danielk197796d48e92009-06-29 06:00:37 +00006784 /* If this is an insert into a table b-tree, invalidate any incrblob
6785 ** cursors open on the row being replaced (assuming this is a replace
6786 ** operation - if it is not, the following is a no-op). */
6787 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006788 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006789 }
danielk197796d48e92009-06-29 06:00:37 +00006790
danielk19779c3acf32009-05-02 07:36:49 +00006791 /* Save the positions of any other cursors open on this table.
6792 **
danielk19773509a652009-07-06 18:56:13 +00006793 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006794 ** example, when inserting data into a table with auto-generated integer
6795 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6796 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006797 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006798 ** that the cursor is already where it needs to be and returns without
6799 ** doing any work. To avoid thwarting these optimizations, it is important
6800 ** not to clear the cursor here.
6801 */
drh4c301aa2009-07-15 17:25:45 +00006802 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6803 if( rc ) return rc;
6804 if( !loc ){
6805 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6806 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006807 }
danielk1977b980d2212009-06-22 18:03:51 +00006808 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006809
danielk197771d5d2c2008-09-29 11:49:47 +00006810 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006811 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006812 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006813
drh3a4c1412004-05-09 20:40:11 +00006814 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6815 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6816 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006817 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006818 allocateTempSpace(pBt);
6819 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006820 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006821 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006822 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006823 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00006824 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006825 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006826 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006827 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006828 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006829 rc = sqlite3PagerWrite(pPage->pDbPage);
6830 if( rc ){
6831 goto end_insert;
6832 }
danielk197771d5d2c2008-09-29 11:49:47 +00006833 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006834 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006835 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006836 }
drh43605152004-05-29 21:46:49 +00006837 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006838 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006839 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006840 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006841 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006842 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006843 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006844 }else{
drh4b70f112004-05-02 21:12:19 +00006845 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006846 }
drh98add2e2009-07-20 17:11:49 +00006847 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006848 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006849
danielk1977a50d9aa2009-06-08 14:49:45 +00006850 /* If no error has occured and pPage has an overflow cell, call balance()
6851 ** to redistribute the cells within the tree. Since balance() may move
6852 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6853 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006854 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006855 ** Previous versions of SQLite called moveToRoot() to move the cursor
6856 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006857 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6858 ** set the cursor state to "invalid". This makes common insert operations
6859 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006860 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006861 ** There is a subtle but important optimization here too. When inserting
6862 ** multiple records into an intkey b-tree using a single cursor (as can
6863 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6864 ** is advantageous to leave the cursor pointing to the last entry in
6865 ** the b-tree if possible. If the cursor is left pointing to the last
6866 ** entry in the table, and the next row inserted has an integer key
6867 ** larger than the largest existing key, it is possible to insert the
6868 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006869 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006870 pCur->info.nSize = 0;
6871 pCur->validNKey = 0;
6872 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006873 rc = balance(pCur);
6874
6875 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006876 ** fails. Internal data structure corruption will result otherwise.
6877 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6878 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006879 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006880 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006881 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006882 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006883
drh2e38c322004-09-03 18:38:44 +00006884end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006885 return rc;
6886}
6887
6888/*
drh4b70f112004-05-02 21:12:19 +00006889** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006890** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006891*/
drh3aac2dd2004-04-26 14:10:20 +00006892int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006893 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006894 BtShared *pBt = p->pBt;
6895 int rc; /* Return code */
6896 MemPage *pPage; /* Page to delete cell from */
6897 unsigned char *pCell; /* Pointer to cell to delete */
6898 int iCellIdx; /* Index of cell to delete */
6899 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006900
drh1fee73e2007-08-29 04:00:57 +00006901 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006902 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00006903 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh64022502009-01-09 14:11:04 +00006904 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006905 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6906 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6907
danielk19774dbaa892009-06-16 16:50:22 +00006908 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6909 || NEVER(pCur->eState!=CURSOR_VALID)
6910 ){
6911 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006912 }
danielk1977da184232006-01-05 11:34:32 +00006913
danielk197796d48e92009-06-29 06:00:37 +00006914 /* If this is a delete operation to remove a row from a table b-tree,
6915 ** invalidate any incrblob cursors open on the row being deleted. */
6916 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006917 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006918 }
6919
6920 iCellDepth = pCur->iPage;
6921 iCellIdx = pCur->aiIdx[iCellDepth];
6922 pPage = pCur->apPage[iCellDepth];
6923 pCell = findCell(pPage, iCellIdx);
6924
6925 /* If the page containing the entry to delete is not a leaf page, move
6926 ** the cursor to the largest entry in the tree that is smaller than
6927 ** the entry being deleted. This cell will replace the cell being deleted
6928 ** from the internal node. The 'previous' entry is used for this instead
6929 ** of the 'next' entry, as the previous entry is always a part of the
6930 ** sub-tree headed by the child page of the cell being deleted. This makes
6931 ** balancing the tree following the delete operation easier. */
6932 if( !pPage->leaf ){
6933 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006934 rc = sqlite3BtreePrevious(pCur, &notUsed);
6935 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006936 }
6937
6938 /* Save the positions of any other cursors open on this table before
6939 ** making any modifications. Make the page containing the entry to be
6940 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006941 ** entry and finally remove the cell itself from within the page.
6942 */
6943 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6944 if( rc ) return rc;
6945 rc = sqlite3PagerWrite(pPage->pDbPage);
6946 if( rc ) return rc;
6947 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006948 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006949 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006950
danielk19774dbaa892009-06-16 16:50:22 +00006951 /* If the cell deleted was not located on a leaf page, then the cursor
6952 ** is currently pointing to the largest entry in the sub-tree headed
6953 ** by the child-page of the cell that was just deleted from an internal
6954 ** node. The cell from the leaf node needs to be moved to the internal
6955 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006956 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006957 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6958 int nCell;
6959 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6960 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006961
danielk19774dbaa892009-06-16 16:50:22 +00006962 pCell = findCell(pLeaf, pLeaf->nCell-1);
6963 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00006964 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006965
danielk19774dbaa892009-06-16 16:50:22 +00006966 allocateTempSpace(pBt);
6967 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006968
drha4ec1d42009-07-11 13:13:11 +00006969 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006970 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6971 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006972 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006973 }
danielk19774dbaa892009-06-16 16:50:22 +00006974
6975 /* Balance the tree. If the entry deleted was located on a leaf page,
6976 ** then the cursor still points to that page. In this case the first
6977 ** call to balance() repairs the tree, and the if(...) condition is
6978 ** never true.
