blob: 0fa00a2e12e26ada27c3f4dd6d20b0e23033f5e1 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
daneebf2f52017-11-18 17:30:08 +0000115/*
116** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118**
119** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122** with the page number and filename associated with the (MemPage*).
123*/
124#ifdef SQLITE_DEBUG
125int corruptPageError(int lineno, MemPage *p){
126 char *zMsg = sqlite3_mprintf("database corruption page %d of %s",
127 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
128 );
129 if( zMsg ){
130 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
131 }
132 sqlite3_free(zMsg);
133 return SQLITE_CORRUPT_BKPT;
134}
135# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
136#else
137# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
138#endif
139
drhe53831d2007-08-17 01:14:38 +0000140#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000141
142#ifdef SQLITE_DEBUG
143/*
drh0ee3dbe2009-10-16 15:05:18 +0000144**** This function is only used as part of an assert() statement. ***
145**
146** Check to see if pBtree holds the required locks to read or write to the
147** table with root page iRoot. Return 1 if it does and 0 if not.
148**
149** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000150** Btree connection pBtree:
151**
152** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
153**
drh0ee3dbe2009-10-16 15:05:18 +0000154** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000155** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000156** the corresponding table. This makes things a bit more complicated,
157** as this module treats each table as a separate structure. To determine
158** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000159** function has to search through the database schema.
160**
drh0ee3dbe2009-10-16 15:05:18 +0000161** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000162** hold a write-lock on the schema table (root page 1). This is also
163** acceptable.
164*/
165static int hasSharedCacheTableLock(
166 Btree *pBtree, /* Handle that must hold lock */
167 Pgno iRoot, /* Root page of b-tree */
168 int isIndex, /* True if iRoot is the root of an index b-tree */
169 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
170){
171 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
172 Pgno iTab = 0;
173 BtLock *pLock;
174
drh0ee3dbe2009-10-16 15:05:18 +0000175 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000176 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000177 ** Return true immediately.
178 */
danielk197796d48e92009-06-29 06:00:37 +0000179 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000180 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000181 ){
182 return 1;
183 }
184
drh0ee3dbe2009-10-16 15:05:18 +0000185 /* If the client is reading or writing an index and the schema is
186 ** not loaded, then it is too difficult to actually check to see if
187 ** the correct locks are held. So do not bother - just return true.
188 ** This case does not come up very often anyhow.
189 */
drh2c5e35f2014-08-05 11:04:21 +0000190 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000191 return 1;
192 }
193
danielk197796d48e92009-06-29 06:00:37 +0000194 /* Figure out the root-page that the lock should be held on. For table
195 ** b-trees, this is just the root page of the b-tree being read or
196 ** written. For index b-trees, it is the root page of the associated
197 ** table. */
198 if( isIndex ){
199 HashElem *p;
200 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
201 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000202 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000203 if( iTab ){
204 /* Two or more indexes share the same root page. There must
205 ** be imposter tables. So just return true. The assert is not
206 ** useful in that case. */
207 return 1;
208 }
shane5eff7cf2009-08-10 03:57:58 +0000209 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000210 }
211 }
212 }else{
213 iTab = iRoot;
214 }
215
216 /* Search for the required lock. Either a write-lock on root-page iTab, a
217 ** write-lock on the schema table, or (if the client is reading) a
218 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
219 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
220 if( pLock->pBtree==pBtree
221 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
222 && pLock->eLock>=eLockType
223 ){
224 return 1;
225 }
226 }
227
228 /* Failed to find the required lock. */
229 return 0;
230}
drh0ee3dbe2009-10-16 15:05:18 +0000231#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000232
drh0ee3dbe2009-10-16 15:05:18 +0000233#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000234/*
drh0ee3dbe2009-10-16 15:05:18 +0000235**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000236**
drh0ee3dbe2009-10-16 15:05:18 +0000237** Return true if it would be illegal for pBtree to write into the
238** table or index rooted at iRoot because other shared connections are
239** simultaneously reading that same table or index.
240**
241** It is illegal for pBtree to write if some other Btree object that
242** shares the same BtShared object is currently reading or writing
243** the iRoot table. Except, if the other Btree object has the
244** read-uncommitted flag set, then it is OK for the other object to
245** have a read cursor.
246**
247** For example, before writing to any part of the table or index
248** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000249**
250** assert( !hasReadConflicts(pBtree, iRoot) );
251*/
252static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
253 BtCursor *p;
254 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
255 if( p->pgnoRoot==iRoot
256 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000257 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000258 ){
259 return 1;
260 }
261 }
262 return 0;
263}
264#endif /* #ifdef SQLITE_DEBUG */
265
danielk1977da184232006-01-05 11:34:32 +0000266/*
drh0ee3dbe2009-10-16 15:05:18 +0000267** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000268** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000269** SQLITE_OK if the lock may be obtained (by calling
270** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000271*/
drhc25eabe2009-02-24 18:57:31 +0000272static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000273 BtShared *pBt = p->pBt;
274 BtLock *pIter;
275
drh1fee73e2007-08-29 04:00:57 +0000276 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000277 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
278 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000279 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000280
danielk19775b413d72009-04-01 09:41:54 +0000281 /* If requesting a write-lock, then the Btree must have an open write
282 ** transaction on this file. And, obviously, for this to be so there
283 ** must be an open write transaction on the file itself.
284 */
285 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
286 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
287
drh0ee3dbe2009-10-16 15:05:18 +0000288 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000289 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000290 return SQLITE_OK;
291 }
292
danielk1977641b0f42007-12-21 04:47:25 +0000293 /* If some other connection is holding an exclusive lock, the
294 ** requested lock may not be obtained.
295 */
drhc9166342012-01-05 23:32:06 +0000296 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000297 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
298 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000299 }
300
danielk1977e0d9e6f2009-07-03 16:25:06 +0000301 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
302 /* The condition (pIter->eLock!=eLock) in the following if(...)
303 ** statement is a simplification of:
304 **
305 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
306 **
307 ** since we know that if eLock==WRITE_LOCK, then no other connection
308 ** may hold a WRITE_LOCK on any table in this file (since there can
309 ** only be a single writer).
310 */
311 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
312 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
313 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
314 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
315 if( eLock==WRITE_LOCK ){
316 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000317 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000318 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000319 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000320 }
321 }
322 return SQLITE_OK;
323}
drhe53831d2007-08-17 01:14:38 +0000324#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000325
drhe53831d2007-08-17 01:14:38 +0000326#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000327/*
328** Add a lock on the table with root-page iTable to the shared-btree used
329** by Btree handle p. Parameter eLock must be either READ_LOCK or
330** WRITE_LOCK.
331**
danielk19779d104862009-07-09 08:27:14 +0000332** This function assumes the following:
333**
drh0ee3dbe2009-10-16 15:05:18 +0000334** (a) The specified Btree object p is connected to a sharable
335** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000336**
drh0ee3dbe2009-10-16 15:05:18 +0000337** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000338** with the requested lock (i.e. querySharedCacheTableLock() has
339** already been called and returned SQLITE_OK).
340**
341** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
342** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000343*/
drhc25eabe2009-02-24 18:57:31 +0000344static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000345 BtShared *pBt = p->pBt;
346 BtLock *pLock = 0;
347 BtLock *pIter;
348
drh1fee73e2007-08-29 04:00:57 +0000349 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000350 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
351 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000352
danielk1977e0d9e6f2009-07-03 16:25:06 +0000353 /* A connection with the read-uncommitted flag set will never try to
354 ** obtain a read-lock using this function. The only read-lock obtained
355 ** by a connection in read-uncommitted mode is on the sqlite_master
356 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000357 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000358
danielk19779d104862009-07-09 08:27:14 +0000359 /* This function should only be called on a sharable b-tree after it
360 ** has been determined that no other b-tree holds a conflicting lock. */
361 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000362 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 /* First search the list for an existing lock on this table. */
365 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
366 if( pIter->iTable==iTable && pIter->pBtree==p ){
367 pLock = pIter;
368 break;
369 }
370 }
371
372 /* If the above search did not find a BtLock struct associating Btree p
373 ** with table iTable, allocate one and link it into the list.
374 */
375 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000376 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000377 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000378 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000379 }
380 pLock->iTable = iTable;
381 pLock->pBtree = p;
382 pLock->pNext = pBt->pLock;
383 pBt->pLock = pLock;
384 }
385
386 /* Set the BtLock.eLock variable to the maximum of the current lock
387 ** and the requested lock. This means if a write-lock was already held
388 ** and a read-lock requested, we don't incorrectly downgrade the lock.
389 */
390 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000391 if( eLock>pLock->eLock ){
392 pLock->eLock = eLock;
393 }
danielk1977aef0bf62005-12-30 16:28:01 +0000394
395 return SQLITE_OK;
396}
drhe53831d2007-08-17 01:14:38 +0000397#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000398
drhe53831d2007-08-17 01:14:38 +0000399#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000400/*
drhc25eabe2009-02-24 18:57:31 +0000401** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000402** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000403**
drh0ee3dbe2009-10-16 15:05:18 +0000404** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000405** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000406** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000407*/
drhc25eabe2009-02-24 18:57:31 +0000408static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000409 BtShared *pBt = p->pBt;
410 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000411
drh1fee73e2007-08-29 04:00:57 +0000412 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000413 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000414 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000415
danielk1977aef0bf62005-12-30 16:28:01 +0000416 while( *ppIter ){
417 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000418 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000419 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000420 if( pLock->pBtree==p ){
421 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000422 assert( pLock->iTable!=1 || pLock==&p->lock );
423 if( pLock->iTable!=1 ){
424 sqlite3_free(pLock);
425 }
danielk1977aef0bf62005-12-30 16:28:01 +0000426 }else{
427 ppIter = &pLock->pNext;
428 }
429 }
danielk1977641b0f42007-12-21 04:47:25 +0000430
drhc9166342012-01-05 23:32:06 +0000431 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000432 if( pBt->pWriter==p ){
433 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000434 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000435 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000436 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000437 ** transaction. If there currently exists a writer, and p is not
438 ** that writer, then the number of locks held by connections other
439 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000440 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000441 **
drhc9166342012-01-05 23:32:06 +0000442 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000443 ** be zero already. So this next line is harmless in that case.
444 */
drhc9166342012-01-05 23:32:06 +0000445 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000446 }
danielk1977aef0bf62005-12-30 16:28:01 +0000447}
danielk197794b30732009-07-02 17:21:57 +0000448
danielk1977e0d9e6f2009-07-03 16:25:06 +0000449/*
drh0ee3dbe2009-10-16 15:05:18 +0000450** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000451*/
danielk197794b30732009-07-02 17:21:57 +0000452static void downgradeAllSharedCacheTableLocks(Btree *p){
453 BtShared *pBt = p->pBt;
454 if( pBt->pWriter==p ){
455 BtLock *pLock;
456 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000457 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000458 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
459 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
460 pLock->eLock = READ_LOCK;
461 }
462 }
463}
464
danielk1977aef0bf62005-12-30 16:28:01 +0000465#endif /* SQLITE_OMIT_SHARED_CACHE */
466
drh3908fe92017-09-01 14:50:19 +0000467static void releasePage(MemPage *pPage); /* Forward reference */
468static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000469static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000470
drh1fee73e2007-08-29 04:00:57 +0000471/*
drh0ee3dbe2009-10-16 15:05:18 +0000472***** This routine is used inside of assert() only ****
473**
474** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000475*/
drh0ee3dbe2009-10-16 15:05:18 +0000476#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000477static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000478 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000479}
drh5e08d0f2016-06-04 21:05:54 +0000480
481/* Verify that the cursor and the BtShared agree about what is the current
482** database connetion. This is important in shared-cache mode. If the database
483** connection pointers get out-of-sync, it is possible for routines like
484** btreeInitPage() to reference an stale connection pointer that references a
485** a connection that has already closed. This routine is used inside assert()
486** statements only and for the purpose of double-checking that the btree code
487** does keep the database connection pointers up-to-date.
488*/
dan7a2347e2016-01-07 16:43:54 +0000489static int cursorOwnsBtShared(BtCursor *p){
490 assert( cursorHoldsMutex(p) );
491 return (p->pBtree->db==p->pBt->db);
492}
drh1fee73e2007-08-29 04:00:57 +0000493#endif
494
danielk197792d4d7a2007-05-04 12:05:56 +0000495/*
dan5a500af2014-03-11 20:33:04 +0000496** Invalidate the overflow cache of the cursor passed as the first argument.
497** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000498*/
drh036dbec2014-03-11 23:40:44 +0000499#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000500
501/*
502** Invalidate the overflow page-list cache for all cursors opened
503** on the shared btree structure pBt.
504*/
505static void invalidateAllOverflowCache(BtShared *pBt){
506 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000507 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000508 for(p=pBt->pCursor; p; p=p->pNext){
509 invalidateOverflowCache(p);
510 }
511}
danielk197796d48e92009-06-29 06:00:37 +0000512
dan5a500af2014-03-11 20:33:04 +0000513#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000514/*
515** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000516** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000517** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000518**
519** If argument isClearTable is true, then the entire contents of the
520** table is about to be deleted. In this case invalidate all incrblob
521** cursors open on any row within the table with root-page pgnoRoot.
522**
523** Otherwise, if argument isClearTable is false, then the row with
524** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000525** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000526*/
527static void invalidateIncrblobCursors(
528 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000529 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000530 i64 iRow, /* The rowid that might be changing */
531 int isClearTable /* True if all rows are being deleted */
532){
533 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000534 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000535 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000536 pBtree->hasIncrblobCur = 0;
537 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
538 if( (p->curFlags & BTCF_Incrblob)!=0 ){
539 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000540 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000541 p->eState = CURSOR_INVALID;
542 }
danielk197796d48e92009-06-29 06:00:37 +0000543 }
544 }
545}
546
danielk197792d4d7a2007-05-04 12:05:56 +0000547#else
dan5a500af2014-03-11 20:33:04 +0000548 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000549 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000550#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000551
drh980b1a72006-08-16 16:42:48 +0000552/*
danielk1977bea2a942009-01-20 17:06:27 +0000553** Set bit pgno of the BtShared.pHasContent bitvec. This is called
554** when a page that previously contained data becomes a free-list leaf
555** page.
556**
557** The BtShared.pHasContent bitvec exists to work around an obscure
558** bug caused by the interaction of two useful IO optimizations surrounding
559** free-list leaf pages:
560**
561** 1) When all data is deleted from a page and the page becomes
562** a free-list leaf page, the page is not written to the database
563** (as free-list leaf pages contain no meaningful data). Sometimes
564** such a page is not even journalled (as it will not be modified,
565** why bother journalling it?).
566**
567** 2) When a free-list leaf page is reused, its content is not read
568** from the database or written to the journal file (why should it
569** be, if it is not at all meaningful?).
570**
571** By themselves, these optimizations work fine and provide a handy
572** performance boost to bulk delete or insert operations. However, if
573** a page is moved to the free-list and then reused within the same
574** transaction, a problem comes up. If the page is not journalled when
575** it is moved to the free-list and it is also not journalled when it
576** is extracted from the free-list and reused, then the original data
577** may be lost. In the event of a rollback, it may not be possible
578** to restore the database to its original configuration.
579**
580** The solution is the BtShared.pHasContent bitvec. Whenever a page is
581** moved to become a free-list leaf page, the corresponding bit is
582** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000583** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000584** set in BtShared.pHasContent. The contents of the bitvec are cleared
585** at the end of every transaction.
586*/
587static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
588 int rc = SQLITE_OK;
589 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000590 assert( pgno<=pBt->nPage );
591 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000592 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000593 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000594 }
595 }
596 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
597 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
598 }
599 return rc;
600}
601
602/*
603** Query the BtShared.pHasContent vector.
604**
605** This function is called when a free-list leaf page is removed from the
606** free-list for reuse. It returns false if it is safe to retrieve the
607** page from the pager layer with the 'no-content' flag set. True otherwise.
608*/
609static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
610 Bitvec *p = pBt->pHasContent;
611 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
612}
613
614/*
615** Clear (destroy) the BtShared.pHasContent bitvec. This should be
616** invoked at the conclusion of each write-transaction.
617*/
618static void btreeClearHasContent(BtShared *pBt){
619 sqlite3BitvecDestroy(pBt->pHasContent);
620 pBt->pHasContent = 0;
621}
622
623/*
drh138eeeb2013-03-27 03:15:23 +0000624** Release all of the apPage[] pages for a cursor.
625*/
626static void btreeReleaseAllCursorPages(BtCursor *pCur){
627 int i;
drh352a35a2017-08-15 03:46:47 +0000628 if( pCur->iPage>=0 ){
629 for(i=0; i<pCur->iPage; i++){
630 releasePageNotNull(pCur->apPage[i]);
631 }
632 releasePageNotNull(pCur->pPage);
633 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000634 }
drh138eeeb2013-03-27 03:15:23 +0000635}
636
danf0ee1d32015-09-12 19:26:11 +0000637/*
638** The cursor passed as the only argument must point to a valid entry
639** when this function is called (i.e. have eState==CURSOR_VALID). This
640** function saves the current cursor key in variables pCur->nKey and
641** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
642** code otherwise.
643**
644** If the cursor is open on an intkey table, then the integer key
645** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
646** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
647** set to point to a malloced buffer pCur->nKey bytes in size containing
648** the key.
649*/
650static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000651 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000652 assert( CURSOR_VALID==pCur->eState );
653 assert( 0==pCur->pKey );
654 assert( cursorHoldsMutex(pCur) );
655
drha7c90c42016-06-04 20:37:10 +0000656 if( pCur->curIntKey ){
657 /* Only the rowid is required for a table btree */
658 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
659 }else{
660 /* For an index btree, save the complete key content */
drhd66c4f82016-06-04 20:58:35 +0000661 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000662 pCur->nKey = sqlite3BtreePayloadSize(pCur);
drhd66c4f82016-06-04 20:58:35 +0000663 pKey = sqlite3Malloc( pCur->nKey );
danf0ee1d32015-09-12 19:26:11 +0000664 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000665 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000666 if( rc==SQLITE_OK ){
667 pCur->pKey = pKey;
668 }else{
669 sqlite3_free(pKey);
670 }
671 }else{
mistachkinfad30392016-02-13 23:43:46 +0000672 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000673 }
674 }
675 assert( !pCur->curIntKey || !pCur->pKey );
676 return rc;
677}
drh138eeeb2013-03-27 03:15:23 +0000678
679/*
drh980b1a72006-08-16 16:42:48 +0000680** Save the current cursor position in the variables BtCursor.nKey
681** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000682**
683** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
684** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000685*/
686static int saveCursorPosition(BtCursor *pCur){
687 int rc;
688
drhd2f83132015-03-25 17:35:01 +0000689 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000690 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000691 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000692
drhd2f83132015-03-25 17:35:01 +0000693 if( pCur->eState==CURSOR_SKIPNEXT ){
694 pCur->eState = CURSOR_VALID;
695 }else{
696 pCur->skipNext = 0;
697 }
drh980b1a72006-08-16 16:42:48 +0000698
danf0ee1d32015-09-12 19:26:11 +0000699 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000700 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000701 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000702 pCur->eState = CURSOR_REQUIRESEEK;
703 }
704
dane755e102015-09-30 12:59:12 +0000705 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000706 return rc;
707}
708
drh637f3d82014-08-22 22:26:07 +0000709/* Forward reference */
710static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
711
drh980b1a72006-08-16 16:42:48 +0000712/*
drh0ee3dbe2009-10-16 15:05:18 +0000713** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000714** the table with root-page iRoot. "Saving the cursor position" means that
715** the location in the btree is remembered in such a way that it can be
716** moved back to the same spot after the btree has been modified. This
717** routine is called just before cursor pExcept is used to modify the
718** table, for example in BtreeDelete() or BtreeInsert().
719**
drh27fb7462015-06-30 02:47:36 +0000720** If there are two or more cursors on the same btree, then all such
721** cursors should have their BTCF_Multiple flag set. The btreeCursor()
722** routine enforces that rule. This routine only needs to be called in
723** the uncommon case when pExpect has the BTCF_Multiple flag set.
724**
725** If pExpect!=NULL and if no other cursors are found on the same root-page,
726** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
727** pointless call to this routine.
728**
drh637f3d82014-08-22 22:26:07 +0000729** Implementation note: This routine merely checks to see if any cursors
730** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
731** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000732*/
733static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
734 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000735 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000736 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000737 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000738 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
739 }
drh27fb7462015-06-30 02:47:36 +0000740 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
741 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
742 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000743}
744
745/* This helper routine to saveAllCursors does the actual work of saving
746** the cursors if and when a cursor is found that actually requires saving.
747** The common case is that no cursors need to be saved, so this routine is
748** broken out from its caller to avoid unnecessary stack pointer movement.
749*/
750static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000751 BtCursor *p, /* The first cursor that needs saving */
752 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
753 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000754){
755 do{
drh138eeeb2013-03-27 03:15:23 +0000756 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000757 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000758 int rc = saveCursorPosition(p);
759 if( SQLITE_OK!=rc ){
760 return rc;
761 }
762 }else{
drh85ef6302017-08-02 15:50:09 +0000763 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000764 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000765 }
766 }
drh637f3d82014-08-22 22:26:07 +0000767 p = p->pNext;
768 }while( p );
drh980b1a72006-08-16 16:42:48 +0000769 return SQLITE_OK;
770}
771
772/*
drhbf700f32007-03-31 02:36:44 +0000773** Clear the current cursor position.
774*/
danielk1977be51a652008-10-08 17:58:48 +0000775void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000776 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000777 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000778 pCur->pKey = 0;
779 pCur->eState = CURSOR_INVALID;
780}
781
782/*
danielk19773509a652009-07-06 18:56:13 +0000783** In this version of BtreeMoveto, pKey is a packed index record
784** such as is generated by the OP_MakeRecord opcode. Unpack the
785** record and then call BtreeMovetoUnpacked() to do the work.
786*/
787static int btreeMoveto(
788 BtCursor *pCur, /* Cursor open on the btree to be searched */
789 const void *pKey, /* Packed key if the btree is an index */
790 i64 nKey, /* Integer key for tables. Size of pKey for indices */
791 int bias, /* Bias search to the high end */
792 int *pRes /* Write search results here */
793){
794 int rc; /* Status code */
795 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000796
797 if( pKey ){
798 assert( nKey==(i64)(int)nKey );
drha582b012016-12-21 19:45:54 +0000799 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000800 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000801 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000802 if( pIdxKey->nField==0 ){
mistachkin88a79732017-09-04 19:31:54 +0000803 rc = SQLITE_CORRUPT_BKPT;
drha582b012016-12-21 19:45:54 +0000804 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000805 }
danielk19773509a652009-07-06 18:56:13 +0000806 }else{
807 pIdxKey = 0;
808 }
809 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000810moveto_done:
811 if( pIdxKey ){
812 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000813 }
814 return rc;
815}
816
817/*
drh980b1a72006-08-16 16:42:48 +0000818** Restore the cursor to the position it was in (or as close to as possible)
819** when saveCursorPosition() was called. Note that this call deletes the
820** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000821** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000822** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000823*/
danielk197730548662009-07-09 05:07:37 +0000824static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000825 int rc;
drhd2f83132015-03-25 17:35:01 +0000826 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000827 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000828 assert( pCur->eState>=CURSOR_REQUIRESEEK );
829 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000830 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000831 }
drh980b1a72006-08-16 16:42:48 +0000832 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000833 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000834 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000835 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000836 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000837 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000838 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000839 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
840 pCur->eState = CURSOR_SKIPNEXT;
841 }
drh980b1a72006-08-16 16:42:48 +0000842 }
843 return rc;
844}
845
drha3460582008-07-11 21:02:53 +0000846#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000847 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000848 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000849 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000850
drha3460582008-07-11 21:02:53 +0000851/*
drh6848dad2014-08-22 23:33:03 +0000852** Determine whether or not a cursor has moved from the position where
853** it was last placed, or has been invalidated for any other reason.
854** Cursors can move when the row they are pointing at is deleted out
855** from under them, for example. Cursor might also move if a btree
856** is rebalanced.
drha3460582008-07-11 21:02:53 +0000857**
drh6848dad2014-08-22 23:33:03 +0000858** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000859**
drh6848dad2014-08-22 23:33:03 +0000860** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
861** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000862*/
drh6848dad2014-08-22 23:33:03 +0000863int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000864 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000865}
866
867/*
drhfe0cf7a2017-08-16 19:20:20 +0000868** Return a pointer to a fake BtCursor object that will always answer
869** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
870** cursor returned must not be used with any other Btree interface.
871*/
872BtCursor *sqlite3BtreeFakeValidCursor(void){
873 static u8 fakeCursor = CURSOR_VALID;
874 assert( offsetof(BtCursor, eState)==0 );
875 return (BtCursor*)&fakeCursor;
876}
877
878/*
drh6848dad2014-08-22 23:33:03 +0000879** This routine restores a cursor back to its original position after it
880** has been moved by some outside activity (such as a btree rebalance or
881** a row having been deleted out from under the cursor).
882**
883** On success, the *pDifferentRow parameter is false if the cursor is left
884** pointing at exactly the same row. *pDifferntRow is the row the cursor
885** was pointing to has been deleted, forcing the cursor to point to some
886** nearby row.
887**
888** This routine should only be called for a cursor that just returned
889** TRUE from sqlite3BtreeCursorHasMoved().
890*/
891int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000892 int rc;
893
drh6848dad2014-08-22 23:33:03 +0000894 assert( pCur!=0 );
895 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000896 rc = restoreCursorPosition(pCur);
897 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000898 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000899 return rc;
900 }
drh606a3572015-03-25 18:29:10 +0000901 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000902 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000903 }else{
drh606a3572015-03-25 18:29:10 +0000904 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000905 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000906 }
907 return SQLITE_OK;
908}
909
drhf7854c72015-10-27 13:24:37 +0000910#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000911/*
drh0df57012015-08-14 15:05:55 +0000912** Provide hints to the cursor. The particular hint given (and the type
913** and number of the varargs parameters) is determined by the eHintType
914** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000915*/
drh0df57012015-08-14 15:05:55 +0000916void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000917 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000918}
drhf7854c72015-10-27 13:24:37 +0000919#endif
920
921/*
922** Provide flag hints to the cursor.
923*/
924void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
925 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
926 pCur->hints = x;
927}
928
drh28935362013-12-07 20:39:19 +0000929
danielk1977599fcba2004-11-08 07:13:13 +0000930#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000931/*
drha3152892007-05-05 11:48:52 +0000932** Given a page number of a regular database page, return the page
933** number for the pointer-map page that contains the entry for the
934** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000935**
936** Return 0 (not a valid page) for pgno==1 since there is
937** no pointer map associated with page 1. The integrity_check logic
938** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000939*/
danielk1977266664d2006-02-10 08:24:21 +0000940static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000941 int nPagesPerMapPage;
942 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000943 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000944 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000945 nPagesPerMapPage = (pBt->usableSize/5)+1;
946 iPtrMap = (pgno-2)/nPagesPerMapPage;
947 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000948 if( ret==PENDING_BYTE_PAGE(pBt) ){
949 ret++;
950 }
951 return ret;
952}
danielk1977a19df672004-11-03 11:37:07 +0000953
danielk1977afcdd022004-10-31 16:25:42 +0000954/*
danielk1977afcdd022004-10-31 16:25:42 +0000955** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000956**
957** This routine updates the pointer map entry for page number 'key'
958** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000959**
960** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
961** a no-op. If an error occurs, the appropriate error code is written
962** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000963*/
drh98add2e2009-07-20 17:11:49 +0000964static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000965 DbPage *pDbPage; /* The pointer map page */
966 u8 *pPtrmap; /* The pointer map data */
967 Pgno iPtrmap; /* The pointer map page number */
968 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000969 int rc; /* Return code from subfunctions */
970
971 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000972
drh1fee73e2007-08-29 04:00:57 +0000973 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000974 /* The master-journal page number must never be used as a pointer map page */
975 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
976
danielk1977ac11ee62005-01-15 12:45:51 +0000977 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000978 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000979 *pRC = SQLITE_CORRUPT_BKPT;
980 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000981 }
danielk1977266664d2006-02-10 08:24:21 +0000982 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000983 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000984 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000985 *pRC = rc;
986 return;
danielk1977afcdd022004-10-31 16:25:42 +0000987 }
danielk19778c666b12008-07-18 09:34:57 +0000988 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000989 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000990 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000991 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000992 }
drhfc243732011-05-17 15:21:56 +0000993 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000994 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000995
drh615ae552005-01-16 23:21:00 +0000996 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
997 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000998 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000999 if( rc==SQLITE_OK ){
1000 pPtrmap[offset] = eType;
1001 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001002 }
danielk1977afcdd022004-10-31 16:25:42 +00001003 }
1004
drh4925a552009-07-07 11:39:58 +00001005ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001006 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001007}
1008
1009/*
1010** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001011**
1012** This routine retrieves the pointer map entry for page 'key', writing
1013** the type and parent page number to *pEType and *pPgno respectively.
1014** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001015*/
danielk1977aef0bf62005-12-30 16:28:01 +00001016static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001017 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001018 int iPtrmap; /* Pointer map page index */
1019 u8 *pPtrmap; /* Pointer map page data */
1020 int offset; /* Offset of entry in pointer map */
1021 int rc;
1022
drh1fee73e2007-08-29 04:00:57 +00001023 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001024
danielk1977266664d2006-02-10 08:24:21 +00001025 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001026 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001027 if( rc!=0 ){
1028 return rc;
1029 }
danielk19773b8a05f2007-03-19 17:44:26 +00001030 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001031
danielk19778c666b12008-07-18 09:34:57 +00001032 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001033 if( offset<0 ){
1034 sqlite3PagerUnref(pDbPage);
1035 return SQLITE_CORRUPT_BKPT;
1036 }
1037 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001038 assert( pEType!=0 );
1039 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001040 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001041
danielk19773b8a05f2007-03-19 17:44:26 +00001042 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001043 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001044 return SQLITE_OK;
1045}
1046
danielk197785d90ca2008-07-19 14:25:15 +00001047#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001048 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001049 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001050 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001051#endif
danielk1977afcdd022004-10-31 16:25:42 +00001052
drh0d316a42002-08-11 20:10:47 +00001053/*
drh271efa52004-05-30 19:19:05 +00001054** Given a btree page and a cell index (0 means the first cell on
1055** the page, 1 means the second cell, and so forth) return a pointer
1056** to the cell content.
1057**
drhf44890a2015-06-27 03:58:15 +00001058** findCellPastPtr() does the same except it skips past the initial
1059** 4-byte child pointer found on interior pages, if there is one.
1060**
drh271efa52004-05-30 19:19:05 +00001061** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001062*/
drh1688c862008-07-18 02:44:17 +00001063#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001064 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001065#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001066 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001067
drh43605152004-05-29 21:46:49 +00001068
1069/*
drh5fa60512015-06-19 17:19:34 +00001070** This is common tail processing for btreeParseCellPtr() and
1071** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1072** on a single B-tree page. Make necessary adjustments to the CellInfo
1073** structure.
drh43605152004-05-29 21:46:49 +00001074*/
drh5fa60512015-06-19 17:19:34 +00001075static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1076 MemPage *pPage, /* Page containing the cell */
1077 u8 *pCell, /* Pointer to the cell text. */
1078 CellInfo *pInfo /* Fill in this structure */
1079){
1080 /* If the payload will not fit completely on the local page, we have
1081 ** to decide how much to store locally and how much to spill onto
1082 ** overflow pages. The strategy is to minimize the amount of unused
1083 ** space on overflow pages while keeping the amount of local storage
1084 ** in between minLocal and maxLocal.
1085 **
1086 ** Warning: changing the way overflow payload is distributed in any
1087 ** way will result in an incompatible file format.
1088 */
1089 int minLocal; /* Minimum amount of payload held locally */
1090 int maxLocal; /* Maximum amount of payload held locally */
1091 int surplus; /* Overflow payload available for local storage */
1092
1093 minLocal = pPage->minLocal;
1094 maxLocal = pPage->maxLocal;
1095 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1096 testcase( surplus==maxLocal );
1097 testcase( surplus==maxLocal+1 );
1098 if( surplus <= maxLocal ){
1099 pInfo->nLocal = (u16)surplus;
1100 }else{
1101 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001102 }
drh45ac1c72015-12-18 03:59:16 +00001103 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001104}
1105
1106/*
drh5fa60512015-06-19 17:19:34 +00001107** The following routines are implementations of the MemPage.xParseCell()
1108** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001109**
drh5fa60512015-06-19 17:19:34 +00001110** Parse a cell content block and fill in the CellInfo structure.
1111**
1112** btreeParseCellPtr() => table btree leaf nodes
1113** btreeParseCellNoPayload() => table btree internal nodes
1114** btreeParseCellPtrIndex() => index btree nodes
1115**
1116** There is also a wrapper function btreeParseCell() that works for
1117** all MemPage types and that references the cell by index rather than
1118** by pointer.
drh43605152004-05-29 21:46:49 +00001119*/
drh5fa60512015-06-19 17:19:34 +00001120static void btreeParseCellPtrNoPayload(
1121 MemPage *pPage, /* Page containing the cell */
1122 u8 *pCell, /* Pointer to the cell text. */
1123 CellInfo *pInfo /* Fill in this structure */
1124){
1125 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1126 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001127 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001128#ifndef SQLITE_DEBUG
1129 UNUSED_PARAMETER(pPage);
1130#endif
drh5fa60512015-06-19 17:19:34 +00001131 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1132 pInfo->nPayload = 0;
1133 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001134 pInfo->pPayload = 0;
1135 return;
1136}
danielk197730548662009-07-09 05:07:37 +00001137static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001138 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001139 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001140 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001141){
drh3e28ff52014-09-24 00:59:08 +00001142 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001143 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001144 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001145
drh1fee73e2007-08-29 04:00:57 +00001146 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001147 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001148 assert( pPage->intKeyLeaf );
1149 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001150 pIter = pCell;
1151
1152 /* The next block of code is equivalent to:
1153 **
1154 ** pIter += getVarint32(pIter, nPayload);
1155 **
1156 ** The code is inlined to avoid a function call.
1157 */
1158 nPayload = *pIter;
1159 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001160 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001161 nPayload &= 0x7f;
1162 do{
1163 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1164 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001165 }
drh56cb04e2015-06-19 18:24:37 +00001166 pIter++;
1167
1168 /* The next block of code is equivalent to:
1169 **
1170 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1171 **
1172 ** The code is inlined to avoid a function call.
1173 */
1174 iKey = *pIter;
1175 if( iKey>=0x80 ){
1176 u8 *pEnd = &pIter[7];
1177 iKey &= 0x7f;
1178 while(1){
1179 iKey = (iKey<<7) | (*++pIter & 0x7f);
1180 if( (*pIter)<0x80 ) break;
1181 if( pIter>=pEnd ){
1182 iKey = (iKey<<8) | *++pIter;
1183 break;
1184 }
1185 }
1186 }
1187 pIter++;
1188
1189 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001190 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001191 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001192 testcase( nPayload==pPage->maxLocal );
1193 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001194 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001195 /* This is the (easy) common case where the entire payload fits
1196 ** on the local page. No overflow is required.
1197 */
drhab1cc582014-09-23 21:25:19 +00001198 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1199 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001200 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001201 }else{
drh5fa60512015-06-19 17:19:34 +00001202 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001203 }
drh3aac2dd2004-04-26 14:10:20 +00001204}
drh5fa60512015-06-19 17:19:34 +00001205static void btreeParseCellPtrIndex(
1206 MemPage *pPage, /* Page containing the cell */
1207 u8 *pCell, /* Pointer to the cell text. */
1208 CellInfo *pInfo /* Fill in this structure */
1209){
1210 u8 *pIter; /* For scanning through pCell */
1211 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001212
drh5fa60512015-06-19 17:19:34 +00001213 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1214 assert( pPage->leaf==0 || pPage->leaf==1 );
1215 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001216 pIter = pCell + pPage->childPtrSize;
1217 nPayload = *pIter;
1218 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001219 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001220 nPayload &= 0x7f;
1221 do{
1222 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1223 }while( *(pIter)>=0x80 && pIter<pEnd );
1224 }
1225 pIter++;
1226 pInfo->nKey = nPayload;
1227 pInfo->nPayload = nPayload;
1228 pInfo->pPayload = pIter;
1229 testcase( nPayload==pPage->maxLocal );
1230 testcase( nPayload==pPage->maxLocal+1 );
1231 if( nPayload<=pPage->maxLocal ){
1232 /* This is the (easy) common case where the entire payload fits
1233 ** on the local page. No overflow is required.
1234 */
1235 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1236 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1237 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001238 }else{
1239 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001240 }
1241}
danielk197730548662009-07-09 05:07:37 +00001242static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001243 MemPage *pPage, /* Page containing the cell */
1244 int iCell, /* The cell index. First cell is 0 */
1245 CellInfo *pInfo /* Fill in this structure */
1246){
drh5fa60512015-06-19 17:19:34 +00001247 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001248}
drh3aac2dd2004-04-26 14:10:20 +00001249
1250/*
drh5fa60512015-06-19 17:19:34 +00001251** The following routines are implementations of the MemPage.xCellSize
1252** method.
1253**
drh43605152004-05-29 21:46:49 +00001254** Compute the total number of bytes that a Cell needs in the cell
1255** data area of the btree-page. The return number includes the cell
1256** data header and the local payload, but not any overflow page or
1257** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001258**
drh5fa60512015-06-19 17:19:34 +00001259** cellSizePtrNoPayload() => table internal nodes
1260** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001261*/
danielk1977ae5558b2009-04-29 11:31:47 +00001262static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001263 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1264 u8 *pEnd; /* End mark for a varint */
1265 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001266
1267#ifdef SQLITE_DEBUG
1268 /* The value returned by this function should always be the same as
1269 ** the (CellInfo.nSize) value found by doing a full parse of the
1270 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1271 ** this function verifies that this invariant is not violated. */
1272 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001273 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001274#endif
1275
drh3e28ff52014-09-24 00:59:08 +00001276 nSize = *pIter;
1277 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001278 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001279 nSize &= 0x7f;
1280 do{
1281 nSize = (nSize<<7) | (*++pIter & 0x7f);
1282 }while( *(pIter)>=0x80 && pIter<pEnd );
1283 }
1284 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001285 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001286 /* pIter now points at the 64-bit integer key value, a variable length
1287 ** integer. The following block moves pIter to point at the first byte
1288 ** past the end of the key value. */
1289 pEnd = &pIter[9];
1290 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001291 }
drh0a45c272009-07-08 01:49:11 +00001292 testcase( nSize==pPage->maxLocal );
1293 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001294 if( nSize<=pPage->maxLocal ){
1295 nSize += (u32)(pIter - pCell);
1296 if( nSize<4 ) nSize = 4;
1297 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001298 int minLocal = pPage->minLocal;
1299 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001300 testcase( nSize==pPage->maxLocal );
1301 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001302 if( nSize>pPage->maxLocal ){
1303 nSize = minLocal;
1304 }
drh3e28ff52014-09-24 00:59:08 +00001305 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001306 }
drhdc41d602014-09-22 19:51:35 +00001307 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001308 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001309}
drh25ada072015-06-19 15:07:14 +00001310static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1311 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1312 u8 *pEnd; /* End mark for a varint */
1313
1314#ifdef SQLITE_DEBUG
1315 /* The value returned by this function should always be the same as
1316 ** the (CellInfo.nSize) value found by doing a full parse of the
1317 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1318 ** this function verifies that this invariant is not violated. */
1319 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001320 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001321#else
1322 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001323#endif
1324
1325 assert( pPage->childPtrSize==4 );
1326 pEnd = pIter + 9;
1327 while( (*pIter++)&0x80 && pIter<pEnd );
1328 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1329 return (u16)(pIter - pCell);
1330}
1331
drh0ee3dbe2009-10-16 15:05:18 +00001332
1333#ifdef SQLITE_DEBUG
1334/* This variation on cellSizePtr() is used inside of assert() statements
1335** only. */
drha9121e42008-02-19 14:59:35 +00001336static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001337 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001338}
danielk1977bc6ada42004-06-30 08:20:16 +00001339#endif
drh3b7511c2001-05-26 13:15:44 +00001340
danielk197779a40da2005-01-16 08:00:01 +00001341#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001342/*
danielk197726836652005-01-17 01:33:13 +00001343** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001344** to an overflow page, insert an entry into the pointer-map
1345** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001346*/
drh98add2e2009-07-20 17:11:49 +00001347static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001348 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001349 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001350 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001351 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001352 if( info.nLocal<info.nPayload ){
1353 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001354 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001355 }
danielk1977ac11ee62005-01-15 12:45:51 +00001356}
danielk197779a40da2005-01-16 08:00:01 +00001357#endif
1358
danielk1977ac11ee62005-01-15 12:45:51 +00001359
drhda200cc2004-05-09 11:51:38 +00001360/*
dane6d065a2017-02-24 19:58:22 +00001361** Defragment the page given. This routine reorganizes cells within the
1362** page so that there are no free-blocks on the free-block list.
