blob: 17188cda0fa8ccbe119be219b714210f3c893055 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh86f8c192007-08-22 00:39:19 +000035
36
drhe53831d2007-08-17 01:14:38 +000037#ifndef SQLITE_OMIT_SHARED_CACHE
38/*
danielk1977502b4e02008-09-02 14:07:24 +000039** A list of BtShared objects that are eligible for participation
40** in shared cache. This variable has file scope during normal builds,
41** but the test harness needs to access it so we make it global for
42** test builds.
drh7555d8e2009-03-20 13:15:30 +000043**
44** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000045*/
46#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000047BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000048#else
drh78f82d12008-09-02 00:52:52 +000049static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#endif
drhe53831d2007-08-17 01:14:38 +000051#endif /* SQLITE_OMIT_SHARED_CACHE */
52
53#ifndef SQLITE_OMIT_SHARED_CACHE
54/*
55** Enable or disable the shared pager and schema features.
56**
57** This routine has no effect on existing database connections.
58** The shared cache setting effects only future calls to
59** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
60*/
61int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000062 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000063 return SQLITE_OK;
64}
65#endif
66
drhd677b3d2007-08-20 22:48:41 +000067
danielk1977aef0bf62005-12-30 16:28:01 +000068
69#ifdef SQLITE_OMIT_SHARED_CACHE
70 /*
drhc25eabe2009-02-24 18:57:31 +000071 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
72 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000073 ** manipulate entries in the BtShared.pLock linked list used to store
74 ** shared-cache table level locks. If the library is compiled with the
75 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000076 ** of each BtShared structure and so this locking is not necessary.
77 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000078 */
drhc25eabe2009-02-24 18:57:31 +000079 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
80 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
81 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000082 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000083 #define hasSharedCacheTableLock(a,b,c,d) 1
84 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000085#endif
danielk1977aef0bf62005-12-30 16:28:01 +000086
drhe53831d2007-08-17 01:14:38 +000087#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000088
89#ifdef SQLITE_DEBUG
90/*
drh0ee3dbe2009-10-16 15:05:18 +000091**** This function is only used as part of an assert() statement. ***
92**
93** Check to see if pBtree holds the required locks to read or write to the
94** table with root page iRoot. Return 1 if it does and 0 if not.
95**
96** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +000097** Btree connection pBtree:
98**
99** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
100**
drh0ee3dbe2009-10-16 15:05:18 +0000101** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000102** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000103** the corresponding table. This makes things a bit more complicated,
104** as this module treats each table as a separate structure. To determine
105** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000106** function has to search through the database schema.
107**
drh0ee3dbe2009-10-16 15:05:18 +0000108** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000109** hold a write-lock on the schema table (root page 1). This is also
110** acceptable.
111*/
112static int hasSharedCacheTableLock(
113 Btree *pBtree, /* Handle that must hold lock */
114 Pgno iRoot, /* Root page of b-tree */
115 int isIndex, /* True if iRoot is the root of an index b-tree */
116 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
117){
118 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
119 Pgno iTab = 0;
120 BtLock *pLock;
121
drh0ee3dbe2009-10-16 15:05:18 +0000122 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000123 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000124 ** Return true immediately.
125 */
danielk197796d48e92009-06-29 06:00:37 +0000126 if( (pBtree->sharable==0)
127 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000128 ){
129 return 1;
130 }
131
drh0ee3dbe2009-10-16 15:05:18 +0000132 /* If the client is reading or writing an index and the schema is
133 ** not loaded, then it is too difficult to actually check to see if
134 ** the correct locks are held. So do not bother - just return true.
135 ** This case does not come up very often anyhow.
136 */
137 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
138 return 1;
139 }
140
danielk197796d48e92009-06-29 06:00:37 +0000141 /* Figure out the root-page that the lock should be held on. For table
142 ** b-trees, this is just the root page of the b-tree being read or
143 ** written. For index b-trees, it is the root page of the associated
144 ** table. */
145 if( isIndex ){
146 HashElem *p;
147 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
148 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000149 if( pIdx->tnum==(int)iRoot ){
150 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000151 }
152 }
153 }else{
154 iTab = iRoot;
155 }
156
157 /* Search for the required lock. Either a write-lock on root-page iTab, a
158 ** write-lock on the schema table, or (if the client is reading) a
159 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
160 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
161 if( pLock->pBtree==pBtree
162 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
163 && pLock->eLock>=eLockType
164 ){
165 return 1;
166 }
167 }
168
169 /* Failed to find the required lock. */
170 return 0;
171}
drh0ee3dbe2009-10-16 15:05:18 +0000172#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000173
drh0ee3dbe2009-10-16 15:05:18 +0000174#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000175/*
drh0ee3dbe2009-10-16 15:05:18 +0000176**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000177**
drh0ee3dbe2009-10-16 15:05:18 +0000178** Return true if it would be illegal for pBtree to write into the
179** table or index rooted at iRoot because other shared connections are
180** simultaneously reading that same table or index.
181**
182** It is illegal for pBtree to write if some other Btree object that
183** shares the same BtShared object is currently reading or writing
184** the iRoot table. Except, if the other Btree object has the
185** read-uncommitted flag set, then it is OK for the other object to
186** have a read cursor.
187**
188** For example, before writing to any part of the table or index
189** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000190**
191** assert( !hasReadConflicts(pBtree, iRoot) );
192*/
193static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
194 BtCursor *p;
195 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
196 if( p->pgnoRoot==iRoot
197 && p->pBtree!=pBtree
198 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
199 ){
200 return 1;
201 }
202 }
203 return 0;
204}
205#endif /* #ifdef SQLITE_DEBUG */
206
danielk1977da184232006-01-05 11:34:32 +0000207/*
drh0ee3dbe2009-10-16 15:05:18 +0000208** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000209** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000210** SQLITE_OK if the lock may be obtained (by calling
211** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000212*/
drhc25eabe2009-02-24 18:57:31 +0000213static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000214 BtShared *pBt = p->pBt;
215 BtLock *pIter;
216
drh1fee73e2007-08-29 04:00:57 +0000217 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000218 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
219 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000220 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000221
danielk19775b413d72009-04-01 09:41:54 +0000222 /* If requesting a write-lock, then the Btree must have an open write
223 ** transaction on this file. And, obviously, for this to be so there
224 ** must be an open write transaction on the file itself.
225 */
226 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
227 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
228
drh0ee3dbe2009-10-16 15:05:18 +0000229 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000230 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000231 return SQLITE_OK;
232 }
233
danielk1977641b0f42007-12-21 04:47:25 +0000234 /* If some other connection is holding an exclusive lock, the
235 ** requested lock may not be obtained.
236 */
danielk1977404ca072009-03-16 13:19:36 +0000237 if( pBt->pWriter!=p && pBt->isExclusive ){
238 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
239 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000240 }
241
danielk1977e0d9e6f2009-07-03 16:25:06 +0000242 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
243 /* The condition (pIter->eLock!=eLock) in the following if(...)
244 ** statement is a simplification of:
245 **
246 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
247 **
248 ** since we know that if eLock==WRITE_LOCK, then no other connection
249 ** may hold a WRITE_LOCK on any table in this file (since there can
250 ** only be a single writer).
251 */
252 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
253 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
254 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
255 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
256 if( eLock==WRITE_LOCK ){
257 assert( p==pBt->pWriter );
258 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000259 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000260 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000261 }
262 }
263 return SQLITE_OK;
264}
drhe53831d2007-08-17 01:14:38 +0000265#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000266
drhe53831d2007-08-17 01:14:38 +0000267#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000268/*
269** Add a lock on the table with root-page iTable to the shared-btree used
270** by Btree handle p. Parameter eLock must be either READ_LOCK or
271** WRITE_LOCK.
272**
danielk19779d104862009-07-09 08:27:14 +0000273** This function assumes the following:
274**
drh0ee3dbe2009-10-16 15:05:18 +0000275** (a) The specified Btree object p is connected to a sharable
276** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000277**
drh0ee3dbe2009-10-16 15:05:18 +0000278** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000279** with the requested lock (i.e. querySharedCacheTableLock() has
280** already been called and returned SQLITE_OK).
281**
282** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
283** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000284*/
drhc25eabe2009-02-24 18:57:31 +0000285static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000286 BtShared *pBt = p->pBt;
287 BtLock *pLock = 0;
288 BtLock *pIter;
289
drh1fee73e2007-08-29 04:00:57 +0000290 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000291 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
292 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000293
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 /* A connection with the read-uncommitted flag set will never try to
295 ** obtain a read-lock using this function. The only read-lock obtained
296 ** by a connection in read-uncommitted mode is on the sqlite_master
297 ** table, and that lock is obtained in BtreeBeginTrans(). */
298 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
299
danielk19779d104862009-07-09 08:27:14 +0000300 /* This function should only be called on a sharable b-tree after it
301 ** has been determined that no other b-tree holds a conflicting lock. */
302 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000303 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000304
305 /* First search the list for an existing lock on this table. */
306 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
307 if( pIter->iTable==iTable && pIter->pBtree==p ){
308 pLock = pIter;
309 break;
310 }
311 }
312
313 /* If the above search did not find a BtLock struct associating Btree p
314 ** with table iTable, allocate one and link it into the list.
315 */
316 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000317 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000318 if( !pLock ){
319 return SQLITE_NOMEM;
320 }
321 pLock->iTable = iTable;
322 pLock->pBtree = p;
323 pLock->pNext = pBt->pLock;
324 pBt->pLock = pLock;
325 }
326
327 /* Set the BtLock.eLock variable to the maximum of the current lock
328 ** and the requested lock. This means if a write-lock was already held
329 ** and a read-lock requested, we don't incorrectly downgrade the lock.
330 */
331 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000332 if( eLock>pLock->eLock ){
333 pLock->eLock = eLock;
334 }
danielk1977aef0bf62005-12-30 16:28:01 +0000335
336 return SQLITE_OK;
337}
drhe53831d2007-08-17 01:14:38 +0000338#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000339
drhe53831d2007-08-17 01:14:38 +0000340#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000341/*
drhc25eabe2009-02-24 18:57:31 +0000342** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000343** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000344**
drh0ee3dbe2009-10-16 15:05:18 +0000345** This function assumes that Btree p has an open read or write
danielk1977fa542f12009-04-02 18:28:08 +0000346** transaction. If it does not, then the BtShared.isPending variable
347** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000348*/
drhc25eabe2009-02-24 18:57:31 +0000349static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000350 BtShared *pBt = p->pBt;
351 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000352
drh1fee73e2007-08-29 04:00:57 +0000353 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000354 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000355 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000356
danielk1977aef0bf62005-12-30 16:28:01 +0000357 while( *ppIter ){
358 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000359 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000360 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000361 if( pLock->pBtree==p ){
362 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000363 assert( pLock->iTable!=1 || pLock==&p->lock );
364 if( pLock->iTable!=1 ){
365 sqlite3_free(pLock);
366 }
danielk1977aef0bf62005-12-30 16:28:01 +0000367 }else{
368 ppIter = &pLock->pNext;
369 }
370 }
danielk1977641b0f42007-12-21 04:47:25 +0000371
danielk1977404ca072009-03-16 13:19:36 +0000372 assert( pBt->isPending==0 || pBt->pWriter );
373 if( pBt->pWriter==p ){
374 pBt->pWriter = 0;
375 pBt->isExclusive = 0;
376 pBt->isPending = 0;
377 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000378 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000379 ** transaction. If there currently exists a writer, and p is not
380 ** that writer, then the number of locks held by connections other
381 ** than the writer must be about to drop to zero. In this case
382 ** set the isPending flag to 0.
383 **
384 ** If there is not currently a writer, then BtShared.isPending must
385 ** be zero already. So this next line is harmless in that case.
386 */
387 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000388 }
danielk1977aef0bf62005-12-30 16:28:01 +0000389}
danielk197794b30732009-07-02 17:21:57 +0000390
danielk1977e0d9e6f2009-07-03 16:25:06 +0000391/*
drh0ee3dbe2009-10-16 15:05:18 +0000392** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000393*/
danielk197794b30732009-07-02 17:21:57 +0000394static void downgradeAllSharedCacheTableLocks(Btree *p){
395 BtShared *pBt = p->pBt;
396 if( pBt->pWriter==p ){
397 BtLock *pLock;
398 pBt->pWriter = 0;
399 pBt->isExclusive = 0;
400 pBt->isPending = 0;
401 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
402 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
403 pLock->eLock = READ_LOCK;
404 }
405 }
406}
407
danielk1977aef0bf62005-12-30 16:28:01 +0000408#endif /* SQLITE_OMIT_SHARED_CACHE */
409
drh980b1a72006-08-16 16:42:48 +0000410static void releasePage(MemPage *pPage); /* Forward reference */
411
drh1fee73e2007-08-29 04:00:57 +0000412/*
drh0ee3dbe2009-10-16 15:05:18 +0000413***** This routine is used inside of assert() only ****
414**
415** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000416*/
drh0ee3dbe2009-10-16 15:05:18 +0000417#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000418static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000419 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000420}
421#endif
422
423
danielk197792d4d7a2007-05-04 12:05:56 +0000424#ifndef SQLITE_OMIT_INCRBLOB
425/*
426** Invalidate the overflow page-list cache for cursor pCur, if any.
427*/
428static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000429 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000430 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000431 pCur->aOverflow = 0;
432}
433
434/*
435** Invalidate the overflow page-list cache for all cursors opened
436** on the shared btree structure pBt.
437*/
438static void invalidateAllOverflowCache(BtShared *pBt){
439 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000440 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000441 for(p=pBt->pCursor; p; p=p->pNext){
442 invalidateOverflowCache(p);
443 }
444}
danielk197796d48e92009-06-29 06:00:37 +0000445
446/*
447** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000448** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000449** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000450**
451** If argument isClearTable is true, then the entire contents of the
452** table is about to be deleted. In this case invalidate all incrblob
453** cursors open on any row within the table with root-page pgnoRoot.
454**
455** Otherwise, if argument isClearTable is false, then the row with
456** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000457** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000458*/
459static void invalidateIncrblobCursors(
460 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000461 i64 iRow, /* The rowid that might be changing */
462 int isClearTable /* True if all rows are being deleted */
463){
464 BtCursor *p;
465 BtShared *pBt = pBtree->pBt;
466 assert( sqlite3BtreeHoldsMutex(pBtree) );
467 for(p=pBt->pCursor; p; p=p->pNext){
468 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
469 p->eState = CURSOR_INVALID;
470 }
471 }
472}
473
danielk197792d4d7a2007-05-04 12:05:56 +0000474#else
drh0ee3dbe2009-10-16 15:05:18 +0000475 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000476 #define invalidateOverflowCache(x)
477 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000478 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000479#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000480
drh980b1a72006-08-16 16:42:48 +0000481/*
danielk1977bea2a942009-01-20 17:06:27 +0000482** Set bit pgno of the BtShared.pHasContent bitvec. This is called
483** when a page that previously contained data becomes a free-list leaf
484** page.
485**
486** The BtShared.pHasContent bitvec exists to work around an obscure
487** bug caused by the interaction of two useful IO optimizations surrounding
488** free-list leaf pages:
489**
490** 1) When all data is deleted from a page and the page becomes
491** a free-list leaf page, the page is not written to the database
492** (as free-list leaf pages contain no meaningful data). Sometimes
493** such a page is not even journalled (as it will not be modified,
494** why bother journalling it?).
495**
496** 2) When a free-list leaf page is reused, its content is not read
497** from the database or written to the journal file (why should it
498** be, if it is not at all meaningful?).
499**
500** By themselves, these optimizations work fine and provide a handy
501** performance boost to bulk delete or insert operations. However, if
502** a page is moved to the free-list and then reused within the same
503** transaction, a problem comes up. If the page is not journalled when
504** it is moved to the free-list and it is also not journalled when it
505** is extracted from the free-list and reused, then the original data
506** may be lost. In the event of a rollback, it may not be possible
507** to restore the database to its original configuration.
508**
509** The solution is the BtShared.pHasContent bitvec. Whenever a page is
510** moved to become a free-list leaf page, the corresponding bit is
511** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000512** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000513** set in BtShared.pHasContent. The contents of the bitvec are cleared
514** at the end of every transaction.
515*/
516static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
517 int rc = SQLITE_OK;
518 if( !pBt->pHasContent ){
drh4c301aa2009-07-15 17:25:45 +0000519 int nPage = 100;
520 sqlite3PagerPagecount(pBt->pPager, &nPage);
521 /* If sqlite3PagerPagecount() fails there is no harm because the
522 ** nPage variable is unchanged from its default value of 100 */
523 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
524 if( !pBt->pHasContent ){
525 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000526 }
527 }
528 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
529 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
530 }
531 return rc;
532}
533
534/*
535** Query the BtShared.pHasContent vector.
536**
537** This function is called when a free-list leaf page is removed from the
538** free-list for reuse. It returns false if it is safe to retrieve the
539** page from the pager layer with the 'no-content' flag set. True otherwise.
540*/
541static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
542 Bitvec *p = pBt->pHasContent;
543 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
544}
545
546/*
547** Clear (destroy) the BtShared.pHasContent bitvec. This should be
548** invoked at the conclusion of each write-transaction.
549*/
550static void btreeClearHasContent(BtShared *pBt){
551 sqlite3BitvecDestroy(pBt->pHasContent);
552 pBt->pHasContent = 0;
553}
554
555/*
drh980b1a72006-08-16 16:42:48 +0000556** Save the current cursor position in the variables BtCursor.nKey
557** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000558**
559** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
560** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000561*/
562static int saveCursorPosition(BtCursor *pCur){
563 int rc;
564
565 assert( CURSOR_VALID==pCur->eState );
566 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000567 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000568
569 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000570 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000571
572 /* If this is an intKey table, then the above call to BtreeKeySize()
573 ** stores the integer key in pCur->nKey. In this case this value is
574 ** all that is required. Otherwise, if pCur is not open on an intKey
575 ** table, then malloc space for and store the pCur->nKey bytes of key
576 ** data.
577 */
drh4c301aa2009-07-15 17:25:45 +0000578 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000579 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000580 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000581 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000582 if( rc==SQLITE_OK ){
583 pCur->pKey = pKey;
584 }else{
drh17435752007-08-16 04:30:38 +0000585 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000586 }
587 }else{
588 rc = SQLITE_NOMEM;
589 }
590 }
danielk197771d5d2c2008-09-29 11:49:47 +0000591 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000592
593 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000594 int i;
595 for(i=0; i<=pCur->iPage; i++){
596 releasePage(pCur->apPage[i]);
597 pCur->apPage[i] = 0;
598 }
599 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000600 pCur->eState = CURSOR_REQUIRESEEK;
601 }
602
danielk197792d4d7a2007-05-04 12:05:56 +0000603 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000604 return rc;
605}
606
607/*
drh0ee3dbe2009-10-16 15:05:18 +0000608** Save the positions of all cursors (except pExcept) that are open on
609** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000610** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
611*/
612static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
613 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000614 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000615 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000616 for(p=pBt->pCursor; p; p=p->pNext){
617 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
618 p->eState==CURSOR_VALID ){
619 int rc = saveCursorPosition(p);
620 if( SQLITE_OK!=rc ){
621 return rc;
622 }
623 }
624 }
625 return SQLITE_OK;
626}
627
628/*
drhbf700f32007-03-31 02:36:44 +0000629** Clear the current cursor position.
630*/
danielk1977be51a652008-10-08 17:58:48 +0000631void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000632 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000633 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000634 pCur->pKey = 0;
635 pCur->eState = CURSOR_INVALID;
636}
637
638/*
danielk19773509a652009-07-06 18:56:13 +0000639** In this version of BtreeMoveto, pKey is a packed index record
640** such as is generated by the OP_MakeRecord opcode. Unpack the
641** record and then call BtreeMovetoUnpacked() to do the work.
642*/
643static int btreeMoveto(
644 BtCursor *pCur, /* Cursor open on the btree to be searched */
645 const void *pKey, /* Packed key if the btree is an index */
646 i64 nKey, /* Integer key for tables. Size of pKey for indices */
647 int bias, /* Bias search to the high end */
648 int *pRes /* Write search results here */
649){
650 int rc; /* Status code */
651 UnpackedRecord *pIdxKey; /* Unpacked index key */
652 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
653
654 if( pKey ){
655 assert( nKey==(i64)(int)nKey );
656 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
657 aSpace, sizeof(aSpace));
658 if( pIdxKey==0 ) return SQLITE_NOMEM;
659 }else{
660 pIdxKey = 0;
661 }
662 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
663 if( pKey ){
664 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
665 }
666 return rc;
667}
668
669/*
drh980b1a72006-08-16 16:42:48 +0000670** Restore the cursor to the position it was in (or as close to as possible)
671** when saveCursorPosition() was called. Note that this call deletes the
672** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000673** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000674** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000675*/
danielk197730548662009-07-09 05:07:37 +0000676static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000677 int rc;
drh1fee73e2007-08-29 04:00:57 +0000678 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000679 assert( pCur->eState>=CURSOR_REQUIRESEEK );
680 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000681 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000682 }
drh980b1a72006-08-16 16:42:48 +0000683 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000684 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000685 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000686 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000687 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000688 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000689 }
690 return rc;
691}
692
drha3460582008-07-11 21:02:53 +0000693#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000694 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000695 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000696 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000697
drha3460582008-07-11 21:02:53 +0000698/*
699** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000700** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000701** at is deleted out from under them.
702**
703** This routine returns an error code if something goes wrong. The
704** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
705*/
706int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
707 int rc;
708
709 rc = restoreCursorPosition(pCur);
710 if( rc ){
711 *pHasMoved = 1;
712 return rc;
713 }
drh4c301aa2009-07-15 17:25:45 +0000714 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000715 *pHasMoved = 1;
716 }else{
717 *pHasMoved = 0;
718 }
719 return SQLITE_OK;
720}
721
danielk1977599fcba2004-11-08 07:13:13 +0000722#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000723/*
drha3152892007-05-05 11:48:52 +0000724** Given a page number of a regular database page, return the page
725** number for the pointer-map page that contains the entry for the
726** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000727*/
danielk1977266664d2006-02-10 08:24:21 +0000728static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000729 int nPagesPerMapPage;
730 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000731 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000732 nPagesPerMapPage = (pBt->usableSize/5)+1;
733 iPtrMap = (pgno-2)/nPagesPerMapPage;
734 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000735 if( ret==PENDING_BYTE_PAGE(pBt) ){
736 ret++;
737 }
738 return ret;
739}
danielk1977a19df672004-11-03 11:37:07 +0000740
danielk1977afcdd022004-10-31 16:25:42 +0000741/*
danielk1977afcdd022004-10-31 16:25:42 +0000742** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000743**
744** This routine updates the pointer map entry for page number 'key'
745** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000746**
747** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
748** a no-op. If an error occurs, the appropriate error code is written
749** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000750*/
drh98add2e2009-07-20 17:11:49 +0000751static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000752 DbPage *pDbPage; /* The pointer map page */
753 u8 *pPtrmap; /* The pointer map data */
754 Pgno iPtrmap; /* The pointer map page number */
755 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000756 int rc; /* Return code from subfunctions */
757
758 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000759
drh1fee73e2007-08-29 04:00:57 +0000760 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000761 /* The master-journal page number must never be used as a pointer map page */
762 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
763
danielk1977ac11ee62005-01-15 12:45:51 +0000764 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000765 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000766 *pRC = SQLITE_CORRUPT_BKPT;
767 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000768 }
danielk1977266664d2006-02-10 08:24:21 +0000769 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000770 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000771 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000772 *pRC = rc;
773 return;
danielk1977afcdd022004-10-31 16:25:42 +0000774 }
danielk19778c666b12008-07-18 09:34:57 +0000775 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000776 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000777 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000778 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000779 }
danielk19773b8a05f2007-03-19 17:44:26 +0000780 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000781
drh615ae552005-01-16 23:21:00 +0000782 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
783 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000784 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000785 if( rc==SQLITE_OK ){
786 pPtrmap[offset] = eType;
787 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000788 }
danielk1977afcdd022004-10-31 16:25:42 +0000789 }
790
drh4925a552009-07-07 11:39:58 +0000791ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000792 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000793}
794
795/*
796** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000797**
798** This routine retrieves the pointer map entry for page 'key', writing
799** the type and parent page number to *pEType and *pPgno respectively.
800** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000801*/
danielk1977aef0bf62005-12-30 16:28:01 +0000802static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000803 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000804 int iPtrmap; /* Pointer map page index */
805 u8 *pPtrmap; /* Pointer map page data */
806 int offset; /* Offset of entry in pointer map */
807 int rc;
808
drh1fee73e2007-08-29 04:00:57 +0000809 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000810
danielk1977266664d2006-02-10 08:24:21 +0000811 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000812 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000813 if( rc!=0 ){
814 return rc;
815 }
danielk19773b8a05f2007-03-19 17:44:26 +0000816 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000817
danielk19778c666b12008-07-18 09:34:57 +0000818 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000819 assert( pEType!=0 );
820 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000821 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000822
danielk19773b8a05f2007-03-19 17:44:26 +0000823 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000824 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000825 return SQLITE_OK;
826}
827
danielk197785d90ca2008-07-19 14:25:15 +0000828#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000829 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000830 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000831 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000832#endif
danielk1977afcdd022004-10-31 16:25:42 +0000833
drh0d316a42002-08-11 20:10:47 +0000834/*
drh271efa52004-05-30 19:19:05 +0000835** Given a btree page and a cell index (0 means the first cell on
836** the page, 1 means the second cell, and so forth) return a pointer
837** to the cell content.
838**
839** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000840*/
drh1688c862008-07-18 02:44:17 +0000841#define findCell(P,I) \
842 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000843
844/*
drh93a960a2008-07-10 00:32:42 +0000845** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000846** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000847*/
848static u8 *findOverflowCell(MemPage *pPage, int iCell){
849 int i;
drh1fee73e2007-08-29 04:00:57 +0000850 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000851 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000852 int k;
853 struct _OvflCell *pOvfl;
854 pOvfl = &pPage->aOvfl[i];
855 k = pOvfl->idx;
856 if( k<=iCell ){
857 if( k==iCell ){
858 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000859 }
860 iCell--;
861 }
862 }
danielk19771cc5ed82007-05-16 17:28:43 +0000863 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000864}
865
866/*
867** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000868** are two versions of this function. btreeParseCell() takes a
869** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000870** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000871**
872** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000873** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000874*/
danielk197730548662009-07-09 05:07:37 +0000875static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000876 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000877 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000878 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000879){
drhf49661a2008-12-10 16:45:50 +0000880 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000881 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000882
drh1fee73e2007-08-29 04:00:57 +0000883 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000884
drh43605152004-05-29 21:46:49 +0000885 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000886 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000887 n = pPage->childPtrSize;
888 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000889 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000890 if( pPage->hasData ){
891 n += getVarint32(&pCell[n], nPayload);
892 }else{
893 nPayload = 0;
894 }
drh1bd10f82008-12-10 21:19:56 +0000895 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000896 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000897 }else{
drh79df1f42008-07-18 00:57:33 +0000898 pInfo->nData = 0;
899 n += getVarint32(&pCell[n], nPayload);
900 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000901 }
drh72365832007-03-06 15:53:44 +0000902 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000903 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000904 testcase( nPayload==pPage->maxLocal );
905 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000906 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000907 /* This is the (easy) common case where the entire payload fits
908 ** on the local page. No overflow is required.
909 */
910 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000911 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000912 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000913 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000914 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000915 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000916 }
drh1bd10f82008-12-10 21:19:56 +0000917 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000918 }else{
drh271efa52004-05-30 19:19:05 +0000919 /* If the payload will not fit completely on the local page, we have
920 ** to decide how much to store locally and how much to spill onto
921 ** overflow pages. The strategy is to minimize the amount of unused
922 ** space on overflow pages while keeping the amount of local storage
923 ** in between minLocal and maxLocal.
924 **
925 ** Warning: changing the way overflow payload is distributed in any
926 ** way will result in an incompatible file format.