6979 **
6980 ** Otherwise, if the entry deleted was on an internal node page, then
6981 ** pCur is pointing to the leaf page from which a cell was removed to
6982 ** replace the cell deleted from the internal node. This is slightly
6983 ** tricky as the leaf node may be underfull, and the internal node may
6984 ** be either under or overfull. In this case run the balancing algorithm
6985 ** on the leaf node first. If the balance proceeds far enough up the
6986 ** tree that we can be sure that any problem in the internal node has
6987 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6988 ** walk the cursor up the tree to the internal node and balance it as
6989 ** well. */
6990 rc = balance(pCur);
6991 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6992 while( pCur->iPage>iCellDepth ){
6993 releasePage(pCur->apPage[pCur->iPage--]);
6994 }
6995 rc = balance(pCur);
6996 }
6997
danielk19776b456a22005-03-21 04:04:02 +00006998 if( rc==SQLITE_OK ){
6999 moveToRoot(pCur);
7000 }
drh5e2f8b92001-05-28 00:41:15 +00007001 return rc;
drh3b7511c2001-05-26 13:15:44 +00007002}
drh8b2f49b2001-06-08 00:21:52 +00007003
7004/*
drhc6b52df2002-01-04 03:09:29 +00007005** Create a new BTree table. Write into *piTable the page
7006** number for the root page of the new table.
7007**
drhab01f612004-05-22 02:55:23 +00007008** The type of type is determined by the flags parameter. Only the
7009** following values of flags are currently in use. Other values for
7010** flags might not work:
7011**
7012** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7013** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007014*/
drhd4187c72010-08-30 22:15:45 +00007015static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007016 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007017 MemPage *pRoot;
7018 Pgno pgnoRoot;
7019 int rc;
drhd4187c72010-08-30 22:15:45 +00007020 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007021
drh1fee73e2007-08-29 04:00:57 +00007022 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007023 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007024 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007025
danielk1977003ba062004-11-04 02:57:33 +00007026#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007027 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007028 if( rc ){
7029 return rc;
7030 }
danielk1977003ba062004-11-04 02:57:33 +00007031#else
danielk1977687566d2004-11-02 12:56:41 +00007032 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007033 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7034 MemPage *pPageMove; /* The page to move to. */
7035
danielk197720713f32007-05-03 11:43:33 +00007036 /* Creating a new table may probably require moving an existing database
7037 ** to make room for the new tables root page. In case this page turns
7038 ** out to be an overflow page, delete all overflow page-map caches
7039 ** held by open cursors.
7040 */
danielk197792d4d7a2007-05-04 12:05:56 +00007041 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007042
danielk1977003ba062004-11-04 02:57:33 +00007043 /* Read the value of meta[3] from the database to determine where the
7044 ** root page of the new table should go. meta[3] is the largest root-page
7045 ** created so far, so the new root-page is (meta[3]+1).
7046 */
danielk1977602b4662009-07-02 07:47:33 +00007047 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007048 pgnoRoot++;
7049
danielk1977599fcba2004-11-08 07:13:13 +00007050 /* The new root-page may not be allocated on a pointer-map page, or the
7051 ** PENDING_BYTE page.
7052 */
drh72190432008-01-31 14:54:43 +00007053 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007054 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007055 pgnoRoot++;
7056 }
7057 assert( pgnoRoot>=3 );
7058
7059 /* Allocate a page. The page that currently resides at pgnoRoot will
7060 ** be moved to the allocated page (unless the allocated page happens
7061 ** to reside at pgnoRoot).
7062 */
drh4f0c5872007-03-26 22:05:01 +00007063 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00007064 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007065 return rc;
7066 }
danielk1977003ba062004-11-04 02:57:33 +00007067
7068 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007069 /* pgnoRoot is the page that will be used for the root-page of
7070 ** the new table (assuming an error did not occur). But we were
7071 ** allocated pgnoMove. If required (i.e. if it was not allocated
7072 ** by extending the file), the current page at position pgnoMove
7073 ** is already journaled.
7074 */
drheeb844a2009-08-08 18:01:07 +00007075 u8 eType = 0;
7076 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007077
7078 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00007079
7080 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00007081 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007082 if( rc!=SQLITE_OK ){
7083 return rc;
7084 }
7085 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007086 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7087 rc = SQLITE_CORRUPT_BKPT;
7088 }
7089 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007090 releasePage(pRoot);
7091 return rc;
7092 }
drhccae6022005-02-26 17:31:26 +00007093 assert( eType!=PTRMAP_ROOTPAGE );
7094 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007095 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007096 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007097
7098 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007099 if( rc!=SQLITE_OK ){
7100 return rc;
7101 }
danielk197730548662009-07-09 05:07:37 +00007102 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007103 if( rc!=SQLITE_OK ){
7104 return rc;
7105 }
danielk19773b8a05f2007-03-19 17:44:26 +00007106 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007107 if( rc!=SQLITE_OK ){
7108 releasePage(pRoot);
7109 return rc;
7110 }
7111 }else{
7112 pRoot = pPageMove;
7113 }
7114
danielk197742741be2005-01-08 12:42:39 +00007115 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007116 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007117 if( rc ){
7118 releasePage(pRoot);
7119 return rc;
7120 }
drhbf592832010-03-30 15:51:12 +00007121
7122 /* When the new root page was allocated, page 1 was made writable in
7123 ** order either to increase the database filesize, or to decrement the
7124 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7125 */
7126 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007127 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007128 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007129 releasePage(pRoot);
7130 return rc;
7131 }
danielk197742741be2005-01-08 12:42:39 +00007132
danielk1977003ba062004-11-04 02:57:33 +00007133 }else{
drh4f0c5872007-03-26 22:05:01 +00007134 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007135 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007136 }
7137#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007138 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007139 if( createTabFlags & BTREE_INTKEY ){
7140 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7141 }else{
7142 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7143 }
7144 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007145 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007146 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007147 *piTable = (int)pgnoRoot;
7148 return SQLITE_OK;
7149}
drhd677b3d2007-08-20 22:48:41 +00007150int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7151 int rc;
7152 sqlite3BtreeEnter(p);
7153 rc = btreeCreateTable(p, piTable, flags);
7154 sqlite3BtreeLeave(p);
7155 return rc;
7156}
drh8b2f49b2001-06-08 00:21:52 +00007157
7158/*
7159** Erase the given database page and all its children. Return
7160** the page to the freelist.
