blob: 961de0ea4023a4a9f6c3f5126f9eae41db3f73b9 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
daneebf2f52017-11-18 17:30:08 +0000115/*
116** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118**
119** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122** with the page number and filename associated with the (MemPage*).
123*/
124#ifdef SQLITE_DEBUG
125int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000126 char *zMsg;
127 sqlite3BeginBenignMalloc();
128 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130 );
drh8bfe66a2018-01-22 15:45:12 +0000131 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000132 if( zMsg ){
133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134 }
135 sqlite3_free(zMsg);
136 return SQLITE_CORRUPT_BKPT;
137}
138# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139#else
140# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141#endif
142
drhe53831d2007-08-17 01:14:38 +0000143#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000144
145#ifdef SQLITE_DEBUG
146/*
drh0ee3dbe2009-10-16 15:05:18 +0000147**** This function is only used as part of an assert() statement. ***
148**
149** Check to see if pBtree holds the required locks to read or write to the
150** table with root page iRoot. Return 1 if it does and 0 if not.
151**
152** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000153** Btree connection pBtree:
154**
155** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156**
drh0ee3dbe2009-10-16 15:05:18 +0000157** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000158** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000159** the corresponding table. This makes things a bit more complicated,
160** as this module treats each table as a separate structure. To determine
161** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000162** function has to search through the database schema.
163**
drh0ee3dbe2009-10-16 15:05:18 +0000164** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000165** hold a write-lock on the schema table (root page 1). This is also
166** acceptable.
167*/
168static int hasSharedCacheTableLock(
169 Btree *pBtree, /* Handle that must hold lock */
170 Pgno iRoot, /* Root page of b-tree */
171 int isIndex, /* True if iRoot is the root of an index b-tree */
172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
173){
174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175 Pgno iTab = 0;
176 BtLock *pLock;
177
drh0ee3dbe2009-10-16 15:05:18 +0000178 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000179 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000180 ** Return true immediately.
181 */
danielk197796d48e92009-06-29 06:00:37 +0000182 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000184 ){
185 return 1;
186 }
187
drh0ee3dbe2009-10-16 15:05:18 +0000188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
192 */
drh2c5e35f2014-08-05 11:04:21 +0000193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000194 return 1;
195 }
196
danielk197796d48e92009-06-29 06:00:37 +0000197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
200 ** table. */
201 if( isIndex ){
202 HashElem *p;
203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000205 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000206 if( iTab ){
207 /* Two or more indexes share the same root page. There must
208 ** be imposter tables. So just return true. The assert is not
209 ** useful in that case. */
210 return 1;
211 }
shane5eff7cf2009-08-10 03:57:58 +0000212 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000213 }
214 }
215 }else{
216 iTab = iRoot;
217 }
218
219 /* Search for the required lock. Either a write-lock on root-page iTab, a
220 ** write-lock on the schema table, or (if the client is reading) a
221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223 if( pLock->pBtree==pBtree
224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225 && pLock->eLock>=eLockType
226 ){
227 return 1;
228 }
229 }
230
231 /* Failed to find the required lock. */
232 return 0;
233}
drh0ee3dbe2009-10-16 15:05:18 +0000234#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000235
drh0ee3dbe2009-10-16 15:05:18 +0000236#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000237/*
drh0ee3dbe2009-10-16 15:05:18 +0000238**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000239**
drh0ee3dbe2009-10-16 15:05:18 +0000240** Return true if it would be illegal for pBtree to write into the
241** table or index rooted at iRoot because other shared connections are
242** simultaneously reading that same table or index.
243**
244** It is illegal for pBtree to write if some other Btree object that
245** shares the same BtShared object is currently reading or writing
246** the iRoot table. Except, if the other Btree object has the
247** read-uncommitted flag set, then it is OK for the other object to
248** have a read cursor.
249**
250** For example, before writing to any part of the table or index
251** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000252**
253** assert( !hasReadConflicts(pBtree, iRoot) );
254*/
255static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256 BtCursor *p;
257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258 if( p->pgnoRoot==iRoot
259 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000261 ){
262 return 1;
263 }
264 }
265 return 0;
266}
267#endif /* #ifdef SQLITE_DEBUG */
268
danielk1977da184232006-01-05 11:34:32 +0000269/*
drh0ee3dbe2009-10-16 15:05:18 +0000270** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000271** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000272** SQLITE_OK if the lock may be obtained (by calling
273** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000274*/
drhc25eabe2009-02-24 18:57:31 +0000275static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000276 BtShared *pBt = p->pBt;
277 BtLock *pIter;
278
drh1fee73e2007-08-29 04:00:57 +0000279 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000283
danielk19775b413d72009-04-01 09:41:54 +0000284 /* If requesting a write-lock, then the Btree must have an open write
285 ** transaction on this file. And, obviously, for this to be so there
286 ** must be an open write transaction on the file itself.
287 */
288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290
drh0ee3dbe2009-10-16 15:05:18 +0000291 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000292 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000293 return SQLITE_OK;
294 }
295
danielk1977641b0f42007-12-21 04:47:25 +0000296 /* If some other connection is holding an exclusive lock, the
297 ** requested lock may not be obtained.
298 */
drhc9166342012-01-05 23:32:06 +0000299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000302 }
303
danielk1977e0d9e6f2009-07-03 16:25:06 +0000304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305 /* The condition (pIter->eLock!=eLock) in the following if(...)
306 ** statement is a simplification of:
307 **
308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309 **
310 ** since we know that if eLock==WRITE_LOCK, then no other connection
311 ** may hold a WRITE_LOCK on any table in this file (since there can
312 ** only be a single writer).
313 */
314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318 if( eLock==WRITE_LOCK ){
319 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000320 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000321 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000323 }
324 }
325 return SQLITE_OK;
326}
drhe53831d2007-08-17 01:14:38 +0000327#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000328
drhe53831d2007-08-17 01:14:38 +0000329#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000330/*
331** Add a lock on the table with root-page iTable to the shared-btree used
332** by Btree handle p. Parameter eLock must be either READ_LOCK or
333** WRITE_LOCK.
334**
danielk19779d104862009-07-09 08:27:14 +0000335** This function assumes the following:
336**
drh0ee3dbe2009-10-16 15:05:18 +0000337** (a) The specified Btree object p is connected to a sharable
338** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000339**
drh0ee3dbe2009-10-16 15:05:18 +0000340** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000341** with the requested lock (i.e. querySharedCacheTableLock() has
342** already been called and returned SQLITE_OK).
343**
344** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000346*/
drhc25eabe2009-02-24 18:57:31 +0000347static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000348 BtShared *pBt = p->pBt;
349 BtLock *pLock = 0;
350 BtLock *pIter;
351
drh1fee73e2007-08-29 04:00:57 +0000352 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000355
danielk1977e0d9e6f2009-07-03 16:25:06 +0000356 /* A connection with the read-uncommitted flag set will never try to
357 ** obtain a read-lock using this function. The only read-lock obtained
358 ** by a connection in read-uncommitted mode is on the sqlite_master
359 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000361
danielk19779d104862009-07-09 08:27:14 +0000362 /* This function should only be called on a sharable b-tree after it
363 ** has been determined that no other b-tree holds a conflicting lock. */
364 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000366
367 /* First search the list for an existing lock on this table. */
368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369 if( pIter->iTable==iTable && pIter->pBtree==p ){
370 pLock = pIter;
371 break;
372 }
373 }
374
375 /* If the above search did not find a BtLock struct associating Btree p
376 ** with table iTable, allocate one and link it into the list.
377 */
378 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000380 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000381 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000382 }
383 pLock->iTable = iTable;
384 pLock->pBtree = p;
385 pLock->pNext = pBt->pLock;
386 pBt->pLock = pLock;
387 }
388
389 /* Set the BtLock.eLock variable to the maximum of the current lock
390 ** and the requested lock. This means if a write-lock was already held
391 ** and a read-lock requested, we don't incorrectly downgrade the lock.
392 */
393 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000394 if( eLock>pLock->eLock ){
395 pLock->eLock = eLock;
396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397
398 return SQLITE_OK;
399}
drhe53831d2007-08-17 01:14:38 +0000400#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000401
drhe53831d2007-08-17 01:14:38 +0000402#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000403/*
drhc25eabe2009-02-24 18:57:31 +0000404** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000405** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000406**
drh0ee3dbe2009-10-16 15:05:18 +0000407** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000408** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000409** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000410*/
drhc25eabe2009-02-24 18:57:31 +0000411static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000412 BtShared *pBt = p->pBt;
413 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000414
drh1fee73e2007-08-29 04:00:57 +0000415 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000416 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000417 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000418
danielk1977aef0bf62005-12-30 16:28:01 +0000419 while( *ppIter ){
420 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000422 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000423 if( pLock->pBtree==p ){
424 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000425 assert( pLock->iTable!=1 || pLock==&p->lock );
426 if( pLock->iTable!=1 ){
427 sqlite3_free(pLock);
428 }
danielk1977aef0bf62005-12-30 16:28:01 +0000429 }else{
430 ppIter = &pLock->pNext;
431 }
432 }
danielk1977641b0f42007-12-21 04:47:25 +0000433
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000435 if( pBt->pWriter==p ){
436 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000438 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000439 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000440 ** transaction. If there currently exists a writer, and p is not
441 ** that writer, then the number of locks held by connections other
442 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000443 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000444 **
drhc9166342012-01-05 23:32:06 +0000445 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000446 ** be zero already. So this next line is harmless in that case.
447 */
drhc9166342012-01-05 23:32:06 +0000448 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000449 }
danielk1977aef0bf62005-12-30 16:28:01 +0000450}
danielk197794b30732009-07-02 17:21:57 +0000451
danielk1977e0d9e6f2009-07-03 16:25:06 +0000452/*
drh0ee3dbe2009-10-16 15:05:18 +0000453** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000454*/
danielk197794b30732009-07-02 17:21:57 +0000455static void downgradeAllSharedCacheTableLocks(Btree *p){
456 BtShared *pBt = p->pBt;
457 if( pBt->pWriter==p ){
458 BtLock *pLock;
459 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463 pLock->eLock = READ_LOCK;
464 }
465 }
466}
467
danielk1977aef0bf62005-12-30 16:28:01 +0000468#endif /* SQLITE_OMIT_SHARED_CACHE */
469
drh3908fe92017-09-01 14:50:19 +0000470static void releasePage(MemPage *pPage); /* Forward reference */
471static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000472static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000473
drh1fee73e2007-08-29 04:00:57 +0000474/*
drh0ee3dbe2009-10-16 15:05:18 +0000475***** This routine is used inside of assert() only ****
476**
477** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000478*/
drh0ee3dbe2009-10-16 15:05:18 +0000479#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000480static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000481 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000482}
drh5e08d0f2016-06-04 21:05:54 +0000483
484/* Verify that the cursor and the BtShared agree about what is the current
485** database connetion. This is important in shared-cache mode. If the database
486** connection pointers get out-of-sync, it is possible for routines like
487** btreeInitPage() to reference an stale connection pointer that references a
488** a connection that has already closed. This routine is used inside assert()
489** statements only and for the purpose of double-checking that the btree code
490** does keep the database connection pointers up-to-date.
491*/
dan7a2347e2016-01-07 16:43:54 +0000492static int cursorOwnsBtShared(BtCursor *p){
493 assert( cursorHoldsMutex(p) );
494 return (p->pBtree->db==p->pBt->db);
495}
drh1fee73e2007-08-29 04:00:57 +0000496#endif
497
danielk197792d4d7a2007-05-04 12:05:56 +0000498/*
dan5a500af2014-03-11 20:33:04 +0000499** Invalidate the overflow cache of the cursor passed as the first argument.
500** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000501*/
drh036dbec2014-03-11 23:40:44 +0000502#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000503
504/*
505** Invalidate the overflow page-list cache for all cursors opened
506** on the shared btree structure pBt.
507*/
508static void invalidateAllOverflowCache(BtShared *pBt){
509 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000510 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000511 for(p=pBt->pCursor; p; p=p->pNext){
512 invalidateOverflowCache(p);
513 }
514}
danielk197796d48e92009-06-29 06:00:37 +0000515
dan5a500af2014-03-11 20:33:04 +0000516#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000517/*
518** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000519** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000520** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000521**
522** If argument isClearTable is true, then the entire contents of the
523** table is about to be deleted. In this case invalidate all incrblob
524** cursors open on any row within the table with root-page pgnoRoot.
525**
526** Otherwise, if argument isClearTable is false, then the row with
527** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000528** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000529*/
530static void invalidateIncrblobCursors(
531 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000532 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000533 i64 iRow, /* The rowid that might be changing */
534 int isClearTable /* True if all rows are being deleted */
535){
536 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000537 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000538 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000539 pBtree->hasIncrblobCur = 0;
540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541 if( (p->curFlags & BTCF_Incrblob)!=0 ){
542 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000544 p->eState = CURSOR_INVALID;
545 }
danielk197796d48e92009-06-29 06:00:37 +0000546 }
547 }
548}
549
danielk197792d4d7a2007-05-04 12:05:56 +0000550#else
dan5a500af2014-03-11 20:33:04 +0000551 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000552 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000553#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000554
drh980b1a72006-08-16 16:42:48 +0000555/*
danielk1977bea2a942009-01-20 17:06:27 +0000556** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557** when a page that previously contained data becomes a free-list leaf
558** page.
559**
560** The BtShared.pHasContent bitvec exists to work around an obscure
561** bug caused by the interaction of two useful IO optimizations surrounding
562** free-list leaf pages:
563**
564** 1) When all data is deleted from a page and the page becomes
565** a free-list leaf page, the page is not written to the database
566** (as free-list leaf pages contain no meaningful data). Sometimes
567** such a page is not even journalled (as it will not be modified,
568** why bother journalling it?).
569**
570** 2) When a free-list leaf page is reused, its content is not read
571** from the database or written to the journal file (why should it
572** be, if it is not at all meaningful?).
573**
574** By themselves, these optimizations work fine and provide a handy
575** performance boost to bulk delete or insert operations. However, if
576** a page is moved to the free-list and then reused within the same
577** transaction, a problem comes up. If the page is not journalled when
578** it is moved to the free-list and it is also not journalled when it
579** is extracted from the free-list and reused, then the original data
580** may be lost. In the event of a rollback, it may not be possible
581** to restore the database to its original configuration.
582**
583** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584** moved to become a free-list leaf page, the corresponding bit is
585** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000586** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000587** set in BtShared.pHasContent. The contents of the bitvec are cleared
588** at the end of every transaction.
589*/
590static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591 int rc = SQLITE_OK;
592 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000593 assert( pgno<=pBt->nPage );
594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000595 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000596 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000597 }
598 }
599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601 }
602 return rc;
603}
604
605/*
606** Query the BtShared.pHasContent vector.
607**
608** This function is called when a free-list leaf page is removed from the
609** free-list for reuse. It returns false if it is safe to retrieve the
610** page from the pager layer with the 'no-content' flag set. True otherwise.
611*/
612static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613 Bitvec *p = pBt->pHasContent;
pdrdb9cb172020-03-08 13:33:58 +0000614 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
danielk1977bea2a942009-01-20 17:06:27 +0000615}
616
617/*
618** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619** invoked at the conclusion of each write-transaction.
620*/
621static void btreeClearHasContent(BtShared *pBt){
622 sqlite3BitvecDestroy(pBt->pHasContent);
623 pBt->pHasContent = 0;
624}
625
626/*
drh138eeeb2013-03-27 03:15:23 +0000627** Release all of the apPage[] pages for a cursor.
628*/
629static void btreeReleaseAllCursorPages(BtCursor *pCur){
630 int i;
drh352a35a2017-08-15 03:46:47 +0000631 if( pCur->iPage>=0 ){
632 for(i=0; i<pCur->iPage; i++){
633 releasePageNotNull(pCur->apPage[i]);
634 }
635 releasePageNotNull(pCur->pPage);
636 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000637 }
drh138eeeb2013-03-27 03:15:23 +0000638}
639
danf0ee1d32015-09-12 19:26:11 +0000640/*
641** The cursor passed as the only argument must point to a valid entry
642** when this function is called (i.e. have eState==CURSOR_VALID). This
643** function saves the current cursor key in variables pCur->nKey and
644** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645** code otherwise.
646**
647** If the cursor is open on an intkey table, then the integer key
648** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650** set to point to a malloced buffer pCur->nKey bytes in size containing
651** the key.
652*/
653static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000654 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000655 assert( CURSOR_VALID==pCur->eState );
656 assert( 0==pCur->pKey );
657 assert( cursorHoldsMutex(pCur) );
658
drha7c90c42016-06-04 20:37:10 +0000659 if( pCur->curIntKey ){
660 /* Only the rowid is required for a table btree */
661 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662 }else{
danfffaf232018-12-14 13:18:35 +0000663 /* For an index btree, save the complete key content. It is possible
664 ** that the current key is corrupt. In that case, it is possible that
665 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666 ** up to the size of 1 varint plus 1 8-byte value when the cursor
667 ** position is restored. Hence the 17 bytes of padding allocated
668 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000669 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000670 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000671 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000672 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000673 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000674 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000675 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000676 pCur->pKey = pKey;
677 }else{
678 sqlite3_free(pKey);
679 }
680 }else{
mistachkinfad30392016-02-13 23:43:46 +0000681 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000682 }
683 }
684 assert( !pCur->curIntKey || !pCur->pKey );
685 return rc;
686}
drh138eeeb2013-03-27 03:15:23 +0000687
688/*
drh980b1a72006-08-16 16:42:48 +0000689** Save the current cursor position in the variables BtCursor.nKey
690** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000691**
692** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
693** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000694*/
695static int saveCursorPosition(BtCursor *pCur){
696 int rc;
697
drhd2f83132015-03-25 17:35:01 +0000698 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000699 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000700 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000701
drh7b14b652019-12-29 22:08:20 +0000702 if( pCur->curFlags & BTCF_Pinned ){
703 return SQLITE_CONSTRAINT_PINNED;
704 }
drhd2f83132015-03-25 17:35:01 +0000705 if( pCur->eState==CURSOR_SKIPNEXT ){
706 pCur->eState = CURSOR_VALID;
707 }else{
708 pCur->skipNext = 0;
709 }
drh980b1a72006-08-16 16:42:48 +0000710
danf0ee1d32015-09-12 19:26:11 +0000711 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000712 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000713 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000714 pCur->eState = CURSOR_REQUIRESEEK;
715 }
716
dane755e102015-09-30 12:59:12 +0000717 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000718 return rc;
719}
720
drh637f3d82014-08-22 22:26:07 +0000721/* Forward reference */
722static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
723
drh980b1a72006-08-16 16:42:48 +0000724/*
drh0ee3dbe2009-10-16 15:05:18 +0000725** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000726** the table with root-page iRoot. "Saving the cursor position" means that
727** the location in the btree is remembered in such a way that it can be
728** moved back to the same spot after the btree has been modified. This
729** routine is called just before cursor pExcept is used to modify the
730** table, for example in BtreeDelete() or BtreeInsert().
731**
drh27fb7462015-06-30 02:47:36 +0000732** If there are two or more cursors on the same btree, then all such
733** cursors should have their BTCF_Multiple flag set. The btreeCursor()
734** routine enforces that rule. This routine only needs to be called in
735** the uncommon case when pExpect has the BTCF_Multiple flag set.
736**
737** If pExpect!=NULL and if no other cursors are found on the same root-page,
738** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
739** pointless call to this routine.
740**
drh637f3d82014-08-22 22:26:07 +0000741** Implementation note: This routine merely checks to see if any cursors
742** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
743** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000744*/
745static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
746 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000747 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000748 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000749 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000750 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
751 }
drh27fb7462015-06-30 02:47:36 +0000752 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
753 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
754 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000755}
756
757/* This helper routine to saveAllCursors does the actual work of saving
758** the cursors if and when a cursor is found that actually requires saving.
759** The common case is that no cursors need to be saved, so this routine is
760** broken out from its caller to avoid unnecessary stack pointer movement.
761*/
762static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000763 BtCursor *p, /* The first cursor that needs saving */
764 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
765 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000766){
767 do{
drh138eeeb2013-03-27 03:15:23 +0000768 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000769 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000770 int rc = saveCursorPosition(p);
771 if( SQLITE_OK!=rc ){
772 return rc;
773 }
774 }else{
drh85ef6302017-08-02 15:50:09 +0000775 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000776 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000777 }
778 }
drh637f3d82014-08-22 22:26:07 +0000779 p = p->pNext;
780 }while( p );
drh980b1a72006-08-16 16:42:48 +0000781 return SQLITE_OK;
782}
783
784/*
drhbf700f32007-03-31 02:36:44 +0000785** Clear the current cursor position.
786*/
danielk1977be51a652008-10-08 17:58:48 +0000787void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000788 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000789 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000790 pCur->pKey = 0;
791 pCur->eState = CURSOR_INVALID;
792}
793
794/*
danielk19773509a652009-07-06 18:56:13 +0000795** In this version of BtreeMoveto, pKey is a packed index record
796** such as is generated by the OP_MakeRecord opcode. Unpack the
797** record and then call BtreeMovetoUnpacked() to do the work.
798*/
799static int btreeMoveto(
800 BtCursor *pCur, /* Cursor open on the btree to be searched */
801 const void *pKey, /* Packed key if the btree is an index */
802 i64 nKey, /* Integer key for tables. Size of pKey for indices */
803 int bias, /* Bias search to the high end */
804 int *pRes /* Write search results here */
805){
806 int rc; /* Status code */
807 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000808
809 if( pKey ){
danb0c4c942019-01-24 15:16:17 +0000810 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +0000811 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +0000812 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000813 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +0000814 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
815 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +0000816 rc = SQLITE_CORRUPT_BKPT;
drha582b012016-12-21 19:45:54 +0000817 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000818 }
danielk19773509a652009-07-06 18:56:13 +0000819 }else{
820 pIdxKey = 0;
821 }
822 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000823moveto_done:
824 if( pIdxKey ){
825 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000826 }
827 return rc;
828}
829
830/*
drh980b1a72006-08-16 16:42:48 +0000831** Restore the cursor to the position it was in (or as close to as possible)
832** when saveCursorPosition() was called. Note that this call deletes the
833** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000834** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000835** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000836*/
danielk197730548662009-07-09 05:07:37 +0000837static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000838 int rc;
mistachkin4e2d3d42019-04-01 03:07:21 +0000839 int skipNext = 0;
dan7a2347e2016-01-07 16:43:54 +0000840 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000841 assert( pCur->eState>=CURSOR_REQUIRESEEK );
842 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000843 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000844 }
drh980b1a72006-08-16 16:42:48 +0000845 pCur->eState = CURSOR_INVALID;
drhb336d1a2019-03-30 19:17:35 +0000846 if( sqlite3FaultSim(410) ){
847 rc = SQLITE_IOERR;
848 }else{
849 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
850 }
drh980b1a72006-08-16 16:42:48 +0000851 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000852 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000853 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000854 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +0000855 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +0000856 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
857 pCur->eState = CURSOR_SKIPNEXT;
858 }
drh980b1a72006-08-16 16:42:48 +0000859 }
860 return rc;
861}
862
drha3460582008-07-11 21:02:53 +0000863#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000864 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000865 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000866 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000867
drha3460582008-07-11 21:02:53 +0000868/*
drh6848dad2014-08-22 23:33:03 +0000869** Determine whether or not a cursor has moved from the position where
870** it was last placed, or has been invalidated for any other reason.
871** Cursors can move when the row they are pointing at is deleted out
872** from under them, for example. Cursor might also move if a btree
873** is rebalanced.
drha3460582008-07-11 21:02:53 +0000874**
drh6848dad2014-08-22 23:33:03 +0000875** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000876**
drh6848dad2014-08-22 23:33:03 +0000877** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
878** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000879*/
drh6848dad2014-08-22 23:33:03 +0000880int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000881 assert( EIGHT_BYTE_ALIGNMENT(pCur)
882 || pCur==sqlite3BtreeFakeValidCursor() );
883 assert( offsetof(BtCursor, eState)==0 );
884 assert( sizeof(pCur->eState)==1 );
885 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000886}
887
888/*
drhfe0cf7a2017-08-16 19:20:20 +0000889** Return a pointer to a fake BtCursor object that will always answer
890** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
891** cursor returned must not be used with any other Btree interface.
892*/
893BtCursor *sqlite3BtreeFakeValidCursor(void){
894 static u8 fakeCursor = CURSOR_VALID;
895 assert( offsetof(BtCursor, eState)==0 );
896 return (BtCursor*)&fakeCursor;
897}
898
899/*
drh6848dad2014-08-22 23:33:03 +0000900** This routine restores a cursor back to its original position after it
901** has been moved by some outside activity (such as a btree rebalance or
902** a row having been deleted out from under the cursor).
903**
904** On success, the *pDifferentRow parameter is false if the cursor is left
905** pointing at exactly the same row. *pDifferntRow is the row the cursor
906** was pointing to has been deleted, forcing the cursor to point to some
907** nearby row.
908**
909** This routine should only be called for a cursor that just returned
910** TRUE from sqlite3BtreeCursorHasMoved().
911*/
912int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000913 int rc;
914
drh6848dad2014-08-22 23:33:03 +0000915 assert( pCur!=0 );
916 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000917 rc = restoreCursorPosition(pCur);
918 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000919 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000920 return rc;
921 }
drh606a3572015-03-25 18:29:10 +0000922 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000923 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000924 }else{
drh6848dad2014-08-22 23:33:03 +0000925 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000926 }
927 return SQLITE_OK;
928}
929
drhf7854c72015-10-27 13:24:37 +0000930#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000931/*
drh0df57012015-08-14 15:05:55 +0000932** Provide hints to the cursor. The particular hint given (and the type
933** and number of the varargs parameters) is determined by the eHintType
934** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000935*/
drh0df57012015-08-14 15:05:55 +0000936void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000937 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000938}
drhf7854c72015-10-27 13:24:37 +0000939#endif
940
941/*
942** Provide flag hints to the cursor.
943*/
944void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
945 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
946 pCur->hints = x;
947}
948
drh28935362013-12-07 20:39:19 +0000949
danielk1977599fcba2004-11-08 07:13:13 +0000950#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000951/*
drha3152892007-05-05 11:48:52 +0000952** Given a page number of a regular database page, return the page
953** number for the pointer-map page that contains the entry for the
954** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000955**
956** Return 0 (not a valid page) for pgno==1 since there is
957** no pointer map associated with page 1. The integrity_check logic
958** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000959*/
danielk1977266664d2006-02-10 08:24:21 +0000960static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000961 int nPagesPerMapPage;
962 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000963 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000964 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000965 nPagesPerMapPage = (pBt->usableSize/5)+1;
966 iPtrMap = (pgno-2)/nPagesPerMapPage;
967 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000968 if( ret==PENDING_BYTE_PAGE(pBt) ){
969 ret++;
970 }
971 return ret;
972}
danielk1977a19df672004-11-03 11:37:07 +0000973
danielk1977afcdd022004-10-31 16:25:42 +0000974/*
danielk1977afcdd022004-10-31 16:25:42 +0000975** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000976**
977** This routine updates the pointer map entry for page number 'key'
978** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000979**
980** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
981** a no-op. If an error occurs, the appropriate error code is written
982** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000983*/
drh98add2e2009-07-20 17:11:49 +0000984static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000985 DbPage *pDbPage; /* The pointer map page */
986 u8 *pPtrmap; /* The pointer map data */
987 Pgno iPtrmap; /* The pointer map page number */
988 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000989 int rc; /* Return code from subfunctions */
990
991 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000992
drh1fee73e2007-08-29 04:00:57 +0000993 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000994 /* The master-journal page number must never be used as a pointer map page */
995 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
996
danielk1977ac11ee62005-01-15 12:45:51 +0000997 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000998 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000999 *pRC = SQLITE_CORRUPT_BKPT;
1000 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +00001001 }
danielk1977266664d2006-02-10 08:24:21 +00001002 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001003 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00001004 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00001005 *pRC = rc;
1006 return;
danielk1977afcdd022004-10-31 16:25:42 +00001007 }
drh203b1ea2018-12-14 03:14:18 +00001008 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1009 /* The first byte of the extra data is the MemPage.isInit byte.
1010 ** If that byte is set, it means this page is also being used
1011 ** as a btree page. */
1012 *pRC = SQLITE_CORRUPT_BKPT;
1013 goto ptrmap_exit;
1014 }
danielk19778c666b12008-07-18 09:34:57 +00001015 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001016 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001017 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001018 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001019 }
drhfc243732011-05-17 15:21:56 +00001020 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001021 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001022
drh615ae552005-01-16 23:21:00 +00001023 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1024 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001025 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001026 if( rc==SQLITE_OK ){
1027 pPtrmap[offset] = eType;
1028 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001029 }
danielk1977afcdd022004-10-31 16:25:42 +00001030 }
1031
drh4925a552009-07-07 11:39:58 +00001032ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001033 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001034}
1035
1036/*
1037** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001038**
1039** This routine retrieves the pointer map entry for page 'key', writing
1040** the type and parent page number to *pEType and *pPgno respectively.
1041** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001042*/
danielk1977aef0bf62005-12-30 16:28:01 +00001043static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001044 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001045 int iPtrmap; /* Pointer map page index */
1046 u8 *pPtrmap; /* Pointer map page data */
1047 int offset; /* Offset of entry in pointer map */
1048 int rc;
1049
drh1fee73e2007-08-29 04:00:57 +00001050 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001051
danielk1977266664d2006-02-10 08:24:21 +00001052 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001053 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001054 if( rc!=0 ){
1055 return rc;
1056 }
danielk19773b8a05f2007-03-19 17:44:26 +00001057 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001058
danielk19778c666b12008-07-18 09:34:57 +00001059 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001060 if( offset<0 ){
1061 sqlite3PagerUnref(pDbPage);
1062 return SQLITE_CORRUPT_BKPT;
1063 }
1064 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001065 assert( pEType!=0 );
1066 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001067 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001068
danielk19773b8a05f2007-03-19 17:44:26 +00001069 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001070 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001071 return SQLITE_OK;
1072}
1073
danielk197785d90ca2008-07-19 14:25:15 +00001074#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001075 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001076 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001077 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001078#endif
danielk1977afcdd022004-10-31 16:25:42 +00001079
drh0d316a42002-08-11 20:10:47 +00001080/*
drh271efa52004-05-30 19:19:05 +00001081** Given a btree page and a cell index (0 means the first cell on
1082** the page, 1 means the second cell, and so forth) return a pointer
1083** to the cell content.
1084**
drhf44890a2015-06-27 03:58:15 +00001085** findCellPastPtr() does the same except it skips past the initial
1086** 4-byte child pointer found on interior pages, if there is one.
1087**
drh271efa52004-05-30 19:19:05 +00001088** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001089*/
drh1688c862008-07-18 02:44:17 +00001090#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001091 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001092#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001093 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001094
drh43605152004-05-29 21:46:49 +00001095
1096/*
drh5fa60512015-06-19 17:19:34 +00001097** This is common tail processing for btreeParseCellPtr() and
1098** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1099** on a single B-tree page. Make necessary adjustments to the CellInfo
1100** structure.
drh43605152004-05-29 21:46:49 +00001101*/
drh5fa60512015-06-19 17:19:34 +00001102static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1103 MemPage *pPage, /* Page containing the cell */
1104 u8 *pCell, /* Pointer to the cell text. */
1105 CellInfo *pInfo /* Fill in this structure */
1106){
1107 /* If the payload will not fit completely on the local page, we have
1108 ** to decide how much to store locally and how much to spill onto
1109 ** overflow pages. The strategy is to minimize the amount of unused
1110 ** space on overflow pages while keeping the amount of local storage
1111 ** in between minLocal and maxLocal.
1112 **
1113 ** Warning: changing the way overflow payload is distributed in any
1114 ** way will result in an incompatible file format.
1115 */
1116 int minLocal; /* Minimum amount of payload held locally */
1117 int maxLocal; /* Maximum amount of payload held locally */
1118 int surplus; /* Overflow payload available for local storage */
1119
1120 minLocal = pPage->minLocal;
1121 maxLocal = pPage->maxLocal;
1122 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1123 testcase( surplus==maxLocal );
1124 testcase( surplus==maxLocal+1 );
1125 if( surplus <= maxLocal ){
1126 pInfo->nLocal = (u16)surplus;
1127 }else{
1128 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001129 }
drh45ac1c72015-12-18 03:59:16 +00001130 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001131}
1132
1133/*
drh5fa60512015-06-19 17:19:34 +00001134** The following routines are implementations of the MemPage.xParseCell()
1135** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001136**
drh5fa60512015-06-19 17:19:34 +00001137** Parse a cell content block and fill in the CellInfo structure.
1138**
1139** btreeParseCellPtr() => table btree leaf nodes
1140** btreeParseCellNoPayload() => table btree internal nodes
1141** btreeParseCellPtrIndex() => index btree nodes
1142**
1143** There is also a wrapper function btreeParseCell() that works for
1144** all MemPage types and that references the cell by index rather than
1145** by pointer.
drh43605152004-05-29 21:46:49 +00001146*/
drh5fa60512015-06-19 17:19:34 +00001147static void btreeParseCellPtrNoPayload(
1148 MemPage *pPage, /* Page containing the cell */
1149 u8 *pCell, /* Pointer to the cell text. */
1150 CellInfo *pInfo /* Fill in this structure */
1151){
1152 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1153 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001154 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001155#ifndef SQLITE_DEBUG
1156 UNUSED_PARAMETER(pPage);
1157#endif
drh5fa60512015-06-19 17:19:34 +00001158 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1159 pInfo->nPayload = 0;
1160 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001161 pInfo->pPayload = 0;
1162 return;
1163}
danielk197730548662009-07-09 05:07:37 +00001164static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001165 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001166 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001167 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001168){
drh3e28ff52014-09-24 00:59:08 +00001169 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001170 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001171 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001172
drh1fee73e2007-08-29 04:00:57 +00001173 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001174 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001175 assert( pPage->intKeyLeaf );
1176 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001177 pIter = pCell;
1178
1179 /* The next block of code is equivalent to:
1180 **
1181 ** pIter += getVarint32(pIter, nPayload);
1182 **
1183 ** The code is inlined to avoid a function call.
1184 */
1185 nPayload = *pIter;
1186 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001187 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001188 nPayload &= 0x7f;
1189 do{
1190 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1191 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001192 }
drh56cb04e2015-06-19 18:24:37 +00001193 pIter++;
1194
1195 /* The next block of code is equivalent to:
1196 **
1197 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1198 **
1199 ** The code is inlined to avoid a function call.
1200 */
1201 iKey = *pIter;
1202 if( iKey>=0x80 ){
1203 u8 *pEnd = &pIter[7];
1204 iKey &= 0x7f;
1205 while(1){
1206 iKey = (iKey<<7) | (*++pIter & 0x7f);
1207 if( (*pIter)<0x80 ) break;
1208 if( pIter>=pEnd ){
1209 iKey = (iKey<<8) | *++pIter;
1210 break;
1211 }
1212 }
1213 }
1214 pIter++;
1215
1216 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001217 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001218 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001219 testcase( nPayload==pPage->maxLocal );
1220 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001221 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001222 /* This is the (easy) common case where the entire payload fits
1223 ** on the local page. No overflow is required.
1224 */
drhab1cc582014-09-23 21:25:19 +00001225 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1226 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001227 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001228 }else{
drh5fa60512015-06-19 17:19:34 +00001229 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001230 }
drh3aac2dd2004-04-26 14:10:20 +00001231}
drh5fa60512015-06-19 17:19:34 +00001232static void btreeParseCellPtrIndex(
1233 MemPage *pPage, /* Page containing the cell */
1234 u8 *pCell, /* Pointer to the cell text. */
1235 CellInfo *pInfo /* Fill in this structure */
1236){
1237 u8 *pIter; /* For scanning through pCell */
1238 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001239
drh5fa60512015-06-19 17:19:34 +00001240 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1241 assert( pPage->leaf==0 || pPage->leaf==1 );
1242 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001243 pIter = pCell + pPage->childPtrSize;
1244 nPayload = *pIter;
1245 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001246 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001247 nPayload &= 0x7f;
1248 do{
1249 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1250 }while( *(pIter)>=0x80 && pIter<pEnd );
1251 }
1252 pIter++;
1253 pInfo->nKey = nPayload;
1254 pInfo->nPayload = nPayload;
1255 pInfo->pPayload = pIter;
1256 testcase( nPayload==pPage->maxLocal );
1257 testcase( nPayload==pPage->maxLocal+1 );
1258 if( nPayload<=pPage->maxLocal ){
1259 /* This is the (easy) common case where the entire payload fits
1260 ** on the local page. No overflow is required.
1261 */
1262 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1263 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1264 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001265 }else{
1266 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001267 }
1268}
danielk197730548662009-07-09 05:07:37 +00001269static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001270 MemPage *pPage, /* Page containing the cell */
1271 int iCell, /* The cell index. First cell is 0 */
1272 CellInfo *pInfo /* Fill in this structure */
1273){
drh5fa60512015-06-19 17:19:34 +00001274 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001275}
drh3aac2dd2004-04-26 14:10:20 +00001276
1277/*
drh5fa60512015-06-19 17:19:34 +00001278** The following routines are implementations of the MemPage.xCellSize
1279** method.
1280**
drh43605152004-05-29 21:46:49 +00001281** Compute the total number of bytes that a Cell needs in the cell
1282** data area of the btree-page. The return number includes the cell
1283** data header and the local payload, but not any overflow page or
1284** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001285**
drh5fa60512015-06-19 17:19:34 +00001286** cellSizePtrNoPayload() => table internal nodes
1287** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001288*/
danielk1977ae5558b2009-04-29 11:31:47 +00001289static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001290 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1291 u8 *pEnd; /* End mark for a varint */
1292 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001293
1294#ifdef SQLITE_DEBUG
1295 /* The value returned by this function should always be the same as
1296 ** the (CellInfo.nSize) value found by doing a full parse of the
1297 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1298 ** this function verifies that this invariant is not violated. */
1299 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001300 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001301#endif
1302
drh3e28ff52014-09-24 00:59:08 +00001303 nSize = *pIter;
1304 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001305 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001306 nSize &= 0x7f;
1307 do{
1308 nSize = (nSize<<7) | (*++pIter & 0x7f);
1309 }while( *(pIter)>=0x80 && pIter<pEnd );
1310 }
1311 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001312 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001313 /* pIter now points at the 64-bit integer key value, a variable length
1314 ** integer. The following block moves pIter to point at the first byte
1315 ** past the end of the key value. */
1316 pEnd = &pIter[9];
1317 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001318 }
drh0a45c272009-07-08 01:49:11 +00001319 testcase( nSize==pPage->maxLocal );
1320 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001321 if( nSize<=pPage->maxLocal ){
1322 nSize += (u32)(pIter - pCell);
1323 if( nSize<4 ) nSize = 4;
1324 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001325 int minLocal = pPage->minLocal;
1326 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001327 testcase( nSize==pPage->maxLocal );
1328 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001329 if( nSize>pPage->maxLocal ){
1330 nSize = minLocal;
1331 }
drh3e28ff52014-09-24 00:59:08 +00001332 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001333 }
drhdc41d602014-09-22 19:51:35 +00001334 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001335 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001336}
drh25ada072015-06-19 15:07:14 +00001337static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1338 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1339 u8 *pEnd; /* End mark for a varint */
1340
1341#ifdef SQLITE_DEBUG
1342 /* The value returned by this function should always be the same as
1343 ** the (CellInfo.nSize) value found by doing a full parse of the
1344 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1345 ** this function verifies that this invariant is not violated. */
1346 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001347 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001348#else
1349 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001350#endif
1351
1352 assert( pPage->childPtrSize==4 );
1353 pEnd = pIter + 9;
1354 while( (*pIter++)&0x80 && pIter<pEnd );
1355 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1356 return (u16)(pIter - pCell);
1357}
1358
drh0ee3dbe2009-10-16 15:05:18 +00001359
1360#ifdef SQLITE_DEBUG
1361/* This variation on cellSizePtr() is used inside of assert() statements
1362** only. */
drha9121e42008-02-19 14:59:35 +00001363static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001364 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001365}
danielk1977bc6ada42004-06-30 08:20:16 +00001366#endif
drh3b7511c2001-05-26 13:15:44 +00001367
danielk197779a40da2005-01-16 08:00:01 +00001368#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001369/*
drh0f1bf4c2019-01-13 20:17:21 +00001370** The cell pCell is currently part of page pSrc but will ultimately be part
1371** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1372** pointer to an overflow page, insert an entry into the pointer-map for
1373** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001374*/
drh0f1bf4c2019-01-13 20:17:21 +00001375static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001376 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001377 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001378 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001379 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001380 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001381 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001382 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1383 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001384 *pRC = SQLITE_CORRUPT_BKPT;
1385 return;
1386 }
1387 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001388 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001389 }
danielk1977ac11ee62005-01-15 12:45:51 +00001390}
danielk197779a40da2005-01-16 08:00:01 +00001391#endif
1392
danielk1977ac11ee62005-01-15 12:45:51 +00001393
drhda200cc2004-05-09 11:51:38 +00001394/*
dane6d065a2017-02-24 19:58:22 +00001395** Defragment the page given. This routine reorganizes cells within the
1396** page so that there are no free-blocks on the free-block list.