927 */
928 int minLocal; /* Minimum amount of payload held locally */
929 int maxLocal; /* Maximum amount of payload held locally */
930 int surplus; /* Overflow payload available for local storage */
931
932 minLocal = pPage->minLocal;
933 maxLocal = pPage->maxLocal;
934 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000935 testcase( surplus==maxLocal );
936 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000937 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000938 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000939 }else{
drhf49661a2008-12-10 16:45:50 +0000940 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000941 }
drhf49661a2008-12-10 16:45:50 +0000942 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000943 pInfo->nSize = pInfo->iOverflow + 4;
944 }
drh3aac2dd2004-04-26 14:10:20 +0000945}
danielk19771cc5ed82007-05-16 17:28:43 +0000946#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000947 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
948static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000949 MemPage *pPage, /* Page containing the cell */
950 int iCell, /* The cell index. First cell is 0 */
951 CellInfo *pInfo /* Fill in this structure */
952){
danielk19771cc5ed82007-05-16 17:28:43 +0000953 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000954}
drh3aac2dd2004-04-26 14:10:20 +0000955
956/*
drh43605152004-05-29 21:46:49 +0000957** Compute the total number of bytes that a Cell needs in the cell
958** data area of the btree-page. The return number includes the cell
959** data header and the local payload, but not any overflow page or
960** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000961*/
danielk1977ae5558b2009-04-29 11:31:47 +0000962static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
963 u8 *pIter = &pCell[pPage->childPtrSize];
964 u32 nSize;
965
966#ifdef SQLITE_DEBUG
967 /* The value returned by this function should always be the same as
968 ** the (CellInfo.nSize) value found by doing a full parse of the
969 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
970 ** this function verifies that this invariant is not violated. */
971 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000972 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000973#endif
974
975 if( pPage->intKey ){
976 u8 *pEnd;
977 if( pPage->hasData ){
978 pIter += getVarint32(pIter, nSize);
979 }else{
980 nSize = 0;
981 }
982
983 /* pIter now points at the 64-bit integer key value, a variable length
984 ** integer. The following block moves pIter to point at the first byte
985 ** past the end of the key value. */
986 pEnd = &pIter[9];
987 while( (*pIter++)&0x80 && pIter<pEnd );
988 }else{
989 pIter += getVarint32(pIter, nSize);
990 }
991
drh0a45c272009-07-08 01:49:11 +0000992 testcase( nSize==pPage->maxLocal );
993 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000994 if( nSize>pPage->maxLocal ){
995 int minLocal = pPage->minLocal;
996 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000997 testcase( nSize==pPage->maxLocal );
998 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000999 if( nSize>pPage->maxLocal ){
1000 nSize = minLocal;
1001 }
1002 nSize += 4;
1003 }
shane75ac1de2009-06-09 18:58:52 +00001004 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001005
1006 /* The minimum size of any cell is 4 bytes. */
1007 if( nSize<4 ){
1008 nSize = 4;
1009 }
1010
1011 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001012 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001013}
drh0ee3dbe2009-10-16 15:05:18 +00001014
1015#ifdef SQLITE_DEBUG
1016/* This variation on cellSizePtr() is used inside of assert() statements
1017** only. */
drha9121e42008-02-19 14:59:35 +00001018static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001019 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001020}
danielk1977bc6ada42004-06-30 08:20:16 +00001021#endif
drh3b7511c2001-05-26 13:15:44 +00001022
danielk197779a40da2005-01-16 08:00:01 +00001023#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001024/*
danielk197726836652005-01-17 01:33:13 +00001025** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001026** to an overflow page, insert an entry into the pointer-map
1027** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001028*/
drh98add2e2009-07-20 17:11:49 +00001029static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001030 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001031 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001032 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001033 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001034 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001035 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001036 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001037 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001038 }
danielk1977ac11ee62005-01-15 12:45:51 +00001039}
danielk197779a40da2005-01-16 08:00:01 +00001040#endif
1041
danielk1977ac11ee62005-01-15 12:45:51 +00001042
drhda200cc2004-05-09 11:51:38 +00001043/*
drh72f82862001-05-24 21:06:34 +00001044** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001045** end of the page and all free space is collected into one
1046** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001047** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001048*/
shane0af3f892008-11-12 04:55:34 +00001049static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001050 int i; /* Loop counter */
1051 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001052 int hdr; /* Offset to the page header */
1053 int size; /* Size of a cell */
1054 int usableSize; /* Number of usable bytes on a page */
1055 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001056 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001057 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001058 unsigned char *data; /* The page data */
1059 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001060 int iCellFirst; /* First allowable cell index */
1061 int iCellLast; /* Last possible cell index */
1062
drh2af926b2001-05-15 00:39:25 +00001063
danielk19773b8a05f2007-03-19 17:44:26 +00001064 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001065 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001066 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001067 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001068 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001069 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001070 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001071 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001072 cellOffset = pPage->cellOffset;
1073 nCell = pPage->nCell;
1074 assert( nCell==get2byte(&data[hdr+3]) );
1075 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001076 cbrk = get2byte(&data[hdr+5]);
1077 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1078 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001079 iCellFirst = cellOffset + 2*nCell;
1080 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001081 for(i=0; i<nCell; i++){
1082 u8 *pAddr; /* The i-th cell pointer */
1083 pAddr = &data[cellOffset + i*2];
1084 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001085 testcase( pc==iCellFirst );
1086 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001087#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001088 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001089 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1090 */
1091 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001092 return SQLITE_CORRUPT_BKPT;
1093 }
drh17146622009-07-07 17:38:38 +00001094#endif
1095 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001096 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001097 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001098#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1099 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001100 return SQLITE_CORRUPT_BKPT;
1101 }
drh17146622009-07-07 17:38:38 +00001102#else
1103 if( cbrk<iCellFirst || pc+size>usableSize ){
1104 return SQLITE_CORRUPT_BKPT;
1105 }
1106#endif
drh7157e1d2009-07-09 13:25:32 +00001107 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001108 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001109 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001110 memcpy(&data[cbrk], &temp[pc], size);
1111 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001112 }
drh17146622009-07-07 17:38:38 +00001113 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001114 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001115 data[hdr+1] = 0;
1116 data[hdr+2] = 0;
1117 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001118 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001119 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001120 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001121 return SQLITE_CORRUPT_BKPT;
1122 }
shane0af3f892008-11-12 04:55:34 +00001123 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001124}
1125
drha059ad02001-04-17 20:09:11 +00001126/*
danielk19776011a752009-04-01 16:25:32 +00001127** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001128** as the first argument. Write into *pIdx the index into pPage->aData[]
1129** of the first byte of allocated space. Return either SQLITE_OK or
1130** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001131**
drh0a45c272009-07-08 01:49:11 +00001132** The caller guarantees that there is sufficient space to make the
1133** allocation. This routine might need to defragment in order to bring
1134** all the space together, however. This routine will avoid using
1135** the first two bytes past the cell pointer area since presumably this
1136** allocation is being made in order to insert a new cell, so we will
1137** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001138*/
drh0a45c272009-07-08 01:49:11 +00001139static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001140 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1141 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1142 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001143 int top; /* First byte of cell content area */
1144 int gap; /* First byte of gap between cell pointers and cell content */
1145 int rc; /* Integer return code */
drh43605152004-05-29 21:46:49 +00001146
danielk19773b8a05f2007-03-19 17:44:26 +00001147 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001148 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001149 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001150 assert( nByte>=0 ); /* Minimum cell size is 4 */
1151 assert( pPage->nFree>=nByte );
1152 assert( pPage->nOverflow==0 );
drhc314dc72009-07-21 11:52:34 +00001153 assert( nByte<pPage->pBt->usableSize-8 );
drh43605152004-05-29 21:46:49 +00001154
1155 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001156 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1157 gap = pPage->cellOffset + 2*pPage->nCell;
1158 top = get2byte(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001159 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001160 testcase( gap+2==top );
1161 testcase( gap+1==top );
1162 testcase( gap==top );
1163
danielk19776011a752009-04-01 16:25:32 +00001164 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001165 /* Always defragment highly fragmented pages */
1166 rc = defragmentPage(pPage);
1167 if( rc ) return rc;
1168 top = get2byte(&data[hdr+5]);
1169 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001170 /* Search the freelist looking for a free slot big enough to satisfy
1171 ** the request. The allocation is made from the first free slot in
1172 ** the list that is large enough to accomadate it.
1173 */
1174 int pc, addr;
1175 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
1176 int size = get2byte(&data[pc+2]); /* Size of free slot */
drh43605152004-05-29 21:46:49 +00001177 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001178 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001179 testcase( x==4 );
1180 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001181 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001182 /* Remove the slot from the free-list. Update the number of
1183 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001184 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001185 data[hdr+7] = (u8)(nFrag + x);
drh43605152004-05-29 21:46:49 +00001186 }else{
danielk1977fad91942009-04-29 17:49:59 +00001187 /* The slot remains on the free-list. Reduce its size to account
1188 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001189 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001190 }
drh0a45c272009-07-08 01:49:11 +00001191 *pIdx = pc + x;
1192 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001193 }
drh9e572e62004-04-23 23:43:10 +00001194 }
1195 }
drh43605152004-05-29 21:46:49 +00001196
drh0a45c272009-07-08 01:49:11 +00001197 /* Check to make sure there is enough space in the gap to satisfy
1198 ** the allocation. If not, defragment.
1199 */
1200 testcase( gap+2+nByte==top );
1201 if( gap+2+nByte>top ){
1202 rc = defragmentPage(pPage);
1203 if( rc ) return rc;
1204 top = get2byte(&data[hdr+5]);
1205 assert( gap+nByte<=top );
1206 }
1207
1208
drh43605152004-05-29 21:46:49 +00001209 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001210 ** and the cell content area. The btreeInitPage() call has already
1211 ** validated the freelist. Given that the freelist is valid, there
1212 ** is no way that the allocation can extend off the end of the page.
1213 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001214 */
drh0a45c272009-07-08 01:49:11 +00001215 top -= nByte;
drh43605152004-05-29 21:46:49 +00001216 put2byte(&data[hdr+5], top);
drhc314dc72009-07-21 11:52:34 +00001217 assert( top+nByte <= pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001218 *pIdx = top;
1219 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001220}
1221
1222/*
drh9e572e62004-04-23 23:43:10 +00001223** Return a section of the pPage->aData to the freelist.
1224** The first byte of the new free block is pPage->aDisk[start]
1225** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001226**
1227** Most of the effort here is involved in coalesing adjacent
1228** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001229*/
shanedcc50b72008-11-13 18:29:50 +00001230static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001231 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001232 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001233 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001234
drh9e572e62004-04-23 23:43:10 +00001235 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001236 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001237 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
danielk1977bc6ada42004-06-30 08:20:16 +00001238 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001239 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001240 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001241
drhfcce93f2006-02-22 03:08:32 +00001242#ifdef SQLITE_SECURE_DELETE
1243 /* Overwrite deleted information with zeros when the SECURE_DELETE
1244 ** option is enabled at compile-time */
1245 memset(&data[start], 0, size);
1246#endif
1247
drh0a45c272009-07-08 01:49:11 +00001248 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001249 ** even though the freeblock list was checked by btreeInitPage(),
1250 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001251 ** freeblocks that overlapped cells. Nor does it detect when the
1252 ** cell content area exceeds the value in the page header. If these
1253 ** situations arise, then subsequent insert operations might corrupt
1254 ** the freelist. So we do need to check for corruption while scanning
1255 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001256 */
drh43605152004-05-29 21:46:49 +00001257 hdr = pPage->hdrOffset;
1258 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001259 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001260 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001261 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001262 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001263 return SQLITE_CORRUPT_BKPT;
1264 }
drh3aac2dd2004-04-26 14:10:20 +00001265 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001266 }
drh0a45c272009-07-08 01:49:11 +00001267 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001268 return SQLITE_CORRUPT_BKPT;
1269 }
drh3aac2dd2004-04-26 14:10:20 +00001270 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001271 put2byte(&data[addr], start);
1272 put2byte(&data[start], pbegin);
1273 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001274 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001275
1276 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001277 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001278 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001279 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001280 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001281 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001282 pnext = get2byte(&data[pbegin]);
1283 psize = get2byte(&data[pbegin+2]);
1284 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1285 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001286 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001287 return SQLITE_CORRUPT_BKPT;
1288 }
drh0a45c272009-07-08 01:49:11 +00001289 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001290 x = get2byte(&data[pnext]);
1291 put2byte(&data[pbegin], x);
1292 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1293 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001294 }else{
drh3aac2dd2004-04-26 14:10:20 +00001295 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001296 }
1297 }
drh7e3b0a02001-04-28 16:52:40 +00001298
drh43605152004-05-29 21:46:49 +00001299 /* If the cell content area begins with a freeblock, remove it. */
1300 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1301 int top;
1302 pbegin = get2byte(&data[hdr+1]);
1303 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001304 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1305 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001306 }
drhc5053fb2008-11-27 02:22:10 +00001307 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001308 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001309}
1310
1311/*
drh271efa52004-05-30 19:19:05 +00001312** Decode the flags byte (the first byte of the header) for a page
1313** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001314**
1315** Only the following combinations are supported. Anything different
1316** indicates a corrupt database files:
1317**
1318** PTF_ZERODATA
1319** PTF_ZERODATA | PTF_LEAF
1320** PTF_LEAFDATA | PTF_INTKEY
1321** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001322*/
drh44845222008-07-17 18:39:57 +00001323static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001324 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001325
1326 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001327 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001328 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001329 flagByte &= ~PTF_LEAF;
1330 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001331 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001332 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1333 pPage->intKey = 1;
1334 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001335 pPage->maxLocal = pBt->maxLeaf;
1336 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001337 }else if( flagByte==PTF_ZERODATA ){
1338 pPage->intKey = 0;
1339 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001340 pPage->maxLocal = pBt->maxLocal;
1341 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001342 }else{
1343 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001344 }
drh44845222008-07-17 18:39:57 +00001345 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001346}
1347
1348/*
drh7e3b0a02001-04-28 16:52:40 +00001349** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001350**
1351** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001352** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001353** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1354** guarantee that the page is well-formed. It only shows that
1355** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001356*/
danielk197730548662009-07-09 05:07:37 +00001357static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001358
danielk197771d5d2c2008-09-29 11:49:47 +00001359 assert( pPage->pBt!=0 );
1360 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001361 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001362 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1363 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001364
1365 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001366 u16 pc; /* Address of a freeblock within pPage->aData[] */
1367 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001368 u8 *data; /* Equal to pPage->aData */
1369 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001370 u16 usableSize; /* Amount of usable space on each page */
1371 u16 cellOffset; /* Offset from start of page to first cell pointer */
1372 u16 nFree; /* Number of unused bytes on the page */
1373 u16 top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001374 int iCellFirst; /* First allowable cell or freeblock offset */
1375 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001376
1377 pBt = pPage->pBt;
1378
danielk1977eaa06f62008-09-18 17:34:44 +00001379 hdr = pPage->hdrOffset;
1380 data = pPage->aData;
1381 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1382 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1383 pPage->maskPage = pBt->pageSize - 1;
1384 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001385 usableSize = pBt->usableSize;
1386 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1387 top = get2byte(&data[hdr+5]);
1388 pPage->nCell = get2byte(&data[hdr+3]);
1389 if( pPage->nCell>MX_CELL(pBt) ){
1390 /* To many cells for a single page. The page must be corrupt */
1391 return SQLITE_CORRUPT_BKPT;
1392 }
drhb908d762009-07-08 16:54:40 +00001393 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001394
shane5eff7cf2009-08-10 03:57:58 +00001395 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001396 ** of page when parsing a cell.
1397 **
1398 ** The following block of code checks early to see if a cell extends
1399 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1400 ** returned if it does.
1401 */
drh0a45c272009-07-08 01:49:11 +00001402 iCellFirst = cellOffset + 2*pPage->nCell;
1403 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001404#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001405 {
drh69e931e2009-06-03 21:04:35 +00001406 int i; /* Index into the cell pointer array */
1407 int sz; /* Size of a cell */
1408
drh69e931e2009-06-03 21:04:35 +00001409 if( !pPage->leaf ) iCellLast--;
1410 for(i=0; i<pPage->nCell; i++){
1411 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001412 testcase( pc==iCellFirst );
1413 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001414 if( pc<iCellFirst || pc>iCellLast ){
1415 return SQLITE_CORRUPT_BKPT;
1416 }
1417 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001418 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001419 if( pc+sz>usableSize ){
1420 return SQLITE_CORRUPT_BKPT;
1421 }
1422 }
drh0a45c272009-07-08 01:49:11 +00001423 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001424 }
1425#endif
1426
danielk1977eaa06f62008-09-18 17:34:44 +00001427 /* Compute the total free space on the page */
1428 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001429 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001430 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001431 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001432 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001433 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001434 return SQLITE_CORRUPT_BKPT;
1435 }
1436 next = get2byte(&data[pc]);
1437 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001438 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1439 /* Free blocks must be in ascending order. And the last byte of
1440 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001441 return SQLITE_CORRUPT_BKPT;
1442 }
shane85095702009-06-15 16:27:08 +00001443 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001444 pc = next;
1445 }
danielk197793c829c2009-06-03 17:26:17 +00001446
1447 /* At this point, nFree contains the sum of the offset to the start
1448 ** of the cell-content area plus the number of free bytes within
1449 ** the cell-content area. If this is greater than the usable-size
1450 ** of the page, then the page must be corrupted. This check also
1451 ** serves to verify that the offset to the start of the cell-content
1452 ** area, according to the page header, lies within the page.
1453 */
1454 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001455 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001456 }
shane5eff7cf2009-08-10 03:57:58 +00001457 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001458 pPage->isInit = 1;
1459 }
drh9e572e62004-04-23 23:43:10 +00001460 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001461}
1462
1463/*
drh8b2f49b2001-06-08 00:21:52 +00001464** Set up a raw page so that it looks like a database page holding
1465** no entries.
drhbd03cae2001-06-02 02:40:57 +00001466*/
drh9e572e62004-04-23 23:43:10 +00001467static void zeroPage(MemPage *pPage, int flags){
1468 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001469 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001470 u8 hdr = pPage->hdrOffset;
1471 u16 first;
drh9e572e62004-04-23 23:43:10 +00001472
danielk19773b8a05f2007-03-19 17:44:26 +00001473 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001474 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1475 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001476 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001477 assert( sqlite3_mutex_held(pBt->mutex) );
drh7ab641f2009-11-24 02:37:02 +00001478#ifdef SQLITE_SECURE_DELETE
1479 memset(&data[hdr], 0, pBt->usableSize - hdr);
1480#endif
drh1bd10f82008-12-10 21:19:56 +00001481 data[hdr] = (char)flags;
1482 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001483 memset(&data[hdr+1], 0, 4);
1484 data[hdr+7] = 0;
1485 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001486 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001487 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001488 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001489 pPage->cellOffset = first;
1490 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001491 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1492 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001493 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001494 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001495}
1496
drh897a8202008-09-18 01:08:15 +00001497
1498/*
1499** Convert a DbPage obtained from the pager into a MemPage used by
1500** the btree layer.
1501*/
1502static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1503 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1504 pPage->aData = sqlite3PagerGetData(pDbPage);
1505 pPage->pDbPage = pDbPage;
1506 pPage->pBt = pBt;
1507 pPage->pgno = pgno;
1508 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1509 return pPage;
1510}
1511
drhbd03cae2001-06-02 02:40:57 +00001512/*
drh3aac2dd2004-04-26 14:10:20 +00001513** Get a page from the pager. Initialize the MemPage.pBt and
1514** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001515**
1516** If the noContent flag is set, it means that we do not care about
1517** the content of the page at this time. So do not go to the disk
1518** to fetch the content. Just fill in the content with zeros for now.
1519** If in the future we call sqlite3PagerWrite() on this page, that
1520** means we have started to be concerned about content and the disk
1521** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001522*/
danielk197730548662009-07-09 05:07:37 +00001523static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001524 BtShared *pBt, /* The btree */
1525 Pgno pgno, /* Number of the page to fetch */
1526 MemPage **ppPage, /* Return the page in this parameter */
1527 int noContent /* Do not load page content if true */
1528){
drh3aac2dd2004-04-26 14:10:20 +00001529 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001530 DbPage *pDbPage;
1531
drh1fee73e2007-08-29 04:00:57 +00001532 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001533 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001534 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001535 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001536 return SQLITE_OK;
1537}
1538
1539/*
danielk1977bea2a942009-01-20 17:06:27 +00001540** Retrieve a page from the pager cache. If the requested page is not
1541** already in the pager cache return NULL. Initialize the MemPage.pBt and
1542** MemPage.aData elements if needed.
1543*/
1544static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1545 DbPage *pDbPage;
1546 assert( sqlite3_mutex_held(pBt->mutex) );
1547 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1548 if( pDbPage ){
1549 return btreePageFromDbPage(pDbPage, pgno, pBt);
1550 }
1551 return 0;
1552}
1553
1554/*
danielk197789d40042008-11-17 14:20:56 +00001555** Return the size of the database file in pages. If there is any kind of
1556** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001557*/
danielk197789d40042008-11-17 14:20:56 +00001558static Pgno pagerPagecount(BtShared *pBt){
1559 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001560 int rc;
danielk197789d40042008-11-17 14:20:56 +00001561 assert( pBt->pPage1 );
1562 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1563 assert( rc==SQLITE_OK || nPage==-1 );
1564 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001565}
1566
1567/*
danielk197789bc4bc2009-07-21 19:25:24 +00001568** Get a page from the pager and initialize it. This routine is just a
1569** convenience wrapper around separate calls to btreeGetPage() and
1570** btreeInitPage().
1571**
1572** If an error occurs, then the value *ppPage is set to is undefined. It
1573** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001574*/
1575static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001576 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001577 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001578 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001579){
1580 int rc;
danielk197789bc4bc2009-07-21 19:25:24 +00001581 TESTONLY( Pgno iLastPg = pagerPagecount(pBt); )
drh1fee73e2007-08-29 04:00:57 +00001582 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001583
1584 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1585 if( rc==SQLITE_OK ){
1586 rc = btreeInitPage(*ppPage);
1587 if( rc!=SQLITE_OK ){
1588 releasePage(*ppPage);
1589 }
drhee696e22004-08-30 16:52:17 +00001590 }
danielk19779f580ad2008-09-10 14:45:57 +00001591
danielk197789bc4bc2009-07-21 19:25:24 +00001592 /* If the requested page number was either 0 or greater than the page
1593 ** number of the last page in the database, this function should return
1594 ** SQLITE_CORRUPT or some other error (i.e. SQLITE_FULL). Check that this
1595 ** is the case. */
1596 assert( (pgno>0 && pgno<=iLastPg) || rc!=SQLITE_OK );
1597 testcase( pgno==0 );
1598 testcase( pgno==iLastPg );
1599
drhde647132004-05-07 17:57:49 +00001600 return rc;
1601}
1602
1603/*
drh3aac2dd2004-04-26 14:10:20 +00001604** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001605** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001606*/
drh4b70f112004-05-02 21:12:19 +00001607static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001608 if( pPage ){
1609 assert( pPage->aData );
1610 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001611 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1612 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001613 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001614 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001615 }
1616}
1617
1618/*
drha6abd042004-06-09 17:37:22 +00001619** During a rollback, when the pager reloads information into the cache
1620** so that the cache is restored to its original state at the start of
1621** the transaction, for each page restored this routine is called.
1622**
1623** This routine needs to reset the extra data section at the end of the
1624** page to agree with the restored data.
1625*/
danielk1977eaa06f62008-09-18 17:34:44 +00001626static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001627 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001628 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001629 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001630 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001631 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001632 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001633 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001634 /* pPage might not be a btree page; it might be an overflow page
1635 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001636 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001637 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001638 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001639 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001640 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001641 }
drha6abd042004-06-09 17:37:22 +00001642 }
1643}
1644
1645/*
drhe5fe6902007-12-07 18:55:28 +00001646** Invoke the busy handler for a btree.
1647*/
danielk19771ceedd32008-11-19 10:22:33 +00001648static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001649 BtShared *pBt = (BtShared*)pArg;
1650 assert( pBt->db );
1651 assert( sqlite3_mutex_held(pBt->db->mutex) );
1652 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1653}
1654
1655/*
drhad3e0102004-09-03 23:32:18 +00001656** Open a database file.
1657**
drh382c0242001-10-06 16:33:02 +00001658** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001659** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001660** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001661** If zFilename is ":memory:" then an in-memory database is created
1662** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001663**
1664** If the database is already opened in the same database connection
1665** and we are in shared cache mode, then the open will fail with an
1666** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1667** objects in the same database connection since doing so will lead
1668** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001669*/
drh23e11ca2004-05-04 17:27:28 +00001670int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001671 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001672 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001673 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001674 int flags, /* Options */
1675 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001676){
drh7555d8e2009-03-20 13:15:30 +00001677 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1678 BtShared *pBt = 0; /* Shared part of btree structure */
1679 Btree *p; /* Handle to return */
1680 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1681 int rc = SQLITE_OK; /* Result code from this function */
1682 u8 nReserve; /* Byte of unused space on each page */
1683 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001684
1685 /* Set the variable isMemdb to true for an in-memory database, or
1686 ** false for a file-based database. This symbol is only required if
1687 ** either of the shared-data or autovacuum features are compiled
1688 ** into the library.
1689 */
1690#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1691 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001692 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001693 #else
drh980b1a72006-08-16 16:42:48 +00001694 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001695 #endif
1696#endif
1697
drhe5fe6902007-12-07 18:55:28 +00001698 assert( db!=0 );
1699 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001700
drhe5fe6902007-12-07 18:55:28 +00001701 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001702 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001703 if( !p ){
1704 return SQLITE_NOMEM;
1705 }
1706 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001707 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001708#ifndef SQLITE_OMIT_SHARED_CACHE
1709 p->lock.pBtree = p;
1710 p->lock.iTable = 1;
1711#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001712
drh198bf392006-01-06 21:52:49 +00001713#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001714 /*
1715 ** If this Btree is a candidate for shared cache, try to find an
1716 ** existing BtShared object that we can share with
1717 */
danielk197720c6cc22009-04-01 18:03:00 +00001718 if( isMemdb==0 && zFilename && zFilename[0] ){
drhf1f12682009-09-09 14:17:52 +00001719 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001720 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001721 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001722 sqlite3_mutex *mutexShared;
1723 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001724 if( !zFullPathname ){
1725 sqlite3_free(p);
1726 return SQLITE_NOMEM;
1727 }
danielk1977adfb9b02007-09-17 07:02:56 +00001728 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001729 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1730 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001731 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001732 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001733 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001734 assert( pBt->nRef>0 );
1735 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1736 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001737 int iDb;
1738 for(iDb=db->nDb-1; iDb>=0; iDb--){
1739 Btree *pExisting = db->aDb[iDb].pBt;
1740 if( pExisting && pExisting->pBt==pBt ){
1741 sqlite3_mutex_leave(mutexShared);
1742 sqlite3_mutex_leave(mutexOpen);
1743 sqlite3_free(zFullPathname);
1744 sqlite3_free(p);
1745 return SQLITE_CONSTRAINT;
1746 }
1747 }
drhff0587c2007-08-29 17:43:19 +00001748 p->pBt = pBt;
1749 pBt->nRef++;
1750 break;
1751 }
1752 }
1753 sqlite3_mutex_leave(mutexShared);
1754 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001755 }
drhff0587c2007-08-29 17:43:19 +00001756#ifdef SQLITE_DEBUG
1757 else{
1758 /* In debug mode, we mark all persistent databases as sharable
1759 ** even when they are not. This exercises the locking code and
1760 ** gives more opportunity for asserts(sqlite3_mutex_held())
1761 ** statements to find locking problems.
1762 */
1763 p->sharable = 1;
1764 }
1765#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001766 }
1767#endif
drha059ad02001-04-17 20:09:11 +00001768 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001769 /*
1770 ** The following asserts make sure that structures used by the btree are
1771 ** the right size. This is to guard against size changes that result
1772 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001773 */
drhe53831d2007-08-17 01:14:38 +00001774 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1775 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1776 assert( sizeof(u32)==4 );
1777 assert( sizeof(u16)==2 );
1778 assert( sizeof(Pgno)==4 );
1779
1780 pBt = sqlite3MallocZero( sizeof(*pBt) );
1781 if( pBt==0 ){
1782 rc = SQLITE_NOMEM;
1783 goto btree_open_out;
1784 }
danielk197771d5d2c2008-09-29 11:49:47 +00001785 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001786 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001787 if( rc==SQLITE_OK ){
1788 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1789 }
1790 if( rc!=SQLITE_OK ){
1791 goto btree_open_out;
1792 }
danielk19772a50ff02009-04-10 09:47:06 +00001793 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001794 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001795 p->pBt = pBt;
1796
drhe53831d2007-08-17 01:14:38 +00001797 pBt->pCursor = 0;
1798 pBt->pPage1 = 0;
1799 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1800 pBt->pageSize = get2byte(&zDbHeader[16]);
1801 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1802 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001803 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001804#ifndef SQLITE_OMIT_AUTOVACUUM
1805 /* If the magic name ":memory:" will create an in-memory database, then
1806 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1807 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1808 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1809 ** regular file-name. In this case the auto-vacuum applies as per normal.
1810 */
1811 if( zFilename && !isMemdb ){
1812 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1813 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1814 }
1815#endif
1816 nReserve = 0;
1817 }else{
1818 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001819 pBt->pageSizeFixed = 1;
1820#ifndef SQLITE_OMIT_AUTOVACUUM
1821 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1822 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1823#endif
1824 }
drhfa9601a2009-06-18 17:22:39 +00001825 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001826 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001827 pBt->usableSize = pBt->pageSize - nReserve;
1828 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001829
1830#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1831 /* Add the new BtShared object to the linked list sharable BtShareds.
1832 */
1833 if( p->sharable ){
1834 sqlite3_mutex *mutexShared;
1835 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001836 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001837 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001838 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001839 if( pBt->mutex==0 ){
1840 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001841 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001842 goto btree_open_out;
1843 }
drhff0587c2007-08-29 17:43:19 +00001844 }
drhe53831d2007-08-17 01:14:38 +00001845 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001846 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1847 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001848 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001849 }
drheee46cf2004-11-06 00:02:48 +00001850#endif
drh90f5ecb2004-07-22 01:19:35 +00001851 }
danielk1977aef0bf62005-12-30 16:28:01 +00001852
drhcfed7bc2006-03-13 14:28:05 +00001853#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001854 /* If the new Btree uses a sharable pBtShared, then link the new
1855 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001856 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001857 */
drhe53831d2007-08-17 01:14:38 +00001858 if( p->sharable ){
1859 int i;
1860 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001861 for(i=0; i<db->nDb; i++){
1862 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001863 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1864 if( p->pBt<pSib->pBt ){
1865 p->pNext = pSib;
1866 p->pPrev = 0;
1867 pSib->pPrev = p;
1868 }else{
drhabddb0c2007-08-20 13:14:28 +00001869 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001870 pSib = pSib->pNext;
1871 }
1872 p->pNext = pSib->pNext;
1873 p->pPrev = pSib;
1874 if( p->pNext ){
1875 p->pNext->pPrev = p;
1876 }
1877 pSib->pNext = p;
1878 }
1879 break;
1880 }
1881 }
danielk1977aef0bf62005-12-30 16:28:01 +00001882 }
danielk1977aef0bf62005-12-30 16:28:01 +00001883#endif
1884 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001885
1886btree_open_out:
1887 if( rc!=SQLITE_OK ){
1888 if( pBt && pBt->pPager ){
1889 sqlite3PagerClose(pBt->pPager);
1890 }
drh17435752007-08-16 04:30:38 +00001891 sqlite3_free(pBt);
1892 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001893 *ppBtree = 0;
1894 }
drh7555d8e2009-03-20 13:15:30 +00001895 if( mutexOpen ){
1896 assert( sqlite3_mutex_held(mutexOpen) );
1897 sqlite3_mutex_leave(mutexOpen);
1898 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001899 return rc;
drha059ad02001-04-17 20:09:11 +00001900}
1901
1902/*
drhe53831d2007-08-17 01:14:38 +00001903** Decrement the BtShared.nRef counter. When it reaches zero,
1904** remove the BtShared structure from the sharing list. Return
1905** true if the BtShared.nRef counter reaches zero and return
1906** false if it is still positive.
1907*/
1908static int removeFromSharingList(BtShared *pBt){
1909#ifndef SQLITE_OMIT_SHARED_CACHE
1910 sqlite3_mutex *pMaster;
1911 BtShared *pList;
1912 int removed = 0;
1913
drhd677b3d2007-08-20 22:48:41 +00001914 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001915 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001916 sqlite3_mutex_enter(pMaster);
1917 pBt->nRef--;
1918 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001919 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1920 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001921 }else{
drh78f82d12008-09-02 00:52:52 +00001922 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001923 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001924 pList=pList->pNext;
1925 }
drh34004ce2008-07-11 16:15:17 +00001926 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001927 pList->pNext = pBt->pNext;
1928 }
1929 }
drh3285db22007-09-03 22:00:39 +00001930 if( SQLITE_THREADSAFE ){
1931 sqlite3_mutex_free(pBt->mutex);
1932 }
drhe53831d2007-08-17 01:14:38 +00001933 removed = 1;
1934 }
1935 sqlite3_mutex_leave(pMaster);
1936 return removed;
1937#else
1938 return 1;
1939#endif
1940}
1941
1942/*
drhf7141992008-06-19 00:16:08 +00001943** Make sure pBt->pTmpSpace points to an allocation of
1944** MX_CELL_SIZE(pBt) bytes.
1945*/
1946static void allocateTempSpace(BtShared *pBt){
1947 if( !pBt->pTmpSpace ){
1948 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1949 }
1950}
1951
1952/*
1953** Free the pBt->pTmpSpace allocation
1954*/
1955static void freeTempSpace(BtShared *pBt){
1956 sqlite3PageFree( pBt->pTmpSpace);
1957 pBt->pTmpSpace = 0;
1958}
1959
1960/*
drha059ad02001-04-17 20:09:11 +00001961** Close an open database and invalidate all cursors.
1962*/
danielk1977aef0bf62005-12-30 16:28:01 +00001963int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001964 BtShared *pBt = p->pBt;
1965 BtCursor *pCur;
1966
danielk1977aef0bf62005-12-30 16:28:01 +00001967 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001968 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001969 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001970 pCur = pBt->pCursor;
1971 while( pCur ){
1972 BtCursor *pTmp = pCur;
1973 pCur = pCur->pNext;
1974 if( pTmp->pBtree==p ){
1975 sqlite3BtreeCloseCursor(pTmp);
1976 }
drha059ad02001-04-17 20:09:11 +00001977 }
danielk1977aef0bf62005-12-30 16:28:01 +00001978
danielk19778d34dfd2006-01-24 16:37:57 +00001979 /* Rollback any active transaction and free the handle structure.
1980 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1981 ** this handle.
1982 */
danielk1977b597f742006-01-15 11:39:18 +00001983 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001984 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001985
danielk1977aef0bf62005-12-30 16:28:01 +00001986 /* If there are still other outstanding references to the shared-btree
1987 ** structure, return now. The remainder of this procedure cleans
1988 ** up the shared-btree.
1989 */
drhe53831d2007-08-17 01:14:38 +00001990 assert( p->wantToLock==0 && p->locked==0 );
1991 if( !p->sharable || removeFromSharingList(pBt) ){
1992 /* The pBt is no longer on the sharing list, so we can access
1993 ** it without having to hold the mutex.