1363**
1364** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1365** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001366**
1367** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1368** b-tree page so that there are no freeblocks or fragment bytes, all
1369** unused bytes are contained in the unallocated space region, and all
1370** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001371*/
dane6d065a2017-02-24 19:58:22 +00001372static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001373 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001374 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001375 int hdr; /* Offset to the page header */
1376 int size; /* Size of a cell */
1377 int usableSize; /* Number of usable bytes on a page */
1378 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001379 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001380 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001381 unsigned char *data; /* The page data */
1382 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001383 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001384 int iCellFirst; /* First allowable cell index */
1385 int iCellLast; /* Last possible cell index */
1386
danielk19773b8a05f2007-03-19 17:44:26 +00001387 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001388 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001389 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001390 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001391 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001392 temp = 0;
1393 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001394 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001395 cellOffset = pPage->cellOffset;
1396 nCell = pPage->nCell;
1397 assert( nCell==get2byte(&data[hdr+3]) );
dane6d065a2017-02-24 19:58:22 +00001398 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001399 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001400
1401 /* This block handles pages with two or fewer free blocks and nMaxFrag
1402 ** or fewer fragmented bytes. In this case it is faster to move the
1403 ** two (or one) blocks of cells using memmove() and add the required
1404 ** offsets to each pointer in the cell-pointer array than it is to
1405 ** reconstruct the entire page. */
1406 if( (int)data[hdr+7]<=nMaxFrag ){
1407 int iFree = get2byte(&data[hdr+1]);
1408 if( iFree ){
1409 int iFree2 = get2byte(&data[iFree]);
dan30741eb2017-03-03 20:02:53 +00001410
1411 /* pageFindSlot() has already verified that free blocks are sorted
1412 ** in order of offset within the page, and that no block extends
1413 ** past the end of the page. Provided the two free slots do not
1414 ** overlap, this guarantees that the memmove() calls below will not
1415 ** overwrite the usableSize byte buffer, even if the database page
1416 ** is corrupt. */
1417 assert( iFree2==0 || iFree2>iFree );
1418 assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1419 assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1420
dane6d065a2017-02-24 19:58:22 +00001421 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1422 u8 *pEnd = &data[cellOffset + nCell*2];
1423 u8 *pAddr;
1424 int sz2 = 0;
1425 int sz = get2byte(&data[iFree+2]);
1426 int top = get2byte(&data[hdr+5]);
drh4e6cec12017-09-28 13:47:35 +00001427 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001428 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001429 }
dane6d065a2017-02-24 19:58:22 +00001430 if( iFree2 ){
drh60348462017-08-25 13:02:48 +00001431 assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */
dane6d065a2017-02-24 19:58:22 +00001432 sz2 = get2byte(&data[iFree2+2]);
dan30741eb2017-03-03 20:02:53 +00001433 assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001434 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1435 sz += sz2;
1436 }
1437 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001438 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001439 memmove(&data[cbrk], &data[top], iFree-top);
1440 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1441 pc = get2byte(pAddr);
1442 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1443 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1444 }
1445 goto defragment_out;
1446 }
1447 }
1448 }
1449
drh281b21d2008-08-22 12:57:08 +00001450 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001451 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001452 for(i=0; i<nCell; i++){
1453 u8 *pAddr; /* The i-th cell pointer */
1454 pAddr = &data[cellOffset + i*2];
1455 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001456 testcase( pc==iCellFirst );
1457 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001458 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001459 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001460 */
1461 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001462 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001463 }
drh17146622009-07-07 17:38:38 +00001464 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001465 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001466 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001467 if( cbrk<iCellFirst || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001468 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001469 }
drh7157e1d2009-07-09 13:25:32 +00001470 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001471 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001472 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001473 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001474 if( temp==0 ){
1475 int x;
1476 if( cbrk==pc ) continue;
1477 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1478 x = get2byte(&data[hdr+5]);
1479 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1480 src = temp;
1481 }
1482 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001483 }
dane6d065a2017-02-24 19:58:22 +00001484 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001485
1486 defragment_out:
dan3b2ede12017-02-25 16:24:02 +00001487 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001488 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001489 }
drh17146622009-07-07 17:38:38 +00001490 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001491 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001492 data[hdr+1] = 0;
1493 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001494 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001495 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001496 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001497}
1498
drha059ad02001-04-17 20:09:11 +00001499/*
dan8e9ba0c2014-10-14 17:27:04 +00001500** Search the free-list on page pPg for space to store a cell nByte bytes in
1501** size. If one can be found, return a pointer to the space and remove it
1502** from the free-list.
1503**
1504** If no suitable space can be found on the free-list, return NULL.
1505**
drhba0f9992014-10-30 20:48:44 +00001506** This function may detect corruption within pPg. If corruption is
1507** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001508**
drhb7580e82015-06-25 18:36:13 +00001509** Slots on the free list that are between 1 and 3 bytes larger than nByte
1510** will be ignored if adding the extra space to the fragmentation count
1511** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001512*/
drhb7580e82015-06-25 18:36:13 +00001513static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001514 const int hdr = pPg->hdrOffset;
1515 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001516 int iAddr = hdr + 1;
1517 int pc = get2byte(&aData[iAddr]);
1518 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001519 int usableSize = pPg->pBt->usableSize;
drh87d63c92017-08-23 23:09:03 +00001520 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001521
drhb7580e82015-06-25 18:36:13 +00001522 assert( pc>0 );
drh87d63c92017-08-23 23:09:03 +00001523 while( pc<=usableSize-4 ){
drh113762a2014-11-19 16:36:25 +00001524 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1525 ** freeblock form a big-endian integer which is the size of the freeblock
1526 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001527 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001528 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001529 testcase( x==4 );
1530 testcase( x==3 );
drh5e398e42017-08-23 20:36:06 +00001531 if( size+pc > usableSize ){
daneebf2f52017-11-18 17:30:08 +00001532 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh24dee9d2015-06-02 19:36:29 +00001533 return 0;
1534 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001535 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1536 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001537 if( aData[hdr+7]>57 ) return 0;
1538
dan8e9ba0c2014-10-14 17:27:04 +00001539 /* Remove the slot from the free-list. Update the number of
1540 ** fragmented bytes within the page. */
1541 memcpy(&aData[iAddr], &aData[pc], 2);
1542 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001543 }else{
1544 /* The slot remains on the free-list. Reduce its size to account
1545 ** for the portion used by the new allocation. */
1546 put2byte(&aData[pc+2], x);
1547 }
1548 return &aData[pc + x];
1549 }
drhb7580e82015-06-25 18:36:13 +00001550 iAddr = pc;
1551 pc = get2byte(&aData[pc]);
drh87d63c92017-08-23 23:09:03 +00001552 if( pc<iAddr+size ) break;
1553 }
1554 if( pc ){
daneebf2f52017-11-18 17:30:08 +00001555 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001556 }
dan8e9ba0c2014-10-14 17:27:04 +00001557
1558 return 0;
1559}
1560
1561/*
danielk19776011a752009-04-01 16:25:32 +00001562** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001563** as the first argument. Write into *pIdx the index into pPage->aData[]
1564** of the first byte of allocated space. Return either SQLITE_OK or
1565** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001566**
drh0a45c272009-07-08 01:49:11 +00001567** The caller guarantees that there is sufficient space to make the
1568** allocation. This routine might need to defragment in order to bring
1569** all the space together, however. This routine will avoid using
1570** the first two bytes past the cell pointer area since presumably this
1571** allocation is being made in order to insert a new cell, so we will
1572** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001573*/
drh0a45c272009-07-08 01:49:11 +00001574static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001575 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1576 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001577 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001578 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001579 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001580
danielk19773b8a05f2007-03-19 17:44:26 +00001581 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001582 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001583 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001584 assert( nByte>=0 ); /* Minimum cell size is 4 */
1585 assert( pPage->nFree>=nByte );
1586 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001587 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001588
drh0a45c272009-07-08 01:49:11 +00001589 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1590 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001591 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001592 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1593 ** and the reserved space is zero (the usual value for reserved space)
1594 ** then the cell content offset of an empty page wants to be 65536.
1595 ** However, that integer is too large to be stored in a 2-byte unsigned
1596 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001597 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001598 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001599 if( gap>top ){
1600 if( top==0 && pPage->pBt->usableSize==65536 ){
1601 top = 65536;
1602 }else{
daneebf2f52017-11-18 17:30:08 +00001603 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001604 }
1605 }
drh43605152004-05-29 21:46:49 +00001606
drh4c04f3c2014-08-20 11:56:14 +00001607 /* If there is enough space between gap and top for one more cell pointer
1608 ** array entry offset, and if the freelist is not empty, then search the
1609 ** freelist looking for a free slot big enough to satisfy the request.
1610 */
drh5e2f8b92001-05-28 00:41:15 +00001611 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001612 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001613 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001614 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001615 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001616 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001617 assert( pSpace>=data && (pSpace - data)<65536 );
1618 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001619 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001620 }else if( rc ){
1621 return rc;
drh9e572e62004-04-23 23:43:10 +00001622 }
1623 }
drh43605152004-05-29 21:46:49 +00001624
drh4c04f3c2014-08-20 11:56:14 +00001625 /* The request could not be fulfilled using a freelist slot. Check
1626 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001627 */
1628 testcase( gap+2+nByte==top );
1629 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001630 assert( pPage->nCell>0 || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001631 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001632 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001633 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001634 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001635 }
1636
1637
drh43605152004-05-29 21:46:49 +00001638 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001639 ** and the cell content area. The btreeInitPage() call has already
1640 ** validated the freelist. Given that the freelist is valid, there
1641 ** is no way that the allocation can extend off the end of the page.
1642 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001643 */
drh0a45c272009-07-08 01:49:11 +00001644 top -= nByte;
drh43605152004-05-29 21:46:49 +00001645 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001646 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001647 *pIdx = top;
1648 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001649}
1650
1651/*
drh9e572e62004-04-23 23:43:10 +00001652** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001653** The first byte of the new free block is pPage->aData[iStart]
1654** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001655**
drh5f5c7532014-08-20 17:56:27 +00001656** Adjacent freeblocks are coalesced.
1657**
1658** Note that even though the freeblock list was checked by btreeInitPage(),
1659** that routine will not detect overlap between cells or freeblocks. Nor
1660** does it detect cells or freeblocks that encrouch into the reserved bytes
1661** at the end of the page. So do additional corruption checks inside this
1662** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001663*/
drh5f5c7532014-08-20 17:56:27 +00001664static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001665 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001666 u16 iFreeBlk; /* Address of the next freeblock */
1667 u8 hdr; /* Page header size. 0 or 100 */
1668 u8 nFrag = 0; /* Reduction in fragmentation */
1669 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001670 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001671 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001672 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001673
drh9e572e62004-04-23 23:43:10 +00001674 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001675 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001676 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001677 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001678 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001679 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001680 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001681
drh5f5c7532014-08-20 17:56:27 +00001682 /* The list of freeblocks must be in ascending order. Find the
1683 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001684 */
drh43605152004-05-29 21:46:49 +00001685 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001686 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001687 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1688 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1689 }else{
drh85f071b2016-09-17 19:34:32 +00001690 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1691 if( iFreeBlk<iPtr+4 ){
1692 if( iFreeBlk==0 ) break;
daneebf2f52017-11-18 17:30:08 +00001693 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001694 }
drh7bc4c452014-08-20 18:43:44 +00001695 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001696 }
drh5e398e42017-08-23 20:36:06 +00001697 if( iFreeBlk>pPage->pBt->usableSize-4 ){
daneebf2f52017-11-18 17:30:08 +00001698 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001699 }
drh7bc4c452014-08-20 18:43:44 +00001700 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1701
1702 /* At this point:
1703 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001704 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001705 **
1706 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1707 */
1708 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1709 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001710 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001711 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhcc97ca42017-06-07 22:32:59 +00001712 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001713 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001714 }
drh7bc4c452014-08-20 18:43:44 +00001715 iSize = iEnd - iStart;
1716 iFreeBlk = get2byte(&data[iFreeBlk]);
1717 }
1718
drh3f387402014-09-24 01:23:00 +00001719 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1720 ** pointer in the page header) then check to see if iStart should be
1721 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001722 */
1723 if( iPtr>hdr+1 ){
1724 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1725 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001726 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001727 nFrag += iStart - iPtrEnd;
1728 iSize = iEnd - iPtr;
1729 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001730 }
drh9e572e62004-04-23 23:43:10 +00001731 }
daneebf2f52017-11-18 17:30:08 +00001732 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001733 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001734 }
drh5e398e42017-08-23 20:36:06 +00001735 x = get2byte(&data[hdr+5]);
1736 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001737 /* The new freeblock is at the beginning of the cell content area,
1738 ** so just extend the cell content area rather than create another
1739 ** freelist entry */
daneebf2f52017-11-18 17:30:08 +00001740 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001741 put2byte(&data[hdr+1], iFreeBlk);
1742 put2byte(&data[hdr+5], iEnd);
1743 }else{
1744 /* Insert the new freeblock into the freelist */
1745 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001746 }
drh5e398e42017-08-23 20:36:06 +00001747 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1748 /* Overwrite deleted information with zeros when the secure_delete
1749 ** option is enabled */
1750 memset(&data[iStart], 0, iSize);
1751 }
1752 put2byte(&data[iStart], iFreeBlk);
1753 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001754 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001755 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001756}
1757
1758/*
drh271efa52004-05-30 19:19:05 +00001759** Decode the flags byte (the first byte of the header) for a page
1760** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001761**
1762** Only the following combinations are supported. Anything different
1763** indicates a corrupt database files:
1764**
1765** PTF_ZERODATA
1766** PTF_ZERODATA | PTF_LEAF
1767** PTF_LEAFDATA | PTF_INTKEY
1768** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001769*/
drh44845222008-07-17 18:39:57 +00001770static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001771 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001772
1773 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001774 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001775 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001776 flagByte &= ~PTF_LEAF;
1777 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001778 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001779 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001780 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001781 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1782 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001783 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001784 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1785 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001786 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001787 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001788 if( pPage->leaf ){
1789 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001790 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001791 }else{
1792 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001793 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001794 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001795 }
drh271efa52004-05-30 19:19:05 +00001796 pPage->maxLocal = pBt->maxLeaf;
1797 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001798 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001799 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1800 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001801 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001802 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1803 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001804 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001805 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001806 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001807 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001808 pPage->maxLocal = pBt->maxLocal;
1809 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001810 }else{
drhfdab0262014-11-20 15:30:50 +00001811 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1812 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001813 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001814 }
drhc9166342012-01-05 23:32:06 +00001815 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001816 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001817}
1818
1819/*
drh7e3b0a02001-04-28 16:52:40 +00001820** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001821**
1822** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001823** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001824** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1825** guarantee that the page is well-formed. It only shows that
1826** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001827*/
danielk197730548662009-07-09 05:07:37 +00001828static int btreeInitPage(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001829 int pc; /* Address of a freeblock within pPage->aData[] */
1830 u8 hdr; /* Offset to beginning of page header */
1831 u8 *data; /* Equal to pPage->aData */
1832 BtShared *pBt; /* The main btree structure */
1833 int usableSize; /* Amount of usable space on each page */
1834 u16 cellOffset; /* Offset from start of page to first cell pointer */
1835 int nFree; /* Number of unused bytes on the page */
1836 int top; /* First byte of the cell content area */
1837 int iCellFirst; /* First allowable cell or freeblock offset */
1838 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001839
danielk197771d5d2c2008-09-29 11:49:47 +00001840 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001841 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001842 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001843 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001844 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1845 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drh14e845a2017-05-25 21:35:56 +00001846 assert( pPage->isInit==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001847
drh14e845a2017-05-25 21:35:56 +00001848 pBt = pPage->pBt;
1849 hdr = pPage->hdrOffset;
1850 data = pPage->aData;
1851 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1852 ** the b-tree page type. */
drhcc97ca42017-06-07 22:32:59 +00001853 if( decodeFlags(pPage, data[hdr]) ){
daneebf2f52017-11-18 17:30:08 +00001854 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001855 }
drh14e845a2017-05-25 21:35:56 +00001856 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1857 pPage->maskPage = (u16)(pBt->pageSize - 1);
1858 pPage->nOverflow = 0;
1859 usableSize = pBt->usableSize;
1860 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1861 pPage->aDataEnd = &data[usableSize];
1862 pPage->aCellIdx = &data[cellOffset];
1863 pPage->aDataOfst = &data[pPage->childPtrSize];
1864 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1865 ** the start of the cell content area. A zero value for this integer is
1866 ** interpreted as 65536. */
1867 top = get2byteNotZero(&data[hdr+5]);
1868 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1869 ** number of cells on the page. */
1870 pPage->nCell = get2byte(&data[hdr+3]);
1871 if( pPage->nCell>MX_CELL(pBt) ){
1872 /* To many cells for a single page. The page must be corrupt */
daneebf2f52017-11-18 17:30:08 +00001873 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001874 }
1875 testcase( pPage->nCell==MX_CELL(pBt) );
1876 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1877 ** possible for a root page of a table that contains no rows) then the
1878 ** offset to the cell content area will equal the page size minus the
1879 ** bytes of reserved space. */
1880 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00001881
drh14e845a2017-05-25 21:35:56 +00001882 /* A malformed database page might cause us to read past the end
1883 ** of page when parsing a cell.
1884 **
1885 ** The following block of code checks early to see if a cell extends
1886 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1887 ** returned if it does.
1888 */
1889 iCellFirst = cellOffset + 2*pPage->nCell;
1890 iCellLast = usableSize - 4;
1891 if( pBt->db->flags & SQLITE_CellSizeCk ){
1892 int i; /* Index into the cell pointer array */
1893 int sz; /* Size of a cell */
danielk197771d5d2c2008-09-29 11:49:47 +00001894
drh14e845a2017-05-25 21:35:56 +00001895 if( !pPage->leaf ) iCellLast--;
1896 for(i=0; i<pPage->nCell; i++){
1897 pc = get2byteAligned(&data[cellOffset+i*2]);
1898 testcase( pc==iCellFirst );
1899 testcase( pc==iCellLast );
1900 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001901 return SQLITE_CORRUPT_PAGE(pPage);
drh69e931e2009-06-03 21:04:35 +00001902 }
drh14e845a2017-05-25 21:35:56 +00001903 sz = pPage->xCellSize(pPage, &data[pc]);
1904 testcase( pc+sz==usableSize );
1905 if( pc+sz>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001906 return SQLITE_CORRUPT_PAGE(pPage);
drh77dc0ed2016-12-12 01:30:01 +00001907 }
danielk1977eaa06f62008-09-18 17:34:44 +00001908 }
drh14e845a2017-05-25 21:35:56 +00001909 if( !pPage->leaf ) iCellLast++;
1910 }
danielk197793c829c2009-06-03 17:26:17 +00001911
drh14e845a2017-05-25 21:35:56 +00001912 /* Compute the total free space on the page
1913 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1914 ** start of the first freeblock on the page, or is zero if there are no
1915 ** freeblocks. */
1916 pc = get2byte(&data[hdr+1]);
1917 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1918 if( pc>0 ){
1919 u32 next, size;
1920 if( pc<iCellFirst ){
1921 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1922 ** always be at least one cell before the first freeblock.
1923 */
daneebf2f52017-11-18 17:30:08 +00001924 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001925 }
drh14e845a2017-05-25 21:35:56 +00001926 while( 1 ){
1927 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001928 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001929 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001930 }
1931 next = get2byte(&data[pc]);
1932 size = get2byte(&data[pc+2]);
1933 nFree = nFree + size;
1934 if( next<=pc+size+3 ) break;
1935 pc = next;
1936 }
1937 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001938 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001939 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001940 }
1941 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001942 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001943 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001944 }
danielk197771d5d2c2008-09-29 11:49:47 +00001945 }
drh14e845a2017-05-25 21:35:56 +00001946
1947 /* At this point, nFree contains the sum of the offset to the start
1948 ** of the cell-content area plus the number of free bytes within
1949 ** the cell-content area. If this is greater than the usable-size
1950 ** of the page, then the page must be corrupted. This check also
1951 ** serves to verify that the offset to the start of the cell-content
1952 ** area, according to the page header, lies within the page.
1953 */
1954 if( nFree>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001955 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001956 }
1957 pPage->nFree = (u16)(nFree - iCellFirst);
1958 pPage->isInit = 1;
drh9e572e62004-04-23 23:43:10 +00001959 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001960}
1961
1962/*
drh8b2f49b2001-06-08 00:21:52 +00001963** Set up a raw page so that it looks like a database page holding
1964** no entries.
drhbd03cae2001-06-02 02:40:57 +00001965*/
drh9e572e62004-04-23 23:43:10 +00001966static void zeroPage(MemPage *pPage, int flags){
1967 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001968 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001969 u8 hdr = pPage->hdrOffset;
1970 u16 first;
drh9e572e62004-04-23 23:43:10 +00001971
danielk19773b8a05f2007-03-19 17:44:26 +00001972 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001973 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1974 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001975 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001976 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00001977 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00001978 memset(&data[hdr], 0, pBt->usableSize - hdr);
1979 }
drh1bd10f82008-12-10 21:19:56 +00001980 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001981 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001982 memset(&data[hdr+1], 0, 4);
1983 data[hdr+7] = 0;
1984 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001985 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001986 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001987 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001988 pPage->aDataEnd = &data[pBt->usableSize];
1989 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001990 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001991 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001992 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1993 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001994 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001995 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001996}
1997
drh897a8202008-09-18 01:08:15 +00001998
1999/*
2000** Convert a DbPage obtained from the pager into a MemPage used by
2001** the btree layer.
2002*/
2003static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2004 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002005 if( pgno!=pPage->pgno ){
2006 pPage->aData = sqlite3PagerGetData(pDbPage);
2007 pPage->pDbPage = pDbPage;
2008 pPage->pBt = pBt;
2009 pPage->pgno = pgno;
2010 pPage->hdrOffset = pgno==1 ? 100 : 0;
2011 }
2012 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002013 return pPage;
2014}
2015
drhbd03cae2001-06-02 02:40:57 +00002016/*
drh3aac2dd2004-04-26 14:10:20 +00002017** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002018** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002019**
drh7e8c6f12015-05-28 03:28:27 +00002020** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2021** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002022** to fetch the content. Just fill in the content with zeros for now.
2023** If in the future we call sqlite3PagerWrite() on this page, that
2024** means we have started to be concerned about content and the disk
2025** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002026*/
danielk197730548662009-07-09 05:07:37 +00002027static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002028 BtShared *pBt, /* The btree */
2029 Pgno pgno, /* Number of the page to fetch */
2030 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002031 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002032){
drh3aac2dd2004-04-26 14:10:20 +00002033 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002034 DbPage *pDbPage;
2035
drhb00fc3b2013-08-21 23:42:32 +00002036 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002037 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002038 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002039 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002040 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002041 return SQLITE_OK;
2042}
2043
2044/*
danielk1977bea2a942009-01-20 17:06:27 +00002045** Retrieve a page from the pager cache. If the requested page is not
2046** already in the pager cache return NULL. Initialize the MemPage.pBt and
2047** MemPage.aData elements if needed.
2048*/
2049static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2050 DbPage *pDbPage;
2051 assert( sqlite3_mutex_held(pBt->mutex) );
2052 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2053 if( pDbPage ){
2054 return btreePageFromDbPage(pDbPage, pgno, pBt);
2055 }
2056 return 0;
2057}
2058
2059/*
danielk197789d40042008-11-17 14:20:56 +00002060** Return the size of the database file in pages. If there is any kind of
2061** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002062*/
drhb1299152010-03-30 22:58:33 +00002063static Pgno btreePagecount(BtShared *pBt){
2064 return pBt->nPage;
2065}
2066u32 sqlite3BtreeLastPage(Btree *p){
2067 assert( sqlite3BtreeHoldsMutex(p) );
drh8a181002017-10-12 01:19:06 +00002068 assert( ((p->pBt->nPage)&0x80000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002069 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002070}
2071
2072/*
drh28f58dd2015-06-27 19:45:03 +00002073** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002074**
drh15a00212015-06-27 20:55:00 +00002075** If pCur!=0 then the page is being fetched as part of a moveToChild()
2076** call. Do additional sanity checking on the page in this case.
2077** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002078**
2079** The page is fetched as read-write unless pCur is not NULL and is
2080** a read-only cursor.
2081**
2082** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002083** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002084*/
2085static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002086 BtShared *pBt, /* The database file */
2087 Pgno pgno, /* Number of the page to get */
2088 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002089 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2090 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002091){
2092 int rc;
drh28f58dd2015-06-27 19:45:03 +00002093 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002094 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002095 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002096 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002097 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002098
danba3cbf32010-06-30 04:29:03 +00002099 if( pgno>btreePagecount(pBt) ){
2100 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002101 goto getAndInitPage_error;
2102 }
drh9584f582015-11-04 20:22:37 +00002103 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002104 if( rc ){
2105 goto getAndInitPage_error;
2106 }
drh8dd1c252015-11-04 22:31:02 +00002107 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002108 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002109 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002110 rc = btreeInitPage(*ppPage);
2111 if( rc!=SQLITE_OK ){
2112 releasePage(*ppPage);
2113 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002114 }
drhee696e22004-08-30 16:52:17 +00002115 }
drh8dd1c252015-11-04 22:31:02 +00002116 assert( (*ppPage)->pgno==pgno );
2117 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002118
drh15a00212015-06-27 20:55:00 +00002119 /* If obtaining a child page for a cursor, we must verify that the page is
2120 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002121 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002122 rc = SQLITE_CORRUPT_PGNO(pgno);
drh28f58dd2015-06-27 19:45:03 +00002123 releasePage(*ppPage);
2124 goto getAndInitPage_error;
2125 }
drh28f58dd2015-06-27 19:45:03 +00002126 return SQLITE_OK;
2127
2128getAndInitPage_error:
drh352a35a2017-08-15 03:46:47 +00002129 if( pCur ){
2130 pCur->iPage--;
2131 pCur->pPage = pCur->apPage[pCur->iPage];
2132 }
danba3cbf32010-06-30 04:29:03 +00002133 testcase( pgno==0 );
2134 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002135 return rc;
2136}
2137
2138/*
drh3aac2dd2004-04-26 14:10:20 +00002139** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002140** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002141**
2142** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002143*/
drhbbf0f862015-06-27 14:59:26 +00002144static void releasePageNotNull(MemPage *pPage){
2145 assert( pPage->aData );
2146 assert( pPage->pBt );
2147 assert( pPage->pDbPage!=0 );
2148 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2149 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2150 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2151 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002152}
drh3aac2dd2004-04-26 14:10:20 +00002153static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002154 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002155}
drh3908fe92017-09-01 14:50:19 +00002156static void releasePageOne(MemPage *pPage){
2157 assert( pPage!=0 );
2158 assert( pPage->aData );
2159 assert( pPage->pBt );
2160 assert( pPage->pDbPage!=0 );
2161 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2162 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2163 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2164 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2165}
drh3aac2dd2004-04-26 14:10:20 +00002166
2167/*
drh7e8c6f12015-05-28 03:28:27 +00002168** Get an unused page.
2169**
2170** This works just like btreeGetPage() with the addition:
2171**
2172** * If the page is already in use for some other purpose, immediately
2173** release it and return an SQLITE_CURRUPT error.
2174** * Make sure the isInit flag is clear
2175*/
2176static int btreeGetUnusedPage(
2177 BtShared *pBt, /* The btree */
2178 Pgno pgno, /* Number of the page to fetch */
2179 MemPage **ppPage, /* Return the page in this parameter */
2180 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2181){
2182 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2183 if( rc==SQLITE_OK ){
2184 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2185 releasePage(*ppPage);
2186 *ppPage = 0;
2187 return SQLITE_CORRUPT_BKPT;
2188 }
2189 (*ppPage)->isInit = 0;
2190 }else{
2191 *ppPage = 0;
2192 }
2193 return rc;
2194}
2195
drha059ad02001-04-17 20:09:11 +00002196
2197/*
drha6abd042004-06-09 17:37:22 +00002198** During a rollback, when the pager reloads information into the cache
2199** so that the cache is restored to its original state at the start of
2200** the transaction, for each page restored this routine is called.
2201**
2202** This routine needs to reset the extra data section at the end of the
2203** page to agree with the restored data.
2204*/
danielk1977eaa06f62008-09-18 17:34:44 +00002205static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002206 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002207 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002208 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002209 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002210 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002211 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002212 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002213 /* pPage might not be a btree page; it might be an overflow page
2214 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002215 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002216 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002217 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002218 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002219 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002220 }
drha6abd042004-06-09 17:37:22 +00002221 }
2222}
2223
2224/*
drhe5fe6902007-12-07 18:55:28 +00002225** Invoke the busy handler for a btree.
2226*/
danielk19771ceedd32008-11-19 10:22:33 +00002227static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002228 BtShared *pBt = (BtShared*)pArg;
2229 assert( pBt->db );
2230 assert( sqlite3_mutex_held(pBt->db->mutex) );
2231 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2232}
2233
2234/*
drhad3e0102004-09-03 23:32:18 +00002235** Open a database file.
2236**
drh382c0242001-10-06 16:33:02 +00002237** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002238** then an ephemeral database is created. The ephemeral database might
2239** be exclusively in memory, or it might use a disk-based memory cache.
2240** Either way, the ephemeral database will be automatically deleted
2241** when sqlite3BtreeClose() is called.
2242**
drhe53831d2007-08-17 01:14:38 +00002243** If zFilename is ":memory:" then an in-memory database is created
2244** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002245**
drh33f111d2012-01-17 15:29:14 +00002246** The "flags" parameter is a bitmask that might contain bits like
2247** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002248**
drhc47fd8e2009-04-30 13:30:32 +00002249** If the database is already opened in the same database connection
2250** and we are in shared cache mode, then the open will fail with an
2251** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2252** objects in the same database connection since doing so will lead
2253** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002254*/
drh23e11ca2004-05-04 17:27:28 +00002255int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002256 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002257 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002258 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002259 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002260 int flags, /* Options */
2261 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002262){
drh7555d8e2009-03-20 13:15:30 +00002263 BtShared *pBt = 0; /* Shared part of btree structure */
2264 Btree *p; /* Handle to return */
2265 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2266 int rc = SQLITE_OK; /* Result code from this function */
2267 u8 nReserve; /* Byte of unused space on each page */
2268 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002269
drh75c014c2010-08-30 15:02:28 +00002270 /* True if opening an ephemeral, temporary database */
2271 const int isTempDb = zFilename==0 || zFilename[0]==0;
2272
danielk1977aef0bf62005-12-30 16:28:01 +00002273 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002274 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002275 */
drhb0a7c9c2010-12-06 21:09:59 +00002276#ifdef SQLITE_OMIT_MEMORYDB
2277 const int isMemdb = 0;
2278#else
2279 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002280 || (isTempDb && sqlite3TempInMemory(db))
2281 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002282#endif
2283
drhe5fe6902007-12-07 18:55:28 +00002284 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002285 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002286 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002287 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2288
2289 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2290 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2291
2292 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2293 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002294
drh75c014c2010-08-30 15:02:28 +00002295 if( isMemdb ){
2296 flags |= BTREE_MEMORY;
2297 }
2298 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2299 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2300 }
drh17435752007-08-16 04:30:38 +00002301 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002302 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002303 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002304 }
2305 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002306 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002307#ifndef SQLITE_OMIT_SHARED_CACHE
2308 p->lock.pBtree = p;
2309 p->lock.iTable = 1;
2310#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002311
drh198bf392006-01-06 21:52:49 +00002312#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002313 /*
2314 ** If this Btree is a candidate for shared cache, try to find an
2315 ** existing BtShared object that we can share with
2316 */
drh4ab9d252012-05-26 20:08:49 +00002317 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002318 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002319 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002320 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002321 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002322 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002323
drhff0587c2007-08-29 17:43:19 +00002324 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002325 if( !zFullPathname ){
2326 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002327 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002328 }
drhafc8b7f2012-05-26 18:06:38 +00002329 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002330 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002331 }else{
2332 rc = sqlite3OsFullPathname(pVfs, zFilename,
2333 nFullPathname, zFullPathname);
2334 if( rc ){
2335 sqlite3_free(zFullPathname);
2336 sqlite3_free(p);
2337 return rc;
2338 }
drh070ad6b2011-11-17 11:43:19 +00002339 }
drh30ddce62011-10-15 00:16:30 +00002340#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002341 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2342 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002343 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002344 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002345#endif
drh78f82d12008-09-02 00:52:52 +00002346 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002347 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002348 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002349 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002350 int iDb;
2351 for(iDb=db->nDb-1; iDb>=0; iDb--){
2352 Btree *pExisting = db->aDb[iDb].pBt;
2353 if( pExisting && pExisting->pBt==pBt ){
2354 sqlite3_mutex_leave(mutexShared);
2355 sqlite3_mutex_leave(mutexOpen);
2356 sqlite3_free(zFullPathname);
2357 sqlite3_free(p);
2358 return SQLITE_CONSTRAINT;
2359 }
2360 }
drhff0587c2007-08-29 17:43:19 +00002361 p->pBt = pBt;
2362 pBt->nRef++;
2363 break;
2364 }
2365 }
2366 sqlite3_mutex_leave(mutexShared);
2367 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002368 }
drhff0587c2007-08-29 17:43:19 +00002369#ifdef SQLITE_DEBUG
2370 else{
2371 /* In debug mode, we mark all persistent databases as sharable
2372 ** even when they are not. This exercises the locking code and
2373 ** gives more opportunity for asserts(sqlite3_mutex_held())
2374 ** statements to find locking problems.
2375 */
2376 p->sharable = 1;
2377 }
2378#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002379 }
2380#endif
drha059ad02001-04-17 20:09:11 +00002381 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002382 /*
2383 ** The following asserts make sure that structures used by the btree are
2384 ** the right size. This is to guard against size changes that result
2385 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002386 */
drh062cf272015-03-23 19:03:51 +00002387 assert( sizeof(i64)==8 );
2388 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002389 assert( sizeof(u32)==4 );
2390 assert( sizeof(u16)==2 );
2391 assert( sizeof(Pgno)==4 );
2392
2393 pBt = sqlite3MallocZero( sizeof(*pBt) );
2394 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002395 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002396 goto btree_open_out;
2397 }
danielk197771d5d2c2008-09-29 11:49:47 +00002398 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002399 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002400 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002401 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002402 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2403 }
2404 if( rc!=SQLITE_OK ){
2405 goto btree_open_out;
2406 }
shanehbd2aaf92010-09-01 02:38:21 +00002407 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002408 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002409 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002410 p->pBt = pBt;
2411
drhe53831d2007-08-17 01:14:38 +00002412 pBt->pCursor = 0;
2413 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002414 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002415#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002416 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002417#elif defined(SQLITE_FAST_SECURE_DELETE)
2418 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002419#endif
drh113762a2014-11-19 16:36:25 +00002420 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2421 ** determined by the 2-byte integer located at an offset of 16 bytes from
2422 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002423 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002424 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2425 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002426 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002427#ifndef SQLITE_OMIT_AUTOVACUUM
2428 /* If the magic name ":memory:" will create an in-memory database, then
2429 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2430 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2431 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2432 ** regular file-name. In this case the auto-vacuum applies as per normal.
2433 */
2434 if( zFilename && !isMemdb ){
2435 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2436 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2437 }
2438#endif
2439 nReserve = 0;
2440 }else{
drh113762a2014-11-19 16:36:25 +00002441 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2442 ** determined by the one-byte unsigned integer found at an offset of 20
2443 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002444 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002445 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002446#ifndef SQLITE_OMIT_AUTOVACUUM
2447 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2448 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2449#endif
2450 }
drhfa9601a2009-06-18 17:22:39 +00002451 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002452 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002453 pBt->usableSize = pBt->pageSize - nReserve;
2454 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002455
2456#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2457 /* Add the new BtShared object to the linked list sharable BtShareds.
2458 */
dan272989b2016-07-06 10:12:02 +00002459 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002460 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002461 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002462 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002463 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002464 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002465 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002466 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002467 goto btree_open_out;
2468 }
drhff0587c2007-08-29 17:43:19 +00002469 }
drhe53831d2007-08-17 01:14:38 +00002470 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002471 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2472 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002473 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002474 }
drheee46cf2004-11-06 00:02:48 +00002475#endif
drh90f5ecb2004-07-22 01:19:35 +00002476 }
danielk1977aef0bf62005-12-30 16:28:01 +00002477
drhcfed7bc2006-03-13 14:28:05 +00002478#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002479 /* If the new Btree uses a sharable pBtShared, then link the new
2480 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002481 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002482 */
drhe53831d2007-08-17 01:14:38 +00002483 if( p->sharable ){
2484 int i;
2485 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002486 for(i=0; i<db->nDb; i++){
2487 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002488 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002489 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002490 p->pNext = pSib;
2491 p->pPrev = 0;
2492 pSib->pPrev = p;
2493 }else{
drh3bfa7e82016-03-22 14:37:59 +00002494 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002495 pSib = pSib->pNext;
2496 }
2497 p->pNext = pSib->pNext;
2498 p->pPrev = pSib;
2499 if( p->pNext ){
2500 p->pNext->pPrev = p;
2501 }
2502 pSib->pNext = p;
2503 }
2504 break;
2505 }
2506 }
danielk1977aef0bf62005-12-30 16:28:01 +00002507 }
danielk1977aef0bf62005-12-30 16:28:01 +00002508#endif
2509 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002510
2511btree_open_out:
2512 if( rc!=SQLITE_OK ){
2513 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002514 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002515 }
drh17435752007-08-16 04:30:38 +00002516 sqlite3_free(pBt);
2517 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002518 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002519 }else{
dan0f5a1862016-08-13 14:30:23 +00002520 sqlite3_file *pFile;
2521
drh75c014c2010-08-30 15:02:28 +00002522 /* If the B-Tree was successfully opened, set the pager-cache size to the
2523 ** default value. Except, when opening on an existing shared pager-cache,
2524 ** do not change the pager-cache size.
2525 */
2526 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2527 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2528 }
dan0f5a1862016-08-13 14:30:23 +00002529
2530 pFile = sqlite3PagerFile(pBt->pPager);
2531 if( pFile->pMethods ){
2532 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2533 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002534 }
drh7555d8e2009-03-20 13:15:30 +00002535 if( mutexOpen ){
2536 assert( sqlite3_mutex_held(mutexOpen) );
2537 sqlite3_mutex_leave(mutexOpen);
2538 }
dan272989b2016-07-06 10:12:02 +00002539 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002540 return rc;
drha059ad02001-04-17 20:09:11 +00002541}
2542
2543/*
drhe53831d2007-08-17 01:14:38 +00002544** Decrement the BtShared.nRef counter. When it reaches zero,
2545** remove the BtShared structure from the sharing list. Return
2546** true if the BtShared.nRef counter reaches zero and return
2547** false if it is still positive.