1397**
1398** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1399** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001400**
1401** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1402** b-tree page so that there are no freeblocks or fragment bytes, all
1403** unused bytes are contained in the unallocated space region, and all
1404** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001405*/
dane6d065a2017-02-24 19:58:22 +00001406static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001407 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001408 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001409 int hdr; /* Offset to the page header */
1410 int size; /* Size of a cell */
1411 int usableSize; /* Number of usable bytes on a page */
1412 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001413 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001414 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001415 unsigned char *data; /* The page data */
1416 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001417 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001418 int iCellFirst; /* First allowable cell index */
1419 int iCellLast; /* Last possible cell index */
1420
danielk19773b8a05f2007-03-19 17:44:26 +00001421 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001422 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001423 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001424 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001425 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001426 temp = 0;
1427 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001428 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001429 cellOffset = pPage->cellOffset;
1430 nCell = pPage->nCell;
drh45616c72019-02-28 13:21:36 +00001431 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001432 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001433 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001434
1435 /* This block handles pages with two or fewer free blocks and nMaxFrag
1436 ** or fewer fragmented bytes. In this case it is faster to move the
1437 ** two (or one) blocks of cells using memmove() and add the required
1438 ** offsets to each pointer in the cell-pointer array than it is to
1439 ** reconstruct the entire page. */
1440 if( (int)data[hdr+7]<=nMaxFrag ){
1441 int iFree = get2byte(&data[hdr+1]);
drh119e1ff2019-03-30 18:39:13 +00001442 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001443 if( iFree ){
1444 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001445 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001446 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1447 u8 *pEnd = &data[cellOffset + nCell*2];
1448 u8 *pAddr;
1449 int sz2 = 0;
1450 int sz = get2byte(&data[iFree+2]);
1451 int top = get2byte(&data[hdr+5]);
drh4b9e7362020-02-18 23:58:58 +00001452 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001453 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001454 }
dane6d065a2017-02-24 19:58:22 +00001455 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001456 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001457 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001458 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001459 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1460 sz += sz2;
drh3b76c452020-01-03 17:40:30 +00001461 }else if( NEVER(iFree+sz>usableSize) ){
dandcc427c2019-03-21 21:18:36 +00001462 return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001463 }
dandcc427c2019-03-21 21:18:36 +00001464
dane6d065a2017-02-24 19:58:22 +00001465 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001466 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001467 memmove(&data[cbrk], &data[top], iFree-top);
1468 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1469 pc = get2byte(pAddr);
1470 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1471 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1472 }
1473 goto defragment_out;
1474 }
1475 }
1476 }
1477
drh281b21d2008-08-22 12:57:08 +00001478 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001479 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001480 for(i=0; i<nCell; i++){
1481 u8 *pAddr; /* The i-th cell pointer */
1482 pAddr = &data[cellOffset + i*2];
1483 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001484 testcase( pc==iCellFirst );
1485 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001486 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001487 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001488 */
1489 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001490 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001491 }
drh17146622009-07-07 17:38:38 +00001492 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001493 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001494 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001495 if( cbrk<iCellFirst || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001496 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001497 }
drh7157e1d2009-07-09 13:25:32 +00001498 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001499 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001500 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001501 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001502 if( temp==0 ){
1503 int x;
1504 if( cbrk==pc ) continue;
1505 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1506 x = get2byte(&data[hdr+5]);
1507 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1508 src = temp;
1509 }
1510 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001511 }
dane6d065a2017-02-24 19:58:22 +00001512 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001513
1514 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001515 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001516 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001517 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001518 }
drh17146622009-07-07 17:38:38 +00001519 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001520 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001521 data[hdr+1] = 0;
1522 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001523 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001524 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001525 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001526}
1527
drha059ad02001-04-17 20:09:11 +00001528/*
dan8e9ba0c2014-10-14 17:27:04 +00001529** Search the free-list on page pPg for space to store a cell nByte bytes in
1530** size. If one can be found, return a pointer to the space and remove it
1531** from the free-list.
1532**
1533** If no suitable space can be found on the free-list, return NULL.
1534**
drhba0f9992014-10-30 20:48:44 +00001535** This function may detect corruption within pPg. If corruption is
1536** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001537**
drhb7580e82015-06-25 18:36:13 +00001538** Slots on the free list that are between 1 and 3 bytes larger than nByte
1539** will be ignored if adding the extra space to the fragmentation count
1540** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001541*/
drhb7580e82015-06-25 18:36:13 +00001542static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001543 const int hdr = pPg->hdrOffset; /* Offset to page header */
1544 u8 * const aData = pPg->aData; /* Page data */
1545 int iAddr = hdr + 1; /* Address of ptr to pc */
1546 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */
1547 int x; /* Excess size of the slot */
1548 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1549 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001550
drhb7580e82015-06-25 18:36:13 +00001551 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001552 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001553 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1554 ** freeblock form a big-endian integer which is the size of the freeblock
1555 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001556 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001557 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001558 testcase( x==4 );
1559 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001560 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001561 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1562 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001563 if( aData[hdr+7]>57 ) return 0;
1564
dan8e9ba0c2014-10-14 17:27:04 +00001565 /* Remove the slot from the free-list. Update the number of
1566 ** fragmented bytes within the page. */
1567 memcpy(&aData[iAddr], &aData[pc], 2);
1568 aData[hdr+7] += (u8)x;
drh298f45c2019-02-08 22:34:59 +00001569 }else if( x+pc > maxPC ){
1570 /* This slot extends off the end of the usable part of the page */
1571 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1572 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001573 }else{
1574 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001575 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001576 put2byte(&aData[pc+2], x);
1577 }
1578 return &aData[pc + x];
1579 }
drhb7580e82015-06-25 18:36:13 +00001580 iAddr = pc;
1581 pc = get2byte(&aData[pc]);
drh2a934d72019-03-13 10:29:16 +00001582 if( pc<=iAddr+size ){
drh298f45c2019-02-08 22:34:59 +00001583 if( pc ){
1584 /* The next slot in the chain is not past the end of the current slot */
1585 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1586 }
1587 return 0;
1588 }
drh87d63c92017-08-23 23:09:03 +00001589 }
drh298f45c2019-02-08 22:34:59 +00001590 if( pc>maxPC+nByte-4 ){
1591 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001592 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001593 }
dan8e9ba0c2014-10-14 17:27:04 +00001594 return 0;
1595}
1596
1597/*
danielk19776011a752009-04-01 16:25:32 +00001598** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001599** as the first argument. Write into *pIdx the index into pPage->aData[]
1600** of the first byte of allocated space. Return either SQLITE_OK or
1601** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001602**
drh0a45c272009-07-08 01:49:11 +00001603** The caller guarantees that there is sufficient space to make the
1604** allocation. This routine might need to defragment in order to bring
1605** all the space together, however. This routine will avoid using
1606** the first two bytes past the cell pointer area since presumably this
1607** allocation is being made in order to insert a new cell, so we will
1608** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001609*/
drh0a45c272009-07-08 01:49:11 +00001610static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001611 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1612 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001613 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001614 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001615 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001616
danielk19773b8a05f2007-03-19 17:44:26 +00001617 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001618 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001619 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001620 assert( nByte>=0 ); /* Minimum cell size is 4 */
1621 assert( pPage->nFree>=nByte );
1622 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001623 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001624
drh0a45c272009-07-08 01:49:11 +00001625 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1626 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001627 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001628 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1629 ** and the reserved space is zero (the usual value for reserved space)
1630 ** then the cell content offset of an empty page wants to be 65536.
1631 ** However, that integer is too large to be stored in a 2-byte unsigned
1632 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001633 top = get2byte(&data[hdr+5]);
drhdfcecdf2019-05-08 00:17:45 +00001634 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
drhded340e2015-06-25 15:04:56 +00001635 if( gap>top ){
drh291508f2019-05-08 04:33:17 +00001636 if( top==0 && pPage->pBt->usableSize==65536 ){
drhded340e2015-06-25 15:04:56 +00001637 top = 65536;
1638 }else{
daneebf2f52017-11-18 17:30:08 +00001639 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001640 }
1641 }
drh43605152004-05-29 21:46:49 +00001642
drhd4a67442019-02-11 19:27:36 +00001643 /* If there is enough space between gap and top for one more cell pointer,
1644 ** and if the freelist is not empty, then search the
1645 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001646 */
drh5e2f8b92001-05-28 00:41:15 +00001647 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001648 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001649 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001650 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001651 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001652 if( pSpace ){
drh3b76c452020-01-03 17:40:30 +00001653 int g2;
drh2b96b692019-08-05 16:22:20 +00001654 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
drh3b76c452020-01-03 17:40:30 +00001655 *pIdx = g2 = (int)(pSpace-data);
1656 if( NEVER(g2<=gap) ){
drh2b96b692019-08-05 16:22:20 +00001657 return SQLITE_CORRUPT_PAGE(pPage);
1658 }else{
1659 return SQLITE_OK;
1660 }
drhb7580e82015-06-25 18:36:13 +00001661 }else if( rc ){
1662 return rc;
drh9e572e62004-04-23 23:43:10 +00001663 }
1664 }
drh43605152004-05-29 21:46:49 +00001665
drh4c04f3c2014-08-20 11:56:14 +00001666 /* The request could not be fulfilled using a freelist slot. Check
1667 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001668 */
1669 testcase( gap+2+nByte==top );
1670 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001671 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001672 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001673 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001674 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001675 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001676 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001677 }
1678
1679
drh43605152004-05-29 21:46:49 +00001680 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001681 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001682 ** validated the freelist. Given that the freelist is valid, there
1683 ** is no way that the allocation can extend off the end of the page.
1684 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001685 */
drh0a45c272009-07-08 01:49:11 +00001686 top -= nByte;
drh43605152004-05-29 21:46:49 +00001687 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001688 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001689 *pIdx = top;
1690 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001691}
1692
1693/*
drh9e572e62004-04-23 23:43:10 +00001694** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001695** The first byte of the new free block is pPage->aData[iStart]
1696** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001697**
drh5f5c7532014-08-20 17:56:27 +00001698** Adjacent freeblocks are coalesced.
1699**
drh5860a612019-02-12 16:58:26 +00001700** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001701** that routine will not detect overlap between cells or freeblocks. Nor
1702** does it detect cells or freeblocks that encrouch into the reserved bytes
1703** at the end of the page. So do additional corruption checks inside this
1704** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001705*/
drh5f5c7532014-08-20 17:56:27 +00001706static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001707 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001708 u16 iFreeBlk; /* Address of the next freeblock */
1709 u8 hdr; /* Page header size. 0 or 100 */
1710 u8 nFrag = 0; /* Reduction in fragmentation */
1711 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001712 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001713 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001714 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001715
drh9e572e62004-04-23 23:43:10 +00001716 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001717 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001718 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001719 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001720 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001721 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001722 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001723
drh5f5c7532014-08-20 17:56:27 +00001724 /* The list of freeblocks must be in ascending order. Find the
1725 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001726 */
drh43605152004-05-29 21:46:49 +00001727 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001728 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001729 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1730 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1731 }else{
drh85f071b2016-09-17 19:34:32 +00001732 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1733 if( iFreeBlk<iPtr+4 ){
drh05e8c542020-01-14 16:39:54 +00001734 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
daneebf2f52017-11-18 17:30:08 +00001735 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001736 }
drh7bc4c452014-08-20 18:43:44 +00001737 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001738 }
drh628b1a32020-01-05 21:53:15 +00001739 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
daneebf2f52017-11-18 17:30:08 +00001740 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001741 }
drh7bc4c452014-08-20 18:43:44 +00001742 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1743
1744 /* At this point:
1745 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001746 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001747 **
1748 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1749 */
1750 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1751 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001752 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001753 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drh3b76c452020-01-03 17:40:30 +00001754 if( NEVER(iEnd > pPage->pBt->usableSize) ){
daneebf2f52017-11-18 17:30:08 +00001755 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001756 }
drh7bc4c452014-08-20 18:43:44 +00001757 iSize = iEnd - iStart;
1758 iFreeBlk = get2byte(&data[iFreeBlk]);
1759 }
1760
drh3f387402014-09-24 01:23:00 +00001761 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1762 ** pointer in the page header) then check to see if iStart should be
1763 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001764 */
1765 if( iPtr>hdr+1 ){
1766 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1767 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001768 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001769 nFrag += iStart - iPtrEnd;
1770 iSize = iEnd - iPtr;
1771 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001772 }
drh9e572e62004-04-23 23:43:10 +00001773 }
daneebf2f52017-11-18 17:30:08 +00001774 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001775 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001776 }
drh5e398e42017-08-23 20:36:06 +00001777 x = get2byte(&data[hdr+5]);
1778 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001779 /* The new freeblock is at the beginning of the cell content area,
1780 ** so just extend the cell content area rather than create another
1781 ** freelist entry */
drh3b76c452020-01-03 17:40:30 +00001782 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
drh48118e42020-01-29 13:50:11 +00001783 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001784 put2byte(&data[hdr+1], iFreeBlk);
1785 put2byte(&data[hdr+5], iEnd);
1786 }else{
1787 /* Insert the new freeblock into the freelist */
1788 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001789 }
drh5e398e42017-08-23 20:36:06 +00001790 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1791 /* Overwrite deleted information with zeros when the secure_delete
1792 ** option is enabled */
1793 memset(&data[iStart], 0, iSize);
1794 }
1795 put2byte(&data[iStart], iFreeBlk);
1796 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001797 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001798 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001799}
1800
1801/*
drh271efa52004-05-30 19:19:05 +00001802** Decode the flags byte (the first byte of the header) for a page
1803** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001804**
1805** Only the following combinations are supported. Anything different
1806** indicates a corrupt database files:
1807**
1808** PTF_ZERODATA
1809** PTF_ZERODATA | PTF_LEAF
1810** PTF_LEAFDATA | PTF_INTKEY
1811** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001812*/
drh44845222008-07-17 18:39:57 +00001813static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001814 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001815
1816 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001817 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001818 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001819 flagByte &= ~PTF_LEAF;
1820 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001821 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001822 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001823 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001824 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1825 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001826 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001827 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1828 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001829 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001830 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001831 if( pPage->leaf ){
1832 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001833 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001834 }else{
1835 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001836 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001837 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001838 }
drh271efa52004-05-30 19:19:05 +00001839 pPage->maxLocal = pBt->maxLeaf;
1840 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001841 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001842 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1843 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001844 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001845 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1846 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001847 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001848 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001849 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001850 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001851 pPage->maxLocal = pBt->maxLocal;
1852 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001853 }else{
drhfdab0262014-11-20 15:30:50 +00001854 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1855 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001856 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001857 }
drhc9166342012-01-05 23:32:06 +00001858 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001859 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001860}
1861
1862/*
drhb0ea9432019-02-09 21:06:40 +00001863** Compute the amount of freespace on the page. In other words, fill
1864** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00001865*/
drhb0ea9432019-02-09 21:06:40 +00001866static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001867 int pc; /* Address of a freeblock within pPage->aData[] */
1868 u8 hdr; /* Offset to beginning of page header */
1869 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00001870 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00001871 int nFree; /* Number of unused bytes on the page */
1872 int top; /* First byte of the cell content area */
1873 int iCellFirst; /* First allowable cell or freeblock offset */
1874 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001875
danielk197771d5d2c2008-09-29 11:49:47 +00001876 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001877 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001878 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001879 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001880 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1881 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00001882 assert( pPage->isInit==1 );
1883 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001884
drhb0ea9432019-02-09 21:06:40 +00001885 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00001886 hdr = pPage->hdrOffset;
1887 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00001888 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1889 ** the start of the cell content area. A zero value for this integer is
1890 ** interpreted as 65536. */
1891 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00001892 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00001893 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00001894
drh14e845a2017-05-25 21:35:56 +00001895 /* Compute the total free space on the page
1896 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1897 ** start of the first freeblock on the page, or is zero if there are no
1898 ** freeblocks. */
1899 pc = get2byte(&data[hdr+1]);
1900 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1901 if( pc>0 ){
1902 u32 next, size;
dan9a20ea92020-01-03 15:51:23 +00001903 if( pc<top ){
drh14e845a2017-05-25 21:35:56 +00001904 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1905 ** always be at least one cell before the first freeblock.
1906 */
daneebf2f52017-11-18 17:30:08 +00001907 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001908 }
drh14e845a2017-05-25 21:35:56 +00001909 while( 1 ){
1910 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001911 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001912 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001913 }
1914 next = get2byte(&data[pc]);
1915 size = get2byte(&data[pc+2]);
1916 nFree = nFree + size;
1917 if( next<=pc+size+3 ) break;
1918 pc = next;
1919 }
1920 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001921 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001922 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001923 }
1924 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001925 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001926 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001927 }
danielk197771d5d2c2008-09-29 11:49:47 +00001928 }
drh14e845a2017-05-25 21:35:56 +00001929
1930 /* At this point, nFree contains the sum of the offset to the start
1931 ** of the cell-content area plus the number of free bytes within
1932 ** the cell-content area. If this is greater than the usable-size
1933 ** of the page, then the page must be corrupted. This check also
1934 ** serves to verify that the offset to the start of the cell-content
1935 ** area, according to the page header, lies within the page.
1936 */
drhdfcecdf2019-05-08 00:17:45 +00001937 if( nFree>usableSize || nFree<iCellFirst ){
daneebf2f52017-11-18 17:30:08 +00001938 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001939 }
1940 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00001941 return SQLITE_OK;
1942}
1943
1944/*
drh5860a612019-02-12 16:58:26 +00001945** Do additional sanity check after btreeInitPage() if
1946** PRAGMA cell_size_check=ON
1947*/
1948static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1949 int iCellFirst; /* First allowable cell or freeblock offset */
1950 int iCellLast; /* Last possible cell or freeblock offset */
1951 int i; /* Index into the cell pointer array */
1952 int sz; /* Size of a cell */
1953 int pc; /* Address of a freeblock within pPage->aData[] */
1954 u8 *data; /* Equal to pPage->aData */
1955 int usableSize; /* Maximum usable space on the page */
1956 int cellOffset; /* Start of cell content area */
1957
1958 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1959 usableSize = pPage->pBt->usableSize;
1960 iCellLast = usableSize - 4;
1961 data = pPage->aData;
1962 cellOffset = pPage->cellOffset;
1963 if( !pPage->leaf ) iCellLast--;
1964 for(i=0; i<pPage->nCell; i++){
1965 pc = get2byteAligned(&data[cellOffset+i*2]);
1966 testcase( pc==iCellFirst );
1967 testcase( pc==iCellLast );
1968 if( pc<iCellFirst || pc>iCellLast ){
1969 return SQLITE_CORRUPT_PAGE(pPage);
1970 }
1971 sz = pPage->xCellSize(pPage, &data[pc]);
1972 testcase( pc+sz==usableSize );
1973 if( pc+sz>usableSize ){
1974 return SQLITE_CORRUPT_PAGE(pPage);
1975 }
1976 }
1977 return SQLITE_OK;
1978}
1979
1980/*
drhb0ea9432019-02-09 21:06:40 +00001981** Initialize the auxiliary information for a disk block.
1982**
1983** Return SQLITE_OK on success. If we see that the page does
1984** not contain a well-formed database page, then return
1985** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1986** guarantee that the page is well-formed. It only shows that
1987** we failed to detect any corruption.
1988*/
1989static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00001990 u8 *data; /* Equal to pPage->aData */
1991 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00001992
1993 assert( pPage->pBt!=0 );
1994 assert( pPage->pBt->db!=0 );
1995 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1996 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1997 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1998 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1999 assert( pPage->isInit==0 );
2000
2001 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00002002 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00002003 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2004 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00002005 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00002006 return SQLITE_CORRUPT_PAGE(pPage);
2007 }
2008 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2009 pPage->maskPage = (u16)(pBt->pageSize - 1);
2010 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00002011 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2012 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2013 pPage->aDataEnd = pPage->aData + pBt->usableSize;
2014 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002015 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2016 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002017 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002018 if( pPage->nCell>MX_CELL(pBt) ){
2019 /* To many cells for a single page. The page must be corrupt */
2020 return SQLITE_CORRUPT_PAGE(pPage);
2021 }
2022 testcase( pPage->nCell==MX_CELL(pBt) );
2023 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2024 ** possible for a root page of a table that contains no rows) then the
2025 ** offset to the cell content area will equal the page size minus the
2026 ** bytes of reserved space. */
2027 assert( pPage->nCell>0
mistachkin065f3bf2019-03-20 05:45:03 +00002028 || get2byteNotZero(&data[5])==(int)pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002029 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002030 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002031 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002032 if( pBt->db->flags & SQLITE_CellSizeCk ){
2033 return btreeCellSizeCheck(pPage);
2034 }
drh9e572e62004-04-23 23:43:10 +00002035 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002036}
2037
2038/*
drh8b2f49b2001-06-08 00:21:52 +00002039** Set up a raw page so that it looks like a database page holding
2040** no entries.
drhbd03cae2001-06-02 02:40:57 +00002041*/
drh9e572e62004-04-23 23:43:10 +00002042static void zeroPage(MemPage *pPage, int flags){
2043 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002044 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002045 u8 hdr = pPage->hdrOffset;
2046 u16 first;
drh9e572e62004-04-23 23:43:10 +00002047
danielk19773b8a05f2007-03-19 17:44:26 +00002048 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00002049 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2050 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002051 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002052 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002053 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002054 memset(&data[hdr], 0, pBt->usableSize - hdr);
2055 }
drh1bd10f82008-12-10 21:19:56 +00002056 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002057 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002058 memset(&data[hdr+1], 0, 4);
2059 data[hdr+7] = 0;
2060 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002061 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002062 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002063 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002064 pPage->aDataEnd = &data[pBt->usableSize];
2065 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002066 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002067 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002068 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2069 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002070 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002071 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002072}
2073
drh897a8202008-09-18 01:08:15 +00002074
2075/*
2076** Convert a DbPage obtained from the pager into a MemPage used by
2077** the btree layer.
2078*/
2079static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2080 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002081 if( pgno!=pPage->pgno ){
2082 pPage->aData = sqlite3PagerGetData(pDbPage);
2083 pPage->pDbPage = pDbPage;
2084 pPage->pBt = pBt;
2085 pPage->pgno = pgno;
2086 pPage->hdrOffset = pgno==1 ? 100 : 0;
2087 }
2088 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002089 return pPage;
2090}
2091
drhbd03cae2001-06-02 02:40:57 +00002092/*
drh3aac2dd2004-04-26 14:10:20 +00002093** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002094** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002095**
drh7e8c6f12015-05-28 03:28:27 +00002096** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2097** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002098** to fetch the content. Just fill in the content with zeros for now.
2099** If in the future we call sqlite3PagerWrite() on this page, that
2100** means we have started to be concerned about content and the disk
2101** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002102*/
danielk197730548662009-07-09 05:07:37 +00002103static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002104 BtShared *pBt, /* The btree */
2105 Pgno pgno, /* Number of the page to fetch */
2106 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002107 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002108){
drh3aac2dd2004-04-26 14:10:20 +00002109 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002110 DbPage *pDbPage;
2111
drhb00fc3b2013-08-21 23:42:32 +00002112 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002113 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002114 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002115 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002116 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002117 return SQLITE_OK;
2118}
2119
2120/*
danielk1977bea2a942009-01-20 17:06:27 +00002121** Retrieve a page from the pager cache. If the requested page is not
2122** already in the pager cache return NULL. Initialize the MemPage.pBt and
2123** MemPage.aData elements if needed.
2124*/
2125static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2126 DbPage *pDbPage;
2127 assert( sqlite3_mutex_held(pBt->mutex) );
2128 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2129 if( pDbPage ){
2130 return btreePageFromDbPage(pDbPage, pgno, pBt);
2131 }
2132 return 0;
2133}
2134
2135/*
danielk197789d40042008-11-17 14:20:56 +00002136** Return the size of the database file in pages. If there is any kind of
2137** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002138*/
drhb1299152010-03-30 22:58:33 +00002139static Pgno btreePagecount(BtShared *pBt){
drh42925d12020-01-07 13:32:15 +00002140 assert( (pBt->nPage & 0x80000000)==0 || CORRUPT_DB );
drh406dfcb2020-01-07 18:10:01 +00002141 return pBt->nPage;
drhb1299152010-03-30 22:58:33 +00002142}
2143u32 sqlite3BtreeLastPage(Btree *p){
2144 assert( sqlite3BtreeHoldsMutex(p) );
drh406dfcb2020-01-07 18:10:01 +00002145 return btreePagecount(p->pBt) & 0x7fffffff;
danielk197767fd7a92008-09-10 17:53:35 +00002146}
2147
2148/*
drh28f58dd2015-06-27 19:45:03 +00002149** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002150**
drh15a00212015-06-27 20:55:00 +00002151** If pCur!=0 then the page is being fetched as part of a moveToChild()
2152** call. Do additional sanity checking on the page in this case.
2153** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002154**
2155** The page is fetched as read-write unless pCur is not NULL and is
2156** a read-only cursor.
2157**
2158** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002159** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002160*/
2161static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002162 BtShared *pBt, /* The database file */
2163 Pgno pgno, /* Number of the page to get */
2164 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002165 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2166 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002167){
2168 int rc;
drh28f58dd2015-06-27 19:45:03 +00002169 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002170 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002171 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002172 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002173 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002174
danba3cbf32010-06-30 04:29:03 +00002175 if( pgno>btreePagecount(pBt) ){
2176 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002177 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002178 }
drh9584f582015-11-04 20:22:37 +00002179 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002180 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002181 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002182 }
drh8dd1c252015-11-04 22:31:02 +00002183 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002184 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002185 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002186 rc = btreeInitPage(*ppPage);
2187 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002188 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002189 }
drhee696e22004-08-30 16:52:17 +00002190 }
drh8dd1c252015-11-04 22:31:02 +00002191 assert( (*ppPage)->pgno==pgno );
2192 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002193
drh15a00212015-06-27 20:55:00 +00002194 /* If obtaining a child page for a cursor, we must verify that the page is
2195 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002196 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002197 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002198 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002199 }
drh28f58dd2015-06-27 19:45:03 +00002200 return SQLITE_OK;
2201
drhb0ea9432019-02-09 21:06:40 +00002202getAndInitPage_error2:
2203 releasePage(*ppPage);
2204getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002205 if( pCur ){
2206 pCur->iPage--;
2207 pCur->pPage = pCur->apPage[pCur->iPage];
2208 }
danba3cbf32010-06-30 04:29:03 +00002209 testcase( pgno==0 );
2210 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002211 return rc;
2212}
2213
2214/*
drh3aac2dd2004-04-26 14:10:20 +00002215** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002216** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002217**
2218** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002219*/
drhbbf0f862015-06-27 14:59:26 +00002220static void releasePageNotNull(MemPage *pPage){
2221 assert( pPage->aData );
2222 assert( pPage->pBt );
2223 assert( pPage->pDbPage!=0 );
2224 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2225 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2226 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2227 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002228}
drh3aac2dd2004-04-26 14:10:20 +00002229static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002230 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002231}
drh3908fe92017-09-01 14:50:19 +00002232static void releasePageOne(MemPage *pPage){
2233 assert( pPage!=0 );
2234 assert( pPage->aData );
2235 assert( pPage->pBt );
2236 assert( pPage->pDbPage!=0 );
2237 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2238 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2239 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2240 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2241}
drh3aac2dd2004-04-26 14:10:20 +00002242
2243/*
drh7e8c6f12015-05-28 03:28:27 +00002244** Get an unused page.
2245**
2246** This works just like btreeGetPage() with the addition:
2247**
2248** * If the page is already in use for some other purpose, immediately
2249** release it and return an SQLITE_CURRUPT error.
2250** * Make sure the isInit flag is clear
2251*/
2252static int btreeGetUnusedPage(
2253 BtShared *pBt, /* The btree */
2254 Pgno pgno, /* Number of the page to fetch */
2255 MemPage **ppPage, /* Return the page in this parameter */
2256 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2257){
2258 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2259 if( rc==SQLITE_OK ){
2260 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2261 releasePage(*ppPage);
2262 *ppPage = 0;
2263 return SQLITE_CORRUPT_BKPT;
2264 }
2265 (*ppPage)->isInit = 0;
2266 }else{
2267 *ppPage = 0;
2268 }
2269 return rc;
2270}
2271
drha059ad02001-04-17 20:09:11 +00002272
2273/*
drha6abd042004-06-09 17:37:22 +00002274** During a rollback, when the pager reloads information into the cache
2275** so that the cache is restored to its original state at the start of
2276** the transaction, for each page restored this routine is called.
2277**
2278** This routine needs to reset the extra data section at the end of the
2279** page to agree with the restored data.
2280*/
danielk1977eaa06f62008-09-18 17:34:44 +00002281static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002282 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002283 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002284 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002285 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002286 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002287 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002288 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002289 /* pPage might not be a btree page; it might be an overflow page
2290 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002291 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002292 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002293 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002294 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002295 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002296 }
drha6abd042004-06-09 17:37:22 +00002297 }
2298}
2299
2300/*
drhe5fe6902007-12-07 18:55:28 +00002301** Invoke the busy handler for a btree.
2302*/
danielk19771ceedd32008-11-19 10:22:33 +00002303static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002304 BtShared *pBt = (BtShared*)pArg;
2305 assert( pBt->db );
2306 assert( sqlite3_mutex_held(pBt->db->mutex) );
drhf0119b22018-03-26 17:40:53 +00002307 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2308 sqlite3PagerFile(pBt->pPager));
drhe5fe6902007-12-07 18:55:28 +00002309}
2310
2311/*
drhad3e0102004-09-03 23:32:18 +00002312** Open a database file.
2313**
drh382c0242001-10-06 16:33:02 +00002314** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002315** then an ephemeral database is created. The ephemeral database might
2316** be exclusively in memory, or it might use a disk-based memory cache.
2317** Either way, the ephemeral database will be automatically deleted
2318** when sqlite3BtreeClose() is called.
2319**
drhe53831d2007-08-17 01:14:38 +00002320** If zFilename is ":memory:" then an in-memory database is created
2321** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002322**
drh33f111d2012-01-17 15:29:14 +00002323** The "flags" parameter is a bitmask that might contain bits like
2324** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002325**
drhc47fd8e2009-04-30 13:30:32 +00002326** If the database is already opened in the same database connection
2327** and we are in shared cache mode, then the open will fail with an
2328** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2329** objects in the same database connection since doing so will lead
2330** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002331*/
drh23e11ca2004-05-04 17:27:28 +00002332int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002333 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002334 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002335 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002336 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002337 int flags, /* Options */
2338 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002339){
drh7555d8e2009-03-20 13:15:30 +00002340 BtShared *pBt = 0; /* Shared part of btree structure */
2341 Btree *p; /* Handle to return */
2342 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2343 int rc = SQLITE_OK; /* Result code from this function */
2344 u8 nReserve; /* Byte of unused space on each page */
2345 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002346
drh75c014c2010-08-30 15:02:28 +00002347 /* True if opening an ephemeral, temporary database */
2348 const int isTempDb = zFilename==0 || zFilename[0]==0;
2349
danielk1977aef0bf62005-12-30 16:28:01 +00002350 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002351 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002352 */
drhb0a7c9c2010-12-06 21:09:59 +00002353#ifdef SQLITE_OMIT_MEMORYDB
2354 const int isMemdb = 0;
2355#else
2356 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002357 || (isTempDb && sqlite3TempInMemory(db))
2358 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002359#endif
2360
drhe5fe6902007-12-07 18:55:28 +00002361 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002362 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002363 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002364 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2365
2366 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2367 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2368
2369 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2370 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002371
drh75c014c2010-08-30 15:02:28 +00002372 if( isMemdb ){
2373 flags |= BTREE_MEMORY;
2374 }
2375 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2376 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2377 }
drh17435752007-08-16 04:30:38 +00002378 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002379 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002380 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002381 }
2382 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002383 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002384#ifndef SQLITE_OMIT_SHARED_CACHE
2385 p->lock.pBtree = p;
2386 p->lock.iTable = 1;
2387#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002388
drh198bf392006-01-06 21:52:49 +00002389#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002390 /*
2391 ** If this Btree is a candidate for shared cache, try to find an
2392 ** existing BtShared object that we can share with
2393 */
drh4ab9d252012-05-26 20:08:49 +00002394 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002395 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002396 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002397 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002398 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002399 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002400
drhff0587c2007-08-29 17:43:19 +00002401 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002402 if( !zFullPathname ){
2403 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002404 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002405 }
drhafc8b7f2012-05-26 18:06:38 +00002406 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002407 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002408 }else{
2409 rc = sqlite3OsFullPathname(pVfs, zFilename,
2410 nFullPathname, zFullPathname);
2411 if( rc ){
drhc398c652019-11-22 00:42:01 +00002412 if( rc==SQLITE_OK_SYMLINK ){
2413 rc = SQLITE_OK;
2414 }else{
2415 sqlite3_free(zFullPathname);
2416 sqlite3_free(p);
2417 return rc;
2418 }
drhafc8b7f2012-05-26 18:06:38 +00002419 }
drh070ad6b2011-11-17 11:43:19 +00002420 }
drh30ddce62011-10-15 00:16:30 +00002421#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002422 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2423 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002424 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002425 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002426#endif
drh78f82d12008-09-02 00:52:52 +00002427 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002428 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002429 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002430 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002431 int iDb;
2432 for(iDb=db->nDb-1; iDb>=0; iDb--){
2433 Btree *pExisting = db->aDb[iDb].pBt;
2434 if( pExisting && pExisting->pBt==pBt ){
2435 sqlite3_mutex_leave(mutexShared);
2436 sqlite3_mutex_leave(mutexOpen);
2437 sqlite3_free(zFullPathname);
2438 sqlite3_free(p);
2439 return SQLITE_CONSTRAINT;
2440 }
2441 }
drhff0587c2007-08-29 17:43:19 +00002442 p->pBt = pBt;
2443 pBt->nRef++;
2444 break;
2445 }
2446 }
2447 sqlite3_mutex_leave(mutexShared);
2448 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002449 }
drhff0587c2007-08-29 17:43:19 +00002450#ifdef SQLITE_DEBUG
2451 else{
2452 /* In debug mode, we mark all persistent databases as sharable
2453 ** even when they are not. This exercises the locking code and
2454 ** gives more opportunity for asserts(sqlite3_mutex_held())
2455 ** statements to find locking problems.
2456 */
2457 p->sharable = 1;
2458 }
2459#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002460 }
2461#endif
drha059ad02001-04-17 20:09:11 +00002462 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002463 /*
2464 ** The following asserts make sure that structures used by the btree are
2465 ** the right size. This is to guard against size changes that result
2466 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002467 */
drh062cf272015-03-23 19:03:51 +00002468 assert( sizeof(i64)==8 );
2469 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002470 assert( sizeof(u32)==4 );
2471 assert( sizeof(u16)==2 );
2472 assert( sizeof(Pgno)==4 );
2473
2474 pBt = sqlite3MallocZero( sizeof(*pBt) );
2475 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002476 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002477 goto btree_open_out;
2478 }
danielk197771d5d2c2008-09-29 11:49:47 +00002479 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002480 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002481 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002482 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002483 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2484 }
2485 if( rc!=SQLITE_OK ){
2486 goto btree_open_out;
2487 }
shanehbd2aaf92010-09-01 02:38:21 +00002488 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002489 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002490 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002491 p->pBt = pBt;
2492
drhe53831d2007-08-17 01:14:38 +00002493 pBt->pCursor = 0;
2494 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002495 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002496#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002497 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002498#elif defined(SQLITE_FAST_SECURE_DELETE)
2499 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002500#endif
drh113762a2014-11-19 16:36:25 +00002501 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2502 ** determined by the 2-byte integer located at an offset of 16 bytes from
2503 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002504 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002505 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2506 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002507 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002508#ifndef SQLITE_OMIT_AUTOVACUUM
2509 /* If the magic name ":memory:" will create an in-memory database, then
2510 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2511 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2512 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2513 ** regular file-name. In this case the auto-vacuum applies as per normal.
2514 */
2515 if( zFilename && !isMemdb ){
2516 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2517 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2518 }
2519#endif
2520 nReserve = 0;
2521 }else{
drh113762a2014-11-19 16:36:25 +00002522 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2523 ** determined by the one-byte unsigned integer found at an offset of 20
2524 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002525 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002526 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002527#ifndef SQLITE_OMIT_AUTOVACUUM
2528 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2529 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2530#endif
2531 }
drhfa9601a2009-06-18 17:22:39 +00002532 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002533 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002534 pBt->usableSize = pBt->pageSize - nReserve;
2535 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002536
2537#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2538 /* Add the new BtShared object to the linked list sharable BtShareds.
2539 */
dan272989b2016-07-06 10:12:02 +00002540 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002541 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002542 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002543 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002544 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002545 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002546 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002547 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002548 goto btree_open_out;
2549 }
drhff0587c2007-08-29 17:43:19 +00002550 }
drhe53831d2007-08-17 01:14:38 +00002551 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002552 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2553 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002554 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002555 }
drheee46cf2004-11-06 00:02:48 +00002556#endif
drh90f5ecb2004-07-22 01:19:35 +00002557 }
danielk1977aef0bf62005-12-30 16:28:01 +00002558
drhcfed7bc2006-03-13 14:28:05 +00002559#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002560 /* If the new Btree uses a sharable pBtShared, then link the new
2561 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002562 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002563 */
drhe53831d2007-08-17 01:14:38 +00002564 if( p->sharable ){
2565 int i;
2566 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002567 for(i=0; i<db->nDb; i++){
2568 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002569 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002570 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002571 p->pNext = pSib;
2572 p->pPrev = 0;
2573 pSib->pPrev = p;
2574 }else{
drh3bfa7e82016-03-22 14:37:59 +00002575 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002576 pSib = pSib->pNext;
2577 }
2578 p->pNext = pSib->pNext;
2579 p->pPrev = pSib;
2580 if( p->pNext ){
2581 p->pNext->pPrev = p;
2582 }
2583 pSib->pNext = p;
2584 }
2585 break;
2586 }
2587 }
danielk1977aef0bf62005-12-30 16:28:01 +00002588 }
danielk1977aef0bf62005-12-30 16:28:01 +00002589#endif
2590 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002591
2592btree_open_out:
2593 if( rc!=SQLITE_OK ){
2594 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002595 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002596 }
drh17435752007-08-16 04:30:38 +00002597 sqlite3_free(pBt);
2598 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002599 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002600 }else{
dan0f5a1862016-08-13 14:30:23 +00002601 sqlite3_file *pFile;
2602
drh75c014c2010-08-30 15:02:28 +00002603 /* If the B-Tree was successfully opened, set the pager-cache size to the
2604 ** default value. Except, when opening on an existing shared pager-cache,
2605 ** do not change the pager-cache size.
2606 */
2607 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2608 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2609 }
dan0f5a1862016-08-13 14:30:23 +00002610
2611 pFile = sqlite3PagerFile(pBt->pPager);
2612 if( pFile->pMethods ){
2613 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2614 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002615 }
drh7555d8e2009-03-20 13:15:30 +00002616 if( mutexOpen ){
2617 assert( sqlite3_mutex_held(mutexOpen) );
2618 sqlite3_mutex_leave(mutexOpen);
2619 }
dan272989b2016-07-06 10:12:02 +00002620 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002621 return rc;
drha059ad02001-04-17 20:09:11 +00002622}
2623
2624/*
drhe53831d2007-08-17 01:14:38 +00002625** Decrement the BtShared.nRef counter. When it reaches zero,
2626** remove the BtShared structure from the sharing list. Return
2627** true if the BtShared.nRef counter reaches zero and return
2628** false if it is still positive.
2629*/
2630static int removeFromSharingList(BtShared *pBt){
2631#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002632 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002633 BtShared *pList;
2634 int removed = 0;
2635
drhd677b3d2007-08-20 22:48:41 +00002636 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002637 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002638 sqlite3_mutex_enter(pMaster);
2639 pBt->nRef--;
2640 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002641 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2642 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002643 }else{
drh78f82d12008-09-02 00:52:52 +00002644 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002645 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002646 pList=pList->pNext;
2647 }
drh34004ce2008-07-11 16:15:17 +00002648 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002649 pList->pNext = pBt->pNext;
2650 }
2651 }
drh3285db22007-09-03 22:00:39 +00002652 if( SQLITE_THREADSAFE ){
2653 sqlite3_mutex_free(pBt->mutex);
2654 }
drhe53831d2007-08-17 01:14:38 +00002655 removed = 1;
2656 }
2657 sqlite3_mutex_leave(pMaster);
2658 return removed;
2659#else
2660 return 1;
2661#endif
2662}
2663
2664/*
drhf7141992008-06-19 00:16:08 +00002665** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002666** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2667** pointer.
drhf7141992008-06-19 00:16:08 +00002668*/
2669static void allocateTempSpace(BtShared *pBt){
2670 if( !pBt->pTmpSpace ){
2671 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002672
2673 /* One of the uses of pBt->pTmpSpace is to format cells before
2674 ** inserting them into a leaf page (function fillInCell()). If
2675 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2676 ** by the various routines that manipulate binary cells. Which
2677 ** can mean that fillInCell() only initializes the first 2 or 3
2678 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2679 ** it into a database page. This is not actually a problem, but it
2680 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2681 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002682 ** zero the first 4 bytes of temp space here.
2683 **
2684 ** Also: Provide four bytes of initialized space before the
2685 ** beginning of pTmpSpace as an area available to prepend the
2686 ** left-child pointer to the beginning of a cell.
2687 */
2688 if( pBt->pTmpSpace ){
2689 memset(pBt->pTmpSpace, 0, 8);
2690 pBt->pTmpSpace += 4;
2691 }
drhf7141992008-06-19 00:16:08 +00002692 }
2693}
2694
2695/*
2696** Free the pBt->pTmpSpace allocation
2697*/
2698static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002699 if( pBt->pTmpSpace ){
2700 pBt->pTmpSpace -= 4;
2701 sqlite3PageFree(pBt->pTmpSpace);
2702 pBt->pTmpSpace = 0;
2703 }
drhf7141992008-06-19 00:16:08 +00002704}
2705
2706/*
drha059ad02001-04-17 20:09:11 +00002707** Close an open database and invalidate all cursors.
2708*/
danielk1977aef0bf62005-12-30 16:28:01 +00002709int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002710 BtShared *pBt = p->pBt;
2711 BtCursor *pCur;
2712
danielk1977aef0bf62005-12-30 16:28:01 +00002713 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002714 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002715 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002716 pCur = pBt->pCursor;
2717 while( pCur ){
2718 BtCursor *pTmp = pCur;
2719 pCur = pCur->pNext;
2720 if( pTmp->pBtree==p ){
2721 sqlite3BtreeCloseCursor(pTmp);
2722 }
drha059ad02001-04-17 20:09:11 +00002723 }
danielk1977aef0bf62005-12-30 16:28:01 +00002724
danielk19778d34dfd2006-01-24 16:37:57 +00002725 /* Rollback any active transaction and free the handle structure.
2726 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2727 ** this handle.
2728 */
drh47b7fc72014-11-11 01:33:57 +00002729 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002730 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002731
danielk1977aef0bf62005-12-30 16:28:01 +00002732 /* If there are still other outstanding references to the shared-btree
2733 ** structure, return now. The remainder of this procedure cleans
2734 ** up the shared-btree.
2735 */
drhe53831d2007-08-17 01:14:38 +00002736 assert( p->wantToLock==0 && p->locked==0 );
2737 if( !p->sharable || removeFromSharingList(pBt) ){
2738 /* The pBt is no longer on the sharing list, so we can access
2739 ** it without having to hold the mutex.
2740 **
2741 ** Clean out and delete the BtShared object.
2742 */
2743 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002744 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002745 if( pBt->xFreeSchema && pBt->pSchema ){
2746 pBt->xFreeSchema(pBt->pSchema);
2747 }
drhb9755982010-07-24 16:34:37 +00002748 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002749 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002750 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002751 }
2752
drhe53831d2007-08-17 01:14:38 +00002753#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002754 assert( p->wantToLock==0 );
2755 assert( p->locked==0 );
2756 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2757 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002758#endif
2759
drhe53831d2007-08-17 01:14:38 +00002760 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002761 return SQLITE_OK;
2762}
2763
2764/*
drh9b0cf342015-11-12 14:57:19 +00002765** Change the "soft" limit on the number of pages in the cache.
