blob: c253d54de22179d6c768c9c6b183d6fbfea3e613 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drhab01f612004-05-22 02:55:23 +000012** $Id: btree.c,v 1.146 2004/05/22 02:55:23 drh Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
15** For a detailed discussion of BTrees, refer to
16**
17** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
18** "Sorting And Searching", pages 473-480. Addison-Wesley
19** Publishing Company, Reading, Massachusetts.
20**
21** The basic idea is that each page of the file contains N database
22** entries and N+1 pointers to subpages.
23**
24** ----------------------------------------------------------------
25** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
26** ----------------------------------------------------------------
27**
28** All of the keys on the page that Ptr(0) points to have values less
29** than Key(0). All of the keys on page Ptr(1) and its subpages have
30** values greater than Key(0) and less than Key(1). All of the keys
31** on Ptr(N+1) and its subpages have values greater than Key(N). And
32** so forth.
33**
drh5e00f6c2001-09-13 13:46:56 +000034** Finding a particular key requires reading O(log(M)) pages from the
35** disk where M is the number of entries in the tree.
drh8b2f49b2001-06-08 00:21:52 +000036**
37** In this implementation, a single file can hold one or more separate
38** BTrees. Each BTree is identified by the index of its root page. The
drh9e572e62004-04-23 23:43:10 +000039** key and data for any entry are combined to form the "payload". A
40** fixed amount of payload can be carried directly on the database
41** page. If the payload is larger than the preset amount then surplus
42** bytes are stored on overflow pages. The payload for an entry
43** and the preceding pointer are combined to form a "Cell". Each
44** page has a small header which contains the Ptr(N+1) pointer and other
45** information such as the size of key and data.
drh8b2f49b2001-06-08 00:21:52 +000046**
drh9e572e62004-04-23 23:43:10 +000047** FORMAT DETAILS
48**
49** The file is divided into pages. The first page is called page 1,
50** the second is page 2, and so forth. A page number of zero indicates
51** "no such page". The page size can be anything between 512 and 65536.
52** Each page can be either a btree page, a freelist page or an overflow
53** page.
54**
55** The first page is always a btree page. The first 100 bytes of the first
56** page contain a special header that describes the file. The format
57** of that header is as follows:
58**
59** OFFSET SIZE DESCRIPTION
drhde647132004-05-07 17:57:49 +000060** 0 16 Header string: "SQLite format 3\000"
drh9e572e62004-04-23 23:43:10 +000061** 16 2 Page size in bytes.
62** 18 1 File format write version
63** 19 1 File format read version
drh6f11bef2004-05-13 01:12:56 +000064** 20 1 Bytes of unused space at the end of each page
65** 21 1 Max embedded payload fraction
66** 22 1 Min embedded payload fraction
67** 23 1 Min leaf payload fraction
68** 24 4 File change counter
69** 28 4 Reserved for future use
drh9e572e62004-04-23 23:43:10 +000070** 32 4 First freelist page
71** 36 4 Number of freelist pages in the file
72** 40 60 15 4-byte meta values passed to higher layers
73**
74** All of the integer values are big-endian (most significant byte first).
drh6f11bef2004-05-13 01:12:56 +000075**
drhab01f612004-05-22 02:55:23 +000076** The file change counter is incremented when the database is changed more
drh6f11bef2004-05-13 01:12:56 +000077** than once within the same second. This counter, together with the
78** modification time of the file, allows other processes to know
79** when the file has changed and thus when they need to flush their
80** cache.
81**
82** The max embedded payload fraction is the amount of the total usable
83** space in a page that can be consumed by a single cell for standard
84** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
85** is to limit the maximum cell size so that at least 4 cells will fit
drhab01f612004-05-22 02:55:23 +000086** on one page. Thus the default max embedded payload fraction is 64.
drh6f11bef2004-05-13 01:12:56 +000087**
88** If the payload for a cell is larger than the max payload, then extra
89** payload is spilled to overflow pages. Once an overflow page is allocated,
90** as many bytes as possible are moved into the overflow pages without letting
91** the cell size drop below the min embedded payload fraction.
92**
93** The min leaf payload fraction is like the min embedded payload fraction
94** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
95** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
96** not specified in the header.
drh9e572e62004-04-23 23:43:10 +000097**
98** Each btree page begins with a header described below. Note that the
99** header for page one begins at byte 100. For all other btree pages, the
100** header begins on byte zero.
101**
102** OFFSET SIZE DESCRIPTION
drh6f11bef2004-05-13 01:12:56 +0000103** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
drh9e572e62004-04-23 23:43:10 +0000104** 1 2 byte offset to the first freeblock
105** 3 2 byte offset to the first cell
106** 5 1 number of fragmented free bytes
107** 6 4 Right child (the Ptr(N+1) value). Omitted if leaf
108**
109** The flags define the format of this btree page. The leaf flag means that
110** this page has no children. The zerodata flag means that this page carries
111** only keys and no data. The intkey flag means that the key is a single
112** variable length integer at the beginning of the payload.
113**
114** A variable-length integer is 1 to 9 bytes where the lower 7 bits of each
115** byte are used. The integer consists of all bytes that have bit 8 set and
drh6f11bef2004-05-13 01:12:56 +0000116** the first byte with bit 8 clear. The most significant byte of the integer
drhab01f612004-05-22 02:55:23 +0000117** appears first. A variable-length integer may not be more than 9 bytes long.