2548*/
2549static int removeFromSharingList(BtShared *pBt){
2550#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002551 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002552 BtShared *pList;
2553 int removed = 0;
2554
drhd677b3d2007-08-20 22:48:41 +00002555 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002556 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002557 sqlite3_mutex_enter(pMaster);
2558 pBt->nRef--;
2559 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002560 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2561 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002562 }else{
drh78f82d12008-09-02 00:52:52 +00002563 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002564 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002565 pList=pList->pNext;
2566 }
drh34004ce2008-07-11 16:15:17 +00002567 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002568 pList->pNext = pBt->pNext;
2569 }
2570 }
drh3285db22007-09-03 22:00:39 +00002571 if( SQLITE_THREADSAFE ){
2572 sqlite3_mutex_free(pBt->mutex);
2573 }
drhe53831d2007-08-17 01:14:38 +00002574 removed = 1;
2575 }
2576 sqlite3_mutex_leave(pMaster);
2577 return removed;
2578#else
2579 return 1;
2580#endif
2581}
2582
2583/*
drhf7141992008-06-19 00:16:08 +00002584** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002585** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2586** pointer.
drhf7141992008-06-19 00:16:08 +00002587*/
2588static void allocateTempSpace(BtShared *pBt){
2589 if( !pBt->pTmpSpace ){
2590 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002591
2592 /* One of the uses of pBt->pTmpSpace is to format cells before
2593 ** inserting them into a leaf page (function fillInCell()). If
2594 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2595 ** by the various routines that manipulate binary cells. Which
2596 ** can mean that fillInCell() only initializes the first 2 or 3
2597 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2598 ** it into a database page. This is not actually a problem, but it
2599 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2600 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002601 ** zero the first 4 bytes of temp space here.
2602 **
2603 ** Also: Provide four bytes of initialized space before the
2604 ** beginning of pTmpSpace as an area available to prepend the
2605 ** left-child pointer to the beginning of a cell.
2606 */
2607 if( pBt->pTmpSpace ){
2608 memset(pBt->pTmpSpace, 0, 8);
2609 pBt->pTmpSpace += 4;
2610 }
drhf7141992008-06-19 00:16:08 +00002611 }
2612}
2613
2614/*
2615** Free the pBt->pTmpSpace allocation
2616*/
2617static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002618 if( pBt->pTmpSpace ){
2619 pBt->pTmpSpace -= 4;
2620 sqlite3PageFree(pBt->pTmpSpace);
2621 pBt->pTmpSpace = 0;
2622 }
drhf7141992008-06-19 00:16:08 +00002623}
2624
2625/*
drha059ad02001-04-17 20:09:11 +00002626** Close an open database and invalidate all cursors.
2627*/
danielk1977aef0bf62005-12-30 16:28:01 +00002628int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002629 BtShared *pBt = p->pBt;
2630 BtCursor *pCur;
2631
danielk1977aef0bf62005-12-30 16:28:01 +00002632 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002633 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002634 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002635 pCur = pBt->pCursor;
2636 while( pCur ){
2637 BtCursor *pTmp = pCur;
2638 pCur = pCur->pNext;
2639 if( pTmp->pBtree==p ){
2640 sqlite3BtreeCloseCursor(pTmp);
2641 }
drha059ad02001-04-17 20:09:11 +00002642 }
danielk1977aef0bf62005-12-30 16:28:01 +00002643
danielk19778d34dfd2006-01-24 16:37:57 +00002644 /* Rollback any active transaction and free the handle structure.
2645 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2646 ** this handle.
2647 */
drh47b7fc72014-11-11 01:33:57 +00002648 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002649 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002650
danielk1977aef0bf62005-12-30 16:28:01 +00002651 /* If there are still other outstanding references to the shared-btree
2652 ** structure, return now. The remainder of this procedure cleans
2653 ** up the shared-btree.
2654 */
drhe53831d2007-08-17 01:14:38 +00002655 assert( p->wantToLock==0 && p->locked==0 );
2656 if( !p->sharable || removeFromSharingList(pBt) ){
2657 /* The pBt is no longer on the sharing list, so we can access
2658 ** it without having to hold the mutex.
2659 **
2660 ** Clean out and delete the BtShared object.
2661 */
2662 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002663 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002664 if( pBt->xFreeSchema && pBt->pSchema ){
2665 pBt->xFreeSchema(pBt->pSchema);
2666 }
drhb9755982010-07-24 16:34:37 +00002667 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002668 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002669 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002670 }
2671
drhe53831d2007-08-17 01:14:38 +00002672#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002673 assert( p->wantToLock==0 );
2674 assert( p->locked==0 );
2675 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2676 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002677#endif
2678
drhe53831d2007-08-17 01:14:38 +00002679 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002680 return SQLITE_OK;
2681}
2682
2683/*
drh9b0cf342015-11-12 14:57:19 +00002684** Change the "soft" limit on the number of pages in the cache.
2685** Unused and unmodified pages will be recycled when the number of
2686** pages in the cache exceeds this soft limit. But the size of the
2687** cache is allowed to grow larger than this limit if it contains
2688** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002689*/
danielk1977aef0bf62005-12-30 16:28:01 +00002690int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2691 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002692 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002693 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002694 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002695 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002696 return SQLITE_OK;
2697}
2698
drh9b0cf342015-11-12 14:57:19 +00002699/*
2700** Change the "spill" limit on the number of pages in the cache.
2701** If the number of pages exceeds this limit during a write transaction,
2702** the pager might attempt to "spill" pages to the journal early in
2703** order to free up memory.
2704**
2705** The value returned is the current spill size. If zero is passed
2706** as an argument, no changes are made to the spill size setting, so
2707** using mxPage of 0 is a way to query the current spill size.
2708*/
2709int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2710 BtShared *pBt = p->pBt;
2711 int res;
2712 assert( sqlite3_mutex_held(p->db->mutex) );
2713 sqlite3BtreeEnter(p);
2714 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2715 sqlite3BtreeLeave(p);
2716 return res;
2717}
2718
drh18c7e402014-03-14 11:46:10 +00002719#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002720/*
dan5d8a1372013-03-19 19:28:06 +00002721** Change the limit on the amount of the database file that may be
2722** memory mapped.
2723*/
drh9b4c59f2013-04-15 17:03:42 +00002724int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002725 BtShared *pBt = p->pBt;
2726 assert( sqlite3_mutex_held(p->db->mutex) );
2727 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002728 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002729 sqlite3BtreeLeave(p);
2730 return SQLITE_OK;
2731}
drh18c7e402014-03-14 11:46:10 +00002732#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002733
2734/*
drh973b6e32003-02-12 14:09:42 +00002735** Change the way data is synced to disk in order to increase or decrease
2736** how well the database resists damage due to OS crashes and power
2737** failures. Level 1 is the same as asynchronous (no syncs() occur and
2738** there is a high probability of damage) Level 2 is the default. There
2739** is a very low but non-zero probability of damage. Level 3 reduces the
2740** probability of damage to near zero but with a write performance reduction.
2741*/
danielk197793758c82005-01-21 08:13:14 +00002742#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002743int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002744 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002745 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002746){
danielk1977aef0bf62005-12-30 16:28:01 +00002747 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002748 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002749 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002750 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002751 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002752 return SQLITE_OK;
2753}
danielk197793758c82005-01-21 08:13:14 +00002754#endif
drh973b6e32003-02-12 14:09:42 +00002755
drh2c8997b2005-08-27 16:36:48 +00002756/*
drh90f5ecb2004-07-22 01:19:35 +00002757** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002758** Or, if the page size has already been fixed, return SQLITE_READONLY
2759** without changing anything.
drh06f50212004-11-02 14:24:33 +00002760**
2761** The page size must be a power of 2 between 512 and 65536. If the page
2762** size supplied does not meet this constraint then the page size is not
2763** changed.
2764**
2765** Page sizes are constrained to be a power of two so that the region
2766** of the database file used for locking (beginning at PENDING_BYTE,
2767** the first byte past the 1GB boundary, 0x40000000) needs to occur
2768** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002769**
2770** If parameter nReserve is less than zero, then the number of reserved
2771** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002772**
drhc9166342012-01-05 23:32:06 +00002773** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002774** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002775*/
drhce4869f2009-04-02 20:16:58 +00002776int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002777 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002778 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002779 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002780 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002781#if SQLITE_HAS_CODEC
2782 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2783#endif
drhc9166342012-01-05 23:32:06 +00002784 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002785 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002786 return SQLITE_READONLY;
2787 }
2788 if( nReserve<0 ){
2789 nReserve = pBt->pageSize - pBt->usableSize;
2790 }
drhf49661a2008-12-10 16:45:50 +00002791 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002792 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2793 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002794 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002795 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002796 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002797 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002798 }
drhfa9601a2009-06-18 17:22:39 +00002799 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002800 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002801 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002802 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002803 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002804}
2805
2806/*
2807** Return the currently defined page size
2808*/
danielk1977aef0bf62005-12-30 16:28:01 +00002809int sqlite3BtreeGetPageSize(Btree *p){
2810 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002811}
drh7f751222009-03-17 22:33:00 +00002812
dan0094f372012-09-28 20:23:42 +00002813/*
2814** This function is similar to sqlite3BtreeGetReserve(), except that it
2815** may only be called if it is guaranteed that the b-tree mutex is already
2816** held.
2817**
2818** This is useful in one special case in the backup API code where it is
2819** known that the shared b-tree mutex is held, but the mutex on the
2820** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2821** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002822** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002823*/
2824int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002825 int n;
dan0094f372012-09-28 20:23:42 +00002826 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002827 n = p->pBt->pageSize - p->pBt->usableSize;
2828 return n;
dan0094f372012-09-28 20:23:42 +00002829}
2830
drh7f751222009-03-17 22:33:00 +00002831/*
2832** Return the number of bytes of space at the end of every page that
2833** are intentually left unused. This is the "reserved" space that is
2834** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002835**
2836** If SQLITE_HAS_MUTEX is defined then the number returned is the
2837** greater of the current reserved space and the maximum requested
2838** reserve space.
drh7f751222009-03-17 22:33:00 +00002839*/
drhad0961b2015-02-21 00:19:25 +00002840int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002841 int n;
2842 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002843 n = sqlite3BtreeGetReserveNoMutex(p);
2844#ifdef SQLITE_HAS_CODEC
2845 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2846#endif
drhd677b3d2007-08-20 22:48:41 +00002847 sqlite3BtreeLeave(p);
2848 return n;
drh2011d5f2004-07-22 02:40:37 +00002849}
drhf8e632b2007-05-08 14:51:36 +00002850
drhad0961b2015-02-21 00:19:25 +00002851
drhf8e632b2007-05-08 14:51:36 +00002852/*
2853** Set the maximum page count for a database if mxPage is positive.
2854** No changes are made if mxPage is 0 or negative.
2855** Regardless of the value of mxPage, return the maximum page count.
2856*/
2857int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002858 int n;
2859 sqlite3BtreeEnter(p);
2860 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2861 sqlite3BtreeLeave(p);
2862 return n;
drhf8e632b2007-05-08 14:51:36 +00002863}
drh5b47efa2010-02-12 18:18:39 +00002864
2865/*
drha5907a82017-06-19 11:44:22 +00002866** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2867**
2868** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2869** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2870** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2871** newFlag==(-1) No changes
2872**
2873** This routine acts as a query if newFlag is less than zero
2874**
2875** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2876** freelist leaf pages are not written back to the database. Thus in-page
2877** deleted content is cleared, but freelist deleted content is not.
2878**
2879** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2880** that freelist leaf pages are written back into the database, increasing
2881** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002882*/
2883int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2884 int b;
drhaf034ed2010-02-12 19:46:26 +00002885 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002886 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002887 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2888 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002889 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002890 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2891 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2892 }
2893 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002894 sqlite3BtreeLeave(p);
2895 return b;
2896}
drh90f5ecb2004-07-22 01:19:35 +00002897
2898/*
danielk1977951af802004-11-05 15:45:09 +00002899** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2900** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2901** is disabled. The default value for the auto-vacuum property is
2902** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2903*/
danielk1977aef0bf62005-12-30 16:28:01 +00002904int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002905#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002906 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002907#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002908 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002909 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002910 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002911
2912 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002913 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002914 rc = SQLITE_READONLY;
2915 }else{
drh076d4662009-02-18 20:31:18 +00002916 pBt->autoVacuum = av ?1:0;
2917 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002918 }
drhd677b3d2007-08-20 22:48:41 +00002919 sqlite3BtreeLeave(p);
2920 return rc;
danielk1977951af802004-11-05 15:45:09 +00002921#endif
2922}
2923
2924/*
2925** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2926** enabled 1 is returned. Otherwise 0.
2927*/
danielk1977aef0bf62005-12-30 16:28:01 +00002928int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002929#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002930 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002931#else
drhd677b3d2007-08-20 22:48:41 +00002932 int rc;
2933 sqlite3BtreeEnter(p);
2934 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002935 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2936 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2937 BTREE_AUTOVACUUM_INCR
2938 );
drhd677b3d2007-08-20 22:48:41 +00002939 sqlite3BtreeLeave(p);
2940 return rc;
danielk1977951af802004-11-05 15:45:09 +00002941#endif
2942}
2943
danf5da7db2017-03-16 18:14:39 +00002944/*
2945** If the user has not set the safety-level for this database connection
2946** using "PRAGMA synchronous", and if the safety-level is not already
2947** set to the value passed to this function as the second parameter,
2948** set it so.
2949*/
drh2ed57372017-10-05 20:57:38 +00002950#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
2951 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00002952static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2953 sqlite3 *db;
2954 Db *pDb;
2955 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2956 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2957 if( pDb->bSyncSet==0
2958 && pDb->safety_level!=safety_level
2959 && pDb!=&db->aDb[1]
2960 ){
2961 pDb->safety_level = safety_level;
2962 sqlite3PagerSetFlags(pBt->pPager,
2963 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2964 }
2965 }
2966}
2967#else
danfc8f4b62017-03-16 18:54:42 +00002968# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00002969#endif
danielk1977951af802004-11-05 15:45:09 +00002970
2971/*
drha34b6762004-05-07 13:30:42 +00002972** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002973** also acquire a readlock on that file.
2974**
2975** SQLITE_OK is returned on success. If the file is not a
2976** well-formed database file, then SQLITE_CORRUPT is returned.
2977** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002978** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002979*/
danielk1977aef0bf62005-12-30 16:28:01 +00002980static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002981 int rc; /* Result code from subfunctions */
2982 MemPage *pPage1; /* Page 1 of the database file */
2983 int nPage; /* Number of pages in the database */
2984 int nPageFile = 0; /* Number of pages in the database file */
2985 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002986
drh1fee73e2007-08-29 04:00:57 +00002987 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002988 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002989 rc = sqlite3PagerSharedLock(pBt->pPager);
2990 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002991 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002992 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002993
2994 /* Do some checking to help insure the file we opened really is
2995 ** a valid database file.
2996 */
drhc2a4bab2010-04-02 12:46:45 +00002997 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002998 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002999 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003000 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003001 }
3002 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003003 u32 pageSize;
3004 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003005 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003006 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003007 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3008 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3009 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003010 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003011 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003012 }
dan5cf53532010-05-01 16:40:20 +00003013
3014#ifdef SQLITE_OMIT_WAL
3015 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003016 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003017 }
3018 if( page1[19]>1 ){
3019 goto page1_init_failed;
3020 }
3021#else
dane04dc882010-04-20 18:53:15 +00003022 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003023 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003024 }
dane04dc882010-04-20 18:53:15 +00003025 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003026 goto page1_init_failed;
3027 }
drhe5ae5732008-06-15 02:51:47 +00003028
dana470aeb2010-04-21 11:43:38 +00003029 /* If the write version is set to 2, this database should be accessed
3030 ** in WAL mode. If the log is not already open, open it now. Then
3031 ** return SQLITE_OK and return without populating BtShared.pPage1.
3032 ** The caller detects this and calls this function again. This is
3033 ** required as the version of page 1 currently in the page1 buffer
3034 ** may not be the latest version - there may be a newer one in the log
3035 ** file.
3036 */
drhc9166342012-01-05 23:32:06 +00003037 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003038 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003039 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003040 if( rc!=SQLITE_OK ){
3041 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003042 }else{
danf5da7db2017-03-16 18:14:39 +00003043 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003044 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003045 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003046 return SQLITE_OK;
3047 }
dane04dc882010-04-20 18:53:15 +00003048 }
dan8b5444b2010-04-27 14:37:47 +00003049 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003050 }else{
3051 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003052 }
dan5cf53532010-05-01 16:40:20 +00003053#endif
dane04dc882010-04-20 18:53:15 +00003054
drh113762a2014-11-19 16:36:25 +00003055 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3056 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3057 **
drhe5ae5732008-06-15 02:51:47 +00003058 ** The original design allowed these amounts to vary, but as of
3059 ** version 3.6.0, we require them to be fixed.
3060 */
3061 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3062 goto page1_init_failed;
3063 }
drh113762a2014-11-19 16:36:25 +00003064 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3065 ** determined by the 2-byte integer located at an offset of 16 bytes from
3066 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003067 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003068 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3069 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003070 if( ((pageSize-1)&pageSize)!=0
3071 || pageSize>SQLITE_MAX_PAGE_SIZE
3072 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003073 ){
drh07d183d2005-05-01 22:52:42 +00003074 goto page1_init_failed;
3075 }
3076 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003077 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3078 ** integer at offset 20 is the number of bytes of space at the end of
3079 ** each page to reserve for extensions.
3080 **
3081 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3082 ** determined by the one-byte unsigned integer found at an offset of 20
3083 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003084 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003085 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003086 /* After reading the first page of the database assuming a page size
3087 ** of BtShared.pageSize, we have discovered that the page-size is
3088 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3089 ** zero and return SQLITE_OK. The caller will call this function
3090 ** again with the correct page-size.
3091 */
drh3908fe92017-09-01 14:50:19 +00003092 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003093 pBt->usableSize = usableSize;
3094 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003095 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003096 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3097 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003098 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003099 }
drh169dd922017-06-26 13:57:49 +00003100 if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003101 rc = SQLITE_CORRUPT_BKPT;
3102 goto page1_init_failed;
3103 }
drh113762a2014-11-19 16:36:25 +00003104 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3105 ** be less than 480. In other words, if the page size is 512, then the
3106 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003107 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003108 goto page1_init_failed;
3109 }
drh43b18e12010-08-17 19:40:08 +00003110 pBt->pageSize = pageSize;
3111 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003112#ifndef SQLITE_OMIT_AUTOVACUUM
3113 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003114 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003115#endif
drh306dc212001-05-21 13:45:10 +00003116 }
drhb6f41482004-05-14 01:58:11 +00003117
3118 /* maxLocal is the maximum amount of payload to store locally for
3119 ** a cell. Make sure it is small enough so that at least minFanout
3120 ** cells can will fit on one page. We assume a 10-byte page header.
3121 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003122 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003123 ** 4-byte child pointer
3124 ** 9-byte nKey value
3125 ** 4-byte nData value
3126 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003127 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003128 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3129 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003130 */
shaneh1df2db72010-08-18 02:28:48 +00003131 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3132 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3133 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3134 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003135 if( pBt->maxLocal>127 ){
3136 pBt->max1bytePayload = 127;
3137 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003138 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003139 }
drh2e38c322004-09-03 18:38:44 +00003140 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003141 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003142 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003143 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003144
drh72f82862001-05-24 21:06:34 +00003145page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003146 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003147 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003148 return rc;
drh306dc212001-05-21 13:45:10 +00003149}
3150
drh85ec3b62013-05-14 23:12:06 +00003151#ifndef NDEBUG
3152/*
3153** Return the number of cursors open on pBt. This is for use
3154** in assert() expressions, so it is only compiled if NDEBUG is not
3155** defined.
3156**
3157** Only write cursors are counted if wrOnly is true. If wrOnly is
3158** false then all cursors are counted.
3159**
3160** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003161** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003162** have been tripped into the CURSOR_FAULT state are not counted.
3163*/
3164static int countValidCursors(BtShared *pBt, int wrOnly){
3165 BtCursor *pCur;
3166 int r = 0;
3167 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003168 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3169 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003170 }
3171 return r;
3172}
3173#endif
3174
drh306dc212001-05-21 13:45:10 +00003175/*
drhb8ca3072001-12-05 00:21:20 +00003176** If there are no outstanding cursors and we are not in the middle
3177** of a transaction but there is a read lock on the database, then
3178** this routine unrefs the first page of the database file which
3179** has the effect of releasing the read lock.
3180**
drhb8ca3072001-12-05 00:21:20 +00003181** If there is a transaction in progress, this routine is a no-op.
3182*/
danielk1977aef0bf62005-12-30 16:28:01 +00003183static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003184 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003185 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003186 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003187 MemPage *pPage1 = pBt->pPage1;
3188 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003189 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003190 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003191 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003192 }
3193}
3194
3195/*
drhe39f2f92009-07-23 01:43:59 +00003196** If pBt points to an empty file then convert that empty file
3197** into a new empty database by initializing the first page of
3198** the database.
drh8b2f49b2001-06-08 00:21:52 +00003199*/
danielk1977aef0bf62005-12-30 16:28:01 +00003200static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003201 MemPage *pP1;
3202 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003203 int rc;
drhd677b3d2007-08-20 22:48:41 +00003204
drh1fee73e2007-08-29 04:00:57 +00003205 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003206 if( pBt->nPage>0 ){
3207 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003208 }
drh3aac2dd2004-04-26 14:10:20 +00003209 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003210 assert( pP1!=0 );
3211 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003212 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003213 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003214 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3215 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003216 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3217 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003218 data[18] = 1;
3219 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003220 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3221 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003222 data[21] = 64;
3223 data[22] = 32;
3224 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003225 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003226 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003227 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003228#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003229 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003230 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003231 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003232 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003233#endif
drhdd3cd972010-03-27 17:12:36 +00003234 pBt->nPage = 1;
3235 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003236 return SQLITE_OK;
3237}
3238
3239/*
danb483eba2012-10-13 19:58:11 +00003240** Initialize the first page of the database file (creating a database
3241** consisting of a single page and no schema objects). Return SQLITE_OK
3242** if successful, or an SQLite error code otherwise.
3243*/
3244int sqlite3BtreeNewDb(Btree *p){
3245 int rc;
3246 sqlite3BtreeEnter(p);
3247 p->pBt->nPage = 0;
3248 rc = newDatabase(p->pBt);
3249 sqlite3BtreeLeave(p);
3250 return rc;
3251}
3252
3253/*
danielk1977ee5741e2004-05-31 10:01:34 +00003254** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003255** is started if the second argument is nonzero, otherwise a read-
3256** transaction. If the second argument is 2 or more and exclusive
3257** transaction is started, meaning that no other process is allowed
3258** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003259** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003260** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003261**
danielk1977ee5741e2004-05-31 10:01:34 +00003262** A write-transaction must be started before attempting any
3263** changes to the database. None of the following routines
3264** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003265**
drh23e11ca2004-05-04 17:27:28 +00003266** sqlite3BtreeCreateTable()
3267** sqlite3BtreeCreateIndex()
3268** sqlite3BtreeClearTable()
3269** sqlite3BtreeDropTable()
3270** sqlite3BtreeInsert()
3271** sqlite3BtreeDelete()
3272** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003273**
drhb8ef32c2005-03-14 02:01:49 +00003274** If an initial attempt to acquire the lock fails because of lock contention
3275** and the database was previously unlocked, then invoke the busy handler
3276** if there is one. But if there was previously a read-lock, do not
3277** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3278** returned when there is already a read-lock in order to avoid a deadlock.
3279**
3280** Suppose there are two processes A and B. A has a read lock and B has
3281** a reserved lock. B tries to promote to exclusive but is blocked because
3282** of A's read lock. A tries to promote to reserved but is blocked by B.
3283** One or the other of the two processes must give way or there can be
3284** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3285** when A already has a read lock, we encourage A to give up and let B
3286** proceed.
drha059ad02001-04-17 20:09:11 +00003287*/
danielk1977aef0bf62005-12-30 16:28:01 +00003288int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3289 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003290 int rc = SQLITE_OK;
3291
drhd677b3d2007-08-20 22:48:41 +00003292 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003293 btreeIntegrity(p);
3294
danielk1977ee5741e2004-05-31 10:01:34 +00003295 /* If the btree is already in a write-transaction, or it
3296 ** is already in a read-transaction and a read-transaction
3297 ** is requested, this is a no-op.
3298 */
danielk1977aef0bf62005-12-30 16:28:01 +00003299 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003300 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003301 }
dan56c517a2013-09-26 11:04:33 +00003302 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003303
3304 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003305 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003306 rc = SQLITE_READONLY;
3307 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003308 }
3309
danielk1977404ca072009-03-16 13:19:36 +00003310#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003311 {
3312 sqlite3 *pBlock = 0;
3313 /* If another database handle has already opened a write transaction
3314 ** on this shared-btree structure and a second write transaction is
3315 ** requested, return SQLITE_LOCKED.
3316 */
3317 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3318 || (pBt->btsFlags & BTS_PENDING)!=0
3319 ){
3320 pBlock = pBt->pWriter->db;
3321 }else if( wrflag>1 ){
3322 BtLock *pIter;
3323 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3324 if( pIter->pBtree!=p ){
3325 pBlock = pIter->pBtree->db;
3326 break;
3327 }
danielk1977641b0f42007-12-21 04:47:25 +00003328 }
3329 }
drh5a1fb182016-01-08 19:34:39 +00003330 if( pBlock ){
3331 sqlite3ConnectionBlocked(p->db, pBlock);
3332 rc = SQLITE_LOCKED_SHAREDCACHE;
3333 goto trans_begun;
3334 }
danielk1977404ca072009-03-16 13:19:36 +00003335 }
danielk1977641b0f42007-12-21 04:47:25 +00003336#endif
3337
danielk1977602b4662009-07-02 07:47:33 +00003338 /* Any read-only or read-write transaction implies a read-lock on
3339 ** page 1. So if some other shared-cache client already has a write-lock
3340 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003341 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3342 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003343
drhc9166342012-01-05 23:32:06 +00003344 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3345 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003346 do {
danielk1977295dc102009-04-01 19:07:03 +00003347 /* Call lockBtree() until either pBt->pPage1 is populated or
3348 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3349 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3350 ** reading page 1 it discovers that the page-size of the database
3351 ** file is not pBt->pageSize. In this case lockBtree() will update
3352 ** pBt->pageSize to the page-size of the file on disk.
3353 */
3354 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003355
drhb8ef32c2005-03-14 02:01:49 +00003356 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003357 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003358 rc = SQLITE_READONLY;
3359 }else{
danielk1977d8293352009-04-30 09:10:37 +00003360 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003361 if( rc==SQLITE_OK ){
3362 rc = newDatabase(pBt);
3363 }
drhb8ef32c2005-03-14 02:01:49 +00003364 }
3365 }
3366
danielk1977bd434552009-03-18 10:33:00 +00003367 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003368 unlockBtreeIfUnused(pBt);
3369 }
danf9b76712010-06-01 14:12:45 +00003370 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003371 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003372
3373 if( rc==SQLITE_OK ){
3374 if( p->inTrans==TRANS_NONE ){
3375 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003376#ifndef SQLITE_OMIT_SHARED_CACHE
3377 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003378 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003379 p->lock.eLock = READ_LOCK;
3380 p->lock.pNext = pBt->pLock;
3381 pBt->pLock = &p->lock;
3382 }
3383#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003384 }
3385 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3386 if( p->inTrans>pBt->inTransaction ){
3387 pBt->inTransaction = p->inTrans;
3388 }
danielk1977404ca072009-03-16 13:19:36 +00003389 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003390 MemPage *pPage1 = pBt->pPage1;
3391#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003392 assert( !pBt->pWriter );
3393 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003394 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3395 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003396#endif
dan59257dc2010-08-04 11:34:31 +00003397
3398 /* If the db-size header field is incorrect (as it may be if an old
3399 ** client has been writing the database file), update it now. Doing
3400 ** this sooner rather than later means the database size can safely
3401 ** re-read the database size from page 1 if a savepoint or transaction
3402 ** rollback occurs within the transaction.
3403 */
3404 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3405 rc = sqlite3PagerWrite(pPage1->pDbPage);
3406 if( rc==SQLITE_OK ){
3407 put4byte(&pPage1->aData[28], pBt->nPage);
3408 }
3409 }
3410 }
danielk1977aef0bf62005-12-30 16:28:01 +00003411 }
3412
drhd677b3d2007-08-20 22:48:41 +00003413
3414trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003415 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003416 /* This call makes sure that the pager has the correct number of
3417 ** open savepoints. If the second parameter is greater than 0 and
3418 ** the sub-journal is not already open, then it will be opened here.
3419 */
danielk1977fd7f0452008-12-17 17:30:26 +00003420 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3421 }
danielk197712dd5492008-12-18 15:45:07 +00003422
danielk1977aef0bf62005-12-30 16:28:01 +00003423 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003424 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003425 return rc;
drha059ad02001-04-17 20:09:11 +00003426}
3427
danielk1977687566d2004-11-02 12:56:41 +00003428#ifndef SQLITE_OMIT_AUTOVACUUM
3429
3430/*
3431** Set the pointer-map entries for all children of page pPage. Also, if
3432** pPage contains cells that point to overflow pages, set the pointer
3433** map entries for the overflow pages as well.
3434*/
3435static int setChildPtrmaps(MemPage *pPage){
3436 int i; /* Counter variable */
3437 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003438 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003439 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003440 Pgno pgno = pPage->pgno;
3441
drh1fee73e2007-08-29 04:00:57 +00003442 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003443 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003444 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003445 nCell = pPage->nCell;
3446
3447 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003448 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003449
drh98add2e2009-07-20 17:11:49 +00003450 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003451
danielk1977687566d2004-11-02 12:56:41 +00003452 if( !pPage->leaf ){
3453 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003454 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003455 }
3456 }
3457
3458 if( !pPage->leaf ){
3459 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003460 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003461 }
3462
danielk1977687566d2004-11-02 12:56:41 +00003463 return rc;
3464}
3465
3466/*
drhf3aed592009-07-08 18:12:49 +00003467** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3468** that it points to iTo. Parameter eType describes the type of pointer to
3469** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003470**
3471** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3472** page of pPage.
3473**
3474** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3475** page pointed to by one of the cells on pPage.
3476**
3477** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3478** overflow page in the list.
3479*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003480static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003481 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003482 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003483 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003484 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003485 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003486 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003487 }
danielk1977f78fc082004-11-02 14:40:32 +00003488 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003489 }else{
danielk1977687566d2004-11-02 12:56:41 +00003490 int i;
3491 int nCell;
drha1f75d92015-05-24 10:18:12 +00003492 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003493
drh14e845a2017-05-25 21:35:56 +00003494 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003495 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003496 nCell = pPage->nCell;
3497
danielk1977687566d2004-11-02 12:56:41 +00003498 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003499 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003500 if( eType==PTRMAP_OVERFLOW1 ){
3501 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003502 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003503 if( info.nLocal<info.nPayload ){
3504 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003505 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003506 }
3507 if( iFrom==get4byte(pCell+info.nSize-4) ){
3508 put4byte(pCell+info.nSize-4, iTo);
3509 break;
3510 }
danielk1977687566d2004-11-02 12:56:41 +00003511 }
3512 }else{
3513 if( get4byte(pCell)==iFrom ){
3514 put4byte(pCell, iTo);
3515 break;
3516 }
3517 }
3518 }
3519
3520 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003521 if( eType!=PTRMAP_BTREE ||
3522 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003523 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003524 }
danielk1977687566d2004-11-02 12:56:41 +00003525 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3526 }
danielk1977687566d2004-11-02 12:56:41 +00003527 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003528 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003529}
3530
danielk1977003ba062004-11-04 02:57:33 +00003531
danielk19777701e812005-01-10 12:59:51 +00003532/*
3533** Move the open database page pDbPage to location iFreePage in the
3534** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003535**
3536** The isCommit flag indicates that there is no need to remember that
3537** the journal needs to be sync()ed before database page pDbPage->pgno
3538** can be written to. The caller has already promised not to write to that
3539** page.
danielk19777701e812005-01-10 12:59:51 +00003540*/
danielk1977003ba062004-11-04 02:57:33 +00003541static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003542 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003543 MemPage *pDbPage, /* Open page to move */
3544 u8 eType, /* Pointer map 'type' entry for pDbPage */
3545 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003546 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003547 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003548){
3549 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3550 Pgno iDbPage = pDbPage->pgno;
3551 Pager *pPager = pBt->pPager;
3552 int rc;
3553
danielk1977a0bf2652004-11-04 14:30:04 +00003554 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3555 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003556 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003557 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003558
drh85b623f2007-12-13 21:54:09 +00003559 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003560 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3561 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003562 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003563 if( rc!=SQLITE_OK ){
3564 return rc;
3565 }
3566 pDbPage->pgno = iFreePage;
3567
3568 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3569 ** that point to overflow pages. The pointer map entries for all these
3570 ** pages need to be changed.
3571 **
3572 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3573 ** pointer to a subsequent overflow page. If this is the case, then
3574 ** the pointer map needs to be updated for the subsequent overflow page.
3575 */
danielk1977a0bf2652004-11-04 14:30:04 +00003576 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003577 rc = setChildPtrmaps(pDbPage);
3578 if( rc!=SQLITE_OK ){
3579 return rc;
3580 }
3581 }else{
3582 Pgno nextOvfl = get4byte(pDbPage->aData);
3583 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003584 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003585 if( rc!=SQLITE_OK ){
3586 return rc;
3587 }
3588 }
3589 }
3590
3591 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3592 ** that it points at iFreePage. Also fix the pointer map entry for
3593 ** iPtrPage.
3594 */
danielk1977a0bf2652004-11-04 14:30:04 +00003595 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003596 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003597 if( rc!=SQLITE_OK ){
3598 return rc;
3599 }
danielk19773b8a05f2007-03-19 17:44:26 +00003600 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003601 if( rc!=SQLITE_OK ){
3602 releasePage(pPtrPage);
3603 return rc;
3604 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003605 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003606 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003607 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003608 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003609 }
danielk1977003ba062004-11-04 02:57:33 +00003610 }
danielk1977003ba062004-11-04 02:57:33 +00003611 return rc;
3612}
3613
danielk1977dddbcdc2007-04-26 14:42:34 +00003614/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003615static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003616
3617/*
dan51f0b6d2013-02-22 20:16:34 +00003618** Perform a single step of an incremental-vacuum. If successful, return
3619** SQLITE_OK. If there is no work to do (and therefore no point in
3620** calling this function again), return SQLITE_DONE. Or, if an error
3621** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003622**
peter.d.reid60ec9142014-09-06 16:39:46 +00003623** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003624** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003625**
dan51f0b6d2013-02-22 20:16:34 +00003626** Parameter nFin is the number of pages that this database would contain
3627** were this function called until it returns SQLITE_DONE.
3628**
3629** If the bCommit parameter is non-zero, this function assumes that the
3630** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003631** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003632** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003633*/
dan51f0b6d2013-02-22 20:16:34 +00003634static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003635 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003636 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003637
drh1fee73e2007-08-29 04:00:57 +00003638 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003639 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003640
3641 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003642 u8 eType;
3643 Pgno iPtrPage;
3644
3645 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003646 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003647 return SQLITE_DONE;
3648 }
3649
3650 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3651 if( rc!=SQLITE_OK ){
3652 return rc;
3653 }
3654 if( eType==PTRMAP_ROOTPAGE ){
3655 return SQLITE_CORRUPT_BKPT;
3656 }
3657
3658 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003659 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003660 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003661 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003662 ** truncated to zero after this function returns, so it doesn't
3663 ** matter if it still contains some garbage entries.
3664 */
3665 Pgno iFreePg;
3666 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003667 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003668 if( rc!=SQLITE_OK ){
3669 return rc;
3670 }
3671 assert( iFreePg==iLastPg );
3672 releasePage(pFreePg);
3673 }
3674 } else {
3675 Pgno iFreePg; /* Index of free page to move pLastPg to */
3676 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003677 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3678 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003679
drhb00fc3b2013-08-21 23:42:32 +00003680 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003681 if( rc!=SQLITE_OK ){
3682 return rc;
3683 }
3684
dan51f0b6d2013-02-22 20:16:34 +00003685 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003686 ** is swapped with the first free page pulled off the free list.
3687 **
dan51f0b6d2013-02-22 20:16:34 +00003688 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003689 ** looping until a free-page located within the first nFin pages
3690 ** of the file is found.
3691 */
dan51f0b6d2013-02-22 20:16:34 +00003692 if( bCommit==0 ){
3693 eMode = BTALLOC_LE;
3694 iNear = nFin;
3695 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003696 do {
3697 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003698 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003699 if( rc!=SQLITE_OK ){
3700 releasePage(pLastPg);
3701 return rc;
3702 }
3703 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003704 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003705 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003706
dane1df4e32013-03-05 11:27:04 +00003707 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003708 releasePage(pLastPg);
3709 if( rc!=SQLITE_OK ){
3710 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003711 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003712 }
3713 }
3714
dan51f0b6d2013-02-22 20:16:34 +00003715 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003716 do {
danielk19773460d192008-12-27 15:23:13 +00003717 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003718 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3719 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003720 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003721 }
3722 return SQLITE_OK;
3723}
3724
3725/*
dan51f0b6d2013-02-22 20:16:34 +00003726** The database opened by the first argument is an auto-vacuum database
3727** nOrig pages in size containing nFree free pages. Return the expected
3728** size of the database in pages following an auto-vacuum operation.
3729*/
3730static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3731 int nEntry; /* Number of entries on one ptrmap page */
3732 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3733 Pgno nFin; /* Return value */
3734
3735 nEntry = pBt->usableSize/5;
3736 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3737 nFin = nOrig - nFree - nPtrmap;
3738 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3739 nFin--;
3740 }
3741 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3742 nFin--;
3743 }
dan51f0b6d2013-02-22 20:16:34 +00003744
3745 return nFin;
3746}
3747
3748/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003749** A write-transaction must be opened before calling this function.
3750** It performs a single unit of work towards an incremental vacuum.
3751**
3752** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003753** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003754** SQLITE_OK is returned. Otherwise an SQLite error code.
3755*/
3756int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003757 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003758 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003759
3760 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003761 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3762 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003763 rc = SQLITE_DONE;
3764 }else{
dan51f0b6d2013-02-22 20:16:34 +00003765 Pgno nOrig = btreePagecount(pBt);
3766 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3767 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3768
dan91384712013-02-24 11:50:43 +00003769 if( nOrig<nFin ){
3770 rc = SQLITE_CORRUPT_BKPT;
3771 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003772 rc = saveAllCursors(pBt, 0, 0);
3773 if( rc==SQLITE_OK ){
3774 invalidateAllOverflowCache(pBt);
3775 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3776 }
dan51f0b6d2013-02-22 20:16:34 +00003777 if( rc==SQLITE_OK ){
3778 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3779 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3780 }
3781 }else{
3782 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003783 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003784 }
drhd677b3d2007-08-20 22:48:41 +00003785 sqlite3BtreeLeave(p);
3786 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003787}
3788
3789/*
danielk19773b8a05f2007-03-19 17:44:26 +00003790** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003791** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003792**
3793** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3794** the database file should be truncated to during the commit process.
3795** i.e. the database has been reorganized so that only the first *pnTrunc
3796** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003797*/
danielk19773460d192008-12-27 15:23:13 +00003798static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003799 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003800 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003801 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003802
drh1fee73e2007-08-29 04:00:57 +00003803 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003804 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003805 assert(pBt->autoVacuum);
3806 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003807 Pgno nFin; /* Number of pages in database after autovacuuming */
3808 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003809 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003810 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003811
drhb1299152010-03-30 22:58:33 +00003812 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003813 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3814 /* It is not possible to create a database for which the final page
3815 ** is either a pointer-map page or the pending-byte page. If one
3816 ** is encountered, this indicates corruption.