7161*/
drh4b70f112004-05-02 21:12:19 +00007162static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007163 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007164 Pgno pgno, /* Page number to clear */
7165 int freePageFlag, /* Deallocate page if true */
7166 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007167){
danielk1977146ba992009-07-22 14:08:13 +00007168 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007169 int rc;
drh4b70f112004-05-02 21:12:19 +00007170 unsigned char *pCell;
7171 int i;
drh8b2f49b2001-06-08 00:21:52 +00007172
drh1fee73e2007-08-29 04:00:57 +00007173 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007174 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007175 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007176 }
7177
danielk197771d5d2c2008-09-29 11:49:47 +00007178 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007179 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007180 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007181 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007182 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007183 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007184 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007185 }
drh4b70f112004-05-02 21:12:19 +00007186 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007187 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007188 }
drha34b6762004-05-07 13:30:42 +00007189 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007190 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007191 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007192 }else if( pnChange ){
7193 assert( pPage->intKey );
7194 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007195 }
7196 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007197 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007198 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007199 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007200 }
danielk19776b456a22005-03-21 04:04:02 +00007201
7202cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007203 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007204 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007205}
7206
7207/*
drhab01f612004-05-22 02:55:23 +00007208** Delete all information from a single table in the database. iTable is
7209** the page number of the root of the table. After this routine returns,
7210** the root page is empty, but still exists.
7211**
7212** This routine will fail with SQLITE_LOCKED if there are any open
7213** read cursors on the table. Open write cursors are moved to the
7214** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007215**
7216** If pnChange is not NULL, then table iTable must be an intkey table. The
7217** integer value pointed to by pnChange is incremented by the number of
7218** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007219*/
danielk1977c7af4842008-10-27 13:59:33 +00007220int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007221 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007222 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007223 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007224 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007225
7226 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7227 ** is the root of a table b-tree - if it is not, the following call is
7228 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00007229 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00007230
drhc046e3e2009-07-15 11:26:44 +00007231 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7232 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00007233 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007234 }
drhd677b3d2007-08-20 22:48:41 +00007235 sqlite3BtreeLeave(p);
7236 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007237}
7238
7239/*
7240** Erase all information in a table and add the root of the table to
7241** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007242** page 1) is never added to the freelist.
7243**
7244** This routine will fail with SQLITE_LOCKED if there are any open
7245** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007246**
7247** If AUTOVACUUM is enabled and the page at iTable is not the last
7248** root page in the database file, then the last root page
7249** in the database file is moved into the slot formerly occupied by
7250** iTable and that last slot formerly occupied by the last root page
7251** is added to the freelist instead of iTable. In this say, all
7252** root pages are kept at the beginning of the database file, which
7253** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7254** page number that used to be the last root page in the file before
7255** the move. If no page gets moved, *piMoved is set to 0.
7256** The last root page is recorded in meta[3] and the value of
7257** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007258*/
danielk197789d40042008-11-17 14:20:56 +00007259static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007260 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007261 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007262 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007263
drh1fee73e2007-08-29 04:00:57 +00007264 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007265 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007266
danielk1977e6efa742004-11-10 11:55:10 +00007267 /* It is illegal to drop a table if any cursors are open on the
7268 ** database. This is because in auto-vacuum mode the backend may
7269 ** need to move another root-page to fill a gap left by the deleted
7270 ** root page. If an open cursor was using this page a problem would
7271 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007272 **
7273 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007274 */
drhc046e3e2009-07-15 11:26:44 +00007275 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007276 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7277 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007278 }
danielk1977a0bf2652004-11-04 14:30:04 +00007279
danielk197730548662009-07-09 05:07:37 +00007280 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007281 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007282 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007283 if( rc ){
7284 releasePage(pPage);
7285 return rc;
7286 }
danielk1977a0bf2652004-11-04 14:30:04 +00007287
drh205f48e2004-11-05 00:43:11 +00007288 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007289
drh4b70f112004-05-02 21:12:19 +00007290 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007291#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007292 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007293 releasePage(pPage);
7294#else
7295 if( pBt->autoVacuum ){
7296 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007297 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007298
7299 if( iTable==maxRootPgno ){
7300 /* If the table being dropped is the table with the largest root-page
7301 ** number in the database, put the root page on the free list.
7302 */
drhc314dc72009-07-21 11:52:34 +00007303 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007304 releasePage(pPage);
7305 if( rc!=SQLITE_OK ){
7306 return rc;
7307 }
7308 }else{
7309 /* The table being dropped does not have the largest root-page
7310 ** number in the database. So move the page that does into the
7311 ** gap left by the deleted root-page.
7312 */
7313 MemPage *pMove;
7314 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007315 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007316 if( rc!=SQLITE_OK ){
7317 return rc;
7318 }
danielk19774c999992008-07-16 18:17:55 +00007319 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007320 releasePage(pMove);
7321 if( rc!=SQLITE_OK ){
7322 return rc;
7323 }
drhfe3313f2009-07-21 19:02:20 +00007324 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007325 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007326 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007327 releasePage(pMove);
7328 if( rc!=SQLITE_OK ){
7329 return rc;
7330 }
7331 *piMoved = maxRootPgno;
7332 }
7333
danielk1977599fcba2004-11-08 07:13:13 +00007334 /* Set the new 'max-root-page' value in the database header. This
7335 ** is the old value less one, less one more if that happens to
7336 ** be a root-page number, less one again if that is the
7337 ** PENDING_BYTE_PAGE.