118** As a special case, all 8 bytes of the 9th byte are used as data. This
119** allows a 64-bit integer to be encoded in 9 bytes.
drh9e572e62004-04-23 23:43:10 +0000120**
121** 0x00 becomes 0x00000000
drh6f11bef2004-05-13 01:12:56 +0000122** 0x7f becomes 0x0000007f
123** 0x81 0x00 becomes 0x00000080
124** 0x82 0x00 becomes 0x00000100
125** 0x80 0x7f becomes 0x0000007f
126** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
drh9e572e62004-04-23 23:43:10 +0000127** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
128**
129** Variable length integers are used for rowids and to hold the number of
130** bytes of key and data in a btree cell.
131**
132** Unused space within a btree page is collected into a linked list of
133** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
134** to the first freeblock is given in the header. Freeblocks occur in
135** increasing order. Because a freeblock is 4 bytes in size, the minimum
136** size allocation on a btree page is 4 bytes. Because a freeblock must be
137** at least 4 bytes in size, any group of 3 or fewer unused bytes cannot
drhab01f612004-05-22 02:55:23 +0000138** exist on the freeblock chain. A group of 3 or fewer free bytes is called
139** a fragment. The total number of bytes in all fragments is recorded.
140** in the page header at offset 5.
drh9e572e62004-04-23 23:43:10 +0000141**
142** SIZE DESCRIPTION
143** 2 Byte offset of the next freeblock
144** 2 Bytes in this freeblock
145**
146** Cells are of variable length. The first cell begins on the byte defined
147** in the page header. Cells do not necessarily occur in order - they can
148** skip around on the page.
149**
150** SIZE DESCRIPTION
151** 2 Byte offset of the next cell. 0 if this is the last cell
drh3aac2dd2004-04-26 14:10:20 +0000152** 4 Page number of the left child. Omitted if leaf flag is set.
153** var Number of bytes of data. Omitted if the zerodata flag is set.
154** var Number of bytes of key. Or the key itself if intkey flag is set.
drh9e572e62004-04-23 23:43:10 +0000155** * Payload
156** 4 First page of the overflow chain. Omitted if no overflow
157**
158** Overflow pages form a linked list. Each page except the last is completely
159** filled with data (pagesize - 4 bytes). The last page can have as little
160** as 1 byte of data.
161**
162** SIZE DESCRIPTION
163** 4 Page number of next overflow page
164** * Data
165**
166** Freelist pages come in two subtypes: trunk pages and leaf pages. The
167** file header points to first in a linked list of trunk page. Each trunk
168** page points to multiple leaf pages. The content of a leaf page is
169** unspecified. A trunk page looks like this:
170**
171** SIZE DESCRIPTION
172** 4 Page number of next trunk page
173** 4 Number of leaf pointers on this page
174** * zero or more pages numbers of leaves
drha059ad02001-04-17 20:09:11 +0000175*/
176#include "sqliteInt.h"
177#include "pager.h"
178#include "btree.h"
179#include <assert.h>
180
drh4b70f112004-05-02 21:12:19 +0000181
182/* Maximum page size. The upper bound on this value is 65536 (a limit
183** imposed by the 2-byte offset at the beginning of each cell.) The
184** maximum page size determines the amount of stack space allocated
185** by many of the routines in this module. On embedded architectures
186** or any machine where memory and especially stack memory is limited,
187** one may wish to chose a smaller value for the maximum page size.
188*/
189#ifndef MX_PAGE_SIZE
190# define MX_PAGE_SIZE 1024
191#endif
192
drh4b70f112004-05-02 21:12:19 +0000193/* The following value is the maximum cell size assuming a maximum page
194** size give above.
195*/
drhab01f612004-05-22 02:55:23 +0000196#define MX_CELL_SIZE (MX_PAGE_SIZE-6)
drh4b70f112004-05-02 21:12:19 +0000197
198/* The maximum number of cells on a single page of the database. This
199** assumes a minimum cell size of 3 bytes. Such small cells will be
200** exceedingly rare, but they are possible.
201*/
drhab01f612004-05-22 02:55:23 +0000202#define MX_CELL ((MX_PAGE_SIZE-6)/3)
drh4b70f112004-05-02 21:12:19 +0000203
paulb95a8862003-04-01 21:16:41 +0000204/* Forward declarations */
drh3aac2dd2004-04-26 14:10:20 +0000205typedef struct MemPage MemPage;
paulb95a8862003-04-01 21:16:41 +0000206
drh8c42ca92001-06-22 19:15:00 +0000207/*
drhbd03cae2001-06-02 02:40:57 +0000208** This is a magic string that appears at the beginning of every
drh8c42ca92001-06-22 19:15:00 +0000209** SQLite database in order to identify the file as a real database.
drhde647132004-05-07 17:57:49 +0000210** 123456789 123456 */
211static const char zMagicHeader[] = "SQLite format 3";
drh08ed44e2001-04-29 23:32:55 +0000212
213/*
drh4b70f112004-05-02 21:12:19 +0000214** Page type flags. An ORed combination of these flags appear as the
215** first byte of every BTree page.