2766** Unused and unmodified pages will be recycled when the number of
2767** pages in the cache exceeds this soft limit. But the size of the
2768** cache is allowed to grow larger than this limit if it contains
2769** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002770*/
danielk1977aef0bf62005-12-30 16:28:01 +00002771int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2772 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002773 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002774 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002775 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002776 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002777 return SQLITE_OK;
2778}
2779
drh9b0cf342015-11-12 14:57:19 +00002780/*
2781** Change the "spill" limit on the number of pages in the cache.
2782** If the number of pages exceeds this limit during a write transaction,
2783** the pager might attempt to "spill" pages to the journal early in
2784** order to free up memory.
2785**
2786** The value returned is the current spill size. If zero is passed
2787** as an argument, no changes are made to the spill size setting, so
2788** using mxPage of 0 is a way to query the current spill size.
2789*/
2790int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2791 BtShared *pBt = p->pBt;
2792 int res;
2793 assert( sqlite3_mutex_held(p->db->mutex) );
2794 sqlite3BtreeEnter(p);
2795 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2796 sqlite3BtreeLeave(p);
2797 return res;
2798}
2799
drh18c7e402014-03-14 11:46:10 +00002800#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002801/*
dan5d8a1372013-03-19 19:28:06 +00002802** Change the limit on the amount of the database file that may be
2803** memory mapped.
2804*/
drh9b4c59f2013-04-15 17:03:42 +00002805int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002806 BtShared *pBt = p->pBt;
2807 assert( sqlite3_mutex_held(p->db->mutex) );
2808 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002809 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002810 sqlite3BtreeLeave(p);
2811 return SQLITE_OK;
2812}
drh18c7e402014-03-14 11:46:10 +00002813#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002814
2815/*
drh973b6e32003-02-12 14:09:42 +00002816** Change the way data is synced to disk in order to increase or decrease
2817** how well the database resists damage due to OS crashes and power
2818** failures. Level 1 is the same as asynchronous (no syncs() occur and
2819** there is a high probability of damage) Level 2 is the default. There
2820** is a very low but non-zero probability of damage. Level 3 reduces the
2821** probability of damage to near zero but with a write performance reduction.
2822*/
danielk197793758c82005-01-21 08:13:14 +00002823#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002824int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002825 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002826 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002827){
danielk1977aef0bf62005-12-30 16:28:01 +00002828 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002829 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002830 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002831 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002832 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002833 return SQLITE_OK;
2834}
danielk197793758c82005-01-21 08:13:14 +00002835#endif
drh973b6e32003-02-12 14:09:42 +00002836
drh2c8997b2005-08-27 16:36:48 +00002837/*
drh90f5ecb2004-07-22 01:19:35 +00002838** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002839** Or, if the page size has already been fixed, return SQLITE_READONLY
2840** without changing anything.
drh06f50212004-11-02 14:24:33 +00002841**
2842** The page size must be a power of 2 between 512 and 65536. If the page
2843** size supplied does not meet this constraint then the page size is not
2844** changed.
2845**
2846** Page sizes are constrained to be a power of two so that the region
2847** of the database file used for locking (beginning at PENDING_BYTE,
2848** the first byte past the 1GB boundary, 0x40000000) needs to occur
2849** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002850**
2851** If parameter nReserve is less than zero, then the number of reserved
2852** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002853**
drhc9166342012-01-05 23:32:06 +00002854** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002855** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002856*/
drhce4869f2009-04-02 20:16:58 +00002857int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002858 int rc = SQLITE_OK;
drhe937df82020-05-07 01:56:57 +00002859 int x;
danielk1977aef0bf62005-12-30 16:28:01 +00002860 BtShared *pBt = p->pBt;
drhe937df82020-05-07 01:56:57 +00002861 assert( nReserve>=0 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002862 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00002863 pBt->nReserveWanted = nReserve;
2864 x = pBt->pageSize - pBt->usableSize;
2865 if( nReserve<x ) nReserve = x;
drhc9166342012-01-05 23:32:06 +00002866 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002867 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002868 return SQLITE_READONLY;
2869 }
drhf49661a2008-12-10 16:45:50 +00002870 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002871 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2872 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002873 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002874 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002875 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002876 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002877 }
drhfa9601a2009-06-18 17:22:39 +00002878 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002879 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002880 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002881 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002882 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002883}
2884
2885/*
2886** Return the currently defined page size
2887*/
danielk1977aef0bf62005-12-30 16:28:01 +00002888int sqlite3BtreeGetPageSize(Btree *p){
2889 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002890}
drh7f751222009-03-17 22:33:00 +00002891
dan0094f372012-09-28 20:23:42 +00002892/*
2893** This function is similar to sqlite3BtreeGetReserve(), except that it
2894** may only be called if it is guaranteed that the b-tree mutex is already
2895** held.
2896**
2897** This is useful in one special case in the backup API code where it is
2898** known that the shared b-tree mutex is held, but the mutex on the
2899** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2900** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002901** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002902*/
2903int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002904 int n;
dan0094f372012-09-28 20:23:42 +00002905 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002906 n = p->pBt->pageSize - p->pBt->usableSize;
2907 return n;
dan0094f372012-09-28 20:23:42 +00002908}
2909
drh7f751222009-03-17 22:33:00 +00002910/*
2911** Return the number of bytes of space at the end of every page that
2912** are intentually left unused. This is the "reserved" space that is
2913** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002914**
drh4d347662020-04-22 00:50:21 +00002915** The value returned is the larger of the current reserve size and
2916** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2917** The amount of reserve can only grow - never shrink.
drh7f751222009-03-17 22:33:00 +00002918*/
drh45248de2020-04-20 15:18:43 +00002919int sqlite3BtreeGetRequestedReserve(Btree *p){
drhe937df82020-05-07 01:56:57 +00002920 int n1, n2;
drhd677b3d2007-08-20 22:48:41 +00002921 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00002922 n1 = (int)p->pBt->nReserveWanted;
2923 n2 = sqlite3BtreeGetReserveNoMutex(p);
drhd677b3d2007-08-20 22:48:41 +00002924 sqlite3BtreeLeave(p);
drhe937df82020-05-07 01:56:57 +00002925 return n1>n2 ? n1 : n2;
drh2011d5f2004-07-22 02:40:37 +00002926}
drhf8e632b2007-05-08 14:51:36 +00002927
drhad0961b2015-02-21 00:19:25 +00002928
drhf8e632b2007-05-08 14:51:36 +00002929/*
2930** Set the maximum page count for a database if mxPage is positive.
2931** No changes are made if mxPage is 0 or negative.
2932** Regardless of the value of mxPage, return the maximum page count.
2933*/
2934int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002935 int n;
2936 sqlite3BtreeEnter(p);
2937 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2938 sqlite3BtreeLeave(p);
2939 return n;
drhf8e632b2007-05-08 14:51:36 +00002940}
drh5b47efa2010-02-12 18:18:39 +00002941
2942/*
drha5907a82017-06-19 11:44:22 +00002943** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2944**
2945** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2946** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2947** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2948** newFlag==(-1) No changes
2949**
2950** This routine acts as a query if newFlag is less than zero
2951**
2952** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2953** freelist leaf pages are not written back to the database. Thus in-page
2954** deleted content is cleared, but freelist deleted content is not.
2955**
2956** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2957** that freelist leaf pages are written back into the database, increasing
2958** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002959*/
2960int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2961 int b;
drhaf034ed2010-02-12 19:46:26 +00002962 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002963 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002964 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2965 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002966 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002967 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2968 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2969 }
2970 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002971 sqlite3BtreeLeave(p);
2972 return b;
2973}
drh90f5ecb2004-07-22 01:19:35 +00002974
2975/*
danielk1977951af802004-11-05 15:45:09 +00002976** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2977** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2978** is disabled. The default value for the auto-vacuum property is
2979** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2980*/
danielk1977aef0bf62005-12-30 16:28:01 +00002981int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002982#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002983 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002984#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002985 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002986 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002987 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002988
2989 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002990 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002991 rc = SQLITE_READONLY;
2992 }else{
drh076d4662009-02-18 20:31:18 +00002993 pBt->autoVacuum = av ?1:0;
2994 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002995 }
drhd677b3d2007-08-20 22:48:41 +00002996 sqlite3BtreeLeave(p);
2997 return rc;
danielk1977951af802004-11-05 15:45:09 +00002998#endif
2999}
3000
3001/*
3002** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3003** enabled 1 is returned. Otherwise 0.
3004*/
danielk1977aef0bf62005-12-30 16:28:01 +00003005int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00003006#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003007 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00003008#else
drhd677b3d2007-08-20 22:48:41 +00003009 int rc;
3010 sqlite3BtreeEnter(p);
3011 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003012 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3013 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3014 BTREE_AUTOVACUUM_INCR
3015 );
drhd677b3d2007-08-20 22:48:41 +00003016 sqlite3BtreeLeave(p);
3017 return rc;
danielk1977951af802004-11-05 15:45:09 +00003018#endif
3019}
3020
danf5da7db2017-03-16 18:14:39 +00003021/*
3022** If the user has not set the safety-level for this database connection
3023** using "PRAGMA synchronous", and if the safety-level is not already
3024** set to the value passed to this function as the second parameter,
3025** set it so.
3026*/
drh2ed57372017-10-05 20:57:38 +00003027#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3028 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003029static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3030 sqlite3 *db;
3031 Db *pDb;
3032 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3033 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3034 if( pDb->bSyncSet==0
3035 && pDb->safety_level!=safety_level
3036 && pDb!=&db->aDb[1]
3037 ){
3038 pDb->safety_level = safety_level;
3039 sqlite3PagerSetFlags(pBt->pPager,
3040 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3041 }
3042 }
3043}
3044#else
danfc8f4b62017-03-16 18:54:42 +00003045# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003046#endif
danielk1977951af802004-11-05 15:45:09 +00003047
drh0314cf32018-04-28 01:27:09 +00003048/* Forward declaration */
3049static int newDatabase(BtShared*);
3050
3051
danielk1977951af802004-11-05 15:45:09 +00003052/*
drha34b6762004-05-07 13:30:42 +00003053** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003054** also acquire a readlock on that file.
3055**
3056** SQLITE_OK is returned on success. If the file is not a
3057** well-formed database file, then SQLITE_CORRUPT is returned.
3058** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003059** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003060*/
danielk1977aef0bf62005-12-30 16:28:01 +00003061static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003062 int rc; /* Result code from subfunctions */
3063 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003064 u32 nPage; /* Number of pages in the database */
3065 u32 nPageFile = 0; /* Number of pages in the database file */
3066 u32 nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00003067
drh1fee73e2007-08-29 04:00:57 +00003068 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003069 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003070 rc = sqlite3PagerSharedLock(pBt->pPager);
3071 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003072 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003073 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003074
3075 /* Do some checking to help insure the file we opened really is
3076 ** a valid database file.
3077 */
drhc2a4bab2010-04-02 12:46:45 +00003078 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003079 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003080 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003081 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003082 }
drh0314cf32018-04-28 01:27:09 +00003083 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3084 nPage = 0;
3085 }
drh97b59a52010-03-31 02:31:33 +00003086 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003087 u32 pageSize;
3088 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003089 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003090 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003091 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3092 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3093 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003094 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003095 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003096 }
dan5cf53532010-05-01 16:40:20 +00003097
3098#ifdef SQLITE_OMIT_WAL
3099 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003100 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003101 }
3102 if( page1[19]>1 ){
3103 goto page1_init_failed;
3104 }
3105#else
dane04dc882010-04-20 18:53:15 +00003106 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003107 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003108 }
dane04dc882010-04-20 18:53:15 +00003109 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003110 goto page1_init_failed;
3111 }
drhe5ae5732008-06-15 02:51:47 +00003112
dana470aeb2010-04-21 11:43:38 +00003113 /* If the write version is set to 2, this database should be accessed
3114 ** in WAL mode. If the log is not already open, open it now. Then
3115 ** return SQLITE_OK and return without populating BtShared.pPage1.
3116 ** The caller detects this and calls this function again. This is
3117 ** required as the version of page 1 currently in the page1 buffer
3118 ** may not be the latest version - there may be a newer one in the log
3119 ** file.
3120 */
drhc9166342012-01-05 23:32:06 +00003121 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003122 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003123 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003124 if( rc!=SQLITE_OK ){
3125 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003126 }else{
danf5da7db2017-03-16 18:14:39 +00003127 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003128 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003129 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003130 return SQLITE_OK;
3131 }
dane04dc882010-04-20 18:53:15 +00003132 }
dan8b5444b2010-04-27 14:37:47 +00003133 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003134 }else{
3135 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003136 }
dan5cf53532010-05-01 16:40:20 +00003137#endif
dane04dc882010-04-20 18:53:15 +00003138
drh113762a2014-11-19 16:36:25 +00003139 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3140 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3141 **
drhe5ae5732008-06-15 02:51:47 +00003142 ** The original design allowed these amounts to vary, but as of
3143 ** version 3.6.0, we require them to be fixed.
3144 */
3145 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3146 goto page1_init_failed;
3147 }
drh113762a2014-11-19 16:36:25 +00003148 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3149 ** determined by the 2-byte integer located at an offset of 16 bytes from
3150 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003151 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003152 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3153 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003154 if( ((pageSize-1)&pageSize)!=0
3155 || pageSize>SQLITE_MAX_PAGE_SIZE
3156 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003157 ){
drh07d183d2005-05-01 22:52:42 +00003158 goto page1_init_failed;
3159 }
drhdcc27002019-01-06 02:06:31 +00003160 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003161 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003162 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3163 ** integer at offset 20 is the number of bytes of space at the end of
3164 ** each page to reserve for extensions.
3165 **
3166 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3167 ** determined by the one-byte unsigned integer found at an offset of 20
3168 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003169 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003170 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003171 /* After reading the first page of the database assuming a page size
3172 ** of BtShared.pageSize, we have discovered that the page-size is
3173 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3174 ** zero and return SQLITE_OK. The caller will call this function
3175 ** again with the correct page-size.
3176 */
drh3908fe92017-09-01 14:50:19 +00003177 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003178 pBt->usableSize = usableSize;
3179 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003180 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003181 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3182 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003183 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003184 }
drh0f1c2eb2018-11-03 17:31:48 +00003185 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003186 rc = SQLITE_CORRUPT_BKPT;
3187 goto page1_init_failed;
3188 }
drh113762a2014-11-19 16:36:25 +00003189 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3190 ** be less than 480. In other words, if the page size is 512, then the
3191 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003192 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003193 goto page1_init_failed;
3194 }
drh43b18e12010-08-17 19:40:08 +00003195 pBt->pageSize = pageSize;
3196 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003197#ifndef SQLITE_OMIT_AUTOVACUUM
3198 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003199 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003200#endif
drh306dc212001-05-21 13:45:10 +00003201 }
drhb6f41482004-05-14 01:58:11 +00003202
3203 /* maxLocal is the maximum amount of payload to store locally for
3204 ** a cell. Make sure it is small enough so that at least minFanout
3205 ** cells can will fit on one page. We assume a 10-byte page header.
3206 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003207 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003208 ** 4-byte child pointer
3209 ** 9-byte nKey value
3210 ** 4-byte nData value
3211 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003212 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003213 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3214 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003215 */
shaneh1df2db72010-08-18 02:28:48 +00003216 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3217 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3218 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3219 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003220 if( pBt->maxLocal>127 ){
3221 pBt->max1bytePayload = 127;
3222 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003223 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003224 }
drh2e38c322004-09-03 18:38:44 +00003225 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003226 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003227 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003228 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003229
drh72f82862001-05-24 21:06:34 +00003230page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003231 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003232 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003233 return rc;
drh306dc212001-05-21 13:45:10 +00003234}
3235
drh85ec3b62013-05-14 23:12:06 +00003236#ifndef NDEBUG
3237/*
3238** Return the number of cursors open on pBt. This is for use
3239** in assert() expressions, so it is only compiled if NDEBUG is not
3240** defined.
3241**
3242** Only write cursors are counted if wrOnly is true. If wrOnly is
3243** false then all cursors are counted.
3244**
3245** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003246** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003247** have been tripped into the CURSOR_FAULT state are not counted.
3248*/
3249static int countValidCursors(BtShared *pBt, int wrOnly){
3250 BtCursor *pCur;
3251 int r = 0;
3252 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003253 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3254 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003255 }
3256 return r;
3257}
3258#endif
3259
drh306dc212001-05-21 13:45:10 +00003260/*
drhb8ca3072001-12-05 00:21:20 +00003261** If there are no outstanding cursors and we are not in the middle
3262** of a transaction but there is a read lock on the database, then
3263** this routine unrefs the first page of the database file which
3264** has the effect of releasing the read lock.
3265**
drhb8ca3072001-12-05 00:21:20 +00003266** If there is a transaction in progress, this routine is a no-op.
3267*/
danielk1977aef0bf62005-12-30 16:28:01 +00003268static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003269 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003270 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003271 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003272 MemPage *pPage1 = pBt->pPage1;
3273 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003274 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003275 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003276 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003277 }
3278}
3279
3280/*
drhe39f2f92009-07-23 01:43:59 +00003281** If pBt points to an empty file then convert that empty file
3282** into a new empty database by initializing the first page of
3283** the database.
drh8b2f49b2001-06-08 00:21:52 +00003284*/
danielk1977aef0bf62005-12-30 16:28:01 +00003285static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003286 MemPage *pP1;
3287 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003288 int rc;
drhd677b3d2007-08-20 22:48:41 +00003289
drh1fee73e2007-08-29 04:00:57 +00003290 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003291 if( pBt->nPage>0 ){
3292 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003293 }
drh3aac2dd2004-04-26 14:10:20 +00003294 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003295 assert( pP1!=0 );
3296 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003297 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003298 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003299 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3300 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003301 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3302 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003303 data[18] = 1;
3304 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003305 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3306 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003307 data[21] = 64;
3308 data[22] = 32;
3309 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003310 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003311 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003312 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003313#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003314 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003315 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003316 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003317 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003318#endif
drhdd3cd972010-03-27 17:12:36 +00003319 pBt->nPage = 1;
3320 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003321 return SQLITE_OK;
3322}
3323
3324/*
danb483eba2012-10-13 19:58:11 +00003325** Initialize the first page of the database file (creating a database
3326** consisting of a single page and no schema objects). Return SQLITE_OK
3327** if successful, or an SQLite error code otherwise.
3328*/
3329int sqlite3BtreeNewDb(Btree *p){
3330 int rc;
3331 sqlite3BtreeEnter(p);
3332 p->pBt->nPage = 0;
3333 rc = newDatabase(p->pBt);
3334 sqlite3BtreeLeave(p);
3335 return rc;
3336}
3337
3338/*
danielk1977ee5741e2004-05-31 10:01:34 +00003339** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003340** is started if the second argument is nonzero, otherwise a read-
3341** transaction. If the second argument is 2 or more and exclusive
3342** transaction is started, meaning that no other process is allowed
3343** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003344** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003345** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003346**
danielk1977ee5741e2004-05-31 10:01:34 +00003347** A write-transaction must be started before attempting any
3348** changes to the database. None of the following routines
3349** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003350**
drh23e11ca2004-05-04 17:27:28 +00003351** sqlite3BtreeCreateTable()
3352** sqlite3BtreeCreateIndex()
3353** sqlite3BtreeClearTable()
3354** sqlite3BtreeDropTable()
3355** sqlite3BtreeInsert()
3356** sqlite3BtreeDelete()
3357** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003358**
drhb8ef32c2005-03-14 02:01:49 +00003359** If an initial attempt to acquire the lock fails because of lock contention
3360** and the database was previously unlocked, then invoke the busy handler
3361** if there is one. But if there was previously a read-lock, do not
3362** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3363** returned when there is already a read-lock in order to avoid a deadlock.
3364**
3365** Suppose there are two processes A and B. A has a read lock and B has
3366** a reserved lock. B tries to promote to exclusive but is blocked because
3367** of A's read lock. A tries to promote to reserved but is blocked by B.
3368** One or the other of the two processes must give way or there can be
3369** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3370** when A already has a read lock, we encourage A to give up and let B
3371** proceed.
drha059ad02001-04-17 20:09:11 +00003372*/
drhbb2d9b12018-06-06 16:28:40 +00003373int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003374 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003375 int rc = SQLITE_OK;
3376
drhd677b3d2007-08-20 22:48:41 +00003377 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003378 btreeIntegrity(p);
3379
danielk1977ee5741e2004-05-31 10:01:34 +00003380 /* If the btree is already in a write-transaction, or it
3381 ** is already in a read-transaction and a read-transaction
3382 ** is requested, this is a no-op.
3383 */
danielk1977aef0bf62005-12-30 16:28:01 +00003384 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003385 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003386 }
dan56c517a2013-09-26 11:04:33 +00003387 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003388
danea933f02018-07-19 11:44:02 +00003389 if( (p->db->flags & SQLITE_ResetDatabase)
3390 && sqlite3PagerIsreadonly(pBt->pPager)==0
3391 ){
3392 pBt->btsFlags &= ~BTS_READ_ONLY;
3393 }
3394
drhb8ef32c2005-03-14 02:01:49 +00003395 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003396 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003397 rc = SQLITE_READONLY;
3398 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003399 }
3400
danielk1977404ca072009-03-16 13:19:36 +00003401#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003402 {
3403 sqlite3 *pBlock = 0;
3404 /* If another database handle has already opened a write transaction
3405 ** on this shared-btree structure and a second write transaction is
3406 ** requested, return SQLITE_LOCKED.
3407 */
3408 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3409 || (pBt->btsFlags & BTS_PENDING)!=0
3410 ){
3411 pBlock = pBt->pWriter->db;
3412 }else if( wrflag>1 ){
3413 BtLock *pIter;
3414 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3415 if( pIter->pBtree!=p ){
3416 pBlock = pIter->pBtree->db;
3417 break;
3418 }
danielk1977641b0f42007-12-21 04:47:25 +00003419 }
3420 }
drh5a1fb182016-01-08 19:34:39 +00003421 if( pBlock ){
3422 sqlite3ConnectionBlocked(p->db, pBlock);
3423 rc = SQLITE_LOCKED_SHAREDCACHE;
3424 goto trans_begun;
3425 }
danielk1977404ca072009-03-16 13:19:36 +00003426 }
danielk1977641b0f42007-12-21 04:47:25 +00003427#endif
3428
danielk1977602b4662009-07-02 07:47:33 +00003429 /* Any read-only or read-write transaction implies a read-lock on
3430 ** page 1. So if some other shared-cache client already has a write-lock
3431 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003432 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3433 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003434
drhc9166342012-01-05 23:32:06 +00003435 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3436 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003437 do {
danielk1977295dc102009-04-01 19:07:03 +00003438 /* Call lockBtree() until either pBt->pPage1 is populated or
3439 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3440 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3441 ** reading page 1 it discovers that the page-size of the database
3442 ** file is not pBt->pageSize. In this case lockBtree() will update
3443 ** pBt->pageSize to the page-size of the file on disk.
3444 */
3445 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003446
drhb8ef32c2005-03-14 02:01:49 +00003447 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003448 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003449 rc = SQLITE_READONLY;
3450 }else{
danielk1977d8293352009-04-30 09:10:37 +00003451 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003452 if( rc==SQLITE_OK ){
3453 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003454 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3455 /* if there was no transaction opened when this function was
3456 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3457 ** code to SQLITE_BUSY. */
3458 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003459 }
drhb8ef32c2005-03-14 02:01:49 +00003460 }
3461 }
3462
danielk1977bd434552009-03-18 10:33:00 +00003463 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003464 unlockBtreeIfUnused(pBt);
3465 }
danf9b76712010-06-01 14:12:45 +00003466 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003467 btreeInvokeBusyHandler(pBt) );
drhfd725632018-03-26 20:43:05 +00003468 sqlite3PagerResetLockTimeout(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00003469
3470 if( rc==SQLITE_OK ){
3471 if( p->inTrans==TRANS_NONE ){
3472 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003473#ifndef SQLITE_OMIT_SHARED_CACHE
3474 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003475 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003476 p->lock.eLock = READ_LOCK;
3477 p->lock.pNext = pBt->pLock;
3478 pBt->pLock = &p->lock;
3479 }
3480#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003481 }
3482 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3483 if( p->inTrans>pBt->inTransaction ){
3484 pBt->inTransaction = p->inTrans;
3485 }
danielk1977404ca072009-03-16 13:19:36 +00003486 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003487 MemPage *pPage1 = pBt->pPage1;
3488#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003489 assert( !pBt->pWriter );
3490 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003491 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3492 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003493#endif
dan59257dc2010-08-04 11:34:31 +00003494
3495 /* If the db-size header field is incorrect (as it may be if an old
3496 ** client has been writing the database file), update it now. Doing
3497 ** this sooner rather than later means the database size can safely
3498 ** re-read the database size from page 1 if a savepoint or transaction
3499 ** rollback occurs within the transaction.
3500 */
3501 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3502 rc = sqlite3PagerWrite(pPage1->pDbPage);
3503 if( rc==SQLITE_OK ){
3504 put4byte(&pPage1->aData[28], pBt->nPage);
3505 }
3506 }
3507 }
danielk1977aef0bf62005-12-30 16:28:01 +00003508 }
3509
drhd677b3d2007-08-20 22:48:41 +00003510trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003511 if( rc==SQLITE_OK ){
3512 if( pSchemaVersion ){
3513 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3514 }
3515 if( wrflag ){
3516 /* This call makes sure that the pager has the correct number of
3517 ** open savepoints. If the second parameter is greater than 0 and
3518 ** the sub-journal is not already open, then it will be opened here.
3519 */
3520 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3521 }
danielk1977fd7f0452008-12-17 17:30:26 +00003522 }
danielk197712dd5492008-12-18 15:45:07 +00003523
danielk1977aef0bf62005-12-30 16:28:01 +00003524 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003525 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003526 return rc;
drha059ad02001-04-17 20:09:11 +00003527}
3528
danielk1977687566d2004-11-02 12:56:41 +00003529#ifndef SQLITE_OMIT_AUTOVACUUM
3530
3531/*
3532** Set the pointer-map entries for all children of page pPage. Also, if
3533** pPage contains cells that point to overflow pages, set the pointer
3534** map entries for the overflow pages as well.
3535*/
3536static int setChildPtrmaps(MemPage *pPage){
3537 int i; /* Counter variable */
3538 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003539 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003540 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003541 Pgno pgno = pPage->pgno;
3542
drh1fee73e2007-08-29 04:00:57 +00003543 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003544 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003545 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003546 nCell = pPage->nCell;
3547
3548 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003549 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003550
drh0f1bf4c2019-01-13 20:17:21 +00003551 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003552
danielk1977687566d2004-11-02 12:56:41 +00003553 if( !pPage->leaf ){
3554 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003555 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003556 }
3557 }
3558
3559 if( !pPage->leaf ){
3560 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003561 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003562 }
3563
danielk1977687566d2004-11-02 12:56:41 +00003564 return rc;
3565}
3566
3567/*
drhf3aed592009-07-08 18:12:49 +00003568** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3569** that it points to iTo. Parameter eType describes the type of pointer to
3570** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003571**
3572** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3573** page of pPage.
3574**
3575** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3576** page pointed to by one of the cells on pPage.
3577**
3578** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3579** overflow page in the list.
3580*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003581static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003582 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003583 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003584 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003585 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003586 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003587 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003588 }
danielk1977f78fc082004-11-02 14:40:32 +00003589 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003590 }else{
danielk1977687566d2004-11-02 12:56:41 +00003591 int i;
3592 int nCell;
drha1f75d92015-05-24 10:18:12 +00003593 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003594
drh14e845a2017-05-25 21:35:56 +00003595 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003596 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003597 nCell = pPage->nCell;
3598
danielk1977687566d2004-11-02 12:56:41 +00003599 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003600 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003601 if( eType==PTRMAP_OVERFLOW1 ){
3602 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003603 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003604 if( info.nLocal<info.nPayload ){
3605 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003606 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003607 }
3608 if( iFrom==get4byte(pCell+info.nSize-4) ){
3609 put4byte(pCell+info.nSize-4, iTo);
3610 break;
3611 }
danielk1977687566d2004-11-02 12:56:41 +00003612 }
3613 }else{
3614 if( get4byte(pCell)==iFrom ){
3615 put4byte(pCell, iTo);
3616 break;
3617 }
3618 }
3619 }
3620
3621 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003622 if( eType!=PTRMAP_BTREE ||
3623 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003624 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003625 }
danielk1977687566d2004-11-02 12:56:41 +00003626 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3627 }
danielk1977687566d2004-11-02 12:56:41 +00003628 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003629 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003630}
3631
danielk1977003ba062004-11-04 02:57:33 +00003632
danielk19777701e812005-01-10 12:59:51 +00003633/*
3634** Move the open database page pDbPage to location iFreePage in the
3635** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003636**
3637** The isCommit flag indicates that there is no need to remember that
3638** the journal needs to be sync()ed before database page pDbPage->pgno
3639** can be written to. The caller has already promised not to write to that
3640** page.
danielk19777701e812005-01-10 12:59:51 +00003641*/
danielk1977003ba062004-11-04 02:57:33 +00003642static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003643 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003644 MemPage *pDbPage, /* Open page to move */
3645 u8 eType, /* Pointer map 'type' entry for pDbPage */
3646 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003647 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003648 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003649){
3650 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3651 Pgno iDbPage = pDbPage->pgno;
3652 Pager *pPager = pBt->pPager;
3653 int rc;
3654
danielk1977a0bf2652004-11-04 14:30:04 +00003655 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3656 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003657 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003658 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003659 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003660
drh85b623f2007-12-13 21:54:09 +00003661 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003662 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3663 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003664 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003665 if( rc!=SQLITE_OK ){
3666 return rc;
3667 }
3668 pDbPage->pgno = iFreePage;
3669
3670 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3671 ** that point to overflow pages. The pointer map entries for all these
3672 ** pages need to be changed.
3673 **
3674 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3675 ** pointer to a subsequent overflow page. If this is the case, then
3676 ** the pointer map needs to be updated for the subsequent overflow page.
3677 */
danielk1977a0bf2652004-11-04 14:30:04 +00003678 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003679 rc = setChildPtrmaps(pDbPage);
3680 if( rc!=SQLITE_OK ){
3681 return rc;
3682 }
3683 }else{
3684 Pgno nextOvfl = get4byte(pDbPage->aData);
3685 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003686 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003687 if( rc!=SQLITE_OK ){
3688 return rc;
3689 }
3690 }
3691 }
3692
3693 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3694 ** that it points at iFreePage. Also fix the pointer map entry for
3695 ** iPtrPage.
3696 */
danielk1977a0bf2652004-11-04 14:30:04 +00003697 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003698 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003699 if( rc!=SQLITE_OK ){
3700 return rc;
3701 }
danielk19773b8a05f2007-03-19 17:44:26 +00003702 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003703 if( rc!=SQLITE_OK ){
3704 releasePage(pPtrPage);
3705 return rc;
3706 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003707 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003708 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003709 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003710 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003711 }
danielk1977003ba062004-11-04 02:57:33 +00003712 }
danielk1977003ba062004-11-04 02:57:33 +00003713 return rc;
3714}
3715
danielk1977dddbcdc2007-04-26 14:42:34 +00003716/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003717static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003718
3719/*
dan51f0b6d2013-02-22 20:16:34 +00003720** Perform a single step of an incremental-vacuum. If successful, return
3721** SQLITE_OK. If there is no work to do (and therefore no point in
3722** calling this function again), return SQLITE_DONE. Or, if an error
3723** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003724**
peter.d.reid60ec9142014-09-06 16:39:46 +00003725** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003726** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003727**
dan51f0b6d2013-02-22 20:16:34 +00003728** Parameter nFin is the number of pages that this database would contain
3729** were this function called until it returns SQLITE_DONE.
3730**
3731** If the bCommit parameter is non-zero, this function assumes that the
3732** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003733** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003734** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003735*/
dan51f0b6d2013-02-22 20:16:34 +00003736static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003737 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003738 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003739
drh1fee73e2007-08-29 04:00:57 +00003740 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003741 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003742
3743 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003744 u8 eType;
3745 Pgno iPtrPage;
3746
3747 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003748 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003749 return SQLITE_DONE;
3750 }
3751
3752 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3753 if( rc!=SQLITE_OK ){
3754 return rc;
3755 }
3756 if( eType==PTRMAP_ROOTPAGE ){
3757 return SQLITE_CORRUPT_BKPT;
3758 }
3759
3760 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003761 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003762 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003763 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003764 ** truncated to zero after this function returns, so it doesn't
3765 ** matter if it still contains some garbage entries.
3766 */
3767 Pgno iFreePg;
3768 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003769 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003770 if( rc!=SQLITE_OK ){
3771 return rc;
3772 }
3773 assert( iFreePg==iLastPg );
3774 releasePage(pFreePg);
3775 }
3776 } else {
3777 Pgno iFreePg; /* Index of free page to move pLastPg to */
3778 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003779 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3780 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003781
drhb00fc3b2013-08-21 23:42:32 +00003782 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003783 if( rc!=SQLITE_OK ){
3784 return rc;
3785 }
3786
dan51f0b6d2013-02-22 20:16:34 +00003787 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003788 ** is swapped with the first free page pulled off the free list.
3789 **
dan51f0b6d2013-02-22 20:16:34 +00003790 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003791 ** looping until a free-page located within the first nFin pages
3792 ** of the file is found.
3793 */
dan51f0b6d2013-02-22 20:16:34 +00003794 if( bCommit==0 ){
3795 eMode = BTALLOC_LE;
3796 iNear = nFin;
3797 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003798 do {
3799 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003800 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003801 if( rc!=SQLITE_OK ){
3802 releasePage(pLastPg);
3803 return rc;
3804 }
3805 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003806 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003807 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003808
dane1df4e32013-03-05 11:27:04 +00003809 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003810 releasePage(pLastPg);
3811 if( rc!=SQLITE_OK ){
3812 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003813 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003814 }
3815 }
3816
dan51f0b6d2013-02-22 20:16:34 +00003817 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003818 do {
danielk19773460d192008-12-27 15:23:13 +00003819 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003820 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3821 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003822 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003823 }
3824 return SQLITE_OK;
3825}
3826
3827/*
dan51f0b6d2013-02-22 20:16:34 +00003828** The database opened by the first argument is an auto-vacuum database
3829** nOrig pages in size containing nFree free pages. Return the expected
3830** size of the database in pages following an auto-vacuum operation.
3831*/
3832static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3833 int nEntry; /* Number of entries on one ptrmap page */
3834 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3835 Pgno nFin; /* Return value */
3836
3837 nEntry = pBt->usableSize/5;
3838 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3839 nFin = nOrig - nFree - nPtrmap;
3840 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3841 nFin--;
3842 }
3843 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3844 nFin--;
3845 }
dan51f0b6d2013-02-22 20:16:34 +00003846
3847 return nFin;
3848}
3849
3850/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003851** A write-transaction must be opened before calling this function.
3852** It performs a single unit of work towards an incremental vacuum.
3853**
3854** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003855** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003856** SQLITE_OK is returned. Otherwise an SQLite error code.
3857*/
3858int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003859 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003860 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003861
3862 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003863 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3864 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003865 rc = SQLITE_DONE;
3866 }else{
dan51f0b6d2013-02-22 20:16:34 +00003867 Pgno nOrig = btreePagecount(pBt);
3868 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3869 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3870
dan91384712013-02-24 11:50:43 +00003871 if( nOrig<nFin ){
3872 rc = SQLITE_CORRUPT_BKPT;
3873 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003874 rc = saveAllCursors(pBt, 0, 0);
3875 if( rc==SQLITE_OK ){
3876 invalidateAllOverflowCache(pBt);
3877 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3878 }
dan51f0b6d2013-02-22 20:16:34 +00003879 if( rc==SQLITE_OK ){
3880 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3881 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3882 }
3883 }else{
3884 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003885 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003886 }
drhd677b3d2007-08-20 22:48:41 +00003887 sqlite3BtreeLeave(p);
3888 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003889}
3890
3891/*
danielk19773b8a05f2007-03-19 17:44:26 +00003892** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003893** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003894**
3895** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3896** the database file should be truncated to during the commit process.
3897** i.e. the database has been reorganized so that only the first *pnTrunc
3898** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003899*/
danielk19773460d192008-12-27 15:23:13 +00003900static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003901 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003902 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003903 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003904
drh1fee73e2007-08-29 04:00:57 +00003905 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003906 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003907 assert(pBt->autoVacuum);
3908 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003909 Pgno nFin; /* Number of pages in database after autovacuuming */
3910 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003911 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003912 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003913
drhb1299152010-03-30 22:58:33 +00003914 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003915 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3916 /* It is not possible to create a database for which the final page
3917 ** is either a pointer-map page or the pending-byte page. If one
3918 ** is encountered, this indicates corruption.
3919 */
danielk19773460d192008-12-27 15:23:13 +00003920 return SQLITE_CORRUPT_BKPT;
3921 }
danielk1977ef165ce2009-04-06 17:50:03 +00003922
danielk19773460d192008-12-27 15:23:13 +00003923 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003924 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003925 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003926 if( nFin<nOrig ){
3927 rc = saveAllCursors(pBt, 0, 0);
3928 }
danielk19773460d192008-12-27 15:23:13 +00003929 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003930 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003931 }
danielk19773460d192008-12-27 15:23:13 +00003932 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003933 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3934 put4byte(&pBt->pPage1->aData[32], 0);
3935 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003936 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003937 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003938 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003939 }
3940 if( rc!=SQLITE_OK ){
3941 sqlite3PagerRollback(pPager);
3942 }
danielk1977687566d2004-11-02 12:56:41 +00003943 }
3944
dan0aed84d2013-03-26 14:16:20 +00003945 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003946 return rc;
3947}
danielk1977dddbcdc2007-04-26 14:42:34 +00003948
danielk1977a50d9aa2009-06-08 14:49:45 +00003949#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3950# define setChildPtrmaps(x) SQLITE_OK
3951#endif
danielk1977687566d2004-11-02 12:56:41 +00003952
3953/*
drh80e35f42007-03-30 14:06:34 +00003954** This routine does the first phase of a two-phase commit. This routine
3955** causes a rollback journal to be created (if it does not already exist)
3956** and populated with enough information so that if a power loss occurs
3957** the database can be restored to its original state by playing back
3958** the journal. Then the contents of the journal are flushed out to
3959** the disk. After the journal is safely on oxide, the changes to the
3960** database are written into the database file and flushed to oxide.
3961** At the end of this call, the rollback journal still exists on the
3962** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003963** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003964** commit process.
3965**
3966** This call is a no-op if no write-transaction is currently active on pBt.
3967**
3968** Otherwise, sync the database file for the btree pBt. zMaster points to
3969** the name of a master journal file that should be written into the
3970** individual journal file, or is NULL, indicating no master journal file
3971** (single database transaction).
3972**
3973** When this is called, the master journal should already have been
3974** created, populated with this journal pointer and synced to disk.
3975**
3976** Once this is routine has returned, the only thing required to commit
3977** the write-transaction for this database file is to delete the journal.
3978*/
3979int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3980 int rc = SQLITE_OK;
3981 if( p->inTrans==TRANS_WRITE ){
3982 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003983 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003984#ifndef SQLITE_OMIT_AUTOVACUUM
3985 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003986 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003987 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003988 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003989 return rc;
3990 }
3991 }
danbc1a3c62013-02-23 16:40:46 +00003992 if( pBt->bDoTruncate ){
3993 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3994 }
drh80e35f42007-03-30 14:06:34 +00003995#endif
drh49b9d332009-01-02 18:10:42 +00003996 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003997 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003998 }
3999 return rc;
4000}
4001
4002/*
danielk197794b30732009-07-02 17:21:57 +00004003** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4004** at the conclusion of a transaction.
4005*/
4006static void btreeEndTransaction(Btree *p){
4007 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00004008 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004009 assert( sqlite3BtreeHoldsMutex(p) );
4010
danbc1a3c62013-02-23 16:40:46 +00004011#ifndef SQLITE_OMIT_AUTOVACUUM
4012 pBt->bDoTruncate = 0;
4013#endif
danc0537fe2013-06-28 19:41:43 +00004014 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004015 /* If there are other active statements that belong to this database
4016 ** handle, downgrade to a read-only transaction. The other statements
4017 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004018 downgradeAllSharedCacheTableLocks(p);
4019 p->inTrans = TRANS_READ;
4020 }else{
4021 /* If the handle had any kind of transaction open, decrement the
4022 ** transaction count of the shared btree. If the transaction count
4023 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4024 ** call below will unlock the pager. */
4025 if( p->inTrans!=TRANS_NONE ){
4026 clearAllSharedCacheTableLocks(p);
4027 pBt->nTransaction--;
4028 if( 0==pBt->nTransaction ){
4029 pBt->inTransaction = TRANS_NONE;
4030 }
4031 }
4032
4033 /* Set the current transaction state to TRANS_NONE and unlock the
4034 ** pager if this call closed the only read or write transaction. */
4035 p->inTrans = TRANS_NONE;
4036 unlockBtreeIfUnused(pBt);
4037 }
4038
4039 btreeIntegrity(p);
4040}
4041
4042/*
drh2aa679f2001-06-25 02:11:07 +00004043** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004044**
drh6e345992007-03-30 11:12:08 +00004045** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004046** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4047** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4048** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004049** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004050** routine has to do is delete or truncate or zero the header in the
4051** the rollback journal (which causes the transaction to commit) and
4052** drop locks.
drh6e345992007-03-30 11:12:08 +00004053**
dan60939d02011-03-29 15:40:55 +00004054** Normally, if an error occurs while the pager layer is attempting to
4055** finalize the underlying journal file, this function returns an error and
4056** the upper layer will attempt a rollback. However, if the second argument
4057** is non-zero then this b-tree transaction is part of a multi-file
4058** transaction. In this case, the transaction has already been committed
4059** (by deleting a master journal file) and the caller will ignore this
4060** functions return code. So, even if an error occurs in the pager layer,
4061** reset the b-tree objects internal state to indicate that the write
4062** transaction has been closed. This is quite safe, as the pager will have
4063** transitioned to the error state.
4064**
drh5e00f6c2001-09-13 13:46:56 +00004065** This will release the write lock on the database file. If there
4066** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004067*/
dan60939d02011-03-29 15:40:55 +00004068int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004069
drh075ed302010-10-14 01:17:30 +00004070 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004071 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004072 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004073
4074 /* If the handle has a write-transaction open, commit the shared-btrees
4075 ** transaction and set the shared state to TRANS_READ.
4076 */
4077 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004078 int rc;
drh075ed302010-10-14 01:17:30 +00004079 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004080 assert( pBt->inTransaction==TRANS_WRITE );
4081 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004082 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004083 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004084 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004085 return rc;
4086 }
drh3da9c042014-12-22 18:41:21 +00004087 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004088 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004089 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004090 }
danielk1977aef0bf62005-12-30 16:28:01 +00004091
danielk197794b30732009-07-02 17:21:57 +00004092 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004093 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004094 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004095}
4096
drh80e35f42007-03-30 14:06:34 +00004097/*
4098** Do both phases of a commit.