7338 */
danielk197787a6e732004-11-05 12:58:25 +00007339 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007340 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7341 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007342 maxRootPgno--;
7343 }
danielk1977599fcba2004-11-08 07:13:13 +00007344 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7345
danielk1977aef0bf62005-12-30 16:28:01 +00007346 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007347 }else{
drhc314dc72009-07-21 11:52:34 +00007348 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007349 releasePage(pPage);
7350 }
7351#endif
drh2aa679f2001-06-25 02:11:07 +00007352 }else{
drhc046e3e2009-07-15 11:26:44 +00007353 /* If sqlite3BtreeDropTable was called on page 1.
7354 ** This really never should happen except in a corrupt
7355 ** database.
7356 */
drha34b6762004-05-07 13:30:42 +00007357 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007358 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007359 }
drh8b2f49b2001-06-08 00:21:52 +00007360 return rc;
7361}
drhd677b3d2007-08-20 22:48:41 +00007362int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7363 int rc;
7364 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007365 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007366 sqlite3BtreeLeave(p);
7367 return rc;
7368}
drh8b2f49b2001-06-08 00:21:52 +00007369
drh001bbcb2003-03-19 03:14:00 +00007370
drh8b2f49b2001-06-08 00:21:52 +00007371/*
danielk1977602b4662009-07-02 07:47:33 +00007372** This function may only be called if the b-tree connection already
7373** has a read or write transaction open on the database.
7374**
drh23e11ca2004-05-04 17:27:28 +00007375** Read the meta-information out of a database file. Meta[0]
7376** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007377** through meta[15] are available for use by higher layers. Meta[0]
7378** is read-only, the others are read/write.
7379**
7380** The schema layer numbers meta values differently. At the schema
7381** layer (and the SetCookie and ReadCookie opcodes) the number of
7382** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007383*/
danielk1977602b4662009-07-02 07:47:33 +00007384void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007385 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007386
drhd677b3d2007-08-20 22:48:41 +00007387 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007388 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007389 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007390 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007391 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007392
danielk1977602b4662009-07-02 07:47:33 +00007393 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007394
danielk1977602b4662009-07-02 07:47:33 +00007395 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7396 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007397#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007398 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7399 pBt->btsFlags |= BTS_READ_ONLY;
7400 }
danielk1977003ba062004-11-04 02:57:33 +00007401#endif
drhae157872004-08-14 19:20:09 +00007402
drhd677b3d2007-08-20 22:48:41 +00007403 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007404}
7405
7406/*
drh23e11ca2004-05-04 17:27:28 +00007407** Write meta-information back into the database. Meta[0] is
7408** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007409*/
danielk1977aef0bf62005-12-30 16:28:01 +00007410int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7411 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007412 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007413 int rc;
drh23e11ca2004-05-04 17:27:28 +00007414 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007415 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007416 assert( p->inTrans==TRANS_WRITE );
7417 assert( pBt->pPage1!=0 );
7418 pP1 = pBt->pPage1->aData;
7419 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7420 if( rc==SQLITE_OK ){
7421 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007422#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007423 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007424 assert( pBt->autoVacuum || iMeta==0 );
7425 assert( iMeta==0 || iMeta==1 );
7426 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007427 }
drh64022502009-01-09 14:11:04 +00007428#endif
drh5df72a52002-06-06 23:16:05 +00007429 }
drhd677b3d2007-08-20 22:48:41 +00007430 sqlite3BtreeLeave(p);
7431 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007432}
drh8c42ca92001-06-22 19:15:00 +00007433
danielk1977a5533162009-02-24 10:01:51 +00007434#ifndef SQLITE_OMIT_BTREECOUNT
7435/*
7436** The first argument, pCur, is a cursor opened on some b-tree. Count the
7437** number of entries in the b-tree and write the result to *pnEntry.
7438**
7439** SQLITE_OK is returned if the operation is successfully executed.
7440** Otherwise, if an error is encountered (i.e. an IO error or database
7441** corruption) an SQLite error code is returned.
7442*/
7443int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7444 i64 nEntry = 0; /* Value to return in *pnEntry */
7445 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007446
7447 if( pCur->pgnoRoot==0 ){
7448 *pnEntry = 0;
7449 return SQLITE_OK;
7450 }
danielk1977a5533162009-02-24 10:01:51 +00007451 rc = moveToRoot(pCur);
7452
7453 /* Unless an error occurs, the following loop runs one iteration for each
7454 ** page in the B-Tree structure (not including overflow pages).
7455 */
7456 while( rc==SQLITE_OK ){
7457 int iIdx; /* Index of child node in parent */
7458 MemPage *pPage; /* Current page of the b-tree */
7459
7460 /* If this is a leaf page or the tree is not an int-key tree, then
7461 ** this page contains countable entries. Increment the entry counter
7462 ** accordingly.
7463 */
7464 pPage = pCur->apPage[pCur->iPage];
7465 if( pPage->leaf || !pPage->intKey ){
7466 nEntry += pPage->nCell;
7467 }
7468
7469 /* pPage is a leaf node. This loop navigates the cursor so that it
7470 ** points to the first interior cell that it points to the parent of
7471 ** the next page in the tree that has not yet been visited. The
7472 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7473 ** of the page, or to the number of cells in the page if the next page
7474 ** to visit is the right-child of its parent.
7475 **
7476 ** If all pages in the tree have been visited, return SQLITE_OK to the
7477 ** caller.
7478 */
7479 if( pPage->leaf ){
7480 do {
7481 if( pCur->iPage==0 ){
7482 /* All pages of the b-tree have been visited. Return successfully. */
7483 *pnEntry = nEntry;
7484 return SQLITE_OK;
7485 }
danielk197730548662009-07-09 05:07:37 +00007486 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007487 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7488
7489 pCur->aiIdx[pCur->iPage]++;
7490 pPage = pCur->apPage[pCur->iPage];
7491 }
7492
7493 /* Descend to the child node of the cell that the cursor currently
7494 ** points at. This is the right-child if (iIdx==pPage->nCell).