1994 **
1995 ** Clean out and delete the BtShared object.
1996 */
1997 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001998 sqlite3PagerClose(pBt->pPager);
1999 if( pBt->xFreeSchema && pBt->pSchema ){
2000 pBt->xFreeSchema(pBt->pSchema);
2001 }
2002 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002003 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002004 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002005 }
2006
drhe53831d2007-08-17 01:14:38 +00002007#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002008 assert( p->wantToLock==0 );
2009 assert( p->locked==0 );
2010 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2011 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002012#endif
2013
drhe53831d2007-08-17 01:14:38 +00002014 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002015 return SQLITE_OK;
2016}
2017
2018/*
drhda47d772002-12-02 04:25:19 +00002019** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002020**
2021** The maximum number of cache pages is set to the absolute
2022** value of mxPage. If mxPage is negative, the pager will
2023** operate asynchronously - it will not stop to do fsync()s
2024** to insure data is written to the disk surface before
2025** continuing. Transactions still work if synchronous is off,
2026** and the database cannot be corrupted if this program
2027** crashes. But if the operating system crashes or there is
2028** an abrupt power failure when synchronous is off, the database
2029** could be left in an inconsistent and unrecoverable state.
2030** Synchronous is on by default so database corruption is not
2031** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002032*/
danielk1977aef0bf62005-12-30 16:28:01 +00002033int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2034 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002035 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002036 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002037 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002038 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002039 return SQLITE_OK;
2040}
2041
2042/*
drh973b6e32003-02-12 14:09:42 +00002043** Change the way data is synced to disk in order to increase or decrease
2044** how well the database resists damage due to OS crashes and power
2045** failures. Level 1 is the same as asynchronous (no syncs() occur and
2046** there is a high probability of damage) Level 2 is the default. There
2047** is a very low but non-zero probability of damage. Level 3 reduces the
2048** probability of damage to near zero but with a write performance reduction.
2049*/
danielk197793758c82005-01-21 08:13:14 +00002050#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002051int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002052 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002053 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002054 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002055 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002056 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002057 return SQLITE_OK;
2058}
danielk197793758c82005-01-21 08:13:14 +00002059#endif
drh973b6e32003-02-12 14:09:42 +00002060
drh2c8997b2005-08-27 16:36:48 +00002061/*
2062** Return TRUE if the given btree is set to safety level 1. In other
2063** words, return TRUE if no sync() occurs on the disk files.
2064*/
danielk1977aef0bf62005-12-30 16:28:01 +00002065int sqlite3BtreeSyncDisabled(Btree *p){
2066 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002067 int rc;
drhe5fe6902007-12-07 18:55:28 +00002068 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002069 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002070 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002071 rc = sqlite3PagerNosync(pBt->pPager);
2072 sqlite3BtreeLeave(p);
2073 return rc;
drh2c8997b2005-08-27 16:36:48 +00002074}
2075
danielk1977576ec6b2005-01-21 11:55:25 +00002076#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002077/*
drh90f5ecb2004-07-22 01:19:35 +00002078** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002079** Or, if the page size has already been fixed, return SQLITE_READONLY
2080** without changing anything.
drh06f50212004-11-02 14:24:33 +00002081**
2082** The page size must be a power of 2 between 512 and 65536. If the page
2083** size supplied does not meet this constraint then the page size is not
2084** changed.
2085**
2086** Page sizes are constrained to be a power of two so that the region
2087** of the database file used for locking (beginning at PENDING_BYTE,
2088** the first byte past the 1GB boundary, 0x40000000) needs to occur
2089** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002090**
2091** If parameter nReserve is less than zero, then the number of reserved
2092** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002093**
2094** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2095** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002096*/
drhce4869f2009-04-02 20:16:58 +00002097int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002098 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002099 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002100 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002101 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002102 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002103 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002104 return SQLITE_READONLY;
2105 }
2106 if( nReserve<0 ){
2107 nReserve = pBt->pageSize - pBt->usableSize;
2108 }
drhf49661a2008-12-10 16:45:50 +00002109 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002110 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2111 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002112 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002113 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00002114 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002115 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002116 }
drhfa9601a2009-06-18 17:22:39 +00002117 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002118 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002119 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002120 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002121 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002122}
2123
2124/*
2125** Return the currently defined page size
2126*/
danielk1977aef0bf62005-12-30 16:28:01 +00002127int sqlite3BtreeGetPageSize(Btree *p){
2128 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002129}
drh7f751222009-03-17 22:33:00 +00002130
2131/*
2132** Return the number of bytes of space at the end of every page that
2133** are intentually left unused. This is the "reserved" space that is
2134** sometimes used by extensions.
2135*/
danielk1977aef0bf62005-12-30 16:28:01 +00002136int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002137 int n;
2138 sqlite3BtreeEnter(p);
2139 n = p->pBt->pageSize - p->pBt->usableSize;
2140 sqlite3BtreeLeave(p);
2141 return n;
drh2011d5f2004-07-22 02:40:37 +00002142}
drhf8e632b2007-05-08 14:51:36 +00002143
2144/*
2145** Set the maximum page count for a database if mxPage is positive.
2146** No changes are made if mxPage is 0 or negative.
2147** Regardless of the value of mxPage, return the maximum page count.
2148*/
2149int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002150 int n;
2151 sqlite3BtreeEnter(p);
2152 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2153 sqlite3BtreeLeave(p);
2154 return n;
drhf8e632b2007-05-08 14:51:36 +00002155}
danielk1977576ec6b2005-01-21 11:55:25 +00002156#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002157
2158/*
danielk1977951af802004-11-05 15:45:09 +00002159** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2160** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2161** is disabled. The default value for the auto-vacuum property is
2162** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2163*/
danielk1977aef0bf62005-12-30 16:28:01 +00002164int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002165#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002166 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002167#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002168 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002169 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002170 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002171
2172 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002173 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002174 rc = SQLITE_READONLY;
2175 }else{
drh076d4662009-02-18 20:31:18 +00002176 pBt->autoVacuum = av ?1:0;
2177 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002178 }
drhd677b3d2007-08-20 22:48:41 +00002179 sqlite3BtreeLeave(p);
2180 return rc;
danielk1977951af802004-11-05 15:45:09 +00002181#endif
2182}
2183
2184/*
2185** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2186** enabled 1 is returned. Otherwise 0.
2187*/
danielk1977aef0bf62005-12-30 16:28:01 +00002188int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002189#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002190 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002191#else
drhd677b3d2007-08-20 22:48:41 +00002192 int rc;
2193 sqlite3BtreeEnter(p);
2194 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002195 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2196 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2197 BTREE_AUTOVACUUM_INCR
2198 );
drhd677b3d2007-08-20 22:48:41 +00002199 sqlite3BtreeLeave(p);
2200 return rc;
danielk1977951af802004-11-05 15:45:09 +00002201#endif
2202}
2203
2204
2205/*
drha34b6762004-05-07 13:30:42 +00002206** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002207** also acquire a readlock on that file.
2208**
2209** SQLITE_OK is returned on success. If the file is not a
2210** well-formed database file, then SQLITE_CORRUPT is returned.
2211** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002212** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002213*/
danielk1977aef0bf62005-12-30 16:28:01 +00002214static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00002215 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002216 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00002217 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002218
drh1fee73e2007-08-29 04:00:57 +00002219 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002220 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002221 rc = sqlite3PagerSharedLock(pBt->pPager);
2222 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002223 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002224 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002225
2226 /* Do some checking to help insure the file we opened really is
2227 ** a valid database file.
2228 */
danielk1977ad0132d2008-06-07 08:58:22 +00002229 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2230 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00002231 goto page1_init_failed;
2232 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002233 int pageSize;
2234 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002235 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002236 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002237 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002238 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002239 }
drh309169a2007-04-24 17:27:51 +00002240 if( page1[18]>1 ){
2241 pBt->readOnly = 1;
2242 }
2243 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00002244 goto page1_init_failed;
2245 }
drhe5ae5732008-06-15 02:51:47 +00002246
2247 /* The maximum embedded fraction must be exactly 25%. And the minimum
2248 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2249 ** The original design allowed these amounts to vary, but as of
2250 ** version 3.6.0, we require them to be fixed.
2251 */
2252 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2253 goto page1_init_failed;
2254 }
drh07d183d2005-05-01 22:52:42 +00002255 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002256 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2257 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2258 ){
drh07d183d2005-05-01 22:52:42 +00002259 goto page1_init_failed;
2260 }
2261 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002262 usableSize = pageSize - page1[20];
2263 if( pageSize!=pBt->pageSize ){
2264 /* After reading the first page of the database assuming a page size
2265 ** of BtShared.pageSize, we have discovered that the page-size is
2266 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2267 ** zero and return SQLITE_OK. The caller will call this function
2268 ** again with the correct page-size.
2269 */
2270 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002271 pBt->usableSize = (u16)usableSize;
2272 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002273 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002274 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2275 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002276 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002277 }
drhb33e1b92009-06-18 11:29:20 +00002278 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002279 goto page1_init_failed;
2280 }
drh1bd10f82008-12-10 21:19:56 +00002281 pBt->pageSize = (u16)pageSize;
2282 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002283#ifndef SQLITE_OMIT_AUTOVACUUM
2284 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002285 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002286#endif
drh306dc212001-05-21 13:45:10 +00002287 }
drhb6f41482004-05-14 01:58:11 +00002288
2289 /* maxLocal is the maximum amount of payload to store locally for
2290 ** a cell. Make sure it is small enough so that at least minFanout
2291 ** cells can will fit on one page. We assume a 10-byte page header.
2292 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002293 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002294 ** 4-byte child pointer
2295 ** 9-byte nKey value
2296 ** 4-byte nData value
2297 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002298 ** So a cell consists of a 2-byte poiner, a header which is as much as
2299 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2300 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002301 */
drhe5ae5732008-06-15 02:51:47 +00002302 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2303 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002304 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002305 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002306 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002307 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002308 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002309
drh72f82862001-05-24 21:06:34 +00002310page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002311 releasePage(pPage1);
2312 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002313 return rc;
drh306dc212001-05-21 13:45:10 +00002314}
2315
2316/*
drhb8ca3072001-12-05 00:21:20 +00002317** If there are no outstanding cursors and we are not in the middle
2318** of a transaction but there is a read lock on the database, then
2319** this routine unrefs the first page of the database file which
2320** has the effect of releasing the read lock.
2321**
drhb8ca3072001-12-05 00:21:20 +00002322** If there is a transaction in progress, this routine is a no-op.
2323*/
danielk1977aef0bf62005-12-30 16:28:01 +00002324static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002325 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002326 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2327 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002328 assert( pBt->pPage1->aData );
2329 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2330 assert( pBt->pPage1->aData );
2331 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002332 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002333 }
2334}
2335
2336/*
drhe39f2f92009-07-23 01:43:59 +00002337** If pBt points to an empty file then convert that empty file
2338** into a new empty database by initializing the first page of
2339** the database.
drh8b2f49b2001-06-08 00:21:52 +00002340*/
danielk1977aef0bf62005-12-30 16:28:01 +00002341static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002342 MemPage *pP1;
2343 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002344 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002345 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002346
drh1fee73e2007-08-29 04:00:57 +00002347 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002348 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
drh313aa572009-12-03 19:40:00 +00002349 if( rc!=SQLITE_OK || nPage>0 ){
danielk1977ad0132d2008-06-07 08:58:22 +00002350 return rc;
2351 }
drh3aac2dd2004-04-26 14:10:20 +00002352 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002353 assert( pP1!=0 );
2354 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002355 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002356 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002357 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2358 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002359 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002360 data[18] = 1;
2361 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002362 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2363 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002364 data[21] = 64;
2365 data[22] = 32;
2366 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002367 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002368 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002369 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002370#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002371 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002372 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002373 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002374 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002375#endif
drh8b2f49b2001-06-08 00:21:52 +00002376 return SQLITE_OK;
2377}
2378
2379/*
danielk1977ee5741e2004-05-31 10:01:34 +00002380** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002381** is started if the second argument is nonzero, otherwise a read-
2382** transaction. If the second argument is 2 or more and exclusive
2383** transaction is started, meaning that no other process is allowed
2384** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002385** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002386** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002387**
danielk1977ee5741e2004-05-31 10:01:34 +00002388** A write-transaction must be started before attempting any
2389** changes to the database. None of the following routines
2390** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002391**
drh23e11ca2004-05-04 17:27:28 +00002392** sqlite3BtreeCreateTable()
2393** sqlite3BtreeCreateIndex()
2394** sqlite3BtreeClearTable()
2395** sqlite3BtreeDropTable()
2396** sqlite3BtreeInsert()
2397** sqlite3BtreeDelete()
2398** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002399**
drhb8ef32c2005-03-14 02:01:49 +00002400** If an initial attempt to acquire the lock fails because of lock contention
2401** and the database was previously unlocked, then invoke the busy handler
2402** if there is one. But if there was previously a read-lock, do not
2403** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2404** returned when there is already a read-lock in order to avoid a deadlock.
2405**
2406** Suppose there are two processes A and B. A has a read lock and B has
2407** a reserved lock. B tries to promote to exclusive but is blocked because
2408** of A's read lock. A tries to promote to reserved but is blocked by B.
2409** One or the other of the two processes must give way or there can be
2410** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2411** when A already has a read lock, we encourage A to give up and let B
2412** proceed.
drha059ad02001-04-17 20:09:11 +00002413*/
danielk1977aef0bf62005-12-30 16:28:01 +00002414int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002415 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002416 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002417 int rc = SQLITE_OK;
2418
drhd677b3d2007-08-20 22:48:41 +00002419 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002420 btreeIntegrity(p);
2421
danielk1977ee5741e2004-05-31 10:01:34 +00002422 /* If the btree is already in a write-transaction, or it
2423 ** is already in a read-transaction and a read-transaction
2424 ** is requested, this is a no-op.
2425 */
danielk1977aef0bf62005-12-30 16:28:01 +00002426 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002427 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002428 }
drhb8ef32c2005-03-14 02:01:49 +00002429
2430 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002431 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002432 rc = SQLITE_READONLY;
2433 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002434 }
2435
danielk1977404ca072009-03-16 13:19:36 +00002436#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002437 /* If another database handle has already opened a write transaction
2438 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002439 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002440 */
danielk1977404ca072009-03-16 13:19:36 +00002441 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2442 pBlock = pBt->pWriter->db;
2443 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002444 BtLock *pIter;
2445 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2446 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002447 pBlock = pIter->pBtree->db;
2448 break;
danielk1977641b0f42007-12-21 04:47:25 +00002449 }
2450 }
2451 }
danielk1977404ca072009-03-16 13:19:36 +00002452 if( pBlock ){
2453 sqlite3ConnectionBlocked(p->db, pBlock);
2454 rc = SQLITE_LOCKED_SHAREDCACHE;
2455 goto trans_begun;
2456 }
danielk1977641b0f42007-12-21 04:47:25 +00002457#endif
2458
danielk1977602b4662009-07-02 07:47:33 +00002459 /* Any read-only or read-write transaction implies a read-lock on
2460 ** page 1. So if some other shared-cache client already has a write-lock
2461 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002462 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2463 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002464
drhb8ef32c2005-03-14 02:01:49 +00002465 do {
danielk1977295dc102009-04-01 19:07:03 +00002466 /* Call lockBtree() until either pBt->pPage1 is populated or
2467 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2468 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2469 ** reading page 1 it discovers that the page-size of the database
2470 ** file is not pBt->pageSize. In this case lockBtree() will update
2471 ** pBt->pageSize to the page-size of the file on disk.
2472 */
2473 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002474
drhb8ef32c2005-03-14 02:01:49 +00002475 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002476 if( pBt->readOnly ){
2477 rc = SQLITE_READONLY;
2478 }else{
danielk1977d8293352009-04-30 09:10:37 +00002479 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002480 if( rc==SQLITE_OK ){
2481 rc = newDatabase(pBt);
2482 }
drhb8ef32c2005-03-14 02:01:49 +00002483 }
2484 }
2485
danielk1977bd434552009-03-18 10:33:00 +00002486 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002487 unlockBtreeIfUnused(pBt);
2488 }
danielk1977aef0bf62005-12-30 16:28:01 +00002489 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002490 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002491
2492 if( rc==SQLITE_OK ){
2493 if( p->inTrans==TRANS_NONE ){
2494 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002495#ifndef SQLITE_OMIT_SHARED_CACHE
2496 if( p->sharable ){
2497 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2498 p->lock.eLock = READ_LOCK;
2499 p->lock.pNext = pBt->pLock;
2500 pBt->pLock = &p->lock;
2501 }
2502#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002503 }
2504 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2505 if( p->inTrans>pBt->inTransaction ){
2506 pBt->inTransaction = p->inTrans;
2507 }
danielk1977641b0f42007-12-21 04:47:25 +00002508#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002509 if( wrflag ){
2510 assert( !pBt->pWriter );
2511 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002512 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002513 }
2514#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002515 }
2516
drhd677b3d2007-08-20 22:48:41 +00002517
2518trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002519 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002520 /* This call makes sure that the pager has the correct number of
2521 ** open savepoints. If the second parameter is greater than 0 and
2522 ** the sub-journal is not already open, then it will be opened here.
2523 */
danielk1977fd7f0452008-12-17 17:30:26 +00002524 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2525 }
danielk197712dd5492008-12-18 15:45:07 +00002526
danielk1977aef0bf62005-12-30 16:28:01 +00002527 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002528 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002529 return rc;
drha059ad02001-04-17 20:09:11 +00002530}
2531
danielk1977687566d2004-11-02 12:56:41 +00002532#ifndef SQLITE_OMIT_AUTOVACUUM
2533
2534/*
2535** Set the pointer-map entries for all children of page pPage. Also, if
2536** pPage contains cells that point to overflow pages, set the pointer
2537** map entries for the overflow pages as well.
2538*/
2539static int setChildPtrmaps(MemPage *pPage){
2540 int i; /* Counter variable */
2541 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002542 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002543 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002544 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002545 Pgno pgno = pPage->pgno;
2546
drh1fee73e2007-08-29 04:00:57 +00002547 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002548 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002549 if( rc!=SQLITE_OK ){
2550 goto set_child_ptrmaps_out;
2551 }
danielk1977687566d2004-11-02 12:56:41 +00002552 nCell = pPage->nCell;
2553
2554 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002555 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002556
drh98add2e2009-07-20 17:11:49 +00002557 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002558
danielk1977687566d2004-11-02 12:56:41 +00002559 if( !pPage->leaf ){
2560 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002561 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002562 }
2563 }
2564
2565 if( !pPage->leaf ){
2566 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002567 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002568 }
2569
2570set_child_ptrmaps_out:
2571 pPage->isInit = isInitOrig;
2572 return rc;
2573}
2574
2575/*
drhf3aed592009-07-08 18:12:49 +00002576** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2577** that it points to iTo. Parameter eType describes the type of pointer to
2578** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002579**
2580** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2581** page of pPage.
2582**
2583** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2584** page pointed to by one of the cells on pPage.
2585**
2586** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2587** overflow page in the list.
2588*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002589static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002590 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002591 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002592 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002593 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002594 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002595 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002596 }
danielk1977f78fc082004-11-02 14:40:32 +00002597 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002598 }else{
drhf49661a2008-12-10 16:45:50 +00002599 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002600 int i;
2601 int nCell;
2602
danielk197730548662009-07-09 05:07:37 +00002603 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002604 nCell = pPage->nCell;
2605
danielk1977687566d2004-11-02 12:56:41 +00002606 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002607 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002608 if( eType==PTRMAP_OVERFLOW1 ){
2609 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002610 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002611 if( info.iOverflow ){
2612 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2613 put4byte(&pCell[info.iOverflow], iTo);
2614 break;
2615 }
2616 }
2617 }else{
2618 if( get4byte(pCell)==iFrom ){
2619 put4byte(pCell, iTo);
2620 break;
2621 }
2622 }
2623 }
2624
2625 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002626 if( eType!=PTRMAP_BTREE ||
2627 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002628 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002629 }
danielk1977687566d2004-11-02 12:56:41 +00002630 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2631 }
2632
2633 pPage->isInit = isInitOrig;
2634 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002635 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002636}
2637
danielk1977003ba062004-11-04 02:57:33 +00002638
danielk19777701e812005-01-10 12:59:51 +00002639/*
2640** Move the open database page pDbPage to location iFreePage in the
2641** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002642**
2643** The isCommit flag indicates that there is no need to remember that
2644** the journal needs to be sync()ed before database page pDbPage->pgno
2645** can be written to. The caller has already promised not to write to that
2646** page.
danielk19777701e812005-01-10 12:59:51 +00002647*/
danielk1977003ba062004-11-04 02:57:33 +00002648static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002649 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002650 MemPage *pDbPage, /* Open page to move */
2651 u8 eType, /* Pointer map 'type' entry for pDbPage */
2652 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002653 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002654 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002655){
2656 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2657 Pgno iDbPage = pDbPage->pgno;
2658 Pager *pPager = pBt->pPager;
2659 int rc;
2660
danielk1977a0bf2652004-11-04 14:30:04 +00002661 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2662 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002663 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002664 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002665
drh85b623f2007-12-13 21:54:09 +00002666 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002667 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2668 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002669 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002670 if( rc!=SQLITE_OK ){
2671 return rc;
2672 }
2673 pDbPage->pgno = iFreePage;
2674
2675 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2676 ** that point to overflow pages. The pointer map entries for all these
2677 ** pages need to be changed.
2678 **
2679 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2680 ** pointer to a subsequent overflow page. If this is the case, then
2681 ** the pointer map needs to be updated for the subsequent overflow page.
2682 */
danielk1977a0bf2652004-11-04 14:30:04 +00002683 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002684 rc = setChildPtrmaps(pDbPage);
2685 if( rc!=SQLITE_OK ){
2686 return rc;
2687 }
2688 }else{
2689 Pgno nextOvfl = get4byte(pDbPage->aData);
2690 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002691 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002692 if( rc!=SQLITE_OK ){
2693 return rc;
2694 }
2695 }
2696 }
2697
2698 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2699 ** that it points at iFreePage. Also fix the pointer map entry for
2700 ** iPtrPage.
2701 */
danielk1977a0bf2652004-11-04 14:30:04 +00002702 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002703 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002704 if( rc!=SQLITE_OK ){
2705 return rc;
2706 }
danielk19773b8a05f2007-03-19 17:44:26 +00002707 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002708 if( rc!=SQLITE_OK ){
2709 releasePage(pPtrPage);
2710 return rc;
2711 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002712 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002713 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002714 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002715 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002716 }
danielk1977003ba062004-11-04 02:57:33 +00002717 }
danielk1977003ba062004-11-04 02:57:33 +00002718 return rc;
2719}
2720
danielk1977dddbcdc2007-04-26 14:42:34 +00002721/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002722static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002723
2724/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002725** Perform a single step of an incremental-vacuum. If successful,
2726** return SQLITE_OK. If there is no work to do (and therefore no
2727** point in calling this function again), return SQLITE_DONE.
2728**
2729** More specificly, this function attempts to re-organize the
2730** database so that the last page of the file currently in use
2731** is no longer in use.
2732**
drhea8ffdf2009-07-22 00:35:23 +00002733** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002734** that the caller will keep calling incrVacuumStep() until
2735** it returns SQLITE_DONE or an error, and that nFin is the
2736** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002737** process is complete. If nFin is zero, it is assumed that
2738** incrVacuumStep() will be called a finite amount of times
2739** which may or may not empty the freelist. A full autovacuum
2740** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002741*/
danielk19773460d192008-12-27 15:23:13 +00002742static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002743 Pgno nFreeList; /* Number of pages still on the free-list */
2744
drh1fee73e2007-08-29 04:00:57 +00002745 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002746 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002747
2748 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2749 int rc;
2750 u8 eType;
2751 Pgno iPtrPage;
2752
2753 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002754 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002755 return SQLITE_DONE;
2756 }
2757
2758 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2759 if( rc!=SQLITE_OK ){
2760 return rc;
2761 }
2762 if( eType==PTRMAP_ROOTPAGE ){
2763 return SQLITE_CORRUPT_BKPT;
2764 }
2765
2766 if( eType==PTRMAP_FREEPAGE ){
2767 if( nFin==0 ){
2768 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002769 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002770 ** truncated to zero after this function returns, so it doesn't
2771 ** matter if it still contains some garbage entries.
2772 */
2773 Pgno iFreePg;
2774 MemPage *pFreePg;
2775 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2776 if( rc!=SQLITE_OK ){
2777 return rc;
2778 }
2779 assert( iFreePg==iLastPg );
2780 releasePage(pFreePg);
2781 }
2782 } else {
2783 Pgno iFreePg; /* Index of free page to move pLastPg to */
2784 MemPage *pLastPg;
2785
danielk197730548662009-07-09 05:07:37 +00002786 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002787 if( rc!=SQLITE_OK ){
2788 return rc;
2789 }
2790
danielk1977b4626a32007-04-28 15:47:43 +00002791 /* If nFin is zero, this loop runs exactly once and page pLastPg
2792 ** is swapped with the first free page pulled off the free list.
2793 **
2794 ** On the other hand, if nFin is greater than zero, then keep
2795 ** looping until a free-page located within the first nFin pages
2796 ** of the file is found.
2797 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002798 do {
2799 MemPage *pFreePg;
2800 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2801 if( rc!=SQLITE_OK ){
2802 releasePage(pLastPg);
2803 return rc;
2804 }
2805 releasePage(pFreePg);
2806 }while( nFin!=0 && iFreePg>nFin );
2807 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002808
2809 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002810 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002811 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002812 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002813 releasePage(pLastPg);
2814 if( rc!=SQLITE_OK ){
2815 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002816 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002817 }
2818 }
2819
danielk19773460d192008-12-27 15:23:13 +00002820 if( nFin==0 ){
2821 iLastPg--;
2822 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002823 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2824 MemPage *pPg;
danielk197730548662009-07-09 05:07:37 +00002825 int rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002826 if( rc!=SQLITE_OK ){
2827 return rc;
2828 }
2829 rc = sqlite3PagerWrite(pPg->pDbPage);
2830 releasePage(pPg);
2831 if( rc!=SQLITE_OK ){
2832 return rc;
2833 }
2834 }
danielk19773460d192008-12-27 15:23:13 +00002835 iLastPg--;
2836 }
2837 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002838 }
2839 return SQLITE_OK;
2840}
2841
2842/*
2843** A write-transaction must be opened before calling this function.
2844** It performs a single unit of work towards an incremental vacuum.
2845**
2846** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002847** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002848** SQLITE_OK is returned. Otherwise an SQLite error code.
2849*/
2850int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002851 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002852 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002853
2854 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002855 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2856 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002857 rc = SQLITE_DONE;
2858 }else{
2859 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002860 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002861 }
drhd677b3d2007-08-20 22:48:41 +00002862 sqlite3BtreeLeave(p);
2863 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002864}
2865
2866/*
danielk19773b8a05f2007-03-19 17:44:26 +00002867** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002868** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002869**
2870** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2871** the database file should be truncated to during the commit process.
2872** i.e. the database has been reorganized so that only the first *pnTrunc
2873** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002874*/
danielk19773460d192008-12-27 15:23:13 +00002875static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002876 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002877 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002878 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002879
drh1fee73e2007-08-29 04:00:57 +00002880 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002881 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002882 assert(pBt->autoVacuum);
2883 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00002884 Pgno nFin; /* Number of pages in database after autovacuuming */
2885 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00002886 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
2887 Pgno iFree; /* The next page to be freed */
2888 int nEntry; /* Number of entries on one ptrmap page */
2889 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00002890
drh41d628c2009-07-11 17:04:08 +00002891 nOrig = pagerPagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00002892 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2893 /* It is not possible to create a database for which the final page
2894 ** is either a pointer-map page or the pending-byte page. If one
2895 ** is encountered, this indicates corruption.
2896 */
danielk19773460d192008-12-27 15:23:13 +00002897 return SQLITE_CORRUPT_BKPT;
2898 }
danielk1977ef165ce2009-04-06 17:50:03 +00002899
danielk19773460d192008-12-27 15:23:13 +00002900 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00002901 nEntry = pBt->usableSize/5;
2902 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00002903 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002904 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002905 nFin--;
2906 }
2907 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2908 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002909 }
drhc5e47ac2009-06-04 00:11:56 +00002910 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002911
danielk19773460d192008-12-27 15:23:13 +00002912 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2913 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002914 }
danielk19773460d192008-12-27 15:23:13 +00002915 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002916 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002917 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2918 put4byte(&pBt->pPage1->aData[32], 0);
2919 put4byte(&pBt->pPage1->aData[36], 0);
2920 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002921 }
2922 if( rc!=SQLITE_OK ){
2923 sqlite3PagerRollback(pPager);
2924 }
danielk1977687566d2004-11-02 12:56:41 +00002925 }
2926
danielk19773b8a05f2007-03-19 17:44:26 +00002927 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002928 return rc;
2929}
danielk1977dddbcdc2007-04-26 14:42:34 +00002930
danielk1977a50d9aa2009-06-08 14:49:45 +00002931#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2932# define setChildPtrmaps(x) SQLITE_OK
2933#endif
danielk1977687566d2004-11-02 12:56:41 +00002934
2935/*
drh80e35f42007-03-30 14:06:34 +00002936** This routine does the first phase of a two-phase commit. This routine
2937** causes a rollback journal to be created (if it does not already exist)
2938** and populated with enough information so that if a power loss occurs
2939** the database can be restored to its original state by playing back
2940** the journal. Then the contents of the journal are flushed out to
2941** the disk. After the journal is safely on oxide, the changes to the
2942** database are written into the database file and flushed to oxide.
2943** At the end of this call, the rollback journal still exists on the
2944** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002945** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002946** commit process.
2947**
2948** This call is a no-op if no write-transaction is currently active on pBt.
2949**
2950** Otherwise, sync the database file for the btree pBt. zMaster points to
2951** the name of a master journal file that should be written into the
2952** individual journal file, or is NULL, indicating no master journal file
2953** (single database transaction).
2954**
2955** When this is called, the master journal should already have been
2956** created, populated with this journal pointer and synced to disk.
2957**
2958** Once this is routine has returned, the only thing required to commit
2959** the write-transaction for this database file is to delete the journal.
2960*/
2961int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2962 int rc = SQLITE_OK;
2963 if( p->inTrans==TRANS_WRITE ){
2964 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002965 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002966#ifndef SQLITE_OMIT_AUTOVACUUM
2967 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002968 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002969 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002970 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002971 return rc;
2972 }
2973 }
2974#endif
drh49b9d332009-01-02 18:10:42 +00002975 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00002976 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002977 }
2978 return rc;
2979}
2980
2981/*
danielk197794b30732009-07-02 17:21:57 +00002982** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
2983** at the conclusion of a transaction.