drh8c42ca92001-06-22 19:15:00 +0000216*/
drhde647132004-05-07 17:57:49 +0000217#define PTF_INTKEY 0x01
drh9e572e62004-04-23 23:43:10 +0000218#define PTF_ZERODATA 0x02
drh8b18dd42004-05-12 19:18:15 +0000219#define PTF_LEAFDATA 0x04
220#define PTF_LEAF 0x08
drh8c42ca92001-06-22 19:15:00 +0000221
222/*
drh9e572e62004-04-23 23:43:10 +0000223** As each page of the file is loaded into memory, an instance of the following
224** structure is appended and initialized to zero. This structure stores
225** information about the page that is decoded from the raw file page.
drh14acc042001-06-10 19:56:58 +0000226**
drh72f82862001-05-24 21:06:34 +0000227** The pParent field points back to the parent page. This allows us to
228** walk up the BTree from any leaf to the root. Care must be taken to
229** unref() the parent page pointer when this page is no longer referenced.
drhbd03cae2001-06-02 02:40:57 +0000230** The pageDestructor() routine handles that chore.
drh7e3b0a02001-04-28 16:52:40 +0000231*/
232struct MemPage {
drh3aac2dd2004-04-26 14:10:20 +0000233 u8 isInit; /* True if previously initialized */
drh9e572e62004-04-23 23:43:10 +0000234 u8 idxShift; /* True if Cell indices have changed */
drh3aac2dd2004-04-26 14:10:20 +0000235 u8 isOverfull; /* Some aCell[] do not fit on page */
drh9e572e62004-04-23 23:43:10 +0000236 u8 intKey; /* True if intkey flag is set */
237 u8 leaf; /* True if leaf flag is set */
drh8b18dd42004-05-12 19:18:15 +0000238 u8 zeroData; /* True if table stores keys only */
239 u8 leafData; /* True if tables stores data on leaves only */
240 u8 hasData; /* True if this page stores data */
drh9e572e62004-04-23 23:43:10 +0000241 u8 hdrOffset; /* 100 for page 1. 0 otherwise */
drhab01f612004-05-22 02:55:23 +0000242 u8 needRelink; /* True if cell not linked properly in aData */
drh3aac2dd2004-04-26 14:10:20 +0000243 int idxParent; /* Index in pParent->aCell[] of this node */
drh9e572e62004-04-23 23:43:10 +0000244 int nFree; /* Number of free bytes on the page */
drh306dc212001-05-21 13:45:10 +0000245 int nCell; /* Number of entries on this page */
drh4b70f112004-05-02 21:12:19 +0000246 int nCellAlloc; /* Number of slots allocated in aCell[] */
drh9e572e62004-04-23 23:43:10 +0000247 unsigned char **aCell; /* Pointer to start of each cell */
drhc8629a12004-05-08 20:07:40 +0000248 struct Btree *pBt; /* Pointer back to BTree structure */
249
drhab01f612004-05-22 02:55:23 +0000250 /* When page content is move from one page to the other (by the movePage()
251 ** subroutine) only the information about is moved. The information below
252 ** is fixed. */
drhc8629a12004-05-08 20:07:40 +0000253 unsigned char *aData; /* Pointer back to the start of the page */
254 Pgno pgno; /* Page number for this page */
255 MemPage *pParent; /* The parent of this page. NULL for root */
drh8c42ca92001-06-22 19:15:00 +0000256};
drh7e3b0a02001-04-28 16:52:40 +0000257
258/*
drh3b7511c2001-05-26 13:15:44 +0000259** The in-memory image of a disk page has the auxiliary information appended
260** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
261** that extra information.
262*/
drh3aac2dd2004-04-26 14:10:20 +0000263#define EXTRA_SIZE sizeof(MemPage)
drh3b7511c2001-05-26 13:15:44 +0000264
265/*
drha059ad02001-04-17 20:09:11 +0000266** Everything we need to know about an open database
267*/
268struct Btree {
269 Pager *pPager; /* The page cache */
drh306dc212001-05-21 13:45:10 +0000270 BtCursor *pCursor; /* A list of all open cursors */
drh3aac2dd2004-04-26 14:10:20 +0000271 MemPage *pPage1; /* First page of the database */
drh663fc632002-02-02 18:49:19 +0000272 u8 inTrans; /* True if a transaction is in progress */
drhab01f612004-05-22 02:55:23 +0000273 u8 inStmt; /* True if we are in a statement subtransaction */
drh5df72a52002-06-06 23:16:05 +0000274 u8 readOnly; /* True if the underlying file is readonly */
drhab01f612004-05-22 02:55:23 +0000275 u8 maxEmbedFrac; /* Maximum payload as % of total page size */
276 u8 minEmbedFrac; /* Minimum payload as % of total page size */
277 u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
drhb6f41482004-05-14 01:58:11 +0000278 int pageSize; /* Total number of bytes on a page */
279 int usableSize; /* Number of usable bytes on each page */
drh6f11bef2004-05-13 01:12:56 +0000280 int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
281 int minLocal; /* Minimum local payload in non-LEAFDATA tables */
282 int maxLeaf; /* Maximum local payload in a LEAFDATA table */
283 int minLeaf; /* Minimum local payload in a LEAFDATA table */
drha059ad02001-04-17 20:09:11 +0000284};
285typedef Btree Bt;
286
drh365d68f2001-05-11 11:02:46 +0000287/*
drhfa1a98a2004-05-14 19:08:17 +0000288** An instance of the following structure is used to hold information
drhab01f612004-05-22 02:55:23 +0000289** about a cell. The parseCell() function fills in this structure
290** based on information extract from the raw disk page.