7495 */
7496 iIdx = pCur->aiIdx[pCur->iPage];
7497 if( iIdx==pPage->nCell ){
7498 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7499 }else{
7500 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7501 }
7502 }
7503
shanebe217792009-03-05 04:20:31 +00007504 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007505 return rc;
7506}
7507#endif
drhdd793422001-06-28 01:54:48 +00007508
drhdd793422001-06-28 01:54:48 +00007509/*
drh5eddca62001-06-30 21:53:53 +00007510** Return the pager associated with a BTree. This routine is used for
7511** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007512*/
danielk1977aef0bf62005-12-30 16:28:01 +00007513Pager *sqlite3BtreePager(Btree *p){
7514 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007515}
drh5eddca62001-06-30 21:53:53 +00007516
drhb7f91642004-10-31 02:22:47 +00007517#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007518/*
7519** Append a message to the error message string.
7520*/
drh2e38c322004-09-03 18:38:44 +00007521static void checkAppendMsg(
7522 IntegrityCk *pCheck,
7523 char *zMsg1,
7524 const char *zFormat,
7525 ...
7526){
7527 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007528 if( !pCheck->mxErr ) return;
7529 pCheck->mxErr--;
7530 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007531 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007532 if( pCheck->errMsg.nChar ){
7533 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007534 }
drhf089aa42008-07-08 19:34:06 +00007535 if( zMsg1 ){
7536 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7537 }
7538 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7539 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007540 if( pCheck->errMsg.mallocFailed ){
7541 pCheck->mallocFailed = 1;
7542 }
drh5eddca62001-06-30 21:53:53 +00007543}
drhb7f91642004-10-31 02:22:47 +00007544#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007545
drhb7f91642004-10-31 02:22:47 +00007546#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007547/*
7548** Add 1 to the reference count for page iPage. If this is the second
7549** reference to the page, add an error message to pCheck->zErrMsg.
7550** Return 1 if there are 2 ore more references to the page and 0 if
7551** if this is the first reference to the page.
7552**
7553** Also check that the page number is in bounds.
7554*/
danielk197789d40042008-11-17 14:20:56 +00007555static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007556 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007557 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007558 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007559 return 1;
7560 }
7561 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007562 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007563 return 1;
7564 }
7565 return (pCheck->anRef[iPage]++)>1;
7566}
7567
danielk1977afcdd022004-10-31 16:25:42 +00007568#ifndef SQLITE_OMIT_AUTOVACUUM
7569/*
7570** Check that the entry in the pointer-map for page iChild maps to
7571** page iParent, pointer type ptrType. If not, append an error message
7572** to pCheck.
7573*/
7574static void checkPtrmap(
7575 IntegrityCk *pCheck, /* Integrity check context */
7576 Pgno iChild, /* Child page number */
7577 u8 eType, /* Expected pointer map type */
7578 Pgno iParent, /* Expected pointer map parent page number */
7579 char *zContext /* Context description (used for error msg) */
7580){
7581 int rc;
7582 u8 ePtrmapType;
7583 Pgno iPtrmapParent;
7584
7585 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7586 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007587 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007588 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7589 return;
7590 }
7591
7592 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7593 checkAppendMsg(pCheck, zContext,
7594 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7595 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7596 }
7597}
7598#endif
7599
drh5eddca62001-06-30 21:53:53 +00007600/*
7601** Check the integrity of the freelist or of an overflow page list.
7602** Verify that the number of pages on the list is N.
7603*/
drh30e58752002-03-02 20:41:57 +00007604static void checkList(
7605 IntegrityCk *pCheck, /* Integrity checking context */
7606 int isFreeList, /* True for a freelist. False for overflow page list */
7607 int iPage, /* Page number for first page in the list */
7608 int N, /* Expected number of pages in the list */
7609 char *zContext /* Context for error messages */
7610){
7611 int i;
drh3a4c1412004-05-09 20:40:11 +00007612 int expected = N;
7613 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007614 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007615 DbPage *pOvflPage;
7616 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007617 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007618 checkAppendMsg(pCheck, zContext,
7619 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007620 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007621 break;
7622 }
7623 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007624 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007625 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007626 break;
7627 }
danielk19773b8a05f2007-03-19 17:44:26 +00007628 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007629 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007630 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007631#ifndef SQLITE_OMIT_AUTOVACUUM
7632 if( pCheck->pBt->autoVacuum ){
7633 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7634 }
7635#endif
drh43b18e12010-08-17 19:40:08 +00007636 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007637 checkAppendMsg(pCheck, zContext,
7638 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007639 N--;
7640 }else{
7641 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007642 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007643#ifndef SQLITE_OMIT_AUTOVACUUM
7644 if( pCheck->pBt->autoVacuum ){
7645 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7646 }
7647#endif
7648 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007649 }
7650 N -= n;
drh30e58752002-03-02 20:41:57 +00007651 }
drh30e58752002-03-02 20:41:57 +00007652 }
danielk1977afcdd022004-10-31 16:25:42 +00007653#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007654 else{
7655 /* If this database supports auto-vacuum and iPage is not the last
7656 ** page in this overflow list, check that the pointer-map entry for
7657 ** the following page matches iPage.
7658 */
7659 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007660 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007661 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7662 }
danielk1977afcdd022004-10-31 16:25:42 +00007663 }
7664#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007665 iPage = get4byte(pOvflData);
7666 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007667 }
7668}
drhb7f91642004-10-31 02:22:47 +00007669#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007670
drhb7f91642004-10-31 02:22:47 +00007671#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007672/*
7673** Do various sanity checks on a single page of a tree. Return
7674** the tree depth. Root pages return 0. Parents of root pages
7675** return 1, and so forth.
7676**
7677** These checks are done:
7678**
7679** 1. Make sure that cells and freeblocks do not overlap
7680** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007681** NO 2. Make sure cell keys are in order.
7682** NO 3. Make sure no key is less than or equal to zLowerBound.
7683** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007684** 5. Check the integrity of overflow pages.
7685** 6. Recursively call checkTreePage on all children.
7686** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007687** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007688** the root of the tree.