2984*/
2985static void btreeEndTransaction(Btree *p){
2986 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00002987 assert( sqlite3BtreeHoldsMutex(p) );
2988
danielk197794b30732009-07-02 17:21:57 +00002989 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00002990 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
2991 /* If there are other active statements that belong to this database
2992 ** handle, downgrade to a read-only transaction. The other statements
2993 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00002994 downgradeAllSharedCacheTableLocks(p);
2995 p->inTrans = TRANS_READ;
2996 }else{
2997 /* If the handle had any kind of transaction open, decrement the
2998 ** transaction count of the shared btree. If the transaction count
2999 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3000 ** call below will unlock the pager. */
3001 if( p->inTrans!=TRANS_NONE ){
3002 clearAllSharedCacheTableLocks(p);
3003 pBt->nTransaction--;
3004 if( 0==pBt->nTransaction ){
3005 pBt->inTransaction = TRANS_NONE;
3006 }
3007 }
3008
3009 /* Set the current transaction state to TRANS_NONE and unlock the
3010 ** pager if this call closed the only read or write transaction. */
3011 p->inTrans = TRANS_NONE;
3012 unlockBtreeIfUnused(pBt);
3013 }
3014
3015 btreeIntegrity(p);
3016}
3017
3018/*
drh2aa679f2001-06-25 02:11:07 +00003019** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003020**
drh6e345992007-03-30 11:12:08 +00003021** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003022** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3023** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3024** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003025** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003026** routine has to do is delete or truncate or zero the header in the
3027** the rollback journal (which causes the transaction to commit) and
3028** drop locks.
drh6e345992007-03-30 11:12:08 +00003029**
drh5e00f6c2001-09-13 13:46:56 +00003030** This will release the write lock on the database file. If there
3031** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003032*/
drh80e35f42007-03-30 14:06:34 +00003033int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003034 BtShared *pBt = p->pBt;
3035
drhd677b3d2007-08-20 22:48:41 +00003036 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003037 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003038
3039 /* If the handle has a write-transaction open, commit the shared-btrees
3040 ** transaction and set the shared state to TRANS_READ.
3041 */
3042 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003043 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003044 assert( pBt->inTransaction==TRANS_WRITE );
3045 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003046 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003047 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003048 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003049 return rc;
3050 }
danielk1977aef0bf62005-12-30 16:28:01 +00003051 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003052 }
danielk1977aef0bf62005-12-30 16:28:01 +00003053
danielk197794b30732009-07-02 17:21:57 +00003054 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003055 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003056 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003057}
3058
drh80e35f42007-03-30 14:06:34 +00003059/*
3060** Do both phases of a commit.
3061*/
3062int sqlite3BtreeCommit(Btree *p){
3063 int rc;
drhd677b3d2007-08-20 22:48:41 +00003064 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003065 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3066 if( rc==SQLITE_OK ){
3067 rc = sqlite3BtreeCommitPhaseTwo(p);
3068 }
drhd677b3d2007-08-20 22:48:41 +00003069 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003070 return rc;
3071}
3072
danielk1977fbcd5852004-06-15 02:44:18 +00003073#ifndef NDEBUG
3074/*
3075** Return the number of write-cursors open on this handle. This is for use
3076** in assert() expressions, so it is only compiled if NDEBUG is not
3077** defined.
drhfb982642007-08-30 01:19:59 +00003078**
3079** For the purposes of this routine, a write-cursor is any cursor that
3080** is capable of writing to the databse. That means the cursor was
3081** originally opened for writing and the cursor has not be disabled
3082** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003083*/
danielk1977aef0bf62005-12-30 16:28:01 +00003084static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003085 BtCursor *pCur;
3086 int r = 0;
3087 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003088 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003089 }
3090 return r;
3091}
3092#endif
3093
drhc39e0002004-05-07 23:50:57 +00003094/*
drhfb982642007-08-30 01:19:59 +00003095** This routine sets the state to CURSOR_FAULT and the error
3096** code to errCode for every cursor on BtShared that pBtree
3097** references.
3098**
3099** Every cursor is tripped, including cursors that belong
3100** to other database connections that happen to be sharing
3101** the cache with pBtree.
3102**
3103** This routine gets called when a rollback occurs.
3104** All cursors using the same cache must be tripped
3105** to prevent them from trying to use the btree after
3106** the rollback. The rollback may have deleted tables
3107** or moved root pages, so it is not sufficient to
3108** save the state of the cursor. The cursor must be
3109** invalidated.
3110*/
3111void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3112 BtCursor *p;
3113 sqlite3BtreeEnter(pBtree);
3114 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003115 int i;
danielk1977be51a652008-10-08 17:58:48 +00003116 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003117 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003118 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003119 for(i=0; i<=p->iPage; i++){
3120 releasePage(p->apPage[i]);
3121 p->apPage[i] = 0;
3122 }
drhfb982642007-08-30 01:19:59 +00003123 }
3124 sqlite3BtreeLeave(pBtree);
3125}
3126
3127/*
drhecdc7532001-09-23 02:35:53 +00003128** Rollback the transaction in progress. All cursors will be
3129** invalided by this operation. Any attempt to use a cursor
3130** that was open at the beginning of this operation will result
3131** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003132**
3133** This will release the write lock on the database file. If there
3134** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003135*/
danielk1977aef0bf62005-12-30 16:28:01 +00003136int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003137 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003138 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003139 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003140
drhd677b3d2007-08-20 22:48:41 +00003141 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003142 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003143#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003144 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003145 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003146 ** trying to save cursor positions. If this is an automatic rollback (as
3147 ** the result of a constraint, malloc() failure or IO error) then
3148 ** the cache may be internally inconsistent (not contain valid trees) so
3149 ** we cannot simply return the error to the caller. Instead, abort
3150 ** all queries that may be using any of the cursors that failed to save.
3151 */
drhfb982642007-08-30 01:19:59 +00003152 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003153 }
danielk19778d34dfd2006-01-24 16:37:57 +00003154#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003155 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003156
3157 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003158 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003159
danielk19778d34dfd2006-01-24 16:37:57 +00003160 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003161 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003162 if( rc2!=SQLITE_OK ){
3163 rc = rc2;
3164 }
3165
drh24cd67e2004-05-10 16:18:47 +00003166 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003167 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003168 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003169 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00003170 releasePage(pPage1);
3171 }
danielk1977fbcd5852004-06-15 02:44:18 +00003172 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003173 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003174 }
danielk1977aef0bf62005-12-30 16:28:01 +00003175
danielk197794b30732009-07-02 17:21:57 +00003176 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003177 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003178 return rc;
3179}
3180
3181/*
danielk1977bd434552009-03-18 10:33:00 +00003182** Start a statement subtransaction. The subtransaction can can be rolled
3183** back independently of the main transaction. You must start a transaction
3184** before starting a subtransaction. The subtransaction is ended automatically
3185** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003186**
3187** Statement subtransactions are used around individual SQL statements
3188** that are contained within a BEGIN...COMMIT block. If a constraint
3189** error occurs within the statement, the effect of that one statement
3190** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003191**
3192** A statement sub-transaction is implemented as an anonymous savepoint. The
3193** value passed as the second parameter is the total number of savepoints,
3194** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3195** are no active savepoints and no other statement-transactions open,
3196** iStatement is 1. This anonymous savepoint can be released or rolled back
3197** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003198*/
danielk1977bd434552009-03-18 10:33:00 +00003199int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003200 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003201 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003202 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003203 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003204 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003205 assert( iStatement>0 );
3206 assert( iStatement>p->db->nSavepoint );
3207 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00003208 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00003209 }else{
3210 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003211 /* At the pager level, a statement transaction is a savepoint with
3212 ** an index greater than all savepoints created explicitly using
3213 ** SQL statements. It is illegal to open, release or rollback any
3214 ** such savepoints while the statement transaction savepoint is active.
3215 */
danielk1977bd434552009-03-18 10:33:00 +00003216 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00003217 }
drhd677b3d2007-08-20 22:48:41 +00003218 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003219 return rc;
3220}
3221
3222/*
danielk1977fd7f0452008-12-17 17:30:26 +00003223** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3224** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003225** savepoint identified by parameter iSavepoint, depending on the value
3226** of op.
3227**
3228** Normally, iSavepoint is greater than or equal to zero. However, if op is
3229** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3230** contents of the entire transaction are rolled back. This is different
3231** from a normal transaction rollback, as no locks are released and the
3232** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003233*/
3234int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3235 int rc = SQLITE_OK;
3236 if( p && p->inTrans==TRANS_WRITE ){
3237 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003238 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3239 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3240 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003241 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003242 if( rc==SQLITE_OK ){
3243 rc = newDatabase(pBt);
3244 }
danielk1977fd7f0452008-12-17 17:30:26 +00003245 sqlite3BtreeLeave(p);
3246 }
3247 return rc;
3248}
3249
3250/*
drh8b2f49b2001-06-08 00:21:52 +00003251** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003252** iTable. If a read-only cursor is requested, it is assumed that
3253** the caller already has at least a read-only transaction open
3254** on the database already. If a write-cursor is requested, then
3255** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003256**
3257** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003258** If wrFlag==1, then the cursor can be used for reading or for
3259** writing if other conditions for writing are also met. These
3260** are the conditions that must be met in order for writing to
3261** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003262**
drhf74b8d92002-09-01 23:20:45 +00003263** 1: The cursor must have been opened with wrFlag==1
3264**
drhfe5d71d2007-03-19 11:54:10 +00003265** 2: Other database connections that share the same pager cache
3266** but which are not in the READ_UNCOMMITTED state may not have
3267** cursors open with wrFlag==0 on the same table. Otherwise
3268** the changes made by this write cursor would be visible to
3269** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003270**
3271** 3: The database must be writable (not on read-only media)
3272**
3273** 4: There must be an active transaction.
3274**
drh6446c4d2001-12-15 14:22:18 +00003275** No checking is done to make sure that page iTable really is the
3276** root page of a b-tree. If it is not, then the cursor acquired
3277** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003278**
drhf25a5072009-11-18 23:01:25 +00003279** It is assumed that the sqlite3BtreeCursorZero() has been called
3280** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003281*/
drhd677b3d2007-08-20 22:48:41 +00003282static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003283 Btree *p, /* The btree */
3284 int iTable, /* Root page of table to open */
3285 int wrFlag, /* 1 to write. 0 read-only */
3286 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3287 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003288){
danielk19773e8add92009-07-04 17:16:00 +00003289 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003290
drh1fee73e2007-08-29 04:00:57 +00003291 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003292 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003293
danielk1977602b4662009-07-02 07:47:33 +00003294 /* The following assert statements verify that if this is a sharable
3295 ** b-tree database, the connection is holding the required table locks,
3296 ** and that no other connection has any open cursor that conflicts with
3297 ** this lock. */
3298 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003299 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3300
danielk19773e8add92009-07-04 17:16:00 +00003301 /* Assert that the caller has opened the required transaction. */
3302 assert( p->inTrans>TRANS_NONE );
3303 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3304 assert( pBt->pPage1 && pBt->pPage1->aData );
3305
danielk197796d48e92009-06-29 06:00:37 +00003306 if( NEVER(wrFlag && pBt->readOnly) ){
3307 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003308 }
danielk19773e8add92009-07-04 17:16:00 +00003309 if( iTable==1 && pagerPagecount(pBt)==0 ){
3310 return SQLITE_EMPTY;
3311 }
danielk1977aef0bf62005-12-30 16:28:01 +00003312
danielk1977aef0bf62005-12-30 16:28:01 +00003313 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003314 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003315 pCur->pgnoRoot = (Pgno)iTable;
3316 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003317 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003318 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003319 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003320 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003321 pCur->pNext = pBt->pCursor;
3322 if( pCur->pNext ){
3323 pCur->pNext->pPrev = pCur;
3324 }
3325 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003326 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003327 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003328 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003329}
drhd677b3d2007-08-20 22:48:41 +00003330int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003331 Btree *p, /* The btree */
3332 int iTable, /* Root page of table to open */
3333 int wrFlag, /* 1 to write. 0 read-only */
3334 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3335 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003336){
3337 int rc;
3338 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003339 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003340 sqlite3BtreeLeave(p);
3341 return rc;
3342}
drh7f751222009-03-17 22:33:00 +00003343
3344/*
3345** Return the size of a BtCursor object in bytes.
3346**
3347** This interfaces is needed so that users of cursors can preallocate
3348** sufficient storage to hold a cursor. The BtCursor object is opaque
3349** to users so they cannot do the sizeof() themselves - they must call
3350** this routine.
3351*/
3352int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003353 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003354}
3355
drh7f751222009-03-17 22:33:00 +00003356/*
drhf25a5072009-11-18 23:01:25 +00003357** Initialize memory that will be converted into a BtCursor object.
3358**
3359** The simple approach here would be to memset() the entire object
3360** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3361** do not need to be zeroed and they are large, so we can save a lot
3362** of run-time by skipping the initialization of those elements.
3363*/
3364void sqlite3BtreeCursorZero(BtCursor *p){
3365 memset(p, 0, offsetof(BtCursor, iPage));
3366}
3367
3368/*
drh7f751222009-03-17 22:33:00 +00003369** Set the cached rowid value of every cursor in the same database file
3370** as pCur and having the same root page number as pCur. The value is
3371** set to iRowid.
3372**
3373** Only positive rowid values are considered valid for this cache.
3374** The cache is initialized to zero, indicating an invalid cache.
3375** A btree will work fine with zero or negative rowids. We just cannot
3376** cache zero or negative rowids, which means tables that use zero or
3377** negative rowids might run a little slower. But in practice, zero
3378** or negative rowids are very uncommon so this should not be a problem.
3379*/
3380void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3381 BtCursor *p;
3382 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3383 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3384 }
3385 assert( pCur->cachedRowid==iRowid );
3386}
drhd677b3d2007-08-20 22:48:41 +00003387
drh7f751222009-03-17 22:33:00 +00003388/*
3389** Return the cached rowid for the given cursor. A negative or zero
3390** return value indicates that the rowid cache is invalid and should be
3391** ignored. If the rowid cache has never before been set, then a
3392** zero is returned.
3393*/
3394sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3395 return pCur->cachedRowid;
3396}
drha059ad02001-04-17 20:09:11 +00003397
3398/*
drh5e00f6c2001-09-13 13:46:56 +00003399** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003400** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003401*/
drh3aac2dd2004-04-26 14:10:20 +00003402int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003403 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003404 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003405 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003406 BtShared *pBt = pCur->pBt;
3407 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003408 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003409 if( pCur->pPrev ){
3410 pCur->pPrev->pNext = pCur->pNext;
3411 }else{
3412 pBt->pCursor = pCur->pNext;
3413 }
3414 if( pCur->pNext ){
3415 pCur->pNext->pPrev = pCur->pPrev;
3416 }
danielk197771d5d2c2008-09-29 11:49:47 +00003417 for(i=0; i<=pCur->iPage; i++){
3418 releasePage(pCur->apPage[i]);
3419 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003420 unlockBtreeIfUnused(pBt);
3421 invalidateOverflowCache(pCur);
3422 /* sqlite3_free(pCur); */
3423 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003424 }
drh8c42ca92001-06-22 19:15:00 +00003425 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003426}
3427
drh5e2f8b92001-05-28 00:41:15 +00003428/*
drh86057612007-06-26 01:04:48 +00003429** Make sure the BtCursor* given in the argument has a valid
3430** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003431** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003432**
3433** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003434** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003435**
3436** 2007-06-25: There is a bug in some versions of MSVC that cause the
3437** compiler to crash when getCellInfo() is implemented as a macro.
3438** But there is a measureable speed advantage to using the macro on gcc
3439** (when less compiler optimizations like -Os or -O0 are used and the
3440** compiler is not doing agressive inlining.) So we use a real function
3441** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003442*/
drh9188b382004-05-14 21:12:22 +00003443#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003444 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003445 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003446 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003447 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003448 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003449 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003450 }
danielk19771cc5ed82007-05-16 17:28:43 +00003451#else
3452 #define assertCellInfo(x)
3453#endif
drh86057612007-06-26 01:04:48 +00003454#ifdef _MSC_VER
3455 /* Use a real function in MSVC to work around bugs in that compiler. */
3456 static void getCellInfo(BtCursor *pCur){
3457 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003458 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003459 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003460 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003461 }else{
3462 assertCellInfo(pCur);
3463 }
3464 }
3465#else /* if not _MSC_VER */
3466 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003467#define getCellInfo(pCur) \
3468 if( pCur->info.nSize==0 ){ \
3469 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003470 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003471 pCur->validNKey = 1; \
3472 }else{ \
3473 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003474 }
3475#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003476
drhea8ffdf2009-07-22 00:35:23 +00003477#ifndef NDEBUG /* The next routine used only within assert() statements */
3478/*
3479** Return true if the given BtCursor is valid. A valid cursor is one
3480** that is currently pointing to a row in a (non-empty) table.
3481** This is a verification routine is used only within assert() statements.
3482*/
3483int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3484 return pCur && pCur->eState==CURSOR_VALID;
3485}
3486#endif /* NDEBUG */
3487
drh9188b382004-05-14 21:12:22 +00003488/*
drh3aac2dd2004-04-26 14:10:20 +00003489** Set *pSize to the size of the buffer needed to hold the value of
3490** the key for the current entry. If the cursor is not pointing
3491** to a valid entry, *pSize is set to 0.
3492**
drh4b70f112004-05-02 21:12:19 +00003493** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003494** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003495**
3496** The caller must position the cursor prior to invoking this routine.
3497**
3498** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003499*/
drh4a1c3802004-05-12 15:15:47 +00003500int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003501 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003502 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3503 if( pCur->eState!=CURSOR_VALID ){
3504 *pSize = 0;
3505 }else{
3506 getCellInfo(pCur);
3507 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003508 }
drhea8ffdf2009-07-22 00:35:23 +00003509 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003510}
drh2af926b2001-05-15 00:39:25 +00003511
drh72f82862001-05-24 21:06:34 +00003512/*
drh0e1c19e2004-05-11 00:58:56 +00003513** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003514** cursor currently points to.
3515**
3516** The caller must guarantee that the cursor is pointing to a non-NULL
3517** valid entry. In other words, the calling procedure must guarantee
3518** that the cursor has Cursor.eState==CURSOR_VALID.
3519**
3520** Failure is not possible. This function always returns SQLITE_OK.
3521** It might just as well be a procedure (returning void) but we continue
3522** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003523*/
3524int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003525 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003526 assert( pCur->eState==CURSOR_VALID );
3527 getCellInfo(pCur);
3528 *pSize = pCur->info.nData;
3529 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003530}
3531
3532/*
danielk1977d04417962007-05-02 13:16:30 +00003533** Given the page number of an overflow page in the database (parameter
3534** ovfl), this function finds the page number of the next page in the
3535** linked list of overflow pages. If possible, it uses the auto-vacuum
3536** pointer-map data instead of reading the content of page ovfl to do so.
3537**
3538** If an error occurs an SQLite error code is returned. Otherwise:
3539**
danielk1977bea2a942009-01-20 17:06:27 +00003540** The page number of the next overflow page in the linked list is
3541** written to *pPgnoNext. If page ovfl is the last page in its linked
3542** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003543**
danielk1977bea2a942009-01-20 17:06:27 +00003544** If ppPage is not NULL, and a reference to the MemPage object corresponding
3545** to page number pOvfl was obtained, then *ppPage is set to point to that
3546** reference. It is the responsibility of the caller to call releasePage()
3547** on *ppPage to free the reference. In no reference was obtained (because
3548** the pointer-map was used to obtain the value for *pPgnoNext), then
3549** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003550*/
3551static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003552 BtShared *pBt, /* The database file */
3553 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003554 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003555 Pgno *pPgnoNext /* OUT: Next overflow page number */
3556){
3557 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003558 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003559 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003560
drh1fee73e2007-08-29 04:00:57 +00003561 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003562 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003563
3564#ifndef SQLITE_OMIT_AUTOVACUUM
3565 /* Try to find the next page in the overflow list using the
3566 ** autovacuum pointer-map pages. Guess that the next page in
3567 ** the overflow list is page number (ovfl+1). If that guess turns
3568 ** out to be wrong, fall back to loading the data of page
3569 ** number ovfl to determine the next page number.
3570 */
3571 if( pBt->autoVacuum ){
3572 Pgno pgno;
3573 Pgno iGuess = ovfl+1;
3574 u8 eType;
3575
3576 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3577 iGuess++;
3578 }
3579
danielk197789d40042008-11-17 14:20:56 +00003580 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003581 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003582 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003583 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003584 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003585 }
3586 }
3587 }
3588#endif
3589
danielk1977d8a3f3d2009-07-11 11:45:23 +00003590 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003591 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003592 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003593 assert( rc==SQLITE_OK || pPage==0 );
3594 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003595 next = get4byte(pPage->aData);
3596 }
danielk1977443c0592009-01-16 15:21:05 +00003597 }
danielk197745d68822009-01-16 16:23:38 +00003598
danielk1977bea2a942009-01-20 17:06:27 +00003599 *pPgnoNext = next;
3600 if( ppPage ){
3601 *ppPage = pPage;
3602 }else{
3603 releasePage(pPage);
3604 }
3605 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003606}
3607
danielk1977da107192007-05-04 08:32:13 +00003608/*
3609** Copy data from a buffer to a page, or from a page to a buffer.
3610**
3611** pPayload is a pointer to data stored on database page pDbPage.
3612** If argument eOp is false, then nByte bytes of data are copied
3613** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3614** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3615** of data are copied from the buffer pBuf to pPayload.
3616**
3617** SQLITE_OK is returned on success, otherwise an error code.
3618*/
3619static int copyPayload(
3620 void *pPayload, /* Pointer to page data */
3621 void *pBuf, /* Pointer to buffer */
3622 int nByte, /* Number of bytes to copy */
3623 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3624 DbPage *pDbPage /* Page containing pPayload */
3625){
3626 if( eOp ){
3627 /* Copy data from buffer to page (a write operation) */
3628 int rc = sqlite3PagerWrite(pDbPage);
3629 if( rc!=SQLITE_OK ){
3630 return rc;
3631 }
3632 memcpy(pPayload, pBuf, nByte);
3633 }else{
3634 /* Copy data from page to buffer (a read operation) */
3635 memcpy(pBuf, pPayload, nByte);
3636 }
3637 return SQLITE_OK;
3638}
danielk1977d04417962007-05-02 13:16:30 +00003639
3640/*
danielk19779f8d6402007-05-02 17:48:45 +00003641** This function is used to read or overwrite payload information
3642** for the entry that the pCur cursor is pointing to. If the eOp
3643** parameter is 0, this is a read operation (data copied into
3644** buffer pBuf). If it is non-zero, a write (data copied from
3645** buffer pBuf).
3646**
3647** A total of "amt" bytes are read or written beginning at "offset".
3648** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003649**
drh3bcdfd22009-07-12 02:32:21 +00003650** The content being read or written might appear on the main page
3651** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003652**
danielk1977dcbb5d32007-05-04 18:36:44 +00003653** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003654** cursor entry uses one or more overflow pages, this function
3655** allocates space for and lazily popluates the overflow page-list
3656** cache array (BtCursor.aOverflow). Subsequent calls use this
3657** cache to make seeking to the supplied offset more efficient.
3658**
3659** Once an overflow page-list cache has been allocated, it may be
3660** invalidated if some other cursor writes to the same table, or if
3661** the cursor is moved to a different row. Additionally, in auto-vacuum
3662** mode, the following events may invalidate an overflow page-list cache.
3663**
3664** * An incremental vacuum,
3665** * A commit in auto_vacuum="full" mode,
3666** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003667*/
danielk19779f8d6402007-05-02 17:48:45 +00003668static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003669 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003670 u32 offset, /* Begin reading this far into payload */
3671 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003672 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003673 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003674){
3675 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003676 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003677 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003678 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003679 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003680 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003681
danielk1977da107192007-05-04 08:32:13 +00003682 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003683 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003684 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003685 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003686
drh86057612007-06-26 01:04:48 +00003687 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003688 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003689 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003690
drh3bcdfd22009-07-12 02:32:21 +00003691 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003692 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3693 ){
danielk1977da107192007-05-04 08:32:13 +00003694 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003695 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003696 }
danielk1977da107192007-05-04 08:32:13 +00003697
3698 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003699 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003700 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003701 if( a+offset>pCur->info.nLocal ){
3702 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003703 }
danielk1977da107192007-05-04 08:32:13 +00003704 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003705 offset = 0;
drha34b6762004-05-07 13:30:42 +00003706 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003707 amt -= a;
drhdd793422001-06-28 01:54:48 +00003708 }else{
drhfa1a98a2004-05-14 19:08:17 +00003709 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003710 }
danielk1977da107192007-05-04 08:32:13 +00003711
3712 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003713 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003714 Pgno nextPage;
3715
drhfa1a98a2004-05-14 19:08:17 +00003716 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003717
danielk19772dec9702007-05-02 16:48:37 +00003718#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003719 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003720 ** has not been allocated, allocate it now. The array is sized at
3721 ** one entry for each overflow page in the overflow chain. The
3722 ** page number of the first overflow page is stored in aOverflow[0],
3723 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3724 ** (the cache is lazily populated).
3725 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003726 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003727 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003728 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003729 /* nOvfl is always positive. If it were zero, fetchPayload would have
3730 ** been used instead of this routine. */
3731 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003732 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003733 }
3734 }
danielk1977da107192007-05-04 08:32:13 +00003735
3736 /* If the overflow page-list cache has been allocated and the
3737 ** entry for the first required overflow page is valid, skip
3738 ** directly to it.
3739 */
danielk19772dec9702007-05-02 16:48:37 +00003740 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3741 iIdx = (offset/ovflSize);
3742 nextPage = pCur->aOverflow[iIdx];
3743 offset = (offset%ovflSize);
3744 }
3745#endif
danielk1977da107192007-05-04 08:32:13 +00003746
3747 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3748
3749#ifndef SQLITE_OMIT_INCRBLOB
3750 /* If required, populate the overflow page-list cache. */
3751 if( pCur->aOverflow ){
3752 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3753 pCur->aOverflow[iIdx] = nextPage;
3754 }
3755#endif
3756
danielk1977d04417962007-05-02 13:16:30 +00003757 if( offset>=ovflSize ){
3758 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003759 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003760 ** data is not required. So first try to lookup the overflow
3761 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003762 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003763 */
danielk19772dec9702007-05-02 16:48:37 +00003764#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003765 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3766 nextPage = pCur->aOverflow[iIdx+1];
3767 } else
danielk19772dec9702007-05-02 16:48:37 +00003768#endif
danielk1977da107192007-05-04 08:32:13 +00003769 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003770 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003771 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003772 /* Need to read this page properly. It contains some of the
3773 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003774 */
3775 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003776 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003777 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003778 if( rc==SQLITE_OK ){
3779 aPayload = sqlite3PagerGetData(pDbPage);
3780 nextPage = get4byte(aPayload);
3781 if( a + offset > ovflSize ){
3782 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003783 }
danielk1977da107192007-05-04 08:32:13 +00003784 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3785 sqlite3PagerUnref(pDbPage);
3786 offset = 0;
3787 amt -= a;
3788 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003789 }
danielk1977cfe9a692004-06-16 12:00:29 +00003790 }
drh2af926b2001-05-15 00:39:25 +00003791 }
drh2af926b2001-05-15 00:39:25 +00003792 }
danielk1977cfe9a692004-06-16 12:00:29 +00003793
danielk1977da107192007-05-04 08:32:13 +00003794 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003795 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003796 }
danielk1977da107192007-05-04 08:32:13 +00003797 return rc;
drh2af926b2001-05-15 00:39:25 +00003798}
3799
drh72f82862001-05-24 21:06:34 +00003800/*
drh3aac2dd2004-04-26 14:10:20 +00003801** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003802** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003803** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003804**
drh5d1a8722009-07-22 18:07:40 +00003805** The caller must ensure that pCur is pointing to a valid row
3806** in the table.
3807**
drh3aac2dd2004-04-26 14:10:20 +00003808** Return SQLITE_OK on success or an error code if anything goes
3809** wrong. An error is returned if "offset+amt" is larger than
3810** the available payload.
drh72f82862001-05-24 21:06:34 +00003811*/
drha34b6762004-05-07 13:30:42 +00003812int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00003813 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00003814 assert( pCur->eState==CURSOR_VALID );
3815 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3816 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
3817 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00003818}
3819
3820/*
drh3aac2dd2004-04-26 14:10:20 +00003821** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003822** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003823** begins at "offset".
3824**
3825** Return SQLITE_OK on success or an error code if anything goes
3826** wrong. An error is returned if "offset+amt" is larger than
3827** the available payload.
drh72f82862001-05-24 21:06:34 +00003828*/
drh3aac2dd2004-04-26 14:10:20 +00003829int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003830 int rc;
3831
danielk19773588ceb2008-06-10 17:30:26 +00003832#ifndef SQLITE_OMIT_INCRBLOB
3833 if ( pCur->eState==CURSOR_INVALID ){
3834 return SQLITE_ABORT;
3835 }
3836#endif
3837
drh1fee73e2007-08-29 04:00:57 +00003838 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003839 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003840 if( rc==SQLITE_OK ){
3841 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003842 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3843 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003844 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00003845 }
3846 return rc;
drh2af926b2001-05-15 00:39:25 +00003847}
3848
drh72f82862001-05-24 21:06:34 +00003849/*
drh0e1c19e2004-05-11 00:58:56 +00003850** Return a pointer to payload information from the entry that the
3851** pCur cursor is pointing to. The pointer is to the beginning of
3852** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003853** skipKey==1. The number of bytes of available key/data is written
3854** into *pAmt. If *pAmt==0, then the value returned will not be
3855** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003856**
3857** This routine is an optimization. It is common for the entire key
3858** and data to fit on the local page and for there to be no overflow
3859** pages. When that is so, this routine can be used to access the
3860** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003861** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003862** the key/data and copy it into a preallocated buffer.
3863**
3864** The pointer returned by this routine looks directly into the cached
3865** page of the database. The data might change or move the next time
3866** any btree routine is called.
3867*/
3868static const unsigned char *fetchPayload(
3869 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003870 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003871 int skipKey /* read beginning at data if this is true */
3872){
3873 unsigned char *aPayload;
3874 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003875 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003876 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003877
danielk197771d5d2c2008-09-29 11:49:47 +00003878 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003879 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003880 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003881 pPage = pCur->apPage[pCur->iPage];
3882 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00003883 if( NEVER(pCur->info.nSize==0) ){
3884 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
3885 &pCur->info);
3886 }
drh43605152004-05-29 21:46:49 +00003887 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003888 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003889 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003890 nKey = 0;
3891 }else{
drhf49661a2008-12-10 16:45:50 +00003892 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003893 }
drh0e1c19e2004-05-11 00:58:56 +00003894 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003895 aPayload += nKey;
3896 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003897 }else{
drhfa1a98a2004-05-14 19:08:17 +00003898 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00003899 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00003900 }
drhe51c44f2004-05-30 20:46:09 +00003901 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003902 return aPayload;
3903}
3904
3905
3906/*
drhe51c44f2004-05-30 20:46:09 +00003907** For the entry that cursor pCur is point to, return as
3908** many bytes of the key or data as are available on the local
3909** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003910**
3911** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003912** or be destroyed on the next call to any Btree routine,
3913** including calls from other threads against the same cache.
3914** Hence, a mutex on the BtShared should be held prior to calling
3915** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003916**
3917** These routines is used to get quick access to key and data
3918** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003919*/
drhe51c44f2004-05-30 20:46:09 +00003920const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00003921 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00003922 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003923 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00003924 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
3925 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00003926 }
drhfe3313f2009-07-21 19:02:20 +00003927 return p;
drh0e1c19e2004-05-11 00:58:56 +00003928}
drhe51c44f2004-05-30 20:46:09 +00003929const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00003930 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00003931 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003932 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00003933 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
3934 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00003935 }
drhfe3313f2009-07-21 19:02:20 +00003936 return p;
drh0e1c19e2004-05-11 00:58:56 +00003937}
3938
3939
3940/*
drh8178a752003-01-05 21:41:40 +00003941** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003942** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00003943**
3944** This function returns SQLITE_CORRUPT if the page-header flags field of
3945** the new child page does not match the flags field of the parent (i.e.