4099*/
4100int sqlite3BtreeCommit(Btree *p){
4101 int rc;
drhd677b3d2007-08-20 22:48:41 +00004102 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004103 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4104 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004105 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004106 }
drhd677b3d2007-08-20 22:48:41 +00004107 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004108 return rc;
4109}
4110
drhc39e0002004-05-07 23:50:57 +00004111/*
drhfb982642007-08-30 01:19:59 +00004112** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004113** code to errCode for every cursor on any BtShared that pBtree
4114** references. Or if the writeOnly flag is set to 1, then only
4115** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004116**
drh47b7fc72014-11-11 01:33:57 +00004117** Every cursor is a candidate to be tripped, including cursors
4118** that belong to other database connections that happen to be
4119** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004120**
dan80231042014-11-12 14:56:02 +00004121** This routine gets called when a rollback occurs. If the writeOnly
4122** flag is true, then only write-cursors need be tripped - read-only
4123** cursors save their current positions so that they may continue
4124** following the rollback. Or, if writeOnly is false, all cursors are
4125** tripped. In general, writeOnly is false if the transaction being
4126** rolled back modified the database schema. In this case b-tree root
4127** pages may be moved or deleted from the database altogether, making
4128** it unsafe for read cursors to continue.
4129**
4130** If the writeOnly flag is true and an error is encountered while
4131** saving the current position of a read-only cursor, all cursors,
4132** including all read-cursors are tripped.
4133**
4134** SQLITE_OK is returned if successful, or if an error occurs while
4135** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004136*/
dan80231042014-11-12 14:56:02 +00004137int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004138 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004139 int rc = SQLITE_OK;
4140
drh47b7fc72014-11-11 01:33:57 +00004141 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004142 if( pBtree ){
4143 sqlite3BtreeEnter(pBtree);
4144 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004145 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004146 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004147 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004148 if( rc!=SQLITE_OK ){
4149 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4150 break;
4151 }
4152 }
4153 }else{
4154 sqlite3BtreeClearCursor(p);
4155 p->eState = CURSOR_FAULT;
4156 p->skipNext = errCode;
4157 }
drh85ef6302017-08-02 15:50:09 +00004158 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004159 }
dan80231042014-11-12 14:56:02 +00004160 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004161 }
dan80231042014-11-12 14:56:02 +00004162 return rc;
drhfb982642007-08-30 01:19:59 +00004163}
4164
4165/*
drh41422652019-05-10 14:34:18 +00004166** Set the pBt->nPage field correctly, according to the current
4167** state of the database. Assume pBt->pPage1 is valid.
4168*/
4169static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4170 int nPage = get4byte(&pPage1->aData[28]);
4171 testcase( nPage==0 );
4172 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4173 testcase( pBt->nPage!=nPage );
4174 pBt->nPage = nPage;
4175}
4176
4177/*
drh47b7fc72014-11-11 01:33:57 +00004178** Rollback the transaction in progress.
4179**
4180** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4181** Only write cursors are tripped if writeOnly is true but all cursors are
4182** tripped if writeOnly is false. Any attempt to use
4183** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004184**
4185** This will release the write lock on the database file. If there
4186** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004187*/
drh47b7fc72014-11-11 01:33:57 +00004188int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004189 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004190 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004191 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004192
drh47b7fc72014-11-11 01:33:57 +00004193 assert( writeOnly==1 || writeOnly==0 );
4194 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004195 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004196 if( tripCode==SQLITE_OK ){
4197 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004198 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004199 }else{
4200 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004201 }
drh0f198a72012-02-13 16:43:16 +00004202 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004203 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4204 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4205 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004206 }
danielk1977aef0bf62005-12-30 16:28:01 +00004207 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004208
4209 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004210 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004211
danielk19778d34dfd2006-01-24 16:37:57 +00004212 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004213 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004214 if( rc2!=SQLITE_OK ){
4215 rc = rc2;
4216 }
4217
drh24cd67e2004-05-10 16:18:47 +00004218 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004219 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004220 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004221 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh41422652019-05-10 14:34:18 +00004222 btreeSetNPage(pBt, pPage1);
drh3908fe92017-09-01 14:50:19 +00004223 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004224 }
drh85ec3b62013-05-14 23:12:06 +00004225 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004226 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004227 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004228 }
danielk1977aef0bf62005-12-30 16:28:01 +00004229
danielk197794b30732009-07-02 17:21:57 +00004230 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004231 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004232 return rc;
4233}
4234
4235/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004236** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004237** back independently of the main transaction. You must start a transaction
4238** before starting a subtransaction. The subtransaction is ended automatically
4239** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004240**
4241** Statement subtransactions are used around individual SQL statements
4242** that are contained within a BEGIN...COMMIT block. If a constraint
4243** error occurs within the statement, the effect of that one statement
4244** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004245**
4246** A statement sub-transaction is implemented as an anonymous savepoint. The
4247** value passed as the second parameter is the total number of savepoints,
4248** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4249** are no active savepoints and no other statement-transactions open,
4250** iStatement is 1. This anonymous savepoint can be released or rolled back
4251** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004252*/
danielk1977bd434552009-03-18 10:33:00 +00004253int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004254 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004255 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004256 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004257 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004258 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004259 assert( iStatement>0 );
4260 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004261 assert( pBt->inTransaction==TRANS_WRITE );
4262 /* At the pager level, a statement transaction is a savepoint with
4263 ** an index greater than all savepoints created explicitly using
4264 ** SQL statements. It is illegal to open, release or rollback any
4265 ** such savepoints while the statement transaction savepoint is active.
4266 */
4267 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004268 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004269 return rc;
4270}
4271
4272/*
danielk1977fd7f0452008-12-17 17:30:26 +00004273** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4274** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004275** savepoint identified by parameter iSavepoint, depending on the value
4276** of op.
4277**
4278** Normally, iSavepoint is greater than or equal to zero. However, if op is
4279** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4280** contents of the entire transaction are rolled back. This is different
4281** from a normal transaction rollback, as no locks are released and the
4282** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004283*/
4284int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4285 int rc = SQLITE_OK;
4286 if( p && p->inTrans==TRANS_WRITE ){
4287 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004288 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4289 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4290 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004291 if( op==SAVEPOINT_ROLLBACK ){
4292 rc = saveAllCursors(pBt, 0, 0);
4293 }
4294 if( rc==SQLITE_OK ){
4295 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4296 }
drh9f0bbf92009-01-02 21:08:09 +00004297 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004298 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4299 pBt->nPage = 0;
4300 }
drh9f0bbf92009-01-02 21:08:09 +00004301 rc = newDatabase(pBt);
drh41422652019-05-10 14:34:18 +00004302 btreeSetNPage(pBt, pBt->pPage1);
drhb9b49bf2010-08-05 03:21:39 +00004303
dana9a54652019-04-22 11:47:40 +00004304 /* pBt->nPage might be zero if the database was corrupt when
4305 ** the transaction was started. Otherwise, it must be at least 1. */
4306 assert( CORRUPT_DB || pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004307 }
danielk1977fd7f0452008-12-17 17:30:26 +00004308 sqlite3BtreeLeave(p);
4309 }
4310 return rc;
4311}
4312
4313/*
drh8b2f49b2001-06-08 00:21:52 +00004314** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004315** iTable. If a read-only cursor is requested, it is assumed that
4316** the caller already has at least a read-only transaction open
4317** on the database already. If a write-cursor is requested, then
4318** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004319**
drhe807bdb2016-01-21 17:06:33 +00004320** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4321** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4322** can be used for reading or for writing if other conditions for writing
4323** are also met. These are the conditions that must be met in order
4324** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004325**
drhe807bdb2016-01-21 17:06:33 +00004326** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004327**
drhfe5d71d2007-03-19 11:54:10 +00004328** 2: Other database connections that share the same pager cache
4329** but which are not in the READ_UNCOMMITTED state may not have
4330** cursors open with wrFlag==0 on the same table. Otherwise
4331** the changes made by this write cursor would be visible to
4332** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004333**
4334** 3: The database must be writable (not on read-only media)
4335**
4336** 4: There must be an active transaction.
4337**
drhe807bdb2016-01-21 17:06:33 +00004338** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4339** is set. If FORDELETE is set, that is a hint to the implementation that
4340** this cursor will only be used to seek to and delete entries of an index
4341** as part of a larger DELETE statement. The FORDELETE hint is not used by
4342** this implementation. But in a hypothetical alternative storage engine
4343** in which index entries are automatically deleted when corresponding table
4344** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4345** operations on this cursor can be no-ops and all READ operations can
4346** return a null row (2-bytes: 0x01 0x00).
4347**
drh6446c4d2001-12-15 14:22:18 +00004348** No checking is done to make sure that page iTable really is the
4349** root page of a b-tree. If it is not, then the cursor acquired
4350** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004351**
drhf25a5072009-11-18 23:01:25 +00004352** It is assumed that the sqlite3BtreeCursorZero() has been called
4353** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004354*/
drhd677b3d2007-08-20 22:48:41 +00004355static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004356 Btree *p, /* The btree */
4357 int iTable, /* Root page of table to open */
4358 int wrFlag, /* 1 to write. 0 read-only */
4359 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4360 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004361){
danielk19773e8add92009-07-04 17:16:00 +00004362 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004363 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004364
drh1fee73e2007-08-29 04:00:57 +00004365 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004366 assert( wrFlag==0
4367 || wrFlag==BTREE_WRCSR
4368 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4369 );
danielk197796d48e92009-06-29 06:00:37 +00004370
danielk1977602b4662009-07-02 07:47:33 +00004371 /* The following assert statements verify that if this is a sharable
4372 ** b-tree database, the connection is holding the required table locks,
4373 ** and that no other connection has any open cursor that conflicts with
drhac801802019-11-17 11:47:50 +00004374 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4375 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4376 || iTable<1 );
danielk197796d48e92009-06-29 06:00:37 +00004377 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4378
danielk19773e8add92009-07-04 17:16:00 +00004379 /* Assert that the caller has opened the required transaction. */
4380 assert( p->inTrans>TRANS_NONE );
4381 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4382 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004383 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004384
drh3fbb0222014-09-24 19:47:27 +00004385 if( wrFlag ){
4386 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004387 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004388 }
drhdb561bc2019-10-25 14:46:05 +00004389 if( iTable<=1 ){
4390 if( iTable<1 ){
4391 return SQLITE_CORRUPT_BKPT;
4392 }else if( btreePagecount(pBt)==0 ){
4393 assert( wrFlag==0 );
4394 iTable = 0;
4395 }
danielk19773e8add92009-07-04 17:16:00 +00004396 }
danielk1977aef0bf62005-12-30 16:28:01 +00004397
danielk1977aef0bf62005-12-30 16:28:01 +00004398 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004399 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004400 pCur->pgnoRoot = (Pgno)iTable;
4401 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004402 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004403 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004404 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004405 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004406 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004407 /* If there are two or more cursors on the same btree, then all such
4408 ** cursors *must* have the BTCF_Multiple flag set. */
4409 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4410 if( pX->pgnoRoot==(Pgno)iTable ){
4411 pX->curFlags |= BTCF_Multiple;
4412 pCur->curFlags |= BTCF_Multiple;
4413 }
drha059ad02001-04-17 20:09:11 +00004414 }
drh27fb7462015-06-30 02:47:36 +00004415 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004416 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004417 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004418 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004419}
drhdb561bc2019-10-25 14:46:05 +00004420static int btreeCursorWithLock(
4421 Btree *p, /* The btree */
4422 int iTable, /* Root page of table to open */
4423 int wrFlag, /* 1 to write. 0 read-only */
4424 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4425 BtCursor *pCur /* Space for new cursor */
4426){
4427 int rc;
4428 sqlite3BtreeEnter(p);
4429 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4430 sqlite3BtreeLeave(p);
4431 return rc;
4432}
drhd677b3d2007-08-20 22:48:41 +00004433int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004434 Btree *p, /* The btree */
4435 int iTable, /* Root page of table to open */
4436 int wrFlag, /* 1 to write. 0 read-only */
4437 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4438 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004439){
drhdb561bc2019-10-25 14:46:05 +00004440 if( p->sharable ){
4441 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004442 }else{
drhdb561bc2019-10-25 14:46:05 +00004443 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004444 }
drhd677b3d2007-08-20 22:48:41 +00004445}
drh7f751222009-03-17 22:33:00 +00004446
4447/*
4448** Return the size of a BtCursor object in bytes.
4449**
4450** This interfaces is needed so that users of cursors can preallocate
4451** sufficient storage to hold a cursor. The BtCursor object is opaque
4452** to users so they cannot do the sizeof() themselves - they must call
4453** this routine.
4454*/
4455int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004456 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004457}
4458
drh7f751222009-03-17 22:33:00 +00004459/*
drhf25a5072009-11-18 23:01:25 +00004460** Initialize memory that will be converted into a BtCursor object.
4461**
4462** The simple approach here would be to memset() the entire object
4463** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4464** do not need to be zeroed and they are large, so we can save a lot
4465** of run-time by skipping the initialization of those elements.
4466*/
4467void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004468 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004469}
4470
4471/*
drh5e00f6c2001-09-13 13:46:56 +00004472** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004473** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004474*/
drh3aac2dd2004-04-26 14:10:20 +00004475int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004476 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004477 if( pBtree ){
4478 BtShared *pBt = pCur->pBt;
4479 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004480 assert( pBt->pCursor!=0 );
4481 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004482 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004483 }else{
4484 BtCursor *pPrev = pBt->pCursor;
4485 do{
4486 if( pPrev->pNext==pCur ){
4487 pPrev->pNext = pCur->pNext;
4488 break;
4489 }
4490 pPrev = pPrev->pNext;
4491 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004492 }
drh352a35a2017-08-15 03:46:47 +00004493 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004494 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004495 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004496 sqlite3_free(pCur->pKey);
danielk1977cd3e8f72008-03-25 09:47:35 +00004497 sqlite3BtreeLeave(pBtree);
dan97c8cb32019-01-01 18:00:17 +00004498 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004499 }
drh8c42ca92001-06-22 19:15:00 +00004500 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004501}
4502
drh5e2f8b92001-05-28 00:41:15 +00004503/*
drh86057612007-06-26 01:04:48 +00004504** Make sure the BtCursor* given in the argument has a valid
4505** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004506** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004507**
4508** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004509** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004510*/
drh9188b382004-05-14 21:12:22 +00004511#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004512 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4513 if( a->nKey!=b->nKey ) return 0;
4514 if( a->pPayload!=b->pPayload ) return 0;
4515 if( a->nPayload!=b->nPayload ) return 0;
4516 if( a->nLocal!=b->nLocal ) return 0;
4517 if( a->nSize!=b->nSize ) return 0;
4518 return 1;
4519 }
danielk19771cc5ed82007-05-16 17:28:43 +00004520 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004521 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004522 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004523 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004524 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004525 }
danielk19771cc5ed82007-05-16 17:28:43 +00004526#else
4527 #define assertCellInfo(x)
4528#endif
drhc5b41ac2015-06-17 02:11:46 +00004529static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4530 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004531 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004532 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004533 }else{
4534 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004535 }
drhc5b41ac2015-06-17 02:11:46 +00004536}
drh9188b382004-05-14 21:12:22 +00004537
drhea8ffdf2009-07-22 00:35:23 +00004538#ifndef NDEBUG /* The next routine used only within assert() statements */
4539/*
4540** Return true if the given BtCursor is valid. A valid cursor is one
4541** that is currently pointing to a row in a (non-empty) table.
4542** This is a verification routine is used only within assert() statements.
4543*/
4544int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4545 return pCur && pCur->eState==CURSOR_VALID;
4546}
4547#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004548int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4549 assert( pCur!=0 );
4550 return pCur->eState==CURSOR_VALID;
4551}
drhea8ffdf2009-07-22 00:35:23 +00004552
drh9188b382004-05-14 21:12:22 +00004553/*
drha7c90c42016-06-04 20:37:10 +00004554** Return the value of the integer key or "rowid" for a table btree.
4555** This routine is only valid for a cursor that is pointing into a
4556** ordinary table btree. If the cursor points to an index btree or
4557** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004558*/
drha7c90c42016-06-04 20:37:10 +00004559i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004560 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004561 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004562 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004563 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004564 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004565}
drh2af926b2001-05-15 00:39:25 +00004566
drh7b14b652019-12-29 22:08:20 +00004567/*
4568** Pin or unpin a cursor.
4569*/
4570void sqlite3BtreeCursorPin(BtCursor *pCur){
4571 assert( (pCur->curFlags & BTCF_Pinned)==0 );
4572 pCur->curFlags |= BTCF_Pinned;
4573}
4574void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4575 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4576 pCur->curFlags &= ~BTCF_Pinned;
4577}
4578
drh092457b2017-12-29 15:04:49 +00004579#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004580/*
drh2fc865c2017-12-16 20:20:37 +00004581** Return the offset into the database file for the start of the
4582** payload to which the cursor is pointing.
4583*/
drh092457b2017-12-29 15:04:49 +00004584i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004585 assert( cursorHoldsMutex(pCur) );
4586 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004587 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004588 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004589 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4590}
drh092457b2017-12-29 15:04:49 +00004591#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004592
4593/*
drha7c90c42016-06-04 20:37:10 +00004594** Return the number of bytes of payload for the entry that pCur is
4595** currently pointing to. For table btrees, this will be the amount
4596** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004597**
4598** The caller must guarantee that the cursor is pointing to a non-NULL
4599** valid entry. In other words, the calling procedure must guarantee
4600** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004601*/
drha7c90c42016-06-04 20:37:10 +00004602u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4603 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004604 assert( pCur->eState==CURSOR_VALID );
4605 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004606 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004607}
4608
4609/*
drh53d30dd2019-02-04 21:10:24 +00004610** Return an upper bound on the size of any record for the table
4611** that the cursor is pointing into.
4612**
4613** This is an optimization. Everything will still work if this
4614** routine always returns 2147483647 (which is the largest record
4615** that SQLite can handle) or more. But returning a smaller value might
4616** prevent large memory allocations when trying to interpret a
4617** corrupt datrabase.
4618**
4619** The current implementation merely returns the size of the underlying
4620** database file.
4621*/
4622sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4623 assert( cursorHoldsMutex(pCur) );
4624 assert( pCur->eState==CURSOR_VALID );
4625 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4626}
4627
4628/*
danielk1977d04417962007-05-02 13:16:30 +00004629** Given the page number of an overflow page in the database (parameter
4630** ovfl), this function finds the page number of the next page in the
4631** linked list of overflow pages. If possible, it uses the auto-vacuum
4632** pointer-map data instead of reading the content of page ovfl to do so.
4633**
4634** If an error occurs an SQLite error code is returned. Otherwise:
4635**
danielk1977bea2a942009-01-20 17:06:27 +00004636** The page number of the next overflow page in the linked list is
4637** written to *pPgnoNext. If page ovfl is the last page in its linked
4638** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004639**
danielk1977bea2a942009-01-20 17:06:27 +00004640** If ppPage is not NULL, and a reference to the MemPage object corresponding
4641** to page number pOvfl was obtained, then *ppPage is set to point to that
4642** reference. It is the responsibility of the caller to call releasePage()
4643** on *ppPage to free the reference. In no reference was obtained (because
4644** the pointer-map was used to obtain the value for *pPgnoNext), then
4645** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004646*/
4647static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004648 BtShared *pBt, /* The database file */
4649 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004650 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004651 Pgno *pPgnoNext /* OUT: Next overflow page number */
4652){
4653 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004654 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004655 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004656
drh1fee73e2007-08-29 04:00:57 +00004657 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004658 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004659
4660#ifndef SQLITE_OMIT_AUTOVACUUM
4661 /* Try to find the next page in the overflow list using the
4662 ** autovacuum pointer-map pages. Guess that the next page in
4663 ** the overflow list is page number (ovfl+1). If that guess turns
4664 ** out to be wrong, fall back to loading the data of page
4665 ** number ovfl to determine the next page number.
4666 */
4667 if( pBt->autoVacuum ){
4668 Pgno pgno;
4669 Pgno iGuess = ovfl+1;
4670 u8 eType;
4671
4672 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4673 iGuess++;
4674 }
4675
drhb1299152010-03-30 22:58:33 +00004676 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004677 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004678 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004679 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004680 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004681 }
4682 }
4683 }
4684#endif
4685
danielk1977d8a3f3d2009-07-11 11:45:23 +00004686 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004687 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004688 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004689 assert( rc==SQLITE_OK || pPage==0 );
4690 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004691 next = get4byte(pPage->aData);
4692 }
danielk1977443c0592009-01-16 15:21:05 +00004693 }
danielk197745d68822009-01-16 16:23:38 +00004694
danielk1977bea2a942009-01-20 17:06:27 +00004695 *pPgnoNext = next;
4696 if( ppPage ){
4697 *ppPage = pPage;
4698 }else{
4699 releasePage(pPage);
4700 }
4701 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004702}
4703
danielk1977da107192007-05-04 08:32:13 +00004704/*
4705** Copy data from a buffer to a page, or from a page to a buffer.
4706**
4707** pPayload is a pointer to data stored on database page pDbPage.
4708** If argument eOp is false, then nByte bytes of data are copied
4709** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4710** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4711** of data are copied from the buffer pBuf to pPayload.
4712**
4713** SQLITE_OK is returned on success, otherwise an error code.
4714*/
4715static int copyPayload(
4716 void *pPayload, /* Pointer to page data */
4717 void *pBuf, /* Pointer to buffer */
4718 int nByte, /* Number of bytes to copy */
4719 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4720 DbPage *pDbPage /* Page containing pPayload */
4721){
4722 if( eOp ){
4723 /* Copy data from buffer to page (a write operation) */
4724 int rc = sqlite3PagerWrite(pDbPage);
4725 if( rc!=SQLITE_OK ){
4726 return rc;
4727 }
4728 memcpy(pPayload, pBuf, nByte);
4729 }else{
4730 /* Copy data from page to buffer (a read operation) */
4731 memcpy(pBuf, pPayload, nByte);
4732 }
4733 return SQLITE_OK;
4734}
danielk1977d04417962007-05-02 13:16:30 +00004735
4736/*
danielk19779f8d6402007-05-02 17:48:45 +00004737** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004738** for the entry that the pCur cursor is pointing to. The eOp
4739** argument is interpreted as follows:
4740**
4741** 0: The operation is a read. Populate the overflow cache.
4742** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004743**
4744** A total of "amt" bytes are read or written beginning at "offset".
4745** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004746**
drh3bcdfd22009-07-12 02:32:21 +00004747** The content being read or written might appear on the main page
4748** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004749**
drh42e28f12017-01-27 00:31:59 +00004750** If the current cursor entry uses one or more overflow pages
4751** this function may allocate space for and lazily populate
4752** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004753** Subsequent calls use this cache to make seeking to the supplied offset
4754** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004755**
drh42e28f12017-01-27 00:31:59 +00004756** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004757** invalidated if some other cursor writes to the same table, or if
4758** the cursor is moved to a different row. Additionally, in auto-vacuum
4759** mode, the following events may invalidate an overflow page-list cache.
4760**
4761** * An incremental vacuum,
4762** * A commit in auto_vacuum="full" mode,
4763** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004764*/
danielk19779f8d6402007-05-02 17:48:45 +00004765static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004766 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004767 u32 offset, /* Begin reading this far into payload */
4768 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004769 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004770 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004771){
4772 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004773 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004774 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004775 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004776 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004777#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004778 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004779#endif
drh3aac2dd2004-04-26 14:10:20 +00004780
danielk1977da107192007-05-04 08:32:13 +00004781 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004782 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004783 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004784 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004785 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004786
drh86057612007-06-26 01:04:48 +00004787 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004788 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004789 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004790
drh0b982072016-03-22 14:10:45 +00004791 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004792 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004793 /* Trying to read or write past the end of the data is an error. The
4794 ** conditional above is really:
4795 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4796 ** but is recast into its current form to avoid integer overflow problems
4797 */
daneebf2f52017-11-18 17:30:08 +00004798 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004799 }
danielk1977da107192007-05-04 08:32:13 +00004800
4801 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004802 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004803 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004804 if( a+offset>pCur->info.nLocal ){
4805 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004806 }
drh42e28f12017-01-27 00:31:59 +00004807 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004808 offset = 0;
drha34b6762004-05-07 13:30:42 +00004809 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004810 amt -= a;
drhdd793422001-06-28 01:54:48 +00004811 }else{
drhfa1a98a2004-05-14 19:08:17 +00004812 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004813 }
danielk1977da107192007-05-04 08:32:13 +00004814
dan85753662014-12-11 16:38:18 +00004815
danielk1977da107192007-05-04 08:32:13 +00004816 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004817 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004818 Pgno nextPage;
4819
drhfa1a98a2004-05-14 19:08:17 +00004820 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004821
drha38c9512014-04-01 01:24:34 +00004822 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004823 **
4824 ** The aOverflow[] array is sized at one entry for each overflow page
4825 ** in the overflow chain. The page number of the first overflow page is
4826 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4827 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004828 */
drh42e28f12017-01-27 00:31:59 +00004829 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004830 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004831 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004832 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004833 ){
dan85753662014-12-11 16:38:18 +00004834 Pgno *aNew = (Pgno*)sqlite3Realloc(
4835 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004836 );
4837 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004838 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004839 }else{
dan5a500af2014-03-11 20:33:04 +00004840 pCur->aOverflow = aNew;
4841 }
4842 }
drhcd645532017-01-20 20:43:14 +00004843 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4844 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004845 }else{
4846 /* If the overflow page-list cache has been allocated and the
4847 ** entry for the first required overflow page is valid, skip
4848 ** directly to it.
4849 */
4850 if( pCur->aOverflow[offset/ovflSize] ){
4851 iIdx = (offset/ovflSize);
4852 nextPage = pCur->aOverflow[iIdx];
4853 offset = (offset%ovflSize);
4854 }
danielk19772dec9702007-05-02 16:48:37 +00004855 }
danielk1977da107192007-05-04 08:32:13 +00004856
drhcd645532017-01-20 20:43:14 +00004857 assert( rc==SQLITE_OK && amt>0 );
4858 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004859 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004860 assert( pCur->aOverflow[iIdx]==0
4861 || pCur->aOverflow[iIdx]==nextPage
4862 || CORRUPT_DB );
4863 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004864
danielk1977d04417962007-05-02 13:16:30 +00004865 if( offset>=ovflSize ){
4866 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004867 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004868 ** data is not required. So first try to lookup the overflow
4869 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004870 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004871 */
drha38c9512014-04-01 01:24:34 +00004872 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004873 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004874 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004875 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004876 }else{
danielk1977da107192007-05-04 08:32:13 +00004877 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004878 }
danielk1977da107192007-05-04 08:32:13 +00004879 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004880 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004881 /* Need to read this page properly. It contains some of the
4882 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004883 */
danielk1977cfe9a692004-06-16 12:00:29 +00004884 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004885 if( a + offset > ovflSize ){
4886 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004887 }
danf4ba1092011-10-08 14:57:07 +00004888
4889#ifdef SQLITE_DIRECT_OVERFLOW_READ
4890 /* If all the following are true:
4891 **
4892 ** 1) this is a read operation, and
4893 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00004894 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00004895 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004896 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004897 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004898 **
4899 ** then data can be read directly from the database file into the
4900 ** output buffer, bypassing the page-cache altogether. This speeds
4901 ** up loading large records that span many overflow pages.
4902 */
drh42e28f12017-01-27 00:31:59 +00004903 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004904 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00004905 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00004906 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004907 ){
dan09236752018-11-22 19:10:14 +00004908 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00004909 u8 aSave[4];
4910 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004911 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004912 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004913 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
drhb9fc4552019-08-15 00:04:44 +00004914 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
danf4ba1092011-10-08 14:57:07 +00004915 nextPage = get4byte(aWrite);
4916 memcpy(aWrite, aSave, 4);
4917 }else
4918#endif
4919
4920 {
4921 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004922 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004923 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004924 );
danf4ba1092011-10-08 14:57:07 +00004925 if( rc==SQLITE_OK ){
4926 aPayload = sqlite3PagerGetData(pDbPage);
4927 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004928 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004929 sqlite3PagerUnref(pDbPage);
4930 offset = 0;
4931 }
4932 }
4933 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004934 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004935 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004936 }
drhcd645532017-01-20 20:43:14 +00004937 if( rc ) break;
4938 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004939 }
drh2af926b2001-05-15 00:39:25 +00004940 }
danielk1977cfe9a692004-06-16 12:00:29 +00004941
danielk1977da107192007-05-04 08:32:13 +00004942 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004943 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00004944 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00004945 }
danielk1977da107192007-05-04 08:32:13 +00004946 return rc;
drh2af926b2001-05-15 00:39:25 +00004947}
4948
drh72f82862001-05-24 21:06:34 +00004949/*
drhcb3cabd2016-11-25 19:18:28 +00004950** Read part of the payload for the row at which that cursor pCur is currently
4951** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004952** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004953**
drhcb3cabd2016-11-25 19:18:28 +00004954** pCur can be pointing to either a table or an index b-tree.
4955** If pointing to a table btree, then the content section is read. If
4956** pCur is pointing to an index b-tree then the key section is read.
4957**
4958** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4959** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4960** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004961**
drh3aac2dd2004-04-26 14:10:20 +00004962** Return SQLITE_OK on success or an error code if anything goes
4963** wrong. An error is returned if "offset+amt" is larger than
4964** the available payload.
drh72f82862001-05-24 21:06:34 +00004965*/
drhcb3cabd2016-11-25 19:18:28 +00004966int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004967 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004968 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00004969 assert( pCur->iPage>=0 && pCur->pPage );
4970 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00004971 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004972}
drh83ec2762017-01-26 16:54:47 +00004973
4974/*
4975** This variant of sqlite3BtreePayload() works even if the cursor has not
4976** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4977** interface.
4978*/
danielk19773588ceb2008-06-10 17:30:26 +00004979#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004980static SQLITE_NOINLINE int accessPayloadChecked(
4981 BtCursor *pCur,
4982 u32 offset,
4983 u32 amt,
4984 void *pBuf
4985){
drhcb3cabd2016-11-25 19:18:28 +00004986 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004987 if ( pCur->eState==CURSOR_INVALID ){
4988 return SQLITE_ABORT;
4989 }
dan7a2347e2016-01-07 16:43:54 +00004990 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004991 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004992 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4993}
4994int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4995 if( pCur->eState==CURSOR_VALID ){
4996 assert( cursorOwnsBtShared(pCur) );
4997 return accessPayload(pCur, offset, amt, pBuf, 0);
4998 }else{
4999 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00005000 }
drh2af926b2001-05-15 00:39:25 +00005001}
drhcb3cabd2016-11-25 19:18:28 +00005002#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00005003
drh72f82862001-05-24 21:06:34 +00005004/*
drh0e1c19e2004-05-11 00:58:56 +00005005** Return a pointer to payload information from the entry that the
5006** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00005007** the key if index btrees (pPage->intKey==0) and is the data for
5008** table btrees (pPage->intKey==1). The number of bytes of available
5009** key/data is written into *pAmt. If *pAmt==0, then the value
5010** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00005011**
5012** This routine is an optimization. It is common for the entire key
5013** and data to fit on the local page and for there to be no overflow
5014** pages. When that is so, this routine can be used to access the
5015** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00005016** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00005017** the key/data and copy it into a preallocated buffer.
5018**
5019** The pointer returned by this routine looks directly into the cached
5020** page of the database. The data might change or move the next time
5021** any btree routine is called.
5022*/
drh2a8d2262013-12-09 20:43:22 +00005023static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00005024 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00005025 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00005026){
danf2f72a02017-10-19 15:17:38 +00005027 int amt;
drh352a35a2017-08-15 03:46:47 +00005028 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00005029 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00005030 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00005031 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00005032 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00005033 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00005034 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5035 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00005036 amt = pCur->info.nLocal;
5037 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5038 /* There is too little space on the page for the expected amount
5039 ** of local content. Database must be corrupt. */
5040 assert( CORRUPT_DB );
5041 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5042 }
5043 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00005044 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00005045}
5046
5047
5048/*
drhe51c44f2004-05-30 20:46:09 +00005049** For the entry that cursor pCur is point to, return as
5050** many bytes of the key or data as are available on the local
5051** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005052**
5053** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005054** or be destroyed on the next call to any Btree routine,
5055** including calls from other threads against the same cache.
5056** Hence, a mutex on the BtShared should be held prior to calling
5057** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005058**
5059** These routines is used to get quick access to key and data
5060** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005061*/
drha7c90c42016-06-04 20:37:10 +00005062const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005063 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005064}
5065
5066
5067/*
drh8178a752003-01-05 21:41:40 +00005068** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005069** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005070**
5071** This function returns SQLITE_CORRUPT if the page-header flags field of
5072** the new child page does not match the flags field of the parent (i.e.
5073** if an intkey page appears to be the parent of a non-intkey page, or
5074** vice-versa).
drh72f82862001-05-24 21:06:34 +00005075*/
drh3aac2dd2004-04-26 14:10:20 +00005076static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005077 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005078
dan7a2347e2016-01-07 16:43:54 +00005079 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005080 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005081 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005082 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005083 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5084 return SQLITE_CORRUPT_BKPT;
5085 }
drh271efa52004-05-30 19:19:05 +00005086 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005087 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005088 pCur->aiIdx[pCur->iPage] = pCur->ix;
5089 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005090 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005091 pCur->iPage++;
5092 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005093}
5094
drhd879e3e2017-02-13 13:35:55 +00005095#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005096/*
5097** Page pParent is an internal (non-leaf) tree page. This function
5098** asserts that page number iChild is the left-child if the iIdx'th
5099** cell in page pParent. Or, if iIdx is equal to the total number of
5100** cells in pParent, that page number iChild is the right-child of
5101** the page.
5102*/
5103static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005104 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5105 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005106 assert( iIdx<=pParent->nCell );
5107 if( iIdx==pParent->nCell ){
5108 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5109 }else{
5110 assert( get4byte(findCell(pParent, iIdx))==iChild );
5111 }
5112}
5113#else
5114# define assertParentIndex(x,y,z)
5115#endif
5116
drh72f82862001-05-24 21:06:34 +00005117/*
drh5e2f8b92001-05-28 00:41:15 +00005118** Move the cursor up to the parent page.
5119**
5120** pCur->idx is set to the cell index that contains the pointer
5121** to the page we are coming from. If we are coming from the
5122** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005123** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005124*/
danielk197730548662009-07-09 05:07:37 +00005125static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005126 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005127 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005128 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005129 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005130 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005131 assertParentIndex(
5132 pCur->apPage[pCur->iPage-1],
5133 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005134 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005135 );
dan6c2688c2012-01-12 15:05:03 +00005136 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005137 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005138 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005139 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005140 pLeaf = pCur->pPage;
5141 pCur->pPage = pCur->apPage[--pCur->iPage];
5142 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005143}
5144
5145/*
danielk19778f880a82009-07-13 09:41:45 +00005146** Move the cursor to point to the root page of its b-tree structure.
5147**
5148** If the table has a virtual root page, then the cursor is moved to point
5149** to the virtual root page instead of the actual root page. A table has a
5150** virtual root page when the actual root page contains no cells and a
5151** single child page. This can only happen with the table rooted at page 1.
5152**
5153** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005154** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5155** the cursor is set to point to the first cell located on the root
5156** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005157**
5158** If this function returns successfully, it may be assumed that the
5159** page-header flags indicate that the [virtual] root-page is the expected
5160** kind of b-tree page (i.e. if when opening the cursor the caller did not
5161** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5162** indicating a table b-tree, or if the caller did specify a KeyInfo
5163** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5164** b-tree).
drh72f82862001-05-24 21:06:34 +00005165*/
drh5e2f8b92001-05-28 00:41:15 +00005166static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005167 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005168 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005169
dan7a2347e2016-01-07 16:43:54 +00005170 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005171 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5172 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5173 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005174 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005175 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005176
5177 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005178 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005179 releasePageNotNull(pCur->pPage);
5180 while( --pCur->iPage ){
5181 releasePageNotNull(pCur->apPage[pCur->iPage]);
5182 }
5183 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005184 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005185 }
dana205a482011-08-27 18:48:57 +00005186 }else if( pCur->pgnoRoot==0 ){
5187 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005188 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005189 }else{
drh28f58dd2015-06-27 19:45:03 +00005190 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005191 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5192 if( pCur->eState==CURSOR_FAULT ){
5193 assert( pCur->skipNext!=SQLITE_OK );
5194 return pCur->skipNext;
5195 }
5196 sqlite3BtreeClearCursor(pCur);
5197 }
drh352a35a2017-08-15 03:46:47 +00005198 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005199 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005200 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005201 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005202 return rc;
drh777e4c42006-01-13 04:31:58 +00005203 }
danielk1977172114a2009-07-07 15:47:12 +00005204 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005205 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005206 }
drh352a35a2017-08-15 03:46:47 +00005207 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005208 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005209
5210 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5211 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5212 ** NULL, the caller expects a table b-tree. If this is not the case,
5213 ** return an SQLITE_CORRUPT error.
5214 **
5215 ** Earlier versions of SQLite assumed that this test could not fail
5216 ** if the root page was already loaded when this function was called (i.e.
5217 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5218 ** in such a way that page pRoot is linked into a second b-tree table
5219 ** (or the freelist). */
5220 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5221 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005222 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005223 }
danielk19778f880a82009-07-13 09:41:45 +00005224
drh7ad3eb62016-10-24 01:01:09 +00005225skip_init:
drh75e96b32017-04-01 00:20:06 +00005226 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005227 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005228 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005229
drh352a35a2017-08-15 03:46:47 +00005230 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005231 if( pRoot->nCell>0 ){
5232 pCur->eState = CURSOR_VALID;
5233 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005234 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005235 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005236 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005237 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005238 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005239 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005240 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005241 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005242 }
5243 return rc;
drh72f82862001-05-24 21:06:34 +00005244}
drh2af926b2001-05-15 00:39:25 +00005245
drh5e2f8b92001-05-28 00:41:15 +00005246/*
5247** Move the cursor down to the left-most leaf entry beneath the
5248** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005249**
5250** The left-most leaf is the one with the smallest key - the first
5251** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005252*/
5253static int moveToLeftmost(BtCursor *pCur){
5254 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005255 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005256 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005257
dan7a2347e2016-01-07 16:43:54 +00005258 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005259 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005260 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005261 assert( pCur->ix<pPage->nCell );
5262 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005263 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005264 }
drhd677b3d2007-08-20 22:48:41 +00005265 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005266}
5267
drh2dcc9aa2002-12-04 13:40:25 +00005268/*
5269** Move the cursor down to the right-most leaf entry beneath the
5270** page to which it is currently pointing. Notice the difference
5271** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5272** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5273** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005274**
5275** The right-most entry is the one with the largest key - the last
5276** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005277*/
5278static int moveToRightmost(BtCursor *pCur){
5279 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005280 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005281 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005282
dan7a2347e2016-01-07 16:43:54 +00005283 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005284 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005285 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005286 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005287 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005288 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005289 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005290 }
drh75e96b32017-04-01 00:20:06 +00005291 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005292 assert( pCur->info.nSize==0 );
5293 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5294 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005295}
5296
drh5e00f6c2001-09-13 13:46:56 +00005297/* Move the cursor to the first entry in the table. Return SQLITE_OK
5298** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005299** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005300*/
drh3aac2dd2004-04-26 14:10:20 +00005301int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005302 int rc;
drhd677b3d2007-08-20 22:48:41 +00005303
dan7a2347e2016-01-07 16:43:54 +00005304 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005305 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005306 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005307 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005308 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005309 *pRes = 0;
5310 rc = moveToLeftmost(pCur);
5311 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005312 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005313 *pRes = 1;
5314 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005315 }
drh5e00f6c2001-09-13 13:46:56 +00005316 return rc;
5317}
drh5e2f8b92001-05-28 00:41:15 +00005318
drh9562b552002-02-19 15:00:07 +00005319/* Move the cursor to the last entry in the table. Return SQLITE_OK
5320** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005321** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005322*/
drh3aac2dd2004-04-26 14:10:20 +00005323int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005324 int rc;
drhd677b3d2007-08-20 22:48:41 +00005325
dan7a2347e2016-01-07 16:43:54 +00005326 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005327 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005328
5329 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005330 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005331#ifdef SQLITE_DEBUG
5332 /* This block serves to assert() that the cursor really does point
5333 ** to the last entry in the b-tree. */
5334 int ii;
5335 for(ii=0; ii<pCur->iPage; ii++){
5336 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5337 }
drh352a35a2017-08-15 03:46:47 +00005338 assert( pCur->ix==pCur->pPage->nCell-1 );
5339 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005340#endif
drheb265342019-05-08 23:55:04 +00005341 *pRes = 0;
danielk19773f632d52009-05-02 10:03:09 +00005342 return SQLITE_OK;
5343 }
5344
drh9562b552002-02-19 15:00:07 +00005345 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005346 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005347 assert( pCur->eState==CURSOR_VALID );
5348 *pRes = 0;
5349 rc = moveToRightmost(pCur);
5350 if( rc==SQLITE_OK ){
5351 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005352 }else{
drh44548e72017-08-14 18:13:52 +00005353 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005354 }
drh44548e72017-08-14 18:13:52 +00005355 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005356 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005357 *pRes = 1;
5358 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005359 }
drh9562b552002-02-19 15:00:07 +00005360 return rc;
5361}
5362
drhe14006d2008-03-25 17:23:32 +00005363/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005364** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005365**
drhe63d9992008-08-13 19:11:48 +00005366** For INTKEY tables, the intKey parameter is used. pIdxKey
5367** must be NULL. For index tables, pIdxKey is used and intKey
5368** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005369**
drh5e2f8b92001-05-28 00:41:15 +00005370** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005371** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005372** were present. The cursor might point to an entry that comes
5373** before or after the key.