3817 */
danielk19773460d192008-12-27 15:23:13 +00003818 return SQLITE_CORRUPT_BKPT;
3819 }
danielk1977ef165ce2009-04-06 17:50:03 +00003820
danielk19773460d192008-12-27 15:23:13 +00003821 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003822 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003823 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003824 if( nFin<nOrig ){
3825 rc = saveAllCursors(pBt, 0, 0);
3826 }
danielk19773460d192008-12-27 15:23:13 +00003827 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003828 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003829 }
danielk19773460d192008-12-27 15:23:13 +00003830 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003831 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3832 put4byte(&pBt->pPage1->aData[32], 0);
3833 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003834 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003835 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003836 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003837 }
3838 if( rc!=SQLITE_OK ){
3839 sqlite3PagerRollback(pPager);
3840 }
danielk1977687566d2004-11-02 12:56:41 +00003841 }
3842
dan0aed84d2013-03-26 14:16:20 +00003843 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003844 return rc;
3845}
danielk1977dddbcdc2007-04-26 14:42:34 +00003846
danielk1977a50d9aa2009-06-08 14:49:45 +00003847#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3848# define setChildPtrmaps(x) SQLITE_OK
3849#endif
danielk1977687566d2004-11-02 12:56:41 +00003850
3851/*
drh80e35f42007-03-30 14:06:34 +00003852** This routine does the first phase of a two-phase commit. This routine
3853** causes a rollback journal to be created (if it does not already exist)
3854** and populated with enough information so that if a power loss occurs
3855** the database can be restored to its original state by playing back
3856** the journal. Then the contents of the journal are flushed out to
3857** the disk. After the journal is safely on oxide, the changes to the
3858** database are written into the database file and flushed to oxide.
3859** At the end of this call, the rollback journal still exists on the
3860** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003861** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003862** commit process.
3863**
3864** This call is a no-op if no write-transaction is currently active on pBt.
3865**
3866** Otherwise, sync the database file for the btree pBt. zMaster points to
3867** the name of a master journal file that should be written into the
3868** individual journal file, or is NULL, indicating no master journal file
3869** (single database transaction).
3870**
3871** When this is called, the master journal should already have been
3872** created, populated with this journal pointer and synced to disk.
3873**
3874** Once this is routine has returned, the only thing required to commit
3875** the write-transaction for this database file is to delete the journal.
3876*/
3877int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3878 int rc = SQLITE_OK;
3879 if( p->inTrans==TRANS_WRITE ){
3880 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003881 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003882#ifndef SQLITE_OMIT_AUTOVACUUM
3883 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003884 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003885 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003886 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003887 return rc;
3888 }
3889 }
danbc1a3c62013-02-23 16:40:46 +00003890 if( pBt->bDoTruncate ){
3891 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3892 }
drh80e35f42007-03-30 14:06:34 +00003893#endif
drh49b9d332009-01-02 18:10:42 +00003894 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003895 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003896 }
3897 return rc;
3898}
3899
3900/*
danielk197794b30732009-07-02 17:21:57 +00003901** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3902** at the conclusion of a transaction.
3903*/
3904static void btreeEndTransaction(Btree *p){
3905 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003906 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003907 assert( sqlite3BtreeHoldsMutex(p) );
3908
danbc1a3c62013-02-23 16:40:46 +00003909#ifndef SQLITE_OMIT_AUTOVACUUM
3910 pBt->bDoTruncate = 0;
3911#endif
danc0537fe2013-06-28 19:41:43 +00003912 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003913 /* If there are other active statements that belong to this database
3914 ** handle, downgrade to a read-only transaction. The other statements
3915 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003916 downgradeAllSharedCacheTableLocks(p);
3917 p->inTrans = TRANS_READ;
3918 }else{
3919 /* If the handle had any kind of transaction open, decrement the
3920 ** transaction count of the shared btree. If the transaction count
3921 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3922 ** call below will unlock the pager. */
3923 if( p->inTrans!=TRANS_NONE ){
3924 clearAllSharedCacheTableLocks(p);
3925 pBt->nTransaction--;
3926 if( 0==pBt->nTransaction ){
3927 pBt->inTransaction = TRANS_NONE;
3928 }
3929 }
3930
3931 /* Set the current transaction state to TRANS_NONE and unlock the
3932 ** pager if this call closed the only read or write transaction. */
3933 p->inTrans = TRANS_NONE;
3934 unlockBtreeIfUnused(pBt);
3935 }
3936
3937 btreeIntegrity(p);
3938}
3939
3940/*
drh2aa679f2001-06-25 02:11:07 +00003941** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003942**
drh6e345992007-03-30 11:12:08 +00003943** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003944** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3945** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3946** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003947** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003948** routine has to do is delete or truncate or zero the header in the
3949** the rollback journal (which causes the transaction to commit) and
3950** drop locks.
drh6e345992007-03-30 11:12:08 +00003951**
dan60939d02011-03-29 15:40:55 +00003952** Normally, if an error occurs while the pager layer is attempting to
3953** finalize the underlying journal file, this function returns an error and
3954** the upper layer will attempt a rollback. However, if the second argument
3955** is non-zero then this b-tree transaction is part of a multi-file
3956** transaction. In this case, the transaction has already been committed
3957** (by deleting a master journal file) and the caller will ignore this
3958** functions return code. So, even if an error occurs in the pager layer,
3959** reset the b-tree objects internal state to indicate that the write
3960** transaction has been closed. This is quite safe, as the pager will have
3961** transitioned to the error state.
3962**
drh5e00f6c2001-09-13 13:46:56 +00003963** This will release the write lock on the database file. If there
3964** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003965*/
dan60939d02011-03-29 15:40:55 +00003966int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003967
drh075ed302010-10-14 01:17:30 +00003968 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003969 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003970 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003971
3972 /* If the handle has a write-transaction open, commit the shared-btrees
3973 ** transaction and set the shared state to TRANS_READ.
3974 */
3975 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003976 int rc;
drh075ed302010-10-14 01:17:30 +00003977 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003978 assert( pBt->inTransaction==TRANS_WRITE );
3979 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003980 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003981 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003982 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003983 return rc;
3984 }
drh3da9c042014-12-22 18:41:21 +00003985 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003986 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003987 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003988 }
danielk1977aef0bf62005-12-30 16:28:01 +00003989
danielk197794b30732009-07-02 17:21:57 +00003990 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003991 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003992 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003993}
3994
drh80e35f42007-03-30 14:06:34 +00003995/*
3996** Do both phases of a commit.
3997*/
3998int sqlite3BtreeCommit(Btree *p){
3999 int rc;
drhd677b3d2007-08-20 22:48:41 +00004000 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004001 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4002 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004003 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004004 }
drhd677b3d2007-08-20 22:48:41 +00004005 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004006 return rc;
4007}
4008
drhc39e0002004-05-07 23:50:57 +00004009/*
drhfb982642007-08-30 01:19:59 +00004010** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004011** code to errCode for every cursor on any BtShared that pBtree
4012** references. Or if the writeOnly flag is set to 1, then only
4013** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004014**
drh47b7fc72014-11-11 01:33:57 +00004015** Every cursor is a candidate to be tripped, including cursors
4016** that belong to other database connections that happen to be
4017** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004018**
dan80231042014-11-12 14:56:02 +00004019** This routine gets called when a rollback occurs. If the writeOnly
4020** flag is true, then only write-cursors need be tripped - read-only
4021** cursors save their current positions so that they may continue
4022** following the rollback. Or, if writeOnly is false, all cursors are
4023** tripped. In general, writeOnly is false if the transaction being
4024** rolled back modified the database schema. In this case b-tree root
4025** pages may be moved or deleted from the database altogether, making
4026** it unsafe for read cursors to continue.
4027**
4028** If the writeOnly flag is true and an error is encountered while
4029** saving the current position of a read-only cursor, all cursors,
4030** including all read-cursors are tripped.
4031**
4032** SQLITE_OK is returned if successful, or if an error occurs while
4033** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004034*/
dan80231042014-11-12 14:56:02 +00004035int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004036 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004037 int rc = SQLITE_OK;
4038
drh47b7fc72014-11-11 01:33:57 +00004039 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004040 if( pBtree ){
4041 sqlite3BtreeEnter(pBtree);
4042 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004043 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004044 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004045 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004046 if( rc!=SQLITE_OK ){
4047 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4048 break;
4049 }
4050 }
4051 }else{
4052 sqlite3BtreeClearCursor(p);
4053 p->eState = CURSOR_FAULT;
4054 p->skipNext = errCode;
4055 }
drh85ef6302017-08-02 15:50:09 +00004056 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004057 }
dan80231042014-11-12 14:56:02 +00004058 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004059 }
dan80231042014-11-12 14:56:02 +00004060 return rc;
drhfb982642007-08-30 01:19:59 +00004061}
4062
4063/*
drh47b7fc72014-11-11 01:33:57 +00004064** Rollback the transaction in progress.
4065**
4066** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4067** Only write cursors are tripped if writeOnly is true but all cursors are
4068** tripped if writeOnly is false. Any attempt to use
4069** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004070**
4071** This will release the write lock on the database file. If there
4072** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004073*/
drh47b7fc72014-11-11 01:33:57 +00004074int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004075 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004076 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004077 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004078
drh47b7fc72014-11-11 01:33:57 +00004079 assert( writeOnly==1 || writeOnly==0 );
4080 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004081 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004082 if( tripCode==SQLITE_OK ){
4083 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004084 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004085 }else{
4086 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004087 }
drh0f198a72012-02-13 16:43:16 +00004088 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004089 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4090 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4091 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004092 }
danielk1977aef0bf62005-12-30 16:28:01 +00004093 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004094
4095 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004096 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004097
danielk19778d34dfd2006-01-24 16:37:57 +00004098 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004099 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004100 if( rc2!=SQLITE_OK ){
4101 rc = rc2;
4102 }
4103
drh24cd67e2004-05-10 16:18:47 +00004104 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004105 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004106 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004107 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00004108 int nPage = get4byte(28+(u8*)pPage1->aData);
4109 testcase( nPage==0 );
4110 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4111 testcase( pBt->nPage!=nPage );
4112 pBt->nPage = nPage;
drh3908fe92017-09-01 14:50:19 +00004113 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004114 }
drh85ec3b62013-05-14 23:12:06 +00004115 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004116 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004117 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004118 }
danielk1977aef0bf62005-12-30 16:28:01 +00004119
danielk197794b30732009-07-02 17:21:57 +00004120 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004121 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004122 return rc;
4123}
4124
4125/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004126** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004127** back independently of the main transaction. You must start a transaction
4128** before starting a subtransaction. The subtransaction is ended automatically
4129** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004130**
4131** Statement subtransactions are used around individual SQL statements
4132** that are contained within a BEGIN...COMMIT block. If a constraint
4133** error occurs within the statement, the effect of that one statement
4134** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004135**
4136** A statement sub-transaction is implemented as an anonymous savepoint. The
4137** value passed as the second parameter is the total number of savepoints,
4138** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4139** are no active savepoints and no other statement-transactions open,
4140** iStatement is 1. This anonymous savepoint can be released or rolled back
4141** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004142*/
danielk1977bd434552009-03-18 10:33:00 +00004143int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004144 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004145 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004146 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004147 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004148 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004149 assert( iStatement>0 );
4150 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004151 assert( pBt->inTransaction==TRANS_WRITE );
4152 /* At the pager level, a statement transaction is a savepoint with
4153 ** an index greater than all savepoints created explicitly using
4154 ** SQL statements. It is illegal to open, release or rollback any
4155 ** such savepoints while the statement transaction savepoint is active.
4156 */
4157 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004158 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004159 return rc;
4160}
4161
4162/*
danielk1977fd7f0452008-12-17 17:30:26 +00004163** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4164** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004165** savepoint identified by parameter iSavepoint, depending on the value
4166** of op.
4167**
4168** Normally, iSavepoint is greater than or equal to zero. However, if op is
4169** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4170** contents of the entire transaction are rolled back. This is different
4171** from a normal transaction rollback, as no locks are released and the
4172** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004173*/
4174int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4175 int rc = SQLITE_OK;
4176 if( p && p->inTrans==TRANS_WRITE ){
4177 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004178 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4179 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4180 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004181 if( op==SAVEPOINT_ROLLBACK ){
4182 rc = saveAllCursors(pBt, 0, 0);
4183 }
4184 if( rc==SQLITE_OK ){
4185 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4186 }
drh9f0bbf92009-01-02 21:08:09 +00004187 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004188 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4189 pBt->nPage = 0;
4190 }
drh9f0bbf92009-01-02 21:08:09 +00004191 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004192 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004193
4194 /* The database size was written into the offset 28 of the header
4195 ** when the transaction started, so we know that the value at offset
4196 ** 28 is nonzero. */
4197 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004198 }
danielk1977fd7f0452008-12-17 17:30:26 +00004199 sqlite3BtreeLeave(p);
4200 }
4201 return rc;
4202}
4203
4204/*
drh8b2f49b2001-06-08 00:21:52 +00004205** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004206** iTable. If a read-only cursor is requested, it is assumed that
4207** the caller already has at least a read-only transaction open
4208** on the database already. If a write-cursor is requested, then
4209** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004210**
drhe807bdb2016-01-21 17:06:33 +00004211** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4212** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4213** can be used for reading or for writing if other conditions for writing
4214** are also met. These are the conditions that must be met in order
4215** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004216**
drhe807bdb2016-01-21 17:06:33 +00004217** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004218**
drhfe5d71d2007-03-19 11:54:10 +00004219** 2: Other database connections that share the same pager cache
4220** but which are not in the READ_UNCOMMITTED state may not have
4221** cursors open with wrFlag==0 on the same table. Otherwise
4222** the changes made by this write cursor would be visible to
4223** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004224**
4225** 3: The database must be writable (not on read-only media)
4226**
4227** 4: There must be an active transaction.
4228**
drhe807bdb2016-01-21 17:06:33 +00004229** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4230** is set. If FORDELETE is set, that is a hint to the implementation that
4231** this cursor will only be used to seek to and delete entries of an index
4232** as part of a larger DELETE statement. The FORDELETE hint is not used by
4233** this implementation. But in a hypothetical alternative storage engine
4234** in which index entries are automatically deleted when corresponding table
4235** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4236** operations on this cursor can be no-ops and all READ operations can
4237** return a null row (2-bytes: 0x01 0x00).
4238**
drh6446c4d2001-12-15 14:22:18 +00004239** No checking is done to make sure that page iTable really is the
4240** root page of a b-tree. If it is not, then the cursor acquired
4241** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004242**
drhf25a5072009-11-18 23:01:25 +00004243** It is assumed that the sqlite3BtreeCursorZero() has been called
4244** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004245*/
drhd677b3d2007-08-20 22:48:41 +00004246static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004247 Btree *p, /* The btree */
4248 int iTable, /* Root page of table to open */
4249 int wrFlag, /* 1 to write. 0 read-only */
4250 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4251 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004252){
danielk19773e8add92009-07-04 17:16:00 +00004253 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004254 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004255
drh1fee73e2007-08-29 04:00:57 +00004256 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004257 assert( wrFlag==0
4258 || wrFlag==BTREE_WRCSR
4259 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4260 );
danielk197796d48e92009-06-29 06:00:37 +00004261
danielk1977602b4662009-07-02 07:47:33 +00004262 /* The following assert statements verify that if this is a sharable
4263 ** b-tree database, the connection is holding the required table locks,
4264 ** and that no other connection has any open cursor that conflicts with
4265 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004266 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004267 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4268
danielk19773e8add92009-07-04 17:16:00 +00004269 /* Assert that the caller has opened the required transaction. */
4270 assert( p->inTrans>TRANS_NONE );
4271 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4272 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004273 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004274
drh3fbb0222014-09-24 19:47:27 +00004275 if( wrFlag ){
4276 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004277 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004278 }
drhb1299152010-03-30 22:58:33 +00004279 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004280 assert( wrFlag==0 );
4281 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004282 }
danielk1977aef0bf62005-12-30 16:28:01 +00004283
danielk1977aef0bf62005-12-30 16:28:01 +00004284 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004285 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004286 pCur->pgnoRoot = (Pgno)iTable;
4287 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004288 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004289 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004290 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004291 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004292 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004293 /* If there are two or more cursors on the same btree, then all such
4294 ** cursors *must* have the BTCF_Multiple flag set. */
4295 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4296 if( pX->pgnoRoot==(Pgno)iTable ){
4297 pX->curFlags |= BTCF_Multiple;
4298 pCur->curFlags |= BTCF_Multiple;
4299 }
drha059ad02001-04-17 20:09:11 +00004300 }
drh27fb7462015-06-30 02:47:36 +00004301 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004302 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004303 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004304 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004305}
drhd677b3d2007-08-20 22:48:41 +00004306int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004307 Btree *p, /* The btree */
4308 int iTable, /* Root page of table to open */
4309 int wrFlag, /* 1 to write. 0 read-only */
4310 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4311 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004312){
4313 int rc;
dan08f901b2015-05-25 19:24:36 +00004314 if( iTable<1 ){
4315 rc = SQLITE_CORRUPT_BKPT;
4316 }else{
4317 sqlite3BtreeEnter(p);
4318 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4319 sqlite3BtreeLeave(p);
4320 }
drhd677b3d2007-08-20 22:48:41 +00004321 return rc;
4322}
drh7f751222009-03-17 22:33:00 +00004323
4324/*
4325** Return the size of a BtCursor object in bytes.
4326**
4327** This interfaces is needed so that users of cursors can preallocate
4328** sufficient storage to hold a cursor. The BtCursor object is opaque
4329** to users so they cannot do the sizeof() themselves - they must call
4330** this routine.
4331*/
4332int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004333 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004334}
4335
drh7f751222009-03-17 22:33:00 +00004336/*
drhf25a5072009-11-18 23:01:25 +00004337** Initialize memory that will be converted into a BtCursor object.
4338**
4339** The simple approach here would be to memset() the entire object
4340** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4341** do not need to be zeroed and they are large, so we can save a lot
4342** of run-time by skipping the initialization of those elements.
4343*/
4344void sqlite3BtreeCursorZero(BtCursor *p){
4345 memset(p, 0, offsetof(BtCursor, iPage));
4346}
4347
4348/*
drh5e00f6c2001-09-13 13:46:56 +00004349** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004350** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004351*/
drh3aac2dd2004-04-26 14:10:20 +00004352int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004353 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004354 if( pBtree ){
4355 BtShared *pBt = pCur->pBt;
4356 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004357 assert( pBt->pCursor!=0 );
4358 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004359 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004360 }else{
4361 BtCursor *pPrev = pBt->pCursor;
4362 do{
4363 if( pPrev->pNext==pCur ){
4364 pPrev->pNext = pCur->pNext;
4365 break;
4366 }
4367 pPrev = pPrev->pNext;
4368 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004369 }
drh352a35a2017-08-15 03:46:47 +00004370 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004371 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004372 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004373 sqlite3_free(pCur->pKey);
danielk1977cd3e8f72008-03-25 09:47:35 +00004374 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004375 }
drh8c42ca92001-06-22 19:15:00 +00004376 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004377}
4378
drh5e2f8b92001-05-28 00:41:15 +00004379/*
drh86057612007-06-26 01:04:48 +00004380** Make sure the BtCursor* given in the argument has a valid
4381** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004382** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004383**
4384** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004385** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004386*/
drh9188b382004-05-14 21:12:22 +00004387#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004388 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004389 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004390 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004391 btreeParseCell(pCur->pPage, pCur->ix, &info);
dan7df42ab2014-01-20 18:25:44 +00004392 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004393 }
danielk19771cc5ed82007-05-16 17:28:43 +00004394#else
4395 #define assertCellInfo(x)
4396#endif
drhc5b41ac2015-06-17 02:11:46 +00004397static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4398 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004399 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004400 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004401 }else{
4402 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004403 }
drhc5b41ac2015-06-17 02:11:46 +00004404}
drh9188b382004-05-14 21:12:22 +00004405
drhea8ffdf2009-07-22 00:35:23 +00004406#ifndef NDEBUG /* The next routine used only within assert() statements */
4407/*
4408** Return true if the given BtCursor is valid. A valid cursor is one
4409** that is currently pointing to a row in a (non-empty) table.
4410** This is a verification routine is used only within assert() statements.
4411*/
4412int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4413 return pCur && pCur->eState==CURSOR_VALID;
4414}
4415#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004416int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4417 assert( pCur!=0 );
4418 return pCur->eState==CURSOR_VALID;
4419}
drhea8ffdf2009-07-22 00:35:23 +00004420
drh9188b382004-05-14 21:12:22 +00004421/*
drha7c90c42016-06-04 20:37:10 +00004422** Return the value of the integer key or "rowid" for a table btree.
4423** This routine is only valid for a cursor that is pointing into a
4424** ordinary table btree. If the cursor points to an index btree or
4425** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004426*/
drha7c90c42016-06-04 20:37:10 +00004427i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004428 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004429 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004430 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004431 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004432 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004433}
drh2af926b2001-05-15 00:39:25 +00004434
drh72f82862001-05-24 21:06:34 +00004435/*
drha7c90c42016-06-04 20:37:10 +00004436** Return the number of bytes of payload for the entry that pCur is
4437** currently pointing to. For table btrees, this will be the amount
4438** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004439**
4440** The caller must guarantee that the cursor is pointing to a non-NULL
4441** valid entry. In other words, the calling procedure must guarantee
4442** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004443*/
drha7c90c42016-06-04 20:37:10 +00004444u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4445 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004446 assert( pCur->eState==CURSOR_VALID );
4447 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004448 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004449}
4450
4451/*
danielk1977d04417962007-05-02 13:16:30 +00004452** Given the page number of an overflow page in the database (parameter
4453** ovfl), this function finds the page number of the next page in the
4454** linked list of overflow pages. If possible, it uses the auto-vacuum
4455** pointer-map data instead of reading the content of page ovfl to do so.
4456**
4457** If an error occurs an SQLite error code is returned. Otherwise:
4458**
danielk1977bea2a942009-01-20 17:06:27 +00004459** The page number of the next overflow page in the linked list is
4460** written to *pPgnoNext. If page ovfl is the last page in its linked
4461** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004462**
danielk1977bea2a942009-01-20 17:06:27 +00004463** If ppPage is not NULL, and a reference to the MemPage object corresponding
4464** to page number pOvfl was obtained, then *ppPage is set to point to that
4465** reference. It is the responsibility of the caller to call releasePage()
4466** on *ppPage to free the reference. In no reference was obtained (because
4467** the pointer-map was used to obtain the value for *pPgnoNext), then
4468** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004469*/
4470static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004471 BtShared *pBt, /* The database file */
4472 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004473 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004474 Pgno *pPgnoNext /* OUT: Next overflow page number */
4475){
4476 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004477 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004478 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004479
drh1fee73e2007-08-29 04:00:57 +00004480 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004481 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004482
4483#ifndef SQLITE_OMIT_AUTOVACUUM
4484 /* Try to find the next page in the overflow list using the
4485 ** autovacuum pointer-map pages. Guess that the next page in
4486 ** the overflow list is page number (ovfl+1). If that guess turns
4487 ** out to be wrong, fall back to loading the data of page
4488 ** number ovfl to determine the next page number.
4489 */
4490 if( pBt->autoVacuum ){
4491 Pgno pgno;
4492 Pgno iGuess = ovfl+1;
4493 u8 eType;
4494
4495 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4496 iGuess++;
4497 }
4498
drhb1299152010-03-30 22:58:33 +00004499 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004500 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004501 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004502 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004503 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004504 }
4505 }
4506 }
4507#endif
4508
danielk1977d8a3f3d2009-07-11 11:45:23 +00004509 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004510 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004511 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004512 assert( rc==SQLITE_OK || pPage==0 );
4513 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004514 next = get4byte(pPage->aData);
4515 }
danielk1977443c0592009-01-16 15:21:05 +00004516 }
danielk197745d68822009-01-16 16:23:38 +00004517
danielk1977bea2a942009-01-20 17:06:27 +00004518 *pPgnoNext = next;
4519 if( ppPage ){
4520 *ppPage = pPage;
4521 }else{
4522 releasePage(pPage);
4523 }
4524 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004525}
4526
danielk1977da107192007-05-04 08:32:13 +00004527/*
4528** Copy data from a buffer to a page, or from a page to a buffer.
4529**
4530** pPayload is a pointer to data stored on database page pDbPage.
4531** If argument eOp is false, then nByte bytes of data are copied
4532** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4533** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4534** of data are copied from the buffer pBuf to pPayload.
4535**
4536** SQLITE_OK is returned on success, otherwise an error code.
4537*/
4538static int copyPayload(
4539 void *pPayload, /* Pointer to page data */
4540 void *pBuf, /* Pointer to buffer */
4541 int nByte, /* Number of bytes to copy */
4542 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4543 DbPage *pDbPage /* Page containing pPayload */
4544){
4545 if( eOp ){
4546 /* Copy data from buffer to page (a write operation) */
4547 int rc = sqlite3PagerWrite(pDbPage);
4548 if( rc!=SQLITE_OK ){
4549 return rc;
4550 }
4551 memcpy(pPayload, pBuf, nByte);
4552 }else{
4553 /* Copy data from page to buffer (a read operation) */
4554 memcpy(pBuf, pPayload, nByte);
4555 }
4556 return SQLITE_OK;
4557}
danielk1977d04417962007-05-02 13:16:30 +00004558
4559/*
danielk19779f8d6402007-05-02 17:48:45 +00004560** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004561** for the entry that the pCur cursor is pointing to. The eOp
4562** argument is interpreted as follows:
4563**
4564** 0: The operation is a read. Populate the overflow cache.
4565** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004566**
4567** A total of "amt" bytes are read or written beginning at "offset".
4568** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004569**
drh3bcdfd22009-07-12 02:32:21 +00004570** The content being read or written might appear on the main page
4571** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004572**
drh42e28f12017-01-27 00:31:59 +00004573** If the current cursor entry uses one or more overflow pages
4574** this function may allocate space for and lazily populate
4575** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004576** Subsequent calls use this cache to make seeking to the supplied offset
4577** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004578**
drh42e28f12017-01-27 00:31:59 +00004579** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004580** invalidated if some other cursor writes to the same table, or if
4581** the cursor is moved to a different row. Additionally, in auto-vacuum
4582** mode, the following events may invalidate an overflow page-list cache.
4583**
4584** * An incremental vacuum,
4585** * A commit in auto_vacuum="full" mode,
4586** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004587*/
danielk19779f8d6402007-05-02 17:48:45 +00004588static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004589 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004590 u32 offset, /* Begin reading this far into payload */
4591 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004592 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004593 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004594){
4595 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004596 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004597 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004598 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004599 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004600#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004601 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004602#endif
drh3aac2dd2004-04-26 14:10:20 +00004603
danielk1977da107192007-05-04 08:32:13 +00004604 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004605 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004606 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004607 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004608 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004609
drh86057612007-06-26 01:04:48 +00004610 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004611 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004612 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004613
drh0b982072016-03-22 14:10:45 +00004614 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004615 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004616 /* Trying to read or write past the end of the data is an error. The
4617 ** conditional above is really:
4618 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4619 ** but is recast into its current form to avoid integer overflow problems
4620 */
daneebf2f52017-11-18 17:30:08 +00004621 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004622 }
danielk1977da107192007-05-04 08:32:13 +00004623
4624 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004625 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004626 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004627 if( a+offset>pCur->info.nLocal ){
4628 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004629 }
drh42e28f12017-01-27 00:31:59 +00004630 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004631 offset = 0;
drha34b6762004-05-07 13:30:42 +00004632 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004633 amt -= a;
drhdd793422001-06-28 01:54:48 +00004634 }else{
drhfa1a98a2004-05-14 19:08:17 +00004635 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004636 }
danielk1977da107192007-05-04 08:32:13 +00004637
dan85753662014-12-11 16:38:18 +00004638
danielk1977da107192007-05-04 08:32:13 +00004639 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004640 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004641 Pgno nextPage;
4642
drhfa1a98a2004-05-14 19:08:17 +00004643 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004644
drha38c9512014-04-01 01:24:34 +00004645 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004646 **
4647 ** The aOverflow[] array is sized at one entry for each overflow page
4648 ** in the overflow chain. The page number of the first overflow page is
4649 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4650 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004651 */
drh42e28f12017-01-27 00:31:59 +00004652 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004653 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004654 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004655 Pgno *aNew = (Pgno*)sqlite3Realloc(
4656 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004657 );
4658 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004659 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004660 }else{
4661 pCur->nOvflAlloc = nOvfl*2;
4662 pCur->aOverflow = aNew;
4663 }
4664 }
drhcd645532017-01-20 20:43:14 +00004665 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4666 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004667 }else{
4668 /* If the overflow page-list cache has been allocated and the
4669 ** entry for the first required overflow page is valid, skip
4670 ** directly to it.
4671 */
4672 if( pCur->aOverflow[offset/ovflSize] ){
4673 iIdx = (offset/ovflSize);
4674 nextPage = pCur->aOverflow[iIdx];
4675 offset = (offset%ovflSize);
4676 }
danielk19772dec9702007-05-02 16:48:37 +00004677 }
danielk1977da107192007-05-04 08:32:13 +00004678
drhcd645532017-01-20 20:43:14 +00004679 assert( rc==SQLITE_OK && amt>0 );
4680 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004681 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004682 assert( pCur->aOverflow[iIdx]==0
4683 || pCur->aOverflow[iIdx]==nextPage
4684 || CORRUPT_DB );
4685 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004686
danielk1977d04417962007-05-02 13:16:30 +00004687 if( offset>=ovflSize ){
4688 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004689 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004690 ** data is not required. So first try to lookup the overflow
4691 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004692 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004693 */
drha38c9512014-04-01 01:24:34 +00004694 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004695 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004696 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004697 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004698 }else{
danielk1977da107192007-05-04 08:32:13 +00004699 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004700 }
danielk1977da107192007-05-04 08:32:13 +00004701 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004702 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004703 /* Need to read this page properly. It contains some of the
4704 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004705 */
danf4ba1092011-10-08 14:57:07 +00004706#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004707 sqlite3_file *fd; /* File from which to do direct overflow read */
danf4ba1092011-10-08 14:57:07 +00004708#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004709 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004710 if( a + offset > ovflSize ){
4711 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004712 }
danf4ba1092011-10-08 14:57:07 +00004713
4714#ifdef SQLITE_DIRECT_OVERFLOW_READ
4715 /* If all the following are true:
4716 **
4717 ** 1) this is a read operation, and
4718 ** 2) data is required from the start of this overflow page, and
drh8bb9fd32017-01-26 16:27:32 +00004719 ** 3) there is no open write-transaction, and
4720 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004721 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004722 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004723 **
4724 ** then data can be read directly from the database file into the
4725 ** output buffer, bypassing the page-cache altogether. This speeds
4726 ** up loading large records that span many overflow pages.
4727 */
drh42e28f12017-01-27 00:31:59 +00004728 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004729 && offset==0 /* (2) */
drh8bb9fd32017-01-26 16:27:32 +00004730 && pBt->inTransaction==TRANS_READ /* (3) */
4731 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */
drhd930b5c2017-01-26 02:26:02 +00004732 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */
drh8bb9fd32017-01-26 16:27:32 +00004733 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004734 ){
4735 u8 aSave[4];
4736 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004737 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004738 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004739 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004740 nextPage = get4byte(aWrite);
4741 memcpy(aWrite, aSave, 4);
4742 }else
4743#endif
4744
4745 {
4746 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004747 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004748 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004749 );
danf4ba1092011-10-08 14:57:07 +00004750 if( rc==SQLITE_OK ){
4751 aPayload = sqlite3PagerGetData(pDbPage);
4752 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004753 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004754 sqlite3PagerUnref(pDbPage);
4755 offset = 0;
4756 }
4757 }
4758 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004759 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004760 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004761 }
drhcd645532017-01-20 20:43:14 +00004762 if( rc ) break;
4763 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004764 }
drh2af926b2001-05-15 00:39:25 +00004765 }
danielk1977cfe9a692004-06-16 12:00:29 +00004766
danielk1977da107192007-05-04 08:32:13 +00004767 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004768 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00004769 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00004770 }
danielk1977da107192007-05-04 08:32:13 +00004771 return rc;
drh2af926b2001-05-15 00:39:25 +00004772}
4773
drh72f82862001-05-24 21:06:34 +00004774/*
drhcb3cabd2016-11-25 19:18:28 +00004775** Read part of the payload for the row at which that cursor pCur is currently
4776** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004777** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004778**
drhcb3cabd2016-11-25 19:18:28 +00004779** pCur can be pointing to either a table or an index b-tree.
4780** If pointing to a table btree, then the content section is read. If
4781** pCur is pointing to an index b-tree then the key section is read.
4782**
4783** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4784** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4785** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004786**
drh3aac2dd2004-04-26 14:10:20 +00004787** Return SQLITE_OK on success or an error code if anything goes
4788** wrong. An error is returned if "offset+amt" is larger than
4789** the available payload.
drh72f82862001-05-24 21:06:34 +00004790*/
drhcb3cabd2016-11-25 19:18:28 +00004791int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004792 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004793 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00004794 assert( pCur->iPage>=0 && pCur->pPage );
4795 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00004796 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004797}
drh83ec2762017-01-26 16:54:47 +00004798
4799/*
4800** This variant of sqlite3BtreePayload() works even if the cursor has not
4801** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4802** interface.
4803*/
danielk19773588ceb2008-06-10 17:30:26 +00004804#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004805static SQLITE_NOINLINE int accessPayloadChecked(
4806 BtCursor *pCur,
4807 u32 offset,
4808 u32 amt,
4809 void *pBuf
4810){
drhcb3cabd2016-11-25 19:18:28 +00004811 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004812 if ( pCur->eState==CURSOR_INVALID ){
4813 return SQLITE_ABORT;
4814 }
dan7a2347e2016-01-07 16:43:54 +00004815 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004816 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004817 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4818}
4819int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4820 if( pCur->eState==CURSOR_VALID ){
4821 assert( cursorOwnsBtShared(pCur) );
4822 return accessPayload(pCur, offset, amt, pBuf, 0);
4823 }else{
4824 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004825 }
drh2af926b2001-05-15 00:39:25 +00004826}
drhcb3cabd2016-11-25 19:18:28 +00004827#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004828
drh72f82862001-05-24 21:06:34 +00004829/*
drh0e1c19e2004-05-11 00:58:56 +00004830** Return a pointer to payload information from the entry that the
4831** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004832** the key if index btrees (pPage->intKey==0) and is the data for
4833** table btrees (pPage->intKey==1). The number of bytes of available
4834** key/data is written into *pAmt. If *pAmt==0, then the value
4835** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004836**
4837** This routine is an optimization. It is common for the entire key
4838** and data to fit on the local page and for there to be no overflow
4839** pages. When that is so, this routine can be used to access the
4840** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004841** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004842** the key/data and copy it into a preallocated buffer.
4843**
4844** The pointer returned by this routine looks directly into the cached
4845** page of the database. The data might change or move the next time
4846** any btree routine is called.
4847*/
drh2a8d2262013-12-09 20:43:22 +00004848static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004849 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004850 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004851){
danf2f72a02017-10-19 15:17:38 +00004852 int amt;
drh352a35a2017-08-15 03:46:47 +00004853 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00004854 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004855 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004856 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00004857 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00004858 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00004859 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
4860 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00004861 amt = pCur->info.nLocal;
4862 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
4863 /* There is too little space on the page for the expected amount
4864 ** of local content. Database must be corrupt. */
4865 assert( CORRUPT_DB );
4866 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
4867 }
4868 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00004869 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004870}
4871
4872
4873/*
drhe51c44f2004-05-30 20:46:09 +00004874** For the entry that cursor pCur is point to, return as
4875** many bytes of the key or data as are available on the local
4876** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004877**
4878** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004879** or be destroyed on the next call to any Btree routine,
4880** including calls from other threads against the same cache.
4881** Hence, a mutex on the BtShared should be held prior to calling
4882** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004883**
4884** These routines is used to get quick access to key and data
4885** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004886*/
drha7c90c42016-06-04 20:37:10 +00004887const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004888 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004889}
4890
4891
4892/*
drh8178a752003-01-05 21:41:40 +00004893** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004894** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004895**
4896** This function returns SQLITE_CORRUPT if the page-header flags field of
4897** the new child page does not match the flags field of the parent (i.e.
4898** if an intkey page appears to be the parent of a non-intkey page, or
4899** vice-versa).
drh72f82862001-05-24 21:06:34 +00004900*/
drh3aac2dd2004-04-26 14:10:20 +00004901static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004902 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004903
dan7a2347e2016-01-07 16:43:54 +00004904 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004905 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004906 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004907 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004908 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4909 return SQLITE_CORRUPT_BKPT;
4910 }
drh271efa52004-05-30 19:19:05 +00004911 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004912 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00004913 pCur->aiIdx[pCur->iPage] = pCur->ix;
4914 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00004915 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00004916 pCur->iPage++;
4917 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004918}
4919
drhd879e3e2017-02-13 13:35:55 +00004920#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004921/*
4922** Page pParent is an internal (non-leaf) tree page. This function
4923** asserts that page number iChild is the left-child if the iIdx'th
4924** cell in page pParent. Or, if iIdx is equal to the total number of
4925** cells in pParent, that page number iChild is the right-child of
4926** the page.
4927*/
4928static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004929 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4930 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004931 assert( iIdx<=pParent->nCell );
4932 if( iIdx==pParent->nCell ){
4933 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4934 }else{
4935 assert( get4byte(findCell(pParent, iIdx))==iChild );
4936 }
4937}
4938#else
4939# define assertParentIndex(x,y,z)
4940#endif
4941
drh72f82862001-05-24 21:06:34 +00004942/*
drh5e2f8b92001-05-28 00:41:15 +00004943** Move the cursor up to the parent page.
4944**
4945** pCur->idx is set to the cell index that contains the pointer
4946** to the page we are coming from. If we are coming from the
4947** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004948** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004949*/
danielk197730548662009-07-09 05:07:37 +00004950static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00004951 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00004952 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004953 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004954 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00004955 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00004956 assertParentIndex(
4957 pCur->apPage[pCur->iPage-1],
4958 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00004959 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00004960 );
dan6c2688c2012-01-12 15:05:03 +00004961 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004962 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004963 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00004964 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00004965 pLeaf = pCur->pPage;
4966 pCur->pPage = pCur->apPage[--pCur->iPage];
4967 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00004968}
4969
4970/*
danielk19778f880a82009-07-13 09:41:45 +00004971** Move the cursor to point to the root page of its b-tree structure.
4972**
4973** If the table has a virtual root page, then the cursor is moved to point
4974** to the virtual root page instead of the actual root page. A table has a
4975** virtual root page when the actual root page contains no cells and a
4976** single child page. This can only happen with the table rooted at page 1.