3946** if an intkey page appears to be the parent of a non-intkey page, or
3947** vice-versa).
drh72f82862001-05-24 21:06:34 +00003948*/
drh3aac2dd2004-04-26 14:10:20 +00003949static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003950 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003951 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003952 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003953 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003954
drh1fee73e2007-08-29 04:00:57 +00003955 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003956 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003957 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3958 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3959 return SQLITE_CORRUPT_BKPT;
3960 }
3961 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003962 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003963 pCur->apPage[i+1] = pNewPage;
3964 pCur->aiIdx[i+1] = 0;
3965 pCur->iPage++;
3966
drh271efa52004-05-30 19:19:05 +00003967 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003968 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00003969 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00003970 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003971 }
drh72f82862001-05-24 21:06:34 +00003972 return SQLITE_OK;
3973}
3974
danielk1977bf93c562008-09-29 15:53:25 +00003975#ifndef NDEBUG
3976/*
3977** Page pParent is an internal (non-leaf) tree page. This function
3978** asserts that page number iChild is the left-child if the iIdx'th
3979** cell in page pParent. Or, if iIdx is equal to the total number of
3980** cells in pParent, that page number iChild is the right-child of
3981** the page.
3982*/
3983static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
3984 assert( iIdx<=pParent->nCell );
3985 if( iIdx==pParent->nCell ){
3986 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
3987 }else{
3988 assert( get4byte(findCell(pParent, iIdx))==iChild );
3989 }
3990}
3991#else
3992# define assertParentIndex(x,y,z)
3993#endif
3994
drh72f82862001-05-24 21:06:34 +00003995/*
drh5e2f8b92001-05-28 00:41:15 +00003996** Move the cursor up to the parent page.
3997**
3998** pCur->idx is set to the cell index that contains the pointer
3999** to the page we are coming from. If we are coming from the
4000** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004001** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004002*/
danielk197730548662009-07-09 05:07:37 +00004003static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004004 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004005 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004006 assert( pCur->iPage>0 );
4007 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004008 assertParentIndex(
4009 pCur->apPage[pCur->iPage-1],
4010 pCur->aiIdx[pCur->iPage-1],
4011 pCur->apPage[pCur->iPage]->pgno
4012 );
danielk197771d5d2c2008-09-29 11:49:47 +00004013 releasePage(pCur->apPage[pCur->iPage]);
4014 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004015 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004016 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004017}
4018
4019/*
danielk19778f880a82009-07-13 09:41:45 +00004020** Move the cursor to point to the root page of its b-tree structure.
4021**
4022** If the table has a virtual root page, then the cursor is moved to point
4023** to the virtual root page instead of the actual root page. A table has a
4024** virtual root page when the actual root page contains no cells and a
4025** single child page. This can only happen with the table rooted at page 1.
4026**
4027** If the b-tree structure is empty, the cursor state is set to
4028** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4029** cell located on the root (or virtual root) page and the cursor state
4030** is set to CURSOR_VALID.
4031**
4032** If this function returns successfully, it may be assumed that the
4033** page-header flags indicate that the [virtual] root-page is the expected
4034** kind of b-tree page (i.e. if when opening the cursor the caller did not
4035** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4036** indicating a table b-tree, or if the caller did specify a KeyInfo
4037** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4038** b-tree).
drh72f82862001-05-24 21:06:34 +00004039*/
drh5e2f8b92001-05-28 00:41:15 +00004040static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004041 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004042 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004043 Btree *p = pCur->pBtree;
4044 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004045
drh1fee73e2007-08-29 04:00:57 +00004046 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004047 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4048 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4049 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4050 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4051 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004052 assert( pCur->skipNext!=SQLITE_OK );
4053 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004054 }
danielk1977be51a652008-10-08 17:58:48 +00004055 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004056 }
danielk197771d5d2c2008-09-29 11:49:47 +00004057
4058 if( pCur->iPage>=0 ){
4059 int i;
4060 for(i=1; i<=pCur->iPage; i++){
4061 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004062 }
danielk1977172114a2009-07-07 15:47:12 +00004063 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004064 }else{
drh4c301aa2009-07-15 17:25:45 +00004065 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4066 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004067 pCur->eState = CURSOR_INVALID;
4068 return rc;
4069 }
danielk1977172114a2009-07-07 15:47:12 +00004070 pCur->iPage = 0;
4071
4072 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4073 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4074 ** NULL, the caller expects a table b-tree. If this is not the case,
4075 ** return an SQLITE_CORRUPT error. */
4076 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4077 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4078 return SQLITE_CORRUPT_BKPT;
4079 }
drhc39e0002004-05-07 23:50:57 +00004080 }
danielk197771d5d2c2008-09-29 11:49:47 +00004081
danielk19778f880a82009-07-13 09:41:45 +00004082 /* Assert that the root page is of the correct type. This must be the
4083 ** case as the call to this function that loaded the root-page (either
4084 ** this call or a previous invocation) would have detected corruption
4085 ** if the assumption were not true, and it is not possible for the flags
4086 ** byte to have been modified while this cursor is holding a reference
4087 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004088 pRoot = pCur->apPage[0];
4089 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004090 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4091
danielk197771d5d2c2008-09-29 11:49:47 +00004092 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004093 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004094 pCur->atLast = 0;
4095 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004096
drh8856d6a2004-04-29 14:42:46 +00004097 if( pRoot->nCell==0 && !pRoot->leaf ){
4098 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004099 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004100 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004101 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004102 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004103 }else{
4104 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004105 }
4106 return rc;
drh72f82862001-05-24 21:06:34 +00004107}
drh2af926b2001-05-15 00:39:25 +00004108
drh5e2f8b92001-05-28 00:41:15 +00004109/*
4110** Move the cursor down to the left-most leaf entry beneath the
4111** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004112**
4113** The left-most leaf is the one with the smallest key - the first
4114** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004115*/
4116static int moveToLeftmost(BtCursor *pCur){
4117 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004118 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004119 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004120
drh1fee73e2007-08-29 04:00:57 +00004121 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004122 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004123 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4124 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4125 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004126 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004127 }
drhd677b3d2007-08-20 22:48:41 +00004128 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004129}
4130
drh2dcc9aa2002-12-04 13:40:25 +00004131/*
4132** Move the cursor down to the right-most leaf entry beneath the
4133** page to which it is currently pointing. Notice the difference
4134** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4135** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4136** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004137**
4138** The right-most entry is the one with the largest key - the last
4139** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004140*/
4141static int moveToRightmost(BtCursor *pCur){
4142 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004143 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004144 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004145
drh1fee73e2007-08-29 04:00:57 +00004146 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004147 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004148 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004149 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004150 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004151 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004152 }
drhd677b3d2007-08-20 22:48:41 +00004153 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004154 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004155 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004156 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004157 }
danielk1977518002e2008-09-05 05:02:46 +00004158 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004159}
4160
drh5e00f6c2001-09-13 13:46:56 +00004161/* Move the cursor to the first entry in the table. Return SQLITE_OK
4162** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004163** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004164*/
drh3aac2dd2004-04-26 14:10:20 +00004165int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004166 int rc;
drhd677b3d2007-08-20 22:48:41 +00004167
drh1fee73e2007-08-29 04:00:57 +00004168 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004169 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004170 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004171 if( rc==SQLITE_OK ){
4172 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004173 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004174 *pRes = 1;
4175 rc = SQLITE_OK;
4176 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004177 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004178 *pRes = 0;
4179 rc = moveToLeftmost(pCur);
4180 }
drh5e00f6c2001-09-13 13:46:56 +00004181 }
drh5e00f6c2001-09-13 13:46:56 +00004182 return rc;
4183}
drh5e2f8b92001-05-28 00:41:15 +00004184
drh9562b552002-02-19 15:00:07 +00004185/* Move the cursor to the last entry in the table. Return SQLITE_OK
4186** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004187** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004188*/
drh3aac2dd2004-04-26 14:10:20 +00004189int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004190 int rc;
drhd677b3d2007-08-20 22:48:41 +00004191
drh1fee73e2007-08-29 04:00:57 +00004192 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004193 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004194
4195 /* If the cursor already points to the last entry, this is a no-op. */
4196 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4197#ifdef SQLITE_DEBUG
4198 /* This block serves to assert() that the cursor really does point
4199 ** to the last entry in the b-tree. */
4200 int ii;
4201 for(ii=0; ii<pCur->iPage; ii++){
4202 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4203 }
4204 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4205 assert( pCur->apPage[pCur->iPage]->leaf );
4206#endif
4207 return SQLITE_OK;
4208 }
4209
drh9562b552002-02-19 15:00:07 +00004210 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004211 if( rc==SQLITE_OK ){
4212 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004213 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004214 *pRes = 1;
4215 }else{
4216 assert( pCur->eState==CURSOR_VALID );
4217 *pRes = 0;
4218 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004219 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004220 }
drh9562b552002-02-19 15:00:07 +00004221 }
drh9562b552002-02-19 15:00:07 +00004222 return rc;
4223}
4224
drhe14006d2008-03-25 17:23:32 +00004225/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004226** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004227**
drhe63d9992008-08-13 19:11:48 +00004228** For INTKEY tables, the intKey parameter is used. pIdxKey
4229** must be NULL. For index tables, pIdxKey is used and intKey
4230** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004231**
drh5e2f8b92001-05-28 00:41:15 +00004232** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004233** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004234** were present. The cursor might point to an entry that comes
4235** before or after the key.
4236**
drh64022502009-01-09 14:11:04 +00004237** An integer is written into *pRes which is the result of
4238** comparing the key with the entry to which the cursor is
4239** pointing. The meaning of the integer written into
4240** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004241**
4242** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004243** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004244** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004245**
4246** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004247** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004248**
4249** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004250** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004251**
drha059ad02001-04-17 20:09:11 +00004252*/
drhe63d9992008-08-13 19:11:48 +00004253int sqlite3BtreeMovetoUnpacked(
4254 BtCursor *pCur, /* The cursor to be moved */
4255 UnpackedRecord *pIdxKey, /* Unpacked index key */
4256 i64 intKey, /* The table key */
4257 int biasRight, /* If true, bias the search to the high end */
4258 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004259){
drh72f82862001-05-24 21:06:34 +00004260 int rc;
drhd677b3d2007-08-20 22:48:41 +00004261
drh1fee73e2007-08-29 04:00:57 +00004262 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004263 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004264 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004265 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004266
4267 /* If the cursor is already positioned at the point we are trying
4268 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004269 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4270 && pCur->apPage[0]->intKey
4271 ){
drhe63d9992008-08-13 19:11:48 +00004272 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004273 *pRes = 0;
4274 return SQLITE_OK;
4275 }
drhe63d9992008-08-13 19:11:48 +00004276 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004277 *pRes = -1;
4278 return SQLITE_OK;
4279 }
4280 }
4281
drh5e2f8b92001-05-28 00:41:15 +00004282 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004283 if( rc ){
4284 return rc;
4285 }
danielk197771d5d2c2008-09-29 11:49:47 +00004286 assert( pCur->apPage[pCur->iPage] );
4287 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004288 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004289 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004290 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004291 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004292 return SQLITE_OK;
4293 }
danielk197771d5d2c2008-09-29 11:49:47 +00004294 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004295 for(;;){
drh72f82862001-05-24 21:06:34 +00004296 int lwr, upr;
4297 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004298 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004299 int c;
4300
4301 /* pPage->nCell must be greater than zero. If this is the root-page
4302 ** the cursor would have been INVALID above and this for(;;) loop
4303 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004304 ** would have already detected db corruption. Similarly, pPage must
4305 ** be the right kind (index or table) of b-tree page. Otherwise
4306 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004307 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004308 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004309 lwr = 0;
4310 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004311 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004312 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004313 }else{
drhf49661a2008-12-10 16:45:50 +00004314 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004315 }
drh64022502009-01-09 14:11:04 +00004316 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004317 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4318 u8 *pCell; /* Pointer to current cell in pPage */
4319
drh366fda62006-01-13 02:35:09 +00004320 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004321 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004322 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004323 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004324 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004325 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004326 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004327 }
drha2c20e42008-03-29 16:01:04 +00004328 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004329 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004330 c = 0;
drhe63d9992008-08-13 19:11:48 +00004331 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004332 c = -1;
4333 }else{
drhe63d9992008-08-13 19:11:48 +00004334 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004335 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004336 }
danielk197711c327a2009-05-04 19:01:26 +00004337 pCur->validNKey = 1;
4338 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004339 }else{
danielk197711c327a2009-05-04 19:01:26 +00004340 /* The maximum supported page-size is 32768 bytes. This means that
4341 ** the maximum number of record bytes stored on an index B-Tree
4342 ** page is at most 8198 bytes, which may be stored as a 2-byte
4343 ** varint. This information is used to attempt to avoid parsing
4344 ** the entire cell by checking for the cases where the record is
4345 ** stored entirely within the b-tree page by inspecting the first
4346 ** 2 bytes of the cell.
4347 */
4348 int nCell = pCell[0];
4349 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4350 /* This branch runs if the record-size field of the cell is a
4351 ** single byte varint and the record fits entirely on the main
4352 ** b-tree page. */
4353 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4354 }else if( !(pCell[1] & 0x80)
4355 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4356 ){
4357 /* The record-size field is a 2 byte varint and the record
4358 ** fits entirely on the main b-tree page. */
4359 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004360 }else{
danielk197711c327a2009-05-04 19:01:26 +00004361 /* The record flows over onto one or more overflow pages. In
4362 ** this case the whole cell needs to be parsed, a buffer allocated
4363 ** and accessPayload() used to retrieve the record into the
4364 ** buffer before VdbeRecordCompare() can be called. */
4365 void *pCellKey;
4366 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004367 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004368 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004369 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004370 if( pCellKey==0 ){
4371 rc = SQLITE_NOMEM;
4372 goto moveto_finish;
4373 }
drhfb192682009-07-11 18:26:28 +00004374 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004375 if( rc ){
4376 sqlite3_free(pCellKey);
4377 goto moveto_finish;
4378 }
danielk197711c327a2009-05-04 19:01:26 +00004379 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004380 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004381 }
drh3aac2dd2004-04-26 14:10:20 +00004382 }
drh72f82862001-05-24 21:06:34 +00004383 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004384 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004385 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004386 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004387 break;
4388 }else{
drh64022502009-01-09 14:11:04 +00004389 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004390 rc = SQLITE_OK;
4391 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004392 }
drh72f82862001-05-24 21:06:34 +00004393 }
4394 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004395 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004396 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004397 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004398 }
drhf1d68b32007-03-29 04:43:26 +00004399 if( lwr>upr ){
4400 break;
4401 }
drhf49661a2008-12-10 16:45:50 +00004402 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004403 }
4404 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004405 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004406 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004407 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004408 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004409 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004410 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004411 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004412 }
4413 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004414 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004415 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004416 rc = SQLITE_OK;
4417 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004418 }
drhf49661a2008-12-10 16:45:50 +00004419 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004420 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004421 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004422 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004423 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004424 }
drh1e968a02008-03-25 00:22:21 +00004425moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004426 return rc;
4427}
4428
drhd677b3d2007-08-20 22:48:41 +00004429
drh72f82862001-05-24 21:06:34 +00004430/*
drhc39e0002004-05-07 23:50:57 +00004431** Return TRUE if the cursor is not pointing at an entry of the table.
4432**
4433** TRUE will be returned after a call to sqlite3BtreeNext() moves
4434** past the last entry in the table or sqlite3BtreePrev() moves past
4435** the first entry. TRUE is also returned if the table is empty.
4436*/
4437int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004438 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4439 ** have been deleted? This API will need to change to return an error code
4440 ** as well as the boolean result value.
4441 */
4442 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004443}
4444
4445/*
drhbd03cae2001-06-02 02:40:57 +00004446** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004447** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004448** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004449** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004450*/
drhd094db12008-04-03 21:46:57 +00004451int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004452 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004453 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004454 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004455
drh1fee73e2007-08-29 04:00:57 +00004456 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004457 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004458 if( rc!=SQLITE_OK ){
4459 return rc;
4460 }
drh8c4d3a62007-04-06 01:03:32 +00004461 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004462 if( CURSOR_INVALID==pCur->eState ){
4463 *pRes = 1;
4464 return SQLITE_OK;
4465 }
drh4c301aa2009-07-15 17:25:45 +00004466 if( pCur->skipNext>0 ){
4467 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004468 *pRes = 0;
4469 return SQLITE_OK;
4470 }
drh4c301aa2009-07-15 17:25:45 +00004471 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004472
danielk197771d5d2c2008-09-29 11:49:47 +00004473 pPage = pCur->apPage[pCur->iPage];
4474 idx = ++pCur->aiIdx[pCur->iPage];
4475 assert( pPage->isInit );
4476 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004477
drh271efa52004-05-30 19:19:05 +00004478 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004479 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004480 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004481 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004482 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004483 if( rc ) return rc;
4484 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004485 *pRes = 0;
4486 return rc;
drh72f82862001-05-24 21:06:34 +00004487 }
drh5e2f8b92001-05-28 00:41:15 +00004488 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004489 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004490 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004491 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004492 return SQLITE_OK;
4493 }
danielk197730548662009-07-09 05:07:37 +00004494 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004495 pPage = pCur->apPage[pCur->iPage];
4496 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004497 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004498 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004499 rc = sqlite3BtreeNext(pCur, pRes);
4500 }else{
4501 rc = SQLITE_OK;
4502 }
4503 return rc;
drh8178a752003-01-05 21:41:40 +00004504 }
4505 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004506 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004507 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004508 }
drh5e2f8b92001-05-28 00:41:15 +00004509 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004510 return rc;
drh72f82862001-05-24 21:06:34 +00004511}
drhd677b3d2007-08-20 22:48:41 +00004512
drh72f82862001-05-24 21:06:34 +00004513
drh3b7511c2001-05-26 13:15:44 +00004514/*
drh2dcc9aa2002-12-04 13:40:25 +00004515** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004516** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004517** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004518** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004519*/
drhd094db12008-04-03 21:46:57 +00004520int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004521 int rc;
drh8178a752003-01-05 21:41:40 +00004522 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004523
drh1fee73e2007-08-29 04:00:57 +00004524 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004525 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004526 if( rc!=SQLITE_OK ){
4527 return rc;
4528 }
drha2c20e42008-03-29 16:01:04 +00004529 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004530 if( CURSOR_INVALID==pCur->eState ){
4531 *pRes = 1;
4532 return SQLITE_OK;
4533 }
drh4c301aa2009-07-15 17:25:45 +00004534 if( pCur->skipNext<0 ){
4535 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004536 *pRes = 0;
4537 return SQLITE_OK;
4538 }
drh4c301aa2009-07-15 17:25:45 +00004539 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004540
danielk197771d5d2c2008-09-29 11:49:47 +00004541 pPage = pCur->apPage[pCur->iPage];
4542 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004543 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004544 int idx = pCur->aiIdx[pCur->iPage];
4545 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004546 if( rc ){
4547 return rc;
4548 }
drh2dcc9aa2002-12-04 13:40:25 +00004549 rc = moveToRightmost(pCur);
4550 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004551 while( pCur->aiIdx[pCur->iPage]==0 ){
4552 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004553 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004554 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004555 return SQLITE_OK;
4556 }
danielk197730548662009-07-09 05:07:37 +00004557 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004558 }
drh271efa52004-05-30 19:19:05 +00004559 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004560 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004561
4562 pCur->aiIdx[pCur->iPage]--;
4563 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004564 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004565 rc = sqlite3BtreePrevious(pCur, pRes);
4566 }else{
4567 rc = SQLITE_OK;
4568 }
drh2dcc9aa2002-12-04 13:40:25 +00004569 }
drh8178a752003-01-05 21:41:40 +00004570 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004571 return rc;
4572}
4573
4574/*
drh3b7511c2001-05-26 13:15:44 +00004575** Allocate a new page from the database file.
4576**
danielk19773b8a05f2007-03-19 17:44:26 +00004577** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004578** has already been called on the new page.) The new page has also
4579** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004580** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004581**
4582** SQLITE_OK is returned on success. Any other return value indicates
4583** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004584** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004585**
drh199e3cf2002-07-18 11:01:47 +00004586** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4587** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004588** attempt to keep related pages close to each other in the database file,
4589** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004590**
4591** If the "exact" parameter is not 0, and the page-number nearby exists
4592** anywhere on the free-list, then it is guarenteed to be returned. This
4593** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004594*/
drh4f0c5872007-03-26 22:05:01 +00004595static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004596 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004597 MemPage **ppPage,
4598 Pgno *pPgno,
4599 Pgno nearby,
4600 u8 exact
4601){
drh3aac2dd2004-04-26 14:10:20 +00004602 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004603 int rc;
drh35cd6432009-06-05 14:17:21 +00004604 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004605 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004606 MemPage *pTrunk = 0;
4607 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004608 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004609
drh1fee73e2007-08-29 04:00:57 +00004610 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004611 pPage1 = pBt->pPage1;
drh1662b5a2009-06-04 19:06:09 +00004612 mxPage = pagerPagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004613 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004614 testcase( n==mxPage-1 );
4615 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004616 return SQLITE_CORRUPT_BKPT;
4617 }
drh3aac2dd2004-04-26 14:10:20 +00004618 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004619 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004620 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004621 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4622
4623 /* If the 'exact' parameter was true and a query of the pointer-map
4624 ** shows that the page 'nearby' is somewhere on the free-list, then
4625 ** the entire-list will be searched for that page.
4626 */
4627#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004628 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004629 u8 eType;
4630 assert( nearby>0 );
4631 assert( pBt->autoVacuum );
4632 rc = ptrmapGet(pBt, nearby, &eType, 0);
4633 if( rc ) return rc;
4634 if( eType==PTRMAP_FREEPAGE ){
4635 searchList = 1;
4636 }
4637 *pPgno = nearby;
4638 }
4639#endif
4640
4641 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4642 ** first free-list trunk page. iPrevTrunk is initially 1.
4643 */
danielk19773b8a05f2007-03-19 17:44:26 +00004644 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004645 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004646 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004647
4648 /* The code within this loop is run only once if the 'searchList' variable
4649 ** is not true. Otherwise, it runs once for each trunk-page on the
4650 ** free-list until the page 'nearby' is located.
4651 */
4652 do {
4653 pPrevTrunk = pTrunk;
4654 if( pPrevTrunk ){
4655 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004656 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004657 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004658 }
drhdf35a082009-07-09 02:24:35 +00004659 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004660 if( iTrunk>mxPage ){
4661 rc = SQLITE_CORRUPT_BKPT;
4662 }else{
danielk197730548662009-07-09 05:07:37 +00004663 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004664 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004665 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004666 pTrunk = 0;
4667 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004668 }
4669
4670 k = get4byte(&pTrunk->aData[4]);
4671 if( k==0 && !searchList ){
4672 /* The trunk has no leaves and the list is not being searched.
4673 ** So extract the trunk page itself and use it as the newly
4674 ** allocated page */
4675 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004676 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004677 if( rc ){
4678 goto end_allocate_page;
4679 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004680 *pPgno = iTrunk;
4681 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4682 *ppPage = pTrunk;
4683 pTrunk = 0;
4684 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004685 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004686 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004687 rc = SQLITE_CORRUPT_BKPT;
4688 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004689#ifndef SQLITE_OMIT_AUTOVACUUM
4690 }else if( searchList && nearby==iTrunk ){
4691 /* The list is being searched and this trunk page is the page
4692 ** to allocate, regardless of whether it has leaves.
4693 */
4694 assert( *pPgno==iTrunk );
4695 *ppPage = pTrunk;
4696 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004697 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004698 if( rc ){
4699 goto end_allocate_page;
4700 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004701 if( k==0 ){
4702 if( !pPrevTrunk ){
4703 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4704 }else{
4705 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4706 }
4707 }else{
4708 /* The trunk page is required by the caller but it contains
4709 ** pointers to free-list leaves. The first leaf becomes a trunk
4710 ** page in this case.
4711 */
4712 MemPage *pNewTrunk;
4713 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004714 if( iNewTrunk>mxPage ){
4715 rc = SQLITE_CORRUPT_BKPT;
4716 goto end_allocate_page;
4717 }
drhdf35a082009-07-09 02:24:35 +00004718 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004719 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004720 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004721 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004722 }
danielk19773b8a05f2007-03-19 17:44:26 +00004723 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004724 if( rc!=SQLITE_OK ){
4725 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004726 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004727 }
4728 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4729 put4byte(&pNewTrunk->aData[4], k-1);
4730 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004731 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004732 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004733 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004734 put4byte(&pPage1->aData[32], iNewTrunk);
4735 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004736 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004737 if( rc ){
4738 goto end_allocate_page;
4739 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004740 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4741 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004742 }
4743 pTrunk = 0;
4744 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4745#endif
danielk1977e5765212009-06-17 11:13:28 +00004746 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004747 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004748 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004749 Pgno iPage;
4750 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004751 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004752 if( rc ){
4753 goto end_allocate_page;
4754 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004755 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004756 u32 i;
4757 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004758 closest = 0;
4759 dist = get4byte(&aData[8]) - nearby;
4760 if( dist<0 ) dist = -dist;
4761 for(i=1; i<k; i++){
4762 int d2 = get4byte(&aData[8+i*4]) - nearby;
4763 if( d2<0 ) d2 = -d2;
4764 if( d2<dist ){
4765 closest = i;
4766 dist = d2;
4767 }
4768 }
4769 }else{
4770 closest = 0;
4771 }
4772
4773 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004774 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004775 if( iPage>mxPage ){
4776 rc = SQLITE_CORRUPT_BKPT;
4777 goto end_allocate_page;
4778 }
drhdf35a082009-07-09 02:24:35 +00004779 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004780 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004781 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004782 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004783 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4784 ": %d more free pages\n",
4785 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4786 if( closest<k-1 ){
4787 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4788 }
4789 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004790 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004791 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004792 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004793 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004794 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004795 if( rc!=SQLITE_OK ){
4796 releasePage(*ppPage);
4797 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004798 }
4799 searchList = 0;
4800 }
drhee696e22004-08-30 16:52:17 +00004801 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004802 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004803 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004804 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004805 }else{
drh3aac2dd2004-04-26 14:10:20 +00004806 /* There are no pages on the freelist, so create a new page at the
4807 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004808 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004809 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004810
danielk1977bea2a942009-01-20 17:06:27 +00004811 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4812 (*pPgno)++;
4813 }
4814
danielk1977afcdd022004-10-31 16:25:42 +00004815#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004816 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004817 /* If *pPgno refers to a pointer-map page, allocate two new pages
4818 ** at the end of the file instead of one. The first allocated page
4819 ** becomes a new pointer-map page, the second is used by the caller.
4820 */
danielk1977ac861692009-03-28 10:54:22 +00004821 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004822 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004823 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk197730548662009-07-09 05:07:37 +00004824 rc = btreeGetPage(pBt, *pPgno, &pPg, 0);
danielk1977ac861692009-03-28 10:54:22 +00004825 if( rc==SQLITE_OK ){
4826 rc = sqlite3PagerWrite(pPg->pDbPage);
4827 releasePage(pPg);
4828 }
4829 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004830 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004831 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004832 }
4833#endif
4834
danielk1977599fcba2004-11-08 07:13:13 +00004835 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk197730548662009-07-09 05:07:37 +00004836 rc = btreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004837 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004838 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004839 if( rc!=SQLITE_OK ){
4840 releasePage(*ppPage);
4841 }
drh3a4c1412004-05-09 20:40:11 +00004842 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004843 }
danielk1977599fcba2004-11-08 07:13:13 +00004844
4845 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004846
4847end_allocate_page:
4848 releasePage(pTrunk);
4849 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004850 if( rc==SQLITE_OK ){
4851 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4852 releasePage(*ppPage);
4853 return SQLITE_CORRUPT_BKPT;
4854 }
4855 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004856 }else{
4857 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004858 }
drh3b7511c2001-05-26 13:15:44 +00004859 return rc;
4860}
4861
4862/*
danielk1977bea2a942009-01-20 17:06:27 +00004863** This function is used to add page iPage to the database file free-list.
4864** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004865**
danielk1977bea2a942009-01-20 17:06:27 +00004866** The value passed as the second argument to this function is optional.
4867** If the caller happens to have a pointer to the MemPage object
4868** corresponding to page iPage handy, it may pass it as the second value.
4869** Otherwise, it may pass NULL.
4870**
4871** If a pointer to a MemPage object is passed as the second argument,
4872** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004873*/
danielk1977bea2a942009-01-20 17:06:27 +00004874static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4875 MemPage *pTrunk = 0; /* Free-list trunk page */
4876 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4877 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4878 MemPage *pPage; /* Page being freed. May be NULL. */
4879 int rc; /* Return Code */
4880 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004881
danielk1977bea2a942009-01-20 17:06:27 +00004882 assert( sqlite3_mutex_held(pBt->mutex) );
4883 assert( iPage>1 );
4884 assert( !pMemPage || pMemPage->pgno==iPage );
4885
4886 if( pMemPage ){
4887 pPage = pMemPage;
4888 sqlite3PagerRef(pPage->pDbPage);
4889 }else{
4890 pPage = btreePageLookup(pBt, iPage);
4891 }
drh3aac2dd2004-04-26 14:10:20 +00004892
drha34b6762004-05-07 13:30:42 +00004893 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004894 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004895 if( rc ) goto freepage_out;
4896 nFree = get4byte(&pPage1->aData[36]);
4897 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004898
drhfcce93f2006-02-22 03:08:32 +00004899#ifdef SQLITE_SECURE_DELETE
4900 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4901 ** always fully overwrite deleted information with zeros.
4902 */
danielk197730548662009-07-09 05:07:37 +00004903 if( (!pPage && (rc = btreeGetPage(pBt, iPage, &pPage, 0)))
danielk1977bea2a942009-01-20 17:06:27 +00004904 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4905 ){
4906 goto freepage_out;
4907 }
drhfcce93f2006-02-22 03:08:32 +00004908 memset(pPage->aData, 0, pPage->pBt->pageSize);
4909#endif
4910
danielk1977687566d2004-11-02 12:56:41 +00004911 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004912 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004913 */
danielk197785d90ca2008-07-19 14:25:15 +00004914 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00004915 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00004916 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004917 }
danielk1977687566d2004-11-02 12:56:41 +00004918
danielk1977bea2a942009-01-20 17:06:27 +00004919 /* Now manipulate the actual database free-list structure. There are two
4920 ** possibilities. If the free-list is currently empty, or if the first
4921 ** trunk page in the free-list is full, then this page will become a
4922 ** new free-list trunk page. Otherwise, it will become a leaf of the
4923 ** first trunk page in the current free-list. This block tests if it
4924 ** is possible to add the page as a new free-list leaf.
4925 */
4926 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00004927 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00004928
4929 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00004930 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00004931 if( rc!=SQLITE_OK ){
4932 goto freepage_out;
4933 }
4934
4935 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00004936 assert( pBt->usableSize>32 );
4937 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00004938 rc = SQLITE_CORRUPT_BKPT;
4939 goto freepage_out;
4940 }
drheeb844a2009-08-08 18:01:07 +00004941 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00004942 /* In this case there is room on the trunk page to insert the page
4943 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004944 **
4945 ** Note that the trunk page is not really full until it contains
4946 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4947 ** coded. But due to a coding error in versions of SQLite prior to
4948 ** 3.6.0, databases with freelist trunk pages holding more than
4949 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4950 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00004951 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00004952 ** for now. At some point in the future (once everyone has upgraded
4953 ** to 3.6.0 or later) we should consider fixing the conditional above
4954 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4955 */
danielk19773b8a05f2007-03-19 17:44:26 +00004956 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004957 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004958 put4byte(&pTrunk->aData[4], nLeaf+1);
4959 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhfcce93f2006-02-22 03:08:32 +00004960#ifndef SQLITE_SECURE_DELETE
danielk1977bea2a942009-01-20 17:06:27 +00004961 if( pPage ){
4962 sqlite3PagerDontWrite(pPage->pDbPage);
4963 }
drhfcce93f2006-02-22 03:08:32 +00004964#endif
danielk1977bea2a942009-01-20 17:06:27 +00004965 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004966 }
drh3a4c1412004-05-09 20:40:11 +00004967 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004968 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004969 }
drh3b7511c2001-05-26 13:15:44 +00004970 }
danielk1977bea2a942009-01-20 17:06:27 +00004971
4972 /* If control flows to this point, then it was not possible to add the
4973 ** the page being freed as a leaf page of the first trunk in the free-list.