drhfa1a98a2004-05-14 19:08:17 +0000291*/
292typedef struct CellInfo CellInfo;
293struct CellInfo {
294 i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
295 u32 nData; /* Number of bytes of data */
drhab01f612004-05-22 02:55:23 +0000296 u16 nHeader; /* Size of the cell header in bytes */
drhfa1a98a2004-05-14 19:08:17 +0000297 u16 nLocal; /* Amount of payload held locally */
drhab01f612004-05-22 02:55:23 +0000298 u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
299 u16 nSize; /* Total size of the cell (on the main b-tree page) */
drhfa1a98a2004-05-14 19:08:17 +0000300};
301
302/*
drh365d68f2001-05-11 11:02:46 +0000303** A cursor is a pointer to a particular entry in the BTree.
304** The entry is identified by its MemPage and the index in
drha34b6762004-05-07 13:30:42 +0000305** MemPage.aCell[] of the entry.
drh365d68f2001-05-11 11:02:46 +0000306*/
drh72f82862001-05-24 21:06:34 +0000307struct BtCursor {
drh5e2f8b92001-05-28 00:41:15 +0000308 Btree *pBt; /* The Btree to which this cursor belongs */
drh14acc042001-06-10 19:56:58 +0000309 BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
drhf74b8d92002-09-01 23:20:45 +0000310 BtCursor *pShared; /* Loop of cursors with the same root page */
drh3aac2dd2004-04-26 14:10:20 +0000311 int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
312 void *pArg; /* First arg to xCompare() */
drh8b2f49b2001-06-08 00:21:52 +0000313 Pgno pgnoRoot; /* The root page of this tree */
drh5e2f8b92001-05-28 00:41:15 +0000314 MemPage *pPage; /* Page that contains the entry */
drh3aac2dd2004-04-26 14:10:20 +0000315 int idx; /* Index of the entry in pPage->aCell[] */
drhfa1a98a2004-05-14 19:08:17 +0000316 CellInfo info; /* A parse of the cell we are pointing at */
317 u8 infoValid; /* True if information in BtCursor.info is valid */
drhecdc7532001-09-23 02:35:53 +0000318 u8 wrFlag; /* True if writable */
drhc39e0002004-05-07 23:50:57 +0000319 u8 isValid; /* TRUE if points to a valid entry */
320 u8 status; /* Set to SQLITE_ABORT if cursors is invalidated */
drh365d68f2001-05-11 11:02:46 +0000321};
drh7e3b0a02001-04-28 16:52:40 +0000322
drha059ad02001-04-17 20:09:11 +0000323/*
drhab01f612004-05-22 02:55:23 +0000324** Read or write a two- and four-byte big-endian integer values.
drh0d316a42002-08-11 20:10:47 +0000325*/
drh9e572e62004-04-23 23:43:10 +0000326static u32 get2byte(unsigned char *p){
327 return (p[0]<<8) | p[1];
drh0d316a42002-08-11 20:10:47 +0000328}
drh9e572e62004-04-23 23:43:10 +0000329static u32 get4byte(unsigned char *p){
330 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
331}
drh9e572e62004-04-23 23:43:10 +0000332static void put2byte(unsigned char *p, u32 v){
333 p[0] = v>>8;
334 p[1] = v;
335}
336static void put4byte(unsigned char *p, u32 v){
337 p[0] = v>>24;
338 p[1] = v>>16;
339 p[2] = v>>8;
340 p[3] = v;
341}
drh6f11bef2004-05-13 01:12:56 +0000342
drh9e572e62004-04-23 23:43:10 +0000343/*
drhab01f612004-05-22 02:55:23 +0000344** Routines to read and write variable-length integers. These used to
345** be defined locally, but now we use the varint routines in the util.c
346** file.
drh9e572e62004-04-23 23:43:10 +0000347*/
drh6d2fb152004-05-14 16:50:06 +0000348#define getVarint sqlite3GetVarint
349#define getVarint32 sqlite3GetVarint32
350#define putVarint sqlite3PutVarint
drh0d316a42002-08-11 20:10:47 +0000351
352/*
drh3aac2dd2004-04-26 14:10:20 +0000353** Parse a cell header and fill in the CellInfo structure.