4977**
4978** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00004979** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
4980** the cursor is set to point to the first cell located on the root
4981** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00004982**
4983** If this function returns successfully, it may be assumed that the
4984** page-header flags indicate that the [virtual] root-page is the expected
4985** kind of b-tree page (i.e. if when opening the cursor the caller did not
4986** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4987** indicating a table b-tree, or if the caller did specify a KeyInfo
4988** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4989** b-tree).
drh72f82862001-05-24 21:06:34 +00004990*/
drh5e2f8b92001-05-28 00:41:15 +00004991static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004992 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004993 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004994
dan7a2347e2016-01-07 16:43:54 +00004995 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00004996 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4997 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4998 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00004999 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005000 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005001
5002 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005003 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005004 releasePageNotNull(pCur->pPage);
5005 while( --pCur->iPage ){
5006 releasePageNotNull(pCur->apPage[pCur->iPage]);
5007 }
5008 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005009 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005010 }
dana205a482011-08-27 18:48:57 +00005011 }else if( pCur->pgnoRoot==0 ){
5012 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005013 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005014 }else{
drh28f58dd2015-06-27 19:45:03 +00005015 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005016 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5017 if( pCur->eState==CURSOR_FAULT ){
5018 assert( pCur->skipNext!=SQLITE_OK );
5019 return pCur->skipNext;
5020 }
5021 sqlite3BtreeClearCursor(pCur);
5022 }
drh352a35a2017-08-15 03:46:47 +00005023 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005024 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005025 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005026 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005027 return rc;
drh777e4c42006-01-13 04:31:58 +00005028 }
danielk1977172114a2009-07-07 15:47:12 +00005029 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005030 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005031 }
drh352a35a2017-08-15 03:46:47 +00005032 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005033 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005034
5035 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5036 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5037 ** NULL, the caller expects a table b-tree. If this is not the case,
5038 ** return an SQLITE_CORRUPT error.
5039 **
5040 ** Earlier versions of SQLite assumed that this test could not fail
5041 ** if the root page was already loaded when this function was called (i.e.
5042 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5043 ** in such a way that page pRoot is linked into a second b-tree table
5044 ** (or the freelist). */
5045 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5046 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005047 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005048 }
danielk19778f880a82009-07-13 09:41:45 +00005049
drh7ad3eb62016-10-24 01:01:09 +00005050skip_init:
drh75e96b32017-04-01 00:20:06 +00005051 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005052 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005053 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005054
drh352a35a2017-08-15 03:46:47 +00005055 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005056 if( pRoot->nCell>0 ){
5057 pCur->eState = CURSOR_VALID;
5058 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005059 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005060 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005061 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005062 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005063 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005064 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005065 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005066 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005067 }
5068 return rc;
drh72f82862001-05-24 21:06:34 +00005069}
drh2af926b2001-05-15 00:39:25 +00005070
drh5e2f8b92001-05-28 00:41:15 +00005071/*
5072** Move the cursor down to the left-most leaf entry beneath the
5073** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005074**
5075** The left-most leaf is the one with the smallest key - the first
5076** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005077*/
5078static int moveToLeftmost(BtCursor *pCur){
5079 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005080 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005081 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005082
dan7a2347e2016-01-07 16:43:54 +00005083 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005084 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005085 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005086 assert( pCur->ix<pPage->nCell );
5087 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005088 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005089 }
drhd677b3d2007-08-20 22:48:41 +00005090 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005091}
5092
drh2dcc9aa2002-12-04 13:40:25 +00005093/*
5094** Move the cursor down to the right-most leaf entry beneath the
5095** page to which it is currently pointing. Notice the difference
5096** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5097** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5098** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005099**
5100** The right-most entry is the one with the largest key - the last
5101** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005102*/
5103static int moveToRightmost(BtCursor *pCur){
5104 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005105 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005106 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005107
dan7a2347e2016-01-07 16:43:54 +00005108 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005109 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005110 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005111 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005112 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005113 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005114 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005115 }
drh75e96b32017-04-01 00:20:06 +00005116 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005117 assert( pCur->info.nSize==0 );
5118 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5119 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005120}
5121
drh5e00f6c2001-09-13 13:46:56 +00005122/* Move the cursor to the first entry in the table. Return SQLITE_OK
5123** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005124** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005125*/
drh3aac2dd2004-04-26 14:10:20 +00005126int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005127 int rc;
drhd677b3d2007-08-20 22:48:41 +00005128
dan7a2347e2016-01-07 16:43:54 +00005129 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005130 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005131 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005132 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005133 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005134 *pRes = 0;
5135 rc = moveToLeftmost(pCur);
5136 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005137 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005138 *pRes = 1;
5139 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005140 }
drh5e00f6c2001-09-13 13:46:56 +00005141 return rc;
5142}
drh5e2f8b92001-05-28 00:41:15 +00005143
drh9562b552002-02-19 15:00:07 +00005144/* Move the cursor to the last entry in the table. Return SQLITE_OK
5145** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005146** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005147*/
drh3aac2dd2004-04-26 14:10:20 +00005148int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005149 int rc;
drhd677b3d2007-08-20 22:48:41 +00005150
dan7a2347e2016-01-07 16:43:54 +00005151 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005152 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005153
5154 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005155 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005156#ifdef SQLITE_DEBUG
5157 /* This block serves to assert() that the cursor really does point
5158 ** to the last entry in the b-tree. */
5159 int ii;
5160 for(ii=0; ii<pCur->iPage; ii++){
5161 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5162 }
drh352a35a2017-08-15 03:46:47 +00005163 assert( pCur->ix==pCur->pPage->nCell-1 );
5164 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005165#endif
5166 return SQLITE_OK;
5167 }
5168
drh9562b552002-02-19 15:00:07 +00005169 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005170 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005171 assert( pCur->eState==CURSOR_VALID );
5172 *pRes = 0;
5173 rc = moveToRightmost(pCur);
5174 if( rc==SQLITE_OK ){
5175 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005176 }else{
drh44548e72017-08-14 18:13:52 +00005177 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005178 }
drh44548e72017-08-14 18:13:52 +00005179 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005180 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005181 *pRes = 1;
5182 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005183 }
drh9562b552002-02-19 15:00:07 +00005184 return rc;
5185}
5186
drhe14006d2008-03-25 17:23:32 +00005187/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005188** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005189**
drhe63d9992008-08-13 19:11:48 +00005190** For INTKEY tables, the intKey parameter is used. pIdxKey
5191** must be NULL. For index tables, pIdxKey is used and intKey
5192** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005193**
drh5e2f8b92001-05-28 00:41:15 +00005194** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005195** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005196** were present. The cursor might point to an entry that comes
5197** before or after the key.
5198**
drh64022502009-01-09 14:11:04 +00005199** An integer is written into *pRes which is the result of
5200** comparing the key with the entry to which the cursor is
5201** pointing. The meaning of the integer written into
5202** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005203**
5204** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005205** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005206** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005207**
5208** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005209** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005210**
5211** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005212** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005213**
drhb1d607d2015-11-05 22:30:54 +00005214** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5215** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005216*/
drhe63d9992008-08-13 19:11:48 +00005217int sqlite3BtreeMovetoUnpacked(
5218 BtCursor *pCur, /* The cursor to be moved */
5219 UnpackedRecord *pIdxKey, /* Unpacked index key */
5220 i64 intKey, /* The table key */
5221 int biasRight, /* If true, bias the search to the high end */
5222 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005223){
drh72f82862001-05-24 21:06:34 +00005224 int rc;
dan3b9330f2014-02-27 20:44:18 +00005225 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005226
dan7a2347e2016-01-07 16:43:54 +00005227 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005228 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005229 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005230 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005231 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005232
5233 /* If the cursor is already positioned at the point we are trying
5234 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005235 if( pIdxKey==0
5236 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005237 ){
drhe63d9992008-08-13 19:11:48 +00005238 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005239 *pRes = 0;
5240 return SQLITE_OK;
5241 }
drh451e76d2017-01-21 16:54:19 +00005242 if( pCur->info.nKey<intKey ){
5243 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5244 *pRes = -1;
5245 return SQLITE_OK;
5246 }
drh7f11afa2017-01-21 21:47:54 +00005247 /* If the requested key is one more than the previous key, then
5248 ** try to get there using sqlite3BtreeNext() rather than a full
5249 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005250 ** is still obtained without this case, only a little more slowely */
drh7f11afa2017-01-21 21:47:54 +00005251 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5252 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005253 rc = sqlite3BtreeNext(pCur, 0);
5254 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005255 getCellInfo(pCur);
5256 if( pCur->info.nKey==intKey ){
5257 return SQLITE_OK;
5258 }
drh2ab792e2017-05-30 18:34:07 +00005259 }else if( rc==SQLITE_DONE ){
5260 rc = SQLITE_OK;
5261 }else{
5262 return rc;
drh451e76d2017-01-21 16:54:19 +00005263 }
5264 }
drha2c20e42008-03-29 16:01:04 +00005265 }
5266 }
5267
dan1fed5da2014-02-25 21:01:25 +00005268 if( pIdxKey ){
5269 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005270 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005271 assert( pIdxKey->default_rc==1
5272 || pIdxKey->default_rc==0
5273 || pIdxKey->default_rc==-1
5274 );
drh13a747e2014-03-03 21:46:55 +00005275 }else{
drhb6e8fd12014-03-06 01:56:33 +00005276 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005277 }
5278
drh5e2f8b92001-05-28 00:41:15 +00005279 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005280 if( rc ){
drh44548e72017-08-14 18:13:52 +00005281 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005282 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005283 *pRes = -1;
5284 return SQLITE_OK;
5285 }
drhd677b3d2007-08-20 22:48:41 +00005286 return rc;
5287 }
drh352a35a2017-08-15 03:46:47 +00005288 assert( pCur->pPage );
5289 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005290 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005291 assert( pCur->pPage->nCell > 0 );
5292 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005293 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005294 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005295 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005296 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005297 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005298 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005299
5300 /* pPage->nCell must be greater than zero. If this is the root-page
5301 ** the cursor would have been INVALID above and this for(;;) loop
5302 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005303 ** would have already detected db corruption. Similarly, pPage must
5304 ** be the right kind (index or table) of b-tree page. Otherwise
5305 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005306 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005307 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005308 lwr = 0;
5309 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005310 assert( biasRight==0 || biasRight==1 );
5311 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005312 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005313 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005314 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005315 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005316 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005317 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005318 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005319 if( pCell>=pPage->aDataEnd ){
daneebf2f52017-11-18 17:30:08 +00005320 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00005321 }
drh9b2fc612013-11-25 20:14:13 +00005322 }
drhd172f862006-01-12 15:01:15 +00005323 }
drha2c20e42008-03-29 16:01:04 +00005324 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005325 if( nCellKey<intKey ){
5326 lwr = idx+1;
5327 if( lwr>upr ){ c = -1; break; }
5328 }else if( nCellKey>intKey ){
5329 upr = idx-1;
5330 if( lwr>upr ){ c = +1; break; }
5331 }else{
5332 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005333 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005334 if( !pPage->leaf ){
5335 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005336 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005337 }else{
drhd95ef5c2016-11-11 18:19:05 +00005338 pCur->curFlags |= BTCF_ValidNKey;
5339 pCur->info.nKey = nCellKey;
5340 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005341 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005342 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005343 }
drhd793f442013-11-25 14:10:15 +00005344 }
drhebf10b12013-11-25 17:38:26 +00005345 assert( lwr+upr>=0 );
5346 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005347 }
5348 }else{
5349 for(;;){
drhc6827502015-05-28 15:14:32 +00005350 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005351 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005352
drhb2eced52010-08-12 02:41:12 +00005353 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005354 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005355 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005356 ** varint. This information is used to attempt to avoid parsing
5357 ** the entire cell by checking for the cases where the record is
5358 ** stored entirely within the b-tree page by inspecting the first
5359 ** 2 bytes of the cell.
5360 */
drhec3e6b12013-11-25 02:38:55 +00005361 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005362 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005363 /* This branch runs if the record-size field of the cell is a
5364 ** single byte varint and the record fits entirely on the main
5365 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005366 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005367 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005368 }else if( !(pCell[1] & 0x80)
5369 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5370 ){
5371 /* The record-size field is a 2 byte varint and the record
5372 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005373 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005374 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005375 }else{
danielk197711c327a2009-05-04 19:01:26 +00005376 /* The record flows over onto one or more overflow pages. In
5377 ** this case the whole cell needs to be parsed, a buffer allocated
5378 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005379 ** buffer before VdbeRecordCompare() can be called.
5380 **
5381 ** If the record is corrupt, the xRecordCompare routine may read
5382 ** up to two varints past the end of the buffer. An extra 18
5383 ** bytes of padding is allocated at the end of the buffer in
5384 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005385 void *pCellKey;
5386 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005387 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005388 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005389 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5390 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5391 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5392 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005393 if( nCell<2 ){
daneebf2f52017-11-18 17:30:08 +00005394 rc = SQLITE_CORRUPT_PAGE(pPage);
dan3548db72015-05-27 14:21:05 +00005395 goto moveto_finish;
5396 }
5397 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005398 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005399 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005400 goto moveto_finish;
5401 }
drh75e96b32017-04-01 00:20:06 +00005402 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005403 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5404 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005405 if( rc ){
5406 sqlite3_free(pCellKey);
5407 goto moveto_finish;
5408 }
drh75179de2014-09-16 14:37:35 +00005409 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005410 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005411 }
dan38fdead2014-04-01 10:19:02 +00005412 assert(
5413 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005414 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005415 );
drhbb933ef2013-11-25 15:01:38 +00005416 if( c<0 ){
5417 lwr = idx+1;
5418 }else if( c>0 ){
5419 upr = idx-1;
5420 }else{
5421 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005422 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005423 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005424 pCur->ix = (u16)idx;
mistachkin88a79732017-09-04 19:31:54 +00005425 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
drh1e968a02008-03-25 00:22:21 +00005426 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005427 }
drhebf10b12013-11-25 17:38:26 +00005428 if( lwr>upr ) break;
5429 assert( lwr+upr>=0 );
5430 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005431 }
drh72f82862001-05-24 21:06:34 +00005432 }
drhb07028f2011-10-14 21:49:18 +00005433 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005434 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005435 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005436 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005437 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005438 *pRes = c;
5439 rc = SQLITE_OK;
5440 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005441 }
5442moveto_next_layer:
5443 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005444 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005445 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005446 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005447 }
drh75e96b32017-04-01 00:20:06 +00005448 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005449 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005450 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005451 }
drh1e968a02008-03-25 00:22:21 +00005452moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005453 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005454 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005455 return rc;
5456}
5457
drhd677b3d2007-08-20 22:48:41 +00005458
drh72f82862001-05-24 21:06:34 +00005459/*
drhc39e0002004-05-07 23:50:57 +00005460** Return TRUE if the cursor is not pointing at an entry of the table.
5461**
5462** TRUE will be returned after a call to sqlite3BtreeNext() moves
5463** past the last entry in the table or sqlite3BtreePrev() moves past
5464** the first entry. TRUE is also returned if the table is empty.
5465*/
5466int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005467 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5468 ** have been deleted? This API will need to change to return an error code
5469 ** as well as the boolean result value.
5470 */
5471 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005472}
5473
5474/*
drh5e98e832017-02-17 19:24:06 +00005475** Return an estimate for the number of rows in the table that pCur is
5476** pointing to. Return a negative number if no estimate is currently
5477** available.
5478*/
5479i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5480 i64 n;
5481 u8 i;
5482
5483 assert( cursorOwnsBtShared(pCur) );
5484 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005485
5486 /* Currently this interface is only called by the OP_IfSmaller
5487 ** opcode, and it that case the cursor will always be valid and
5488 ** will always point to a leaf node. */
5489 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005490 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005491
drh352a35a2017-08-15 03:46:47 +00005492 n = pCur->pPage->nCell;
5493 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005494 n *= pCur->apPage[i]->nCell;
5495 }
5496 return n;
5497}
5498
5499/*
drh2ab792e2017-05-30 18:34:07 +00005500** Advance the cursor to the next entry in the database.
5501** Return value:
5502**
5503** SQLITE_OK success
5504** SQLITE_DONE cursor is already pointing at the last element
5505** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005506**
drhee6438d2014-09-01 13:29:32 +00005507** The main entry point is sqlite3BtreeNext(). That routine is optimized
5508** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5509** to the next cell on the current page. The (slower) btreeNext() helper
5510** routine is called when it is necessary to move to a different page or
5511** to restore the cursor.
5512**
drh89997982017-07-11 18:11:33 +00005513** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5514** cursor corresponds to an SQL index and this routine could have been
5515** skipped if the SQL index had been a unique index. The F argument
5516** is a hint to the implement. SQLite btree implementation does not use
5517** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005518*/
drh89997982017-07-11 18:11:33 +00005519static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005520 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005521 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005522 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005523
dan7a2347e2016-01-07 16:43:54 +00005524 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005525 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhf66f26a2013-08-19 20:04:10 +00005526 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005527 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005528 rc = restoreCursorPosition(pCur);
5529 if( rc!=SQLITE_OK ){
5530 return rc;
5531 }
5532 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005533 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005534 }
drh9b47ee32013-08-20 03:13:51 +00005535 if( pCur->skipNext ){
5536 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5537 pCur->eState = CURSOR_VALID;
5538 if( pCur->skipNext>0 ){
5539 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005540 return SQLITE_OK;
5541 }
drhf66f26a2013-08-19 20:04:10 +00005542 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005543 }
danielk1977da184232006-01-05 11:34:32 +00005544 }
danielk1977da184232006-01-05 11:34:32 +00005545
drh352a35a2017-08-15 03:46:47 +00005546 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005547 idx = ++pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005548 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005549
5550 /* If the database file is corrupt, it is possible for the value of idx
5551 ** to be invalid here. This can only occur if a second cursor modifies
5552 ** the page while cursor pCur is holding a reference to it. Which can
5553 ** only happen if the database is corrupt in such a way as to link the
5554 ** page into more than one b-tree structure. */
5555 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005556
danielk197771d5d2c2008-09-29 11:49:47 +00005557 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005558 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005559 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005560 if( rc ) return rc;
5561 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005562 }
drh5e2f8b92001-05-28 00:41:15 +00005563 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005564 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005565 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005566 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005567 }
danielk197730548662009-07-09 05:07:37 +00005568 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005569 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005570 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005571 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005572 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005573 }else{
drhee6438d2014-09-01 13:29:32 +00005574 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005575 }
drh8178a752003-01-05 21:41:40 +00005576 }
drh3aac2dd2004-04-26 14:10:20 +00005577 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005578 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005579 }else{
5580 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005581 }
drh72f82862001-05-24 21:06:34 +00005582}
drh2ab792e2017-05-30 18:34:07 +00005583int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005584 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005585 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005586 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005587 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005588 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5589 pCur->info.nSize = 0;
5590 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005591 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005592 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005593 if( (++pCur->ix)>=pPage->nCell ){
5594 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005595 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005596 }
5597 if( pPage->leaf ){
5598 return SQLITE_OK;
5599 }else{
5600 return moveToLeftmost(pCur);
5601 }
5602}
drh72f82862001-05-24 21:06:34 +00005603
drh3b7511c2001-05-26 13:15:44 +00005604/*
drh2ab792e2017-05-30 18:34:07 +00005605** Step the cursor to the back to the previous entry in the database.
5606** Return values:
5607**
5608** SQLITE_OK success
5609** SQLITE_DONE the cursor is already on the first element of the table
5610** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005611**
drhee6438d2014-09-01 13:29:32 +00005612** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5613** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005614** to the previous cell on the current page. The (slower) btreePrevious()
5615** helper routine is called when it is necessary to move to a different page
5616** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005617**
drh89997982017-07-11 18:11:33 +00005618** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5619** the cursor corresponds to an SQL index and this routine could have been
5620** skipped if the SQL index had been a unique index. The F argument is a
5621** hint to the implement. The native SQLite btree implementation does not
5622** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005623*/
drh89997982017-07-11 18:11:33 +00005624static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005625 int rc;
drh8178a752003-01-05 21:41:40 +00005626 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005627
dan7a2347e2016-01-07 16:43:54 +00005628 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005629 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005630 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5631 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005632 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005633 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005634 if( rc!=SQLITE_OK ){
5635 return rc;
drhf66f26a2013-08-19 20:04:10 +00005636 }
5637 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005638 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005639 }
drh9b47ee32013-08-20 03:13:51 +00005640 if( pCur->skipNext ){
5641 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5642 pCur->eState = CURSOR_VALID;
5643 if( pCur->skipNext<0 ){
5644 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005645 return SQLITE_OK;
5646 }
drhf66f26a2013-08-19 20:04:10 +00005647 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005648 }
danielk1977da184232006-01-05 11:34:32 +00005649 }
danielk1977da184232006-01-05 11:34:32 +00005650
drh352a35a2017-08-15 03:46:47 +00005651 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005652 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005653 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005654 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005655 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005656 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005657 rc = moveToRightmost(pCur);
5658 }else{
drh75e96b32017-04-01 00:20:06 +00005659 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005660 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005661 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005662 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005663 }
danielk197730548662009-07-09 05:07:37 +00005664 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005665 }
drhee6438d2014-09-01 13:29:32 +00005666 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005667 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005668
drh75e96b32017-04-01 00:20:06 +00005669 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005670 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005671 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005672 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005673 }else{
5674 rc = SQLITE_OK;
5675 }
drh2dcc9aa2002-12-04 13:40:25 +00005676 }
drh2dcc9aa2002-12-04 13:40:25 +00005677 return rc;
5678}
drh2ab792e2017-05-30 18:34:07 +00005679int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005680 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005681 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005682 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drh89997982017-07-11 18:11:33 +00005683 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005684 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5685 pCur->info.nSize = 0;
5686 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005687 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005688 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005689 ){
drh89997982017-07-11 18:11:33 +00005690 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005691 }
drh75e96b32017-04-01 00:20:06 +00005692 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005693 return SQLITE_OK;
5694}
drh2dcc9aa2002-12-04 13:40:25 +00005695
5696/*
drh3b7511c2001-05-26 13:15:44 +00005697** Allocate a new page from the database file.
5698**
danielk19773b8a05f2007-03-19 17:44:26 +00005699** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005700** has already been called on the new page.) The new page has also
5701** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005702** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005703**
5704** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005705** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005706**
drh82e647d2013-03-02 03:25:55 +00005707** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005708** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005709** attempt to keep related pages close to each other in the database file,
5710** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005711**
drh82e647d2013-03-02 03:25:55 +00005712** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5713** anywhere on the free-list, then it is guaranteed to be returned. If
5714** eMode is BTALLOC_LT then the page returned will be less than or equal
5715** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5716** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005717*/
drh4f0c5872007-03-26 22:05:01 +00005718static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005719 BtShared *pBt, /* The btree */
5720 MemPage **ppPage, /* Store pointer to the allocated page here */
5721 Pgno *pPgno, /* Store the page number here */
5722 Pgno nearby, /* Search for a page near this one */
5723 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005724){
drh3aac2dd2004-04-26 14:10:20 +00005725 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005726 int rc;
drh35cd6432009-06-05 14:17:21 +00005727 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005728 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005729 MemPage *pTrunk = 0;
5730 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005731 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005732
drh1fee73e2007-08-29 04:00:57 +00005733 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005734 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005735 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005736 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005737 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5738 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005739 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005740 testcase( n==mxPage-1 );
5741 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005742 return SQLITE_CORRUPT_BKPT;
5743 }
drh3aac2dd2004-04-26 14:10:20 +00005744 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005745 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005746 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005747 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005748 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005749
drh82e647d2013-03-02 03:25:55 +00005750 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005751 ** shows that the page 'nearby' is somewhere on the free-list, then
5752 ** the entire-list will be searched for that page.
5753 */
5754#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005755 if( eMode==BTALLOC_EXACT ){
5756 if( nearby<=mxPage ){
5757 u8 eType;
5758 assert( nearby>0 );
5759 assert( pBt->autoVacuum );
5760 rc = ptrmapGet(pBt, nearby, &eType, 0);
5761 if( rc ) return rc;
5762 if( eType==PTRMAP_FREEPAGE ){
5763 searchList = 1;
5764 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005765 }
dan51f0b6d2013-02-22 20:16:34 +00005766 }else if( eMode==BTALLOC_LE ){
5767 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005768 }
5769#endif
5770
5771 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5772 ** first free-list trunk page. iPrevTrunk is initially 1.
5773 */
danielk19773b8a05f2007-03-19 17:44:26 +00005774 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005775 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005776 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005777
5778 /* The code within this loop is run only once if the 'searchList' variable
5779 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005780 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5781 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005782 */
5783 do {
5784 pPrevTrunk = pTrunk;
5785 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005786 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5787 ** is the page number of the next freelist trunk page in the list or
5788 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005789 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005790 }else{
drh113762a2014-11-19 16:36:25 +00005791 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5792 ** stores the page number of the first page of the freelist, or zero if
5793 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005794 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005795 }
drhdf35a082009-07-09 02:24:35 +00005796 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005797 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005798 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005799 }else{
drh7e8c6f12015-05-28 03:28:27 +00005800 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005801 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005802 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005803 pTrunk = 0;
5804 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005805 }
drhb07028f2011-10-14 21:49:18 +00005806 assert( pTrunk!=0 );
5807 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005808 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5809 ** is the number of leaf page pointers to follow. */
5810 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005811 if( k==0 && !searchList ){
5812 /* The trunk has no leaves and the list is not being searched.
5813 ** So extract the trunk page itself and use it as the newly
5814 ** allocated page */
5815 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005816 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005817 if( rc ){
5818 goto end_allocate_page;
5819 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005820 *pPgno = iTrunk;
5821 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5822 *ppPage = pTrunk;
5823 pTrunk = 0;
5824 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005825 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005826 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00005827 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00005828 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005829#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005830 }else if( searchList
5831 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5832 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005833 /* The list is being searched and this trunk page is the page
5834 ** to allocate, regardless of whether it has leaves.
5835 */
dan51f0b6d2013-02-22 20:16:34 +00005836 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005837 *ppPage = pTrunk;
5838 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005839 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005840 if( rc ){
5841 goto end_allocate_page;
5842 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005843 if( k==0 ){
5844 if( !pPrevTrunk ){
5845 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5846 }else{
danf48c3552010-08-23 15:41:24 +00005847 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5848 if( rc!=SQLITE_OK ){
5849 goto end_allocate_page;
5850 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005851 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5852 }
5853 }else{
5854 /* The trunk page is required by the caller but it contains
5855 ** pointers to free-list leaves. The first leaf becomes a trunk
5856 ** page in this case.
5857 */
5858 MemPage *pNewTrunk;
5859 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005860 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005861 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005862 goto end_allocate_page;
5863 }
drhdf35a082009-07-09 02:24:35 +00005864 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005865 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005866 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005867 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005868 }
danielk19773b8a05f2007-03-19 17:44:26 +00005869 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005870 if( rc!=SQLITE_OK ){
5871 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005872 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005873 }
5874 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5875 put4byte(&pNewTrunk->aData[4], k-1);
5876 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005877 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005878 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005879 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005880 put4byte(&pPage1->aData[32], iNewTrunk);
5881 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005882 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005883 if( rc ){
5884 goto end_allocate_page;
5885 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005886 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5887 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005888 }
5889 pTrunk = 0;
5890 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5891#endif
danielk1977e5765212009-06-17 11:13:28 +00005892 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005893 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005894 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005895 Pgno iPage;
5896 unsigned char *aData = pTrunk->aData;
5897 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005898 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005899 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005900 if( eMode==BTALLOC_LE ){
5901 for(i=0; i<k; i++){
5902 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005903 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005904 closest = i;
5905 break;
5906 }
5907 }
5908 }else{
5909 int dist;
5910 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5911 for(i=1; i<k; i++){
5912 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5913 if( d2<dist ){
5914 closest = i;
5915 dist = d2;
5916 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005917 }
5918 }
5919 }else{
5920 closest = 0;
5921 }
5922
5923 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005924 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005925 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005926 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005927 goto end_allocate_page;
5928 }
drhdf35a082009-07-09 02:24:35 +00005929 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005930 if( !searchList
5931 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5932 ){
danielk1977bea2a942009-01-20 17:06:27 +00005933 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005934 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005935 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5936 ": %d more free pages\n",
5937 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005938 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5939 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005940 if( closest<k-1 ){
5941 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5942 }
5943 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005944 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005945 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005946 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005947 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005948 if( rc!=SQLITE_OK ){
5949 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005950 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005951 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005952 }
5953 searchList = 0;
5954 }
drhee696e22004-08-30 16:52:17 +00005955 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005956 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005957 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005958 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005959 }else{
danbc1a3c62013-02-23 16:40:46 +00005960 /* There are no pages on the freelist, so append a new page to the
5961 ** database image.
5962 **
5963 ** Normally, new pages allocated by this block can be requested from the
5964 ** pager layer with the 'no-content' flag set. This prevents the pager
5965 ** from trying to read the pages content from disk. However, if the
5966 ** current transaction has already run one or more incremental-vacuum
5967 ** steps, then the page we are about to allocate may contain content
5968 ** that is required in the event of a rollback. In this case, do
5969 ** not set the no-content flag. This causes the pager to load and journal
5970 ** the current page content before overwriting it.
5971 **
5972 ** Note that the pager will not actually attempt to load or journal
5973 ** content for any page that really does lie past the end of the database
5974 ** file on disk. So the effects of disabling the no-content optimization
5975 ** here are confined to those pages that lie between the end of the
5976 ** database image and the end of the database file.
5977 */
drh3f387402014-09-24 01:23:00 +00005978 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005979
drhdd3cd972010-03-27 17:12:36 +00005980 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5981 if( rc ) return rc;
5982 pBt->nPage++;
5983 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005984
danielk1977afcdd022004-10-31 16:25:42 +00005985#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005986 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005987 /* If *pPgno refers to a pointer-map page, allocate two new pages
5988 ** at the end of the file instead of one. The first allocated page
5989 ** becomes a new pointer-map page, the second is used by the caller.
5990 */
danielk1977ac861692009-03-28 10:54:22 +00005991 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005992 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5993 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005994 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005995 if( rc==SQLITE_OK ){
5996 rc = sqlite3PagerWrite(pPg->pDbPage);
5997 releasePage(pPg);
5998 }
5999 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006000 pBt->nPage++;
6001 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006002 }
6003#endif
drhdd3cd972010-03-27 17:12:36 +00006004 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6005 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006006
danielk1977599fcba2004-11-08 07:13:13 +00006007 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006008 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006009 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006010 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006011 if( rc!=SQLITE_OK ){
6012 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006013 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006014 }
drh3a4c1412004-05-09 20:40:11 +00006015 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006016 }
danielk1977599fcba2004-11-08 07:13:13 +00006017
6018 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006019
6020end_allocate_page:
6021 releasePage(pTrunk);
6022 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006023 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6024 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006025 return rc;
6026}
6027
6028/*
danielk1977bea2a942009-01-20 17:06:27 +00006029** This function is used to add page iPage to the database file free-list.
6030** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006031**
danielk1977bea2a942009-01-20 17:06:27 +00006032** The value passed as the second argument to this function is optional.
6033** If the caller happens to have a pointer to the MemPage object
6034** corresponding to page iPage handy, it may pass it as the second value.
6035** Otherwise, it may pass NULL.
6036**
6037** If a pointer to a MemPage object is passed as the second argument,
6038** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006039*/
danielk1977bea2a942009-01-20 17:06:27 +00006040static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6041 MemPage *pTrunk = 0; /* Free-list trunk page */
6042 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6043 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6044 MemPage *pPage; /* Page being freed. May be NULL. */
6045 int rc; /* Return Code */
6046 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006047
danielk1977bea2a942009-01-20 17:06:27 +00006048 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006049 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006050 assert( !pMemPage || pMemPage->pgno==iPage );
6051
danfb0246b2015-05-26 12:18:17 +00006052 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00006053 if( pMemPage ){
6054 pPage = pMemPage;
6055 sqlite3PagerRef(pPage->pDbPage);
6056 }else{
6057 pPage = btreePageLookup(pBt, iPage);
6058 }
drh3aac2dd2004-04-26 14:10:20 +00006059
drha34b6762004-05-07 13:30:42 +00006060 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006061 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006062 if( rc ) goto freepage_out;
6063 nFree = get4byte(&pPage1->aData[36]);
6064 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006065
drhc9166342012-01-05 23:32:06 +00006066 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006067 /* If the secure_delete option is enabled, then
6068 ** always fully overwrite deleted information with zeros.
6069 */
drhb00fc3b2013-08-21 23:42:32 +00006070 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006071 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006072 ){
6073 goto freepage_out;
6074 }
6075 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006076 }
drhfcce93f2006-02-22 03:08:32 +00006077
danielk1977687566d2004-11-02 12:56:41 +00006078 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006079 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006080 */
danielk197785d90ca2008-07-19 14:25:15 +00006081 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006082 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006083 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006084 }
danielk1977687566d2004-11-02 12:56:41 +00006085
danielk1977bea2a942009-01-20 17:06:27 +00006086 /* Now manipulate the actual database free-list structure. There are two
6087 ** possibilities. If the free-list is currently empty, or if the first
6088 ** trunk page in the free-list is full, then this page will become a
6089 ** new free-list trunk page. Otherwise, it will become a leaf of the
6090 ** first trunk page in the current free-list. This block tests if it
6091 ** is possible to add the page as a new free-list leaf.
6092 */
6093 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006094 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006095
6096 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006097 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006098 if( rc!=SQLITE_OK ){
6099 goto freepage_out;
6100 }
6101
6102 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006103 assert( pBt->usableSize>32 );
6104 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006105 rc = SQLITE_CORRUPT_BKPT;
6106 goto freepage_out;
6107 }
drheeb844a2009-08-08 18:01:07 +00006108 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006109 /* In this case there is room on the trunk page to insert the page
6110 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006111 **
6112 ** Note that the trunk page is not really full until it contains
6113 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6114 ** coded. But due to a coding error in versions of SQLite prior to
6115 ** 3.6.0, databases with freelist trunk pages holding more than
6116 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6117 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006118 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006119 ** for now. At some point in the future (once everyone has upgraded
6120 ** to 3.6.0 or later) we should consider fixing the conditional above
6121 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006122 **
6123 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6124 ** avoid using the last six entries in the freelist trunk page array in
6125 ** order that database files created by newer versions of SQLite can be
6126 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006127 */
danielk19773b8a05f2007-03-19 17:44:26 +00006128 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006129 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006130 put4byte(&pTrunk->aData[4], nLeaf+1);
6131 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006132 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006133 sqlite3PagerDontWrite(pPage->pDbPage);
6134 }
danielk1977bea2a942009-01-20 17:06:27 +00006135 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006136 }
drh3a4c1412004-05-09 20:40:11 +00006137 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006138 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006139 }
drh3b7511c2001-05-26 13:15:44 +00006140 }
danielk1977bea2a942009-01-20 17:06:27 +00006141
6142 /* If control flows to this point, then it was not possible to add the
6143 ** the page being freed as a leaf page of the first trunk in the free-list.
6144 ** Possibly because the free-list is empty, or possibly because the
6145 ** first trunk in the free-list is full. Either way, the page being freed
6146 ** will become the new first trunk page in the free-list.
6147 */
drhb00fc3b2013-08-21 23:42:32 +00006148 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006149 goto freepage_out;
6150 }
6151 rc = sqlite3PagerWrite(pPage->pDbPage);
6152 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006153 goto freepage_out;
6154 }
6155 put4byte(pPage->aData, iTrunk);
6156 put4byte(&pPage->aData[4], 0);
6157 put4byte(&pPage1->aData[32], iPage);
6158 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6159
6160freepage_out:
6161 if( pPage ){
6162 pPage->isInit = 0;
6163 }
6164 releasePage(pPage);
6165 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006166 return rc;
6167}
drhc314dc72009-07-21 11:52:34 +00006168static void freePage(MemPage *pPage, int *pRC){
6169 if( (*pRC)==SQLITE_OK ){
6170 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6171 }
danielk1977bea2a942009-01-20 17:06:27 +00006172}
drh3b7511c2001-05-26 13:15:44 +00006173
6174/*
drh9bfdc252014-09-24 02:05:41 +00006175** Free any overflow pages associated with the given Cell. Write the
6176** local Cell size (the number of bytes on the original page, omitting
6177** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00006178*/
drh9bfdc252014-09-24 02:05:41 +00006179static int clearCell(
6180 MemPage *pPage, /* The page that contains the Cell */
6181 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006182 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006183){
drh60172a52017-08-02 18:27:50 +00006184 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006185 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006186 int rc;
drh94440812007-03-06 11:42:19 +00006187 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006188 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006189
drh1fee73e2007-08-29 04:00:57 +00006190 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006191 pPage->xParseCell(pPage, pCell, pInfo);
6192 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006193 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006194 }
drh80159da2016-12-09 17:32:51 +00006195 if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
drhcc97ca42017-06-07 22:32:59 +00006196 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006197 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006198 }
drh80159da2016-12-09 17:32:51 +00006199 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006200 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006201 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006202 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006203 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006204 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006205 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006206 );
drh72365832007-03-06 15:53:44 +00006207 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006208 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006209 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006210 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006211 /* 0 is not a legal page number and page 1 cannot be an
6212 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6213 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006214 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006215 }
danielk1977bea2a942009-01-20 17:06:27 +00006216 if( nOvfl ){
6217 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6218 if( rc ) return rc;
6219 }
dan887d4b22010-02-25 12:09:16 +00006220
shaneh1da207e2010-03-09 14:41:12 +00006221 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006222 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6223 ){
6224 /* There is no reason any cursor should have an outstanding reference
6225 ** to an overflow page belonging to a cell that is being deleted/updated.
6226 ** So if there exists more than one reference to this page, then it
6227 ** must not really be an overflow page and the database must be corrupt.
6228 ** It is helpful to detect this before calling freePage2(), as
6229 ** freePage2() may zero the page contents if secure-delete mode is
6230 ** enabled. If this 'overflow' page happens to be a page that the
6231 ** caller is iterating through or using in some other way, this
6232 ** can be problematic.
6233 */
6234 rc = SQLITE_CORRUPT_BKPT;
6235 }else{
6236 rc = freePage2(pBt, pOvfl, ovflPgno);
6237 }
6238
danielk1977bea2a942009-01-20 17:06:27 +00006239 if( pOvfl ){
6240 sqlite3PagerUnref(pOvfl->pDbPage);
6241 }
drh3b7511c2001-05-26 13:15:44 +00006242 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006243 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006244 }
drh5e2f8b92001-05-28 00:41:15 +00006245 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006246}
6247
6248/*
drh91025292004-05-03 19:49:32 +00006249** Create the byte sequence used to represent a cell on page pPage
6250** and write that byte sequence into pCell[]. Overflow pages are
6251** allocated and filled in as necessary. The calling procedure
6252** is responsible for making sure sufficient space has been allocated
6253** for pCell[].
6254**
6255** Note that pCell does not necessary need to point to the pPage->aData
6256** area. pCell might point to some temporary storage. The cell will
6257** be constructed in this temporary area then copied into pPage->aData
6258** later.
drh3b7511c2001-05-26 13:15:44 +00006259*/
6260static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006261 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006262 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006263 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006264 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006265){
drh3b7511c2001-05-26 13:15:44 +00006266 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006267 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006268 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006269 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006270 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006271 unsigned char *pPrior;
6272 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006273 BtShared *pBt;
6274 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006275 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006276
drh1fee73e2007-08-29 04:00:57 +00006277 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006278
drhc5053fb2008-11-27 02:22:10 +00006279 /* pPage is not necessarily writeable since pCell might be auxiliary
6280 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006281 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006282 || sqlite3PagerIswriteable(pPage->pDbPage) );
6283
drh91025292004-05-03 19:49:32 +00006284 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006285 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006286 if( pPage->intKey ){
6287 nPayload = pX->nData + pX->nZero;
6288 pSrc = pX->pData;
6289 nSrc = pX->nData;
6290 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006291 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006292 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006293 }else{
drh8eeb4462016-05-21 20:03:42 +00006294 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6295 nSrc = nPayload = (int)pX->nKey;
6296 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006297 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006298 }
drhdfc2daa2016-05-21 23:25:29 +00006299
6300 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006301 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006302 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006303 /* This is the common case where everything fits on the btree page
6304 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006305 n = nHeader + nPayload;
6306 testcase( n==3 );
6307 testcase( n==4 );
6308 if( n<4 ) n = 4;
6309 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006310 assert( nSrc<=nPayload );
6311 testcase( nSrc<nPayload );
6312 memcpy(pPayload, pSrc, nSrc);
6313 memset(pPayload+nSrc, 0, nPayload-nSrc);
6314 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006315 }
drh5e27e1d2017-08-23 14:45:59 +00006316
6317 /* If we reach this point, it means that some of the content will need
6318 ** to spill onto overflow pages.