4974 ** Possibly because the free-list is empty, or possibly because the
4975 ** first trunk in the free-list is full. Either way, the page being freed
4976 ** will become the new first trunk page in the free-list.
4977 */
drhc046e3e2009-07-15 11:26:44 +00004978 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
4979 goto freepage_out;
4980 }
4981 rc = sqlite3PagerWrite(pPage->pDbPage);
4982 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004983 goto freepage_out;
4984 }
4985 put4byte(pPage->aData, iTrunk);
4986 put4byte(&pPage->aData[4], 0);
4987 put4byte(&pPage1->aData[32], iPage);
4988 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
4989
4990freepage_out:
4991 if( pPage ){
4992 pPage->isInit = 0;
4993 }
4994 releasePage(pPage);
4995 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004996 return rc;
4997}
drhc314dc72009-07-21 11:52:34 +00004998static void freePage(MemPage *pPage, int *pRC){
4999 if( (*pRC)==SQLITE_OK ){
5000 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5001 }
danielk1977bea2a942009-01-20 17:06:27 +00005002}
drh3b7511c2001-05-26 13:15:44 +00005003
5004/*
drh3aac2dd2004-04-26 14:10:20 +00005005** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005006*/
drh3aac2dd2004-04-26 14:10:20 +00005007static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005008 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005009 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005010 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005011 int rc;
drh94440812007-03-06 11:42:19 +00005012 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00005013 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005014
drh1fee73e2007-08-29 04:00:57 +00005015 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005016 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005017 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005018 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005019 }
drh6f11bef2004-05-13 01:12:56 +00005020 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005021 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005022 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005023 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5024 assert( ovflPgno==0 || nOvfl>0 );
5025 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005026 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005027 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00005028 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
5029 /* 0 is not a legal page number and page 1 cannot be an
5030 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5031 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005032 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005033 }
danielk1977bea2a942009-01-20 17:06:27 +00005034 if( nOvfl ){
5035 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5036 if( rc ) return rc;
5037 }
5038 rc = freePage2(pBt, pOvfl, ovflPgno);
5039 if( pOvfl ){
5040 sqlite3PagerUnref(pOvfl->pDbPage);
5041 }
drh3b7511c2001-05-26 13:15:44 +00005042 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005043 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005044 }
drh5e2f8b92001-05-28 00:41:15 +00005045 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005046}
5047
5048/*
drh91025292004-05-03 19:49:32 +00005049** Create the byte sequence used to represent a cell on page pPage
5050** and write that byte sequence into pCell[]. Overflow pages are
5051** allocated and filled in as necessary. The calling procedure
5052** is responsible for making sure sufficient space has been allocated
5053** for pCell[].
5054**
5055** Note that pCell does not necessary need to point to the pPage->aData
5056** area. pCell might point to some temporary storage. The cell will
5057** be constructed in this temporary area then copied into pPage->aData
5058** later.
drh3b7511c2001-05-26 13:15:44 +00005059*/
5060static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005061 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005062 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005063 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005064 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005065 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005066 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005067){
drh3b7511c2001-05-26 13:15:44 +00005068 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005069 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005070 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005071 int spaceLeft;
5072 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005073 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005074 unsigned char *pPrior;
5075 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005076 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005077 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005078 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005079 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005080
drh1fee73e2007-08-29 04:00:57 +00005081 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005082
drhc5053fb2008-11-27 02:22:10 +00005083 /* pPage is not necessarily writeable since pCell might be auxiliary
5084 ** buffer space that is separate from the pPage buffer area */
5085 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5086 || sqlite3PagerIswriteable(pPage->pDbPage) );
5087
drh91025292004-05-03 19:49:32 +00005088 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005089 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005090 if( !pPage->leaf ){
5091 nHeader += 4;
5092 }
drh8b18dd42004-05-12 19:18:15 +00005093 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005094 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005095 }else{
drhb026e052007-05-02 01:34:31 +00005096 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005097 }
drh6f11bef2004-05-13 01:12:56 +00005098 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005099 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005100 assert( info.nHeader==nHeader );
5101 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005102 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005103
5104 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005105 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005106 if( pPage->intKey ){
5107 pSrc = pData;
5108 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005109 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005110 }else{
danielk197731d31b82009-07-13 13:18:07 +00005111 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5112 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005113 }
drhf49661a2008-12-10 16:45:50 +00005114 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005115 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005116 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005117 }
drh6f11bef2004-05-13 01:12:56 +00005118 *pnSize = info.nSize;
5119 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005120 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005121 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005122
drh3b7511c2001-05-26 13:15:44 +00005123 while( nPayload>0 ){
5124 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005125#ifndef SQLITE_OMIT_AUTOVACUUM
5126 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005127 if( pBt->autoVacuum ){
5128 do{
5129 pgnoOvfl++;
5130 } while(
5131 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5132 );
danielk1977b39f70b2007-05-17 18:28:11 +00005133 }
danielk1977afcdd022004-10-31 16:25:42 +00005134#endif
drhf49661a2008-12-10 16:45:50 +00005135 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005136#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005137 /* If the database supports auto-vacuum, and the second or subsequent
5138 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005139 ** for that page now.
5140 **
5141 ** If this is the first overflow page, then write a partial entry
5142 ** to the pointer-map. If we write nothing to this pointer-map slot,
5143 ** then the optimistic overflow chain processing in clearCell()
5144 ** may misinterpret the uninitialised values and delete the
5145 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005146 */
danielk19774ef24492007-05-23 09:52:41 +00005147 if( pBt->autoVacuum && rc==SQLITE_OK ){
5148 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005149 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005150 if( rc ){
5151 releasePage(pOvfl);
5152 }
danielk1977afcdd022004-10-31 16:25:42 +00005153 }
5154#endif
drh3b7511c2001-05-26 13:15:44 +00005155 if( rc ){
drh9b171272004-05-08 02:03:22 +00005156 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005157 return rc;
5158 }
drhc5053fb2008-11-27 02:22:10 +00005159
5160 /* If pToRelease is not zero than pPrior points into the data area
5161 ** of pToRelease. Make sure pToRelease is still writeable. */
5162 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5163
5164 /* If pPrior is part of the data area of pPage, then make sure pPage
5165 ** is still writeable */
5166 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5167 || sqlite3PagerIswriteable(pPage->pDbPage) );
5168
drh3aac2dd2004-04-26 14:10:20 +00005169 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005170 releasePage(pToRelease);
5171 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005172 pPrior = pOvfl->aData;
5173 put4byte(pPrior, 0);
5174 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005175 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005176 }
5177 n = nPayload;
5178 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005179
5180 /* If pToRelease is not zero than pPayload points into the data area
5181 ** of pToRelease. Make sure pToRelease is still writeable. */
5182 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5183
5184 /* If pPayload is part of the data area of pPage, then make sure pPage
5185 ** is still writeable */
5186 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5187 || sqlite3PagerIswriteable(pPage->pDbPage) );
5188
drhb026e052007-05-02 01:34:31 +00005189 if( nSrc>0 ){
5190 if( n>nSrc ) n = nSrc;
5191 assert( pSrc );
5192 memcpy(pPayload, pSrc, n);
5193 }else{
5194 memset(pPayload, 0, n);
5195 }
drh3b7511c2001-05-26 13:15:44 +00005196 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005197 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005198 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005199 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005200 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005201 if( nSrc==0 ){
5202 nSrc = nData;
5203 pSrc = pData;
5204 }
drhdd793422001-06-28 01:54:48 +00005205 }
drh9b171272004-05-08 02:03:22 +00005206 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005207 return SQLITE_OK;
5208}
5209
drh14acc042001-06-10 19:56:58 +00005210/*
5211** Remove the i-th cell from pPage. This routine effects pPage only.
5212** The cell content is not freed or deallocated. It is assumed that
5213** the cell content has been copied someplace else. This routine just
5214** removes the reference to the cell from pPage.
5215**
5216** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005217*/
drh98add2e2009-07-20 17:11:49 +00005218static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43605152004-05-29 21:46:49 +00005219 int i; /* Loop counter */
5220 int pc; /* Offset to cell content of cell being deleted */
5221 u8 *data; /* pPage->aData */
5222 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005223 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005224 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005225
drh98add2e2009-07-20 17:11:49 +00005226 if( *pRC ) return;
5227
drh8c42ca92001-06-22 19:15:00 +00005228 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005229 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005230 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005231 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005232 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005233 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005234 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005235 hdr = pPage->hdrOffset;
5236 testcase( pc==get2byte(&data[hdr+5]) );
5237 testcase( pc+sz==pPage->pBt->usableSize );
5238 if( pc < get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005239 *pRC = SQLITE_CORRUPT_BKPT;
5240 return;
shane0af3f892008-11-12 04:55:34 +00005241 }
shanedcc50b72008-11-13 18:29:50 +00005242 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005243 if( rc ){
5244 *pRC = rc;
5245 return;
shanedcc50b72008-11-13 18:29:50 +00005246 }
drh43605152004-05-29 21:46:49 +00005247 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5248 ptr[0] = ptr[2];
5249 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005250 }
5251 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005252 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005253 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005254}
5255
5256/*
5257** Insert a new cell on pPage at cell index "i". pCell points to the
5258** content of the cell.
5259**
5260** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005261** will not fit, then make a copy of the cell content into pTemp if
5262** pTemp is not null. Regardless of pTemp, allocate a new entry
5263** in pPage->aOvfl[] and make it point to the cell content (either
5264** in pTemp or the original pCell) and also record its index.
5265** Allocating a new entry in pPage->aCell[] implies that
5266** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005267**
5268** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5269** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005270** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005271** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005272*/
drh98add2e2009-07-20 17:11:49 +00005273static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005274 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005275 int i, /* New cell becomes the i-th cell of the page */
5276 u8 *pCell, /* Content of the new cell */
5277 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005278 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005279 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5280 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005281){
drh43605152004-05-29 21:46:49 +00005282 int idx; /* Where to write new cell content in data[] */
5283 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005284 int end; /* First byte past the last cell pointer in data[] */
5285 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005286 int cellOffset; /* Address of first cell pointer in data[] */
5287 u8 *data; /* The content of the whole page */
5288 u8 *ptr; /* Used for moving information around in data[] */
5289
danielk19774dbaa892009-06-16 16:50:22 +00005290 int nSkip = (iChild ? 4 : 0);
5291
drh98add2e2009-07-20 17:11:49 +00005292 if( *pRC ) return;
5293
drh43605152004-05-29 21:46:49 +00005294 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005295 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5296 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005297 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005298 /* The cell should normally be sized correctly. However, when moving a
5299 ** malformed cell from a leaf page to an interior page, if the cell size
5300 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5301 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5302 ** the term after the || in the following assert(). */
5303 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005304 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005305 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005306 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005307 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005308 }
danielk19774dbaa892009-06-16 16:50:22 +00005309 if( iChild ){
5310 put4byte(pCell, iChild);
5311 }
drh43605152004-05-29 21:46:49 +00005312 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005313 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005314 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005315 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005316 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005317 int rc = sqlite3PagerWrite(pPage->pDbPage);
5318 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005319 *pRC = rc;
5320 return;
danielk19776e465eb2007-08-21 13:11:00 +00005321 }
5322 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005323 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005324 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005325 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005326 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005327 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005328 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005329 /* The allocateSpace() routine guarantees the following two properties
5330 ** if it returns success */
5331 assert( idx >= end+2 );
5332 assert( idx+sz <= pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005333 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005334 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005335 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005336 if( iChild ){
5337 put4byte(&data[idx], iChild);
5338 }
drh0a45c272009-07-08 01:49:11 +00005339 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005340 ptr[0] = ptr[-2];
5341 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005342 }
drh43605152004-05-29 21:46:49 +00005343 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005344 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005345#ifndef SQLITE_OMIT_AUTOVACUUM
5346 if( pPage->pBt->autoVacuum ){
5347 /* The cell may contain a pointer to an overflow page. If so, write
5348 ** the entry for the overflow page into the pointer map.
5349 */
drh98add2e2009-07-20 17:11:49 +00005350 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005351 }
5352#endif
drh14acc042001-06-10 19:56:58 +00005353 }
5354}
5355
5356/*
drhfa1a98a2004-05-14 19:08:17 +00005357** Add a list of cells to a page. The page should be initially empty.
5358** The cells are guaranteed to fit on the page.
5359*/
5360static void assemblePage(
5361 MemPage *pPage, /* The page to be assemblied */
5362 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005363 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005364 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005365){
5366 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005367 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005368 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005369 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5370 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5371 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005372
drh43605152004-05-29 21:46:49 +00005373 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005374 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005375 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005376 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005377
5378 /* Check that the page has just been zeroed by zeroPage() */
5379 assert( pPage->nCell==0 );
5380 assert( get2byte(&data[hdr+5])==nUsable );
5381
5382 pCellptr = &data[pPage->cellOffset + nCell*2];
5383 cellbody = nUsable;
5384 for(i=nCell-1; i>=0; i--){
5385 pCellptr -= 2;
5386 cellbody -= aSize[i];
5387 put2byte(pCellptr, cellbody);
5388 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005389 }
danielk1977fad91942009-04-29 17:49:59 +00005390 put2byte(&data[hdr+3], nCell);
5391 put2byte(&data[hdr+5], cellbody);
5392 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005393 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005394}
5395
drh14acc042001-06-10 19:56:58 +00005396/*
drhc3b70572003-01-04 19:44:07 +00005397** The following parameters determine how many adjacent pages get involved
5398** in a balancing operation. NN is the number of neighbors on either side
5399** of the page that participate in the balancing operation. NB is the
5400** total number of pages that participate, including the target page and
5401** NN neighbors on either side.
5402**
5403** The minimum value of NN is 1 (of course). Increasing NN above 1
5404** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5405** in exchange for a larger degradation in INSERT and UPDATE performance.
5406** The value of NN appears to give the best results overall.
5407*/
5408#define NN 1 /* Number of neighbors on either side of pPage */
5409#define NB (NN*2+1) /* Total pages involved in the balance */
5410
danielk1977ac245ec2005-01-14 13:50:11 +00005411
drh615ae552005-01-16 23:21:00 +00005412#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005413/*
5414** This version of balance() handles the common special case where
5415** a new entry is being inserted on the extreme right-end of the
5416** tree, in other words, when the new entry will become the largest
5417** entry in the tree.
5418**
drhc314dc72009-07-21 11:52:34 +00005419** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005420** a new page to the right-hand side and put the one new entry in
5421** that page. This leaves the right side of the tree somewhat
5422** unbalanced. But odds are that we will be inserting new entries
5423** at the end soon afterwards so the nearly empty page will quickly
5424** fill up. On average.
5425**
5426** pPage is the leaf page which is the right-most page in the tree.
5427** pParent is its parent. pPage must have a single overflow entry
5428** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005429**
5430** The pSpace buffer is used to store a temporary copy of the divider
5431** cell that will be inserted into pParent. Such a cell consists of a 4
5432** byte page number followed by a variable length integer. In other
5433** words, at most 13 bytes. Hence the pSpace buffer must be at
5434** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005435*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005436static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5437 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005438 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005439 int rc; /* Return Code */
5440 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005441
drh1fee73e2007-08-29 04:00:57 +00005442 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005443 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005444 assert( pPage->nOverflow==1 );
5445
drh5d1a8722009-07-22 18:07:40 +00005446 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005447
danielk1977a50d9aa2009-06-08 14:49:45 +00005448 /* Allocate a new page. This page will become the right-sibling of
5449 ** pPage. Make the parent page writable, so that the new divider cell
5450 ** may be inserted. If both these operations are successful, proceed.
5451 */
drh4f0c5872007-03-26 22:05:01 +00005452 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005453
danielk1977eaa06f62008-09-18 17:34:44 +00005454 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005455
5456 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005457 u8 *pCell = pPage->aOvfl[0].pCell;
5458 u16 szCell = cellSizePtr(pPage, pCell);
5459 u8 *pStop;
5460
drhc5053fb2008-11-27 02:22:10 +00005461 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005462 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5463 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005464 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005465
5466 /* If this is an auto-vacuum database, update the pointer map
5467 ** with entries for the new page, and any pointer from the
5468 ** cell on the page to an overflow page. If either of these
5469 ** operations fails, the return code is set, but the contents
5470 ** of the parent page are still manipulated by thh code below.
5471 ** That is Ok, at this point the parent page is guaranteed to
5472 ** be marked as dirty. Returning an error code will cause a
5473 ** rollback, undoing any changes made to the parent page.
5474 */
5475 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005476 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5477 if( szCell>pNew->minLocal ){
5478 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005479 }
5480 }
danielk1977eaa06f62008-09-18 17:34:44 +00005481
danielk19776f235cc2009-06-04 14:46:08 +00005482 /* Create a divider cell to insert into pParent. The divider cell
5483 ** consists of a 4-byte page number (the page number of pPage) and
5484 ** a variable length key value (which must be the same value as the
5485 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005486 **
danielk19776f235cc2009-06-04 14:46:08 +00005487 ** To find the largest key value on pPage, first find the right-most
5488 ** cell on pPage. The first two fields of this cell are the
5489 ** record-length (a variable length integer at most 32-bits in size)
5490 ** and the key value (a variable length integer, may have any value).
5491 ** The first of the while(...) loops below skips over the record-length
5492 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005493 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005494 */
danielk1977eaa06f62008-09-18 17:34:44 +00005495 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005496 pStop = &pCell[9];
5497 while( (*(pCell++)&0x80) && pCell<pStop );
5498 pStop = &pCell[9];
5499 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5500
danielk19774dbaa892009-06-16 16:50:22 +00005501 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005502 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5503 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005504
5505 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005506 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5507
danielk1977e08a3c42008-09-18 18:17:03 +00005508 /* Release the reference to the new page. */
5509 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005510 }
5511
danielk1977eaa06f62008-09-18 17:34:44 +00005512 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005513}
drh615ae552005-01-16 23:21:00 +00005514#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005515
danielk19774dbaa892009-06-16 16:50:22 +00005516#if 0
drhc3b70572003-01-04 19:44:07 +00005517/*
danielk19774dbaa892009-06-16 16:50:22 +00005518** This function does not contribute anything to the operation of SQLite.
5519** it is sometimes activated temporarily while debugging code responsible
5520** for setting pointer-map entries.
5521*/
5522static int ptrmapCheckPages(MemPage **apPage, int nPage){
5523 int i, j;
5524 for(i=0; i<nPage; i++){
5525 Pgno n;
5526 u8 e;
5527 MemPage *pPage = apPage[i];
5528 BtShared *pBt = pPage->pBt;
5529 assert( pPage->isInit );
5530
5531 for(j=0; j<pPage->nCell; j++){
5532 CellInfo info;
5533 u8 *z;
5534
5535 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005536 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005537 if( info.iOverflow ){
5538 Pgno ovfl = get4byte(&z[info.iOverflow]);
5539 ptrmapGet(pBt, ovfl, &e, &n);
5540 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5541 }
5542 if( !pPage->leaf ){
5543 Pgno child = get4byte(z);
5544 ptrmapGet(pBt, child, &e, &n);
5545 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5546 }
5547 }
5548 if( !pPage->leaf ){
5549 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5550 ptrmapGet(pBt, child, &e, &n);
5551 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5552 }
5553 }
5554 return 1;
5555}
5556#endif
5557
danielk1977cd581a72009-06-23 15:43:39 +00005558/*
5559** This function is used to copy the contents of the b-tree node stored
5560** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5561** the pointer-map entries for each child page are updated so that the
5562** parent page stored in the pointer map is page pTo. If pFrom contained
5563** any cells with overflow page pointers, then the corresponding pointer
5564** map entries are also updated so that the parent page is page pTo.
5565**
5566** If pFrom is currently carrying any overflow cells (entries in the
5567** MemPage.aOvfl[] array), they are not copied to pTo.
5568**
danielk197730548662009-07-09 05:07:37 +00005569** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005570**
5571** The performance of this function is not critical. It is only used by
5572** the balance_shallower() and balance_deeper() procedures, neither of
5573** which are called often under normal circumstances.
5574*/
drhc314dc72009-07-21 11:52:34 +00005575static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5576 if( (*pRC)==SQLITE_OK ){
5577 BtShared * const pBt = pFrom->pBt;
5578 u8 * const aFrom = pFrom->aData;
5579 u8 * const aTo = pTo->aData;
5580 int const iFromHdr = pFrom->hdrOffset;
5581 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
5582 TESTONLY(int rc;)
5583 int iData;
5584
5585
5586 assert( pFrom->isInit );
5587 assert( pFrom->nFree>=iToHdr );
5588 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5589
5590 /* Copy the b-tree node content from page pFrom to page pTo. */
5591 iData = get2byte(&aFrom[iFromHdr+5]);
5592 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5593 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5594
5595 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005596 ** match the new data. The initialization of pTo can actually fail under
5597 ** fairly obscure circumstances, even though it is a copy of initialized
5598 ** page pFrom.
5599 */
drhc314dc72009-07-21 11:52:34 +00005600 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005601 rc = btreeInitPage(pTo);
5602 if( rc!=SQLITE_OK ){
5603 *pRC = rc;
5604 return;
5605 }
drhc314dc72009-07-21 11:52:34 +00005606
5607 /* If this is an auto-vacuum database, update the pointer-map entries
5608 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5609 */
5610 if( ISAUTOVACUUM ){
5611 *pRC = setChildPtrmaps(pTo);
5612 }
danielk1977cd581a72009-06-23 15:43:39 +00005613 }
danielk1977cd581a72009-06-23 15:43:39 +00005614}
5615
5616/*
danielk19774dbaa892009-06-16 16:50:22 +00005617** This routine redistributes cells on the iParentIdx'th child of pParent
5618** (hereafter "the page") and up to 2 siblings so that all pages have about the
5619** same amount of free space. Usually a single sibling on either side of the
5620** page are used in the balancing, though both siblings might come from one
5621** side if the page is the first or last child of its parent. If the page
5622** has fewer than 2 siblings (something which can only happen if the page
5623** is a root page or a child of a root page) then all available siblings
5624** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005625**
danielk19774dbaa892009-06-16 16:50:22 +00005626** The number of siblings of the page might be increased or decreased by
5627** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005628**
danielk19774dbaa892009-06-16 16:50:22 +00005629** Note that when this routine is called, some of the cells on the page
5630** might not actually be stored in MemPage.aData[]. This can happen
5631** if the page is overfull. This routine ensures that all cells allocated
5632** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005633**
danielk19774dbaa892009-06-16 16:50:22 +00005634** In the course of balancing the page and its siblings, cells may be
5635** inserted into or removed from the parent page (pParent). Doing so
5636** may cause the parent page to become overfull or underfull. If this
5637** happens, it is the responsibility of the caller to invoke the correct
5638** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005639**
drh5e00f6c2001-09-13 13:46:56 +00005640** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005641** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005642** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005643**
5644** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005645** buffer big enough to hold one page. If while inserting cells into the parent
5646** page (pParent) the parent page becomes overfull, this buffer is
5647** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005648** a maximum of four divider cells into the parent page, and the maximum
5649** size of a cell stored within an internal node is always less than 1/4
5650** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5651** enough for all overflow cells.
5652**
5653** If aOvflSpace is set to a null pointer, this function returns
5654** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005655*/
danielk19774dbaa892009-06-16 16:50:22 +00005656static int balance_nonroot(
5657 MemPage *pParent, /* Parent page of siblings being balanced */
5658 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005659 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5660 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005661){
drh16a9b832007-05-05 18:39:25 +00005662 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005663 int nCell = 0; /* Number of cells in apCell[] */
5664 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005665 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005666 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005667 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005668 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005669 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005670 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005671 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005672 int usableSpace; /* Bytes in pPage beyond the header */
5673 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005674 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005675 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005676 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005677 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005678 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005679 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005680 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005681 u8 *pRight; /* Location in parent of right-sibling pointer */
5682 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005683 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5684 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005685 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005686 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005687 u8 *aSpace1; /* Space for copies of dividers cells */
5688 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005689
danielk1977a50d9aa2009-06-08 14:49:45 +00005690 pBt = pParent->pBt;
5691 assert( sqlite3_mutex_held(pBt->mutex) );
5692 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005693
danielk1977e5765212009-06-17 11:13:28 +00005694#if 0
drh43605152004-05-29 21:46:49 +00005695 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005696#endif
drh2e38c322004-09-03 18:38:44 +00005697
danielk19774dbaa892009-06-16 16:50:22 +00005698 /* At this point pParent may have at most one overflow cell. And if
5699 ** this overflow cell is present, it must be the cell with
5700 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005701 ** is called (indirectly) from sqlite3BtreeDelete().
5702 */
danielk19774dbaa892009-06-16 16:50:22 +00005703 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5704 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5705
danielk197711a8a862009-06-17 11:49:52 +00005706 if( !aOvflSpace ){
5707 return SQLITE_NOMEM;
5708 }
5709
danielk1977a50d9aa2009-06-08 14:49:45 +00005710 /* Find the sibling pages to balance. Also locate the cells in pParent
5711 ** that divide the siblings. An attempt is made to find NN siblings on
5712 ** either side of pPage. More siblings are taken from one side, however,
5713 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005714 ** has NB or fewer children then all children of pParent are taken.
5715 **
5716 ** This loop also drops the divider cells from the parent page. This
5717 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005718 ** overflow cells in the parent page, since if any existed they will
5719 ** have already been removed.
5720 */
danielk19774dbaa892009-06-16 16:50:22 +00005721 i = pParent->nOverflow + pParent->nCell;
5722 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005723 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005724 nOld = i+1;
5725 }else{
5726 nOld = 3;
5727 if( iParentIdx==0 ){
5728 nxDiv = 0;
5729 }else if( iParentIdx==i ){
5730 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005731 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005732 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005733 }
danielk19774dbaa892009-06-16 16:50:22 +00005734 i = 2;
5735 }
5736 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5737 pRight = &pParent->aData[pParent->hdrOffset+8];
5738 }else{
5739 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5740 }
5741 pgno = get4byte(pRight);
5742 while( 1 ){
5743 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5744 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00005745 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00005746 goto balance_cleanup;
5747 }
danielk1977634f2982005-03-28 08:44:07 +00005748 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005749 if( (i--)==0 ) break;
5750
drhcd09c532009-07-20 19:30:00 +00005751 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00005752 apDiv[i] = pParent->aOvfl[0].pCell;
5753 pgno = get4byte(apDiv[i]);
5754 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5755 pParent->nOverflow = 0;
5756 }else{
5757 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5758 pgno = get4byte(apDiv[i]);
5759 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5760
5761 /* Drop the cell from the parent page. apDiv[i] still points to
5762 ** the cell within the parent, even though it has been dropped.
5763 ** This is safe because dropping a cell only overwrites the first
5764 ** four bytes of it, and this function does not need the first
5765 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005766 ** later on.
5767 **
5768 ** Unless SQLite is compiled in secure-delete mode. In this case,
5769 ** the dropCell() routine will overwrite the entire cell with zeroes.
5770 ** In this case, temporarily copy the cell into the aOvflSpace[]
5771 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5772 ** is allocated. */
5773#ifdef SQLITE_SECURE_DELETE
5774 memcpy(&aOvflSpace[apDiv[i]-pParent->aData], apDiv[i], szNew[i]);
5775 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5776#endif
drh98add2e2009-07-20 17:11:49 +00005777 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005778 }
drh8b2f49b2001-06-08 00:21:52 +00005779 }
5780
drha9121e42008-02-19 14:59:35 +00005781 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005782 ** alignment */
drha9121e42008-02-19 14:59:35 +00005783 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005784
drh8b2f49b2001-06-08 00:21:52 +00005785 /*
danielk1977634f2982005-03-28 08:44:07 +00005786 ** Allocate space for memory structures
5787 */
danielk19774dbaa892009-06-16 16:50:22 +00005788 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005789 szScratch =
drha9121e42008-02-19 14:59:35 +00005790 nMaxCells*sizeof(u8*) /* apCell */
5791 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005792 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005793 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005794 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005795 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005796 rc = SQLITE_NOMEM;
5797 goto balance_cleanup;
5798 }
drha9121e42008-02-19 14:59:35 +00005799 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005800 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005801 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005802
5803 /*
5804 ** Load pointers to all cells on sibling pages and the divider cells
5805 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005806 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005807 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005808 **
5809 ** If the siblings are on leaf pages, then the child pointers of the
5810 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005811 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005812 ** child pointers. If siblings are not leaves, then all cell in
5813 ** apCell[] include child pointers. Either way, all cells in apCell[]
5814 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005815 **
5816 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5817 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005818 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005819 leafCorrection = apOld[0]->leaf*4;
5820 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005821 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005822 int limit;
5823
5824 /* Before doing anything else, take a copy of the i'th original sibling
5825 ** The rest of this function will use data from the copies rather
5826 ** that the original pages since the original pages will be in the
5827 ** process of being overwritten. */
5828 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5829 memcpy(pOld, apOld[i], sizeof(MemPage));
5830 pOld->aData = (void*)&pOld[1];
5831 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5832
5833 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005834 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005835 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005836 apCell[nCell] = findOverflowCell(pOld, j);
5837 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005838 nCell++;
5839 }
5840 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005841 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005842 u8 *pTemp;
5843 assert( nCell<nMaxCells );
5844 szCell[nCell] = sz;
5845 pTemp = &aSpace1[iSpace1];
5846 iSpace1 += sz;
5847 assert( sz<=pBt->pageSize/4 );
5848 assert( iSpace1<=pBt->pageSize );
5849 memcpy(pTemp, apDiv[i], sz);
5850 apCell[nCell] = pTemp+leafCorrection;
5851 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005852 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005853 if( !pOld->leaf ){
5854 assert( leafCorrection==0 );
5855 assert( pOld->hdrOffset==0 );
5856 /* The right pointer of the child page pOld becomes the left
5857 ** pointer of the divider cell */
5858 memcpy(apCell[nCell], &pOld->aData[8], 4);
5859 }else{
5860 assert( leafCorrection==4 );
5861 if( szCell[nCell]<4 ){
5862 /* Do not allow any cells smaller than 4 bytes. */
5863 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005864 }
5865 }
drh14acc042001-06-10 19:56:58 +00005866 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005867 }
drh8b2f49b2001-06-08 00:21:52 +00005868 }
5869
5870 /*
drh6019e162001-07-02 17:51:45 +00005871 ** Figure out the number of pages needed to hold all nCell cells.
5872 ** Store this number in "k". Also compute szNew[] which is the total
5873 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005874 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005875 ** cntNew[k] should equal nCell.
5876 **
drh96f5b762004-05-16 16:24:36 +00005877 ** Values computed by this block:
5878 **
5879 ** k: The total number of sibling pages
5880 ** szNew[i]: Spaced used on the i-th sibling page.
5881 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5882 ** the right of the i-th sibling page.
5883 ** usableSpace: Number of bytes of space available on each sibling.
5884 **
drh8b2f49b2001-06-08 00:21:52 +00005885 */
drh43605152004-05-29 21:46:49 +00005886 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005887 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005888 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005889 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005890 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005891 szNew[k] = subtotal - szCell[i];
5892 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005893 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005894 subtotal = 0;
5895 k++;
drheac74422009-06-14 12:47:11 +00005896 if( k>NB+1 ){ rc = SQLITE_CORRUPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00005897 }
5898 }
5899 szNew[k] = subtotal;
5900 cntNew[k] = nCell;
5901 k++;
drh96f5b762004-05-16 16:24:36 +00005902
5903 /*
5904 ** The packing computed by the previous block is biased toward the siblings
5905 ** on the left side. The left siblings are always nearly full, while the
5906 ** right-most sibling might be nearly empty. This block of code attempts
5907 ** to adjust the packing of siblings to get a better balance.