354*/
drh6f11bef2004-05-13 01:12:56 +0000355static void parseCell(
drh3aac2dd2004-04-26 14:10:20 +0000356 MemPage *pPage, /* Page containing the cell */
drhab01f612004-05-22 02:55:23 +0000357 unsigned char *pCell, /* Pointer to the first byte of the cell */
drh6f11bef2004-05-13 01:12:56 +0000358 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000359){
360 int n;
drh6f11bef2004-05-13 01:12:56 +0000361 int nPayload;
362 Btree *pBt;
363 int minLocal, maxLocal;
drhab01f612004-05-22 02:55:23 +0000364 assert( pPage->leaf==0 || pPage->leaf==1 );
365 n = 6 - 4*pPage->leaf;
drh8b18dd42004-05-12 19:18:15 +0000366 if( pPage->hasData ){
drh6f11bef2004-05-13 01:12:56 +0000367 n += getVarint32(&pCell[n], &pInfo->nData);
drh8b18dd42004-05-12 19:18:15 +0000368 }else{
drh6f11bef2004-05-13 01:12:56 +0000369 pInfo->nData = 0;
drh3aac2dd2004-04-26 14:10:20 +0000370 }
drh6f11bef2004-05-13 01:12:56 +0000371 n += getVarint(&pCell[n], &pInfo->nKey);
372 pInfo->nHeader = n;
373 nPayload = pInfo->nData;
374 if( !pPage->intKey ){
375 nPayload += pInfo->nKey;
376 }
377 pBt = pPage->pBt;
378 if( pPage->leafData ){
379 minLocal = pBt->minLeaf;
drhab01f612004-05-22 02:55:23 +0000380 maxLocal = pBt->maxLeaf;
drh6f11bef2004-05-13 01:12:56 +0000381 }else{
382 minLocal = pBt->minLocal;
383 maxLocal = pBt->maxLocal;
384 }
385 if( nPayload<=maxLocal ){
386 pInfo->nLocal = nPayload;
387 pInfo->iOverflow = 0;
388 pInfo->nSize = nPayload + n;
389 }else{
drhb6f41482004-05-14 01:58:11 +0000390 int surplus = minLocal + (nPayload - minLocal)%(pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000391 if( surplus <= maxLocal ){
392 pInfo->nLocal = surplus;
393 }else{
394 pInfo->nLocal = minLocal;
395 }
396 pInfo->iOverflow = pInfo->nLocal + n;
397 pInfo->nSize = pInfo->iOverflow + 4;
398 }
drh3aac2dd2004-04-26 14:10:20 +0000399}
400
401/*
drh3b7511c2001-05-26 13:15:44 +0000402** Compute the total number of bytes that a Cell needs on the main
drh5e2f8b92001-05-28 00:41:15 +0000403** database page. The number returned includes the Cell header,
404** local payload storage, and the pointer to overflow pages (if
drh8c42ca92001-06-22 19:15:00 +0000405** applicable). Additional space allocated on overflow pages
drhbd03cae2001-06-02 02:40:57 +0000406** is NOT included in the value returned from this routine.
drh3b7511c2001-05-26 13:15:44 +0000407*/
drh9e572e62004-04-23 23:43:10 +0000408static int cellSize(MemPage *pPage, unsigned char *pCell){
drh6f11bef2004-05-13 01:12:56 +0000409 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +0000410
drh6f11bef2004-05-13 01:12:56 +0000411 parseCell(pPage, pCell, &info);
412 return info.nSize;
drh3b7511c2001-05-26 13:15:44 +0000413}
414
415/*
drhda200cc2004-05-09 11:51:38 +0000416** Do sanity checking on a page. Throw an exception if anything is
417** not right.
418**
419** This routine is used for internal error checking only. It is omitted
420** from most builds.
421*/
422#if defined(BTREE_DEBUG) && !defined(NDEBUG) && 0
423static void _pageIntegrity(MemPage *pPage){
drhb6f41482004-05-14 01:58:11 +0000424 int usableSize;
drhda200cc2004-05-09 11:51:38 +0000425 u8 *data;
426 int i, idx, c, pc, hdr, nFree;
427 u8 used[MX_PAGE_SIZE];
428
drhb6f41482004-05-14 01:58:11 +0000429 usableSize = pPage->pBt->usableSize;
430 assert( pPage->aData==&((unsigned char*)pPage)[-pPage->pBt->pageSize] );
drhda200cc2004-05-09 11:51:38 +0000431 hdr = pPage->hdrOffset;
432 assert( hdr==(pPage->pgno==1 ? 100 : 0) );
433 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
434 c = pPage->aData[hdr];
435 if( pPage->isInit ){
436 assert( pPage->leaf == ((c & PTF_LEAF)!=0) );
437 assert( pPage->zeroData == ((c & PTF_ZERODATA)!=0) );
drh8b18dd42004-05-12 19:18:15 +0000438 assert( pPage->leafData == ((c & PTF_LEAFDATA)!=0) );
439 assert( pPage->intKey == ((c & (PTF_INTKEY|PTF_LEAFDATA))!=0) );
440 assert( pPage->hasData ==
441 !(pPage->zeroData || (!pPage->leaf && pPage->leafData)) );
drhda200cc2004-05-09 11:51:38 +0000442 }
443 data = pPage->aData;
drhb6f41482004-05-14 01:58:11 +0000444 memset(used, 0, usableSize);
drhda200cc2004-05-09 11:51:38 +0000445 for(i=0; i<hdr+10-pPage->leaf*4; i++) used[i] = 1;
446 nFree = 0;
447 pc = get2byte(&data[hdr+1]);
448 while( pc ){
449 int size;
drhb6f41482004-05-14 01:58:11 +0000450 assert( pc>0 && pc<usableSize-4 );
drhda200cc2004-05-09 11:51:38 +0000451 size = get2byte(&data[pc+2]);
drhb6f41482004-05-14 01:58:11 +0000452 assert( pc+size<=usableSize );
drhda200cc2004-05-09 11:51:38 +0000453 nFree += size;
454 for(i=pc; i<pc+size; i++){
455 assert( used[i]==0 );
456 used[i] = 1;
457 }
458 pc = get2byte(&data[pc]);
459 }
460 assert( pPage->isInit==0 || pPage->nFree==nFree+data[hdr+5] );
461 idx = 0;
462 pc = get2byte(&data[hdr+3]);
463 while( pc ){
464 int size;
465 assert( pPage->isInit==0 || idx<pPage->nCell );
drhb6f41482004-05-14 01:58:11 +0000466 assert( pc>0 && pc<usableSize-4 );
drhda200cc2004-05-09 11:51:38 +0000467 assert( pPage->isInit==0 || pPage->aCell[idx]==&data[pc] );
468 size = cellSize(pPage, &data[pc]);
drhb6f41482004-05-14 01:58:11 +0000469 assert( pc+size<=usableSize );
drhda200cc2004-05-09 11:51:38 +0000470 for(i=pc; i<pc+size; i++){
471 assert( used[i]==0 );
472 used[i] = 1;
473 }
474 pc = get2byte(&data[pc]);
475 idx++;
476 }
477 assert( idx==pPage->nCell );
478 nFree = 0;
drhb6f41482004-05-14 01:58:11 +0000479 for(i=0; i<usableSize; i++){
drhda200cc2004-05-09 11:51:38 +0000480 assert( used[i]<=1 );
481 if( used[i]==0 ) nFree++;
482 }
483 assert( nFree==data[hdr+5] );
484}
485#define pageIntegrity(X) _pageIntegrity(X)
486#else
487# define pageIntegrity(X)
488#endif
489
490/*
drh72f82862001-05-24 21:06:34 +0000491** Defragment the page given. All Cells are moved to the
492** beginning of the page and all free space is collected
493** into one big FreeBlk at the end of the page.