6319 */
6320 mn = pPage->minLocal;
6321 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6322 testcase( n==pPage->maxLocal );
6323 testcase( n==pPage->maxLocal+1 );
6324 if( n > pPage->maxLocal ) n = mn;
6325 spaceLeft = n;
6326 *pnSize = n + nHeader + 4;
6327 pPrior = &pCell[nHeader+n];
6328 pToRelease = 0;
6329 pgnoOvfl = 0;
6330 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006331
drh6200c882014-09-23 22:36:25 +00006332 /* At this point variables should be set as follows:
6333 **
6334 ** nPayload Total payload size in bytes
6335 ** pPayload Begin writing payload here
6336 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6337 ** that means content must spill into overflow pages.
6338 ** *pnSize Size of the local cell (not counting overflow pages)
6339 ** pPrior Where to write the pgno of the first overflow page
6340 **
6341 ** Use a call to btreeParseCellPtr() to verify that the values above
6342 ** were computed correctly.
6343 */
drhd879e3e2017-02-13 13:35:55 +00006344#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006345 {
6346 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006347 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006348 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006349 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006350 assert( *pnSize == info.nSize );
6351 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006352 }
6353#endif
6354
6355 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006356 while( 1 ){
6357 n = nPayload;
6358 if( n>spaceLeft ) n = spaceLeft;
6359
6360 /* If pToRelease is not zero than pPayload points into the data area
6361 ** of pToRelease. Make sure pToRelease is still writeable. */
6362 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6363
6364 /* If pPayload is part of the data area of pPage, then make sure pPage
6365 ** is still writeable */
6366 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6367 || sqlite3PagerIswriteable(pPage->pDbPage) );
6368
6369 if( nSrc>=n ){
6370 memcpy(pPayload, pSrc, n);
6371 }else if( nSrc>0 ){
6372 n = nSrc;
6373 memcpy(pPayload, pSrc, n);
6374 }else{
6375 memset(pPayload, 0, n);
6376 }
6377 nPayload -= n;
6378 if( nPayload<=0 ) break;
6379 pPayload += n;
6380 pSrc += n;
6381 nSrc -= n;
6382 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006383 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006384 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006385#ifndef SQLITE_OMIT_AUTOVACUUM
6386 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006387 if( pBt->autoVacuum ){
6388 do{
6389 pgnoOvfl++;
6390 } while(
6391 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6392 );
danielk1977b39f70b2007-05-17 18:28:11 +00006393 }
danielk1977afcdd022004-10-31 16:25:42 +00006394#endif
drhf49661a2008-12-10 16:45:50 +00006395 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006396#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006397 /* If the database supports auto-vacuum, and the second or subsequent
6398 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006399 ** for that page now.
6400 **
6401 ** If this is the first overflow page, then write a partial entry
6402 ** to the pointer-map. If we write nothing to this pointer-map slot,
6403 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006404 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006405 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006406 */
danielk19774ef24492007-05-23 09:52:41 +00006407 if( pBt->autoVacuum && rc==SQLITE_OK ){
6408 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006409 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006410 if( rc ){
6411 releasePage(pOvfl);
6412 }
danielk1977afcdd022004-10-31 16:25:42 +00006413 }
6414#endif
drh3b7511c2001-05-26 13:15:44 +00006415 if( rc ){
drh9b171272004-05-08 02:03:22 +00006416 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006417 return rc;
6418 }
drhc5053fb2008-11-27 02:22:10 +00006419
6420 /* If pToRelease is not zero than pPrior points into the data area
6421 ** of pToRelease. Make sure pToRelease is still writeable. */
6422 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6423
6424 /* If pPrior is part of the data area of pPage, then make sure pPage
6425 ** is still writeable */
6426 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6427 || sqlite3PagerIswriteable(pPage->pDbPage) );
6428
drh3aac2dd2004-04-26 14:10:20 +00006429 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006430 releasePage(pToRelease);
6431 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006432 pPrior = pOvfl->aData;
6433 put4byte(pPrior, 0);
6434 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006435 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006436 }
drhdd793422001-06-28 01:54:48 +00006437 }
drh9b171272004-05-08 02:03:22 +00006438 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006439 return SQLITE_OK;
6440}
6441
drh14acc042001-06-10 19:56:58 +00006442/*
6443** Remove the i-th cell from pPage. This routine effects pPage only.
6444** The cell content is not freed or deallocated. It is assumed that
6445** the cell content has been copied someplace else. This routine just
6446** removes the reference to the cell from pPage.
6447**
6448** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006449*/
drh98add2e2009-07-20 17:11:49 +00006450static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006451 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006452 u8 *data; /* pPage->aData */
6453 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006454 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006455 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006456
drh98add2e2009-07-20 17:11:49 +00006457 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006458 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006459 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006460 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006461 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006462 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006463 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006464 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006465 hdr = pPage->hdrOffset;
6466 testcase( pc==get2byte(&data[hdr+5]) );
6467 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006468 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006469 *pRC = SQLITE_CORRUPT_BKPT;
6470 return;
shane0af3f892008-11-12 04:55:34 +00006471 }
shanedcc50b72008-11-13 18:29:50 +00006472 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006473 if( rc ){
6474 *pRC = rc;
6475 return;
shanedcc50b72008-11-13 18:29:50 +00006476 }
drh14acc042001-06-10 19:56:58 +00006477 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006478 if( pPage->nCell==0 ){
6479 memset(&data[hdr+1], 0, 4);
6480 data[hdr+7] = 0;
6481 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6482 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6483 - pPage->childPtrSize - 8;
6484 }else{
6485 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6486 put2byte(&data[hdr+3], pPage->nCell);
6487 pPage->nFree += 2;
6488 }
drh14acc042001-06-10 19:56:58 +00006489}
6490
6491/*
6492** Insert a new cell on pPage at cell index "i". pCell points to the
6493** content of the cell.
6494**
6495** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006496** will not fit, then make a copy of the cell content into pTemp if
6497** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006498** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006499** in pTemp or the original pCell) and also record its index.
6500** Allocating a new entry in pPage->aCell[] implies that
6501** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006502**
6503** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006504*/
drh98add2e2009-07-20 17:11:49 +00006505static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006506 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006507 int i, /* New cell becomes the i-th cell of the page */
6508 u8 *pCell, /* Content of the new cell */
6509 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006510 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006511 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6512 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006513){
drh383d30f2010-02-26 13:07:37 +00006514 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006515 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006516 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006517 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006518
drhcb89f4a2016-05-21 11:23:26 +00006519 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006520 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006521 assert( MX_CELL(pPage->pBt)<=10921 );
6522 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006523 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6524 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006525 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006526 /* The cell should normally be sized correctly. However, when moving a
6527 ** malformed cell from a leaf page to an interior page, if the cell size
6528 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6529 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6530 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006531 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006532 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006533 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006534 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006535 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006536 }
danielk19774dbaa892009-06-16 16:50:22 +00006537 if( iChild ){
6538 put4byte(pCell, iChild);
6539 }
drh43605152004-05-29 21:46:49 +00006540 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006541 /* Comparison against ArraySize-1 since we hold back one extra slot
6542 ** as a contingency. In other words, never need more than 3 overflow
6543 ** slots but 4 are allocated, just to be safe. */
6544 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006545 pPage->apOvfl[j] = pCell;
6546 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006547
6548 /* When multiple overflows occur, they are always sequential and in
6549 ** sorted order. This invariants arise because multiple overflows can
6550 ** only occur when inserting divider cells into the parent page during
6551 ** balancing, and the dividers are adjacent and sorted.
6552 */
6553 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6554 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006555 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006556 int rc = sqlite3PagerWrite(pPage->pDbPage);
6557 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006558 *pRC = rc;
6559 return;
danielk19776e465eb2007-08-21 13:11:00 +00006560 }
6561 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006562 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006563 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006564 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006565 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006566 /* The allocateSpace() routine guarantees the following properties
6567 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006568 assert( idx >= 0 );
6569 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006570 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006571 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006572 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006573 if( iChild ){
6574 put4byte(&data[idx], iChild);
6575 }
drh2c8fb922015-06-25 19:53:48 +00006576 pIns = pPage->aCellIdx + i*2;
6577 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6578 put2byte(pIns, idx);
6579 pPage->nCell++;
6580 /* increment the cell count */
6581 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6582 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006583#ifndef SQLITE_OMIT_AUTOVACUUM
6584 if( pPage->pBt->autoVacuum ){
6585 /* The cell may contain a pointer to an overflow page. If so, write
6586 ** the entry for the overflow page into the pointer map.
6587 */
drh98add2e2009-07-20 17:11:49 +00006588 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006589 }
6590#endif
drh14acc042001-06-10 19:56:58 +00006591 }
6592}
6593
6594/*
drh1ffd2472015-06-23 02:37:30 +00006595** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006596** consecutive sequence of cells that might be held on multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006597*/
drh1ffd2472015-06-23 02:37:30 +00006598typedef struct CellArray CellArray;
6599struct CellArray {
6600 int nCell; /* Number of cells in apCell[] */
6601 MemPage *pRef; /* Reference page */
6602 u8 **apCell; /* All cells begin balanced */
6603 u16 *szCell; /* Local size of all cells in apCell[] */
6604};
drhfa1a98a2004-05-14 19:08:17 +00006605
drh1ffd2472015-06-23 02:37:30 +00006606/*
6607** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6608** computed.
6609*/
6610static void populateCellCache(CellArray *p, int idx, int N){
6611 assert( idx>=0 && idx+N<=p->nCell );
6612 while( N>0 ){
6613 assert( p->apCell[idx]!=0 );
6614 if( p->szCell[idx]==0 ){
6615 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6616 }else{
6617 assert( CORRUPT_DB ||
6618 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6619 }
6620 idx++;
6621 N--;
drhfa1a98a2004-05-14 19:08:17 +00006622 }
drh1ffd2472015-06-23 02:37:30 +00006623}
6624
6625/*
6626** Return the size of the Nth element of the cell array
6627*/
6628static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6629 assert( N>=0 && N<p->nCell );
6630 assert( p->szCell[N]==0 );
6631 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6632 return p->szCell[N];
6633}
6634static u16 cachedCellSize(CellArray *p, int N){
6635 assert( N>=0 && N<p->nCell );
6636 if( p->szCell[N] ) return p->szCell[N];
6637 return computeCellSize(p, N);
6638}
6639
6640/*
dan8e9ba0c2014-10-14 17:27:04 +00006641** Array apCell[] contains pointers to nCell b-tree page cells. The
6642** szCell[] array contains the size in bytes of each cell. This function
6643** replaces the current contents of page pPg with the contents of the cell
6644** array.
6645**
6646** Some of the cells in apCell[] may currently be stored in pPg. This
6647** function works around problems caused by this by making a copy of any
6648** such cells before overwriting the page data.
6649**
6650** The MemPage.nFree field is invalidated by this function. It is the
6651** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006652*/
drh658873b2015-06-22 20:02:04 +00006653static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006654 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006655 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006656 u8 **apCell, /* Array of cells */
6657 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006658){
6659 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6660 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6661 const int usableSize = pPg->pBt->usableSize;
6662 u8 * const pEnd = &aData[usableSize];
6663 int i;
6664 u8 *pCellptr = pPg->aCellIdx;
6665 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6666 u8 *pData;
6667
6668 i = get2byte(&aData[hdr+5]);
6669 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006670
dan8e9ba0c2014-10-14 17:27:04 +00006671 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006672 for(i=0; i<nCell; i++){
6673 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006674 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006675 pCell = &pTmp[pCell - aData];
6676 }
6677 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006678 put2byte(pCellptr, (pData - aData));
6679 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006680 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6681 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006682 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006683 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006684 }
6685
dand7b545b2014-10-13 18:03:27 +00006686 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006687 pPg->nCell = nCell;
6688 pPg->nOverflow = 0;
6689
6690 put2byte(&aData[hdr+1], 0);
6691 put2byte(&aData[hdr+3], pPg->nCell);
6692 put2byte(&aData[hdr+5], pData - aData);
6693 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006694 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006695}
6696
dan8e9ba0c2014-10-14 17:27:04 +00006697/*
6698** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6699** contains the size in bytes of each such cell. This function attempts to
6700** add the cells stored in the array to page pPg. If it cannot (because
6701** the page needs to be defragmented before the cells will fit), non-zero
6702** is returned. Otherwise, if the cells are added successfully, zero is
6703** returned.
6704**
6705** Argument pCellptr points to the first entry in the cell-pointer array
6706** (part of page pPg) to populate. After cell apCell[0] is written to the
6707** page body, a 16-bit offset is written to pCellptr. And so on, for each
6708** cell in the array. It is the responsibility of the caller to ensure
6709** that it is safe to overwrite this part of the cell-pointer array.
6710**
6711** When this function is called, *ppData points to the start of the
6712** content area on page pPg. If the size of the content area is extended,
6713** *ppData is updated to point to the new start of the content area
6714** before returning.
6715**
6716** Finally, argument pBegin points to the byte immediately following the
6717** end of the space required by this page for the cell-pointer area (for
6718** all cells - not just those inserted by the current call). If the content
6719** area must be extended to before this point in order to accomodate all
6720** cells in apCell[], then the cells do not fit and non-zero is returned.
6721*/
dand7b545b2014-10-13 18:03:27 +00006722static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006723 MemPage *pPg, /* Page to add cells to */
6724 u8 *pBegin, /* End of cell-pointer array */
6725 u8 **ppData, /* IN/OUT: Page content -area pointer */
6726 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006727 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006728 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006729 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006730){
6731 int i;
6732 u8 *aData = pPg->aData;
6733 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006734 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006735 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006736 for(i=iFirst; i<iEnd; i++){
6737 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006738 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006739 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006740 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006741 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006742 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006743 pSlot = pData;
6744 }
drh48310f82015-10-10 16:41:28 +00006745 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6746 ** database. But they might for a corrupt database. Hence use memmove()
6747 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6748 assert( (pSlot+sz)<=pCArray->apCell[i]
6749 || pSlot>=(pCArray->apCell[i]+sz)
6750 || CORRUPT_DB );
6751 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006752 put2byte(pCellptr, (pSlot - aData));
6753 pCellptr += 2;
6754 }
6755 *ppData = pData;
6756 return 0;
6757}
6758
dan8e9ba0c2014-10-14 17:27:04 +00006759/*
6760** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6761** contains the size in bytes of each such cell. This function adds the
6762** space associated with each cell in the array that is currently stored
6763** within the body of pPg to the pPg free-list. The cell-pointers and other
6764** fields of the page are not updated.
6765**
6766** This function returns the total number of cells added to the free-list.
6767*/
dand7b545b2014-10-13 18:03:27 +00006768static int pageFreeArray(
6769 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006770 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006771 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006772 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006773){
6774 u8 * const aData = pPg->aData;
6775 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006776 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006777 int nRet = 0;
6778 int i;
drhf7838932015-06-23 15:36:34 +00006779 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006780 u8 *pFree = 0;
6781 int szFree = 0;
6782
drhf7838932015-06-23 15:36:34 +00006783 for(i=iFirst; i<iEnd; i++){
6784 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006785 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006786 int sz;
6787 /* No need to use cachedCellSize() here. The sizes of all cells that
6788 ** are to be freed have already been computing while deciding which
6789 ** cells need freeing */
6790 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006791 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006792 if( pFree ){
6793 assert( pFree>aData && (pFree - aData)<65536 );
6794 freeSpace(pPg, (u16)(pFree - aData), szFree);
6795 }
dand7b545b2014-10-13 18:03:27 +00006796 pFree = pCell;
6797 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006798 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006799 }else{
6800 pFree = pCell;
6801 szFree += sz;
6802 }
6803 nRet++;
6804 }
6805 }
drhfefa0942014-11-05 21:21:08 +00006806 if( pFree ){
6807 assert( pFree>aData && (pFree - aData)<65536 );
6808 freeSpace(pPg, (u16)(pFree - aData), szFree);
6809 }
dand7b545b2014-10-13 18:03:27 +00006810 return nRet;
6811}
6812
dand7b545b2014-10-13 18:03:27 +00006813/*
drh5ab63772014-11-27 03:46:04 +00006814** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6815** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6816** with apCell[iOld]. After balancing, this page should hold nNew cells
6817** starting at apCell[iNew].
6818**
6819** This routine makes the necessary adjustments to pPg so that it contains
6820** the correct cells after being balanced.
6821**
dand7b545b2014-10-13 18:03:27 +00006822** The pPg->nFree field is invalid when this function returns. It is the
6823** responsibility of the caller to set it correctly.
6824*/
drh658873b2015-06-22 20:02:04 +00006825static int editPage(
dan09c68402014-10-11 20:00:24 +00006826 MemPage *pPg, /* Edit this page */
6827 int iOld, /* Index of first cell currently on page */
6828 int iNew, /* Index of new first cell on page */
6829 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006830 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006831){
dand7b545b2014-10-13 18:03:27 +00006832 u8 * const aData = pPg->aData;
6833 const int hdr = pPg->hdrOffset;
6834 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6835 int nCell = pPg->nCell; /* Cells stored on pPg */
6836 u8 *pData;
6837 u8 *pCellptr;
6838 int i;
6839 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6840 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006841
6842#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006843 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6844 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006845#endif
6846
dand7b545b2014-10-13 18:03:27 +00006847 /* Remove cells from the start and end of the page */
6848 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006849 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006850 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6851 nCell -= nShift;
6852 }
6853 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006854 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006855 }
dan09c68402014-10-11 20:00:24 +00006856
drh5ab63772014-11-27 03:46:04 +00006857 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006858 if( pData<pBegin ) goto editpage_fail;
6859
6860 /* Add cells to the start of the page */
6861 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006862 int nAdd = MIN(nNew,iOld-iNew);
6863 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006864 pCellptr = pPg->aCellIdx;
6865 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6866 if( pageInsertArray(
6867 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006868 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006869 ) ) goto editpage_fail;
6870 nCell += nAdd;
6871 }
6872
6873 /* Add any overflow cells */
6874 for(i=0; i<pPg->nOverflow; i++){
6875 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6876 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006877 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006878 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6879 nCell++;
6880 if( pageInsertArray(
6881 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006882 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006883 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006884 }
dand7b545b2014-10-13 18:03:27 +00006885 }
dan09c68402014-10-11 20:00:24 +00006886
dand7b545b2014-10-13 18:03:27 +00006887 /* Append cells to the end of the page */
6888 pCellptr = &pPg->aCellIdx[nCell*2];
6889 if( pageInsertArray(
6890 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006891 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006892 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006893
dand7b545b2014-10-13 18:03:27 +00006894 pPg->nCell = nNew;
6895 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006896
dand7b545b2014-10-13 18:03:27 +00006897 put2byte(&aData[hdr+3], pPg->nCell);
6898 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006899
6900#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006901 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006902 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006903 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006904 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00006905 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006906 }
drh1ffd2472015-06-23 02:37:30 +00006907 assert( 0==memcmp(pCell, &aData[iOff],
6908 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006909 }
dan09c68402014-10-11 20:00:24 +00006910#endif
6911
drh658873b2015-06-22 20:02:04 +00006912 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006913 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006914 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006915 populateCellCache(pCArray, iNew, nNew);
6916 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006917}
6918
drh14acc042001-06-10 19:56:58 +00006919/*
drhc3b70572003-01-04 19:44:07 +00006920** The following parameters determine how many adjacent pages get involved
6921** in a balancing operation. NN is the number of neighbors on either side
6922** of the page that participate in the balancing operation. NB is the
6923** total number of pages that participate, including the target page and
6924** NN neighbors on either side.
6925**
6926** The minimum value of NN is 1 (of course). Increasing NN above 1
6927** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6928** in exchange for a larger degradation in INSERT and UPDATE performance.
6929** The value of NN appears to give the best results overall.
6930*/
6931#define NN 1 /* Number of neighbors on either side of pPage */
6932#define NB (NN*2+1) /* Total pages involved in the balance */
6933
danielk1977ac245ec2005-01-14 13:50:11 +00006934
drh615ae552005-01-16 23:21:00 +00006935#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006936/*
6937** This version of balance() handles the common special case where
6938** a new entry is being inserted on the extreme right-end of the
6939** tree, in other words, when the new entry will become the largest
6940** entry in the tree.
6941**
drhc314dc72009-07-21 11:52:34 +00006942** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006943** a new page to the right-hand side and put the one new entry in
6944** that page. This leaves the right side of the tree somewhat
6945** unbalanced. But odds are that we will be inserting new entries
6946** at the end soon afterwards so the nearly empty page will quickly
6947** fill up. On average.
6948**
6949** pPage is the leaf page which is the right-most page in the tree.
6950** pParent is its parent. pPage must have a single overflow entry
6951** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006952**
6953** The pSpace buffer is used to store a temporary copy of the divider
6954** cell that will be inserted into pParent. Such a cell consists of a 4
6955** byte page number followed by a variable length integer. In other
6956** words, at most 13 bytes. Hence the pSpace buffer must be at
6957** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006958*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006959static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6960 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006961 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006962 int rc; /* Return Code */
6963 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006964
drh1fee73e2007-08-29 04:00:57 +00006965 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006966 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006967 assert( pPage->nOverflow==1 );
6968
drh5d433ce2010-08-14 16:02:52 +00006969 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006970 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006971
danielk1977a50d9aa2009-06-08 14:49:45 +00006972 /* Allocate a new page. This page will become the right-sibling of
6973 ** pPage. Make the parent page writable, so that the new divider cell
6974 ** may be inserted. If both these operations are successful, proceed.
6975 */
drh4f0c5872007-03-26 22:05:01 +00006976 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006977
danielk1977eaa06f62008-09-18 17:34:44 +00006978 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006979
6980 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006981 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006982 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006983 u8 *pStop;
6984
drhc5053fb2008-11-27 02:22:10 +00006985 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006986 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6987 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006988 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006989 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006990 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006991
6992 /* If this is an auto-vacuum database, update the pointer map
6993 ** with entries for the new page, and any pointer from the
6994 ** cell on the page to an overflow page. If either of these
6995 ** operations fails, the return code is set, but the contents
6996 ** of the parent page are still manipulated by thh code below.
6997 ** That is Ok, at this point the parent page is guaranteed to
6998 ** be marked as dirty. Returning an error code will cause a
6999 ** rollback, undoing any changes made to the parent page.
7000 */
7001 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007002 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7003 if( szCell>pNew->minLocal ){
7004 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007005 }
7006 }
danielk1977eaa06f62008-09-18 17:34:44 +00007007
danielk19776f235cc2009-06-04 14:46:08 +00007008 /* Create a divider cell to insert into pParent. The divider cell
7009 ** consists of a 4-byte page number (the page number of pPage) and
7010 ** a variable length key value (which must be the same value as the
7011 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007012 **
danielk19776f235cc2009-06-04 14:46:08 +00007013 ** To find the largest key value on pPage, first find the right-most
7014 ** cell on pPage. The first two fields of this cell are the
7015 ** record-length (a variable length integer at most 32-bits in size)
7016 ** and the key value (a variable length integer, may have any value).
7017 ** The first of the while(...) loops below skips over the record-length
7018 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007019 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007020 */
danielk1977eaa06f62008-09-18 17:34:44 +00007021 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007022 pStop = &pCell[9];
7023 while( (*(pCell++)&0x80) && pCell<pStop );
7024 pStop = &pCell[9];
7025 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7026
danielk19774dbaa892009-06-16 16:50:22 +00007027 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007028 if( rc==SQLITE_OK ){
7029 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7030 0, pPage->pgno, &rc);
7031 }
danielk19776f235cc2009-06-04 14:46:08 +00007032
7033 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007034 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7035
danielk1977e08a3c42008-09-18 18:17:03 +00007036 /* Release the reference to the new page. */
7037 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007038 }
7039
danielk1977eaa06f62008-09-18 17:34:44 +00007040 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007041}
drh615ae552005-01-16 23:21:00 +00007042#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007043
danielk19774dbaa892009-06-16 16:50:22 +00007044#if 0
drhc3b70572003-01-04 19:44:07 +00007045/*
danielk19774dbaa892009-06-16 16:50:22 +00007046** This function does not contribute anything to the operation of SQLite.
7047** it is sometimes activated temporarily while debugging code responsible
7048** for setting pointer-map entries.
7049*/
7050static int ptrmapCheckPages(MemPage **apPage, int nPage){
7051 int i, j;
7052 for(i=0; i<nPage; i++){
7053 Pgno n;
7054 u8 e;
7055 MemPage *pPage = apPage[i];
7056 BtShared *pBt = pPage->pBt;
7057 assert( pPage->isInit );
7058
7059 for(j=0; j<pPage->nCell; j++){
7060 CellInfo info;
7061 u8 *z;
7062
7063 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007064 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007065 if( info.nLocal<info.nPayload ){
7066 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007067 ptrmapGet(pBt, ovfl, &e, &n);
7068 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7069 }
7070 if( !pPage->leaf ){
7071 Pgno child = get4byte(z);
7072 ptrmapGet(pBt, child, &e, &n);
7073 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7074 }
7075 }
7076 if( !pPage->leaf ){
7077 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7078 ptrmapGet(pBt, child, &e, &n);
7079 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7080 }
7081 }
7082 return 1;
7083}
7084#endif
7085
danielk1977cd581a72009-06-23 15:43:39 +00007086/*
7087** This function is used to copy the contents of the b-tree node stored
7088** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7089** the pointer-map entries for each child page are updated so that the
7090** parent page stored in the pointer map is page pTo. If pFrom contained
7091** any cells with overflow page pointers, then the corresponding pointer
7092** map entries are also updated so that the parent page is page pTo.
7093**
7094** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007095** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007096**
danielk197730548662009-07-09 05:07:37 +00007097** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007098**
7099** The performance of this function is not critical. It is only used by
7100** the balance_shallower() and balance_deeper() procedures, neither of
7101** which are called often under normal circumstances.
7102*/
drhc314dc72009-07-21 11:52:34 +00007103static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7104 if( (*pRC)==SQLITE_OK ){
7105 BtShared * const pBt = pFrom->pBt;
7106 u8 * const aFrom = pFrom->aData;
7107 u8 * const aTo = pTo->aData;
7108 int const iFromHdr = pFrom->hdrOffset;
7109 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007110 int rc;
drhc314dc72009-07-21 11:52:34 +00007111 int iData;
7112
7113
7114 assert( pFrom->isInit );
7115 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007116 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007117
7118 /* Copy the b-tree node content from page pFrom to page pTo. */
7119 iData = get2byte(&aFrom[iFromHdr+5]);
7120 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7121 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7122
7123 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007124 ** match the new data. The initialization of pTo can actually fail under
7125 ** fairly obscure circumstances, even though it is a copy of initialized
7126 ** page pFrom.
7127 */
drhc314dc72009-07-21 11:52:34 +00007128 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007129 rc = btreeInitPage(pTo);
7130 if( rc!=SQLITE_OK ){
7131 *pRC = rc;
7132 return;
7133 }
drhc314dc72009-07-21 11:52:34 +00007134
7135 /* If this is an auto-vacuum database, update the pointer-map entries
7136 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7137 */
7138 if( ISAUTOVACUUM ){
7139 *pRC = setChildPtrmaps(pTo);
7140 }
danielk1977cd581a72009-06-23 15:43:39 +00007141 }
danielk1977cd581a72009-06-23 15:43:39 +00007142}
7143
7144/*
danielk19774dbaa892009-06-16 16:50:22 +00007145** This routine redistributes cells on the iParentIdx'th child of pParent
7146** (hereafter "the page") and up to 2 siblings so that all pages have about the
7147** same amount of free space. Usually a single sibling on either side of the
7148** page are used in the balancing, though both siblings might come from one
7149** side if the page is the first or last child of its parent. If the page
7150** has fewer than 2 siblings (something which can only happen if the page
7151** is a root page or a child of a root page) then all available siblings
7152** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007153**
danielk19774dbaa892009-06-16 16:50:22 +00007154** The number of siblings of the page might be increased or decreased by
7155** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007156**
danielk19774dbaa892009-06-16 16:50:22 +00007157** Note that when this routine is called, some of the cells on the page
7158** might not actually be stored in MemPage.aData[]. This can happen
7159** if the page is overfull. This routine ensures that all cells allocated
7160** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007161**
danielk19774dbaa892009-06-16 16:50:22 +00007162** In the course of balancing the page and its siblings, cells may be
7163** inserted into or removed from the parent page (pParent). Doing so
7164** may cause the parent page to become overfull or underfull. If this
7165** happens, it is the responsibility of the caller to invoke the correct
7166** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007167**
drh5e00f6c2001-09-13 13:46:56 +00007168** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007169** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007170** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007171**
7172** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007173** buffer big enough to hold one page. If while inserting cells into the parent
7174** page (pParent) the parent page becomes overfull, this buffer is
7175** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007176** a maximum of four divider cells into the parent page, and the maximum
7177** size of a cell stored within an internal node is always less than 1/4
7178** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7179** enough for all overflow cells.
7180**
7181** If aOvflSpace is set to a null pointer, this function returns
7182** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007183*/
danielk19774dbaa892009-06-16 16:50:22 +00007184static int balance_nonroot(
7185 MemPage *pParent, /* Parent page of siblings being balanced */
7186 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007187 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007188 int isRoot, /* True if pParent is a root-page */
7189 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007190){
drh16a9b832007-05-05 18:39:25 +00007191 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007192 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007193 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007194 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007195 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007196 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007197 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007198 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007199 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007200 int usableSpace; /* Bytes in pPage beyond the header */
7201 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007202 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007203 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007204 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007205 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007206 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007207 u8 *pRight; /* Location in parent of right-sibling pointer */
7208 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007209 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7210 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007211 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007212 u8 *aSpace1; /* Space for copies of dividers cells */
7213 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007214 u8 abDone[NB+2]; /* True after i'th new page is populated */
7215 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007216 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007217 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007218 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007219
dan33ea4862014-10-09 19:35:37 +00007220 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007221 b.nCell = 0;
7222 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007223 pBt = pParent->pBt;
7224 assert( sqlite3_mutex_held(pBt->mutex) );
7225 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007226
danielk1977e5765212009-06-17 11:13:28 +00007227#if 0
drh43605152004-05-29 21:46:49 +00007228 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007229#endif
drh2e38c322004-09-03 18:38:44 +00007230
danielk19774dbaa892009-06-16 16:50:22 +00007231 /* At this point pParent may have at most one overflow cell. And if
7232 ** this overflow cell is present, it must be the cell with
7233 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007234 ** is called (indirectly) from sqlite3BtreeDelete().
7235 */
danielk19774dbaa892009-06-16 16:50:22 +00007236 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007237 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007238
danielk197711a8a862009-06-17 11:49:52 +00007239 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007240 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007241 }
7242
danielk1977a50d9aa2009-06-08 14:49:45 +00007243 /* Find the sibling pages to balance. Also locate the cells in pParent
7244 ** that divide the siblings. An attempt is made to find NN siblings on
7245 ** either side of pPage. More siblings are taken from one side, however,
7246 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007247 ** has NB or fewer children then all children of pParent are taken.
7248 **
7249 ** This loop also drops the divider cells from the parent page. This
7250 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007251 ** overflow cells in the parent page, since if any existed they will
7252 ** have already been removed.
7253 */
danielk19774dbaa892009-06-16 16:50:22 +00007254 i = pParent->nOverflow + pParent->nCell;
7255 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007256 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007257 }else{
dan7d6885a2012-08-08 14:04:56 +00007258 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007259 if( iParentIdx==0 ){
7260 nxDiv = 0;
7261 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007262 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007263 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007264 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007265 }
dan7d6885a2012-08-08 14:04:56 +00007266 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007267 }
dan7d6885a2012-08-08 14:04:56 +00007268 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007269 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7270 pRight = &pParent->aData[pParent->hdrOffset+8];
7271 }else{
7272 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7273 }
7274 pgno = get4byte(pRight);
7275 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007276 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007277 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007278 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007279 goto balance_cleanup;
7280 }
danielk1977634f2982005-03-28 08:44:07 +00007281 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007282 if( (i--)==0 ) break;
7283
drh9cc5b4e2016-12-26 01:41:33 +00007284 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007285 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007286 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007287 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007288 pParent->nOverflow = 0;
7289 }else{
7290 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7291 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007292 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007293
7294 /* Drop the cell from the parent page. apDiv[i] still points to
7295 ** the cell within the parent, even though it has been dropped.
7296 ** This is safe because dropping a cell only overwrites the first
7297 ** four bytes of it, and this function does not need the first
7298 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007299 ** later on.
7300 **
drh8a575d92011-10-12 17:00:28 +00007301 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007302 ** the dropCell() routine will overwrite the entire cell with zeroes.
7303 ** In this case, temporarily copy the cell into the aOvflSpace[]
7304 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7305 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007306 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007307 int iOff;
7308
7309 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007310 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007311 rc = SQLITE_CORRUPT_BKPT;
7312 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7313 goto balance_cleanup;
7314 }else{
7315 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7316 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7317 }
drh5b47efa2010-02-12 18:18:39 +00007318 }
drh98add2e2009-07-20 17:11:49 +00007319 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007320 }
drh8b2f49b2001-06-08 00:21:52 +00007321 }
7322
drha9121e42008-02-19 14:59:35 +00007323 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007324 ** alignment */
drha9121e42008-02-19 14:59:35 +00007325 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007326
drh8b2f49b2001-06-08 00:21:52 +00007327 /*
danielk1977634f2982005-03-28 08:44:07 +00007328 ** Allocate space for memory structures
7329 */
drhfacf0302008-06-17 15:12:00 +00007330 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007331 nMaxCells*sizeof(u8*) /* b.apCell */
7332 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007333 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007334
mistachkin0fbd7352014-12-09 04:26:56 +00007335 assert( szScratch<=6*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007336 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007337 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007338 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007339 goto balance_cleanup;
7340 }
drh1ffd2472015-06-23 02:37:30 +00007341 b.szCell = (u16*)&b.apCell[nMaxCells];
7342 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007343 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007344
7345 /*
7346 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007347 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007348 ** into space obtained from aSpace1[]. The divider cells have already
7349 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007350 **
7351 ** If the siblings are on leaf pages, then the child pointers of the
7352 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007353 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007354 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007355 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007356 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007357 **
7358 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7359 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007360 */
drh1ffd2472015-06-23 02:37:30 +00007361 b.pRef = apOld[0];
7362 leafCorrection = b.pRef->leaf*4;
7363 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007364 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007365 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007366 int limit = pOld->nCell;
7367 u8 *aData = pOld->aData;
7368 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007369 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007370 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007371
drh73d340a2015-05-28 11:23:11 +00007372 /* Verify that all sibling pages are of the same "type" (table-leaf,
7373 ** table-interior, index-leaf, or index-interior).
7374 */
7375 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7376 rc = SQLITE_CORRUPT_BKPT;
7377 goto balance_cleanup;
7378 }
7379
drhfe647dc2015-06-23 18:24:25 +00007380 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7381 ** constains overflow cells, include them in the b.apCell[] array
7382 ** in the correct spot.
7383 **
7384 ** Note that when there are multiple overflow cells, it is always the
7385 ** case that they are sequential and adjacent. This invariant arises
7386 ** because multiple overflows can only occurs when inserting divider
7387 ** cells into a parent on a prior balance, and divider cells are always
7388 ** adjacent and are inserted in order. There is an assert() tagged
7389 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7390 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007391 **
7392 ** This must be done in advance. Once the balance starts, the cell
7393 ** offset section of the btree page will be overwritten and we will no
7394 ** long be able to find the cells if a pointer to each cell is not saved
7395 ** first.
7396 */
drh36b78ee2016-01-20 01:32:00 +00007397 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007398 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007399 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007400 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007401 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007402 piCell += 2;
7403 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007404 }
drhfe647dc2015-06-23 18:24:25 +00007405 for(k=0; k<pOld->nOverflow; k++){
7406 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007407 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007408 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007409 }
drh1ffd2472015-06-23 02:37:30 +00007410 }
drhfe647dc2015-06-23 18:24:25 +00007411 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7412 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007413 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007414 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007415 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007416 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007417 }
7418
drh1ffd2472015-06-23 02:37:30 +00007419 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007420 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007421 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007422 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007423 assert( b.nCell<nMaxCells );
7424 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007425 pTemp = &aSpace1[iSpace1];
7426 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007427 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007428 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007429 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007430 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007431 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007432 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007433 if( !pOld->leaf ){
7434 assert( leafCorrection==0 );
7435 assert( pOld->hdrOffset==0 );
7436 /* The right pointer of the child page pOld becomes the left
7437 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007438 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007439 }else{
7440 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007441 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007442 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7443 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007444 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7445 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007446 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007447 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007448 }
7449 }
drh1ffd2472015-06-23 02:37:30 +00007450 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007451 }
drh8b2f49b2001-06-08 00:21:52 +00007452 }
7453
7454 /*
drh1ffd2472015-06-23 02:37:30 +00007455 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007456 ** Store this number in "k". Also compute szNew[] which is the total
7457 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007458 ** in b.apCell[] of the cell that divides page i from page i+1.
7459 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007460 **
drh96f5b762004-05-16 16:24:36 +00007461 ** Values computed by this block:
7462 **
7463 ** k: The total number of sibling pages
7464 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007465 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007466 ** the right of the i-th sibling page.
7467 ** usableSpace: Number of bytes of space available on each sibling.
7468 **
drh8b2f49b2001-06-08 00:21:52 +00007469 */
drh43605152004-05-29 21:46:49 +00007470 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007471 for(i=0; i<nOld; i++){
7472 MemPage *p = apOld[i];
7473 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007474 for(j=0; j<p->nOverflow; j++){
7475 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7476 }
7477 cntNew[i] = cntOld[i];
7478 }
7479 k = nOld;
7480 for(i=0; i<k; i++){
7481 int sz;
7482 while( szNew[i]>usableSpace ){
7483 if( i+1>=k ){
7484 k = i+2;
7485 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7486 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007487 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007488 }
drh1ffd2472015-06-23 02:37:30 +00007489 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007490 szNew[i] -= sz;
7491 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007492 if( cntNew[i]<b.nCell ){
7493 sz = 2 + cachedCellSize(&b, cntNew[i]);
7494 }else{
7495 sz = 0;
7496 }
drh658873b2015-06-22 20:02:04 +00007497 }
7498 szNew[i+1] += sz;
7499 cntNew[i]--;
7500 }
drh1ffd2472015-06-23 02:37:30 +00007501 while( cntNew[i]<b.nCell ){
7502 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007503 if( szNew[i]+sz>usableSpace ) break;
7504 szNew[i] += sz;
7505 cntNew[i]++;
7506 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007507 if( cntNew[i]<b.nCell ){
7508 sz = 2 + cachedCellSize(&b, cntNew[i]);
7509 }else{
7510 sz = 0;
7511 }
drh658873b2015-06-22 20:02:04 +00007512 }
7513 szNew[i+1] -= sz;
7514 }
drh1ffd2472015-06-23 02:37:30 +00007515 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007516 k = i+1;
drh672073a2015-06-24 12:07:40 +00007517 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007518 rc = SQLITE_CORRUPT_BKPT;
7519 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007520 }
7521 }
drh96f5b762004-05-16 16:24:36 +00007522
7523 /*
7524 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007525 ** on the left side (siblings with smaller keys). The left siblings are
7526 ** always nearly full, while the right-most sibling might be nearly empty.
7527 ** The next block of code attempts to adjust the packing of siblings to
7528 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007529 **
7530 ** This adjustment is more than an optimization. The packing above might
7531 ** be so out of balance as to be illegal. For example, the right-most
7532 ** sibling might be completely empty. This adjustment is not optional.