7689*/
7690static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007691 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007692 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007693 char *zParentContext, /* Parent context */
7694 i64 *pnParentMinKey,
7695 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007696){
7697 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007698 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007699 int hdr, cellStart;
7700 int nCell;
drhda200cc2004-05-09 11:51:38 +00007701 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007702 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007703 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007704 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007705 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007706 i64 nMinKey = 0;
7707 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007708
drh5bb3eb92007-05-04 13:15:55 +00007709 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007710
drh5eddca62001-06-30 21:53:53 +00007711 /* Check that the page exists
7712 */
drhd9cb6ac2005-10-20 07:28:17 +00007713 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007714 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007715 if( iPage==0 ) return 0;
7716 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007717 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007718 checkAppendMsg(pCheck, zContext,
7719 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007720 return 0;
7721 }
danielk197793caf5a2009-07-11 06:55:33 +00007722
7723 /* Clear MemPage.isInit to make sure the corruption detection code in
7724 ** btreeInitPage() is executed. */
7725 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007726 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007727 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007728 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007729 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007730 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007731 return 0;
7732 }
7733
7734 /* Check out all the cells.
7735 */
7736 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007737 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007738 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007739 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007740 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007741
7742 /* Check payload overflow pages
7743 */
drh5bb3eb92007-05-04 13:15:55 +00007744 sqlite3_snprintf(sizeof(zContext), zContext,
7745 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007746 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007747 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007748 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007749 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007750 /* For intKey pages, check that the keys are in order.
7751 */
7752 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7753 else{
7754 if( info.nKey <= nMaxKey ){
7755 checkAppendMsg(pCheck, zContext,
7756 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7757 }
7758 nMaxKey = info.nKey;
7759 }
drh72365832007-03-06 15:53:44 +00007760 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007761 if( (sz>info.nLocal)
7762 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7763 ){
drhb6f41482004-05-14 01:58:11 +00007764 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007765 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7766#ifndef SQLITE_OMIT_AUTOVACUUM
7767 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007768 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007769 }
7770#endif
7771 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007772 }
7773
7774 /* Check sanity of left child page.
7775 */
drhda200cc2004-05-09 11:51:38 +00007776 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007777 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007778#ifndef SQLITE_OMIT_AUTOVACUUM
7779 if( pBt->autoVacuum ){
7780 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7781 }
7782#endif
shaneh195475d2010-02-19 04:28:08 +00007783 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007784 if( i>0 && d2!=depth ){
7785 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7786 }
7787 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007788 }
drh5eddca62001-06-30 21:53:53 +00007789 }
shaneh195475d2010-02-19 04:28:08 +00007790
drhda200cc2004-05-09 11:51:38 +00007791 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007792 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007793 sqlite3_snprintf(sizeof(zContext), zContext,
7794 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007795#ifndef SQLITE_OMIT_AUTOVACUUM
7796 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007797 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007798 }
7799#endif
shaneh195475d2010-02-19 04:28:08 +00007800 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007801 }
drh5eddca62001-06-30 21:53:53 +00007802
shaneh195475d2010-02-19 04:28:08 +00007803 /* For intKey leaf pages, check that the min/max keys are in order
7804 ** with any left/parent/right pages.
7805 */
7806 if( pPage->leaf && pPage->intKey ){
7807 /* if we are a left child page */
7808 if( pnParentMinKey ){
7809 /* if we are the left most child page */
7810 if( !pnParentMaxKey ){
7811 if( nMaxKey > *pnParentMinKey ){
7812 checkAppendMsg(pCheck, zContext,
7813 "Rowid %lld out of order (max larger than parent min of %lld)",
7814 nMaxKey, *pnParentMinKey);
7815 }
7816 }else{
7817 if( nMinKey <= *pnParentMinKey ){
7818 checkAppendMsg(pCheck, zContext,
7819 "Rowid %lld out of order (min less than parent min of %lld)",
7820 nMinKey, *pnParentMinKey);
7821 }
7822 if( nMaxKey > *pnParentMaxKey ){
7823 checkAppendMsg(pCheck, zContext,
7824 "Rowid %lld out of order (max larger than parent max of %lld)",
7825 nMaxKey, *pnParentMaxKey);
7826 }
7827 *pnParentMinKey = nMaxKey;
7828 }
7829 /* else if we're a right child page */
7830 } else if( pnParentMaxKey ){
7831 if( nMinKey <= *pnParentMaxKey ){
7832 checkAppendMsg(pCheck, zContext,
7833 "Rowid %lld out of order (min less than parent max of %lld)",
7834 nMinKey, *pnParentMaxKey);
7835 }
7836 }
7837 }
7838
drh5eddca62001-06-30 21:53:53 +00007839 /* Check for complete coverage of the page
7840 */
drhda200cc2004-05-09 11:51:38 +00007841 data = pPage->aData;
7842 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007843 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007844 if( hit==0 ){
7845 pCheck->mallocFailed = 1;
7846 }else{
drh5d433ce2010-08-14 16:02:52 +00007847 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007848 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007849 memset(hit+contentOffset, 0, usableSize-contentOffset);
7850 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007851 nCell = get2byte(&data[hdr+3]);
7852 cellStart = hdr + 12 - 4*pPage->leaf;
7853 for(i=0; i<nCell; i++){
7854 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00007855 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00007856 int j;
drh8c2bbb62009-07-10 02:52:20 +00007857 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007858 size = cellSizePtr(pPage, &data[pc]);
7859 }
drh43b18e12010-08-17 19:40:08 +00007860 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007861 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007862 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007863 }else{
7864 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7865 }
drh2e38c322004-09-03 18:38:44 +00007866 }
drh8c2bbb62009-07-10 02:52:20 +00007867 i = get2byte(&data[hdr+1]);
7868 while( i>0 ){
7869 int size, j;
7870 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7871 size = get2byte(&data[i+2]);
7872 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7873 for(j=i+size-1; j>=i; j--) hit[j]++;
7874 j = get2byte(&data[i]);
7875 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7876 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7877 i = j;
drh2e38c322004-09-03 18:38:44 +00007878 }
7879 for(i=cnt=0; i<usableSize; i++){
7880 if( hit[i]==0 ){
7881 cnt++;
7882 }else if( hit[i]>1 ){
7883 checkAppendMsg(pCheck, 0,
7884 "Multiple uses for byte %d of page %d", i, iPage);
7885 break;
7886 }
7887 }
7888 if( cnt!=data[hdr+7] ){
7889 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007890 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007891 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007892 }
7893 }
drh8c2bbb62009-07-10 02:52:20 +00007894 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007895 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007896 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007897}
drhb7f91642004-10-31 02:22:47 +00007898#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007899
drhb7f91642004-10-31 02:22:47 +00007900#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007901/*
7902** This routine does a complete check of the given BTree file. aRoot[] is
7903** an array of pages numbers were each page number is the root page of
7904** a table. nRoot is the number of entries in aRoot.