5374**
drh64022502009-01-09 14:11:04 +00005375** An integer is written into *pRes which is the result of
5376** comparing the key with the entry to which the cursor is
5377** pointing. The meaning of the integer written into
5378** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005379**
5380** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005381** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005382** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005383**
5384** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005385** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005386**
5387** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005388** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005389**
drhb1d607d2015-11-05 22:30:54 +00005390** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5391** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005392*/
drhe63d9992008-08-13 19:11:48 +00005393int sqlite3BtreeMovetoUnpacked(
5394 BtCursor *pCur, /* The cursor to be moved */
5395 UnpackedRecord *pIdxKey, /* Unpacked index key */
5396 i64 intKey, /* The table key */
5397 int biasRight, /* If true, bias the search to the high end */
5398 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005399){
drh72f82862001-05-24 21:06:34 +00005400 int rc;
dan3b9330f2014-02-27 20:44:18 +00005401 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005402
dan7a2347e2016-01-07 16:43:54 +00005403 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005404 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005405 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005406 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005407 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005408
5409 /* If the cursor is already positioned at the point we are trying
5410 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005411 if( pIdxKey==0
5412 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005413 ){
drhe63d9992008-08-13 19:11:48 +00005414 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005415 *pRes = 0;
5416 return SQLITE_OK;
5417 }
drh451e76d2017-01-21 16:54:19 +00005418 if( pCur->info.nKey<intKey ){
5419 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5420 *pRes = -1;
5421 return SQLITE_OK;
5422 }
drh7f11afa2017-01-21 21:47:54 +00005423 /* If the requested key is one more than the previous key, then
5424 ** try to get there using sqlite3BtreeNext() rather than a full
5425 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005426 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005427 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005428 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005429 rc = sqlite3BtreeNext(pCur, 0);
5430 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005431 getCellInfo(pCur);
5432 if( pCur->info.nKey==intKey ){
5433 return SQLITE_OK;
5434 }
drh2ab792e2017-05-30 18:34:07 +00005435 }else if( rc==SQLITE_DONE ){
5436 rc = SQLITE_OK;
5437 }else{
5438 return rc;
drh451e76d2017-01-21 16:54:19 +00005439 }
5440 }
drha2c20e42008-03-29 16:01:04 +00005441 }
5442 }
5443
dan1fed5da2014-02-25 21:01:25 +00005444 if( pIdxKey ){
5445 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005446 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005447 assert( pIdxKey->default_rc==1
5448 || pIdxKey->default_rc==0
5449 || pIdxKey->default_rc==-1
5450 );
drh13a747e2014-03-03 21:46:55 +00005451 }else{
drhb6e8fd12014-03-06 01:56:33 +00005452 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005453 }
5454
drh5e2f8b92001-05-28 00:41:15 +00005455 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005456 if( rc ){
drh44548e72017-08-14 18:13:52 +00005457 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005458 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005459 *pRes = -1;
5460 return SQLITE_OK;
5461 }
drhd677b3d2007-08-20 22:48:41 +00005462 return rc;
5463 }
drh352a35a2017-08-15 03:46:47 +00005464 assert( pCur->pPage );
5465 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005466 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005467 assert( pCur->pPage->nCell > 0 );
5468 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005469 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005470 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005471 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005472 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005473 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005474 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005475
5476 /* pPage->nCell must be greater than zero. If this is the root-page
5477 ** the cursor would have been INVALID above and this for(;;) loop
5478 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005479 ** would have already detected db corruption. Similarly, pPage must
5480 ** be the right kind (index or table) of b-tree page. Otherwise
5481 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005482 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005483 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005484 lwr = 0;
5485 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005486 assert( biasRight==0 || biasRight==1 );
5487 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005488 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005489 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005490 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005491 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005492 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005493 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005494 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005495 if( pCell>=pPage->aDataEnd ){
daneebf2f52017-11-18 17:30:08 +00005496 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00005497 }
drh9b2fc612013-11-25 20:14:13 +00005498 }
drhd172f862006-01-12 15:01:15 +00005499 }
drha2c20e42008-03-29 16:01:04 +00005500 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005501 if( nCellKey<intKey ){
5502 lwr = idx+1;
5503 if( lwr>upr ){ c = -1; break; }
5504 }else if( nCellKey>intKey ){
5505 upr = idx-1;
5506 if( lwr>upr ){ c = +1; break; }
5507 }else{
5508 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005509 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005510 if( !pPage->leaf ){
5511 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005512 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005513 }else{
drhd95ef5c2016-11-11 18:19:05 +00005514 pCur->curFlags |= BTCF_ValidNKey;
5515 pCur->info.nKey = nCellKey;
5516 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005517 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005518 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005519 }
drhd793f442013-11-25 14:10:15 +00005520 }
drhebf10b12013-11-25 17:38:26 +00005521 assert( lwr+upr>=0 );
5522 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005523 }
5524 }else{
5525 for(;;){
drhc6827502015-05-28 15:14:32 +00005526 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005527 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005528
drhb2eced52010-08-12 02:41:12 +00005529 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005530 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005531 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005532 ** varint. This information is used to attempt to avoid parsing
5533 ** the entire cell by checking for the cases where the record is
5534 ** stored entirely within the b-tree page by inspecting the first
5535 ** 2 bytes of the cell.
5536 */
drhec3e6b12013-11-25 02:38:55 +00005537 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005538 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005539 /* This branch runs if the record-size field of the cell is a
5540 ** single byte varint and the record fits entirely on the main
5541 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005542 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005543 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005544 }else if( !(pCell[1] & 0x80)
5545 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5546 ){
5547 /* The record-size field is a 2 byte varint and the record
5548 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005549 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005550 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005551 }else{
danielk197711c327a2009-05-04 19:01:26 +00005552 /* The record flows over onto one or more overflow pages. In
5553 ** this case the whole cell needs to be parsed, a buffer allocated
5554 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005555 ** buffer before VdbeRecordCompare() can be called.
5556 **
5557 ** If the record is corrupt, the xRecordCompare routine may read
5558 ** up to two varints past the end of the buffer. An extra 18
5559 ** bytes of padding is allocated at the end of the buffer in
5560 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005561 void *pCellKey;
5562 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5c2f2202019-05-16 20:36:07 +00005563 const int nOverrun = 18; /* Size of the overrun padding */
drh5fa60512015-06-19 17:19:34 +00005564 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005565 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005566 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5567 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5568 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5569 testcase( nCell==2 ); /* Minimum legal index key size */
drh87c3ad42019-01-21 23:18:22 +00005570 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
daneebf2f52017-11-18 17:30:08 +00005571 rc = SQLITE_CORRUPT_PAGE(pPage);
dan3548db72015-05-27 14:21:05 +00005572 goto moveto_finish;
5573 }
drh5c2f2202019-05-16 20:36:07 +00005574 pCellKey = sqlite3Malloc( nCell+nOverrun );
danielk19776507ecb2008-03-25 09:56:44 +00005575 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005576 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005577 goto moveto_finish;
5578 }
drh75e96b32017-04-01 00:20:06 +00005579 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005580 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drh5c2f2202019-05-16 20:36:07 +00005581 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
drh42e28f12017-01-27 00:31:59 +00005582 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005583 if( rc ){
5584 sqlite3_free(pCellKey);
5585 goto moveto_finish;
5586 }
drh0a31dc22019-03-05 14:39:00 +00005587 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005588 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005589 }
dan38fdead2014-04-01 10:19:02 +00005590 assert(
5591 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005592 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005593 );
drhbb933ef2013-11-25 15:01:38 +00005594 if( c<0 ){
5595 lwr = idx+1;
5596 }else if( c>0 ){
5597 upr = idx-1;
5598 }else{
5599 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005600 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005601 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005602 pCur->ix = (u16)idx;
mistachkin88a79732017-09-04 19:31:54 +00005603 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
drh1e968a02008-03-25 00:22:21 +00005604 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005605 }
drhebf10b12013-11-25 17:38:26 +00005606 if( lwr>upr ) break;
5607 assert( lwr+upr>=0 );
5608 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005609 }
drh72f82862001-05-24 21:06:34 +00005610 }
drhb07028f2011-10-14 21:49:18 +00005611 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005612 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005613 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005614 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005615 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005616 *pRes = c;
5617 rc = SQLITE_OK;
5618 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005619 }
5620moveto_next_layer:
5621 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005622 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005623 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005624 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005625 }
drh75e96b32017-04-01 00:20:06 +00005626 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005627 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005628 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005629 }
drh1e968a02008-03-25 00:22:21 +00005630moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005631 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005632 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005633 return rc;
5634}
5635
drhd677b3d2007-08-20 22:48:41 +00005636
drh72f82862001-05-24 21:06:34 +00005637/*
drhc39e0002004-05-07 23:50:57 +00005638** Return TRUE if the cursor is not pointing at an entry of the table.
5639**
5640** TRUE will be returned after a call to sqlite3BtreeNext() moves
5641** past the last entry in the table or sqlite3BtreePrev() moves past
5642** the first entry. TRUE is also returned if the table is empty.
5643*/
5644int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005645 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5646 ** have been deleted? This API will need to change to return an error code
5647 ** as well as the boolean result value.
5648 */
5649 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005650}
5651
5652/*
drh5e98e832017-02-17 19:24:06 +00005653** Return an estimate for the number of rows in the table that pCur is
5654** pointing to. Return a negative number if no estimate is currently
5655** available.
5656*/
5657i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5658 i64 n;
5659 u8 i;
5660
5661 assert( cursorOwnsBtShared(pCur) );
5662 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005663
5664 /* Currently this interface is only called by the OP_IfSmaller
5665 ** opcode, and it that case the cursor will always be valid and
5666 ** will always point to a leaf node. */
5667 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005668 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005669
drh352a35a2017-08-15 03:46:47 +00005670 n = pCur->pPage->nCell;
5671 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005672 n *= pCur->apPage[i]->nCell;
5673 }
5674 return n;
5675}
5676
5677/*
drh2ab792e2017-05-30 18:34:07 +00005678** Advance the cursor to the next entry in the database.
5679** Return value:
5680**
5681** SQLITE_OK success
5682** SQLITE_DONE cursor is already pointing at the last element
5683** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005684**
drhee6438d2014-09-01 13:29:32 +00005685** The main entry point is sqlite3BtreeNext(). That routine is optimized
5686** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5687** to the next cell on the current page. The (slower) btreeNext() helper
5688** routine is called when it is necessary to move to a different page or
5689** to restore the cursor.
5690**
drh89997982017-07-11 18:11:33 +00005691** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5692** cursor corresponds to an SQL index and this routine could have been
5693** skipped if the SQL index had been a unique index. The F argument
5694** is a hint to the implement. SQLite btree implementation does not use
5695** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005696*/
drh89997982017-07-11 18:11:33 +00005697static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005698 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005699 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005700 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005701
dan7a2347e2016-01-07 16:43:54 +00005702 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00005703 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005704 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005705 rc = restoreCursorPosition(pCur);
5706 if( rc!=SQLITE_OK ){
5707 return rc;
5708 }
5709 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005710 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005711 }
drh0c873bf2019-01-28 00:42:06 +00005712 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00005713 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005714 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005715 }
danielk1977da184232006-01-05 11:34:32 +00005716 }
danielk1977da184232006-01-05 11:34:32 +00005717
drh352a35a2017-08-15 03:46:47 +00005718 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005719 idx = ++pCur->ix;
drhf3cd0c82018-06-08 19:13:57 +00005720 if( !pPage->isInit ){
5721 /* The only known way for this to happen is for there to be a
5722 ** recursive SQL function that does a DELETE operation as part of a
5723 ** SELECT which deletes content out from under an active cursor
5724 ** in a corrupt database file where the table being DELETE-ed from
5725 ** has pages in common with the table being queried. See TH3
5726 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5727 ** example. */
5728 return SQLITE_CORRUPT_BKPT;
5729 }
danbb246c42012-01-12 14:25:55 +00005730
5731 /* If the database file is corrupt, it is possible for the value of idx
5732 ** to be invalid here. This can only occur if a second cursor modifies
5733 ** the page while cursor pCur is holding a reference to it. Which can
5734 ** only happen if the database is corrupt in such a way as to link the
drha2d50282019-12-23 18:02:15 +00005735 ** page into more than one b-tree structure.
5736 **
5737 ** Update 2019-12-23: appears to long longer be possible after the
5738 ** addition of anotherValidCursor() condition on balance_deeper(). */
5739 harmless( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005740
danielk197771d5d2c2008-09-29 11:49:47 +00005741 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005742 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005743 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005744 if( rc ) return rc;
5745 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005746 }
drh5e2f8b92001-05-28 00:41:15 +00005747 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005748 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005749 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005750 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005751 }
danielk197730548662009-07-09 05:07:37 +00005752 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005753 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005754 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005755 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005756 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005757 }else{
drhee6438d2014-09-01 13:29:32 +00005758 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005759 }
drh8178a752003-01-05 21:41:40 +00005760 }
drh3aac2dd2004-04-26 14:10:20 +00005761 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005762 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005763 }else{
5764 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005765 }
drh72f82862001-05-24 21:06:34 +00005766}
drh2ab792e2017-05-30 18:34:07 +00005767int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005768 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005769 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005770 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005771 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005772 pCur->info.nSize = 0;
5773 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005774 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005775 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005776 if( (++pCur->ix)>=pPage->nCell ){
5777 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005778 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005779 }
5780 if( pPage->leaf ){
5781 return SQLITE_OK;
5782 }else{
5783 return moveToLeftmost(pCur);
5784 }
5785}
drh72f82862001-05-24 21:06:34 +00005786
drh3b7511c2001-05-26 13:15:44 +00005787/*
drh2ab792e2017-05-30 18:34:07 +00005788** Step the cursor to the back to the previous entry in the database.
5789** Return values:
5790**
5791** SQLITE_OK success
5792** SQLITE_DONE the cursor is already on the first element of the table
5793** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005794**
drhee6438d2014-09-01 13:29:32 +00005795** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5796** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005797** to the previous cell on the current page. The (slower) btreePrevious()
5798** helper routine is called when it is necessary to move to a different page
5799** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005800**
drh89997982017-07-11 18:11:33 +00005801** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5802** the cursor corresponds to an SQL index and this routine could have been
5803** skipped if the SQL index had been a unique index. The F argument is a
5804** hint to the implement. The native SQLite btree implementation does not
5805** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005806*/
drh89997982017-07-11 18:11:33 +00005807static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005808 int rc;
drh8178a752003-01-05 21:41:40 +00005809 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005810
dan7a2347e2016-01-07 16:43:54 +00005811 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005812 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5813 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005814 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005815 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005816 if( rc!=SQLITE_OK ){
5817 return rc;
drhf66f26a2013-08-19 20:04:10 +00005818 }
5819 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005820 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005821 }
drh0c873bf2019-01-28 00:42:06 +00005822 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00005823 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005824 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005825 }
danielk1977da184232006-01-05 11:34:32 +00005826 }
danielk1977da184232006-01-05 11:34:32 +00005827
drh352a35a2017-08-15 03:46:47 +00005828 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005829 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005830 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005831 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005832 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005833 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005834 rc = moveToRightmost(pCur);
5835 }else{
drh75e96b32017-04-01 00:20:06 +00005836 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005837 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005838 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005839 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005840 }
danielk197730548662009-07-09 05:07:37 +00005841 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005842 }
drhee6438d2014-09-01 13:29:32 +00005843 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005844 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005845
drh75e96b32017-04-01 00:20:06 +00005846 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005847 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005848 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005849 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005850 }else{
5851 rc = SQLITE_OK;
5852 }
drh2dcc9aa2002-12-04 13:40:25 +00005853 }
drh2dcc9aa2002-12-04 13:40:25 +00005854 return rc;
5855}
drh2ab792e2017-05-30 18:34:07 +00005856int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005857 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005858 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00005859 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005860 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5861 pCur->info.nSize = 0;
5862 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005863 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005864 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005865 ){
drh89997982017-07-11 18:11:33 +00005866 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005867 }
drh75e96b32017-04-01 00:20:06 +00005868 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005869 return SQLITE_OK;
5870}
drh2dcc9aa2002-12-04 13:40:25 +00005871
5872/*
drh3b7511c2001-05-26 13:15:44 +00005873** Allocate a new page from the database file.
5874**
danielk19773b8a05f2007-03-19 17:44:26 +00005875** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005876** has already been called on the new page.) The new page has also
5877** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005878** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005879**
5880** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005881** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005882**
drh82e647d2013-03-02 03:25:55 +00005883** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005884** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005885** attempt to keep related pages close to each other in the database file,
5886** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005887**
drh82e647d2013-03-02 03:25:55 +00005888** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5889** anywhere on the free-list, then it is guaranteed to be returned. If
5890** eMode is BTALLOC_LT then the page returned will be less than or equal
5891** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5892** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005893*/
drh4f0c5872007-03-26 22:05:01 +00005894static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005895 BtShared *pBt, /* The btree */
5896 MemPage **ppPage, /* Store pointer to the allocated page here */
5897 Pgno *pPgno, /* Store the page number here */
5898 Pgno nearby, /* Search for a page near this one */
5899 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005900){
drh3aac2dd2004-04-26 14:10:20 +00005901 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005902 int rc;
drh35cd6432009-06-05 14:17:21 +00005903 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005904 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005905 MemPage *pTrunk = 0;
5906 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005907 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005908
drh1fee73e2007-08-29 04:00:57 +00005909 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005910 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005911 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005912 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005913 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5914 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005915 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005916 testcase( n==mxPage-1 );
5917 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005918 return SQLITE_CORRUPT_BKPT;
5919 }
drh3aac2dd2004-04-26 14:10:20 +00005920 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005921 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005922 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005923 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005924 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005925
drh82e647d2013-03-02 03:25:55 +00005926 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005927 ** shows that the page 'nearby' is somewhere on the free-list, then
5928 ** the entire-list will be searched for that page.
5929 */
5930#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005931 if( eMode==BTALLOC_EXACT ){
5932 if( nearby<=mxPage ){
5933 u8 eType;
5934 assert( nearby>0 );
5935 assert( pBt->autoVacuum );
5936 rc = ptrmapGet(pBt, nearby, &eType, 0);
5937 if( rc ) return rc;
5938 if( eType==PTRMAP_FREEPAGE ){
5939 searchList = 1;
5940 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005941 }
dan51f0b6d2013-02-22 20:16:34 +00005942 }else if( eMode==BTALLOC_LE ){
5943 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005944 }
5945#endif
5946
5947 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5948 ** first free-list trunk page. iPrevTrunk is initially 1.
5949 */
danielk19773b8a05f2007-03-19 17:44:26 +00005950 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005951 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005952 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005953
5954 /* The code within this loop is run only once if the 'searchList' variable
5955 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005956 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5957 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005958 */
5959 do {
5960 pPrevTrunk = pTrunk;
5961 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005962 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5963 ** is the page number of the next freelist trunk page in the list or
5964 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005965 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005966 }else{
drh113762a2014-11-19 16:36:25 +00005967 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5968 ** stores the page number of the first page of the freelist, or zero if
5969 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005970 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005971 }
drhdf35a082009-07-09 02:24:35 +00005972 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005973 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005974 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005975 }else{
drh7e8c6f12015-05-28 03:28:27 +00005976 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005977 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005978 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005979 pTrunk = 0;
5980 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005981 }
drhb07028f2011-10-14 21:49:18 +00005982 assert( pTrunk!=0 );
5983 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005984 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5985 ** is the number of leaf page pointers to follow. */
5986 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005987 if( k==0 && !searchList ){
5988 /* The trunk has no leaves and the list is not being searched.
5989 ** So extract the trunk page itself and use it as the newly
5990 ** allocated page */
5991 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005992 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005993 if( rc ){
5994 goto end_allocate_page;
5995 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005996 *pPgno = iTrunk;
5997 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5998 *ppPage = pTrunk;
5999 pTrunk = 0;
6000 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00006001 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006002 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00006003 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00006004 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006005#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006006 }else if( searchList
6007 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6008 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006009 /* The list is being searched and this trunk page is the page
6010 ** to allocate, regardless of whether it has leaves.
6011 */
dan51f0b6d2013-02-22 20:16:34 +00006012 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006013 *ppPage = pTrunk;
6014 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006015 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006016 if( rc ){
6017 goto end_allocate_page;
6018 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006019 if( k==0 ){
6020 if( !pPrevTrunk ){
6021 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6022 }else{
danf48c3552010-08-23 15:41:24 +00006023 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6024 if( rc!=SQLITE_OK ){
6025 goto end_allocate_page;
6026 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006027 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6028 }
6029 }else{
6030 /* The trunk page is required by the caller but it contains
6031 ** pointers to free-list leaves. The first leaf becomes a trunk
6032 ** page in this case.
6033 */
6034 MemPage *pNewTrunk;
6035 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00006036 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006037 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006038 goto end_allocate_page;
6039 }
drhdf35a082009-07-09 02:24:35 +00006040 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00006041 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006042 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00006043 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006044 }
danielk19773b8a05f2007-03-19 17:44:26 +00006045 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006046 if( rc!=SQLITE_OK ){
6047 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00006048 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006049 }
6050 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6051 put4byte(&pNewTrunk->aData[4], k-1);
6052 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006053 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006054 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006055 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006056 put4byte(&pPage1->aData[32], iNewTrunk);
6057 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006058 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006059 if( rc ){
6060 goto end_allocate_page;
6061 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006062 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6063 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006064 }
6065 pTrunk = 0;
6066 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6067#endif
danielk1977e5765212009-06-17 11:13:28 +00006068 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006069 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006070 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006071 Pgno iPage;
6072 unsigned char *aData = pTrunk->aData;
6073 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006074 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006075 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006076 if( eMode==BTALLOC_LE ){
6077 for(i=0; i<k; i++){
6078 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006079 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006080 closest = i;
6081 break;
6082 }
6083 }
6084 }else{
6085 int dist;
6086 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6087 for(i=1; i<k; i++){
6088 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6089 if( d2<dist ){
6090 closest = i;
6091 dist = d2;
6092 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006093 }
6094 }
6095 }else{
6096 closest = 0;
6097 }
6098
6099 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006100 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00006101 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006102 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006103 goto end_allocate_page;
6104 }
drhdf35a082009-07-09 02:24:35 +00006105 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006106 if( !searchList
6107 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6108 ){
danielk1977bea2a942009-01-20 17:06:27 +00006109 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006110 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006111 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6112 ": %d more free pages\n",
6113 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006114 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6115 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006116 if( closest<k-1 ){
6117 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6118 }
6119 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006120 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006121 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006122 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006123 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006124 if( rc!=SQLITE_OK ){
6125 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006126 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006127 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006128 }
6129 searchList = 0;
6130 }
drhee696e22004-08-30 16:52:17 +00006131 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006132 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006133 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006134 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006135 }else{
danbc1a3c62013-02-23 16:40:46 +00006136 /* There are no pages on the freelist, so append a new page to the
6137 ** database image.
6138 **
6139 ** Normally, new pages allocated by this block can be requested from the
6140 ** pager layer with the 'no-content' flag set. This prevents the pager
6141 ** from trying to read the pages content from disk. However, if the
6142 ** current transaction has already run one or more incremental-vacuum
6143 ** steps, then the page we are about to allocate may contain content
6144 ** that is required in the event of a rollback. In this case, do
6145 ** not set the no-content flag. This causes the pager to load and journal
6146 ** the current page content before overwriting it.
6147 **
6148 ** Note that the pager will not actually attempt to load or journal
6149 ** content for any page that really does lie past the end of the database
6150 ** file on disk. So the effects of disabling the no-content optimization
6151 ** here are confined to those pages that lie between the end of the
6152 ** database image and the end of the database file.
6153 */
drh3f387402014-09-24 01:23:00 +00006154 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006155
drhdd3cd972010-03-27 17:12:36 +00006156 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6157 if( rc ) return rc;
6158 pBt->nPage++;
6159 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006160
danielk1977afcdd022004-10-31 16:25:42 +00006161#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006162 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006163 /* If *pPgno refers to a pointer-map page, allocate two new pages
6164 ** at the end of the file instead of one. The first allocated page
6165 ** becomes a new pointer-map page, the second is used by the caller.
6166 */
danielk1977ac861692009-03-28 10:54:22 +00006167 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006168 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6169 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006170 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006171 if( rc==SQLITE_OK ){
6172 rc = sqlite3PagerWrite(pPg->pDbPage);
6173 releasePage(pPg);
6174 }
6175 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006176 pBt->nPage++;
6177 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006178 }
6179#endif
drhdd3cd972010-03-27 17:12:36 +00006180 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6181 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006182
danielk1977599fcba2004-11-08 07:13:13 +00006183 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006184 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006185 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006186 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006187 if( rc!=SQLITE_OK ){
6188 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006189 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006190 }
drh3a4c1412004-05-09 20:40:11 +00006191 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006192 }
danielk1977599fcba2004-11-08 07:13:13 +00006193
danba14c692019-01-25 13:42:12 +00006194 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006195
6196end_allocate_page:
6197 releasePage(pTrunk);
6198 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006199 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6200 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006201 return rc;
6202}
6203
6204/*
danielk1977bea2a942009-01-20 17:06:27 +00006205** This function is used to add page iPage to the database file free-list.
6206** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006207**
danielk1977bea2a942009-01-20 17:06:27 +00006208** The value passed as the second argument to this function is optional.
6209** If the caller happens to have a pointer to the MemPage object
6210** corresponding to page iPage handy, it may pass it as the second value.
6211** Otherwise, it may pass NULL.
6212**
6213** If a pointer to a MemPage object is passed as the second argument,
6214** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006215*/
danielk1977bea2a942009-01-20 17:06:27 +00006216static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6217 MemPage *pTrunk = 0; /* Free-list trunk page */
6218 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6219 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6220 MemPage *pPage; /* Page being freed. May be NULL. */
6221 int rc; /* Return Code */
drh25050f22019-04-09 01:26:31 +00006222 u32 nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006223
danielk1977bea2a942009-01-20 17:06:27 +00006224 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006225 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006226 assert( !pMemPage || pMemPage->pgno==iPage );
6227
drh58b42ad2019-03-25 19:50:19 +00006228 if( iPage<2 || iPage>pBt->nPage ){
6229 return SQLITE_CORRUPT_BKPT;
6230 }
danielk1977bea2a942009-01-20 17:06:27 +00006231 if( pMemPage ){
6232 pPage = pMemPage;
6233 sqlite3PagerRef(pPage->pDbPage);
6234 }else{
6235 pPage = btreePageLookup(pBt, iPage);
6236 }
drh3aac2dd2004-04-26 14:10:20 +00006237
drha34b6762004-05-07 13:30:42 +00006238 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006239 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006240 if( rc ) goto freepage_out;
6241 nFree = get4byte(&pPage1->aData[36]);
6242 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006243
drhc9166342012-01-05 23:32:06 +00006244 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006245 /* If the secure_delete option is enabled, then
6246 ** always fully overwrite deleted information with zeros.
6247 */
drhb00fc3b2013-08-21 23:42:32 +00006248 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006249 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006250 ){
6251 goto freepage_out;
6252 }
6253 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006254 }
drhfcce93f2006-02-22 03:08:32 +00006255
danielk1977687566d2004-11-02 12:56:41 +00006256 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006257 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006258 */
danielk197785d90ca2008-07-19 14:25:15 +00006259 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006260 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006261 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006262 }
danielk1977687566d2004-11-02 12:56:41 +00006263
danielk1977bea2a942009-01-20 17:06:27 +00006264 /* Now manipulate the actual database free-list structure. There are two
6265 ** possibilities. If the free-list is currently empty, or if the first
6266 ** trunk page in the free-list is full, then this page will become a
6267 ** new free-list trunk page. Otherwise, it will become a leaf of the
6268 ** first trunk page in the current free-list. This block tests if it
6269 ** is possible to add the page as a new free-list leaf.
6270 */
6271 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006272 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006273
6274 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006275 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006276 if( rc!=SQLITE_OK ){
6277 goto freepage_out;
6278 }
6279
6280 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006281 assert( pBt->usableSize>32 );
6282 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006283 rc = SQLITE_CORRUPT_BKPT;
6284 goto freepage_out;
6285 }
drheeb844a2009-08-08 18:01:07 +00006286 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006287 /* In this case there is room on the trunk page to insert the page
6288 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006289 **
6290 ** Note that the trunk page is not really full until it contains
6291 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6292 ** coded. But due to a coding error in versions of SQLite prior to
6293 ** 3.6.0, databases with freelist trunk pages holding more than
6294 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6295 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006296 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006297 ** for now. At some point in the future (once everyone has upgraded
6298 ** to 3.6.0 or later) we should consider fixing the conditional above
6299 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006300 **
6301 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6302 ** avoid using the last six entries in the freelist trunk page array in
6303 ** order that database files created by newer versions of SQLite can be
6304 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006305 */
danielk19773b8a05f2007-03-19 17:44:26 +00006306 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006307 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006308 put4byte(&pTrunk->aData[4], nLeaf+1);
6309 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006310 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006311 sqlite3PagerDontWrite(pPage->pDbPage);
6312 }
danielk1977bea2a942009-01-20 17:06:27 +00006313 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006314 }
drh3a4c1412004-05-09 20:40:11 +00006315 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006316 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006317 }
drh3b7511c2001-05-26 13:15:44 +00006318 }
danielk1977bea2a942009-01-20 17:06:27 +00006319
6320 /* If control flows to this point, then it was not possible to add the
6321 ** the page being freed as a leaf page of the first trunk in the free-list.
6322 ** Possibly because the free-list is empty, or possibly because the
6323 ** first trunk in the free-list is full. Either way, the page being freed
6324 ** will become the new first trunk page in the free-list.
6325 */
drhb00fc3b2013-08-21 23:42:32 +00006326 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006327 goto freepage_out;
6328 }
6329 rc = sqlite3PagerWrite(pPage->pDbPage);
6330 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006331 goto freepage_out;
6332 }
6333 put4byte(pPage->aData, iTrunk);
6334 put4byte(&pPage->aData[4], 0);
6335 put4byte(&pPage1->aData[32], iPage);
6336 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6337
6338freepage_out:
6339 if( pPage ){
6340 pPage->isInit = 0;
6341 }
6342 releasePage(pPage);
6343 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006344 return rc;
6345}
drhc314dc72009-07-21 11:52:34 +00006346static void freePage(MemPage *pPage, int *pRC){
6347 if( (*pRC)==SQLITE_OK ){
6348 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6349 }
danielk1977bea2a942009-01-20 17:06:27 +00006350}
drh3b7511c2001-05-26 13:15:44 +00006351
6352/*
drh8d7f1632018-01-23 13:30:38 +00006353** Free any overflow pages associated with the given Cell. Store
6354** size information about the cell in pInfo.
drh3b7511c2001-05-26 13:15:44 +00006355*/
drh9bfdc252014-09-24 02:05:41 +00006356static int clearCell(
6357 MemPage *pPage, /* The page that contains the Cell */
6358 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006359 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006360){
drh60172a52017-08-02 18:27:50 +00006361 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006362 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006363 int rc;
drh94440812007-03-06 11:42:19 +00006364 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006365 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006366
drh1fee73e2007-08-29 04:00:57 +00006367 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006368 pPage->xParseCell(pPage, pCell, pInfo);
6369 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006370 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006371 }
drh6fcf83a2018-05-05 01:23:28 +00006372 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6373 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6374 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006375 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006376 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006377 }
drh80159da2016-12-09 17:32:51 +00006378 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006379 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006380 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006381 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006382 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006383 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006384 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006385 );
drh72365832007-03-06 15:53:44 +00006386 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006387 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006388 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006389 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006390 /* 0 is not a legal page number and page 1 cannot be an
6391 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6392 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006393 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006394 }
danielk1977bea2a942009-01-20 17:06:27 +00006395 if( nOvfl ){
6396 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6397 if( rc ) return rc;
6398 }
dan887d4b22010-02-25 12:09:16 +00006399
shaneh1da207e2010-03-09 14:41:12 +00006400 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006401 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6402 ){
6403 /* There is no reason any cursor should have an outstanding reference
6404 ** to an overflow page belonging to a cell that is being deleted/updated.
6405 ** So if there exists more than one reference to this page, then it
6406 ** must not really be an overflow page and the database must be corrupt.
6407 ** It is helpful to detect this before calling freePage2(), as
6408 ** freePage2() may zero the page contents if secure-delete mode is
6409 ** enabled. If this 'overflow' page happens to be a page that the
6410 ** caller is iterating through or using in some other way, this
6411 ** can be problematic.
6412 */
6413 rc = SQLITE_CORRUPT_BKPT;
6414 }else{
6415 rc = freePage2(pBt, pOvfl, ovflPgno);
6416 }
6417
danielk1977bea2a942009-01-20 17:06:27 +00006418 if( pOvfl ){
6419 sqlite3PagerUnref(pOvfl->pDbPage);
6420 }
drh3b7511c2001-05-26 13:15:44 +00006421 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006422 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006423 }
drh5e2f8b92001-05-28 00:41:15 +00006424 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006425}
6426
6427/*
drh91025292004-05-03 19:49:32 +00006428** Create the byte sequence used to represent a cell on page pPage
6429** and write that byte sequence into pCell[]. Overflow pages are
6430** allocated and filled in as necessary. The calling procedure
6431** is responsible for making sure sufficient space has been allocated
6432** for pCell[].
6433**
6434** Note that pCell does not necessary need to point to the pPage->aData
6435** area. pCell might point to some temporary storage. The cell will
6436** be constructed in this temporary area then copied into pPage->aData
6437** later.
drh3b7511c2001-05-26 13:15:44 +00006438*/
6439static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006440 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006441 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006442 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006443 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006444){
drh3b7511c2001-05-26 13:15:44 +00006445 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006446 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006447 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006448 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006449 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006450 unsigned char *pPrior;
6451 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006452 BtShared *pBt;
6453 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006454 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006455
drh1fee73e2007-08-29 04:00:57 +00006456 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006457
drhc5053fb2008-11-27 02:22:10 +00006458 /* pPage is not necessarily writeable since pCell might be auxiliary
6459 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006460 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006461 || sqlite3PagerIswriteable(pPage->pDbPage) );
6462
drh91025292004-05-03 19:49:32 +00006463 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006464 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006465 if( pPage->intKey ){
6466 nPayload = pX->nData + pX->nZero;
6467 pSrc = pX->pData;
6468 nSrc = pX->nData;
6469 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006470 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006471 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006472 }else{
drh8eeb4462016-05-21 20:03:42 +00006473 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6474 nSrc = nPayload = (int)pX->nKey;
6475 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006476 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006477 }
drhdfc2daa2016-05-21 23:25:29 +00006478
6479 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006480 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006481 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006482 /* This is the common case where everything fits on the btree page
6483 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006484 n = nHeader + nPayload;
6485 testcase( n==3 );
6486 testcase( n==4 );
6487 if( n<4 ) n = 4;
6488 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006489 assert( nSrc<=nPayload );
6490 testcase( nSrc<nPayload );
6491 memcpy(pPayload, pSrc, nSrc);
6492 memset(pPayload+nSrc, 0, nPayload-nSrc);
6493 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006494 }
drh5e27e1d2017-08-23 14:45:59 +00006495
6496 /* If we reach this point, it means that some of the content will need
6497 ** to spill onto overflow pages.
6498 */
6499 mn = pPage->minLocal;
6500 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6501 testcase( n==pPage->maxLocal );
6502 testcase( n==pPage->maxLocal+1 );
6503 if( n > pPage->maxLocal ) n = mn;
6504 spaceLeft = n;
6505 *pnSize = n + nHeader + 4;
6506 pPrior = &pCell[nHeader+n];
6507 pToRelease = 0;
6508 pgnoOvfl = 0;
6509 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006510
drh6200c882014-09-23 22:36:25 +00006511 /* At this point variables should be set as follows:
6512 **
6513 ** nPayload Total payload size in bytes
6514 ** pPayload Begin writing payload here
6515 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6516 ** that means content must spill into overflow pages.
6517 ** *pnSize Size of the local cell (not counting overflow pages)
6518 ** pPrior Where to write the pgno of the first overflow page
6519 **
6520 ** Use a call to btreeParseCellPtr() to verify that the values above
6521 ** were computed correctly.
6522 */
drhd879e3e2017-02-13 13:35:55 +00006523#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006524 {
6525 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006526 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006527 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006528 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006529 assert( *pnSize == info.nSize );
6530 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006531 }
6532#endif
6533
6534 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006535 while( 1 ){
6536 n = nPayload;
6537 if( n>spaceLeft ) n = spaceLeft;
6538
6539 /* If pToRelease is not zero than pPayload points into the data area
6540 ** of pToRelease. Make sure pToRelease is still writeable. */
6541 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6542
6543 /* If pPayload is part of the data area of pPage, then make sure pPage
6544 ** is still writeable */
6545 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6546 || sqlite3PagerIswriteable(pPage->pDbPage) );
6547
6548 if( nSrc>=n ){
6549 memcpy(pPayload, pSrc, n);
6550 }else if( nSrc>0 ){
6551 n = nSrc;
6552 memcpy(pPayload, pSrc, n);
6553 }else{
6554 memset(pPayload, 0, n);
6555 }
6556 nPayload -= n;
6557 if( nPayload<=0 ) break;
6558 pPayload += n;
6559 pSrc += n;
6560 nSrc -= n;
6561 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006562 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006563 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006564#ifndef SQLITE_OMIT_AUTOVACUUM
6565 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006566 if( pBt->autoVacuum ){
6567 do{
6568 pgnoOvfl++;
6569 } while(
6570 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6571 );
danielk1977b39f70b2007-05-17 18:28:11 +00006572 }
danielk1977afcdd022004-10-31 16:25:42 +00006573#endif
drhf49661a2008-12-10 16:45:50 +00006574 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006575#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006576 /* If the database supports auto-vacuum, and the second or subsequent
6577 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006578 ** for that page now.
6579 **
6580 ** If this is the first overflow page, then write a partial entry
6581 ** to the pointer-map. If we write nothing to this pointer-map slot,
6582 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006583 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006584 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006585 */
danielk19774ef24492007-05-23 09:52:41 +00006586 if( pBt->autoVacuum && rc==SQLITE_OK ){
6587 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006588 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006589 if( rc ){
6590 releasePage(pOvfl);
6591 }
danielk1977afcdd022004-10-31 16:25:42 +00006592 }
6593#endif
drh3b7511c2001-05-26 13:15:44 +00006594 if( rc ){
drh9b171272004-05-08 02:03:22 +00006595 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006596 return rc;
6597 }
drhc5053fb2008-11-27 02:22:10 +00006598
6599 /* If pToRelease is not zero than pPrior points into the data area
6600 ** of pToRelease. Make sure pToRelease is still writeable. */
6601 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6602
6603 /* If pPrior is part of the data area of pPage, then make sure pPage
6604 ** is still writeable */
6605 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6606 || sqlite3PagerIswriteable(pPage->pDbPage) );
6607
drh3aac2dd2004-04-26 14:10:20 +00006608 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006609 releasePage(pToRelease);
6610 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006611 pPrior = pOvfl->aData;
6612 put4byte(pPrior, 0);
6613 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006614 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006615 }
drhdd793422001-06-28 01:54:48 +00006616 }
drh9b171272004-05-08 02:03:22 +00006617 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006618 return SQLITE_OK;
6619}
6620
drh14acc042001-06-10 19:56:58 +00006621/*
6622** Remove the i-th cell from pPage. This routine effects pPage only.
6623** The cell content is not freed or deallocated. It is assumed that
6624** the cell content has been copied someplace else. This routine just
6625** removes the reference to the cell from pPage.
6626**
6627** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006628*/
drh98add2e2009-07-20 17:11:49 +00006629static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006630 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006631 u8 *data; /* pPage->aData */
6632 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006633 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006634 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006635
drh98add2e2009-07-20 17:11:49 +00006636 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006637 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006638 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006639 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006640 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00006641 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00006642 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006643 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006644 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006645 hdr = pPage->hdrOffset;
6646 testcase( pc==get2byte(&data[hdr+5]) );
6647 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006648 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006649 *pRC = SQLITE_CORRUPT_BKPT;
6650 return;
shane0af3f892008-11-12 04:55:34 +00006651 }
shanedcc50b72008-11-13 18:29:50 +00006652 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006653 if( rc ){
6654 *pRC = rc;
6655 return;
shanedcc50b72008-11-13 18:29:50 +00006656 }
drh14acc042001-06-10 19:56:58 +00006657 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006658 if( pPage->nCell==0 ){
6659 memset(&data[hdr+1], 0, 4);
6660 data[hdr+7] = 0;
6661 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6662 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6663 - pPage->childPtrSize - 8;
6664 }else{
6665 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6666 put2byte(&data[hdr+3], pPage->nCell);
6667 pPage->nFree += 2;
6668 }
drh14acc042001-06-10 19:56:58 +00006669}
6670
6671/*
6672** Insert a new cell on pPage at cell index "i". pCell points to the
6673** content of the cell.
6674**
6675** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006676** will not fit, then make a copy of the cell content into pTemp if
6677** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006678** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006679** in pTemp or the original pCell) and also record its index.
6680** Allocating a new entry in pPage->aCell[] implies that
6681** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006682**
6683** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006684*/
drh98add2e2009-07-20 17:11:49 +00006685static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006686 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006687 int i, /* New cell becomes the i-th cell of the page */
6688 u8 *pCell, /* Content of the new cell */
6689 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006690 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006691 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6692 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006693){
drh383d30f2010-02-26 13:07:37 +00006694 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006695 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006696 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006697 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006698
drhcb89f4a2016-05-21 11:23:26 +00006699 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006700 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006701 assert( MX_CELL(pPage->pBt)<=10921 );
6702 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006703 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6704 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006705 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh996f5cc2019-07-17 16:18:01 +00006706 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00006707 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00006708 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006709 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006710 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006711 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006712 }
danielk19774dbaa892009-06-16 16:50:22 +00006713 if( iChild ){
6714 put4byte(pCell, iChild);
6715 }
drh43605152004-05-29 21:46:49 +00006716 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006717 /* Comparison against ArraySize-1 since we hold back one extra slot
6718 ** as a contingency. In other words, never need more than 3 overflow
6719 ** slots but 4 are allocated, just to be safe. */
6720 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006721 pPage->apOvfl[j] = pCell;
6722 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006723
6724 /* When multiple overflows occur, they are always sequential and in
6725 ** sorted order. This invariants arise because multiple overflows can
6726 ** only occur when inserting divider cells into the parent page during
6727 ** balancing, and the dividers are adjacent and sorted.
6728 */
6729 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6730 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006731 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006732 int rc = sqlite3PagerWrite(pPage->pDbPage);
6733 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006734 *pRC = rc;
6735 return;
danielk19776e465eb2007-08-21 13:11:00 +00006736 }
6737 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006738 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006739 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006740 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006741 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006742 /* The allocateSpace() routine guarantees the following properties
6743 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006744 assert( idx >= 0 );
6745 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006746 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006747 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00006748 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00006749 /* In a corrupt database where an entry in the cell index section of
6750 ** a btree page has a value of 3 or less, the pCell value might point
6751 ** as many as 4 bytes in front of the start of the aData buffer for
6752 ** the source page. Make sure this does not cause problems by not
6753 ** reading the first 4 bytes */
6754 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00006755 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00006756 }else{
6757 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006758 }
drh2c8fb922015-06-25 19:53:48 +00006759 pIns = pPage->aCellIdx + i*2;
6760 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6761 put2byte(pIns, idx);
6762 pPage->nCell++;
6763 /* increment the cell count */
6764 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00006765 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
danielk1977a19df672004-11-03 11:37:07 +00006766#ifndef SQLITE_OMIT_AUTOVACUUM
6767 if( pPage->pBt->autoVacuum ){
6768 /* The cell may contain a pointer to an overflow page. If so, write
6769 ** the entry for the overflow page into the pointer map.