7533 */
drh6019e162001-07-02 17:51:45 +00007534 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007535 int szRight = szNew[i]; /* Size of sibling on the right */
7536 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7537 int r; /* Index of right-most cell in left sibling */
7538 int d; /* Index of first cell to the left of right sibling */
7539
7540 r = cntNew[i-1] - 1;
7541 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007542 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007543 do{
drh1ffd2472015-06-23 02:37:30 +00007544 assert( d<nMaxCells );
7545 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007546 (void)cachedCellSize(&b, r);
7547 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007548 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007549 break;
7550 }
7551 szRight += b.szCell[d] + 2;
7552 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007553 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007554 r--;
7555 d--;
drh672073a2015-06-24 12:07:40 +00007556 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007557 szNew[i] = szRight;
7558 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007559 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7560 rc = SQLITE_CORRUPT_BKPT;
7561 goto balance_cleanup;
7562 }
drh6019e162001-07-02 17:51:45 +00007563 }
drh09d0deb2005-08-02 17:13:09 +00007564
drh2a0df922014-10-30 23:14:56 +00007565 /* Sanity check: For a non-corrupt database file one of the follwing
7566 ** must be true:
7567 ** (1) We found one or more cells (cntNew[0])>0), or
7568 ** (2) pPage is a virtual root page. A virtual root page is when
7569 ** the real root page is page 1 and we are the only child of
7570 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007571 */
drh2a0df922014-10-30 23:14:56 +00007572 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007573 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7574 apOld[0]->pgno, apOld[0]->nCell,
7575 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7576 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007577 ));
7578
drh8b2f49b2001-06-08 00:21:52 +00007579 /*
drh6b308672002-07-08 02:16:37 +00007580 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007581 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007582 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007583 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007584 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007585 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007586 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007587 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007588 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007589 nNew++;
danielk197728129562005-01-11 10:25:06 +00007590 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007591 }else{
drh7aa8f852006-03-28 00:24:44 +00007592 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007593 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007594 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007595 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007596 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007597 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007598 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007599
7600 /* Set the pointer-map entry for the new sibling page. */
7601 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007602 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007603 if( rc!=SQLITE_OK ){
7604 goto balance_cleanup;
7605 }
7606 }
drh6b308672002-07-08 02:16:37 +00007607 }
drh8b2f49b2001-06-08 00:21:52 +00007608 }
7609
7610 /*
dan33ea4862014-10-09 19:35:37 +00007611 ** Reassign page numbers so that the new pages are in ascending order.
7612 ** This helps to keep entries in the disk file in order so that a scan
7613 ** of the table is closer to a linear scan through the file. That in turn
7614 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007615 **
dan33ea4862014-10-09 19:35:37 +00007616 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7617 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007618 **
dan33ea4862014-10-09 19:35:37 +00007619 ** When NB==3, this one optimization makes the database about 25% faster
7620 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007621 */
dan33ea4862014-10-09 19:35:37 +00007622 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007623 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007624 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007625 for(j=0; j<i; j++){
7626 if( aPgno[j]==aPgno[i] ){
7627 /* This branch is taken if the set of sibling pages somehow contains
7628 ** duplicate entries. This can happen if the database is corrupt.
7629 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007630 ** we do the detection here in order to avoid populating the pager
7631 ** cache with two separate objects associated with the same
7632 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007633 assert( CORRUPT_DB );
7634 rc = SQLITE_CORRUPT_BKPT;
7635 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007636 }
7637 }
dan33ea4862014-10-09 19:35:37 +00007638 }
7639 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007640 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007641 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007642 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007643 }
drh00fe08a2014-10-31 00:05:23 +00007644 pgno = aPgOrder[iBest];
7645 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007646 if( iBest!=i ){
7647 if( iBest>i ){
7648 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7649 }
7650 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7651 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007652 }
7653 }
dan33ea4862014-10-09 19:35:37 +00007654
7655 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7656 "%d(%d nc=%d) %d(%d nc=%d)\n",
7657 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007658 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007659 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007660 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007661 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007662 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007663 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7664 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7665 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7666 ));
danielk19774dbaa892009-06-16 16:50:22 +00007667
7668 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7669 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007670
dan33ea4862014-10-09 19:35:37 +00007671 /* If the sibling pages are not leaves, ensure that the right-child pointer
7672 ** of the right-most new sibling page is set to the value that was
7673 ** originally in the same field of the right-most old sibling page. */
7674 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7675 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7676 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7677 }
danielk1977ac11ee62005-01-15 12:45:51 +00007678
dan33ea4862014-10-09 19:35:37 +00007679 /* Make any required updates to pointer map entries associated with
7680 ** cells stored on sibling pages following the balance operation. Pointer
7681 ** map entries associated with divider cells are set by the insertCell()
7682 ** routine. The associated pointer map entries are:
7683 **
7684 ** a) if the cell contains a reference to an overflow chain, the
7685 ** entry associated with the first page in the overflow chain, and
7686 **
7687 ** b) if the sibling pages are not leaves, the child page associated
7688 ** with the cell.
7689 **
7690 ** If the sibling pages are not leaves, then the pointer map entry
7691 ** associated with the right-child of each sibling may also need to be
7692 ** updated. This happens below, after the sibling pages have been
7693 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007694 */
dan33ea4862014-10-09 19:35:37 +00007695 if( ISAUTOVACUUM ){
7696 MemPage *pNew = apNew[0];
7697 u8 *aOld = pNew->aData;
7698 int cntOldNext = pNew->nCell + pNew->nOverflow;
7699 int usableSize = pBt->usableSize;
7700 int iNew = 0;
7701 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007702
drh1ffd2472015-06-23 02:37:30 +00007703 for(i=0; i<b.nCell; i++){
7704 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007705 if( i==cntOldNext ){
7706 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7707 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7708 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007709 }
dan33ea4862014-10-09 19:35:37 +00007710 if( i==cntNew[iNew] ){
7711 pNew = apNew[++iNew];
7712 if( !leafData ) continue;
7713 }
danielk197785d90ca2008-07-19 14:25:15 +00007714
dan33ea4862014-10-09 19:35:37 +00007715 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007716 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007717 ** or else the divider cell to the left of sibling page iOld. So,
7718 ** if sibling page iOld had the same page number as pNew, and if
7719 ** pCell really was a part of sibling page iOld (not a divider or
7720 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007721 if( iOld>=nNew
7722 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007723 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007724 ){
dan33ea4862014-10-09 19:35:37 +00007725 if( !leafCorrection ){
7726 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7727 }
drh1ffd2472015-06-23 02:37:30 +00007728 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007729 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007730 }
drhea82b372015-06-23 21:35:28 +00007731 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007732 }
drh14acc042001-06-10 19:56:58 +00007733 }
7734 }
dan33ea4862014-10-09 19:35:37 +00007735
7736 /* Insert new divider cells into pParent. */
7737 for(i=0; i<nNew-1; i++){
7738 u8 *pCell;
7739 u8 *pTemp;
7740 int sz;
7741 MemPage *pNew = apNew[i];
7742 j = cntNew[i];
7743
7744 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007745 assert( b.apCell[j]!=0 );
7746 pCell = b.apCell[j];
7747 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007748 pTemp = &aOvflSpace[iOvflSpace];
7749 if( !pNew->leaf ){
7750 memcpy(&pNew->aData[8], pCell, 4);
7751 }else if( leafData ){
7752 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007753 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007754 ** cell consists of the integer key for the right-most cell of
7755 ** the sibling-page assembled above only.
7756 */
7757 CellInfo info;
7758 j--;
drh1ffd2472015-06-23 02:37:30 +00007759 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007760 pCell = pTemp;
7761 sz = 4 + putVarint(&pCell[4], info.nKey);
7762 pTemp = 0;
7763 }else{
7764 pCell -= 4;
7765 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7766 ** previously stored on a leaf node, and its reported size was 4
7767 ** bytes, then it may actually be smaller than this
7768 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7769 ** any cell). But it is important to pass the correct size to
7770 ** insertCell(), so reparse the cell now.
7771 **
drhc1fb2b82016-03-09 03:29:27 +00007772 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7773 ** and WITHOUT ROWID tables with exactly one column which is the
7774 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007775 */
drh1ffd2472015-06-23 02:37:30 +00007776 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007777 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007778 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007779 }
7780 }
7781 iOvflSpace += sz;
7782 assert( sz<=pBt->maxLocal+23 );
7783 assert( iOvflSpace <= (int)pBt->pageSize );
7784 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7785 if( rc!=SQLITE_OK ) goto balance_cleanup;
7786 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7787 }
7788
7789 /* Now update the actual sibling pages. The order in which they are updated
7790 ** is important, as this code needs to avoid disrupting any page from which
7791 ** cells may still to be read. In practice, this means:
7792 **
drhd836d422014-10-31 14:26:36 +00007793 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7794 ** then it is not safe to update page apNew[iPg] until after
7795 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007796 **
drhd836d422014-10-31 14:26:36 +00007797 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7798 ** then it is not safe to update page apNew[iPg] until after
7799 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007800 **
7801 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007802 **
7803 ** The iPg value in the following loop starts at nNew-1 goes down
7804 ** to 0, then back up to nNew-1 again, thus making two passes over
7805 ** the pages. On the initial downward pass, only condition (1) above
7806 ** needs to be tested because (2) will always be true from the previous
7807 ** step. On the upward pass, both conditions are always true, so the
7808 ** upwards pass simply processes pages that were missed on the downward
7809 ** pass.
dan33ea4862014-10-09 19:35:37 +00007810 */
drhbec021b2014-10-31 12:22:00 +00007811 for(i=1-nNew; i<nNew; i++){
7812 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007813 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007814 if( abDone[iPg] ) continue; /* Skip pages already processed */
7815 if( i>=0 /* On the upwards pass, or... */
7816 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007817 ){
dan09c68402014-10-11 20:00:24 +00007818 int iNew;
7819 int iOld;
7820 int nNewCell;
7821
drhd836d422014-10-31 14:26:36 +00007822 /* Verify condition (1): If cells are moving left, update iPg
7823 ** only after iPg-1 has already been updated. */
7824 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7825
7826 /* Verify condition (2): If cells are moving right, update iPg
7827 ** only after iPg+1 has already been updated. */
7828 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7829
dan09c68402014-10-11 20:00:24 +00007830 if( iPg==0 ){
7831 iNew = iOld = 0;
7832 nNewCell = cntNew[0];
7833 }else{
drh1ffd2472015-06-23 02:37:30 +00007834 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007835 iNew = cntNew[iPg-1] + !leafData;
7836 nNewCell = cntNew[iPg] - iNew;
7837 }
7838
drh1ffd2472015-06-23 02:37:30 +00007839 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007840 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007841 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007842 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007843 assert( apNew[iPg]->nOverflow==0 );
7844 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007845 }
7846 }
drhd836d422014-10-31 14:26:36 +00007847
7848 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007849 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7850
drh7aa8f852006-03-28 00:24:44 +00007851 assert( nOld>0 );
7852 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007853
danielk197713bd99f2009-06-24 05:40:34 +00007854 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7855 /* The root page of the b-tree now contains no cells. The only sibling
7856 ** page is the right-child of the parent. Copy the contents of the
7857 ** child page into the parent, decreasing the overall height of the
7858 ** b-tree structure by one. This is described as the "balance-shallower"
7859 ** sub-algorithm in some documentation.
7860 **
7861 ** If this is an auto-vacuum database, the call to copyNodeContent()
7862 ** sets all pointer-map entries corresponding to database image pages
7863 ** for which the pointer is stored within the content being copied.
7864 **
drh768f2902014-10-31 02:51:41 +00007865 ** It is critical that the child page be defragmented before being
7866 ** copied into the parent, because if the parent is page 1 then it will
7867 ** by smaller than the child due to the database header, and so all the
7868 ** free space needs to be up front.
7869 */
drh9b5351d2015-09-30 14:19:08 +00007870 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00007871 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00007872 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007873 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007874 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7875 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007876 );
drhc314dc72009-07-21 11:52:34 +00007877 copyNodeContent(apNew[0], pParent, &rc);
7878 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007879 }else if( ISAUTOVACUUM && !leafCorrection ){
7880 /* Fix the pointer map entries associated with the right-child of each
7881 ** sibling page. All other pointer map entries have already been taken
7882 ** care of. */
7883 for(i=0; i<nNew; i++){
7884 u32 key = get4byte(&apNew[i]->aData[8]);
7885 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007886 }
dan33ea4862014-10-09 19:35:37 +00007887 }
danielk19774dbaa892009-06-16 16:50:22 +00007888
dan33ea4862014-10-09 19:35:37 +00007889 assert( pParent->isInit );
7890 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007891 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007892
dan33ea4862014-10-09 19:35:37 +00007893 /* Free any old pages that were not reused as new pages.
7894 */
7895 for(i=nNew; i<nOld; i++){
7896 freePage(apOld[i], &rc);
7897 }
danielk19774dbaa892009-06-16 16:50:22 +00007898
7899#if 0
dan33ea4862014-10-09 19:35:37 +00007900 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007901 /* The ptrmapCheckPages() contains assert() statements that verify that
7902 ** all pointer map pages are set correctly. This is helpful while
7903 ** debugging. This is usually disabled because a corrupt database may
7904 ** cause an assert() statement to fail. */
7905 ptrmapCheckPages(apNew, nNew);
7906 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007907 }
dan33ea4862014-10-09 19:35:37 +00007908#endif
danielk1977cd581a72009-06-23 15:43:39 +00007909
drh8b2f49b2001-06-08 00:21:52 +00007910 /*
drh14acc042001-06-10 19:56:58 +00007911 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007912 */
drh14acc042001-06-10 19:56:58 +00007913balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00007914 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007915 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007916 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007917 }
drh14acc042001-06-10 19:56:58 +00007918 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007919 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007920 }
danielk1977eaa06f62008-09-18 17:34:44 +00007921
drh8b2f49b2001-06-08 00:21:52 +00007922 return rc;
7923}
7924
drh43605152004-05-29 21:46:49 +00007925
7926/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007927** This function is called when the root page of a b-tree structure is
7928** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007929**
danielk1977a50d9aa2009-06-08 14:49:45 +00007930** A new child page is allocated and the contents of the current root
7931** page, including overflow cells, are copied into the child. The root
7932** page is then overwritten to make it an empty page with the right-child
7933** pointer pointing to the new page.
7934**
7935** Before returning, all pointer-map entries corresponding to pages
7936** that the new child-page now contains pointers to are updated. The
7937** entry corresponding to the new right-child pointer of the root
7938** page is also updated.
7939**
7940** If successful, *ppChild is set to contain a reference to the child
7941** page and SQLITE_OK is returned. In this case the caller is required
7942** to call releasePage() on *ppChild exactly once. If an error occurs,
7943** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007944*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007945static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7946 int rc; /* Return value from subprocedures */
7947 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007948 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007949 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007950
danielk1977a50d9aa2009-06-08 14:49:45 +00007951 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007952 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007953
danielk1977a50d9aa2009-06-08 14:49:45 +00007954 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7955 ** page that will become the new right-child of pPage. Copy the contents
7956 ** of the node stored on pRoot into the new child page.
7957 */
drh98add2e2009-07-20 17:11:49 +00007958 rc = sqlite3PagerWrite(pRoot->pDbPage);
7959 if( rc==SQLITE_OK ){
7960 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007961 copyNodeContent(pRoot, pChild, &rc);
7962 if( ISAUTOVACUUM ){
7963 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007964 }
7965 }
7966 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007967 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007968 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007969 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007970 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007971 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7972 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7973 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007974
danielk1977a50d9aa2009-06-08 14:49:45 +00007975 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7976
7977 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007978 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7979 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7980 memcpy(pChild->apOvfl, pRoot->apOvfl,
7981 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007982 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007983
7984 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7985 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7986 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7987
7988 *ppChild = pChild;
7989 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007990}
7991
7992/*
danielk197771d5d2c2008-09-29 11:49:47 +00007993** The page that pCur currently points to has just been modified in
7994** some way. This function figures out if this modification means the
7995** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007996** routine. Balancing routines are:
7997**
7998** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007999** balance_deeper()
8000** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008001*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008002static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008003 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008004 const int nMin = pCur->pBt->usableSize * 2 / 3;
8005 u8 aBalanceQuickSpace[13];
8006 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008007
drhcc5f8a42016-02-06 22:32:06 +00008008 VVA_ONLY( int balance_quick_called = 0 );
8009 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008010
8011 do {
8012 int iPage = pCur->iPage;
drh352a35a2017-08-15 03:46:47 +00008013 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008014
8015 if( iPage==0 ){
8016 if( pPage->nOverflow ){
8017 /* The root page of the b-tree is overfull. In this case call the
8018 ** balance_deeper() function to create a new child for the root-page
8019 ** and copy the current contents of the root-page to it. The
8020 ** next iteration of the do-loop will balance the child page.
8021 */
drhcc5f8a42016-02-06 22:32:06 +00008022 assert( balance_deeper_called==0 );
8023 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008024 rc = balance_deeper(pPage, &pCur->apPage[1]);
8025 if( rc==SQLITE_OK ){
8026 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008027 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008028 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008029 pCur->apPage[0] = pPage;
8030 pCur->pPage = pCur->apPage[1];
8031 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008032 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008033 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008034 break;
8035 }
8036 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8037 break;
8038 }else{
8039 MemPage * const pParent = pCur->apPage[iPage-1];
8040 int const iIdx = pCur->aiIdx[iPage-1];
8041
8042 rc = sqlite3PagerWrite(pParent->pDbPage);
8043 if( rc==SQLITE_OK ){
8044#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008045 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008046 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008047 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008048 && pParent->pgno!=1
8049 && pParent->nCell==iIdx
8050 ){
8051 /* Call balance_quick() to create a new sibling of pPage on which
8052 ** to store the overflow cell. balance_quick() inserts a new cell
8053 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008054 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008055 ** use either balance_nonroot() or balance_deeper(). Until this
8056 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8057 ** buffer.
8058 **
8059 ** The purpose of the following assert() is to check that only a
8060 ** single call to balance_quick() is made for each call to this
8061 ** function. If this were not verified, a subtle bug involving reuse
8062 ** of the aBalanceQuickSpace[] might sneak in.
8063 */
drhcc5f8a42016-02-06 22:32:06 +00008064 assert( balance_quick_called==0 );
8065 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008066 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8067 }else
8068#endif
8069 {
8070 /* In this case, call balance_nonroot() to redistribute cells
8071 ** between pPage and up to 2 of its sibling pages. This involves
8072 ** modifying the contents of pParent, which may cause pParent to
8073 ** become overfull or underfull. The next iteration of the do-loop
8074 ** will balance the parent page to correct this.
8075 **
8076 ** If the parent page becomes overfull, the overflow cell or cells
8077 ** are stored in the pSpace buffer allocated immediately below.
8078 ** A subsequent iteration of the do-loop will deal with this by
8079 ** calling balance_nonroot() (balance_deeper() may be called first,
8080 ** but it doesn't deal with overflow cells - just moves them to a
8081 ** different page). Once this subsequent call to balance_nonroot()
8082 ** has completed, it is safe to release the pSpace buffer used by
8083 ** the previous call, as the overflow cell data will have been
8084 ** copied either into the body of a database page or into the new
8085 ** pSpace buffer passed to the latter call to balance_nonroot().
8086 */
8087 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008088 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8089 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008090 if( pFree ){
8091 /* If pFree is not NULL, it points to the pSpace buffer used
8092 ** by a previous call to balance_nonroot(). Its contents are
8093 ** now stored either on real database pages or within the
8094 ** new pSpace buffer, so it may be safely freed here. */
8095 sqlite3PageFree(pFree);
8096 }
8097
danielk19774dbaa892009-06-16 16:50:22 +00008098 /* The pSpace buffer will be freed after the next call to
8099 ** balance_nonroot(), or just before this function returns, whichever
8100 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008101 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008102 }
8103 }
8104
8105 pPage->nOverflow = 0;
8106
8107 /* The next iteration of the do-loop balances the parent page. */
8108 releasePage(pPage);
8109 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008110 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008111 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008112 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008113 }while( rc==SQLITE_OK );
8114
8115 if( pFree ){
8116 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008117 }
8118 return rc;
8119}
8120
drhf74b8d92002-09-01 23:20:45 +00008121
8122/*
drh8eeb4462016-05-21 20:03:42 +00008123** Insert a new record into the BTree. The content of the new record
8124** is described by the pX object. The pCur cursor is used only to
8125** define what table the record should be inserted into, and is left
8126** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008127**
drh8eeb4462016-05-21 20:03:42 +00008128** For a table btree (used for rowid tables), only the pX.nKey value of
8129** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8130** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8131** hold the content of the row.
8132**
8133** For an index btree (used for indexes and WITHOUT ROWID tables), the
8134** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8135** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008136**
8137** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008138** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8139** been performed. In other words, if seekResult!=0 then the cursor
8140** is currently pointing to a cell that will be adjacent to the cell
8141** to be inserted. If seekResult<0 then pCur points to a cell that is
8142** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8143** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008144**
drheaf6ae22016-11-09 20:14:34 +00008145** If seekResult==0, that means pCur is pointing at some unknown location.
8146** In that case, this routine must seek the cursor to the correct insertion
8147** point for (pKey,nKey) before doing the insertion. For index btrees,
8148** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8149** key values and pX->aMem can be used instead of pX->pKey to avoid having
8150** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008151*/
drh3aac2dd2004-04-26 14:10:20 +00008152int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008153 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008154 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008155 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008156 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008157){
drh3b7511c2001-05-26 13:15:44 +00008158 int rc;
drh3e9ca092009-09-08 01:14:48 +00008159 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008160 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008161 int idx;
drh3b7511c2001-05-26 13:15:44 +00008162 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008163 Btree *p = pCur->pBtree;
8164 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008165 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008166 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008167
danf91c1312017-01-10 20:04:38 +00008168 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8169
drh98add2e2009-07-20 17:11:49 +00008170 if( pCur->eState==CURSOR_FAULT ){
8171 assert( pCur->skipNext!=SQLITE_OK );
8172 return pCur->skipNext;
8173 }
8174
dan7a2347e2016-01-07 16:43:54 +00008175 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008176 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8177 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008178 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008179 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8180
danielk197731d31b82009-07-13 13:18:07 +00008181 /* Assert that the caller has been consistent. If this cursor was opened
8182 ** expecting an index b-tree, then the caller should be inserting blob
8183 ** keys with no associated data. If the cursor was opened expecting an
8184 ** intkey table, the caller should be inserting integer keys with a
8185 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008186 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008187
danielk19779c3acf32009-05-02 07:36:49 +00008188 /* Save the positions of any other cursors open on this table.
8189 **
danielk19773509a652009-07-06 18:56:13 +00008190 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008191 ** example, when inserting data into a table with auto-generated integer
8192 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8193 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008194 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008195 ** that the cursor is already where it needs to be and returns without
8196 ** doing any work. To avoid thwarting these optimizations, it is important
8197 ** not to clear the cursor here.
8198 */
drh27fb7462015-06-30 02:47:36 +00008199 if( pCur->curFlags & BTCF_Multiple ){
8200 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8201 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008202 }
8203
danielk197771d5d2c2008-09-29 11:49:47 +00008204 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008205 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008206 /* If this is an insert into a table b-tree, invalidate any incrblob
8207 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008208 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008209
danf91c1312017-01-10 20:04:38 +00008210 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8211 ** to a row with the same key as the new entry being inserted. */
8212 assert( (flags & BTREE_SAVEPOSITION)==0 ||
8213 ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );
8214
drhe0670b62014-02-12 21:31:12 +00008215 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00008216 ** new row onto the end, set the "loc" to avoid an unnecessary
8217 ** btreeMoveto() call */
drh7a1c28d2016-11-10 20:42:08 +00008218 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8219 loc = 0;
drh207c8172015-06-29 23:01:32 +00008220 }else if( loc==0 ){
danf91c1312017-01-10 20:04:38 +00008221 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008222 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008223 }
danf91c1312017-01-10 20:04:38 +00008224 }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
drh9b4eaeb2016-11-09 00:10:33 +00008225 if( pX->nMem ){
8226 UnpackedRecord r;
drh9b4eaeb2016-11-09 00:10:33 +00008227 r.pKeyInfo = pCur->pKeyInfo;
8228 r.aMem = pX->aMem;
8229 r.nField = pX->nMem;
drh8c730bc2016-12-10 13:12:55 +00008230 r.default_rc = 0;
8231 r.errCode = 0;
8232 r.r1 = 0;
8233 r.r2 = 0;
8234 r.eqSeen = 0;
danf91c1312017-01-10 20:04:38 +00008235 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008236 }else{
danf91c1312017-01-10 20:04:38 +00008237 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008238 }
drh4c301aa2009-07-15 17:25:45 +00008239 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00008240 }
danielk1977b980d2212009-06-22 18:03:51 +00008241 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008242
drh352a35a2017-08-15 03:46:47 +00008243 pPage = pCur->pPage;
drh8eeb4462016-05-21 20:03:42 +00008244 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008245 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008246
drh3a4c1412004-05-09 20:40:11 +00008247 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008248 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008249 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008250 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008251 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008252 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008253 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008254 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008255 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008256 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008257 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008258 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008259 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008260 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008261 rc = sqlite3PagerWrite(pPage->pDbPage);
8262 if( rc ){
8263 goto end_insert;
8264 }
danielk197771d5d2c2008-09-29 11:49:47 +00008265 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008266 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008267 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008268 }
drh80159da2016-12-09 17:32:51 +00008269 rc = clearCell(pPage, oldCell, &info);
danca66f6c2017-06-08 11:14:08 +00008270 if( info.nSize==szNew && info.nLocal==info.nPayload
8271 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8272 ){
drhf9238252016-12-09 18:09:42 +00008273 /* Overwrite the old cell with the new if they are the same size.
8274 ** We could also try to do this if the old cell is smaller, then add
8275 ** the leftover space to the free list. But experiments show that
8276 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008277 ** calling dropCell() and insertCell().
8278 **
8279 ** This optimization cannot be used on an autovacuum database if the
8280 ** new entry uses overflow pages, as the insertCell() call below is
8281 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008282 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008283 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008284 memcpy(oldCell, newCell, szNew);
8285 return SQLITE_OK;
8286 }
8287 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008288 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008289 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008290 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008291 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008292 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008293 }else{
drh4b70f112004-05-02 21:12:19 +00008294 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008295 }
drh98add2e2009-07-20 17:11:49 +00008296 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008297 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008298 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008299
mistachkin48864df2013-03-21 21:20:32 +00008300 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008301 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008302 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008303 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008304 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008305 ** Previous versions of SQLite called moveToRoot() to move the cursor
8306 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008307 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8308 ** set the cursor state to "invalid". This makes common insert operations
8309 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008310 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008311 ** There is a subtle but important optimization here too. When inserting
8312 ** multiple records into an intkey b-tree using a single cursor (as can
8313 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8314 ** is advantageous to leave the cursor pointing to the last entry in
8315 ** the b-tree if possible. If the cursor is left pointing to the last
8316 ** entry in the table, and the next row inserted has an integer key
8317 ** larger than the largest existing key, it is possible to insert the
8318 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008319 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008320 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008321 if( pPage->nOverflow ){
8322 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008323 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008324 rc = balance(pCur);
8325
8326 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008327 ** fails. Internal data structure corruption will result otherwise.
8328 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8329 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00008330 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008331 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008332 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00008333 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00008334 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008335 assert( pCur->pKey==0 );
8336 pCur->pKey = sqlite3Malloc( pX->nKey );
8337 if( pCur->pKey==0 ){
8338 rc = SQLITE_NOMEM;
8339 }else{
8340 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8341 }
8342 }
8343 pCur->eState = CURSOR_REQUIRESEEK;
8344 pCur->nKey = pX->nKey;
8345 }
danielk19773f632d52009-05-02 10:03:09 +00008346 }
drh352a35a2017-08-15 03:46:47 +00008347 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008348
drh2e38c322004-09-03 18:38:44 +00008349end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008350 return rc;
8351}
8352
8353/*
danf0ee1d32015-09-12 19:26:11 +00008354** Delete the entry that the cursor is pointing to.
8355**
drhe807bdb2016-01-21 17:06:33 +00008356** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8357** the cursor is left pointing at an arbitrary location after the delete.
8358** But if that bit is set, then the cursor is left in a state such that
8359** the next call to BtreeNext() or BtreePrev() moves it to the same row
8360** as it would have been on if the call to BtreeDelete() had been omitted.
8361**
drhdef19e32016-01-27 16:26:25 +00008362** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8363** associated with a single table entry and its indexes. Only one of those
8364** deletes is considered the "primary" delete. The primary delete occurs
8365** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8366** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8367** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008368** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008369*/
drhe807bdb2016-01-21 17:06:33 +00008370int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008371 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008372 BtShared *pBt = p->pBt;
8373 int rc; /* Return code */
8374 MemPage *pPage; /* Page to delete cell from */
8375 unsigned char *pCell; /* Pointer to cell to delete */
8376 int iCellIdx; /* Index of cell to delete */
8377 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008378 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008379 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008380 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008381
dan7a2347e2016-01-07 16:43:54 +00008382 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008383 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008384 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008385 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008386 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8387 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +00008388 assert( pCur->ix<pCur->pPage->nCell );
drh98ef0f62015-06-30 01:25:52 +00008389 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008390 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008391
danielk19774dbaa892009-06-16 16:50:22 +00008392 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008393 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00008394 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008395 pCell = findCell(pPage, iCellIdx);
8396
drhbfc7a8b2016-04-09 17:04:05 +00008397 /* If the bPreserve flag is set to true, then the cursor position must
8398 ** be preserved following this delete operation. If the current delete
8399 ** will cause a b-tree rebalance, then this is done by saving the cursor
8400 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8401 ** returning.
8402 **
8403 ** Or, if the current delete will not cause a rebalance, then the cursor
8404 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8405 ** before or after the deleted entry. In this case set bSkipnext to true. */
8406 if( bPreserve ){
8407 if( !pPage->leaf
8408 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8409 ){
8410 /* A b-tree rebalance will be required after deleting this entry.
8411 ** Save the cursor key. */
8412 rc = saveCursorKey(pCur);
8413 if( rc ) return rc;
8414 }else{
8415 bSkipnext = 1;
8416 }
8417 }
8418
danielk19774dbaa892009-06-16 16:50:22 +00008419 /* If the page containing the entry to delete is not a leaf page, move
8420 ** the cursor to the largest entry in the tree that is smaller than
8421 ** the entry being deleted. This cell will replace the cell being deleted
8422 ** from the internal node. The 'previous' entry is used for this instead
8423 ** of the 'next' entry, as the previous entry is always a part of the
8424 ** sub-tree headed by the child page of the cell being deleted. This makes
8425 ** balancing the tree following the delete operation easier. */
8426 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008427 rc = sqlite3BtreePrevious(pCur, 0);
8428 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008429 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008430 }
8431
8432 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008433 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008434 if( pCur->curFlags & BTCF_Multiple ){
8435 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8436 if( rc ) return rc;
8437 }
drhd60f4f42012-03-23 14:23:52 +00008438
8439 /* If this is a delete operation to remove a row from a table b-tree,
8440 ** invalidate any incrblob cursors open on the row being deleted. */
8441 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008442 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008443 }
8444
danf0ee1d32015-09-12 19:26:11 +00008445 /* Make the page containing the entry to be deleted writable. Then free any
8446 ** overflow pages associated with the entry and finally remove the cell
8447 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008448 rc = sqlite3PagerWrite(pPage->pDbPage);
8449 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008450 rc = clearCell(pPage, pCell, &info);
8451 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008452 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008453
danielk19774dbaa892009-06-16 16:50:22 +00008454 /* If the cell deleted was not located on a leaf page, then the cursor
8455 ** is currently pointing to the largest entry in the sub-tree headed
8456 ** by the child-page of the cell that was just deleted from an internal
8457 ** node. The cell from the leaf node needs to be moved to the internal
8458 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008459 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00008460 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008461 int nCell;
drh352a35a2017-08-15 03:46:47 +00008462 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00008463 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008464
drh352a35a2017-08-15 03:46:47 +00008465 if( iCellDepth<pCur->iPage-1 ){
8466 n = pCur->apPage[iCellDepth+1]->pgno;
8467 }else{
8468 n = pCur->pPage->pgno;
8469 }
danielk19774dbaa892009-06-16 16:50:22 +00008470 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008471 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008472 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008473 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008474 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008475 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008476 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008477 if( rc==SQLITE_OK ){
8478 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8479 }
drh98add2e2009-07-20 17:11:49 +00008480 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008481 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008482 }
danielk19774dbaa892009-06-16 16:50:22 +00008483
8484 /* Balance the tree. If the entry deleted was located on a leaf page,
8485 ** then the cursor still points to that page. In this case the first
8486 ** call to balance() repairs the tree, and the if(...) condition is
8487 ** never true.
8488 **
8489 ** Otherwise, if the entry deleted was on an internal node page, then
8490 ** pCur is pointing to the leaf page from which a cell was removed to
8491 ** replace the cell deleted from the internal node. This is slightly
8492 ** tricky as the leaf node may be underfull, and the internal node may
8493 ** be either under or overfull. In this case run the balancing algorithm
8494 ** on the leaf node first. If the balance proceeds far enough up the
8495 ** tree that we can be sure that any problem in the internal node has
8496 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8497 ** walk the cursor up the tree to the internal node and balance it as
8498 ** well. */
8499 rc = balance(pCur);
8500 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00008501 releasePageNotNull(pCur->pPage);
8502 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00008503 while( pCur->iPage>iCellDepth ){
8504 releasePage(pCur->apPage[pCur->iPage--]);
8505 }
drh352a35a2017-08-15 03:46:47 +00008506 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00008507 rc = balance(pCur);
8508 }
8509
danielk19776b456a22005-03-21 04:04:02 +00008510 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008511 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008512 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00008513 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008514 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008515 pCur->eState = CURSOR_SKIPNEXT;
8516 if( iCellIdx>=pPage->nCell ){
8517 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00008518 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00008519 }else{
8520 pCur->skipNext = 1;
8521 }
8522 }else{
8523 rc = moveToRoot(pCur);
8524 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00008525 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00008526 pCur->eState = CURSOR_REQUIRESEEK;
8527 }
drh44548e72017-08-14 18:13:52 +00008528 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00008529 }
danielk19776b456a22005-03-21 04:04:02 +00008530 }
drh5e2f8b92001-05-28 00:41:15 +00008531 return rc;
drh3b7511c2001-05-26 13:15:44 +00008532}
drh8b2f49b2001-06-08 00:21:52 +00008533
8534/*
drhc6b52df2002-01-04 03:09:29 +00008535** Create a new BTree table. Write into *piTable the page
8536** number for the root page of the new table.
8537**
drhab01f612004-05-22 02:55:23 +00008538** The type of type is determined by the flags parameter. Only the
8539** following values of flags are currently in use. Other values for
8540** flags might not work:
8541**
8542** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8543** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008544*/
drhd4187c72010-08-30 22:15:45 +00008545static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008546 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008547 MemPage *pRoot;
8548 Pgno pgnoRoot;
8549 int rc;
drhd4187c72010-08-30 22:15:45 +00008550 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008551
drh1fee73e2007-08-29 04:00:57 +00008552 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008553 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008554 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008555
danielk1977003ba062004-11-04 02:57:33 +00008556#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008557 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008558 if( rc ){
8559 return rc;
8560 }
danielk1977003ba062004-11-04 02:57:33 +00008561#else
danielk1977687566d2004-11-02 12:56:41 +00008562 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008563 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8564 MemPage *pPageMove; /* The page to move to. */
8565
danielk197720713f32007-05-03 11:43:33 +00008566 /* Creating a new table may probably require moving an existing database
8567 ** to make room for the new tables root page. In case this page turns
8568 ** out to be an overflow page, delete all overflow page-map caches
8569 ** held by open cursors.
8570 */
danielk197792d4d7a2007-05-04 12:05:56 +00008571 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008572
danielk1977003ba062004-11-04 02:57:33 +00008573 /* Read the value of meta[3] from the database to determine where the
8574 ** root page of the new table should go. meta[3] is the largest root-page
8575 ** created so far, so the new root-page is (meta[3]+1).
8576 */
danielk1977602b4662009-07-02 07:47:33 +00008577 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008578 pgnoRoot++;
8579
danielk1977599fcba2004-11-08 07:13:13 +00008580 /* The new root-page may not be allocated on a pointer-map page, or the
8581 ** PENDING_BYTE page.
8582 */
drh72190432008-01-31 14:54:43 +00008583 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008584 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008585 pgnoRoot++;
8586 }
drh499e15b2015-05-22 12:37:37 +00008587 assert( pgnoRoot>=3 || CORRUPT_DB );
8588 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008589
8590 /* Allocate a page. The page that currently resides at pgnoRoot will
8591 ** be moved to the allocated page (unless the allocated page happens
8592 ** to reside at pgnoRoot).
8593 */
dan51f0b6d2013-02-22 20:16:34 +00008594 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008595 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008596 return rc;
8597 }
danielk1977003ba062004-11-04 02:57:33 +00008598
8599 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008600 /* pgnoRoot is the page that will be used for the root-page of
8601 ** the new table (assuming an error did not occur). But we were
8602 ** allocated pgnoMove. If required (i.e. if it was not allocated
8603 ** by extending the file), the current page at position pgnoMove
8604 ** is already journaled.
8605 */
drheeb844a2009-08-08 18:01:07 +00008606 u8 eType = 0;
8607 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008608
danf7679ad2013-04-03 11:38:36 +00008609 /* Save the positions of any open cursors. This is required in
8610 ** case they are holding a reference to an xFetch reference
8611 ** corresponding to page pgnoRoot. */
8612 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008613 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008614 if( rc!=SQLITE_OK ){
8615 return rc;
8616 }
danielk1977f35843b2007-04-07 15:03:17 +00008617
8618 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008619 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008620 if( rc!=SQLITE_OK ){
8621 return rc;
8622 }
8623 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008624 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8625 rc = SQLITE_CORRUPT_BKPT;
8626 }
8627 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008628 releasePage(pRoot);
8629 return rc;
8630 }
drhccae6022005-02-26 17:31:26 +00008631 assert( eType!=PTRMAP_ROOTPAGE );
8632 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008633 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008634 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008635
8636 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008637 if( rc!=SQLITE_OK ){
8638 return rc;
8639 }
drhb00fc3b2013-08-21 23:42:32 +00008640 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008641 if( rc!=SQLITE_OK ){
8642 return rc;
8643 }
danielk19773b8a05f2007-03-19 17:44:26 +00008644 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008645 if( rc!=SQLITE_OK ){
8646 releasePage(pRoot);
8647 return rc;
8648 }
8649 }else{
8650 pRoot = pPageMove;
8651 }
8652
danielk197742741be2005-01-08 12:42:39 +00008653 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008654 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008655 if( rc ){
8656 releasePage(pRoot);
8657 return rc;
8658 }
drhbf592832010-03-30 15:51:12 +00008659
8660 /* When the new root page was allocated, page 1 was made writable in
8661 ** order either to increase the database filesize, or to decrement the
8662 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8663 */
8664 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008665 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008666 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008667 releasePage(pRoot);
8668 return rc;
8669 }
danielk197742741be2005-01-08 12:42:39 +00008670
danielk1977003ba062004-11-04 02:57:33 +00008671 }else{
drh4f0c5872007-03-26 22:05:01 +00008672 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008673 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008674 }
8675#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008676 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008677 if( createTabFlags & BTREE_INTKEY ){
8678 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8679 }else{
8680 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8681 }
8682 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008683 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008684 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008685 *piTable = (int)pgnoRoot;
8686 return SQLITE_OK;
8687}
drhd677b3d2007-08-20 22:48:41 +00008688int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8689 int rc;
8690 sqlite3BtreeEnter(p);
8691 rc = btreeCreateTable(p, piTable, flags);
8692 sqlite3BtreeLeave(p);
8693 return rc;
8694}
drh8b2f49b2001-06-08 00:21:52 +00008695
8696/*
8697** Erase the given database page and all its children. Return
8698** the page to the freelist.