drh365d68f2001-05-11 11:02:46 +0000494*/
drh9e572e62004-04-23 23:43:10 +0000495static void defragmentPage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +0000496 int pc, i, n, addr;
497 int start, hdr, size;
drh9e572e62004-04-23 23:43:10 +0000498 int leftover;
499 unsigned char *oldPage;
drh23e11ca2004-05-04 17:27:28 +0000500 unsigned char newPage[MX_PAGE_SIZE];
drh2af926b2001-05-15 00:39:25 +0000501
drha34b6762004-05-07 13:30:42 +0000502 assert( sqlite3pager_iswriteable(pPage->aData) );
drh9e572e62004-04-23 23:43:10 +0000503 assert( pPage->pBt!=0 );
drhb6f41482004-05-14 01:58:11 +0000504 assert( pPage->pBt->usableSize <= MX_PAGE_SIZE );
drhda200cc2004-05-09 11:51:38 +0000505 assert( !pPage->needRelink );
506 assert( !pPage->isOverfull );
drh9e572e62004-04-23 23:43:10 +0000507 oldPage = pPage->aData;
508 hdr = pPage->hdrOffset;
drh3aac2dd2004-04-26 14:10:20 +0000509 addr = 3+hdr;
drh9e572e62004-04-23 23:43:10 +0000510 n = 6+hdr;
511 if( !pPage->leaf ){
512 n += 4;
drh2af926b2001-05-15 00:39:25 +0000513 }
drhc39e0002004-05-07 23:50:57 +0000514 memcpy(&newPage[hdr], &oldPage[hdr], n-hdr);
drh9e572e62004-04-23 23:43:10 +0000515 start = n;
drh3aac2dd2004-04-26 14:10:20 +0000516 pc = get2byte(&oldPage[addr]);
drh9e572e62004-04-23 23:43:10 +0000517 i = 0;
518 while( pc>0 ){
drhb6f41482004-05-14 01:58:11 +0000519 assert( n<pPage->pBt->usableSize );
drh9e572e62004-04-23 23:43:10 +0000520 size = cellSize(pPage, &oldPage[pc]);
521 memcpy(&newPage[n], &oldPage[pc], size);
drh3aac2dd2004-04-26 14:10:20 +0000522 put2byte(&newPage[addr],n);
drhda200cc2004-05-09 11:51:38 +0000523 assert( pPage->aCell[i]==&oldPage[pc] );
drhc39e0002004-05-07 23:50:57 +0000524 pPage->aCell[i++] = &oldPage[n];
drhda200cc2004-05-09 11:51:38 +0000525 addr = n;
drh9e572e62004-04-23 23:43:10 +0000526 n += size;
drh9e572e62004-04-23 23:43:10 +0000527 pc = get2byte(&oldPage[pc]);
drh2aa679f2001-06-25 02:11:07 +0000528 }
drhc39e0002004-05-07 23:50:57 +0000529 assert( i==pPage->nCell );
drhb6f41482004-05-14 01:58:11 +0000530 leftover = pPage->pBt->usableSize - n;
drh9e572e62004-04-23 23:43:10 +0000531 assert( leftover>=0 );
532 assert( pPage->nFree==leftover );
533 if( leftover<4 ){
534 oldPage[hdr+5] = leftover;
535 leftover = 0;
drhb6f41482004-05-14 01:58:11 +0000536 n = pPage->pBt->usableSize;
drh9e572e62004-04-23 23:43:10 +0000537 }
drhc39e0002004-05-07 23:50:57 +0000538 memcpy(&oldPage[hdr], &newPage[hdr], n-hdr);
drh9e572e62004-04-23 23:43:10 +0000539 if( leftover==0 ){
drhc39e0002004-05-07 23:50:57 +0000540 put2byte(&oldPage[hdr+1], 0);
drh9e572e62004-04-23 23:43:10 +0000541 }else if( leftover>=4 ){
drhc39e0002004-05-07 23:50:57 +0000542 put2byte(&oldPage[hdr+1], n);
drh9e572e62004-04-23 23:43:10 +0000543 put2byte(&oldPage[n], 0);
544 put2byte(&oldPage[n+2], leftover);
545 memset(&oldPage[n+4], 0, leftover-4);
546 }
drhc39e0002004-05-07 23:50:57 +0000547 oldPage[hdr+5] = 0;
drh365d68f2001-05-11 11:02:46 +0000548}
549
drha059ad02001-04-17 20:09:11 +0000550/*
drh9e572e62004-04-23 23:43:10 +0000551** Allocate nByte bytes of space on a page. If nByte is less than
552** 4 it is rounded up to 4.