6770 */
drh0f1bf4c2019-01-13 20:17:21 +00006771 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006772 }
6773#endif
drh14acc042001-06-10 19:56:58 +00006774 }
6775}
6776
6777/*
drhe3dadac2019-01-23 19:25:59 +00006778** The following parameters determine how many adjacent pages get involved
6779** in a balancing operation. NN is the number of neighbors on either side
6780** of the page that participate in the balancing operation. NB is the
6781** total number of pages that participate, including the target page and
6782** NN neighbors on either side.
6783**
6784** The minimum value of NN is 1 (of course). Increasing NN above 1
6785** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6786** in exchange for a larger degradation in INSERT and UPDATE performance.
6787** The value of NN appears to give the best results overall.
6788**
6789** (Later:) The description above makes it seem as if these values are
6790** tunable - as if you could change them and recompile and it would all work.
6791** But that is unlikely. NB has been 3 since the inception of SQLite and
6792** we have never tested any other value.
6793*/
6794#define NN 1 /* Number of neighbors on either side of pPage */
6795#define NB 3 /* (NN*2+1): Total pages involved in the balance */
6796
6797/*
drh1ffd2472015-06-23 02:37:30 +00006798** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006799** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00006800**
6801** The cells in this array are the divider cell or cells from the pParent
6802** page plus up to three child pages. There are a total of nCell cells.
6803**
6804** pRef is a pointer to one of the pages that contributes cells. This is
6805** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6806** which should be common to all pages that contribute cells to this array.
6807**
6808** apCell[] and szCell[] hold, respectively, pointers to the start of each
6809** cell and the size of each cell. Some of the apCell[] pointers might refer
6810** to overflow cells. In other words, some apCel[] pointers might not point
6811** to content area of the pages.
6812**
6813** A szCell[] of zero means the size of that cell has not yet been computed.
6814**
6815** The cells come from as many as four different pages:
6816**
6817** -----------
6818** | Parent |
6819** -----------
6820** / | \
6821** / | \
6822** --------- --------- ---------
6823** |Child-1| |Child-2| |Child-3|
6824** --------- --------- ---------
6825**
drh26b7ec82019-02-01 14:50:43 +00006826** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00006827**
6828** 1. All cells from Child-1 in order
6829** 2. The first divider cell from Parent
6830** 3. All cells from Child-2 in order
6831** 4. The second divider cell from Parent
6832** 5. All cells from Child-3 in order
6833**
drh26b7ec82019-02-01 14:50:43 +00006834** For a table-btree (with rowids) the items 2 and 4 are empty because
6835** content exists only in leaves and there are no divider cells.
6836**
6837** For an index btree, the apEnd[] array holds pointer to the end of page
6838** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6839** respectively. The ixNx[] array holds the number of cells contained in
6840** each of these 5 stages, and all stages to the left. Hence:
6841**
drhe3dadac2019-01-23 19:25:59 +00006842** ixNx[0] = Number of cells in Child-1.
6843** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6844** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6845** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6846** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00006847**
6848** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6849** are used and they point to the leaf pages only, and the ixNx value are:
6850**
6851** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00006852** ixNx[1] = Number of cells in Child-1 and Child-2.
6853** ixNx[2] = Total number of cells.
6854**
6855** Sometimes when deleting, a child page can have zero cells. In those
6856** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6857** entries, shift down. The end result is that each ixNx[] entry should
6858** be larger than the previous
drhfa1a98a2004-05-14 19:08:17 +00006859*/
drh1ffd2472015-06-23 02:37:30 +00006860typedef struct CellArray CellArray;
6861struct CellArray {
6862 int nCell; /* Number of cells in apCell[] */
6863 MemPage *pRef; /* Reference page */
6864 u8 **apCell; /* All cells begin balanced */
6865 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00006866 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
6867 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00006868};
drhfa1a98a2004-05-14 19:08:17 +00006869
drh1ffd2472015-06-23 02:37:30 +00006870/*
6871** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6872** computed.
6873*/
6874static void populateCellCache(CellArray *p, int idx, int N){
6875 assert( idx>=0 && idx+N<=p->nCell );
6876 while( N>0 ){
6877 assert( p->apCell[idx]!=0 );
6878 if( p->szCell[idx]==0 ){
6879 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6880 }else{
6881 assert( CORRUPT_DB ||
6882 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6883 }
6884 idx++;
6885 N--;
drhfa1a98a2004-05-14 19:08:17 +00006886 }
drh1ffd2472015-06-23 02:37:30 +00006887}
6888
6889/*
6890** Return the size of the Nth element of the cell array
6891*/
6892static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6893 assert( N>=0 && N<p->nCell );
6894 assert( p->szCell[N]==0 );
6895 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6896 return p->szCell[N];
6897}
6898static u16 cachedCellSize(CellArray *p, int N){
6899 assert( N>=0 && N<p->nCell );
6900 if( p->szCell[N] ) return p->szCell[N];
6901 return computeCellSize(p, N);
6902}
6903
6904/*
dan8e9ba0c2014-10-14 17:27:04 +00006905** Array apCell[] contains pointers to nCell b-tree page cells. The
6906** szCell[] array contains the size in bytes of each cell. This function
6907** replaces the current contents of page pPg with the contents of the cell
6908** array.
6909**
6910** Some of the cells in apCell[] may currently be stored in pPg. This
6911** function works around problems caused by this by making a copy of any
6912** such cells before overwriting the page data.
6913**
6914** The MemPage.nFree field is invalidated by this function. It is the
6915** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006916*/
drh658873b2015-06-22 20:02:04 +00006917static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00006918 CellArray *pCArray, /* Content to be added to page pPg */
6919 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00006920 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00006921 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00006922){
6923 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6924 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6925 const int usableSize = pPg->pBt->usableSize;
6926 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00006927 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00006928 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00006929 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00006930 u8 *pCellptr = pPg->aCellIdx;
6931 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6932 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00006933 int k; /* Current slot in pCArray->apEnd[] */
6934 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00006935
drhe3dadac2019-01-23 19:25:59 +00006936 assert( i<iEnd );
6937 j = get2byte(&aData[hdr+5]);
drh3b76c452020-01-03 17:40:30 +00006938 if( NEVER(j>(u32)usableSize) ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00006939 memcpy(&pTmp[j], &aData[j], usableSize - j);
6940
6941 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6942 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00006943
dan8e9ba0c2014-10-14 17:27:04 +00006944 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00006945 while( 1/*exit by break*/ ){
6946 u8 *pCell = pCArray->apCell[i];
6947 u16 sz = pCArray->szCell[i];
6948 assert( sz>0 );
drh8b0ba7b2015-12-16 13:07:35 +00006949 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
drhb2b61bb2020-01-04 14:50:06 +00006950 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006951 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00006952 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
6953 && (uptr)(pCell)<(uptr)pSrcEnd
6954 ){
6955 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006956 }
drhe3dadac2019-01-23 19:25:59 +00006957
6958 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00006959 put2byte(pCellptr, (pData - aData));
6960 pCellptr += 2;
drhe5cf3e92020-01-04 12:34:44 +00006961 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drhe3dadac2019-01-23 19:25:59 +00006962 memcpy(pData, pCell, sz);
drhe5cf3e92020-01-04 12:34:44 +00006963 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6964 testcase( sz!=pPg->xCellSize(pPg,pCell) )
drhe3dadac2019-01-23 19:25:59 +00006965 i++;
6966 if( i>=iEnd ) break;
6967 if( pCArray->ixNx[k]<=i ){
6968 k++;
6969 pSrcEnd = pCArray->apEnd[k];
6970 }
dan33ea4862014-10-09 19:35:37 +00006971 }
6972
dand7b545b2014-10-13 18:03:27 +00006973 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006974 pPg->nCell = nCell;
6975 pPg->nOverflow = 0;
6976
6977 put2byte(&aData[hdr+1], 0);
6978 put2byte(&aData[hdr+3], pPg->nCell);
6979 put2byte(&aData[hdr+5], pData - aData);
6980 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006981 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006982}
6983
dan8e9ba0c2014-10-14 17:27:04 +00006984/*
drhe3dadac2019-01-23 19:25:59 +00006985** The pCArray objects contains pointers to b-tree cells and the cell sizes.
6986** This function attempts to add the cells stored in the array to page pPg.
6987** If it cannot (because the page needs to be defragmented before the cells
6988** will fit), non-zero is returned. Otherwise, if the cells are added
6989** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00006990**
6991** Argument pCellptr points to the first entry in the cell-pointer array
6992** (part of page pPg) to populate. After cell apCell[0] is written to the
6993** page body, a 16-bit offset is written to pCellptr. And so on, for each
6994** cell in the array. It is the responsibility of the caller to ensure
6995** that it is safe to overwrite this part of the cell-pointer array.
6996**
6997** When this function is called, *ppData points to the start of the
6998** content area on page pPg. If the size of the content area is extended,
6999** *ppData is updated to point to the new start of the content area
7000** before returning.
7001**
7002** Finally, argument pBegin points to the byte immediately following the
7003** end of the space required by this page for the cell-pointer area (for
7004** all cells - not just those inserted by the current call). If the content
7005** area must be extended to before this point in order to accomodate all
7006** cells in apCell[], then the cells do not fit and non-zero is returned.
7007*/
dand7b545b2014-10-13 18:03:27 +00007008static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00007009 MemPage *pPg, /* Page to add cells to */
7010 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00007011 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00007012 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00007013 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00007014 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00007015 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007016){
drhe3dadac2019-01-23 19:25:59 +00007017 int i = iFirst; /* Loop counter - cell index to insert */
7018 u8 *aData = pPg->aData; /* Complete page */
7019 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7020 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7021 int k; /* Current slot in pCArray->apEnd[] */
7022 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00007023 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00007024 if( iEnd<=iFirst ) return 0;
7025 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7026 pEnd = pCArray->apEnd[k];
7027 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00007028 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00007029 u8 *pSlot;
dan666a42f2019-08-24 21:02:47 +00007030 assert( pCArray->szCell[i]!=0 );
7031 sz = pCArray->szCell[i];
drhb7580e82015-06-25 18:36:13 +00007032 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00007033 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00007034 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00007035 pSlot = pData;
7036 }
drh48310f82015-10-10 16:41:28 +00007037 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7038 ** database. But they might for a corrupt database. Hence use memmove()
7039 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7040 assert( (pSlot+sz)<=pCArray->apCell[i]
7041 || pSlot>=(pCArray->apCell[i]+sz)
7042 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007043 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7044 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7045 ){
7046 assert( CORRUPT_DB );
7047 (void)SQLITE_CORRUPT_BKPT;
7048 return 1;
7049 }
drh48310f82015-10-10 16:41:28 +00007050 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007051 put2byte(pCellptr, (pSlot - aData));
7052 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007053 i++;
7054 if( i>=iEnd ) break;
7055 if( pCArray->ixNx[k]<=i ){
7056 k++;
7057 pEnd = pCArray->apEnd[k];
7058 }
dand7b545b2014-10-13 18:03:27 +00007059 }
7060 *ppData = pData;
7061 return 0;
7062}
7063
dan8e9ba0c2014-10-14 17:27:04 +00007064/*
drhe3dadac2019-01-23 19:25:59 +00007065** The pCArray object contains pointers to b-tree cells and their sizes.
7066**
7067** This function adds the space associated with each cell in the array
7068** that is currently stored within the body of pPg to the pPg free-list.
7069** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007070**
7071** This function returns the total number of cells added to the free-list.
7072*/
dand7b545b2014-10-13 18:03:27 +00007073static int pageFreeArray(
7074 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007075 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007076 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007077 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007078){
7079 u8 * const aData = pPg->aData;
7080 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007081 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007082 int nRet = 0;
7083 int i;
drhf7838932015-06-23 15:36:34 +00007084 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007085 u8 *pFree = 0;
7086 int szFree = 0;
7087
drhf7838932015-06-23 15:36:34 +00007088 for(i=iFirst; i<iEnd; i++){
7089 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007090 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007091 int sz;
7092 /* No need to use cachedCellSize() here. The sizes of all cells that
7093 ** are to be freed have already been computing while deciding which
7094 ** cells need freeing */
7095 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007096 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007097 if( pFree ){
7098 assert( pFree>aData && (pFree - aData)<65536 );
7099 freeSpace(pPg, (u16)(pFree - aData), szFree);
7100 }
dand7b545b2014-10-13 18:03:27 +00007101 pFree = pCell;
7102 szFree = sz;
drh64f7ee02020-01-04 17:55:01 +00007103 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00007104 }else{
7105 pFree = pCell;
7106 szFree += sz;
7107 }
7108 nRet++;
7109 }
7110 }
drhfefa0942014-11-05 21:21:08 +00007111 if( pFree ){
7112 assert( pFree>aData && (pFree - aData)<65536 );
7113 freeSpace(pPg, (u16)(pFree - aData), szFree);
7114 }
dand7b545b2014-10-13 18:03:27 +00007115 return nRet;
7116}
7117
dand7b545b2014-10-13 18:03:27 +00007118/*
drha0466432019-01-29 16:41:13 +00007119** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007120** balanced. The current page, pPg, has pPg->nCell cells starting with
7121** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007122** starting at apCell[iNew].
7123**
7124** This routine makes the necessary adjustments to pPg so that it contains
7125** the correct cells after being balanced.
7126**
dand7b545b2014-10-13 18:03:27 +00007127** The pPg->nFree field is invalid when this function returns. It is the
7128** responsibility of the caller to set it correctly.
7129*/
drh658873b2015-06-22 20:02:04 +00007130static int editPage(
dan09c68402014-10-11 20:00:24 +00007131 MemPage *pPg, /* Edit this page */
7132 int iOld, /* Index of first cell currently on page */
7133 int iNew, /* Index of new first cell on page */
7134 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007135 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007136){
dand7b545b2014-10-13 18:03:27 +00007137 u8 * const aData = pPg->aData;
7138 const int hdr = pPg->hdrOffset;
7139 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7140 int nCell = pPg->nCell; /* Cells stored on pPg */
7141 u8 *pData;
7142 u8 *pCellptr;
7143 int i;
7144 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7145 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007146
7147#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007148 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7149 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007150#endif
7151
dand7b545b2014-10-13 18:03:27 +00007152 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007153 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007154 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007155 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drhfde25922020-05-05 19:54:02 +00007156 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007157 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7158 nCell -= nShift;
7159 }
7160 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007161 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7162 assert( nCell>=nTail );
7163 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007164 }
dan09c68402014-10-11 20:00:24 +00007165
drh5ab63772014-11-27 03:46:04 +00007166 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007167 if( pData<pBegin ) goto editpage_fail;
7168
7169 /* Add cells to the start of the page */
7170 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007171 int nAdd = MIN(nNew,iOld-iNew);
7172 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007173 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007174 pCellptr = pPg->aCellIdx;
7175 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7176 if( pageInsertArray(
7177 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007178 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007179 ) ) goto editpage_fail;
7180 nCell += nAdd;
7181 }
7182
7183 /* Add any overflow cells */
7184 for(i=0; i<pPg->nOverflow; i++){
7185 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7186 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007187 pCellptr = &pPg->aCellIdx[iCell * 2];
drh4b986b22019-03-08 14:02:11 +00007188 if( nCell>iCell ){
7189 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7190 }
dand7b545b2014-10-13 18:03:27 +00007191 nCell++;
dan666a42f2019-08-24 21:02:47 +00007192 cachedCellSize(pCArray, iCell+iNew);
dand7b545b2014-10-13 18:03:27 +00007193 if( pageInsertArray(
7194 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007195 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007196 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007197 }
dand7b545b2014-10-13 18:03:27 +00007198 }
dan09c68402014-10-11 20:00:24 +00007199
dand7b545b2014-10-13 18:03:27 +00007200 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007201 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007202 pCellptr = &pPg->aCellIdx[nCell*2];
7203 if( pageInsertArray(
7204 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007205 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007206 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007207
dand7b545b2014-10-13 18:03:27 +00007208 pPg->nCell = nNew;
7209 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007210
dand7b545b2014-10-13 18:03:27 +00007211 put2byte(&aData[hdr+3], pPg->nCell);
7212 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007213
7214#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007215 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007216 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007217 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007218 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007219 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007220 }
drh1ffd2472015-06-23 02:37:30 +00007221 assert( 0==memcmp(pCell, &aData[iOff],
7222 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007223 }
dan09c68402014-10-11 20:00:24 +00007224#endif
7225
drh658873b2015-06-22 20:02:04 +00007226 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007227 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007228 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007229 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007230 return rebuildPage(pCArray, iNew, nNew, pPg);
drhfa1a98a2004-05-14 19:08:17 +00007231}
7232
danielk1977ac245ec2005-01-14 13:50:11 +00007233
drh615ae552005-01-16 23:21:00 +00007234#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007235/*
7236** This version of balance() handles the common special case where
7237** a new entry is being inserted on the extreme right-end of the
7238** tree, in other words, when the new entry will become the largest
7239** entry in the tree.
7240**
drhc314dc72009-07-21 11:52:34 +00007241** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007242** a new page to the right-hand side and put the one new entry in
7243** that page. This leaves the right side of the tree somewhat
7244** unbalanced. But odds are that we will be inserting new entries
7245** at the end soon afterwards so the nearly empty page will quickly
7246** fill up. On average.
7247**
7248** pPage is the leaf page which is the right-most page in the tree.
7249** pParent is its parent. pPage must have a single overflow entry
7250** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007251**
7252** The pSpace buffer is used to store a temporary copy of the divider
7253** cell that will be inserted into pParent. Such a cell consists of a 4
7254** byte page number followed by a variable length integer. In other
7255** words, at most 13 bytes. Hence the pSpace buffer must be at
7256** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007257*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007258static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7259 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007260 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007261 int rc; /* Return Code */
7262 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007263
drh1fee73e2007-08-29 04:00:57 +00007264 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007265 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007266 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007267
drh6301c432018-12-13 21:52:18 +00007268 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007269 assert( pPage->nFree>=0 );
7270 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007271
danielk1977a50d9aa2009-06-08 14:49:45 +00007272 /* Allocate a new page. This page will become the right-sibling of
7273 ** pPage. Make the parent page writable, so that the new divider cell
7274 ** may be inserted. If both these operations are successful, proceed.
7275 */
drh4f0c5872007-03-26 22:05:01 +00007276 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007277
danielk1977eaa06f62008-09-18 17:34:44 +00007278 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007279
7280 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007281 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007282 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007283 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007284 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007285
drhc5053fb2008-11-27 02:22:10 +00007286 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007287 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007288 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007289 b.nCell = 1;
7290 b.pRef = pPage;
7291 b.apCell = &pCell;
7292 b.szCell = &szCell;
7293 b.apEnd[0] = pPage->aDataEnd;
7294 b.ixNx[0] = 2;
7295 rc = rebuildPage(&b, 0, 1, pNew);
7296 if( NEVER(rc) ){
7297 releasePage(pNew);
7298 return rc;
7299 }
dan8e9ba0c2014-10-14 17:27:04 +00007300 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007301
7302 /* If this is an auto-vacuum database, update the pointer map
7303 ** with entries for the new page, and any pointer from the
7304 ** cell on the page to an overflow page. If either of these
7305 ** operations fails, the return code is set, but the contents
7306 ** of the parent page are still manipulated by thh code below.
7307 ** That is Ok, at this point the parent page is guaranteed to
7308 ** be marked as dirty. Returning an error code will cause a
7309 ** rollback, undoing any changes made to the parent page.
7310 */
7311 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007312 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7313 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007314 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007315 }
7316 }
danielk1977eaa06f62008-09-18 17:34:44 +00007317
danielk19776f235cc2009-06-04 14:46:08 +00007318 /* Create a divider cell to insert into pParent. The divider cell
7319 ** consists of a 4-byte page number (the page number of pPage) and
7320 ** a variable length key value (which must be the same value as the
7321 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007322 **
danielk19776f235cc2009-06-04 14:46:08 +00007323 ** To find the largest key value on pPage, first find the right-most
7324 ** cell on pPage. The first two fields of this cell are the
7325 ** record-length (a variable length integer at most 32-bits in size)
7326 ** and the key value (a variable length integer, may have any value).
7327 ** The first of the while(...) loops below skips over the record-length
7328 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007329 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007330 */
danielk1977eaa06f62008-09-18 17:34:44 +00007331 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007332 pStop = &pCell[9];
7333 while( (*(pCell++)&0x80) && pCell<pStop );
7334 pStop = &pCell[9];
7335 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7336
danielk19774dbaa892009-06-16 16:50:22 +00007337 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007338 if( rc==SQLITE_OK ){
7339 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7340 0, pPage->pgno, &rc);
7341 }
danielk19776f235cc2009-06-04 14:46:08 +00007342
7343 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007344 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7345
danielk1977e08a3c42008-09-18 18:17:03 +00007346 /* Release the reference to the new page. */
7347 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007348 }
7349
danielk1977eaa06f62008-09-18 17:34:44 +00007350 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007351}
drh615ae552005-01-16 23:21:00 +00007352#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007353
danielk19774dbaa892009-06-16 16:50:22 +00007354#if 0
drhc3b70572003-01-04 19:44:07 +00007355/*
danielk19774dbaa892009-06-16 16:50:22 +00007356** This function does not contribute anything to the operation of SQLite.
7357** it is sometimes activated temporarily while debugging code responsible
7358** for setting pointer-map entries.
7359*/
7360static int ptrmapCheckPages(MemPage **apPage, int nPage){
7361 int i, j;
7362 for(i=0; i<nPage; i++){
7363 Pgno n;
7364 u8 e;
7365 MemPage *pPage = apPage[i];
7366 BtShared *pBt = pPage->pBt;
7367 assert( pPage->isInit );
7368
7369 for(j=0; j<pPage->nCell; j++){
7370 CellInfo info;
7371 u8 *z;
7372
7373 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007374 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007375 if( info.nLocal<info.nPayload ){
7376 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007377 ptrmapGet(pBt, ovfl, &e, &n);
7378 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7379 }
7380 if( !pPage->leaf ){
7381 Pgno child = get4byte(z);
7382 ptrmapGet(pBt, child, &e, &n);
7383 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7384 }
7385 }
7386 if( !pPage->leaf ){
7387 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7388 ptrmapGet(pBt, child, &e, &n);
7389 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7390 }
7391 }
7392 return 1;
7393}
7394#endif
7395
danielk1977cd581a72009-06-23 15:43:39 +00007396/*
7397** This function is used to copy the contents of the b-tree node stored
7398** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7399** the pointer-map entries for each child page are updated so that the
7400** parent page stored in the pointer map is page pTo. If pFrom contained
7401** any cells with overflow page pointers, then the corresponding pointer
7402** map entries are also updated so that the parent page is page pTo.
7403**
7404** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007405** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007406**
danielk197730548662009-07-09 05:07:37 +00007407** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007408**
7409** The performance of this function is not critical. It is only used by
7410** the balance_shallower() and balance_deeper() procedures, neither of
7411** which are called often under normal circumstances.
7412*/
drhc314dc72009-07-21 11:52:34 +00007413static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7414 if( (*pRC)==SQLITE_OK ){
7415 BtShared * const pBt = pFrom->pBt;
7416 u8 * const aFrom = pFrom->aData;
7417 u8 * const aTo = pTo->aData;
7418 int const iFromHdr = pFrom->hdrOffset;
7419 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007420 int rc;
drhc314dc72009-07-21 11:52:34 +00007421 int iData;
7422
7423
7424 assert( pFrom->isInit );
7425 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007426 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007427
7428 /* Copy the b-tree node content from page pFrom to page pTo. */
7429 iData = get2byte(&aFrom[iFromHdr+5]);
7430 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7431 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7432
7433 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007434 ** match the new data. The initialization of pTo can actually fail under
7435 ** fairly obscure circumstances, even though it is a copy of initialized
7436 ** page pFrom.
7437 */
drhc314dc72009-07-21 11:52:34 +00007438 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007439 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00007440 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00007441 if( rc!=SQLITE_OK ){
7442 *pRC = rc;
7443 return;
7444 }
drhc314dc72009-07-21 11:52:34 +00007445
7446 /* If this is an auto-vacuum database, update the pointer-map entries
7447 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7448 */
7449 if( ISAUTOVACUUM ){
7450 *pRC = setChildPtrmaps(pTo);
7451 }
danielk1977cd581a72009-06-23 15:43:39 +00007452 }
danielk1977cd581a72009-06-23 15:43:39 +00007453}
7454
7455/*
danielk19774dbaa892009-06-16 16:50:22 +00007456** This routine redistributes cells on the iParentIdx'th child of pParent
7457** (hereafter "the page") and up to 2 siblings so that all pages have about the
7458** same amount of free space. Usually a single sibling on either side of the
7459** page are used in the balancing, though both siblings might come from one
7460** side if the page is the first or last child of its parent. If the page
7461** has fewer than 2 siblings (something which can only happen if the page
7462** is a root page or a child of a root page) then all available siblings
7463** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007464**
danielk19774dbaa892009-06-16 16:50:22 +00007465** The number of siblings of the page might be increased or decreased by
7466** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007467**
danielk19774dbaa892009-06-16 16:50:22 +00007468** Note that when this routine is called, some of the cells on the page
7469** might not actually be stored in MemPage.aData[]. This can happen
7470** if the page is overfull. This routine ensures that all cells allocated
7471** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007472**
danielk19774dbaa892009-06-16 16:50:22 +00007473** In the course of balancing the page and its siblings, cells may be
7474** inserted into or removed from the parent page (pParent). Doing so
7475** may cause the parent page to become overfull or underfull. If this
7476** happens, it is the responsibility of the caller to invoke the correct
7477** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007478**
drh5e00f6c2001-09-13 13:46:56 +00007479** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007480** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007481** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007482**
7483** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007484** buffer big enough to hold one page. If while inserting cells into the parent
7485** page (pParent) the parent page becomes overfull, this buffer is
7486** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007487** a maximum of four divider cells into the parent page, and the maximum
7488** size of a cell stored within an internal node is always less than 1/4
7489** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7490** enough for all overflow cells.
7491**
7492** If aOvflSpace is set to a null pointer, this function returns
7493** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007494*/
danielk19774dbaa892009-06-16 16:50:22 +00007495static int balance_nonroot(
7496 MemPage *pParent, /* Parent page of siblings being balanced */
7497 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007498 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007499 int isRoot, /* True if pParent is a root-page */
7500 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007501){
drh16a9b832007-05-05 18:39:25 +00007502 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007503 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007504 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007505 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007506 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007507 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007508 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007509 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007510 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007511 int usableSpace; /* Bytes in pPage beyond the header */
7512 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007513 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007514 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007515 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007516 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007517 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007518 u8 *pRight; /* Location in parent of right-sibling pointer */
7519 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007520 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7521 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007522 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007523 u8 *aSpace1; /* Space for copies of dividers cells */
7524 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007525 u8 abDone[NB+2]; /* True after i'th new page is populated */
7526 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007527 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007528 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007529 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007530
dan33ea4862014-10-09 19:35:37 +00007531 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007532 b.nCell = 0;
7533 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007534 pBt = pParent->pBt;
7535 assert( sqlite3_mutex_held(pBt->mutex) );
7536 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007537
danielk19774dbaa892009-06-16 16:50:22 +00007538 /* At this point pParent may have at most one overflow cell. And if
7539 ** this overflow cell is present, it must be the cell with
7540 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007541 ** is called (indirectly) from sqlite3BtreeDelete().
7542 */
danielk19774dbaa892009-06-16 16:50:22 +00007543 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007544 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007545
danielk197711a8a862009-06-17 11:49:52 +00007546 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007547 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007548 }
drh68133502019-02-11 17:22:30 +00007549 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00007550
danielk1977a50d9aa2009-06-08 14:49:45 +00007551 /* Find the sibling pages to balance. Also locate the cells in pParent
7552 ** that divide the siblings. An attempt is made to find NN siblings on
7553 ** either side of pPage. More siblings are taken from one side, however,
7554 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007555 ** has NB or fewer children then all children of pParent are taken.
7556 **
7557 ** This loop also drops the divider cells from the parent page. This
7558 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007559 ** overflow cells in the parent page, since if any existed they will
7560 ** have already been removed.
7561 */
danielk19774dbaa892009-06-16 16:50:22 +00007562 i = pParent->nOverflow + pParent->nCell;
7563 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007564 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007565 }else{
dan7d6885a2012-08-08 14:04:56 +00007566 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007567 if( iParentIdx==0 ){
7568 nxDiv = 0;
7569 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007570 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007571 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007572 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007573 }
dan7d6885a2012-08-08 14:04:56 +00007574 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007575 }
dan7d6885a2012-08-08 14:04:56 +00007576 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007577 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7578 pRight = &pParent->aData[pParent->hdrOffset+8];
7579 }else{
7580 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7581 }
7582 pgno = get4byte(pRight);
7583 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007584 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007585 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007586 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007587 goto balance_cleanup;
7588 }
drh85a379b2019-02-09 22:33:44 +00007589 if( apOld[i]->nFree<0 ){
7590 rc = btreeComputeFreeSpace(apOld[i]);
7591 if( rc ){
7592 memset(apOld, 0, (i)*sizeof(MemPage*));
7593 goto balance_cleanup;
7594 }
7595 }
danielk19774dbaa892009-06-16 16:50:22 +00007596 if( (i--)==0 ) break;
7597
drh9cc5b4e2016-12-26 01:41:33 +00007598 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007599 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007600 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007601 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007602 pParent->nOverflow = 0;
7603 }else{
7604 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7605 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007606 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007607
7608 /* Drop the cell from the parent page. apDiv[i] still points to
7609 ** the cell within the parent, even though it has been dropped.
7610 ** This is safe because dropping a cell only overwrites the first
7611 ** four bytes of it, and this function does not need the first
7612 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007613 ** later on.
7614 **
drh8a575d92011-10-12 17:00:28 +00007615 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007616 ** the dropCell() routine will overwrite the entire cell with zeroes.
7617 ** In this case, temporarily copy the cell into the aOvflSpace[]
7618 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7619 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007620 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007621 int iOff;
7622
7623 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007624 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007625 rc = SQLITE_CORRUPT_BKPT;
7626 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7627 goto balance_cleanup;
7628 }else{
7629 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7630 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7631 }
drh5b47efa2010-02-12 18:18:39 +00007632 }
drh98add2e2009-07-20 17:11:49 +00007633 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007634 }
drh8b2f49b2001-06-08 00:21:52 +00007635 }
7636
drha9121e42008-02-19 14:59:35 +00007637 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007638 ** alignment */
drhf012dc42019-03-19 15:36:46 +00007639 nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl));
drha9121e42008-02-19 14:59:35 +00007640 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007641
drh8b2f49b2001-06-08 00:21:52 +00007642 /*
danielk1977634f2982005-03-28 08:44:07 +00007643 ** Allocate space for memory structures
7644 */
drhfacf0302008-06-17 15:12:00 +00007645 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007646 nMaxCells*sizeof(u8*) /* b.apCell */
7647 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007648 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007649
drhf012dc42019-03-19 15:36:46 +00007650 assert( szScratch<=7*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007651 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007652 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007653 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007654 goto balance_cleanup;
7655 }
drh1ffd2472015-06-23 02:37:30 +00007656 b.szCell = (u16*)&b.apCell[nMaxCells];
7657 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007658 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007659
7660 /*
7661 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007662 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007663 ** into space obtained from aSpace1[]. The divider cells have already
7664 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007665 **
7666 ** If the siblings are on leaf pages, then the child pointers of the
7667 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007668 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007669 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007670 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007671 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007672 **
7673 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7674 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007675 */
drh1ffd2472015-06-23 02:37:30 +00007676 b.pRef = apOld[0];
7677 leafCorrection = b.pRef->leaf*4;
7678 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007679 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007680 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007681 int limit = pOld->nCell;
7682 u8 *aData = pOld->aData;
7683 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007684 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007685 u8 *piEnd;
drhe12ca5a2019-05-02 15:56:39 +00007686 VVA_ONLY( int nCellAtStart = b.nCell; )
danielk19774dbaa892009-06-16 16:50:22 +00007687
drh73d340a2015-05-28 11:23:11 +00007688 /* Verify that all sibling pages are of the same "type" (table-leaf,
7689 ** table-interior, index-leaf, or index-interior).
7690 */
7691 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7692 rc = SQLITE_CORRUPT_BKPT;
7693 goto balance_cleanup;
7694 }
7695
drhfe647dc2015-06-23 18:24:25 +00007696 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007697 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007698 ** in the correct spot.
7699 **
7700 ** Note that when there are multiple overflow cells, it is always the
7701 ** case that they are sequential and adjacent. This invariant arises
7702 ** because multiple overflows can only occurs when inserting divider
7703 ** cells into a parent on a prior balance, and divider cells are always
7704 ** adjacent and are inserted in order. There is an assert() tagged
7705 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7706 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007707 **
7708 ** This must be done in advance. Once the balance starts, the cell
7709 ** offset section of the btree page will be overwritten and we will no
7710 ** long be able to find the cells if a pointer to each cell is not saved
7711 ** first.
7712 */
drh36b78ee2016-01-20 01:32:00 +00007713 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007714 if( pOld->nOverflow>0 ){
drh27e80a32019-08-15 13:17:49 +00007715 if( NEVER(limit<pOld->aiOvfl[0]) ){
drhe12ca5a2019-05-02 15:56:39 +00007716 rc = SQLITE_CORRUPT_BKPT;
7717 goto balance_cleanup;
7718 }
drhfe647dc2015-06-23 18:24:25 +00007719 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007720 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007721 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007722 piCell += 2;
7723 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007724 }
drhfe647dc2015-06-23 18:24:25 +00007725 for(k=0; k<pOld->nOverflow; k++){
7726 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007727 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007728 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007729 }
drh1ffd2472015-06-23 02:37:30 +00007730 }
drhfe647dc2015-06-23 18:24:25 +00007731 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7732 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007733 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007734 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007735 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007736 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007737 }
drhe12ca5a2019-05-02 15:56:39 +00007738 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
drh4edfdd32015-06-23 14:49:42 +00007739
drh1ffd2472015-06-23 02:37:30 +00007740 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007741 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007742 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007743 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007744 assert( b.nCell<nMaxCells );
7745 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007746 pTemp = &aSpace1[iSpace1];
7747 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007748 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007749 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007750 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007751 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007752 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007753 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007754 if( !pOld->leaf ){
7755 assert( leafCorrection==0 );
7756 assert( pOld->hdrOffset==0 );
7757 /* The right pointer of the child page pOld becomes the left
7758 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007759 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007760 }else{
7761 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007762 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007763 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7764 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007765 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7766 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007767 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007768 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007769 }
7770 }
drh1ffd2472015-06-23 02:37:30 +00007771 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007772 }
drh8b2f49b2001-06-08 00:21:52 +00007773 }
7774
7775 /*
drh1ffd2472015-06-23 02:37:30 +00007776 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007777 ** Store this number in "k". Also compute szNew[] which is the total
7778 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007779 ** in b.apCell[] of the cell that divides page i from page i+1.
7780 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007781 **
drh96f5b762004-05-16 16:24:36 +00007782 ** Values computed by this block:
7783 **
7784 ** k: The total number of sibling pages
7785 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007786 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007787 ** the right of the i-th sibling page.
7788 ** usableSpace: Number of bytes of space available on each sibling.
7789 **
drh8b2f49b2001-06-08 00:21:52 +00007790 */
drh43605152004-05-29 21:46:49 +00007791 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00007792 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00007793 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00007794 b.apEnd[k] = p->aDataEnd;
7795 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00007796 if( k && b.ixNx[k]==b.ixNx[k-1] ){
7797 k--; /* Omit b.ixNx[] entry for child pages with no cells */
7798 }
drh26b7ec82019-02-01 14:50:43 +00007799 if( !leafData ){
7800 k++;
7801 b.apEnd[k] = pParent->aDataEnd;
7802 b.ixNx[k] = cntOld[i]+1;
7803 }
drhb0ea9432019-02-09 21:06:40 +00007804 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00007805 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007806 for(j=0; j<p->nOverflow; j++){
7807 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7808 }
7809 cntNew[i] = cntOld[i];
7810 }
7811 k = nOld;
7812 for(i=0; i<k; i++){
7813 int sz;
7814 while( szNew[i]>usableSpace ){
7815 if( i+1>=k ){
7816 k = i+2;
7817 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7818 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007819 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007820 }
drh1ffd2472015-06-23 02:37:30 +00007821 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007822 szNew[i] -= sz;
7823 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007824 if( cntNew[i]<b.nCell ){
7825 sz = 2 + cachedCellSize(&b, cntNew[i]);
7826 }else{
7827 sz = 0;
7828 }
drh658873b2015-06-22 20:02:04 +00007829 }
7830 szNew[i+1] += sz;
7831 cntNew[i]--;
7832 }
drh1ffd2472015-06-23 02:37:30 +00007833 while( cntNew[i]<b.nCell ){
7834 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007835 if( szNew[i]+sz>usableSpace ) break;
7836 szNew[i] += sz;
7837 cntNew[i]++;
7838 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007839 if( cntNew[i]<b.nCell ){
7840 sz = 2 + cachedCellSize(&b, cntNew[i]);
7841 }else{
7842 sz = 0;
7843 }
drh658873b2015-06-22 20:02:04 +00007844 }
7845 szNew[i+1] -= sz;
7846 }
drh1ffd2472015-06-23 02:37:30 +00007847 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007848 k = i+1;
drh672073a2015-06-24 12:07:40 +00007849 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007850 rc = SQLITE_CORRUPT_BKPT;
7851 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007852 }
7853 }
drh96f5b762004-05-16 16:24:36 +00007854
7855 /*
7856 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007857 ** on the left side (siblings with smaller keys). The left siblings are
7858 ** always nearly full, while the right-most sibling might be nearly empty.
7859 ** The next block of code attempts to adjust the packing of siblings to
7860 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007861 **
7862 ** This adjustment is more than an optimization. The packing above might
7863 ** be so out of balance as to be illegal. For example, the right-most
7864 ** sibling might be completely empty. This adjustment is not optional.
7865 */
drh6019e162001-07-02 17:51:45 +00007866 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007867 int szRight = szNew[i]; /* Size of sibling on the right */
7868 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7869 int r; /* Index of right-most cell in left sibling */
7870 int d; /* Index of first cell to the left of right sibling */
7871
7872 r = cntNew[i-1] - 1;
7873 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007874 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007875 do{
drh1ffd2472015-06-23 02:37:30 +00007876 assert( d<nMaxCells );
7877 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007878 (void)cachedCellSize(&b, r);
7879 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007880 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007881 break;
7882 }
7883 szRight += b.szCell[d] + 2;
7884 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007885 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007886 r--;
7887 d--;
drh672073a2015-06-24 12:07:40 +00007888 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007889 szNew[i] = szRight;
7890 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007891 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7892 rc = SQLITE_CORRUPT_BKPT;
7893 goto balance_cleanup;
7894 }
drh6019e162001-07-02 17:51:45 +00007895 }
drh09d0deb2005-08-02 17:13:09 +00007896
drh2a0df922014-10-30 23:14:56 +00007897 /* Sanity check: For a non-corrupt database file one of the follwing
7898 ** must be true:
7899 ** (1) We found one or more cells (cntNew[0])>0), or
7900 ** (2) pPage is a virtual root page. A virtual root page is when
7901 ** the real root page is page 1 and we are the only child of
7902 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007903 */
drh2a0df922014-10-30 23:14:56 +00007904 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007905 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7906 apOld[0]->pgno, apOld[0]->nCell,
7907 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7908 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007909 ));
7910
drh8b2f49b2001-06-08 00:21:52 +00007911 /*
drh6b308672002-07-08 02:16:37 +00007912 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007913 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007914 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007915 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007916 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007917 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007918 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007919 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007920 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007921 nNew++;
danielk197728129562005-01-11 10:25:06 +00007922 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007923 }else{
drh7aa8f852006-03-28 00:24:44 +00007924 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007925 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007926 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007927 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007928 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007929 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007930 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007931
7932 /* Set the pointer-map entry for the new sibling page. */
7933 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007934 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007935 if( rc!=SQLITE_OK ){
7936 goto balance_cleanup;
7937 }
7938 }
drh6b308672002-07-08 02:16:37 +00007939 }
drh8b2f49b2001-06-08 00:21:52 +00007940 }
7941
7942 /*
dan33ea4862014-10-09 19:35:37 +00007943 ** Reassign page numbers so that the new pages are in ascending order.
7944 ** This helps to keep entries in the disk file in order so that a scan
7945 ** of the table is closer to a linear scan through the file. That in turn
7946 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007947 **
dan33ea4862014-10-09 19:35:37 +00007948 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7949 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007950 **
dan33ea4862014-10-09 19:35:37 +00007951 ** When NB==3, this one optimization makes the database about 25% faster
7952 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007953 */
dan33ea4862014-10-09 19:35:37 +00007954 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007955 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007956 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007957 for(j=0; j<i; j++){
7958 if( aPgno[j]==aPgno[i] ){
7959 /* This branch is taken if the set of sibling pages somehow contains
7960 ** duplicate entries. This can happen if the database is corrupt.
7961 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007962 ** we do the detection here in order to avoid populating the pager
7963 ** cache with two separate objects associated with the same
7964 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007965 assert( CORRUPT_DB );
7966 rc = SQLITE_CORRUPT_BKPT;
7967 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007968 }
7969 }
dan33ea4862014-10-09 19:35:37 +00007970 }
7971 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007972 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007973 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007974 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007975 }
drh00fe08a2014-10-31 00:05:23 +00007976 pgno = aPgOrder[iBest];
7977 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007978 if( iBest!=i ){
7979 if( iBest>i ){
7980 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7981 }
7982 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7983 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007984 }
7985 }
dan33ea4862014-10-09 19:35:37 +00007986
7987 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7988 "%d(%d nc=%d) %d(%d nc=%d)\n",
7989 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007990 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007991 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007992 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007993 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007994 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007995 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7996 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7997 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7998 ));
danielk19774dbaa892009-06-16 16:50:22 +00007999
8000 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh55f66b32019-07-16 19:44:32 +00008001 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8002 assert( apNew[nNew-1]!=0 );
danielk19774dbaa892009-06-16 16:50:22 +00008003 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00008004
dan33ea4862014-10-09 19:35:37 +00008005 /* If the sibling pages are not leaves, ensure that the right-child pointer
8006 ** of the right-most new sibling page is set to the value that was
8007 ** originally in the same field of the right-most old sibling page. */
8008 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8009 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8010 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8011 }
danielk1977ac11ee62005-01-15 12:45:51 +00008012
dan33ea4862014-10-09 19:35:37 +00008013 /* Make any required updates to pointer map entries associated with
8014 ** cells stored on sibling pages following the balance operation. Pointer
8015 ** map entries associated with divider cells are set by the insertCell()
8016 ** routine. The associated pointer map entries are:
8017 **
8018 ** a) if the cell contains a reference to an overflow chain, the
8019 ** entry associated with the first page in the overflow chain, and
8020 **
8021 ** b) if the sibling pages are not leaves, the child page associated
8022 ** with the cell.