8699*/
drh4b70f112004-05-02 21:12:19 +00008700static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008701 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008702 Pgno pgno, /* Page number to clear */
8703 int freePageFlag, /* Deallocate page if true */
8704 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008705){
danielk1977146ba992009-07-22 14:08:13 +00008706 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008707 int rc;
drh4b70f112004-05-02 21:12:19 +00008708 unsigned char *pCell;
8709 int i;
dan8ce71842014-01-14 20:14:09 +00008710 int hdr;
drh80159da2016-12-09 17:32:51 +00008711 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00008712
drh1fee73e2007-08-29 04:00:57 +00008713 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008714 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008715 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008716 }
drh28f58dd2015-06-27 19:45:03 +00008717 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008718 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008719 if( pPage->bBusy ){
8720 rc = SQLITE_CORRUPT_BKPT;
8721 goto cleardatabasepage_out;
8722 }
8723 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008724 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008725 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008726 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008727 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008728 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008729 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008730 }
drh80159da2016-12-09 17:32:51 +00008731 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00008732 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008733 }
drha34b6762004-05-07 13:30:42 +00008734 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008735 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008736 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008737 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008738 assert( pPage->intKey || CORRUPT_DB );
8739 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008740 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008741 }
8742 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008743 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008744 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008745 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008746 }
danielk19776b456a22005-03-21 04:04:02 +00008747
8748cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008749 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008750 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008751 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008752}
8753
8754/*
drhab01f612004-05-22 02:55:23 +00008755** Delete all information from a single table in the database. iTable is
8756** the page number of the root of the table. After this routine returns,
8757** the root page is empty, but still exists.
8758**
8759** This routine will fail with SQLITE_LOCKED if there are any open
8760** read cursors on the table. Open write cursors are moved to the
8761** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008762**
8763** If pnChange is not NULL, then table iTable must be an intkey table. The
8764** integer value pointed to by pnChange is incremented by the number of
8765** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008766*/
danielk1977c7af4842008-10-27 13:59:33 +00008767int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008768 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008769 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008770 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008771 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008772
drhc046e3e2009-07-15 11:26:44 +00008773 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008774
drhc046e3e2009-07-15 11:26:44 +00008775 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008776 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8777 ** is the root of a table b-tree - if it is not, the following call is
8778 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00008779 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008780 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008781 }
drhd677b3d2007-08-20 22:48:41 +00008782 sqlite3BtreeLeave(p);
8783 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008784}
8785
8786/*
drh079a3072014-03-19 14:10:55 +00008787** Delete all information from the single table that pCur is open on.
8788**
8789** This routine only work for pCur on an ephemeral table.
8790*/
8791int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8792 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8793}
8794
8795/*
drh8b2f49b2001-06-08 00:21:52 +00008796** Erase all information in a table and add the root of the table to
8797** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008798** page 1) is never added to the freelist.
8799**
8800** This routine will fail with SQLITE_LOCKED if there are any open
8801** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008802**
8803** If AUTOVACUUM is enabled and the page at iTable is not the last
8804** root page in the database file, then the last root page
8805** in the database file is moved into the slot formerly occupied by
8806** iTable and that last slot formerly occupied by the last root page
8807** is added to the freelist instead of iTable. In this say, all
8808** root pages are kept at the beginning of the database file, which
8809** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8810** page number that used to be the last root page in the file before
8811** the move. If no page gets moved, *piMoved is set to 0.
8812** The last root page is recorded in meta[3] and the value of
8813** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008814*/
danielk197789d40042008-11-17 14:20:56 +00008815static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008816 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008817 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008818 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008819
drh1fee73e2007-08-29 04:00:57 +00008820 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008821 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00008822 assert( iTable>=2 );
drh055f2982016-01-15 15:06:41 +00008823
drhb00fc3b2013-08-21 23:42:32 +00008824 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008825 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008826 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008827 if( rc ){
8828 releasePage(pPage);
8829 return rc;
8830 }
danielk1977a0bf2652004-11-04 14:30:04 +00008831
drh205f48e2004-11-05 00:43:11 +00008832 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008833
danielk1977a0bf2652004-11-04 14:30:04 +00008834#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00008835 freePage(pPage, &rc);
8836 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00008837#else
drh055f2982016-01-15 15:06:41 +00008838 if( pBt->autoVacuum ){
8839 Pgno maxRootPgno;
8840 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008841
drh055f2982016-01-15 15:06:41 +00008842 if( iTable==maxRootPgno ){
8843 /* If the table being dropped is the table with the largest root-page
8844 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00008845 */
drhc314dc72009-07-21 11:52:34 +00008846 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008847 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00008848 if( rc!=SQLITE_OK ){
8849 return rc;
8850 }
8851 }else{
8852 /* The table being dropped does not have the largest root-page
8853 ** number in the database. So move the page that does into the
8854 ** gap left by the deleted root-page.
8855 */
8856 MemPage *pMove;
8857 releasePage(pPage);
8858 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8859 if( rc!=SQLITE_OK ){
8860 return rc;
8861 }
8862 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8863 releasePage(pMove);
8864 if( rc!=SQLITE_OK ){
8865 return rc;
8866 }
8867 pMove = 0;
8868 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8869 freePage(pMove, &rc);
8870 releasePage(pMove);
8871 if( rc!=SQLITE_OK ){
8872 return rc;
8873 }
8874 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00008875 }
drh055f2982016-01-15 15:06:41 +00008876
8877 /* Set the new 'max-root-page' value in the database header. This
8878 ** is the old value less one, less one more if that happens to
8879 ** be a root-page number, less one again if that is the
8880 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00008881 */
drh055f2982016-01-15 15:06:41 +00008882 maxRootPgno--;
8883 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8884 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8885 maxRootPgno--;
8886 }
8887 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8888
8889 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8890 }else{
8891 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008892 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008893 }
drh055f2982016-01-15 15:06:41 +00008894#endif
drh8b2f49b2001-06-08 00:21:52 +00008895 return rc;
8896}
drhd677b3d2007-08-20 22:48:41 +00008897int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8898 int rc;
8899 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008900 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008901 sqlite3BtreeLeave(p);
8902 return rc;
8903}
drh8b2f49b2001-06-08 00:21:52 +00008904
drh001bbcb2003-03-19 03:14:00 +00008905
drh8b2f49b2001-06-08 00:21:52 +00008906/*
danielk1977602b4662009-07-02 07:47:33 +00008907** This function may only be called if the b-tree connection already
8908** has a read or write transaction open on the database.
8909**
drh23e11ca2004-05-04 17:27:28 +00008910** Read the meta-information out of a database file. Meta[0]
8911** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008912** through meta[15] are available for use by higher layers. Meta[0]
8913** is read-only, the others are read/write.
8914**
8915** The schema layer numbers meta values differently. At the schema
8916** layer (and the SetCookie and ReadCookie opcodes) the number of
8917** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008918**
8919** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8920** of reading the value out of the header, it instead loads the "DataVersion"
8921** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8922** database file. It is a number computed by the pager. But its access
8923** pattern is the same as header meta values, and so it is convenient to
8924** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008925*/
danielk1977602b4662009-07-02 07:47:33 +00008926void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008927 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008928
drhd677b3d2007-08-20 22:48:41 +00008929 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008930 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008931 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008932 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008933 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008934
drh91618562014-12-19 19:28:02 +00008935 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008936 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008937 }else{
8938 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8939 }
drhae157872004-08-14 19:20:09 +00008940
danielk1977602b4662009-07-02 07:47:33 +00008941 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8942 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008943#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008944 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8945 pBt->btsFlags |= BTS_READ_ONLY;
8946 }
danielk1977003ba062004-11-04 02:57:33 +00008947#endif
drhae157872004-08-14 19:20:09 +00008948
drhd677b3d2007-08-20 22:48:41 +00008949 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008950}
8951
8952/*
drh23e11ca2004-05-04 17:27:28 +00008953** Write meta-information back into the database. Meta[0] is
8954** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008955*/
danielk1977aef0bf62005-12-30 16:28:01 +00008956int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8957 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008958 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008959 int rc;
drh23e11ca2004-05-04 17:27:28 +00008960 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008961 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008962 assert( p->inTrans==TRANS_WRITE );
8963 assert( pBt->pPage1!=0 );
8964 pP1 = pBt->pPage1->aData;
8965 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8966 if( rc==SQLITE_OK ){
8967 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008968#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008969 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008970 assert( pBt->autoVacuum || iMeta==0 );
8971 assert( iMeta==0 || iMeta==1 );
8972 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008973 }
drh64022502009-01-09 14:11:04 +00008974#endif
drh5df72a52002-06-06 23:16:05 +00008975 }
drhd677b3d2007-08-20 22:48:41 +00008976 sqlite3BtreeLeave(p);
8977 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008978}
drh8c42ca92001-06-22 19:15:00 +00008979
danielk1977a5533162009-02-24 10:01:51 +00008980#ifndef SQLITE_OMIT_BTREECOUNT
8981/*
8982** The first argument, pCur, is a cursor opened on some b-tree. Count the
8983** number of entries in the b-tree and write the result to *pnEntry.
8984**
8985** SQLITE_OK is returned if the operation is successfully executed.
8986** Otherwise, if an error is encountered (i.e. an IO error or database
8987** corruption) an SQLite error code is returned.
8988*/
8989int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8990 i64 nEntry = 0; /* Value to return in *pnEntry */
8991 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008992
drh44548e72017-08-14 18:13:52 +00008993 rc = moveToRoot(pCur);
8994 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00008995 *pnEntry = 0;
8996 return SQLITE_OK;
8997 }
danielk1977a5533162009-02-24 10:01:51 +00008998
8999 /* Unless an error occurs, the following loop runs one iteration for each
9000 ** page in the B-Tree structure (not including overflow pages).
9001 */
9002 while( rc==SQLITE_OK ){
9003 int iIdx; /* Index of child node in parent */
9004 MemPage *pPage; /* Current page of the b-tree */
9005
9006 /* If this is a leaf page or the tree is not an int-key tree, then
9007 ** this page contains countable entries. Increment the entry counter
9008 ** accordingly.
9009 */
drh352a35a2017-08-15 03:46:47 +00009010 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009011 if( pPage->leaf || !pPage->intKey ){
9012 nEntry += pPage->nCell;
9013 }
9014
9015 /* pPage is a leaf node. This loop navigates the cursor so that it
9016 ** points to the first interior cell that it points to the parent of
9017 ** the next page in the tree that has not yet been visited. The
9018 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9019 ** of the page, or to the number of cells in the page if the next page
9020 ** to visit is the right-child of its parent.
9021 **
9022 ** If all pages in the tree have been visited, return SQLITE_OK to the
9023 ** caller.
9024 */
9025 if( pPage->leaf ){
9026 do {
9027 if( pCur->iPage==0 ){
9028 /* All pages of the b-tree have been visited. Return successfully. */
9029 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009030 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009031 }
danielk197730548662009-07-09 05:07:37 +00009032 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009033 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009034
drh75e96b32017-04-01 00:20:06 +00009035 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009036 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009037 }
9038
9039 /* Descend to the child node of the cell that the cursor currently
9040 ** points at. This is the right-child if (iIdx==pPage->nCell).
9041 */
drh75e96b32017-04-01 00:20:06 +00009042 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009043 if( iIdx==pPage->nCell ){
9044 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9045 }else{
9046 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9047 }
9048 }
9049
shanebe217792009-03-05 04:20:31 +00009050 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009051 return rc;
9052}
9053#endif
drhdd793422001-06-28 01:54:48 +00009054
drhdd793422001-06-28 01:54:48 +00009055/*
drh5eddca62001-06-30 21:53:53 +00009056** Return the pager associated with a BTree. This routine is used for
9057** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009058*/
danielk1977aef0bf62005-12-30 16:28:01 +00009059Pager *sqlite3BtreePager(Btree *p){
9060 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009061}
drh5eddca62001-06-30 21:53:53 +00009062
drhb7f91642004-10-31 02:22:47 +00009063#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009064/*
9065** Append a message to the error message string.
9066*/
drh2e38c322004-09-03 18:38:44 +00009067static void checkAppendMsg(
9068 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009069 const char *zFormat,
9070 ...
9071){
9072 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009073 if( !pCheck->mxErr ) return;
9074 pCheck->mxErr--;
9075 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009076 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009077 if( pCheck->errMsg.nChar ){
9078 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009079 }
drh867db832014-09-26 02:41:05 +00009080 if( pCheck->zPfx ){
drh5f4a6862016-01-30 12:50:25 +00009081 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009082 }
drh5f4a6862016-01-30 12:50:25 +00009083 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009084 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00009085 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009086 pCheck->mallocFailed = 1;
9087 }
drh5eddca62001-06-30 21:53:53 +00009088}
drhb7f91642004-10-31 02:22:47 +00009089#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009090
drhb7f91642004-10-31 02:22:47 +00009091#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009092
9093/*
9094** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9095** corresponds to page iPg is already set.
9096*/
9097static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9098 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9099 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9100}
9101
9102/*
9103** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9104*/
9105static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9106 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9107 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9108}
9109
9110
drh5eddca62001-06-30 21:53:53 +00009111/*
9112** Add 1 to the reference count for page iPage. If this is the second
9113** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009114** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009115** if this is the first reference to the page.
9116**
9117** Also check that the page number is in bounds.
9118*/
drh867db832014-09-26 02:41:05 +00009119static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00009120 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00009121 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00009122 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009123 return 1;
9124 }
dan1235bb12012-04-03 17:43:28 +00009125 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009126 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009127 return 1;
9128 }
dan1235bb12012-04-03 17:43:28 +00009129 setPageReferenced(pCheck, iPage);
9130 return 0;
drh5eddca62001-06-30 21:53:53 +00009131}
9132
danielk1977afcdd022004-10-31 16:25:42 +00009133#ifndef SQLITE_OMIT_AUTOVACUUM
9134/*
9135** Check that the entry in the pointer-map for page iChild maps to
9136** page iParent, pointer type ptrType. If not, append an error message
9137** to pCheck.
9138*/
9139static void checkPtrmap(
9140 IntegrityCk *pCheck, /* Integrity check context */
9141 Pgno iChild, /* Child page number */
9142 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009143 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009144){
9145 int rc;
9146 u8 ePtrmapType;
9147 Pgno iPtrmapParent;
9148
9149 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9150 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009151 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009152 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009153 return;
9154 }
9155
9156 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009157 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009158 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9159 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9160 }
9161}
9162#endif
9163
drh5eddca62001-06-30 21:53:53 +00009164/*
9165** Check the integrity of the freelist or of an overflow page list.
9166** Verify that the number of pages on the list is N.
9167*/
drh30e58752002-03-02 20:41:57 +00009168static void checkList(
9169 IntegrityCk *pCheck, /* Integrity checking context */
9170 int isFreeList, /* True for a freelist. False for overflow page list */
9171 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00009172 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009173){
9174 int i;
drh3a4c1412004-05-09 20:40:11 +00009175 int expected = N;
9176 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00009177 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009178 DbPage *pOvflPage;
9179 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00009180 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00009181 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009182 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00009183 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00009184 break;
9185 }
drh867db832014-09-26 02:41:05 +00009186 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00009187 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009188 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009189 break;
9190 }
danielk19773b8a05f2007-03-19 17:44:26 +00009191 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009192 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00009193 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009194#ifndef SQLITE_OMIT_AUTOVACUUM
9195 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009196 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009197 }
9198#endif
drh43b18e12010-08-17 19:40:08 +00009199 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009200 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009201 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009202 N--;
9203 }else{
9204 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009205 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009206#ifndef SQLITE_OMIT_AUTOVACUUM
9207 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009208 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009209 }
9210#endif
drh867db832014-09-26 02:41:05 +00009211 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009212 }
9213 N -= n;
drh30e58752002-03-02 20:41:57 +00009214 }
drh30e58752002-03-02 20:41:57 +00009215 }
danielk1977afcdd022004-10-31 16:25:42 +00009216#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009217 else{
9218 /* If this database supports auto-vacuum and iPage is not the last
9219 ** page in this overflow list, check that the pointer-map entry for
9220 ** the following page matches iPage.
9221 */
9222 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009223 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009224 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009225 }
danielk1977afcdd022004-10-31 16:25:42 +00009226 }
9227#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009228 iPage = get4byte(pOvflData);
9229 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00009230
9231 if( isFreeList && N<(iPage!=0) ){
9232 checkAppendMsg(pCheck, "free-page count in header is too small");
9233 }
drh5eddca62001-06-30 21:53:53 +00009234 }
9235}
drhb7f91642004-10-31 02:22:47 +00009236#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009237
drh67731a92015-04-16 11:56:03 +00009238/*
9239** An implementation of a min-heap.
9240**
9241** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009242** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009243** and aHeap[N*2+1].
9244**
9245** The heap property is this: Every node is less than or equal to both
9246** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009247** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009248**
9249** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9250** the heap, preserving the heap property. The btreeHeapPull() routine
9251** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009252** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009253** property.
9254**
9255** This heap is used for cell overlap and coverage testing. Each u32
9256** entry represents the span of a cell or freeblock on a btree page.
9257** The upper 16 bits are the index of the first byte of a range and the
9258** lower 16 bits are the index of the last byte of that range.
9259*/
9260static void btreeHeapInsert(u32 *aHeap, u32 x){
9261 u32 j, i = ++aHeap[0];
9262 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009263 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009264 x = aHeap[j];
9265 aHeap[j] = aHeap[i];
9266 aHeap[i] = x;
9267 i = j;
9268 }
9269}
9270static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9271 u32 j, i, x;
9272 if( (x = aHeap[0])==0 ) return 0;
9273 *pOut = aHeap[1];
9274 aHeap[1] = aHeap[x];
9275 aHeap[x] = 0xffffffff;
9276 aHeap[0]--;
9277 i = 1;
9278 while( (j = i*2)<=aHeap[0] ){
9279 if( aHeap[j]>aHeap[j+1] ) j++;
9280 if( aHeap[i]<aHeap[j] ) break;
9281 x = aHeap[i];
9282 aHeap[i] = aHeap[j];
9283 aHeap[j] = x;
9284 i = j;
9285 }
9286 return 1;
9287}
9288
drhb7f91642004-10-31 02:22:47 +00009289#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009290/*
9291** Do various sanity checks on a single page of a tree. Return
9292** the tree depth. Root pages return 0. Parents of root pages
9293** return 1, and so forth.
9294**
9295** These checks are done:
9296**
9297** 1. Make sure that cells and freeblocks do not overlap
9298** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009299** 2. Make sure integer cell keys are in order.
9300** 3. Check the integrity of overflow pages.
9301** 4. Recursively call checkTreePage on all children.
9302** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009303*/
9304static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009305 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009306 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009307 i64 *piMinKey, /* Write minimum integer primary key here */
9308 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009309){
drhcbc6b712015-07-02 16:17:30 +00009310 MemPage *pPage = 0; /* The page being analyzed */
9311 int i; /* Loop counter */
9312 int rc; /* Result code from subroutine call */
9313 int depth = -1, d2; /* Depth of a subtree */
9314 int pgno; /* Page number */
9315 int nFrag; /* Number of fragmented bytes on the page */
9316 int hdr; /* Offset to the page header */
9317 int cellStart; /* Offset to the start of the cell pointer array */
9318 int nCell; /* Number of cells */
9319 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9320 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9321 ** False if IPK must be strictly less than maxKey */
9322 u8 *data; /* Page content */
9323 u8 *pCell; /* Cell content */
9324 u8 *pCellIdx; /* Next element of the cell pointer array */
9325 BtShared *pBt; /* The BtShared object that owns pPage */
9326 u32 pc; /* Address of a cell */
9327 u32 usableSize; /* Usable size of the page */
9328 u32 contentOffset; /* Offset to the start of the cell content area */
9329 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009330 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009331 const char *saved_zPfx = pCheck->zPfx;
9332 int saved_v1 = pCheck->v1;
9333 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009334 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009335
drh5eddca62001-06-30 21:53:53 +00009336 /* Check that the page exists
9337 */
drhd9cb6ac2005-10-20 07:28:17 +00009338 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009339 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009340 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009341 if( checkRef(pCheck, iPage) ) return 0;
9342 pCheck->zPfx = "Page %d: ";
9343 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009344 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009345 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009346 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009347 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009348 }
danielk197793caf5a2009-07-11 06:55:33 +00009349
9350 /* Clear MemPage.isInit to make sure the corruption detection code in
9351 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009352 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009353 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009354 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009355 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009356 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009357 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009358 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009359 }
drhcbc6b712015-07-02 16:17:30 +00009360 data = pPage->aData;
9361 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009362
drhcbc6b712015-07-02 16:17:30 +00009363 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009364 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009365 contentOffset = get2byteNotZero(&data[hdr+5]);
9366 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9367
9368 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9369 ** number of cells on the page. */
9370 nCell = get2byte(&data[hdr+3]);
9371 assert( pPage->nCell==nCell );
9372
9373 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9374 ** immediately follows the b-tree page header. */
9375 cellStart = hdr + 12 - 4*pPage->leaf;
9376 assert( pPage->aCellIdx==&data[cellStart] );
9377 pCellIdx = &data[cellStart + 2*(nCell-1)];
9378
9379 if( !pPage->leaf ){
9380 /* Analyze the right-child page of internal pages */
9381 pgno = get4byte(&data[hdr+8]);
9382#ifndef SQLITE_OMIT_AUTOVACUUM
9383 if( pBt->autoVacuum ){
9384 pCheck->zPfx = "On page %d at right child: ";
9385 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9386 }
9387#endif
9388 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9389 keyCanBeEqual = 0;
9390 }else{
9391 /* For leaf pages, the coverage check will occur in the same loop
9392 ** as the other cell checks, so initialize the heap. */
9393 heap = pCheck->heap;
9394 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009395 }
9396
drhcbc6b712015-07-02 16:17:30 +00009397 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9398 ** integer offsets to the cell contents. */
9399 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009400 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009401
drhcbc6b712015-07-02 16:17:30 +00009402 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009403 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009404 assert( pCellIdx==&data[cellStart + i*2] );
9405 pc = get2byteAligned(pCellIdx);
9406 pCellIdx -= 2;
9407 if( pc<contentOffset || pc>usableSize-4 ){
9408 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9409 pc, contentOffset, usableSize-4);
9410 doCoverageCheck = 0;
9411 continue;
shaneh195475d2010-02-19 04:28:08 +00009412 }
drhcbc6b712015-07-02 16:17:30 +00009413 pCell = &data[pc];
9414 pPage->xParseCell(pPage, pCell, &info);
9415 if( pc+info.nSize>usableSize ){
9416 checkAppendMsg(pCheck, "Extends off end of page");
9417 doCoverageCheck = 0;
9418 continue;
drh5eddca62001-06-30 21:53:53 +00009419 }
9420
drhcbc6b712015-07-02 16:17:30 +00009421 /* Check for integer primary key out of range */
9422 if( pPage->intKey ){
9423 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9424 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9425 }
9426 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009427 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009428 }
9429
9430 /* Check the content overflow list */
9431 if( info.nPayload>info.nLocal ){
9432 int nPage; /* Number of pages on the overflow chain */
9433 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009434 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009435 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009436 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009437#ifndef SQLITE_OMIT_AUTOVACUUM
9438 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009439 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009440 }
9441#endif
drh867db832014-09-26 02:41:05 +00009442 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009443 }
9444
drh5eddca62001-06-30 21:53:53 +00009445 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009446 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009447 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009448#ifndef SQLITE_OMIT_AUTOVACUUM
9449 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009450 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009451 }
9452#endif
drhcbc6b712015-07-02 16:17:30 +00009453 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9454 keyCanBeEqual = 0;
9455 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009456 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009457 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009458 }
drhcbc6b712015-07-02 16:17:30 +00009459 }else{
9460 /* Populate the coverage-checking heap for leaf pages */
9461 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009462 }
9463 }
drhcbc6b712015-07-02 16:17:30 +00009464 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009465
drh5eddca62001-06-30 21:53:53 +00009466 /* Check for complete coverage of the page
9467 */
drh867db832014-09-26 02:41:05 +00009468 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009469 if( doCoverageCheck && pCheck->mxErr>0 ){
9470 /* For leaf pages, the min-heap has already been initialized and the
9471 ** cells have already been inserted. But for internal pages, that has
9472 ** not yet been done, so do it now */
9473 if( !pPage->leaf ){
9474 heap = pCheck->heap;
9475 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009476 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009477 u32 size;
9478 pc = get2byteAligned(&data[cellStart+i*2]);
9479 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009480 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009481 }
drh2e38c322004-09-03 18:38:44 +00009482 }
drhcbc6b712015-07-02 16:17:30 +00009483 /* Add the freeblocks to the min-heap
9484 **
9485 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009486 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009487 ** freeblocks on the page.
9488 */
drh8c2bbb62009-07-10 02:52:20 +00009489 i = get2byte(&data[hdr+1]);
9490 while( i>0 ){
9491 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009492 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009493 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009494 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009495 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009496 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9497 ** big-endian integer which is the offset in the b-tree page of the next
9498 ** freeblock in the chain, or zero if the freeblock is the last on the
9499 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009500 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009501 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9502 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009503 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009504 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009505 i = j;
drh2e38c322004-09-03 18:38:44 +00009506 }
drhcbc6b712015-07-02 16:17:30 +00009507 /* Analyze the min-heap looking for overlap between cells and/or
9508 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009509 **
9510 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9511 ** There is an implied first entry the covers the page header, the cell
9512 ** pointer index, and the gap between the cell pointer index and the start
9513 ** of cell content.
9514 **
9515 ** The loop below pulls entries from the min-heap in order and compares
9516 ** the start_address against the previous end_address. If there is an
9517 ** overlap, that means bytes are used multiple times. If there is a gap,
9518 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009519 */
9520 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009521 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009522 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009523 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009524 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009525 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009526 break;
drh67731a92015-04-16 11:56:03 +00009527 }else{
drhcbc6b712015-07-02 16:17:30 +00009528 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009529 prev = x;
drh2e38c322004-09-03 18:38:44 +00009530 }
9531 }
drhcbc6b712015-07-02 16:17:30 +00009532 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009533 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9534 ** is stored in the fifth field of the b-tree page header.
9535 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9536 ** number of fragmented free bytes within the cell content area.
9537 */
drhcbc6b712015-07-02 16:17:30 +00009538 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009539 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009540 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009541 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009542 }
9543 }
drh867db832014-09-26 02:41:05 +00009544
9545end_of_check:
drh72e191e2015-07-04 11:14:20 +00009546 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009547 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009548 pCheck->zPfx = saved_zPfx;
9549 pCheck->v1 = saved_v1;
9550 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009551 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009552}
drhb7f91642004-10-31 02:22:47 +00009553#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009554
drhb7f91642004-10-31 02:22:47 +00009555#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009556/*
9557** This routine does a complete check of the given BTree file. aRoot[] is
9558** an array of pages numbers were each page number is the root page of
9559** a table. nRoot is the number of entries in aRoot.
9560**
danielk19773509a652009-07-06 18:56:13 +00009561** A read-only or read-write transaction must be opened before calling
9562** this function.
9563**
drhc890fec2008-08-01 20:10:08 +00009564** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009565** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009566** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009567** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009568*/
drh1dcdbc02007-01-27 02:24:54 +00009569char *sqlite3BtreeIntegrityCheck(
9570 Btree *p, /* The btree to be checked */
9571 int *aRoot, /* An array of root pages numbers for individual trees */
9572 int nRoot, /* Number of entries in aRoot[] */
9573 int mxErr, /* Stop reporting errors after this many */
9574 int *pnErr /* Write number of errors seen to this variable */
9575){
danielk197789d40042008-11-17 14:20:56 +00009576 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009577 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009578 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009579 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009580 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009581 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009582
drhd677b3d2007-08-20 22:48:41 +00009583 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009584 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009585 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9586 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009587 sCheck.pBt = pBt;
9588 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009589 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009590 sCheck.mxErr = mxErr;
9591 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009592 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009593 sCheck.zPfx = 0;
9594 sCheck.v1 = 0;
9595 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009596 sCheck.aPgRef = 0;
9597 sCheck.heap = 0;
9598 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009599 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009600 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009601 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009602 }
dan1235bb12012-04-03 17:43:28 +00009603
9604 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9605 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009606 sCheck.mallocFailed = 1;
9607 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009608 }
drhe05b3f82015-07-01 17:53:49 +00009609 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9610 if( sCheck.heap==0 ){
9611 sCheck.mallocFailed = 1;
9612 goto integrity_ck_cleanup;
9613 }
9614
drh42cac6d2004-11-20 20:31:11 +00009615 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009616 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009617
9618 /* Check the integrity of the freelist
9619 */
drh867db832014-09-26 02:41:05 +00009620 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009621 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009622 get4byte(&pBt->pPage1->aData[36]));
9623 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009624
9625 /* Check all the tables.
9626 */
drhcbc6b712015-07-02 16:17:30 +00009627 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9628 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009629 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009630 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009631 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009632#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009633 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009634 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009635 }
9636#endif
drhcbc6b712015-07-02 16:17:30 +00009637 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009638 }
drhcbc6b712015-07-02 16:17:30 +00009639 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009640
9641 /* Make sure every page in the file is referenced
9642 */
drh1dcdbc02007-01-27 02:24:54 +00009643 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009644#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009645 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009646 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009647 }
danielk1977afcdd022004-10-31 16:25:42 +00009648#else
9649 /* If the database supports auto-vacuum, make sure no tables contain
9650 ** references to pointer-map pages.
9651 */
dan1235bb12012-04-03 17:43:28 +00009652 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009653 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009654 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009655 }
dan1235bb12012-04-03 17:43:28 +00009656 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009657 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009658 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009659 }
9660#endif
drh5eddca62001-06-30 21:53:53 +00009661 }
9662
drh5eddca62001-06-30 21:53:53 +00009663 /* Clean up and report errors.
9664 */
drhe05b3f82015-07-01 17:53:49 +00009665integrity_ck_cleanup:
9666 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009667 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009668 if( sCheck.mallocFailed ){
9669 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009670 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009671 }
drh1dcdbc02007-01-27 02:24:54 +00009672 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009673 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009674 /* Make sure this analysis did not leave any unref() pages. */
9675 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9676 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009677 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009678}
drhb7f91642004-10-31 02:22:47 +00009679#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009680
drh73509ee2003-04-06 20:44:45 +00009681/*
drhd4e0bb02012-05-27 01:19:04 +00009682** Return the full pathname of the underlying database file. Return
9683** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009684**
9685** The pager filename is invariant as long as the pager is
9686** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009687*/
danielk1977aef0bf62005-12-30 16:28:01 +00009688const char *sqlite3BtreeGetFilename(Btree *p){
9689 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009690 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009691}
9692
9693/*
danielk19775865e3d2004-06-14 06:03:57 +00009694** Return the pathname of the journal file for this database. The return
9695** value of this routine is the same regardless of whether the journal file
9696** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009697**
9698** The pager journal filename is invariant as long as the pager is
9699** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009700*/
danielk1977aef0bf62005-12-30 16:28:01 +00009701const char *sqlite3BtreeGetJournalname(Btree *p){
9702 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009703 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009704}
9705
danielk19771d850a72004-05-31 08:26:49 +00009706/*
9707** Return non-zero if a transaction is active.
9708*/
danielk1977aef0bf62005-12-30 16:28:01 +00009709int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009710 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009711 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009712}
9713
dana550f2d2010-08-02 10:47:05 +00009714#ifndef SQLITE_OMIT_WAL
9715/*
9716** Run a checkpoint on the Btree passed as the first argument.
9717**
9718** Return SQLITE_LOCKED if this or any other connection has an open
9719** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009720**
dancdc1f042010-11-18 12:11:05 +00009721** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009722*/
dancdc1f042010-11-18 12:11:05 +00009723int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009724 int rc = SQLITE_OK;
9725 if( p ){
9726 BtShared *pBt = p->pBt;
9727 sqlite3BtreeEnter(p);
9728 if( pBt->inTransaction!=TRANS_NONE ){
9729 rc = SQLITE_LOCKED;
9730 }else{
dan7fb89902016-08-12 16:21:15 +00009731 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009732 }
9733 sqlite3BtreeLeave(p);
9734 }
9735 return rc;
9736}
9737#endif
9738
danielk19771d850a72004-05-31 08:26:49 +00009739/*
danielk19772372c2b2006-06-27 16:34:56 +00009740** Return non-zero if a read (or write) transaction is active.
9741*/
9742int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009743 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009744 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009745 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009746}
9747
danielk197704103022009-02-03 16:51:24 +00009748int sqlite3BtreeIsInBackup(Btree *p){
9749 assert( p );
9750 assert( sqlite3_mutex_held(p->db->mutex) );
9751 return p->nBackup!=0;
9752}
9753
danielk19772372c2b2006-06-27 16:34:56 +00009754/*
danielk1977da184232006-01-05 11:34:32 +00009755** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009756** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009757** purposes (for example, to store a high-level schema associated with
9758** the shared-btree). The btree layer manages reference counting issues.
9759**
9760** The first time this is called on a shared-btree, nBytes bytes of memory
9761** are allocated, zeroed, and returned to the caller. For each subsequent
9762** call the nBytes parameter is ignored and a pointer to the same blob
9763** of memory returned.
9764**
danielk1977171bfed2008-06-23 09:50:50 +00009765** If the nBytes parameter is 0 and the blob of memory has not yet been
9766** allocated, a null pointer is returned. If the blob has already been
9767** allocated, it is returned as normal.
9768**
danielk1977da184232006-01-05 11:34:32 +00009769** Just before the shared-btree is closed, the function passed as the
9770** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009771** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009772** on the memory, the btree layer does that.
9773*/
9774void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9775 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009776 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009777 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009778 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009779 pBt->xFreeSchema = xFree;
9780 }
drh27641702007-08-22 02:56:42 +00009781 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009782 return pBt->pSchema;
9783}
9784
danielk1977c87d34d2006-01-06 13:00:28 +00009785/*
danielk1977404ca072009-03-16 13:19:36 +00009786** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9787** btree as the argument handle holds an exclusive lock on the
9788** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009789*/
9790int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009791 int rc;
drhe5fe6902007-12-07 18:55:28 +00009792 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009793 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009794 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9795 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009796 sqlite3BtreeLeave(p);
9797 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009798}
9799
drha154dcd2006-03-22 22:10:07 +00009800
9801#ifndef SQLITE_OMIT_SHARED_CACHE
9802/*
9803** Obtain a lock on the table whose root page is iTab. The
9804** lock is a write lock if isWritelock is true or a read lock
9805** if it is false.
9806*/
danielk1977c00da102006-01-07 13:21:04 +00009807int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009808 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009809 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009810 if( p->sharable ){
9811 u8 lockType = READ_LOCK + isWriteLock;
9812 assert( READ_LOCK+1==WRITE_LOCK );
9813 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009814
drh6a9ad3d2008-04-02 16:29:30 +00009815 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009816 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009817 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009818 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009819 }
9820 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009821 }
9822 return rc;
9823}
drha154dcd2006-03-22 22:10:07 +00009824#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009825
danielk1977b4e9af92007-05-01 17:49:49 +00009826#ifndef SQLITE_OMIT_INCRBLOB
9827/*
9828** Argument pCsr must be a cursor opened for writing on an
9829** INTKEY table currently pointing at a valid table entry.
9830** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009831**
9832** Only the data content may only be modified, it is not possible to
9833** change the length of the data stored. If this function is called with
9834** parameters that attempt to write past the end of the existing data,
9835** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009836*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009837int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009838 int rc;
dan7a2347e2016-01-07 16:43:54 +00009839 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009840 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009841 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009842
danielk1977c9000e62009-07-08 13:55:28 +00009843 rc = restoreCursorPosition(pCsr);
9844 if( rc!=SQLITE_OK ){
9845 return rc;
9846 }
danielk19773588ceb2008-06-10 17:30:26 +00009847 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9848 if( pCsr->eState!=CURSOR_VALID ){
9849 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009850 }
9851
dan227a1c42013-04-03 11:17:39 +00009852 /* Save the positions of all other cursors open on this table. This is
9853 ** required in case any of them are holding references to an xFetch
9854 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009855 **
drh3f387402014-09-24 01:23:00 +00009856 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009857 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9858 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009859 */
drh370c9f42013-04-03 20:04:04 +00009860 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9861 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009862
danielk1977c9000e62009-07-08 13:55:28 +00009863 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009864 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009865 ** (b) there is a read/write transaction open,
9866 ** (c) the connection holds a write-lock on the table (if required),
9867 ** (d) there are no conflicting read-locks, and
9868 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009869 */
drh036dbec2014-03-11 23:40:44 +00009870 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009871 return SQLITE_READONLY;
9872 }
drhc9166342012-01-05 23:32:06 +00009873 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9874 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009875 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9876 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +00009877 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009878
drhfb192682009-07-11 18:26:28 +00009879 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009880}
danielk19772dec9702007-05-02 16:48:37 +00009881
9882/*
dan5a500af2014-03-11 20:33:04 +00009883** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009884*/
dan5a500af2014-03-11 20:33:04 +00009885void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009886 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009887 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009888}
danielk1977b4e9af92007-05-01 17:49:49 +00009889#endif
dane04dc882010-04-20 18:53:15 +00009890
9891/*
9892** Set both the "read version" (single byte at byte offset 18) and
9893** "write version" (single byte at byte offset 19) fields in the database
9894** header to iVersion.
9895*/
9896int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9897 BtShared *pBt = pBtree->pBt;
9898 int rc; /* Return code */
9899
dane04dc882010-04-20 18:53:15 +00009900 assert( iVersion==1 || iVersion==2 );
9901
danb9780022010-04-21 18:37:57 +00009902 /* If setting the version fields to 1, do not automatically open the
9903 ** WAL connection, even if the version fields are currently set to 2.
9904 */
drhc9166342012-01-05 23:32:06 +00009905 pBt->btsFlags &= ~BTS_NO_WAL;
9906 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009907
9908 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009909 if( rc==SQLITE_OK ){
9910 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009911 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009912 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009913 if( rc==SQLITE_OK ){
9914 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9915 if( rc==SQLITE_OK ){
9916 aData[18] = (u8)iVersion;
9917 aData[19] = (u8)iVersion;
9918 }
9919 }
9920 }
dane04dc882010-04-20 18:53:15 +00009921 }
9922
drhc9166342012-01-05 23:32:06 +00009923 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009924 return rc;
9925}
dan428c2182012-08-06 18:50:11 +00009926
drhe0997b32015-03-20 14:57:50 +00009927/*
9928** Return true if the cursor has a hint specified. This routine is
9929** only used from within assert() statements
9930*/
9931int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9932 return (pCsr->hints & mask)!=0;
9933}
drhe0997b32015-03-20 14:57:50 +00009934
drh781597f2014-05-21 08:21:07 +00009935/*
9936** Return true if the given Btree is read-only.
9937*/
9938int sqlite3BtreeIsReadonly(Btree *p){
9939 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9940}
drhdef68892014-11-04 12:11:23 +00009941
9942/*
9943** Return the size of the header added to each page by this module.
9944*/
drh37c057b2014-12-30 00:57:29 +00009945int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +00009946
drh5a1fb182016-01-08 19:34:39 +00009947#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +00009948/*
9949** Return true if the Btree passed as the only argument is sharable.
9950*/
9951int sqlite3BtreeSharable(Btree *p){
9952 return p->sharable;
9953}
dan272989b2016-07-06 10:12:02 +00009954
9955/*
9956** Return the number of connections to the BtShared object accessed by
9957** the Btree handle passed as the only argument. For private caches
9958** this is always 1. For shared caches it may be 1 or greater.
9959*/
9960int sqlite3BtreeConnectionCount(Btree *p){
9961 testcase( p->sharable );
9962 return p->pBt->nRef;
9963}
drh5a1fb182016-01-08 19:34:39 +00009964#endif