7905**
danielk19773509a652009-07-06 18:56:13 +00007906** A read-only or read-write transaction must be opened before calling
7907** this function.
7908**
drhc890fec2008-08-01 20:10:08 +00007909** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007910** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007911** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007912** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007913*/
drh1dcdbc02007-01-27 02:24:54 +00007914char *sqlite3BtreeIntegrityCheck(
7915 Btree *p, /* The btree to be checked */
7916 int *aRoot, /* An array of root pages numbers for individual trees */
7917 int nRoot, /* Number of entries in aRoot[] */
7918 int mxErr, /* Stop reporting errors after this many */
7919 int *pnErr /* Write number of errors seen to this variable */
7920){
danielk197789d40042008-11-17 14:20:56 +00007921 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007922 int nRef;
drhaaab5722002-02-19 13:39:21 +00007923 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007924 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007925 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007926
drhd677b3d2007-08-20 22:48:41 +00007927 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007928 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007929 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007930 sCheck.pBt = pBt;
7931 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007932 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007933 sCheck.mxErr = mxErr;
7934 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007935 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007936 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007937 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007938 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007939 return 0;
7940 }
drhe5ae5732008-06-15 02:51:47 +00007941 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007942 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007943 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007944 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007945 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007946 }
drhda200cc2004-05-09 11:51:38 +00007947 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007948 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007949 if( i<=sCheck.nPage ){
7950 sCheck.anRef[i] = 1;
7951 }
drhf089aa42008-07-08 19:34:06 +00007952 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drhb9755982010-07-24 16:34:37 +00007953 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00007954
7955 /* Check the integrity of the freelist
7956 */
drha34b6762004-05-07 13:30:42 +00007957 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7958 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007959
7960 /* Check all the tables.
7961 */
danielk197789d40042008-11-17 14:20:56 +00007962 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007963 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007964#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007965 if( pBt->autoVacuum && aRoot[i]>1 ){
7966 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7967 }
7968#endif
shaneh195475d2010-02-19 04:28:08 +00007969 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007970 }
7971
7972 /* Make sure every page in the file is referenced
7973 */
drh1dcdbc02007-01-27 02:24:54 +00007974 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007975#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007976 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007977 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007978 }
danielk1977afcdd022004-10-31 16:25:42 +00007979#else
7980 /* If the database supports auto-vacuum, make sure no tables contain
7981 ** references to pointer-map pages.
7982 */
7983 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007984 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007985 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7986 }
7987 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007988 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007989 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7990 }
7991#endif
drh5eddca62001-06-30 21:53:53 +00007992 }
7993
drh64022502009-01-09 14:11:04 +00007994 /* Make sure this analysis did not leave any unref() pages.
7995 ** This is an internal consistency check; an integrity check
7996 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007997 */
drh64022502009-01-09 14:11:04 +00007998 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007999 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008000 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008001 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008002 );
drh5eddca62001-06-30 21:53:53 +00008003 }
8004
8005 /* Clean up and report errors.
8006 */
drhd677b3d2007-08-20 22:48:41 +00008007 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00008008 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00008009 if( sCheck.mallocFailed ){
8010 sqlite3StrAccumReset(&sCheck.errMsg);
8011 *pnErr = sCheck.nErr+1;
8012 return 0;
8013 }
drh1dcdbc02007-01-27 02:24:54 +00008014 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008015 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8016 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008017}
drhb7f91642004-10-31 02:22:47 +00008018#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008019
drh73509ee2003-04-06 20:44:45 +00008020/*
8021** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00008022**
8023** The pager filename is invariant as long as the pager is
8024** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008025*/
danielk1977aef0bf62005-12-30 16:28:01 +00008026const char *sqlite3BtreeGetFilename(Btree *p){
8027 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008028 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00008029}
8030
8031/*
danielk19775865e3d2004-06-14 06:03:57 +00008032** Return the pathname of the journal file for this database. The return
8033** value of this routine is the same regardless of whether the journal file
8034** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008035**
8036** The pager journal filename is invariant as long as the pager is
8037** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008038*/
danielk1977aef0bf62005-12-30 16:28:01 +00008039const char *sqlite3BtreeGetJournalname(Btree *p){
8040 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008041 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008042}
8043
danielk19771d850a72004-05-31 08:26:49 +00008044/*
8045** Return non-zero if a transaction is active.
8046*/
danielk1977aef0bf62005-12-30 16:28:01 +00008047int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008048 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008049 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008050}
8051
dana550f2d2010-08-02 10:47:05 +00008052#ifndef SQLITE_OMIT_WAL
8053/*
8054** Run a checkpoint on the Btree passed as the first argument.
8055**
8056** Return SQLITE_LOCKED if this or any other connection has an open
8057** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008058**
dancdc1f042010-11-18 12:11:05 +00008059** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008060*/
dancdc1f042010-11-18 12:11:05 +00008061int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008062 int rc = SQLITE_OK;
8063 if( p ){
8064 BtShared *pBt = p->pBt;
8065 sqlite3BtreeEnter(p);
8066 if( pBt->inTransaction!=TRANS_NONE ){
8067 rc = SQLITE_LOCKED;
8068 }else{
dancdc1f042010-11-18 12:11:05 +00008069 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008070 }
8071 sqlite3BtreeLeave(p);
8072 }
8073 return rc;
8074}
8075#endif
8076
danielk19771d850a72004-05-31 08:26:49 +00008077/*
danielk19772372c2b2006-06-27 16:34:56 +00008078** Return non-zero if a read (or write) transaction is active.