8023 **
8024 ** If the sibling pages are not leaves, then the pointer map entry
8025 ** associated with the right-child of each sibling may also need to be
8026 ** updated. This happens below, after the sibling pages have been
8027 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00008028 */
dan33ea4862014-10-09 19:35:37 +00008029 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00008030 MemPage *pOld;
8031 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00008032 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00008033 int iNew = 0;
8034 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00008035
drh1ffd2472015-06-23 02:37:30 +00008036 for(i=0; i<b.nCell; i++){
8037 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00008038 while( i==cntOldNext ){
8039 iOld++;
8040 assert( iOld<nNew || iOld<nOld );
drhdd2d9a32019-05-07 17:47:43 +00008041 assert( iOld>=0 && iOld<NB );
drh9c7e44c2019-02-14 15:27:12 +00008042 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00008043 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
drh4b70f112004-05-02 21:12:19 +00008044 }
dan33ea4862014-10-09 19:35:37 +00008045 if( i==cntNew[iNew] ){
8046 pNew = apNew[++iNew];
8047 if( !leafData ) continue;
8048 }
danielk197785d90ca2008-07-19 14:25:15 +00008049
dan33ea4862014-10-09 19:35:37 +00008050 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00008051 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00008052 ** or else the divider cell to the left of sibling page iOld. So,
8053 ** if sibling page iOld had the same page number as pNew, and if
8054 ** pCell really was a part of sibling page iOld (not a divider or
8055 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008056 if( iOld>=nNew
8057 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008058 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008059 ){
dan33ea4862014-10-09 19:35:37 +00008060 if( !leafCorrection ){
8061 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8062 }
drh1ffd2472015-06-23 02:37:30 +00008063 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008064 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00008065 }
drhea82b372015-06-23 21:35:28 +00008066 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00008067 }
drh14acc042001-06-10 19:56:58 +00008068 }
8069 }
dan33ea4862014-10-09 19:35:37 +00008070
8071 /* Insert new divider cells into pParent. */
8072 for(i=0; i<nNew-1; i++){
8073 u8 *pCell;
8074 u8 *pTemp;
8075 int sz;
8076 MemPage *pNew = apNew[i];
8077 j = cntNew[i];
8078
8079 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008080 assert( b.apCell[j]!=0 );
8081 pCell = b.apCell[j];
8082 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008083 pTemp = &aOvflSpace[iOvflSpace];
8084 if( !pNew->leaf ){
8085 memcpy(&pNew->aData[8], pCell, 4);
8086 }else if( leafData ){
8087 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008088 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008089 ** cell consists of the integer key for the right-most cell of
8090 ** the sibling-page assembled above only.
8091 */
8092 CellInfo info;
8093 j--;
drh1ffd2472015-06-23 02:37:30 +00008094 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008095 pCell = pTemp;
8096 sz = 4 + putVarint(&pCell[4], info.nKey);
8097 pTemp = 0;
8098 }else{
8099 pCell -= 4;
8100 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8101 ** previously stored on a leaf node, and its reported size was 4
8102 ** bytes, then it may actually be smaller than this
8103 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8104 ** any cell). But it is important to pass the correct size to
8105 ** insertCell(), so reparse the cell now.
8106 **
drhc1fb2b82016-03-09 03:29:27 +00008107 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8108 ** and WITHOUT ROWID tables with exactly one column which is the
8109 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008110 */
drh1ffd2472015-06-23 02:37:30 +00008111 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008112 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008113 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008114 }
8115 }
8116 iOvflSpace += sz;
8117 assert( sz<=pBt->maxLocal+23 );
8118 assert( iOvflSpace <= (int)pBt->pageSize );
8119 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
drhd2cfbea2019-05-08 03:34:53 +00008120 if( rc!=SQLITE_OK ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008121 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8122 }
8123
8124 /* Now update the actual sibling pages. The order in which they are updated
8125 ** is important, as this code needs to avoid disrupting any page from which
8126 ** cells may still to be read. In practice, this means:
8127 **
drhd836d422014-10-31 14:26:36 +00008128 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8129 ** then it is not safe to update page apNew[iPg] until after
8130 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008131 **
drhd836d422014-10-31 14:26:36 +00008132 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8133 ** then it is not safe to update page apNew[iPg] until after
8134 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008135 **
8136 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008137 **
8138 ** The iPg value in the following loop starts at nNew-1 goes down
8139 ** to 0, then back up to nNew-1 again, thus making two passes over
8140 ** the pages. On the initial downward pass, only condition (1) above
8141 ** needs to be tested because (2) will always be true from the previous
8142 ** step. On the upward pass, both conditions are always true, so the
8143 ** upwards pass simply processes pages that were missed on the downward
8144 ** pass.
dan33ea4862014-10-09 19:35:37 +00008145 */
drhbec021b2014-10-31 12:22:00 +00008146 for(i=1-nNew; i<nNew; i++){
8147 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008148 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008149 if( abDone[iPg] ) continue; /* Skip pages already processed */
8150 if( i>=0 /* On the upwards pass, or... */
8151 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008152 ){
dan09c68402014-10-11 20:00:24 +00008153 int iNew;
8154 int iOld;
8155 int nNewCell;
8156
drhd836d422014-10-31 14:26:36 +00008157 /* Verify condition (1): If cells are moving left, update iPg
8158 ** only after iPg-1 has already been updated. */
8159 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8160
8161 /* Verify condition (2): If cells are moving right, update iPg
8162 ** only after iPg+1 has already been updated. */
8163 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8164
dan09c68402014-10-11 20:00:24 +00008165 if( iPg==0 ){
8166 iNew = iOld = 0;
8167 nNewCell = cntNew[0];
8168 }else{
drh1ffd2472015-06-23 02:37:30 +00008169 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008170 iNew = cntNew[iPg-1] + !leafData;
8171 nNewCell = cntNew[iPg] - iNew;
8172 }
8173
drh1ffd2472015-06-23 02:37:30 +00008174 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008175 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008176 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008177 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008178 assert( apNew[iPg]->nOverflow==0 );
8179 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008180 }
8181 }
drhd836d422014-10-31 14:26:36 +00008182
8183 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008184 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8185
drh7aa8f852006-03-28 00:24:44 +00008186 assert( nOld>0 );
8187 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008188
danielk197713bd99f2009-06-24 05:40:34 +00008189 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8190 /* The root page of the b-tree now contains no cells. The only sibling
8191 ** page is the right-child of the parent. Copy the contents of the
8192 ** child page into the parent, decreasing the overall height of the
8193 ** b-tree structure by one. This is described as the "balance-shallower"
8194 ** sub-algorithm in some documentation.
8195 **
8196 ** If this is an auto-vacuum database, the call to copyNodeContent()
8197 ** sets all pointer-map entries corresponding to database image pages
8198 ** for which the pointer is stored within the content being copied.
8199 **
drh768f2902014-10-31 02:51:41 +00008200 ** It is critical that the child page be defragmented before being
8201 ** copied into the parent, because if the parent is page 1 then it will
8202 ** by smaller than the child due to the database header, and so all the
8203 ** free space needs to be up front.
8204 */
drh9b5351d2015-09-30 14:19:08 +00008205 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008206 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008207 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00008208 assert( apNew[0]->nFree ==
drh1c960262019-03-25 18:44:08 +00008209 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8210 - apNew[0]->nCell*2)
drh768f2902014-10-31 02:51:41 +00008211 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00008212 );
drhc314dc72009-07-21 11:52:34 +00008213 copyNodeContent(apNew[0], pParent, &rc);
8214 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00008215 }else if( ISAUTOVACUUM && !leafCorrection ){
8216 /* Fix the pointer map entries associated with the right-child of each
8217 ** sibling page. All other pointer map entries have already been taken
8218 ** care of. */
8219 for(i=0; i<nNew; i++){
8220 u32 key = get4byte(&apNew[i]->aData[8]);
8221 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008222 }
dan33ea4862014-10-09 19:35:37 +00008223 }
danielk19774dbaa892009-06-16 16:50:22 +00008224
dan33ea4862014-10-09 19:35:37 +00008225 assert( pParent->isInit );
8226 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008227 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008228
dan33ea4862014-10-09 19:35:37 +00008229 /* Free any old pages that were not reused as new pages.
8230 */
8231 for(i=nNew; i<nOld; i++){
8232 freePage(apOld[i], &rc);
8233 }
danielk19774dbaa892009-06-16 16:50:22 +00008234
8235#if 0
dan33ea4862014-10-09 19:35:37 +00008236 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008237 /* The ptrmapCheckPages() contains assert() statements that verify that
8238 ** all pointer map pages are set correctly. This is helpful while
8239 ** debugging. This is usually disabled because a corrupt database may
8240 ** cause an assert() statement to fail. */
8241 ptrmapCheckPages(apNew, nNew);
8242 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008243 }
dan33ea4862014-10-09 19:35:37 +00008244#endif
danielk1977cd581a72009-06-23 15:43:39 +00008245
drh8b2f49b2001-06-08 00:21:52 +00008246 /*
drh14acc042001-06-10 19:56:58 +00008247 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008248 */
drh14acc042001-06-10 19:56:58 +00008249balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008250 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008251 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008252 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008253 }
drh14acc042001-06-10 19:56:58 +00008254 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008255 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008256 }
danielk1977eaa06f62008-09-18 17:34:44 +00008257
drh8b2f49b2001-06-08 00:21:52 +00008258 return rc;
8259}
8260
drh43605152004-05-29 21:46:49 +00008261
8262/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008263** This function is called when the root page of a b-tree structure is
8264** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008265**
danielk1977a50d9aa2009-06-08 14:49:45 +00008266** A new child page is allocated and the contents of the current root
8267** page, including overflow cells, are copied into the child. The root
8268** page is then overwritten to make it an empty page with the right-child
8269** pointer pointing to the new page.
8270**
8271** Before returning, all pointer-map entries corresponding to pages
8272** that the new child-page now contains pointers to are updated. The
8273** entry corresponding to the new right-child pointer of the root
8274** page is also updated.
8275**
8276** If successful, *ppChild is set to contain a reference to the child
8277** page and SQLITE_OK is returned. In this case the caller is required
8278** to call releasePage() on *ppChild exactly once. If an error occurs,
8279** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008280*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008281static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8282 int rc; /* Return value from subprocedures */
8283 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008284 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008285 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008286
danielk1977a50d9aa2009-06-08 14:49:45 +00008287 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008288 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008289
danielk1977a50d9aa2009-06-08 14:49:45 +00008290 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8291 ** page that will become the new right-child of pPage. Copy the contents
8292 ** of the node stored on pRoot into the new child page.
8293 */
drh98add2e2009-07-20 17:11:49 +00008294 rc = sqlite3PagerWrite(pRoot->pDbPage);
8295 if( rc==SQLITE_OK ){
8296 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008297 copyNodeContent(pRoot, pChild, &rc);
8298 if( ISAUTOVACUUM ){
8299 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008300 }
8301 }
8302 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008303 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008304 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008305 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008306 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008307 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8308 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drh12fe9a02019-02-19 16:42:54 +00008309 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00008310
danielk1977a50d9aa2009-06-08 14:49:45 +00008311 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8312
8313 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008314 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8315 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8316 memcpy(pChild->apOvfl, pRoot->apOvfl,
8317 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008318 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008319
8320 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8321 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8322 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8323
8324 *ppChild = pChild;
8325 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008326}
8327
8328/*
drha2d50282019-12-23 18:02:15 +00008329** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8330** on the same B-tree as pCur.
8331**
8332** This can if a database is corrupt with two or more SQL tables
8333** pointing to the same b-tree. If an insert occurs on one SQL table
8334** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8335** table linked to the same b-tree. If the secondary insert causes a
8336** rebalance, that can change content out from under the cursor on the
8337** first SQL table, violating invariants on the first insert.
8338*/
8339static int anotherValidCursor(BtCursor *pCur){
8340 BtCursor *pOther;
8341 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8342 if( pOther!=pCur
8343 && pOther->eState==CURSOR_VALID
8344 && pOther->pPage==pCur->pPage
8345 ){
8346 return SQLITE_CORRUPT_BKPT;
8347 }
8348 }
8349 return SQLITE_OK;
8350}
8351
8352/*
danielk197771d5d2c2008-09-29 11:49:47 +00008353** The page that pCur currently points to has just been modified in
8354** some way. This function figures out if this modification means the
8355** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008356** routine. Balancing routines are:
8357**
8358** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008359** balance_deeper()
8360** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008361*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008362static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008363 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008364 const int nMin = pCur->pBt->usableSize * 2 / 3;
8365 u8 aBalanceQuickSpace[13];
8366 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008367
drhcc5f8a42016-02-06 22:32:06 +00008368 VVA_ONLY( int balance_quick_called = 0 );
8369 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008370
8371 do {
dan01fd42b2019-07-13 09:55:33 +00008372 int iPage;
drh352a35a2017-08-15 03:46:47 +00008373 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008374
drha941ff72019-02-12 00:58:10 +00008375 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
dan01fd42b2019-07-13 09:55:33 +00008376 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8377 break;
8378 }else if( (iPage = pCur->iPage)==0 ){
drha2d50282019-12-23 18:02:15 +00008379 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008380 /* The root page of the b-tree is overfull. In this case call the
8381 ** balance_deeper() function to create a new child for the root-page
8382 ** and copy the current contents of the root-page to it. The
8383 ** next iteration of the do-loop will balance the child page.
8384 */
drhcc5f8a42016-02-06 22:32:06 +00008385 assert( balance_deeper_called==0 );
8386 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008387 rc = balance_deeper(pPage, &pCur->apPage[1]);
8388 if( rc==SQLITE_OK ){
8389 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008390 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008391 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008392 pCur->apPage[0] = pPage;
8393 pCur->pPage = pCur->apPage[1];
8394 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008395 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008396 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008397 break;
8398 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008399 }else{
8400 MemPage * const pParent = pCur->apPage[iPage-1];
8401 int const iIdx = pCur->aiIdx[iPage-1];
8402
8403 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00008404 if( rc==SQLITE_OK && pParent->nFree<0 ){
8405 rc = btreeComputeFreeSpace(pParent);
8406 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008407 if( rc==SQLITE_OK ){
8408#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008409 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008410 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008411 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008412 && pParent->pgno!=1
8413 && pParent->nCell==iIdx
8414 ){
8415 /* Call balance_quick() to create a new sibling of pPage on which
8416 ** to store the overflow cell. balance_quick() inserts a new cell
8417 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008418 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008419 ** use either balance_nonroot() or balance_deeper(). Until this
8420 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8421 ** buffer.
8422 **
8423 ** The purpose of the following assert() is to check that only a
8424 ** single call to balance_quick() is made for each call to this
8425 ** function. If this were not verified, a subtle bug involving reuse
8426 ** of the aBalanceQuickSpace[] might sneak in.
8427 */
drhcc5f8a42016-02-06 22:32:06 +00008428 assert( balance_quick_called==0 );
8429 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008430 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8431 }else
8432#endif
8433 {
8434 /* In this case, call balance_nonroot() to redistribute cells
8435 ** between pPage and up to 2 of its sibling pages. This involves
8436 ** modifying the contents of pParent, which may cause pParent to
8437 ** become overfull or underfull. The next iteration of the do-loop
8438 ** will balance the parent page to correct this.
8439 **
8440 ** If the parent page becomes overfull, the overflow cell or cells
8441 ** are stored in the pSpace buffer allocated immediately below.
8442 ** A subsequent iteration of the do-loop will deal with this by
8443 ** calling balance_nonroot() (balance_deeper() may be called first,
8444 ** but it doesn't deal with overflow cells - just moves them to a
8445 ** different page). Once this subsequent call to balance_nonroot()
8446 ** has completed, it is safe to release the pSpace buffer used by
8447 ** the previous call, as the overflow cell data will have been
8448 ** copied either into the body of a database page or into the new
8449 ** pSpace buffer passed to the latter call to balance_nonroot().
8450 */
8451 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008452 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8453 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008454 if( pFree ){
8455 /* If pFree is not NULL, it points to the pSpace buffer used
8456 ** by a previous call to balance_nonroot(). Its contents are
8457 ** now stored either on real database pages or within the
8458 ** new pSpace buffer, so it may be safely freed here. */
8459 sqlite3PageFree(pFree);
8460 }
8461
danielk19774dbaa892009-06-16 16:50:22 +00008462 /* The pSpace buffer will be freed after the next call to
8463 ** balance_nonroot(), or just before this function returns, whichever
8464 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008465 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008466 }
8467 }
8468
8469 pPage->nOverflow = 0;
8470
8471 /* The next iteration of the do-loop balances the parent page. */
8472 releasePage(pPage);
8473 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008474 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008475 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008476 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008477 }while( rc==SQLITE_OK );
8478
8479 if( pFree ){
8480 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008481 }
8482 return rc;
8483}
8484
drh3de5d162018-05-03 03:59:02 +00008485/* Overwrite content from pX into pDest. Only do the write if the
8486** content is different from what is already there.
8487*/
8488static int btreeOverwriteContent(
8489 MemPage *pPage, /* MemPage on which writing will occur */
8490 u8 *pDest, /* Pointer to the place to start writing */
8491 const BtreePayload *pX, /* Source of data to write */
8492 int iOffset, /* Offset of first byte to write */
8493 int iAmt /* Number of bytes to be written */
8494){
8495 int nData = pX->nData - iOffset;
8496 if( nData<=0 ){
8497 /* Overwritting with zeros */
8498 int i;
8499 for(i=0; i<iAmt && pDest[i]==0; i++){}
8500 if( i<iAmt ){
8501 int rc = sqlite3PagerWrite(pPage->pDbPage);
8502 if( rc ) return rc;
8503 memset(pDest + i, 0, iAmt - i);
8504 }
8505 }else{
8506 if( nData<iAmt ){
8507 /* Mixed read data and zeros at the end. Make a recursive call
8508 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008509 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8510 iAmt-nData);
8511 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008512 iAmt = nData;
8513 }
8514 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8515 int rc = sqlite3PagerWrite(pPage->pDbPage);
8516 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00008517 /* In a corrupt database, it is possible for the source and destination
8518 ** buffers to overlap. This is harmless since the database is already
8519 ** corrupt but it does cause valgrind and ASAN warnings. So use
8520 ** memmove(). */
8521 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00008522 }
8523 }
8524 return SQLITE_OK;
8525}
8526
8527/*
8528** Overwrite the cell that cursor pCur is pointing to with fresh content
8529** contained in pX.
8530*/
8531static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8532 int iOffset; /* Next byte of pX->pData to write */
8533 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8534 int rc; /* Return code */
8535 MemPage *pPage = pCur->pPage; /* Page being written */
8536 BtShared *pBt; /* Btree */
8537 Pgno ovflPgno; /* Next overflow page to write */
8538 u32 ovflPageSize; /* Size to write on overflow page */
8539
drh27e80a32019-08-15 13:17:49 +00008540 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8541 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8542 ){
drh4f84e9c2018-05-03 13:56:23 +00008543 return SQLITE_CORRUPT_BKPT;
8544 }
drh3de5d162018-05-03 03:59:02 +00008545 /* Overwrite the local portion first */
8546 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8547 0, pCur->info.nLocal);
8548 if( rc ) return rc;
8549 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8550
8551 /* Now overwrite the overflow pages */
8552 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008553 assert( nTotal>=0 );
8554 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008555 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8556 pBt = pPage->pBt;
8557 ovflPageSize = pBt->usableSize - 4;
8558 do{
8559 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8560 if( rc ) return rc;
drh4f84e9c2018-05-03 13:56:23 +00008561 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
drhd5aa9262018-05-03 16:56:06 +00008562 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008563 }else{
drh30f7a252018-05-07 11:29:59 +00008564 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008565 ovflPgno = get4byte(pPage->aData);
8566 }else{
8567 ovflPageSize = nTotal - iOffset;
8568 }
8569 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8570 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008571 }
drhd5aa9262018-05-03 16:56:06 +00008572 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008573 if( rc ) return rc;
8574 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008575 }while( iOffset<nTotal );
8576 return SQLITE_OK;
8577}
8578
drhf74b8d92002-09-01 23:20:45 +00008579
8580/*
drh8eeb4462016-05-21 20:03:42 +00008581** Insert a new record into the BTree. The content of the new record
8582** is described by the pX object. The pCur cursor is used only to
8583** define what table the record should be inserted into, and is left
8584** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008585**
drh8eeb4462016-05-21 20:03:42 +00008586** For a table btree (used for rowid tables), only the pX.nKey value of
8587** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8588** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8589** hold the content of the row.
8590**
8591** For an index btree (used for indexes and WITHOUT ROWID tables), the
8592** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8593** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008594**
8595** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008596** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8597** been performed. In other words, if seekResult!=0 then the cursor
8598** is currently pointing to a cell that will be adjacent to the cell
8599** to be inserted. If seekResult<0 then pCur points to a cell that is
8600** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8601** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008602**
drheaf6ae22016-11-09 20:14:34 +00008603** If seekResult==0, that means pCur is pointing at some unknown location.
8604** In that case, this routine must seek the cursor to the correct insertion
8605** point for (pKey,nKey) before doing the insertion. For index btrees,
8606** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8607** key values and pX->aMem can be used instead of pX->pKey to avoid having
8608** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008609*/
drh3aac2dd2004-04-26 14:10:20 +00008610int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008611 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008612 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008613 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008614 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008615){
drh3b7511c2001-05-26 13:15:44 +00008616 int rc;
drh3e9ca092009-09-08 01:14:48 +00008617 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008618 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008619 int idx;
drh3b7511c2001-05-26 13:15:44 +00008620 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008621 Btree *p = pCur->pBtree;
8622 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008623 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008624 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008625
danf91c1312017-01-10 20:04:38 +00008626 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8627
drh98add2e2009-07-20 17:11:49 +00008628 if( pCur->eState==CURSOR_FAULT ){
8629 assert( pCur->skipNext!=SQLITE_OK );
8630 return pCur->skipNext;
8631 }
8632
dan7a2347e2016-01-07 16:43:54 +00008633 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008634 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8635 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008636 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008637 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8638
danielk197731d31b82009-07-13 13:18:07 +00008639 /* Assert that the caller has been consistent. If this cursor was opened
8640 ** expecting an index b-tree, then the caller should be inserting blob
8641 ** keys with no associated data. If the cursor was opened expecting an
8642 ** intkey table, the caller should be inserting integer keys with a
8643 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008644 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008645
danielk19779c3acf32009-05-02 07:36:49 +00008646 /* Save the positions of any other cursors open on this table.
8647 **
danielk19773509a652009-07-06 18:56:13 +00008648 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008649 ** example, when inserting data into a table with auto-generated integer
8650 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8651 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008652 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008653 ** that the cursor is already where it needs to be and returns without
8654 ** doing any work. To avoid thwarting these optimizations, it is important
8655 ** not to clear the cursor here.
8656 */
drh27fb7462015-06-30 02:47:36 +00008657 if( pCur->curFlags & BTCF_Multiple ){
8658 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8659 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008660 }
8661
danielk197771d5d2c2008-09-29 11:49:47 +00008662 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008663 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008664 /* If this is an insert into a table b-tree, invalidate any incrblob
8665 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008666 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008667
danf91c1312017-01-10 20:04:38 +00008668 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008669 ** to a row with the same key as the new entry being inserted.
8670 */
8671#ifdef SQLITE_DEBUG
8672 if( flags & BTREE_SAVEPOSITION ){
8673 assert( pCur->curFlags & BTCF_ValidNKey );
8674 assert( pX->nKey==pCur->info.nKey );
drhd720d392018-05-07 17:27:04 +00008675 assert( loc==0 );
8676 }
8677#endif
danf91c1312017-01-10 20:04:38 +00008678
drhd720d392018-05-07 17:27:04 +00008679 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8680 ** that the cursor is not pointing to a row to be overwritten.
8681 ** So do a complete check.
8682 */
drh7a1c28d2016-11-10 20:42:08 +00008683 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008684 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008685 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008686 assert( pX->nData>=0 && pX->nZero>=0 );
8687 if( pCur->info.nSize!=0
8688 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8689 ){
drhd720d392018-05-07 17:27:04 +00008690 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008691 return btreeOverwriteCell(pCur, pX);
8692 }
drhd720d392018-05-07 17:27:04 +00008693 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008694 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008695 /* The cursor is *not* pointing to the cell to be overwritten, nor
8696 ** to an adjacent cell. Move the cursor so that it is pointing either
8697 ** to the cell to be overwritten or an adjacent cell.
8698 */
danf91c1312017-01-10 20:04:38 +00008699 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008700 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008701 }
drhd720d392018-05-07 17:27:04 +00008702 }else{
8703 /* This is an index or a WITHOUT ROWID table */
8704
8705 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8706 ** to a row with the same key as the new entry being inserted.
8707 */
8708 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8709
8710 /* If the cursor is not already pointing either to the cell to be
8711 ** overwritten, or if a new cell is being inserted, if the cursor is
8712 ** not pointing to an immediately adjacent cell, then move the cursor
8713 ** so that it does.
8714 */
8715 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8716 if( pX->nMem ){
8717 UnpackedRecord r;
8718 r.pKeyInfo = pCur->pKeyInfo;
8719 r.aMem = pX->aMem;
8720 r.nField = pX->nMem;
8721 r.default_rc = 0;
8722 r.errCode = 0;
8723 r.r1 = 0;
8724 r.r2 = 0;
8725 r.eqSeen = 0;
8726 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8727 }else{
8728 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8729 }
8730 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00008731 }
drh89ee2292018-05-07 18:41:19 +00008732
8733 /* If the cursor is currently pointing to an entry to be overwritten
8734 ** and the new content is the same as as the old, then use the
8735 ** overwrite optimization.
8736 */
8737 if( loc==0 ){
8738 getCellInfo(pCur);
8739 if( pCur->info.nKey==pX->nKey ){
8740 BtreePayload x2;
8741 x2.pData = pX->pKey;
8742 x2.nData = pX->nKey;
8743 x2.nZero = 0;
8744 return btreeOverwriteCell(pCur, &x2);
8745 }
8746 }
8747
danielk1977da184232006-01-05 11:34:32 +00008748 }
drh0e5ce802019-12-20 12:33:17 +00008749 assert( pCur->eState==CURSOR_VALID
8750 || (pCur->eState==CURSOR_INVALID && loc)
8751 || CORRUPT_DB );
danielk1977da184232006-01-05 11:34:32 +00008752
drh352a35a2017-08-15 03:46:47 +00008753 pPage = pCur->pPage;
drh8eeb4462016-05-21 20:03:42 +00008754 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008755 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00008756 if( pPage->nFree<0 ){
8757 rc = btreeComputeFreeSpace(pPage);
8758 if( rc ) return rc;
8759 }
danielk19778f880a82009-07-13 09:41:45 +00008760
drh3a4c1412004-05-09 20:40:11 +00008761 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008762 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008763 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008764 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008765 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008766 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008767 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008768 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008769 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008770 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008771 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008772 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008773 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008774 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008775 rc = sqlite3PagerWrite(pPage->pDbPage);
8776 if( rc ){
8777 goto end_insert;
8778 }
danielk197771d5d2c2008-09-29 11:49:47 +00008779 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008780 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008781 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008782 }
drh80159da2016-12-09 17:32:51 +00008783 rc = clearCell(pPage, oldCell, &info);
drh554a19d2019-08-12 18:26:46 +00008784 testcase( pCur->curFlags & BTCF_ValidOvfl );
8785 invalidateOverflowCache(pCur);
danca66f6c2017-06-08 11:14:08 +00008786 if( info.nSize==szNew && info.nLocal==info.nPayload
8787 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8788 ){
drhf9238252016-12-09 18:09:42 +00008789 /* Overwrite the old cell with the new if they are the same size.
8790 ** We could also try to do this if the old cell is smaller, then add
8791 ** the leftover space to the free list. But experiments show that
8792 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008793 ** calling dropCell() and insertCell().
8794 **
8795 ** This optimization cannot be used on an autovacuum database if the
8796 ** new entry uses overflow pages, as the insertCell() call below is
8797 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008798 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh93788182019-07-22 23:24:01 +00008799 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
8800 return SQLITE_CORRUPT_BKPT;
8801 }
8802 if( oldCell+szNew > pPage->aDataEnd ){
8803 return SQLITE_CORRUPT_BKPT;
8804 }
drh80159da2016-12-09 17:32:51 +00008805 memcpy(oldCell, newCell, szNew);
8806 return SQLITE_OK;
8807 }
8808 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008809 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008810 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008811 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008812 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008813 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008814 }else{
drh4b70f112004-05-02 21:12:19 +00008815 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008816 }
drh98add2e2009-07-20 17:11:49 +00008817 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008818 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008819 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008820
mistachkin48864df2013-03-21 21:20:32 +00008821 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008822 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008823 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008824 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008825 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008826 ** Previous versions of SQLite called moveToRoot() to move the cursor
8827 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008828 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8829 ** set the cursor state to "invalid". This makes common insert operations
8830 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008831 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008832 ** There is a subtle but important optimization here too. When inserting
8833 ** multiple records into an intkey b-tree using a single cursor (as can
8834 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8835 ** is advantageous to leave the cursor pointing to the last entry in
8836 ** the b-tree if possible. If the cursor is left pointing to the last
8837 ** entry in the table, and the next row inserted has an integer key
8838 ** larger than the largest existing key, it is possible to insert the
8839 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008840 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008841 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008842 if( pPage->nOverflow ){
8843 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008844 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008845 rc = balance(pCur);
8846
8847 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008848 ** fails. Internal data structure corruption will result otherwise.
8849 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8850 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00008851 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008852 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008853 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00008854 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00008855 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008856 assert( pCur->pKey==0 );
8857 pCur->pKey = sqlite3Malloc( pX->nKey );
8858 if( pCur->pKey==0 ){
8859 rc = SQLITE_NOMEM;
8860 }else{
8861 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8862 }
8863 }
8864 pCur->eState = CURSOR_REQUIRESEEK;
8865 pCur->nKey = pX->nKey;
8866 }
danielk19773f632d52009-05-02 10:03:09 +00008867 }
drh352a35a2017-08-15 03:46:47 +00008868 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008869
drh2e38c322004-09-03 18:38:44 +00008870end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008871 return rc;
8872}
8873
8874/*
danf0ee1d32015-09-12 19:26:11 +00008875** Delete the entry that the cursor is pointing to.
8876**
drhe807bdb2016-01-21 17:06:33 +00008877** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8878** the cursor is left pointing at an arbitrary location after the delete.
8879** But if that bit is set, then the cursor is left in a state such that
8880** the next call to BtreeNext() or BtreePrev() moves it to the same row
8881** as it would have been on if the call to BtreeDelete() had been omitted.
8882**
drhdef19e32016-01-27 16:26:25 +00008883** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8884** associated with a single table entry and its indexes. Only one of those
8885** deletes is considered the "primary" delete. The primary delete occurs
8886** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8887** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8888** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008889** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008890*/
drhe807bdb2016-01-21 17:06:33 +00008891int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008892 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008893 BtShared *pBt = p->pBt;
8894 int rc; /* Return code */
8895 MemPage *pPage; /* Page to delete cell from */
8896 unsigned char *pCell; /* Pointer to cell to delete */
8897 int iCellIdx; /* Index of cell to delete */
8898 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008899 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008900 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008901 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008902
dan7a2347e2016-01-07 16:43:54 +00008903 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008904 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008905 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008906 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008907 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8908 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drhdef19e32016-01-27 16:26:25 +00008909 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danb560a712019-03-13 15:29:14 +00008910 if( pCur->eState==CURSOR_REQUIRESEEK ){
8911 rc = btreeRestoreCursorPosition(pCur);
8912 if( rc ) return rc;
8913 }
8914 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00008915
danielk19774dbaa892009-06-16 16:50:22 +00008916 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008917 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00008918 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008919 pCell = findCell(pPage, iCellIdx);
drhb0ea9432019-02-09 21:06:40 +00008920 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
danielk19774dbaa892009-06-16 16:50:22 +00008921
drhbfc7a8b2016-04-09 17:04:05 +00008922 /* If the bPreserve flag is set to true, then the cursor position must
8923 ** be preserved following this delete operation. If the current delete
8924 ** will cause a b-tree rebalance, then this is done by saving the cursor
8925 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8926 ** returning.
8927 **
8928 ** Or, if the current delete will not cause a rebalance, then the cursor
8929 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8930 ** before or after the deleted entry. In this case set bSkipnext to true. */
8931 if( bPreserve ){
8932 if( !pPage->leaf
8933 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00008934 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00008935 ){
8936 /* A b-tree rebalance will be required after deleting this entry.
8937 ** Save the cursor key. */
8938 rc = saveCursorKey(pCur);
8939 if( rc ) return rc;
8940 }else{
8941 bSkipnext = 1;
8942 }
8943 }
8944
danielk19774dbaa892009-06-16 16:50:22 +00008945 /* If the page containing the entry to delete is not a leaf page, move
8946 ** the cursor to the largest entry in the tree that is smaller than
8947 ** the entry being deleted. This cell will replace the cell being deleted
8948 ** from the internal node. The 'previous' entry is used for this instead
8949 ** of the 'next' entry, as the previous entry is always a part of the
8950 ** sub-tree headed by the child page of the cell being deleted. This makes
8951 ** balancing the tree following the delete operation easier. */
8952 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008953 rc = sqlite3BtreePrevious(pCur, 0);
8954 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008955 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008956 }
8957
8958 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008959 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008960 if( pCur->curFlags & BTCF_Multiple ){
8961 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8962 if( rc ) return rc;
8963 }
drhd60f4f42012-03-23 14:23:52 +00008964
8965 /* If this is a delete operation to remove a row from a table b-tree,
8966 ** invalidate any incrblob cursors open on the row being deleted. */
8967 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008968 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008969 }
8970
danf0ee1d32015-09-12 19:26:11 +00008971 /* Make the page containing the entry to be deleted writable. Then free any
8972 ** overflow pages associated with the entry and finally remove the cell
8973 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008974 rc = sqlite3PagerWrite(pPage->pDbPage);
8975 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008976 rc = clearCell(pPage, pCell, &info);
8977 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008978 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008979
danielk19774dbaa892009-06-16 16:50:22 +00008980 /* If the cell deleted was not located on a leaf page, then the cursor
8981 ** is currently pointing to the largest entry in the sub-tree headed
8982 ** by the child-page of the cell that was just deleted from an internal
8983 ** node. The cell from the leaf node needs to be moved to the internal
8984 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008985 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00008986 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008987 int nCell;
drh352a35a2017-08-15 03:46:47 +00008988 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00008989 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008990
drhb0ea9432019-02-09 21:06:40 +00008991 if( pLeaf->nFree<0 ){
8992 rc = btreeComputeFreeSpace(pLeaf);
8993 if( rc ) return rc;
8994 }
drh352a35a2017-08-15 03:46:47 +00008995 if( iCellDepth<pCur->iPage-1 ){
8996 n = pCur->apPage[iCellDepth+1]->pgno;
8997 }else{
8998 n = pCur->pPage->pgno;
8999 }
danielk19774dbaa892009-06-16 16:50:22 +00009000 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00009001 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00009002 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00009003 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00009004 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009005 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00009006 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00009007 if( rc==SQLITE_OK ){
9008 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9009 }
drh98add2e2009-07-20 17:11:49 +00009010 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00009011 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00009012 }
danielk19774dbaa892009-06-16 16:50:22 +00009013
9014 /* Balance the tree. If the entry deleted was located on a leaf page,
9015 ** then the cursor still points to that page. In this case the first
9016 ** call to balance() repairs the tree, and the if(...) condition is
9017 ** never true.
9018 **
9019 ** Otherwise, if the entry deleted was on an internal node page, then
9020 ** pCur is pointing to the leaf page from which a cell was removed to
9021 ** replace the cell deleted from the internal node. This is slightly
9022 ** tricky as the leaf node may be underfull, and the internal node may
9023 ** be either under or overfull. In this case run the balancing algorithm
9024 ** on the leaf node first. If the balance proceeds far enough up the
9025 ** tree that we can be sure that any problem in the internal node has
9026 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9027 ** walk the cursor up the tree to the internal node and balance it as
9028 ** well. */
9029 rc = balance(pCur);
9030 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00009031 releasePageNotNull(pCur->pPage);
9032 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00009033 while( pCur->iPage>iCellDepth ){
9034 releasePage(pCur->apPage[pCur->iPage--]);
9035 }
drh352a35a2017-08-15 03:46:47 +00009036 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00009037 rc = balance(pCur);
9038 }
9039
danielk19776b456a22005-03-21 04:04:02 +00009040 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00009041 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00009042 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00009043 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00009044 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00009045 pCur->eState = CURSOR_SKIPNEXT;
9046 if( iCellIdx>=pPage->nCell ){
9047 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00009048 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00009049 }else{
9050 pCur->skipNext = 1;
9051 }
9052 }else{
9053 rc = moveToRoot(pCur);
9054 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00009055 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00009056 pCur->eState = CURSOR_REQUIRESEEK;
9057 }
drh44548e72017-08-14 18:13:52 +00009058 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00009059 }
danielk19776b456a22005-03-21 04:04:02 +00009060 }
drh5e2f8b92001-05-28 00:41:15 +00009061 return rc;
drh3b7511c2001-05-26 13:15:44 +00009062}
drh8b2f49b2001-06-08 00:21:52 +00009063
9064/*
drhc6b52df2002-01-04 03:09:29 +00009065** Create a new BTree table. Write into *piTable the page
9066** number for the root page of the new table.
9067**
drhab01f612004-05-22 02:55:23 +00009068** The type of type is determined by the flags parameter. Only the
9069** following values of flags are currently in use. Other values for
9070** flags might not work:
9071**
9072** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9073** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00009074*/
drhd4187c72010-08-30 22:15:45 +00009075static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00009076 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009077 MemPage *pRoot;
9078 Pgno pgnoRoot;
9079 int rc;
drhd4187c72010-08-30 22:15:45 +00009080 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00009081
drh1fee73e2007-08-29 04:00:57 +00009082 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009083 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009084 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00009085
danielk1977003ba062004-11-04 02:57:33 +00009086#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00009087 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00009088 if( rc ){
9089 return rc;
9090 }
danielk1977003ba062004-11-04 02:57:33 +00009091#else
danielk1977687566d2004-11-02 12:56:41 +00009092 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009093 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9094 MemPage *pPageMove; /* The page to move to. */
9095
danielk197720713f32007-05-03 11:43:33 +00009096 /* Creating a new table may probably require moving an existing database
9097 ** to make room for the new tables root page. In case this page turns
9098 ** out to be an overflow page, delete all overflow page-map caches
9099 ** held by open cursors.
9100 */
danielk197792d4d7a2007-05-04 12:05:56 +00009101 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009102
danielk1977003ba062004-11-04 02:57:33 +00009103 /* Read the value of meta[3] from the database to determine where the
9104 ** root page of the new table should go. meta[3] is the largest root-page
9105 ** created so far, so the new root-page is (meta[3]+1).
9106 */
danielk1977602b4662009-07-02 07:47:33 +00009107 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00009108 pgnoRoot++;
9109
danielk1977599fcba2004-11-08 07:13:13 +00009110 /* The new root-page may not be allocated on a pointer-map page, or the
9111 ** PENDING_BYTE page.
9112 */
drh72190432008-01-31 14:54:43 +00009113 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009114 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009115 pgnoRoot++;
9116 }
drh499e15b2015-05-22 12:37:37 +00009117 assert( pgnoRoot>=3 || CORRUPT_DB );
9118 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00009119
9120 /* Allocate a page. The page that currently resides at pgnoRoot will
9121 ** be moved to the allocated page (unless the allocated page happens
9122 ** to reside at pgnoRoot).
9123 */
dan51f0b6d2013-02-22 20:16:34 +00009124 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009125 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009126 return rc;
9127 }
danielk1977003ba062004-11-04 02:57:33 +00009128
9129 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009130 /* pgnoRoot is the page that will be used for the root-page of
9131 ** the new table (assuming an error did not occur). But we were
9132 ** allocated pgnoMove. If required (i.e. if it was not allocated
9133 ** by extending the file), the current page at position pgnoMove
9134 ** is already journaled.
9135 */
drheeb844a2009-08-08 18:01:07 +00009136 u8 eType = 0;
9137 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009138
danf7679ad2013-04-03 11:38:36 +00009139 /* Save the positions of any open cursors. This is required in
9140 ** case they are holding a reference to an xFetch reference
9141 ** corresponding to page pgnoRoot. */
9142 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009143 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009144 if( rc!=SQLITE_OK ){
9145 return rc;
9146 }
danielk1977f35843b2007-04-07 15:03:17 +00009147
9148 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009149 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009150 if( rc!=SQLITE_OK ){
9151 return rc;
9152 }
9153 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009154 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9155 rc = SQLITE_CORRUPT_BKPT;
9156 }
9157 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009158 releasePage(pRoot);
9159 return rc;
9160 }
drhccae6022005-02-26 17:31:26 +00009161 assert( eType!=PTRMAP_ROOTPAGE );
9162 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009163 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009164 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009165
9166 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009167 if( rc!=SQLITE_OK ){
9168 return rc;
9169 }
drhb00fc3b2013-08-21 23:42:32 +00009170 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009171 if( rc!=SQLITE_OK ){
9172 return rc;
9173 }
danielk19773b8a05f2007-03-19 17:44:26 +00009174 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009175 if( rc!=SQLITE_OK ){
9176 releasePage(pRoot);
9177 return rc;
9178 }
9179 }else{
9180 pRoot = pPageMove;
9181 }
9182
danielk197742741be2005-01-08 12:42:39 +00009183 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009184 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009185 if( rc ){
9186 releasePage(pRoot);
9187 return rc;
9188 }
drhbf592832010-03-30 15:51:12 +00009189
9190 /* When the new root page was allocated, page 1 was made writable in
9191 ** order either to increase the database filesize, or to decrement the
9192 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9193 */
9194 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009195 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009196 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009197 releasePage(pRoot);
9198 return rc;
9199 }
danielk197742741be2005-01-08 12:42:39 +00009200
danielk1977003ba062004-11-04 02:57:33 +00009201 }else{
drh4f0c5872007-03-26 22:05:01 +00009202 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009203 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009204 }
9205#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009206 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009207 if( createTabFlags & BTREE_INTKEY ){
9208 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9209 }else{
9210 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9211 }
9212 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009213 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009214 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00009215 *piTable = (int)pgnoRoot;
9216 return SQLITE_OK;
9217}
drhd677b3d2007-08-20 22:48:41 +00009218int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
9219 int rc;
9220 sqlite3BtreeEnter(p);
9221 rc = btreeCreateTable(p, piTable, flags);
9222 sqlite3BtreeLeave(p);
9223 return rc;
9224}
drh8b2f49b2001-06-08 00:21:52 +00009225
9226/*
9227** Erase the given database page and all its children. Return
9228** the page to the freelist.