5908 **
5909 ** This adjustment is more than an optimization. The packing above might
5910 ** be so out of balance as to be illegal. For example, the right-most
5911 ** sibling might be completely empty. This adjustment is not optional.
5912 */
drh6019e162001-07-02 17:51:45 +00005913 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005914 int szRight = szNew[i]; /* Size of sibling on the right */
5915 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5916 int r; /* Index of right-most cell in left sibling */
5917 int d; /* Index of first cell to the left of right sibling */
5918
5919 r = cntNew[i-1] - 1;
5920 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005921 assert( d<nMaxCells );
5922 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005923 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5924 szRight += szCell[d] + 2;
5925 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005926 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005927 r = cntNew[i-1] - 1;
5928 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005929 }
drh96f5b762004-05-16 16:24:36 +00005930 szNew[i] = szRight;
5931 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005932 }
drh09d0deb2005-08-02 17:13:09 +00005933
danielk19776f235cc2009-06-04 14:46:08 +00005934 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00005935 ** a virtual root page. A virtual root page is when the real root
5936 ** page is page 1 and we are the only child of that page.
5937 */
5938 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005939
danielk1977e5765212009-06-17 11:13:28 +00005940 TRACE(("BALANCE: old: %d %d %d ",
5941 apOld[0]->pgno,
5942 nOld>=2 ? apOld[1]->pgno : 0,
5943 nOld>=3 ? apOld[2]->pgno : 0
5944 ));
5945
drh8b2f49b2001-06-08 00:21:52 +00005946 /*
drh6b308672002-07-08 02:16:37 +00005947 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005948 */
drheac74422009-06-14 12:47:11 +00005949 if( apOld[0]->pgno<=1 ){
5950 rc = SQLITE_CORRUPT;
5951 goto balance_cleanup;
5952 }
danielk1977a50d9aa2009-06-08 14:49:45 +00005953 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00005954 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005955 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005956 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005957 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005958 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005959 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005960 nNew++;
danielk197728129562005-01-11 10:25:06 +00005961 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005962 }else{
drh7aa8f852006-03-28 00:24:44 +00005963 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00005964 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00005965 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005966 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005967 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00005968
5969 /* Set the pointer-map entry for the new sibling page. */
5970 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005971 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005972 if( rc!=SQLITE_OK ){
5973 goto balance_cleanup;
5974 }
5975 }
drh6b308672002-07-08 02:16:37 +00005976 }
drh8b2f49b2001-06-08 00:21:52 +00005977 }
5978
danielk1977299b1872004-11-22 10:02:10 +00005979 /* Free any old pages that were not reused as new pages.
5980 */
5981 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00005982 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00005983 if( rc ) goto balance_cleanup;
5984 releasePage(apOld[i]);
5985 apOld[i] = 0;
5986 i++;
5987 }
5988
drh8b2f49b2001-06-08 00:21:52 +00005989 /*
drhf9ffac92002-03-02 19:00:31 +00005990 ** Put the new pages in accending order. This helps to
5991 ** keep entries in the disk file in order so that a scan
5992 ** of the table is a linear scan through the file. That
5993 ** in turn helps the operating system to deliver pages
5994 ** from the disk more rapidly.
5995 **
5996 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005997 ** n is never more than NB (a small constant), that should
5998 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005999 **
drhc3b70572003-01-04 19:44:07 +00006000 ** When NB==3, this one optimization makes the database
6001 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006002 */
6003 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006004 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006005 int minI = i;
6006 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006007 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006008 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006009 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006010 }
6011 }
6012 if( minI>i ){
6013 int t;
6014 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00006015 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006016 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006017 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006018 apNew[minI] = pT;
6019 }
6020 }
danielk1977e5765212009-06-17 11:13:28 +00006021 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006022 apNew[0]->pgno, szNew[0],
6023 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6024 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6025 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6026 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6027
6028 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6029 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006030
drhf9ffac92002-03-02 19:00:31 +00006031 /*
drh14acc042001-06-10 19:56:58 +00006032 ** Evenly distribute the data in apCell[] across the new pages.
6033 ** Insert divider cells into pParent as necessary.
6034 */
6035 j = 0;
6036 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006037 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006038 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006039 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006040 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006041 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006042 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006043 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006044
danielk1977ac11ee62005-01-15 12:45:51 +00006045 j = cntNew[i];
6046
6047 /* If the sibling page assembled above was not the right-most sibling,
6048 ** insert a divider cell into the parent page.
6049 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006050 assert( i<nNew-1 || j==nCell );
6051 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006052 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006053 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006054 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006055
6056 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006057 pCell = apCell[j];
6058 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006059 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006060 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006061 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006062 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006063 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006064 ** then there is no divider cell in apCell[]. Instead, the divider
6065 ** cell consists of the integer key for the right-most cell of
6066 ** the sibling-page assembled above only.
6067 */
drh6f11bef2004-05-13 01:12:56 +00006068 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006069 j--;
danielk197730548662009-07-09 05:07:37 +00006070 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006071 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006072 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006073 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006074 }else{
6075 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006076 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006077 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006078 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006079 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006080 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006081 ** insertCell(), so reparse the cell now.
6082 **
6083 ** Note that this can never happen in an SQLite data file, as all
6084 ** cells are at least 4 bytes. It only happens in b-trees used
6085 ** to evaluate "IN (SELECT ...)" and similar clauses.
6086 */
6087 if( szCell[j]==4 ){
6088 assert(leafCorrection==4);
6089 sz = cellSizePtr(pParent, pCell);
6090 }
drh4b70f112004-05-02 21:12:19 +00006091 }
danielk19776067a9b2009-06-09 09:41:00 +00006092 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00006093 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006094 assert( iOvflSpace<=pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006095 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006096 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006097 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006098
drh14acc042001-06-10 19:56:58 +00006099 j++;
6100 nxDiv++;
6101 }
6102 }
drh6019e162001-07-02 17:51:45 +00006103 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006104 assert( nOld>0 );
6105 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006106 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006107 u8 *zChild = &apCopy[nOld-1]->aData[8];
6108 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006109 }
6110
danielk197713bd99f2009-06-24 05:40:34 +00006111 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6112 /* The root page of the b-tree now contains no cells. The only sibling
6113 ** page is the right-child of the parent. Copy the contents of the
6114 ** child page into the parent, decreasing the overall height of the
6115 ** b-tree structure by one. This is described as the "balance-shallower"
6116 ** sub-algorithm in some documentation.
6117 **
6118 ** If this is an auto-vacuum database, the call to copyNodeContent()
6119 ** sets all pointer-map entries corresponding to database image pages
6120 ** for which the pointer is stored within the content being copied.
6121 **
6122 ** The second assert below verifies that the child page is defragmented
6123 ** (it must be, as it was just reconstructed using assemblePage()). This
6124 ** is important if the parent page happens to be page 1 of the database
6125 ** image. */
6126 assert( nNew==1 );
6127 assert( apNew[0]->nFree ==
6128 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6129 );
drhc314dc72009-07-21 11:52:34 +00006130 copyNodeContent(apNew[0], pParent, &rc);
6131 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006132 }else if( ISAUTOVACUUM ){
6133 /* Fix the pointer-map entries for all the cells that were shifted around.
6134 ** There are several different types of pointer-map entries that need to
6135 ** be dealt with by this routine. Some of these have been set already, but
6136 ** many have not. The following is a summary:
6137 **
6138 ** 1) The entries associated with new sibling pages that were not
6139 ** siblings when this function was called. These have already
6140 ** been set. We don't need to worry about old siblings that were
6141 ** moved to the free-list - the freePage() code has taken care
6142 ** of those.
6143 **
6144 ** 2) The pointer-map entries associated with the first overflow
6145 ** page in any overflow chains used by new divider cells. These
6146 ** have also already been taken care of by the insertCell() code.
6147 **
6148 ** 3) If the sibling pages are not leaves, then the child pages of
6149 ** cells stored on the sibling pages may need to be updated.
6150 **
6151 ** 4) If the sibling pages are not internal intkey nodes, then any
6152 ** overflow pages used by these cells may need to be updated
6153 ** (internal intkey nodes never contain pointers to overflow pages).
6154 **
6155 ** 5) If the sibling pages are not leaves, then the pointer-map
6156 ** entries for the right-child pages of each sibling may need
6157 ** to be updated.
6158 **
6159 ** Cases 1 and 2 are dealt with above by other code. The next
6160 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6161 ** setting a pointer map entry is a relatively expensive operation, this
6162 ** code only sets pointer map entries for child or overflow pages that have
6163 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006164 MemPage *pNew = apNew[0];
6165 MemPage *pOld = apCopy[0];
6166 int nOverflow = pOld->nOverflow;
6167 int iNextOld = pOld->nCell + nOverflow;
6168 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6169 j = 0; /* Current 'old' sibling page */
6170 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006171 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006172 int isDivider = 0;
6173 while( i==iNextOld ){
6174 /* Cell i is the cell immediately following the last cell on old
6175 ** sibling page j. If the siblings are not leaf pages of an
6176 ** intkey b-tree, then cell i was a divider cell. */
6177 pOld = apCopy[++j];
6178 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6179 if( pOld->nOverflow ){
6180 nOverflow = pOld->nOverflow;
6181 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6182 }
6183 isDivider = !leafData;
6184 }
6185
6186 assert(nOverflow>0 || iOverflow<i );
6187 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6188 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6189 if( i==iOverflow ){
6190 isDivider = 1;
6191 if( (--nOverflow)>0 ){
6192 iOverflow++;
6193 }
6194 }
6195
6196 if( i==cntNew[k] ){
6197 /* Cell i is the cell immediately following the last cell on new
6198 ** sibling page k. If the siblings are not leaf pages of an
6199 ** intkey b-tree, then cell i is a divider cell. */
6200 pNew = apNew[++k];
6201 if( !leafData ) continue;
6202 }
danielk19774dbaa892009-06-16 16:50:22 +00006203 assert( j<nOld );
6204 assert( k<nNew );
6205
6206 /* If the cell was originally divider cell (and is not now) or
6207 ** an overflow cell, or if the cell was located on a different sibling
6208 ** page before the balancing, then the pointer map entries associated
6209 ** with any child or overflow pages need to be updated. */
6210 if( isDivider || pOld->pgno!=pNew->pgno ){
6211 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006212 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006213 }
drh98add2e2009-07-20 17:11:49 +00006214 if( szCell[i]>pNew->minLocal ){
6215 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006216 }
6217 }
6218 }
6219
6220 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006221 for(i=0; i<nNew; i++){
6222 u32 key = get4byte(&apNew[i]->aData[8]);
6223 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006224 }
6225 }
6226
6227#if 0
6228 /* The ptrmapCheckPages() contains assert() statements that verify that
6229 ** all pointer map pages are set correctly. This is helpful while
6230 ** debugging. This is usually disabled because a corrupt database may
6231 ** cause an assert() statement to fail. */
6232 ptrmapCheckPages(apNew, nNew);
6233 ptrmapCheckPages(&pParent, 1);
6234#endif
6235 }
6236
danielk197771d5d2c2008-09-29 11:49:47 +00006237 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006238 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6239 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006240
drh8b2f49b2001-06-08 00:21:52 +00006241 /*
drh14acc042001-06-10 19:56:58 +00006242 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006243 */
drh14acc042001-06-10 19:56:58 +00006244balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006245 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006246 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006247 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006248 }
drh14acc042001-06-10 19:56:58 +00006249 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006250 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006251 }
danielk1977eaa06f62008-09-18 17:34:44 +00006252
drh8b2f49b2001-06-08 00:21:52 +00006253 return rc;
6254}
6255
drh43605152004-05-29 21:46:49 +00006256
6257/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006258** This function is called when the root page of a b-tree structure is
6259** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006260**
danielk1977a50d9aa2009-06-08 14:49:45 +00006261** A new child page is allocated and the contents of the current root
6262** page, including overflow cells, are copied into the child. The root
6263** page is then overwritten to make it an empty page with the right-child
6264** pointer pointing to the new page.
6265**
6266** Before returning, all pointer-map entries corresponding to pages
6267** that the new child-page now contains pointers to are updated. The
6268** entry corresponding to the new right-child pointer of the root
6269** page is also updated.
6270**
6271** If successful, *ppChild is set to contain a reference to the child
6272** page and SQLITE_OK is returned. In this case the caller is required
6273** to call releasePage() on *ppChild exactly once. If an error occurs,
6274** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006275*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006276static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6277 int rc; /* Return value from subprocedures */
6278 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006279 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006280 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006281
danielk1977a50d9aa2009-06-08 14:49:45 +00006282 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006283 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006284
danielk1977a50d9aa2009-06-08 14:49:45 +00006285 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6286 ** page that will become the new right-child of pPage. Copy the contents
6287 ** of the node stored on pRoot into the new child page.
6288 */
drh98add2e2009-07-20 17:11:49 +00006289 rc = sqlite3PagerWrite(pRoot->pDbPage);
6290 if( rc==SQLITE_OK ){
6291 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006292 copyNodeContent(pRoot, pChild, &rc);
6293 if( ISAUTOVACUUM ){
6294 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006295 }
6296 }
6297 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006298 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006299 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006300 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006301 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006302 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6303 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6304 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006305
danielk1977a50d9aa2009-06-08 14:49:45 +00006306 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6307
6308 /* Copy the overflow cells from pRoot to pChild */
6309 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6310 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006311
6312 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6313 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6314 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6315
6316 *ppChild = pChild;
6317 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006318}
6319
6320/*
danielk197771d5d2c2008-09-29 11:49:47 +00006321** The page that pCur currently points to has just been modified in
6322** some way. This function figures out if this modification means the
6323** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006324** routine. Balancing routines are:
6325**
6326** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006327** balance_deeper()
6328** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006329*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006330static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006331 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006332 const int nMin = pCur->pBt->usableSize * 2 / 3;
6333 u8 aBalanceQuickSpace[13];
6334 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006335
shane75ac1de2009-06-09 18:58:52 +00006336 TESTONLY( int balance_quick_called = 0 );
6337 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006338
6339 do {
6340 int iPage = pCur->iPage;
6341 MemPage *pPage = pCur->apPage[iPage];
6342
6343 if( iPage==0 ){
6344 if( pPage->nOverflow ){
6345 /* The root page of the b-tree is overfull. In this case call the
6346 ** balance_deeper() function to create a new child for the root-page
6347 ** and copy the current contents of the root-page to it. The
6348 ** next iteration of the do-loop will balance the child page.
6349 */
6350 assert( (balance_deeper_called++)==0 );
6351 rc = balance_deeper(pPage, &pCur->apPage[1]);
6352 if( rc==SQLITE_OK ){
6353 pCur->iPage = 1;
6354 pCur->aiIdx[0] = 0;
6355 pCur->aiIdx[1] = 0;
6356 assert( pCur->apPage[1]->nOverflow );
6357 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006358 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006359 break;
6360 }
6361 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6362 break;
6363 }else{
6364 MemPage * const pParent = pCur->apPage[iPage-1];
6365 int const iIdx = pCur->aiIdx[iPage-1];
6366
6367 rc = sqlite3PagerWrite(pParent->pDbPage);
6368 if( rc==SQLITE_OK ){
6369#ifndef SQLITE_OMIT_QUICKBALANCE
6370 if( pPage->hasData
6371 && pPage->nOverflow==1
6372 && pPage->aOvfl[0].idx==pPage->nCell
6373 && pParent->pgno!=1
6374 && pParent->nCell==iIdx
6375 ){
6376 /* Call balance_quick() to create a new sibling of pPage on which
6377 ** to store the overflow cell. balance_quick() inserts a new cell
6378 ** into pParent, which may cause pParent overflow. If this
6379 ** happens, the next interation of the do-loop will balance pParent
6380 ** use either balance_nonroot() or balance_deeper(). Until this
6381 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6382 ** buffer.
6383 **
6384 ** The purpose of the following assert() is to check that only a
6385 ** single call to balance_quick() is made for each call to this
6386 ** function. If this were not verified, a subtle bug involving reuse
6387 ** of the aBalanceQuickSpace[] might sneak in.
6388 */
6389 assert( (balance_quick_called++)==0 );
6390 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6391 }else
6392#endif
6393 {
6394 /* In this case, call balance_nonroot() to redistribute cells
6395 ** between pPage and up to 2 of its sibling pages. This involves
6396 ** modifying the contents of pParent, which may cause pParent to
6397 ** become overfull or underfull. The next iteration of the do-loop
6398 ** will balance the parent page to correct this.
6399 **
6400 ** If the parent page becomes overfull, the overflow cell or cells
6401 ** are stored in the pSpace buffer allocated immediately below.
6402 ** A subsequent iteration of the do-loop will deal with this by
6403 ** calling balance_nonroot() (balance_deeper() may be called first,
6404 ** but it doesn't deal with overflow cells - just moves them to a
6405 ** different page). Once this subsequent call to balance_nonroot()
6406 ** has completed, it is safe to release the pSpace buffer used by
6407 ** the previous call, as the overflow cell data will have been
6408 ** copied either into the body of a database page or into the new
6409 ** pSpace buffer passed to the latter call to balance_nonroot().
6410 */
6411 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006412 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006413 if( pFree ){
6414 /* If pFree is not NULL, it points to the pSpace buffer used
6415 ** by a previous call to balance_nonroot(). Its contents are
6416 ** now stored either on real database pages or within the
6417 ** new pSpace buffer, so it may be safely freed here. */
6418 sqlite3PageFree(pFree);
6419 }
6420
danielk19774dbaa892009-06-16 16:50:22 +00006421 /* The pSpace buffer will be freed after the next call to
6422 ** balance_nonroot(), or just before this function returns, whichever
6423 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006424 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006425 }
6426 }
6427
6428 pPage->nOverflow = 0;
6429
6430 /* The next iteration of the do-loop balances the parent page. */
6431 releasePage(pPage);
6432 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006433 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006434 }while( rc==SQLITE_OK );
6435
6436 if( pFree ){
6437 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006438 }
6439 return rc;
6440}
6441
drhf74b8d92002-09-01 23:20:45 +00006442
6443/*
drh3b7511c2001-05-26 13:15:44 +00006444** Insert a new record into the BTree. The key is given by (pKey,nKey)
6445** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006446** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006447** is left pointing at a random location.
6448**
6449** For an INTKEY table, only the nKey value of the key is used. pKey is
6450** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006451**
6452** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006453** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006454** been performed. seekResult is the search result returned (a negative
6455** number if pCur points at an entry that is smaller than (pKey, nKey), or
6456** a positive value if pCur points at an etry that is larger than
6457** (pKey, nKey)).
6458**
drh3e9ca092009-09-08 01:14:48 +00006459** If the seekResult parameter is non-zero, then the caller guarantees that
6460** cursor pCur is pointing at the existing copy of a row that is to be
6461** overwritten. If the seekResult parameter is 0, then cursor pCur may
6462** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006463** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006464*/
drh3aac2dd2004-04-26 14:10:20 +00006465int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006466 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006467 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006468 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006469 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006470 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006471 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006472){
drh3b7511c2001-05-26 13:15:44 +00006473 int rc;
drh3e9ca092009-09-08 01:14:48 +00006474 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006475 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006476 int idx;
drh3b7511c2001-05-26 13:15:44 +00006477 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006478 Btree *p = pCur->pBtree;
6479 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006480 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006481 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006482
drh98add2e2009-07-20 17:11:49 +00006483 if( pCur->eState==CURSOR_FAULT ){
6484 assert( pCur->skipNext!=SQLITE_OK );
6485 return pCur->skipNext;
6486 }
6487
drh1fee73e2007-08-29 04:00:57 +00006488 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006489 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006490 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6491
danielk197731d31b82009-07-13 13:18:07 +00006492 /* Assert that the caller has been consistent. If this cursor was opened
6493 ** expecting an index b-tree, then the caller should be inserting blob
6494 ** keys with no associated data. If the cursor was opened expecting an
6495 ** intkey table, the caller should be inserting integer keys with a
6496 ** blob of associated data. */
6497 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6498
danielk197796d48e92009-06-29 06:00:37 +00006499 /* If this is an insert into a table b-tree, invalidate any incrblob
6500 ** cursors open on the row being replaced (assuming this is a replace
6501 ** operation - if it is not, the following is a no-op). */
6502 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006503 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006504 }
danielk197796d48e92009-06-29 06:00:37 +00006505
danielk19779c3acf32009-05-02 07:36:49 +00006506 /* Save the positions of any other cursors open on this table.
6507 **
danielk19773509a652009-07-06 18:56:13 +00006508 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006509 ** example, when inserting data into a table with auto-generated integer
6510 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6511 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006512 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006513 ** that the cursor is already where it needs to be and returns without
6514 ** doing any work. To avoid thwarting these optimizations, it is important
6515 ** not to clear the cursor here.
6516 */
drh4c301aa2009-07-15 17:25:45 +00006517 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6518 if( rc ) return rc;
6519 if( !loc ){
6520 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6521 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006522 }
danielk1977b980d2212009-06-22 18:03:51 +00006523 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006524
danielk197771d5d2c2008-09-29 11:49:47 +00006525 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006526 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006527 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006528
drh3a4c1412004-05-09 20:40:11 +00006529 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6530 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6531 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006532 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006533 allocateTempSpace(pBt);
6534 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006535 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006536 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006537 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006538 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006539 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006540 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006541 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006542 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006543 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006544 rc = sqlite3PagerWrite(pPage->pDbPage);
6545 if( rc ){
6546 goto end_insert;
6547 }
danielk197771d5d2c2008-09-29 11:49:47 +00006548 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006549 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006550 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006551 }
drh43605152004-05-29 21:46:49 +00006552 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006553 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006554 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006555 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006556 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006557 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006558 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006559 }else{
drh4b70f112004-05-02 21:12:19 +00006560 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006561 }
drh98add2e2009-07-20 17:11:49 +00006562 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006563 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006564
danielk1977a50d9aa2009-06-08 14:49:45 +00006565 /* If no error has occured and pPage has an overflow cell, call balance()
6566 ** to redistribute the cells within the tree. Since balance() may move
6567 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6568 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006569 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006570 ** Previous versions of SQLite called moveToRoot() to move the cursor
6571 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006572 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6573 ** set the cursor state to "invalid". This makes common insert operations
6574 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006575 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006576 ** There is a subtle but important optimization here too. When inserting
6577 ** multiple records into an intkey b-tree using a single cursor (as can
6578 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6579 ** is advantageous to leave the cursor pointing to the last entry in
6580 ** the b-tree if possible. If the cursor is left pointing to the last
6581 ** entry in the table, and the next row inserted has an integer key
6582 ** larger than the largest existing key, it is possible to insert the
6583 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006584 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006585 pCur->info.nSize = 0;
6586 pCur->validNKey = 0;
6587 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006588 rc = balance(pCur);
6589
6590 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006591 ** fails. Internal data structure corruption will result otherwise.
6592 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6593 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006594 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006595 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006596 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006597 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006598
drh2e38c322004-09-03 18:38:44 +00006599end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006600 return rc;
6601}
6602
6603/*
drh4b70f112004-05-02 21:12:19 +00006604** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006605** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006606*/
drh3aac2dd2004-04-26 14:10:20 +00006607int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006608 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006609 BtShared *pBt = p->pBt;
6610 int rc; /* Return code */
6611 MemPage *pPage; /* Page to delete cell from */
6612 unsigned char *pCell; /* Pointer to cell to delete */
6613 int iCellIdx; /* Index of cell to delete */
6614 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006615
drh1fee73e2007-08-29 04:00:57 +00006616 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006617 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006618 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006619 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006620 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6621 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6622
danielk19774dbaa892009-06-16 16:50:22 +00006623 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6624 || NEVER(pCur->eState!=CURSOR_VALID)
6625 ){
6626 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006627 }
danielk1977da184232006-01-05 11:34:32 +00006628
danielk197796d48e92009-06-29 06:00:37 +00006629 /* If this is a delete operation to remove a row from a table b-tree,
6630 ** invalidate any incrblob cursors open on the row being deleted. */
6631 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006632 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006633 }
6634
6635 iCellDepth = pCur->iPage;
6636 iCellIdx = pCur->aiIdx[iCellDepth];
6637 pPage = pCur->apPage[iCellDepth];
6638 pCell = findCell(pPage, iCellIdx);
6639
6640 /* If the page containing the entry to delete is not a leaf page, move
6641 ** the cursor to the largest entry in the tree that is smaller than
6642 ** the entry being deleted. This cell will replace the cell being deleted
6643 ** from the internal node. The 'previous' entry is used for this instead
6644 ** of the 'next' entry, as the previous entry is always a part of the
6645 ** sub-tree headed by the child page of the cell being deleted. This makes
6646 ** balancing the tree following the delete operation easier. */
6647 if( !pPage->leaf ){
6648 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006649 rc = sqlite3BtreePrevious(pCur, &notUsed);
6650 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006651 }
6652
6653 /* Save the positions of any other cursors open on this table before
6654 ** making any modifications. Make the page containing the entry to be
6655 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006656 ** entry and finally remove the cell itself from within the page.
6657 */
6658 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6659 if( rc ) return rc;
6660 rc = sqlite3PagerWrite(pPage->pDbPage);
6661 if( rc ) return rc;
6662 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006663 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006664 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006665
danielk19774dbaa892009-06-16 16:50:22 +00006666 /* If the cell deleted was not located on a leaf page, then the cursor
6667 ** is currently pointing to the largest entry in the sub-tree headed
6668 ** by the child-page of the cell that was just deleted from an internal
6669 ** node. The cell from the leaf node needs to be moved to the internal
6670 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006671 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006672 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6673 int nCell;
6674 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6675 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006676
danielk19774dbaa892009-06-16 16:50:22 +00006677 pCell = findCell(pLeaf, pLeaf->nCell-1);
6678 nCell = cellSizePtr(pLeaf, pCell);
6679 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006680
danielk19774dbaa892009-06-16 16:50:22 +00006681 allocateTempSpace(pBt);
6682 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006683
drha4ec1d42009-07-11 13:13:11 +00006684 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006685 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6686 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006687 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006688 }
danielk19774dbaa892009-06-16 16:50:22 +00006689
6690 /* Balance the tree. If the entry deleted was located on a leaf page,
6691 ** then the cursor still points to that page. In this case the first
6692 ** call to balance() repairs the tree, and the if(...) condition is
6693 ** never true.
6694 **
6695 ** Otherwise, if the entry deleted was on an internal node page, then
6696 ** pCur is pointing to the leaf page from which a cell was removed to
6697 ** replace the cell deleted from the internal node. This is slightly
6698 ** tricky as the leaf node may be underfull, and the internal node may
6699 ** be either under or overfull. In this case run the balancing algorithm
6700 ** on the leaf node first. If the balance proceeds far enough up the
6701 ** tree that we can be sure that any problem in the internal node has
6702 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6703 ** walk the cursor up the tree to the internal node and balance it as
6704 ** well. */
6705 rc = balance(pCur);
6706 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6707 while( pCur->iPage>iCellDepth ){
6708 releasePage(pCur->apPage[pCur->iPage--]);
6709 }
6710 rc = balance(pCur);
6711 }
6712
danielk19776b456a22005-03-21 04:04:02 +00006713 if( rc==SQLITE_OK ){
6714 moveToRoot(pCur);
6715 }
drh5e2f8b92001-05-28 00:41:15 +00006716 return rc;
drh3b7511c2001-05-26 13:15:44 +00006717}
drh8b2f49b2001-06-08 00:21:52 +00006718
6719/*
drhc6b52df2002-01-04 03:09:29 +00006720** Create a new BTree table. Write into *piTable the page
6721** number for the root page of the new table.
6722**
drhab01f612004-05-22 02:55:23 +00006723** The type of type is determined by the flags parameter. Only the
6724** following values of flags are currently in use. Other values for
6725** flags might not work:
6726**
6727** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6728** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006729*/
drhd677b3d2007-08-20 22:48:41 +00006730static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006731 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006732 MemPage *pRoot;
6733 Pgno pgnoRoot;
6734 int rc;
drhd677b3d2007-08-20 22:48:41 +00006735
drh1fee73e2007-08-29 04:00:57 +00006736 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006737 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006738 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006739
danielk1977003ba062004-11-04 02:57:33 +00006740#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006741 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006742 if( rc ){
6743 return rc;
6744 }
danielk1977003ba062004-11-04 02:57:33 +00006745#else
danielk1977687566d2004-11-02 12:56:41 +00006746 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006747 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6748 MemPage *pPageMove; /* The page to move to. */
6749
danielk197720713f32007-05-03 11:43:33 +00006750 /* Creating a new table may probably require moving an existing database
6751 ** to make room for the new tables root page. In case this page turns
6752 ** out to be an overflow page, delete all overflow page-map caches
6753 ** held by open cursors.
6754 */
danielk197792d4d7a2007-05-04 12:05:56 +00006755 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006756
danielk1977003ba062004-11-04 02:57:33 +00006757 /* Read the value of meta[3] from the database to determine where the
6758 ** root page of the new table should go. meta[3] is the largest root-page
6759 ** created so far, so the new root-page is (meta[3]+1).
6760 */
danielk1977602b4662009-07-02 07:47:33 +00006761 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006762 pgnoRoot++;
6763
danielk1977599fcba2004-11-08 07:13:13 +00006764 /* The new root-page may not be allocated on a pointer-map page, or the
6765 ** PENDING_BYTE page.
6766 */
drh72190432008-01-31 14:54:43 +00006767 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006768 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006769 pgnoRoot++;
6770 }
6771 assert( pgnoRoot>=3 );
6772
6773 /* Allocate a page. The page that currently resides at pgnoRoot will
6774 ** be moved to the allocated page (unless the allocated page happens
6775 ** to reside at pgnoRoot).
6776 */
drh4f0c5872007-03-26 22:05:01 +00006777 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006778 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006779 return rc;
6780 }
danielk1977003ba062004-11-04 02:57:33 +00006781
6782 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006783 /* pgnoRoot is the page that will be used for the root-page of
6784 ** the new table (assuming an error did not occur). But we were
6785 ** allocated pgnoMove. If required (i.e. if it was not allocated
6786 ** by extending the file), the current page at position pgnoMove
6787 ** is already journaled.
6788 */
drheeb844a2009-08-08 18:01:07 +00006789 u8 eType = 0;
6790 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00006791
6792 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006793
6794 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006795 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006796 if( rc!=SQLITE_OK ){
6797 return rc;
6798 }
6799 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006800 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6801 rc = SQLITE_CORRUPT_BKPT;
6802 }
6803 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006804 releasePage(pRoot);
6805 return rc;
6806 }
drhccae6022005-02-26 17:31:26 +00006807 assert( eType!=PTRMAP_ROOTPAGE );
6808 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006809 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006810 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006811
6812 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006813 if( rc!=SQLITE_OK ){
6814 return rc;
6815 }
danielk197730548662009-07-09 05:07:37 +00006816 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006817 if( rc!=SQLITE_OK ){
6818 return rc;
6819 }
danielk19773b8a05f2007-03-19 17:44:26 +00006820 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006821 if( rc!=SQLITE_OK ){
6822 releasePage(pRoot);
6823 return rc;
6824 }
6825 }else{
6826 pRoot = pPageMove;
6827 }
6828
danielk197742741be2005-01-08 12:42:39 +00006829 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00006830 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00006831 if( rc ){
6832 releasePage(pRoot);
6833 return rc;
6834 }
danielk1977aef0bf62005-12-30 16:28:01 +00006835 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006836 if( rc ){
6837 releasePage(pRoot);
6838 return rc;
6839 }
danielk197742741be2005-01-08 12:42:39 +00006840
danielk1977003ba062004-11-04 02:57:33 +00006841 }else{
drh4f0c5872007-03-26 22:05:01 +00006842 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006843 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006844 }
6845#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006846 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006847 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006848 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006849 *piTable = (int)pgnoRoot;
6850 return SQLITE_OK;
6851}
drhd677b3d2007-08-20 22:48:41 +00006852int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6853 int rc;
6854 sqlite3BtreeEnter(p);
6855 rc = btreeCreateTable(p, piTable, flags);
6856 sqlite3BtreeLeave(p);
6857 return rc;
6858}
drh8b2f49b2001-06-08 00:21:52 +00006859
6860/*
6861** Erase the given database page and all its children. Return
6862** the page to the freelist.