drhbd03cae2001-06-02 02:40:57 +0000553**
drh9e572e62004-04-23 23:43:10 +0000554** Return the index into pPage->aData[] of the first byte of
drhbd03cae2001-06-02 02:40:57 +0000555** the new allocation. Or return 0 if there is not enough free
556** space on the page to satisfy the allocation request.
drh2af926b2001-05-15 00:39:25 +0000557**
drh72f82862001-05-24 21:06:34 +0000558** If the page contains nBytes of free space but does not contain
drh8b2f49b2001-06-08 00:21:52 +0000559** nBytes of contiguous free space, then this routine automatically
560** calls defragementPage() to consolidate all free space before
561** allocating the new chunk.
drh9e572e62004-04-23 23:43:10 +0000562**
563** Algorithm: Carve a piece off of the first freeblock that is
drhab01f612004-05-22 02:55:23 +0000564** nByte in size or larger.
drh7e3b0a02001-04-28 16:52:40 +0000565*/
drh9e572e62004-04-23 23:43:10 +0000566static int allocateSpace(MemPage *pPage, int nByte){
drh3aac2dd2004-04-26 14:10:20 +0000567 int addr, pc, hdr;
drh9e572e62004-04-23 23:43:10 +0000568 int size;
drh24cd67e2004-05-10 16:18:47 +0000569 int nFrag;
drh9e572e62004-04-23 23:43:10 +0000570 unsigned char *data;
drh44ce7e22003-06-17 02:57:17 +0000571#ifndef NDEBUG
572 int cnt = 0;
573#endif
drh72f82862001-05-24 21:06:34 +0000574
drh9e572e62004-04-23 23:43:10 +0000575 data = pPage->aData;
drha34b6762004-05-07 13:30:42 +0000576 assert( sqlite3pager_iswriteable(data) );
drh9e572e62004-04-23 23:43:10 +0000577 assert( pPage->pBt );
578 if( nByte<4 ) nByte = 4;
drh14acc042001-06-10 19:56:58 +0000579 if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
drh9e572e62004-04-23 23:43:10 +0000580 hdr = pPage->hdrOffset;
drh24cd67e2004-05-10 16:18:47 +0000581 nFrag = data[hdr+5];
582 if( nFrag>=60 || nFrag>pPage->nFree-nByte ){
drh9e572e62004-04-23 23:43:10 +0000583 defragmentPage(pPage);
drh2af926b2001-05-15 00:39:25 +0000584 }
drh3aac2dd2004-04-26 14:10:20 +0000585 addr = hdr+1;
586 pc = get2byte(&data[addr]);
587 assert( addr<pc );
drhb6f41482004-05-14 01:58:11 +0000588 assert( pc<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000589 while( (size = get2byte(&data[pc+2]))<nByte ){
590 addr = pc;
591 pc = get2byte(&data[addr]);
drhb6f41482004-05-14 01:58:11 +0000592 assert( pc<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000593 assert( pc>=addr+size+4 || pc==0 );
drh9e572e62004-04-23 23:43:10 +0000594 if( pc==0 ){
595 assert( (cnt++)==0 );
596 defragmentPage(pPage);
597 assert( data[hdr+5]==0 );
drh3aac2dd2004-04-26 14:10:20 +0000598 addr = pPage->hdrOffset+1;
599 pc = get2byte(&data[addr]);
drh9e572e62004-04-23 23:43:10 +0000600 }
601 }
602 assert( pc>0 && size>=nByte );
drhb6f41482004-05-14 01:58:11 +0000603 assert( pc+size<=pPage->pBt->usableSize );
drh9e572e62004-04-23 23:43:10 +0000604 if( size>nByte+4 ){
drhde647132004-05-07 17:57:49 +0000605 int newStart = pc+nByte;
606 put2byte(&data[addr], newStart);
607 put2byte(&data[newStart], get2byte(&data[pc]));
608 put2byte(&data[newStart+2], size-nByte);
drh2af926b2001-05-15 00:39:25 +0000609 }else{
drh3aac2dd2004-04-26 14:10:20 +0000610 put2byte(&data[addr], get2byte(&data[pc]));
drh9e572e62004-04-23 23:43:10 +0000611 data[hdr+5] += size-nByte;
drh2af926b2001-05-15 00:39:25 +0000612 }
613 pPage->nFree -= nByte;
drh9e572e62004-04-23 23:43:10 +0000614 assert( pPage->nFree>=0 );
615 return pc;
drh7e3b0a02001-04-28 16:52:40 +0000616}
617
618/*
drh9e572e62004-04-23 23:43:10 +0000619** Return a section of the pPage->aData to the freelist.