9229*/
drh4b70f112004-05-02 21:12:19 +00009230static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00009231 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00009232 Pgno pgno, /* Page number to clear */
9233 int freePageFlag, /* Deallocate page if true */
9234 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00009235){
danielk1977146ba992009-07-22 14:08:13 +00009236 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00009237 int rc;
drh4b70f112004-05-02 21:12:19 +00009238 unsigned char *pCell;
9239 int i;
dan8ce71842014-01-14 20:14:09 +00009240 int hdr;
drh80159da2016-12-09 17:32:51 +00009241 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00009242
drh1fee73e2007-08-29 04:00:57 +00009243 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00009244 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00009245 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00009246 }
drh28f58dd2015-06-27 19:45:03 +00009247 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00009248 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00009249 if( pPage->bBusy ){
9250 rc = SQLITE_CORRUPT_BKPT;
9251 goto cleardatabasepage_out;
9252 }
9253 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00009254 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00009255 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00009256 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00009257 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00009258 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009259 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009260 }
drh80159da2016-12-09 17:32:51 +00009261 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00009262 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009263 }
drha34b6762004-05-07 13:30:42 +00009264 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00009265 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009266 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00009267 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00009268 assert( pPage->intKey || CORRUPT_DB );
9269 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00009270 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00009271 }
9272 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00009273 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00009274 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00009275 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00009276 }
danielk19776b456a22005-03-21 04:04:02 +00009277
9278cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00009279 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00009280 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00009281 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009282}
9283
9284/*
drhab01f612004-05-22 02:55:23 +00009285** Delete all information from a single table in the database. iTable is
9286** the page number of the root of the table. After this routine returns,
9287** the root page is empty, but still exists.
9288**
9289** This routine will fail with SQLITE_LOCKED if there are any open
9290** read cursors on the table. Open write cursors are moved to the
9291** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00009292**
9293** If pnChange is not NULL, then table iTable must be an intkey table. The
9294** integer value pointed to by pnChange is incremented by the number of
9295** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00009296*/
danielk1977c7af4842008-10-27 13:59:33 +00009297int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00009298 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009299 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009300 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009301 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009302
drhc046e3e2009-07-15 11:26:44 +00009303 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009304
drhc046e3e2009-07-15 11:26:44 +00009305 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009306 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9307 ** is the root of a table b-tree - if it is not, the following call is
9308 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00009309 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00009310 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009311 }
drhd677b3d2007-08-20 22:48:41 +00009312 sqlite3BtreeLeave(p);
9313 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009314}
9315
9316/*
drh079a3072014-03-19 14:10:55 +00009317** Delete all information from the single table that pCur is open on.
9318**
9319** This routine only work for pCur on an ephemeral table.
9320*/
9321int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9322 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9323}
9324
9325/*
drh8b2f49b2001-06-08 00:21:52 +00009326** Erase all information in a table and add the root of the table to
9327** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009328** page 1) is never added to the freelist.
9329**
9330** This routine will fail with SQLITE_LOCKED if there are any open
9331** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009332**
9333** If AUTOVACUUM is enabled and the page at iTable is not the last
9334** root page in the database file, then the last root page
9335** in the database file is moved into the slot formerly occupied by
9336** iTable and that last slot formerly occupied by the last root page
9337** is added to the freelist instead of iTable. In this say, all
9338** root pages are kept at the beginning of the database file, which
9339** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9340** page number that used to be the last root page in the file before
9341** the move. If no page gets moved, *piMoved is set to 0.
9342** The last root page is recorded in meta[3] and the value of
9343** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009344*/
danielk197789d40042008-11-17 14:20:56 +00009345static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009346 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009347 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009348 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009349
drh1fee73e2007-08-29 04:00:57 +00009350 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009351 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009352 assert( iTable>=2 );
drh9a518842019-03-08 01:52:30 +00009353 if( iTable>btreePagecount(pBt) ){
9354 return SQLITE_CORRUPT_BKPT;
9355 }
drh055f2982016-01-15 15:06:41 +00009356
drhb00fc3b2013-08-21 23:42:32 +00009357 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00009358 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00009359 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00009360 if( rc ){
9361 releasePage(pPage);
9362 return rc;
9363 }
danielk1977a0bf2652004-11-04 14:30:04 +00009364
drh205f48e2004-11-05 00:43:11 +00009365 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009366
danielk1977a0bf2652004-11-04 14:30:04 +00009367#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009368 freePage(pPage, &rc);
9369 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009370#else
drh055f2982016-01-15 15:06:41 +00009371 if( pBt->autoVacuum ){
9372 Pgno maxRootPgno;
9373 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009374
drh055f2982016-01-15 15:06:41 +00009375 if( iTable==maxRootPgno ){
9376 /* If the table being dropped is the table with the largest root-page
9377 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009378 */
drhc314dc72009-07-21 11:52:34 +00009379 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009380 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009381 if( rc!=SQLITE_OK ){
9382 return rc;
9383 }
9384 }else{
9385 /* The table being dropped does not have the largest root-page
9386 ** number in the database. So move the page that does into the
9387 ** gap left by the deleted root-page.
9388 */
9389 MemPage *pMove;
9390 releasePage(pPage);
9391 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9392 if( rc!=SQLITE_OK ){
9393 return rc;
9394 }
9395 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9396 releasePage(pMove);
9397 if( rc!=SQLITE_OK ){
9398 return rc;
9399 }
9400 pMove = 0;
9401 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9402 freePage(pMove, &rc);
9403 releasePage(pMove);
9404 if( rc!=SQLITE_OK ){
9405 return rc;
9406 }
9407 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009408 }
drh055f2982016-01-15 15:06:41 +00009409
9410 /* Set the new 'max-root-page' value in the database header. This
9411 ** is the old value less one, less one more if that happens to
9412 ** be a root-page number, less one again if that is the
9413 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009414 */
drh055f2982016-01-15 15:06:41 +00009415 maxRootPgno--;
9416 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9417 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9418 maxRootPgno--;
9419 }
9420 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9421
9422 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9423 }else{
9424 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009425 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009426 }
drh055f2982016-01-15 15:06:41 +00009427#endif
drh8b2f49b2001-06-08 00:21:52 +00009428 return rc;
9429}
drhd677b3d2007-08-20 22:48:41 +00009430int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9431 int rc;
9432 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009433 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009434 sqlite3BtreeLeave(p);
9435 return rc;
9436}
drh8b2f49b2001-06-08 00:21:52 +00009437
drh001bbcb2003-03-19 03:14:00 +00009438
drh8b2f49b2001-06-08 00:21:52 +00009439/*
danielk1977602b4662009-07-02 07:47:33 +00009440** This function may only be called if the b-tree connection already
9441** has a read or write transaction open on the database.
9442**
drh23e11ca2004-05-04 17:27:28 +00009443** Read the meta-information out of a database file. Meta[0]
9444** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009445** through meta[15] are available for use by higher layers. Meta[0]
9446** is read-only, the others are read/write.
9447**
9448** The schema layer numbers meta values differently. At the schema
9449** layer (and the SetCookie and ReadCookie opcodes) the number of
9450** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009451**
9452** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9453** of reading the value out of the header, it instead loads the "DataVersion"
9454** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9455** database file. It is a number computed by the pager. But its access
9456** pattern is the same as header meta values, and so it is convenient to
9457** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009458*/
danielk1977602b4662009-07-02 07:47:33 +00009459void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009460 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009461
drhd677b3d2007-08-20 22:48:41 +00009462 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009463 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00009464 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009465 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009466 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009467
drh91618562014-12-19 19:28:02 +00009468 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00009469 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00009470 }else{
9471 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9472 }
drhae157872004-08-14 19:20:09 +00009473
danielk1977602b4662009-07-02 07:47:33 +00009474 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9475 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009476#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009477 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9478 pBt->btsFlags |= BTS_READ_ONLY;
9479 }
danielk1977003ba062004-11-04 02:57:33 +00009480#endif
drhae157872004-08-14 19:20:09 +00009481
drhd677b3d2007-08-20 22:48:41 +00009482 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009483}
9484
9485/*
drh23e11ca2004-05-04 17:27:28 +00009486** Write meta-information back into the database. Meta[0] is
9487** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009488*/
danielk1977aef0bf62005-12-30 16:28:01 +00009489int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9490 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009491 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009492 int rc;
drh23e11ca2004-05-04 17:27:28 +00009493 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009494 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009495 assert( p->inTrans==TRANS_WRITE );
9496 assert( pBt->pPage1!=0 );
9497 pP1 = pBt->pPage1->aData;
9498 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9499 if( rc==SQLITE_OK ){
9500 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009501#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009502 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009503 assert( pBt->autoVacuum || iMeta==0 );
9504 assert( iMeta==0 || iMeta==1 );
9505 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009506 }
drh64022502009-01-09 14:11:04 +00009507#endif
drh5df72a52002-06-06 23:16:05 +00009508 }
drhd677b3d2007-08-20 22:48:41 +00009509 sqlite3BtreeLeave(p);
9510 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009511}
drh8c42ca92001-06-22 19:15:00 +00009512
danielk1977a5533162009-02-24 10:01:51 +00009513/*
9514** The first argument, pCur, is a cursor opened on some b-tree. Count the
9515** number of entries in the b-tree and write the result to *pnEntry.
9516**
9517** SQLITE_OK is returned if the operation is successfully executed.
9518** Otherwise, if an error is encountered (i.e. an IO error or database
9519** corruption) an SQLite error code is returned.
9520*/
drh21f6daa2019-10-11 14:21:48 +00009521int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
danielk1977a5533162009-02-24 10:01:51 +00009522 i64 nEntry = 0; /* Value to return in *pnEntry */
9523 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009524
drh44548e72017-08-14 18:13:52 +00009525 rc = moveToRoot(pCur);
9526 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009527 *pnEntry = 0;
9528 return SQLITE_OK;
9529 }
danielk1977a5533162009-02-24 10:01:51 +00009530
9531 /* Unless an error occurs, the following loop runs one iteration for each
9532 ** page in the B-Tree structure (not including overflow pages).
9533 */
dan892edb62020-03-30 13:35:05 +00009534 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
danielk1977a5533162009-02-24 10:01:51 +00009535 int iIdx; /* Index of child node in parent */
9536 MemPage *pPage; /* Current page of the b-tree */
9537
9538 /* If this is a leaf page or the tree is not an int-key tree, then
9539 ** this page contains countable entries. Increment the entry counter
9540 ** accordingly.
9541 */
drh352a35a2017-08-15 03:46:47 +00009542 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009543 if( pPage->leaf || !pPage->intKey ){
9544 nEntry += pPage->nCell;
9545 }
9546
9547 /* pPage is a leaf node. This loop navigates the cursor so that it
9548 ** points to the first interior cell that it points to the parent of
9549 ** the next page in the tree that has not yet been visited. The
9550 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9551 ** of the page, or to the number of cells in the page if the next page
9552 ** to visit is the right-child of its parent.
9553 **
9554 ** If all pages in the tree have been visited, return SQLITE_OK to the
9555 ** caller.
9556 */
9557 if( pPage->leaf ){
9558 do {
9559 if( pCur->iPage==0 ){
9560 /* All pages of the b-tree have been visited. Return successfully. */
9561 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009562 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009563 }
danielk197730548662009-07-09 05:07:37 +00009564 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009565 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009566
drh75e96b32017-04-01 00:20:06 +00009567 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009568 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009569 }
9570
9571 /* Descend to the child node of the cell that the cursor currently
9572 ** points at. This is the right-child if (iIdx==pPage->nCell).
9573 */
drh75e96b32017-04-01 00:20:06 +00009574 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009575 if( iIdx==pPage->nCell ){
9576 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9577 }else{
9578 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9579 }
9580 }
9581
shanebe217792009-03-05 04:20:31 +00009582 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009583 return rc;
9584}
drhdd793422001-06-28 01:54:48 +00009585
drhdd793422001-06-28 01:54:48 +00009586/*
drh5eddca62001-06-30 21:53:53 +00009587** Return the pager associated with a BTree. This routine is used for
9588** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009589*/
danielk1977aef0bf62005-12-30 16:28:01 +00009590Pager *sqlite3BtreePager(Btree *p){
9591 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009592}
drh5eddca62001-06-30 21:53:53 +00009593
drhb7f91642004-10-31 02:22:47 +00009594#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009595/*
9596** Append a message to the error message string.
9597*/
drh2e38c322004-09-03 18:38:44 +00009598static void checkAppendMsg(
9599 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009600 const char *zFormat,
9601 ...
9602){
9603 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009604 if( !pCheck->mxErr ) return;
9605 pCheck->mxErr--;
9606 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009607 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009608 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +00009609 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009610 }
drh867db832014-09-26 02:41:05 +00009611 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +00009612 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009613 }
drh0cdbe1a2018-05-09 13:46:26 +00009614 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009615 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +00009616 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009617 pCheck->mallocFailed = 1;
9618 }
drh5eddca62001-06-30 21:53:53 +00009619}
drhb7f91642004-10-31 02:22:47 +00009620#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009621
drhb7f91642004-10-31 02:22:47 +00009622#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009623
9624/*
9625** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9626** corresponds to page iPg is already set.
9627*/
9628static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9629 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9630 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9631}
9632
9633/*
9634** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9635*/
9636static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9637 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9638 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9639}
9640
9641
drh5eddca62001-06-30 21:53:53 +00009642/*
9643** Add 1 to the reference count for page iPage. If this is the second
9644** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009645** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009646** if this is the first reference to the page.
9647**
9648** Also check that the page number is in bounds.
9649*/
drh867db832014-09-26 02:41:05 +00009650static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +00009651 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +00009652 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009653 return 1;
9654 }
dan1235bb12012-04-03 17:43:28 +00009655 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009656 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009657 return 1;
9658 }
dan892edb62020-03-30 13:35:05 +00009659 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
dan1235bb12012-04-03 17:43:28 +00009660 setPageReferenced(pCheck, iPage);
9661 return 0;
drh5eddca62001-06-30 21:53:53 +00009662}
9663
danielk1977afcdd022004-10-31 16:25:42 +00009664#ifndef SQLITE_OMIT_AUTOVACUUM
9665/*
9666** Check that the entry in the pointer-map for page iChild maps to
9667** page iParent, pointer type ptrType. If not, append an error message
9668** to pCheck.
9669*/
9670static void checkPtrmap(
9671 IntegrityCk *pCheck, /* Integrity check context */
9672 Pgno iChild, /* Child page number */
9673 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009674 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009675){
9676 int rc;
9677 u8 ePtrmapType;
9678 Pgno iPtrmapParent;
9679
9680 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9681 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009682 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009683 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009684 return;
9685 }
9686
9687 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009688 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009689 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9690 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9691 }
9692}
9693#endif
9694
drh5eddca62001-06-30 21:53:53 +00009695/*
9696** Check the integrity of the freelist or of an overflow page list.
9697** Verify that the number of pages on the list is N.
9698*/
drh30e58752002-03-02 20:41:57 +00009699static void checkList(
9700 IntegrityCk *pCheck, /* Integrity checking context */
9701 int isFreeList, /* True for a freelist. False for overflow page list */
9702 int iPage, /* Page number for first page in the list */
drheaac9992019-02-26 16:17:06 +00009703 u32 N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009704){
9705 int i;
drheaac9992019-02-26 16:17:06 +00009706 u32 expected = N;
drh91d58662018-07-20 13:39:28 +00009707 int nErrAtStart = pCheck->nErr;
9708 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009709 DbPage *pOvflPage;
9710 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +00009711 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +00009712 N--;
drh9584f582015-11-04 20:22:37 +00009713 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009714 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009715 break;
9716 }
danielk19773b8a05f2007-03-19 17:44:26 +00009717 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009718 if( isFreeList ){
drhae104742018-12-14 17:57:01 +00009719 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009720#ifndef SQLITE_OMIT_AUTOVACUUM
9721 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009722 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009723 }
9724#endif
drhae104742018-12-14 17:57:01 +00009725 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009726 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009727 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009728 N--;
9729 }else{
drhae104742018-12-14 17:57:01 +00009730 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009731 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009732#ifndef SQLITE_OMIT_AUTOVACUUM
9733 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009734 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009735 }
9736#endif
drh867db832014-09-26 02:41:05 +00009737 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009738 }
9739 N -= n;
drh30e58752002-03-02 20:41:57 +00009740 }
drh30e58752002-03-02 20:41:57 +00009741 }
danielk1977afcdd022004-10-31 16:25:42 +00009742#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009743 else{
9744 /* If this database supports auto-vacuum and iPage is not the last
9745 ** page in this overflow list, check that the pointer-map entry for
9746 ** the following page matches iPage.
9747 */
9748 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009749 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009750 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009751 }
danielk1977afcdd022004-10-31 16:25:42 +00009752 }
9753#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009754 iPage = get4byte(pOvflData);
9755 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +00009756 }
9757 if( N && nErrAtStart==pCheck->nErr ){
9758 checkAppendMsg(pCheck,
9759 "%s is %d but should be %d",
9760 isFreeList ? "size" : "overflow list length",
9761 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +00009762 }
9763}
drhb7f91642004-10-31 02:22:47 +00009764#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009765
drh67731a92015-04-16 11:56:03 +00009766/*
9767** An implementation of a min-heap.
9768**
9769** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009770** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009771** and aHeap[N*2+1].
9772**
9773** The heap property is this: Every node is less than or equal to both
9774** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009775** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009776**
9777** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9778** the heap, preserving the heap property. The btreeHeapPull() routine
9779** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009780** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009781** property.
9782**
9783** This heap is used for cell overlap and coverage testing. Each u32
9784** entry represents the span of a cell or freeblock on a btree page.
9785** The upper 16 bits are the index of the first byte of a range and the
9786** lower 16 bits are the index of the last byte of that range.
9787*/
9788static void btreeHeapInsert(u32 *aHeap, u32 x){
9789 u32 j, i = ++aHeap[0];
9790 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009791 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009792 x = aHeap[j];
9793 aHeap[j] = aHeap[i];
9794 aHeap[i] = x;
9795 i = j;
9796 }
9797}
9798static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9799 u32 j, i, x;
9800 if( (x = aHeap[0])==0 ) return 0;
9801 *pOut = aHeap[1];
9802 aHeap[1] = aHeap[x];
9803 aHeap[x] = 0xffffffff;
9804 aHeap[0]--;
9805 i = 1;
9806 while( (j = i*2)<=aHeap[0] ){
9807 if( aHeap[j]>aHeap[j+1] ) j++;
9808 if( aHeap[i]<aHeap[j] ) break;
9809 x = aHeap[i];
9810 aHeap[i] = aHeap[j];
9811 aHeap[j] = x;
9812 i = j;
9813 }
9814 return 1;
9815}
9816
drhb7f91642004-10-31 02:22:47 +00009817#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009818/*
9819** Do various sanity checks on a single page of a tree. Return
9820** the tree depth. Root pages return 0. Parents of root pages
9821** return 1, and so forth.
9822**
9823** These checks are done:
9824**
9825** 1. Make sure that cells and freeblocks do not overlap
9826** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009827** 2. Make sure integer cell keys are in order.
9828** 3. Check the integrity of overflow pages.
9829** 4. Recursively call checkTreePage on all children.
9830** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009831*/
9832static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009833 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009834 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009835 i64 *piMinKey, /* Write minimum integer primary key here */
9836 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009837){
drhcbc6b712015-07-02 16:17:30 +00009838 MemPage *pPage = 0; /* The page being analyzed */
9839 int i; /* Loop counter */
9840 int rc; /* Result code from subroutine call */
9841 int depth = -1, d2; /* Depth of a subtree */
9842 int pgno; /* Page number */
9843 int nFrag; /* Number of fragmented bytes on the page */
9844 int hdr; /* Offset to the page header */
9845 int cellStart; /* Offset to the start of the cell pointer array */
9846 int nCell; /* Number of cells */
9847 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9848 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9849 ** False if IPK must be strictly less than maxKey */
9850 u8 *data; /* Page content */
9851 u8 *pCell; /* Cell content */
9852 u8 *pCellIdx; /* Next element of the cell pointer array */
9853 BtShared *pBt; /* The BtShared object that owns pPage */
9854 u32 pc; /* Address of a cell */
9855 u32 usableSize; /* Usable size of the page */
9856 u32 contentOffset; /* Offset to the start of the cell content area */
9857 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009858 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009859 const char *saved_zPfx = pCheck->zPfx;
9860 int saved_v1 = pCheck->v1;
9861 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009862 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009863
drh5eddca62001-06-30 21:53:53 +00009864 /* Check that the page exists
9865 */
drhd9cb6ac2005-10-20 07:28:17 +00009866 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009867 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009868 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009869 if( checkRef(pCheck, iPage) ) return 0;
9870 pCheck->zPfx = "Page %d: ";
9871 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009872 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009873 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009874 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009875 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009876 }
danielk197793caf5a2009-07-11 06:55:33 +00009877
9878 /* Clear MemPage.isInit to make sure the corruption detection code in
9879 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009880 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009881 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009882 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009883 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009884 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009885 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009886 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009887 }
drhb0ea9432019-02-09 21:06:40 +00009888 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
9889 assert( rc==SQLITE_CORRUPT );
9890 checkAppendMsg(pCheck, "free space corruption", rc);
9891 goto end_of_check;
9892 }
drhcbc6b712015-07-02 16:17:30 +00009893 data = pPage->aData;
9894 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009895
drhcbc6b712015-07-02 16:17:30 +00009896 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009897 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009898 contentOffset = get2byteNotZero(&data[hdr+5]);
9899 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9900
9901 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9902 ** number of cells on the page. */
9903 nCell = get2byte(&data[hdr+3]);
9904 assert( pPage->nCell==nCell );
9905
9906 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9907 ** immediately follows the b-tree page header. */
9908 cellStart = hdr + 12 - 4*pPage->leaf;
9909 assert( pPage->aCellIdx==&data[cellStart] );
9910 pCellIdx = &data[cellStart + 2*(nCell-1)];
9911
9912 if( !pPage->leaf ){
9913 /* Analyze the right-child page of internal pages */
9914 pgno = get4byte(&data[hdr+8]);
9915#ifndef SQLITE_OMIT_AUTOVACUUM
9916 if( pBt->autoVacuum ){
9917 pCheck->zPfx = "On page %d at right child: ";
9918 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9919 }
9920#endif
9921 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9922 keyCanBeEqual = 0;
9923 }else{
9924 /* For leaf pages, the coverage check will occur in the same loop
9925 ** as the other cell checks, so initialize the heap. */
9926 heap = pCheck->heap;
9927 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009928 }
9929
drhcbc6b712015-07-02 16:17:30 +00009930 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9931 ** integer offsets to the cell contents. */
9932 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009933 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009934
drhcbc6b712015-07-02 16:17:30 +00009935 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009936 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009937 assert( pCellIdx==&data[cellStart + i*2] );
9938 pc = get2byteAligned(pCellIdx);
9939 pCellIdx -= 2;
9940 if( pc<contentOffset || pc>usableSize-4 ){
9941 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9942 pc, contentOffset, usableSize-4);
9943 doCoverageCheck = 0;
9944 continue;
shaneh195475d2010-02-19 04:28:08 +00009945 }
drhcbc6b712015-07-02 16:17:30 +00009946 pCell = &data[pc];
9947 pPage->xParseCell(pPage, pCell, &info);
9948 if( pc+info.nSize>usableSize ){
9949 checkAppendMsg(pCheck, "Extends off end of page");
9950 doCoverageCheck = 0;
9951 continue;
drh5eddca62001-06-30 21:53:53 +00009952 }
9953
drhcbc6b712015-07-02 16:17:30 +00009954 /* Check for integer primary key out of range */
9955 if( pPage->intKey ){
9956 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9957 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9958 }
9959 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009960 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009961 }
9962
9963 /* Check the content overflow list */
9964 if( info.nPayload>info.nLocal ){
drheaac9992019-02-26 16:17:06 +00009965 u32 nPage; /* Number of pages on the overflow chain */
drhcbc6b712015-07-02 16:17:30 +00009966 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009967 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009968 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009969 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009970#ifndef SQLITE_OMIT_AUTOVACUUM
9971 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009972 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009973 }
9974#endif
drh867db832014-09-26 02:41:05 +00009975 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009976 }
9977
drh5eddca62001-06-30 21:53:53 +00009978 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009979 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009980 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009981#ifndef SQLITE_OMIT_AUTOVACUUM
9982 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009983 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009984 }
9985#endif
drhcbc6b712015-07-02 16:17:30 +00009986 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9987 keyCanBeEqual = 0;
9988 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009989 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009990 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009991 }
drhcbc6b712015-07-02 16:17:30 +00009992 }else{
9993 /* Populate the coverage-checking heap for leaf pages */
9994 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009995 }
9996 }
drhcbc6b712015-07-02 16:17:30 +00009997 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009998
drh5eddca62001-06-30 21:53:53 +00009999 /* Check for complete coverage of the page
10000 */
drh867db832014-09-26 02:41:05 +000010001 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +000010002 if( doCoverageCheck && pCheck->mxErr>0 ){
10003 /* For leaf pages, the min-heap has already been initialized and the
10004 ** cells have already been inserted. But for internal pages, that has
10005 ** not yet been done, so do it now */
10006 if( !pPage->leaf ){
10007 heap = pCheck->heap;
10008 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +000010009 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +000010010 u32 size;
10011 pc = get2byteAligned(&data[cellStart+i*2]);
10012 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +000010013 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +000010014 }
drh2e38c322004-09-03 18:38:44 +000010015 }
drhcbc6b712015-07-02 16:17:30 +000010016 /* Add the freeblocks to the min-heap
10017 **
10018 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +000010019 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +000010020 ** freeblocks on the page.
10021 */
drh8c2bbb62009-07-10 02:52:20 +000010022 i = get2byte(&data[hdr+1]);
10023 while( i>0 ){
10024 int size, j;
drh5860a612019-02-12 16:58:26 +000010025 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010026 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +000010027 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +000010028 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +000010029 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10030 ** big-endian integer which is the offset in the b-tree page of the next
10031 ** freeblock in the chain, or zero if the freeblock is the last on the
10032 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +000010033 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +000010034 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10035 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +000010036 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10037 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010038 i = j;
drh2e38c322004-09-03 18:38:44 +000010039 }
drhcbc6b712015-07-02 16:17:30 +000010040 /* Analyze the min-heap looking for overlap between cells and/or
10041 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +000010042 **
10043 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10044 ** There is an implied first entry the covers the page header, the cell
10045 ** pointer index, and the gap between the cell pointer index and the start
10046 ** of cell content.
10047 **
10048 ** The loop below pulls entries from the min-heap in order and compares
10049 ** the start_address against the previous end_address. If there is an
10050 ** overlap, that means bytes are used multiple times. If there is a gap,
10051 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +000010052 */
10053 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +000010054 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +000010055 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +000010056 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +000010057 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +000010058 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +000010059 break;
drh67731a92015-04-16 11:56:03 +000010060 }else{
drhcbc6b712015-07-02 16:17:30 +000010061 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +000010062 prev = x;
drh2e38c322004-09-03 18:38:44 +000010063 }
10064 }
drhcbc6b712015-07-02 16:17:30 +000010065 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +000010066 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10067 ** is stored in the fifth field of the b-tree page header.
10068 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10069 ** number of fragmented free bytes within the cell content area.
10070 */
drhcbc6b712015-07-02 16:17:30 +000010071 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +000010072 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +000010073 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +000010074 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +000010075 }
10076 }
drh867db832014-09-26 02:41:05 +000010077
10078end_of_check:
drh72e191e2015-07-04 11:14:20 +000010079 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +000010080 releasePage(pPage);
drh867db832014-09-26 02:41:05 +000010081 pCheck->zPfx = saved_zPfx;
10082 pCheck->v1 = saved_v1;
10083 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +000010084 return depth+1;
drh5eddca62001-06-30 21:53:53 +000010085}
drhb7f91642004-10-31 02:22:47 +000010086#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010087
drhb7f91642004-10-31 02:22:47 +000010088#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010089/*
10090** This routine does a complete check of the given BTree file. aRoot[] is
10091** an array of pages numbers were each page number is the root page of
10092** a table. nRoot is the number of entries in aRoot.
10093**
danielk19773509a652009-07-06 18:56:13 +000010094** A read-only or read-write transaction must be opened before calling
10095** this function.
10096**
drhc890fec2008-08-01 20:10:08 +000010097** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010098** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010099** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010100** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +000010101*/
drh1dcdbc02007-01-27 02:24:54 +000010102char *sqlite3BtreeIntegrityCheck(
drh21f6daa2019-10-11 14:21:48 +000010103 sqlite3 *db, /* Database connection that is running the check */
drh1dcdbc02007-01-27 02:24:54 +000010104 Btree *p, /* The btree to be checked */
10105 int *aRoot, /* An array of root pages numbers for individual trees */
10106 int nRoot, /* Number of entries in aRoot[] */
10107 int mxErr, /* Stop reporting errors after this many */
10108 int *pnErr /* Write number of errors seen to this variable */
10109){
danielk197789d40042008-11-17 14:20:56 +000010110 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010111 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010112 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010113 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010114 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +000010115 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +000010116
drhd677b3d2007-08-20 22:48:41 +000010117 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010118 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010119 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10120 assert( nRef>=0 );
drh21f6daa2019-10-11 14:21:48 +000010121 sCheck.db = db;
drh5eddca62001-06-30 21:53:53 +000010122 sCheck.pBt = pBt;
10123 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010124 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010125 sCheck.mxErr = mxErr;
10126 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +000010127 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +000010128 sCheck.zPfx = 0;
10129 sCheck.v1 = 0;
10130 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010131 sCheck.aPgRef = 0;
10132 sCheck.heap = 0;
10133 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010134 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010135 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010136 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010137 }
dan1235bb12012-04-03 17:43:28 +000010138
10139 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10140 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +000010141 sCheck.mallocFailed = 1;
10142 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010143 }
drhe05b3f82015-07-01 17:53:49 +000010144 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10145 if( sCheck.heap==0 ){
10146 sCheck.mallocFailed = 1;
10147 goto integrity_ck_cleanup;
10148 }
10149
drh42cac6d2004-11-20 20:31:11 +000010150 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010151 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010152
10153 /* Check the integrity of the freelist
10154 */
drh867db832014-09-26 02:41:05 +000010155 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +000010156 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +000010157 get4byte(&pBt->pPage1->aData[36]));
10158 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +000010159
10160 /* Check all the tables.
10161 */
drh040d77a2018-07-20 15:44:09 +000010162#ifndef SQLITE_OMIT_AUTOVACUUM
10163 if( pBt->autoVacuum ){
10164 int mx = 0;
10165 int mxInHdr;
10166 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10167 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10168 if( mx!=mxInHdr ){
10169 checkAppendMsg(&sCheck,
10170 "max rootpage (%d) disagrees with header (%d)",
10171 mx, mxInHdr
10172 );
10173 }
10174 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10175 checkAppendMsg(&sCheck,
10176 "incremental_vacuum enabled with a max rootpage of zero"
10177 );
10178 }
10179#endif
drhcbc6b712015-07-02 16:17:30 +000010180 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010181 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010182 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010183 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010184 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010185#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010186 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +000010187 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010188 }
10189#endif
drhcbc6b712015-07-02 16:17:30 +000010190 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000010191 }
drhcbc6b712015-07-02 16:17:30 +000010192 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000010193
10194 /* Make sure every page in the file is referenced
10195 */
drh1dcdbc02007-01-27 02:24:54 +000010196 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000010197#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +000010198 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +000010199 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +000010200 }
danielk1977afcdd022004-10-31 16:25:42 +000010201#else
10202 /* If the database supports auto-vacuum, make sure no tables contain
10203 ** references to pointer-map pages.
10204 */
dan1235bb12012-04-03 17:43:28 +000010205 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +000010206 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010207 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +000010208 }
dan1235bb12012-04-03 17:43:28 +000010209 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +000010210 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010211 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +000010212 }
10213#endif
drh5eddca62001-06-30 21:53:53 +000010214 }
10215
drh5eddca62001-06-30 21:53:53 +000010216 /* Clean up and report errors.
10217 */
drhe05b3f82015-07-01 17:53:49 +000010218integrity_ck_cleanup:
10219 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000010220 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +000010221 if( sCheck.mallocFailed ){
drh0cdbe1a2018-05-09 13:46:26 +000010222 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010223 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000010224 }
drh1dcdbc02007-01-27 02:24:54 +000010225 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000010226 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010227 /* Make sure this analysis did not leave any unref() pages. */
10228 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10229 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000010230 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000010231}
drhb7f91642004-10-31 02:22:47 +000010232#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000010233
drh73509ee2003-04-06 20:44:45 +000010234/*
drhd4e0bb02012-05-27 01:19:04 +000010235** Return the full pathname of the underlying database file. Return
10236** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000010237**
10238** The pager filename is invariant as long as the pager is
10239** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000010240*/
danielk1977aef0bf62005-12-30 16:28:01 +000010241const char *sqlite3BtreeGetFilename(Btree *p){
10242 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000010243 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000010244}
10245
10246/*
danielk19775865e3d2004-06-14 06:03:57 +000010247** Return the pathname of the journal file for this database. The return
10248** value of this routine is the same regardless of whether the journal file
10249** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000010250**
10251** The pager journal filename is invariant as long as the pager is
10252** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000010253*/
danielk1977aef0bf62005-12-30 16:28:01 +000010254const char *sqlite3BtreeGetJournalname(Btree *p){
10255 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000010256 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000010257}
10258
danielk19771d850a72004-05-31 08:26:49 +000010259/*
10260** Return non-zero if a transaction is active.
10261*/
danielk1977aef0bf62005-12-30 16:28:01 +000010262int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000010263 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +000010264 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +000010265}
10266
dana550f2d2010-08-02 10:47:05 +000010267#ifndef SQLITE_OMIT_WAL
10268/*
10269** Run a checkpoint on the Btree passed as the first argument.
10270**
10271** Return SQLITE_LOCKED if this or any other connection has an open
10272** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000010273**
dancdc1f042010-11-18 12:11:05 +000010274** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000010275*/
dancdc1f042010-11-18 12:11:05 +000010276int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000010277 int rc = SQLITE_OK;
10278 if( p ){
10279 BtShared *pBt = p->pBt;
10280 sqlite3BtreeEnter(p);
10281 if( pBt->inTransaction!=TRANS_NONE ){
10282 rc = SQLITE_LOCKED;
10283 }else{
dan7fb89902016-08-12 16:21:15 +000010284 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000010285 }
10286 sqlite3BtreeLeave(p);
10287 }
10288 return rc;
10289}
10290#endif
10291
danielk19771d850a72004-05-31 08:26:49 +000010292/*
danielk19772372c2b2006-06-27 16:34:56 +000010293** Return non-zero if a read (or write) transaction is active.
10294*/
10295int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +000010296 assert( p );
drhe5fe6902007-12-07 18:55:28 +000010297 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +000010298 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +000010299}
10300
danielk197704103022009-02-03 16:51:24 +000010301int sqlite3BtreeIsInBackup(Btree *p){
10302 assert( p );
10303 assert( sqlite3_mutex_held(p->db->mutex) );
10304 return p->nBackup!=0;
10305}
10306
danielk19772372c2b2006-06-27 16:34:56 +000010307/*
danielk1977da184232006-01-05 11:34:32 +000010308** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010309** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010310** purposes (for example, to store a high-level schema associated with
10311** the shared-btree). The btree layer manages reference counting issues.
10312**
10313** The first time this is called on a shared-btree, nBytes bytes of memory
10314** are allocated, zeroed, and returned to the caller. For each subsequent
10315** call the nBytes parameter is ignored and a pointer to the same blob
10316** of memory returned.
10317**
danielk1977171bfed2008-06-23 09:50:50 +000010318** If the nBytes parameter is 0 and the blob of memory has not yet been
10319** allocated, a null pointer is returned. If the blob has already been
10320** allocated, it is returned as normal.
10321**
danielk1977da184232006-01-05 11:34:32 +000010322** Just before the shared-btree is closed, the function passed as the
10323** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010324** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010325** on the memory, the btree layer does that.
10326*/
10327void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10328 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010329 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010330 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010331 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010332 pBt->xFreeSchema = xFree;
10333 }
drh27641702007-08-22 02:56:42 +000010334 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010335 return pBt->pSchema;
10336}
10337
danielk1977c87d34d2006-01-06 13:00:28 +000010338/*
danielk1977404ca072009-03-16 13:19:36 +000010339** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10340** btree as the argument handle holds an exclusive lock on the
10341** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010342*/
10343int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010344 int rc;
drhe5fe6902007-12-07 18:55:28 +000010345 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010346 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +000010347 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10348 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010349 sqlite3BtreeLeave(p);
10350 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010351}
10352
drha154dcd2006-03-22 22:10:07 +000010353
10354#ifndef SQLITE_OMIT_SHARED_CACHE
10355/*
10356** Obtain a lock on the table whose root page is iTab. The
10357** lock is a write lock if isWritelock is true or a read lock
10358** if it is false.
10359*/
danielk1977c00da102006-01-07 13:21:04 +000010360int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010361 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010362 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010363 if( p->sharable ){
10364 u8 lockType = READ_LOCK + isWriteLock;
10365 assert( READ_LOCK+1==WRITE_LOCK );
10366 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010367
drh6a9ad3d2008-04-02 16:29:30 +000010368 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010369 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010370 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010371 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010372 }
10373 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010374 }
10375 return rc;
10376}
drha154dcd2006-03-22 22:10:07 +000010377#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010378
danielk1977b4e9af92007-05-01 17:49:49 +000010379#ifndef SQLITE_OMIT_INCRBLOB
10380/*
10381** Argument pCsr must be a cursor opened for writing on an
10382** INTKEY table currently pointing at a valid table entry.
10383** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010384**
10385** Only the data content may only be modified, it is not possible to
10386** change the length of the data stored. If this function is called with
10387** parameters that attempt to write past the end of the existing data,
10388** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010389*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010390int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010391 int rc;
dan7a2347e2016-01-07 16:43:54 +000010392 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010393 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010394 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010395
danielk1977c9000e62009-07-08 13:55:28 +000010396 rc = restoreCursorPosition(pCsr);
10397 if( rc!=SQLITE_OK ){
10398 return rc;
10399 }
danielk19773588ceb2008-06-10 17:30:26 +000010400 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10401 if( pCsr->eState!=CURSOR_VALID ){
10402 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010403 }
10404
dan227a1c42013-04-03 11:17:39 +000010405 /* Save the positions of all other cursors open on this table. This is
10406 ** required in case any of them are holding references to an xFetch
10407 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010408 **
drh3f387402014-09-24 01:23:00 +000010409 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010410 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10411 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010412 */
drh370c9f42013-04-03 20:04:04 +000010413 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10414 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010415
danielk1977c9000e62009-07-08 13:55:28 +000010416 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010417 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010418 ** (b) there is a read/write transaction open,
10419 ** (c) the connection holds a write-lock on the table (if required),
10420 ** (d) there are no conflicting read-locks, and
10421 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010422 */
drh036dbec2014-03-11 23:40:44 +000010423 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010424 return SQLITE_READONLY;
10425 }
drhc9166342012-01-05 23:32:06 +000010426 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10427 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010428 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10429 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010430 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010431
drhfb192682009-07-11 18:26:28 +000010432 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010433}
danielk19772dec9702007-05-02 16:48:37 +000010434
10435/*
dan5a500af2014-03-11 20:33:04 +000010436** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010437*/
dan5a500af2014-03-11 20:33:04 +000010438void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010439 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010440 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010441}
danielk1977b4e9af92007-05-01 17:49:49 +000010442#endif
dane04dc882010-04-20 18:53:15 +000010443
10444/*
10445** Set both the "read version" (single byte at byte offset 18) and
10446** "write version" (single byte at byte offset 19) fields in the database
10447** header to iVersion.
10448*/
10449int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10450 BtShared *pBt = pBtree->pBt;
10451 int rc; /* Return code */
10452
dane04dc882010-04-20 18:53:15 +000010453 assert( iVersion==1 || iVersion==2 );
10454
danb9780022010-04-21 18:37:57 +000010455 /* If setting the version fields to 1, do not automatically open the
10456 ** WAL connection, even if the version fields are currently set to 2.
10457 */
drhc9166342012-01-05 23:32:06 +000010458 pBt->btsFlags &= ~BTS_NO_WAL;
10459 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010460
drhbb2d9b12018-06-06 16:28:40 +000010461 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000010462 if( rc==SQLITE_OK ){
10463 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010464 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000010465 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000010466 if( rc==SQLITE_OK ){
10467 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10468 if( rc==SQLITE_OK ){
10469 aData[18] = (u8)iVersion;
10470 aData[19] = (u8)iVersion;
10471 }
10472 }
10473 }
dane04dc882010-04-20 18:53:15 +000010474 }
10475
drhc9166342012-01-05 23:32:06 +000010476 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010477 return rc;
10478}
dan428c2182012-08-06 18:50:11 +000010479
drhe0997b32015-03-20 14:57:50 +000010480/*
10481** Return true if the cursor has a hint specified. This routine is
10482** only used from within assert() statements
10483*/
10484int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10485 return (pCsr->hints & mask)!=0;
10486}
drhe0997b32015-03-20 14:57:50 +000010487
drh781597f2014-05-21 08:21:07 +000010488/*
10489** Return true if the given Btree is read-only.
10490*/
10491int sqlite3BtreeIsReadonly(Btree *p){
10492 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10493}
drhdef68892014-11-04 12:11:23 +000010494
10495/*
10496** Return the size of the header added to each page by this module.
10497*/
drh37c057b2014-12-30 00:57:29 +000010498int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010499
drh5a1fb182016-01-08 19:34:39 +000010500#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010501/*
10502** Return true if the Btree passed as the only argument is sharable.
10503*/
10504int sqlite3BtreeSharable(Btree *p){
10505 return p->sharable;
10506}
dan272989b2016-07-06 10:12:02 +000010507
10508/*
10509** Return the number of connections to the BtShared object accessed by
10510** the Btree handle passed as the only argument. For private caches
10511** this is always 1. For shared caches it may be 1 or greater.
10512*/
10513int sqlite3BtreeConnectionCount(Btree *p){
10514 testcase( p->sharable );
10515 return p->pBt->nRef;
10516}
drh5a1fb182016-01-08 19:34:39 +000010517#endif