6863*/
drh4b70f112004-05-02 21:12:19 +00006864static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006865 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00006866 Pgno pgno, /* Page number to clear */
6867 int freePageFlag, /* Deallocate page if true */
6868 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00006869){
danielk1977146ba992009-07-22 14:08:13 +00006870 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00006871 int rc;
drh4b70f112004-05-02 21:12:19 +00006872 unsigned char *pCell;
6873 int i;
drh8b2f49b2001-06-08 00:21:52 +00006874
drh1fee73e2007-08-29 04:00:57 +00006875 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006876 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006877 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006878 }
6879
danielk197771d5d2c2008-09-29 11:49:47 +00006880 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00006881 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00006882 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006883 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006884 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006885 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006886 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006887 }
drh4b70f112004-05-02 21:12:19 +00006888 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006889 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006890 }
drha34b6762004-05-07 13:30:42 +00006891 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006892 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006893 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006894 }else if( pnChange ){
6895 assert( pPage->intKey );
6896 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006897 }
6898 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00006899 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00006900 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006901 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006902 }
danielk19776b456a22005-03-21 04:04:02 +00006903
6904cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006905 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006906 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006907}
6908
6909/*
drhab01f612004-05-22 02:55:23 +00006910** Delete all information from a single table in the database. iTable is
6911** the page number of the root of the table. After this routine returns,
6912** the root page is empty, but still exists.
6913**
6914** This routine will fail with SQLITE_LOCKED if there are any open
6915** read cursors on the table. Open write cursors are moved to the
6916** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006917**
6918** If pnChange is not NULL, then table iTable must be an intkey table. The
6919** integer value pointed to by pnChange is incremented by the number of
6920** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006921*/
danielk1977c7af4842008-10-27 13:59:33 +00006922int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006923 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006924 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006925 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006926 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00006927
6928 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
6929 ** is the root of a table b-tree - if it is not, the following call is
6930 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00006931 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00006932
drhc046e3e2009-07-15 11:26:44 +00006933 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
6934 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00006935 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006936 }
drhd677b3d2007-08-20 22:48:41 +00006937 sqlite3BtreeLeave(p);
6938 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006939}
6940
6941/*
6942** Erase all information in a table and add the root of the table to
6943** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006944** page 1) is never added to the freelist.
6945**
6946** This routine will fail with SQLITE_LOCKED if there are any open
6947** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006948**
6949** If AUTOVACUUM is enabled and the page at iTable is not the last
6950** root page in the database file, then the last root page
6951** in the database file is moved into the slot formerly occupied by
6952** iTable and that last slot formerly occupied by the last root page
6953** is added to the freelist instead of iTable. In this say, all
6954** root pages are kept at the beginning of the database file, which
6955** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6956** page number that used to be the last root page in the file before
6957** the move. If no page gets moved, *piMoved is set to 0.
6958** The last root page is recorded in meta[3] and the value of
6959** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006960*/
danielk197789d40042008-11-17 14:20:56 +00006961static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006962 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006963 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006964 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006965
drh1fee73e2007-08-29 04:00:57 +00006966 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006967 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006968
danielk1977e6efa742004-11-10 11:55:10 +00006969 /* It is illegal to drop a table if any cursors are open on the
6970 ** database. This is because in auto-vacuum mode the backend may
6971 ** need to move another root-page to fill a gap left by the deleted
6972 ** root page. If an open cursor was using this page a problem would
6973 ** occur.
drhc046e3e2009-07-15 11:26:44 +00006974 **
6975 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00006976 */
drhc046e3e2009-07-15 11:26:44 +00006977 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00006978 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
6979 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00006980 }
danielk1977a0bf2652004-11-04 14:30:04 +00006981
danielk197730548662009-07-09 05:07:37 +00006982 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006983 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00006984 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00006985 if( rc ){
6986 releasePage(pPage);
6987 return rc;
6988 }
danielk1977a0bf2652004-11-04 14:30:04 +00006989
drh205f48e2004-11-05 00:43:11 +00006990 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006991
drh4b70f112004-05-02 21:12:19 +00006992 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006993#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00006994 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00006995 releasePage(pPage);
6996#else
6997 if( pBt->autoVacuum ){
6998 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00006999 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007000
7001 if( iTable==maxRootPgno ){
7002 /* If the table being dropped is the table with the largest root-page
7003 ** number in the database, put the root page on the free list.
7004 */
drhc314dc72009-07-21 11:52:34 +00007005 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007006 releasePage(pPage);
7007 if( rc!=SQLITE_OK ){
7008 return rc;
7009 }
7010 }else{
7011 /* The table being dropped does not have the largest root-page
7012 ** number in the database. So move the page that does into the
7013 ** gap left by the deleted root-page.
7014 */
7015 MemPage *pMove;
7016 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007017 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007018 if( rc!=SQLITE_OK ){
7019 return rc;
7020 }
danielk19774c999992008-07-16 18:17:55 +00007021 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007022 releasePage(pMove);
7023 if( rc!=SQLITE_OK ){
7024 return rc;
7025 }
drhfe3313f2009-07-21 19:02:20 +00007026 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007027 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007028 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007029 releasePage(pMove);
7030 if( rc!=SQLITE_OK ){
7031 return rc;
7032 }
7033 *piMoved = maxRootPgno;
7034 }
7035
danielk1977599fcba2004-11-08 07:13:13 +00007036 /* Set the new 'max-root-page' value in the database header. This
7037 ** is the old value less one, less one more if that happens to
7038 ** be a root-page number, less one again if that is the
7039 ** PENDING_BYTE_PAGE.
7040 */
danielk197787a6e732004-11-05 12:58:25 +00007041 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007042 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7043 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007044 maxRootPgno--;
7045 }
danielk1977599fcba2004-11-08 07:13:13 +00007046 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7047
danielk1977aef0bf62005-12-30 16:28:01 +00007048 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007049 }else{
drhc314dc72009-07-21 11:52:34 +00007050 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007051 releasePage(pPage);
7052 }
7053#endif
drh2aa679f2001-06-25 02:11:07 +00007054 }else{
drhc046e3e2009-07-15 11:26:44 +00007055 /* If sqlite3BtreeDropTable was called on page 1.
7056 ** This really never should happen except in a corrupt
7057 ** database.
7058 */
drha34b6762004-05-07 13:30:42 +00007059 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007060 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007061 }
drh8b2f49b2001-06-08 00:21:52 +00007062 return rc;
7063}
drhd677b3d2007-08-20 22:48:41 +00007064int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7065 int rc;
7066 sqlite3BtreeEnter(p);
7067 rc = btreeDropTable(p, iTable, piMoved);
7068 sqlite3BtreeLeave(p);
7069 return rc;
7070}
drh8b2f49b2001-06-08 00:21:52 +00007071
drh001bbcb2003-03-19 03:14:00 +00007072
drh8b2f49b2001-06-08 00:21:52 +00007073/*
danielk1977602b4662009-07-02 07:47:33 +00007074** This function may only be called if the b-tree connection already
7075** has a read or write transaction open on the database.
7076**
drh23e11ca2004-05-04 17:27:28 +00007077** Read the meta-information out of a database file. Meta[0]
7078** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007079** through meta[15] are available for use by higher layers. Meta[0]
7080** is read-only, the others are read/write.
7081**
7082** The schema layer numbers meta values differently. At the schema
7083** layer (and the SetCookie and ReadCookie opcodes) the number of
7084** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007085*/
danielk1977602b4662009-07-02 07:47:33 +00007086void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007087 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007088
drhd677b3d2007-08-20 22:48:41 +00007089 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007090 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007091 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007092 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007093 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007094
danielk1977602b4662009-07-02 07:47:33 +00007095 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007096
danielk1977602b4662009-07-02 07:47:33 +00007097 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7098 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007099#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007100 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007101#endif
drhae157872004-08-14 19:20:09 +00007102
drhd677b3d2007-08-20 22:48:41 +00007103 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007104}
7105
7106/*
drh23e11ca2004-05-04 17:27:28 +00007107** Write meta-information back into the database. Meta[0] is
7108** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007109*/
danielk1977aef0bf62005-12-30 16:28:01 +00007110int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7111 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007112 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007113 int rc;
drh23e11ca2004-05-04 17:27:28 +00007114 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007115 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007116 assert( p->inTrans==TRANS_WRITE );
7117 assert( pBt->pPage1!=0 );
7118 pP1 = pBt->pPage1->aData;
7119 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7120 if( rc==SQLITE_OK ){
7121 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007122#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007123 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007124 assert( pBt->autoVacuum || iMeta==0 );
7125 assert( iMeta==0 || iMeta==1 );
7126 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007127 }
drh64022502009-01-09 14:11:04 +00007128#endif
drh5df72a52002-06-06 23:16:05 +00007129 }
drhd677b3d2007-08-20 22:48:41 +00007130 sqlite3BtreeLeave(p);
7131 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007132}
drh8c42ca92001-06-22 19:15:00 +00007133
danielk1977a5533162009-02-24 10:01:51 +00007134#ifndef SQLITE_OMIT_BTREECOUNT
7135/*
7136** The first argument, pCur, is a cursor opened on some b-tree. Count the
7137** number of entries in the b-tree and write the result to *pnEntry.
7138**
7139** SQLITE_OK is returned if the operation is successfully executed.
7140** Otherwise, if an error is encountered (i.e. an IO error or database
7141** corruption) an SQLite error code is returned.
7142*/
7143int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7144 i64 nEntry = 0; /* Value to return in *pnEntry */
7145 int rc; /* Return code */
7146 rc = moveToRoot(pCur);
7147
7148 /* Unless an error occurs, the following loop runs one iteration for each
7149 ** page in the B-Tree structure (not including overflow pages).
7150 */
7151 while( rc==SQLITE_OK ){
7152 int iIdx; /* Index of child node in parent */
7153 MemPage *pPage; /* Current page of the b-tree */
7154
7155 /* If this is a leaf page or the tree is not an int-key tree, then
7156 ** this page contains countable entries. Increment the entry counter
7157 ** accordingly.
7158 */
7159 pPage = pCur->apPage[pCur->iPage];
7160 if( pPage->leaf || !pPage->intKey ){
7161 nEntry += pPage->nCell;
7162 }
7163
7164 /* pPage is a leaf node. This loop navigates the cursor so that it
7165 ** points to the first interior cell that it points to the parent of
7166 ** the next page in the tree that has not yet been visited. The
7167 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7168 ** of the page, or to the number of cells in the page if the next page
7169 ** to visit is the right-child of its parent.
7170 **
7171 ** If all pages in the tree have been visited, return SQLITE_OK to the
7172 ** caller.
7173 */
7174 if( pPage->leaf ){
7175 do {
7176 if( pCur->iPage==0 ){
7177 /* All pages of the b-tree have been visited. Return successfully. */
7178 *pnEntry = nEntry;
7179 return SQLITE_OK;
7180 }
danielk197730548662009-07-09 05:07:37 +00007181 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007182 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7183
7184 pCur->aiIdx[pCur->iPage]++;
7185 pPage = pCur->apPage[pCur->iPage];
7186 }
7187
7188 /* Descend to the child node of the cell that the cursor currently
7189 ** points at. This is the right-child if (iIdx==pPage->nCell).
7190 */
7191 iIdx = pCur->aiIdx[pCur->iPage];
7192 if( iIdx==pPage->nCell ){
7193 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7194 }else{
7195 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7196 }
7197 }
7198
shanebe217792009-03-05 04:20:31 +00007199 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007200 return rc;
7201}
7202#endif
drhdd793422001-06-28 01:54:48 +00007203
drhdd793422001-06-28 01:54:48 +00007204/*
drh5eddca62001-06-30 21:53:53 +00007205** Return the pager associated with a BTree. This routine is used for
7206** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007207*/
danielk1977aef0bf62005-12-30 16:28:01 +00007208Pager *sqlite3BtreePager(Btree *p){
7209 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007210}
drh5eddca62001-06-30 21:53:53 +00007211
drhb7f91642004-10-31 02:22:47 +00007212#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007213/*
7214** Append a message to the error message string.
7215*/
drh2e38c322004-09-03 18:38:44 +00007216static void checkAppendMsg(
7217 IntegrityCk *pCheck,
7218 char *zMsg1,
7219 const char *zFormat,
7220 ...
7221){
7222 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007223 if( !pCheck->mxErr ) return;
7224 pCheck->mxErr--;
7225 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007226 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007227 if( pCheck->errMsg.nChar ){
7228 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007229 }
drhf089aa42008-07-08 19:34:06 +00007230 if( zMsg1 ){
7231 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7232 }
7233 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7234 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007235 if( pCheck->errMsg.mallocFailed ){
7236 pCheck->mallocFailed = 1;
7237 }
drh5eddca62001-06-30 21:53:53 +00007238}
drhb7f91642004-10-31 02:22:47 +00007239#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007240
drhb7f91642004-10-31 02:22:47 +00007241#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007242/*
7243** Add 1 to the reference count for page iPage. If this is the second
7244** reference to the page, add an error message to pCheck->zErrMsg.
7245** Return 1 if there are 2 ore more references to the page and 0 if
7246** if this is the first reference to the page.
7247**
7248** Also check that the page number is in bounds.
7249*/
danielk197789d40042008-11-17 14:20:56 +00007250static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007251 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007252 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007253 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007254 return 1;
7255 }
7256 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007257 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007258 return 1;
7259 }
7260 return (pCheck->anRef[iPage]++)>1;
7261}
7262
danielk1977afcdd022004-10-31 16:25:42 +00007263#ifndef SQLITE_OMIT_AUTOVACUUM
7264/*
7265** Check that the entry in the pointer-map for page iChild maps to
7266** page iParent, pointer type ptrType. If not, append an error message
7267** to pCheck.
7268*/
7269static void checkPtrmap(
7270 IntegrityCk *pCheck, /* Integrity check context */
7271 Pgno iChild, /* Child page number */
7272 u8 eType, /* Expected pointer map type */
7273 Pgno iParent, /* Expected pointer map parent page number */
7274 char *zContext /* Context description (used for error msg) */
7275){
7276 int rc;
7277 u8 ePtrmapType;
7278 Pgno iPtrmapParent;
7279
7280 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7281 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007282 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007283 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7284 return;
7285 }
7286
7287 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7288 checkAppendMsg(pCheck, zContext,
7289 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7290 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7291 }
7292}
7293#endif
7294
drh5eddca62001-06-30 21:53:53 +00007295/*
7296** Check the integrity of the freelist or of an overflow page list.
7297** Verify that the number of pages on the list is N.
7298*/
drh30e58752002-03-02 20:41:57 +00007299static void checkList(
7300 IntegrityCk *pCheck, /* Integrity checking context */
7301 int isFreeList, /* True for a freelist. False for overflow page list */
7302 int iPage, /* Page number for first page in the list */
7303 int N, /* Expected number of pages in the list */
7304 char *zContext /* Context for error messages */
7305){
7306 int i;
drh3a4c1412004-05-09 20:40:11 +00007307 int expected = N;
7308 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007309 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007310 DbPage *pOvflPage;
7311 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007312 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007313 checkAppendMsg(pCheck, zContext,
7314 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007315 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007316 break;
7317 }
7318 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007319 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007320 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007321 break;
7322 }
danielk19773b8a05f2007-03-19 17:44:26 +00007323 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007324 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007325 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007326#ifndef SQLITE_OMIT_AUTOVACUUM
7327 if( pCheck->pBt->autoVacuum ){
7328 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7329 }
7330#endif
drh45b1fac2008-07-04 17:52:42 +00007331 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007332 checkAppendMsg(pCheck, zContext,
7333 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007334 N--;
7335 }else{
7336 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007337 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007338#ifndef SQLITE_OMIT_AUTOVACUUM
7339 if( pCheck->pBt->autoVacuum ){
7340 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7341 }
7342#endif
7343 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007344 }
7345 N -= n;
drh30e58752002-03-02 20:41:57 +00007346 }
drh30e58752002-03-02 20:41:57 +00007347 }
danielk1977afcdd022004-10-31 16:25:42 +00007348#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007349 else{
7350 /* If this database supports auto-vacuum and iPage is not the last
7351 ** page in this overflow list, check that the pointer-map entry for
7352 ** the following page matches iPage.
7353 */
7354 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007355 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007356 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7357 }
danielk1977afcdd022004-10-31 16:25:42 +00007358 }
7359#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007360 iPage = get4byte(pOvflData);
7361 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007362 }
7363}
drhb7f91642004-10-31 02:22:47 +00007364#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007365
drhb7f91642004-10-31 02:22:47 +00007366#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007367/*
7368** Do various sanity checks on a single page of a tree. Return
7369** the tree depth. Root pages return 0. Parents of root pages
7370** return 1, and so forth.
7371**
7372** These checks are done:
7373**
7374** 1. Make sure that cells and freeblocks do not overlap
7375** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007376** NO 2. Make sure cell keys are in order.
7377** NO 3. Make sure no key is less than or equal to zLowerBound.
7378** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007379** 5. Check the integrity of overflow pages.
7380** 6. Recursively call checkTreePage on all children.
7381** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007382** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007383** the root of the tree.
7384*/
7385static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007386 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007387 int iPage, /* Page number of the page to check */
drh74161702006-02-24 02:53:49 +00007388 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00007389){
7390 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007391 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007392 int hdr, cellStart;
7393 int nCell;
drhda200cc2004-05-09 11:51:38 +00007394 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007395 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007396 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007397 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007398 char *hit = 0;
drh5eddca62001-06-30 21:53:53 +00007399
drh5bb3eb92007-05-04 13:15:55 +00007400 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007401
drh5eddca62001-06-30 21:53:53 +00007402 /* Check that the page exists
7403 */
drhd9cb6ac2005-10-20 07:28:17 +00007404 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007405 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007406 if( iPage==0 ) return 0;
7407 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007408 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007409 checkAppendMsg(pCheck, zContext,
7410 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007411 return 0;
7412 }
danielk197793caf5a2009-07-11 06:55:33 +00007413
7414 /* Clear MemPage.isInit to make sure the corruption detection code in
7415 ** btreeInitPage() is executed. */
7416 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007417 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007418 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007419 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007420 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007421 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007422 return 0;
7423 }
7424
7425 /* Check out all the cells.
7426 */
7427 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007428 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007429 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007430 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007431 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007432
7433 /* Check payload overflow pages
7434 */
drh5bb3eb92007-05-04 13:15:55 +00007435 sqlite3_snprintf(sizeof(zContext), zContext,
7436 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007437 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007438 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007439 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007440 if( !pPage->intKey ) sz += (int)info.nKey;
drh72365832007-03-06 15:53:44 +00007441 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007442 if( (sz>info.nLocal)
7443 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7444 ){
drhb6f41482004-05-14 01:58:11 +00007445 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007446 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7447#ifndef SQLITE_OMIT_AUTOVACUUM
7448 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007449 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007450 }
7451#endif
7452 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007453 }
7454
7455 /* Check sanity of left child page.
7456 */
drhda200cc2004-05-09 11:51:38 +00007457 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007458 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007459#ifndef SQLITE_OMIT_AUTOVACUUM
7460 if( pBt->autoVacuum ){
7461 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7462 }
7463#endif
danielk197762c14b32008-11-19 09:05:26 +00007464 d2 = checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007465 if( i>0 && d2!=depth ){
7466 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7467 }
7468 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007469 }
drh5eddca62001-06-30 21:53:53 +00007470 }
drhda200cc2004-05-09 11:51:38 +00007471 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007472 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007473 sqlite3_snprintf(sizeof(zContext), zContext,
7474 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007475#ifndef SQLITE_OMIT_AUTOVACUUM
7476 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007477 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00007478 }
7479#endif
danielk197762c14b32008-11-19 09:05:26 +00007480 checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007481 }
drh5eddca62001-06-30 21:53:53 +00007482
7483 /* Check for complete coverage of the page
7484 */
drhda200cc2004-05-09 11:51:38 +00007485 data = pPage->aData;
7486 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007487 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007488 if( hit==0 ){
7489 pCheck->mallocFailed = 1;
7490 }else{
shane5780ebd2008-11-11 17:36:30 +00007491 u16 contentOffset = get2byte(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007492 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007493 memset(hit+contentOffset, 0, usableSize-contentOffset);
7494 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007495 nCell = get2byte(&data[hdr+3]);
7496 cellStart = hdr + 12 - 4*pPage->leaf;
7497 for(i=0; i<nCell; i++){
7498 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007499 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007500 int j;
drh8c2bbb62009-07-10 02:52:20 +00007501 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007502 size = cellSizePtr(pPage, &data[pc]);
7503 }
drhd7c7ecd2009-07-14 17:48:06 +00007504 if( (pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007505 checkAppendMsg(pCheck, 0,
7506 "Corruption detected in cell %d on page %d",i,iPage,0);
7507 }else{
7508 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7509 }
drh2e38c322004-09-03 18:38:44 +00007510 }
drh8c2bbb62009-07-10 02:52:20 +00007511 i = get2byte(&data[hdr+1]);
7512 while( i>0 ){
7513 int size, j;
7514 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7515 size = get2byte(&data[i+2]);
7516 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7517 for(j=i+size-1; j>=i; j--) hit[j]++;
7518 j = get2byte(&data[i]);
7519 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7520 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7521 i = j;
drh2e38c322004-09-03 18:38:44 +00007522 }
7523 for(i=cnt=0; i<usableSize; i++){
7524 if( hit[i]==0 ){
7525 cnt++;
7526 }else if( hit[i]>1 ){
7527 checkAppendMsg(pCheck, 0,
7528 "Multiple uses for byte %d of page %d", i, iPage);
7529 break;
7530 }
7531 }
7532 if( cnt!=data[hdr+7] ){
7533 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007534 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007535 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007536 }
7537 }
drh8c2bbb62009-07-10 02:52:20 +00007538 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007539 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007540 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007541}
drhb7f91642004-10-31 02:22:47 +00007542#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007543
drhb7f91642004-10-31 02:22:47 +00007544#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007545/*
7546** This routine does a complete check of the given BTree file. aRoot[] is
7547** an array of pages numbers were each page number is the root page of
7548** a table. nRoot is the number of entries in aRoot.
7549**
danielk19773509a652009-07-06 18:56:13 +00007550** A read-only or read-write transaction must be opened before calling
7551** this function.
7552**
drhc890fec2008-08-01 20:10:08 +00007553** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007554** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007555** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007556** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007557*/
drh1dcdbc02007-01-27 02:24:54 +00007558char *sqlite3BtreeIntegrityCheck(
7559 Btree *p, /* The btree to be checked */
7560 int *aRoot, /* An array of root pages numbers for individual trees */
7561 int nRoot, /* Number of entries in aRoot[] */
7562 int mxErr, /* Stop reporting errors after this many */
7563 int *pnErr /* Write number of errors seen to this variable */
7564){
danielk197789d40042008-11-17 14:20:56 +00007565 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007566 int nRef;
drhaaab5722002-02-19 13:39:21 +00007567 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007568 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007569 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007570
drhd677b3d2007-08-20 22:48:41 +00007571 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007572 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007573 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007574 sCheck.pBt = pBt;
7575 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007576 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007577 sCheck.mxErr = mxErr;
7578 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007579 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007580 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007581 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007582 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007583 return 0;
7584 }
drhe5ae5732008-06-15 02:51:47 +00007585 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007586 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007587 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007588 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007589 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007590 }
drhda200cc2004-05-09 11:51:38 +00007591 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007592 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007593 if( i<=sCheck.nPage ){
7594 sCheck.anRef[i] = 1;
7595 }
drhf089aa42008-07-08 19:34:06 +00007596 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007597
7598 /* Check the integrity of the freelist
7599 */
drha34b6762004-05-07 13:30:42 +00007600 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7601 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007602
7603 /* Check all the tables.
7604 */
danielk197789d40042008-11-17 14:20:56 +00007605 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007606 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007607#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007608 if( pBt->autoVacuum && aRoot[i]>1 ){
7609 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7610 }
7611#endif
danielk197762c14b32008-11-19 09:05:26 +00007612 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00007613 }
7614
7615 /* Make sure every page in the file is referenced
7616 */
drh1dcdbc02007-01-27 02:24:54 +00007617 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007618#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007619 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007620 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007621 }
danielk1977afcdd022004-10-31 16:25:42 +00007622#else
7623 /* If the database supports auto-vacuum, make sure no tables contain
7624 ** references to pointer-map pages.
7625 */
7626 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007627 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007628 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7629 }
7630 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007631 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007632 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7633 }
7634#endif
drh5eddca62001-06-30 21:53:53 +00007635 }
7636
drh64022502009-01-09 14:11:04 +00007637 /* Make sure this analysis did not leave any unref() pages.
7638 ** This is an internal consistency check; an integrity check
7639 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007640 */
drh64022502009-01-09 14:11:04 +00007641 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007642 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007643 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007644 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007645 );
drh5eddca62001-06-30 21:53:53 +00007646 }
7647
7648 /* Clean up and report errors.
7649 */
drhd677b3d2007-08-20 22:48:41 +00007650 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007651 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007652 if( sCheck.mallocFailed ){
7653 sqlite3StrAccumReset(&sCheck.errMsg);
7654 *pnErr = sCheck.nErr+1;
7655 return 0;
7656 }
drh1dcdbc02007-01-27 02:24:54 +00007657 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007658 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7659 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007660}
drhb7f91642004-10-31 02:22:47 +00007661#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007662
drh73509ee2003-04-06 20:44:45 +00007663/*
7664** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007665**
7666** The pager filename is invariant as long as the pager is
7667** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007668*/
danielk1977aef0bf62005-12-30 16:28:01 +00007669const char *sqlite3BtreeGetFilename(Btree *p){
7670 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007671 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007672}
7673
7674/*
danielk19775865e3d2004-06-14 06:03:57 +00007675** Return the pathname of the journal file for this database. The return
7676** value of this routine is the same regardless of whether the journal file
7677** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007678**
7679** The pager journal filename is invariant as long as the pager is
7680** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007681*/
danielk1977aef0bf62005-12-30 16:28:01 +00007682const char *sqlite3BtreeGetJournalname(Btree *p){
7683 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007684 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007685}
7686
danielk19771d850a72004-05-31 08:26:49 +00007687/*
7688** Return non-zero if a transaction is active.
7689*/
danielk1977aef0bf62005-12-30 16:28:01 +00007690int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007691 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007692 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007693}
7694
7695/*
danielk19772372c2b2006-06-27 16:34:56 +00007696** Return non-zero if a read (or write) transaction is active.
7697*/
7698int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007699 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007700 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007701 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007702}
7703
danielk197704103022009-02-03 16:51:24 +00007704int sqlite3BtreeIsInBackup(Btree *p){
7705 assert( p );
7706 assert( sqlite3_mutex_held(p->db->mutex) );
7707 return p->nBackup!=0;
7708}
7709
danielk19772372c2b2006-06-27 16:34:56 +00007710/*
danielk1977da184232006-01-05 11:34:32 +00007711** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007712** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007713** purposes (for example, to store a high-level schema associated with
7714** the shared-btree). The btree layer manages reference counting issues.
7715**
7716** The first time this is called on a shared-btree, nBytes bytes of memory
7717** are allocated, zeroed, and returned to the caller. For each subsequent
7718** call the nBytes parameter is ignored and a pointer to the same blob
7719** of memory returned.
7720**
danielk1977171bfed2008-06-23 09:50:50 +00007721** If the nBytes parameter is 0 and the blob of memory has not yet been
7722** allocated, a null pointer is returned. If the blob has already been
7723** allocated, it is returned as normal.
7724**
danielk1977da184232006-01-05 11:34:32 +00007725** Just before the shared-btree is closed, the function passed as the
7726** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007727** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007728** on the memory, the btree layer does that.
7729*/
7730void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7731 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007732 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007733 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007734 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007735 pBt->xFreeSchema = xFree;
7736 }
drh27641702007-08-22 02:56:42 +00007737 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007738 return pBt->pSchema;
7739}
7740
danielk1977c87d34d2006-01-06 13:00:28 +00007741/*
danielk1977404ca072009-03-16 13:19:36 +00007742** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7743** btree as the argument handle holds an exclusive lock on the
7744** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007745*/
7746int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007747 int rc;
drhe5fe6902007-12-07 18:55:28 +00007748 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007749 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007750 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7751 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007752 sqlite3BtreeLeave(p);
7753 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007754}
7755
drha154dcd2006-03-22 22:10:07 +00007756
7757#ifndef SQLITE_OMIT_SHARED_CACHE
7758/*
7759** Obtain a lock on the table whose root page is iTab. The
7760** lock is a write lock if isWritelock is true or a read lock
7761** if it is false.
7762*/
danielk1977c00da102006-01-07 13:21:04 +00007763int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007764 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00007765 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00007766 if( p->sharable ){
7767 u8 lockType = READ_LOCK + isWriteLock;
7768 assert( READ_LOCK+1==WRITE_LOCK );
7769 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00007770
drh6a9ad3d2008-04-02 16:29:30 +00007771 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007772 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007773 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007774 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007775 }
7776 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007777 }
7778 return rc;
7779}
drha154dcd2006-03-22 22:10:07 +00007780#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007781
danielk1977b4e9af92007-05-01 17:49:49 +00007782#ifndef SQLITE_OMIT_INCRBLOB
7783/*
7784** Argument pCsr must be a cursor opened for writing on an
7785** INTKEY table currently pointing at a valid table entry.
7786** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00007787**
7788** Only the data content may only be modified, it is not possible to
7789** change the length of the data stored. If this function is called with
7790** parameters that attempt to write past the end of the existing data,
7791** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00007792*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007793int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00007794 int rc;
drh1fee73e2007-08-29 04:00:57 +00007795 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007796 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00007797 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00007798
danielk1977c9000e62009-07-08 13:55:28 +00007799 rc = restoreCursorPosition(pCsr);
7800 if( rc!=SQLITE_OK ){
7801 return rc;
7802 }
danielk19773588ceb2008-06-10 17:30:26 +00007803 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7804 if( pCsr->eState!=CURSOR_VALID ){
7805 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007806 }
7807
danielk1977c9000e62009-07-08 13:55:28 +00007808 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007809 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00007810 ** (b) there is a read/write transaction open,
7811 ** (c) the connection holds a write-lock on the table (if required),
7812 ** (d) there are no conflicting read-locks, and
7813 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007814 */
danielk19774f029602009-07-08 18:45:37 +00007815 if( !pCsr->wrFlag ){
7816 return SQLITE_READONLY;
7817 }
danielk197796d48e92009-06-29 06:00:37 +00007818 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
7819 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
7820 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00007821 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00007822
drhfb192682009-07-11 18:26:28 +00007823 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007824}
danielk19772dec9702007-05-02 16:48:37 +00007825
7826/*
7827** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007828** overflow list for the current row. This is used by cursors opened
7829** for incremental blob IO only.
7830**
7831** This function sets a flag only. The actual page location cache
7832** (stored in BtCursor.aOverflow[]) is allocated and used by function
7833** accessPayload() (the worker function for sqlite3BtreeData() and
7834** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007835*/
7836void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007837 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007838 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007839 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007840 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007841 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007842}
danielk1977b4e9af92007-05-01 17:49:49 +00007843#endif