8079*/
8080int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008081 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008082 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008083 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008084}
8085
danielk197704103022009-02-03 16:51:24 +00008086int sqlite3BtreeIsInBackup(Btree *p){
8087 assert( p );
8088 assert( sqlite3_mutex_held(p->db->mutex) );
8089 return p->nBackup!=0;
8090}
8091
danielk19772372c2b2006-06-27 16:34:56 +00008092/*
danielk1977da184232006-01-05 11:34:32 +00008093** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008094** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008095** purposes (for example, to store a high-level schema associated with
8096** the shared-btree). The btree layer manages reference counting issues.
8097**
8098** The first time this is called on a shared-btree, nBytes bytes of memory
8099** are allocated, zeroed, and returned to the caller. For each subsequent
8100** call the nBytes parameter is ignored and a pointer to the same blob
8101** of memory returned.
8102**
danielk1977171bfed2008-06-23 09:50:50 +00008103** If the nBytes parameter is 0 and the blob of memory has not yet been
8104** allocated, a null pointer is returned. If the blob has already been
8105** allocated, it is returned as normal.
8106**
danielk1977da184232006-01-05 11:34:32 +00008107** Just before the shared-btree is closed, the function passed as the
8108** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008109** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008110** on the memory, the btree layer does that.
8111*/
8112void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8113 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008114 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008115 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008116 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008117 pBt->xFreeSchema = xFree;
8118 }
drh27641702007-08-22 02:56:42 +00008119 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008120 return pBt->pSchema;
8121}
8122
danielk1977c87d34d2006-01-06 13:00:28 +00008123/*
danielk1977404ca072009-03-16 13:19:36 +00008124** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8125** btree as the argument handle holds an exclusive lock on the
8126** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008127*/
8128int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008129 int rc;
drhe5fe6902007-12-07 18:55:28 +00008130 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008131 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008132 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8133 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008134 sqlite3BtreeLeave(p);
8135 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008136}
8137
drha154dcd2006-03-22 22:10:07 +00008138
8139#ifndef SQLITE_OMIT_SHARED_CACHE
8140/*
8141** Obtain a lock on the table whose root page is iTab. The
8142** lock is a write lock if isWritelock is true or a read lock
8143** if it is false.
8144*/
danielk1977c00da102006-01-07 13:21:04 +00008145int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008146 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008147 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008148 if( p->sharable ){
8149 u8 lockType = READ_LOCK + isWriteLock;
8150 assert( READ_LOCK+1==WRITE_LOCK );
8151 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008152
drh6a9ad3d2008-04-02 16:29:30 +00008153 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008154 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008155 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008156 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008157 }
8158 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008159 }
8160 return rc;
8161}
drha154dcd2006-03-22 22:10:07 +00008162#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008163
danielk1977b4e9af92007-05-01 17:49:49 +00008164#ifndef SQLITE_OMIT_INCRBLOB
8165/*
8166** Argument pCsr must be a cursor opened for writing on an
8167** INTKEY table currently pointing at a valid table entry.
8168** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008169**
8170** Only the data content may only be modified, it is not possible to
8171** change the length of the data stored. If this function is called with
8172** parameters that attempt to write past the end of the existing data,
8173** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008174*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008175int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008176 int rc;
drh1fee73e2007-08-29 04:00:57 +00008177 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008178 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008179 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008180
danielk1977c9000e62009-07-08 13:55:28 +00008181 rc = restoreCursorPosition(pCsr);
8182 if( rc!=SQLITE_OK ){
8183 return rc;
8184 }
danielk19773588ceb2008-06-10 17:30:26 +00008185 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8186 if( pCsr->eState!=CURSOR_VALID ){
8187 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008188 }
8189
danielk1977c9000e62009-07-08 13:55:28 +00008190 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008191 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008192 ** (b) there is a read/write transaction open,
8193 ** (c) the connection holds a write-lock on the table (if required),
8194 ** (d) there are no conflicting read-locks, and
8195 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008196 */
danielk19774f029602009-07-08 18:45:37 +00008197 if( !pCsr->wrFlag ){
8198 return SQLITE_READONLY;
8199 }
drhc9166342012-01-05 23:32:06 +00008200 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8201 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008202 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8203 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008204 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008205
drhfb192682009-07-11 18:26:28 +00008206 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008207}
danielk19772dec9702007-05-02 16:48:37 +00008208
8209/*
8210** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008211** overflow list for the current row. This is used by cursors opened
8212** for incremental blob IO only.
8213**
8214** This function sets a flag only. The actual page location cache
8215** (stored in BtCursor.aOverflow[]) is allocated and used by function
8216** accessPayload() (the worker function for sqlite3BtreeData() and
8217** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008218*/
8219void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008220 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008221 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008222 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008223 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008224}
danielk1977b4e9af92007-05-01 17:49:49 +00008225#endif
dane04dc882010-04-20 18:53:15 +00008226
8227/*
8228** Set both the "read version" (single byte at byte offset 18) and
8229** "write version" (single byte at byte offset 19) fields in the database
8230** header to iVersion.
8231*/
8232int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8233 BtShared *pBt = pBtree->pBt;
8234 int rc; /* Return code */
8235
dane04dc882010-04-20 18:53:15 +00008236 assert( iVersion==1 || iVersion==2 );
8237
danb9780022010-04-21 18:37:57 +00008238 /* If setting the version fields to 1, do not automatically open the
8239 ** WAL connection, even if the version fields are currently set to 2.
8240 */
drhc9166342012-01-05 23:32:06 +00008241 pBt->btsFlags &= ~BTS_NO_WAL;
8242 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008243
8244 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008245 if( rc==SQLITE_OK ){
8246 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008247 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008248 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008249 if( rc==SQLITE_OK ){
8250 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8251 if( rc==SQLITE_OK ){
8252 aData[18] = (u8)iVersion;
8253 aData[19] = (u8)iVersion;
8254 }
8255 }
8256 }
dane04dc882010-04-20 18:53:15 +00008257 }
8258
drhc9166342012-01-05 23:32:06 +00008259 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008260 return rc;
8261}