620** The first byte of the new free block is pPage->aDisk[start]
621** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +0000622**
623** Most of the effort here is involved in coalesing adjacent
624** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000625*/
drh9e572e62004-04-23 23:43:10 +0000626static void freeSpace(MemPage *pPage, int start, int size){
627 int end = start + size; /* End of the segment being freed */
drha34b6762004-05-07 13:30:42 +0000628 int addr, pbegin;
drh9e572e62004-04-23 23:43:10 +0000629#ifndef NDEBUG
630 int tsize = 0; /* Total size of all freeblocks */
631#endif
632 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +0000633
drh9e572e62004-04-23 23:43:10 +0000634 assert( pPage->pBt!=0 );
drha34b6762004-05-07 13:30:42 +0000635 assert( sqlite3pager_iswriteable(data) );
drh9e572e62004-04-23 23:43:10 +0000636 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
drhb6f41482004-05-14 01:58:11 +0000637 assert( end<=pPage->pBt->usableSize );
drh9e572e62004-04-23 23:43:10 +0000638 if( size<4 ) size = 4;
639
640 /* Add the space back into the linked list of freeblocks */
drh3aac2dd2004-04-26 14:10:20 +0000641 addr = pPage->hdrOffset + 1;
642 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +0000643 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000644 assert( pbegin>addr );
645 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +0000646 }
drhb6f41482004-05-14 01:58:11 +0000647 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000648 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +0000649 put2byte(&data[addr], start);
650 put2byte(&data[start], pbegin);
651 put2byte(&data[start+2], size);
drh2af926b2001-05-15 00:39:25 +0000652 pPage->nFree += size;
drh9e572e62004-04-23 23:43:10 +0000653
654 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +0000655 addr = pPage->hdrOffset + 1;
656 while( (pbegin = get2byte(&data[addr]))>0 ){
drh9e572e62004-04-23 23:43:10 +0000657 int pnext, psize;
drh3aac2dd2004-04-26 14:10:20 +0000658 assert( pbegin>addr );
drhb6f41482004-05-14 01:58:11 +0000659 assert( pbegin<pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +0000660 pnext = get2byte(&data[pbegin]);
661 psize = get2byte(&data[pbegin+2]);
662 if( pbegin + psize + 3 >= pnext && pnext>0 ){
663 int frag = pnext - (pbegin+psize);
664 assert( frag<=data[pPage->hdrOffset+5] );
665 data[pPage->hdrOffset+5] -= frag;
666 put2byte(&data[pbegin], get2byte(&data[pnext]));
667 put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
668 }else{
669 assert( (tsize += psize)>0 );
drh3aac2dd2004-04-26 14:10:20 +0000670 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +0000671 }
672 }
673 assert( tsize+data[pPage->hdrOffset+5]==pPage->nFree );
drh7e3b0a02001-04-28 16:52:40 +0000674}
675
drh9e572e62004-04-23 23:43:10 +0000676/*
drh4b70f112004-05-02 21:12:19 +0000677** Resize the aCell[] array of the given page so that it is able to
678** hold at least nNewSz entries.
679**
680** Return SQLITE_OK or SQLITE_NOMEM.
681*/
682static int resizeCellArray(MemPage *pPage, int nNewSz){
drha34b6762004-05-07 13:30:42 +0000683 if( pPage->nCellAlloc<nNewSz ){
drhfa1a98a2004-05-14 19:08:17 +0000684 int n = nNewSz*sizeof(pPage->aCell[0]);
685 if( pPage->aCell==0 ){
686 pPage->aCell = sqliteMallocRaw( n );
687 }else{
688 pPage->aCell = sqliteRealloc(pPage->aCell, n);
689 }
danielk197724b03fd2004-05-10 10:34:34 +0000690 if( sqlite3_malloc_failed ) return SQLITE_NOMEM;
drha34b6762004-05-07 13:30:42 +0000691 pPage->nCellAlloc = nNewSz;
drh4b70f112004-05-02 21:12:19 +0000692 }
693 return SQLITE_OK;
694}
695
696/*
drh7e3b0a02001-04-28 16:52:40 +0000697** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +0000698**
drhbd03cae2001-06-02 02:40:57 +0000699** The pParent parameter must be a pointer to the MemPage which
drh9e572e62004-04-23 23:43:10 +0000700** is the parent of the page being initialized. The root of a
701** BTree has no parent and so for that page, pParent==NULL.
drh5e2f8b92001-05-28 00:41:15 +0000702**
drh72f82862001-05-24 21:06:34 +0000703** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +0000704** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +0000705** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
706** guarantee that the page is well-formed. It only shows that
707** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +0000708*/
drh9e572e62004-04-23 23:43:10 +0000709static int initPage(
drh3aac2dd2004-04-26 14:10:20 +0000710 MemPage *pPage, /* The page to be initialized */
drh9e572e62004-04-23 23:43:10 +0000711 MemPage *pParent /* The parent. Might be NULL */
712){
drh3aac2dd2004-04-26 14:10:20 +0000713 int c, pc, i, hdr;
drha34b6762004-05-07 13:30:42 +0000714 unsigned char *data;
drhb6f41482004-05-14 01:58:11 +0000715 int usableSize;
drh3add3672004-05-15 00:29:24 +0000716 int nCell, nFree;
717 u8 *aCell[MX_PAGE_SIZE/2];
drh10617cd2004-05-14 15:27:27 +0000718
drh2af926b2001-05-15 00:39:25 +0000719
drh3aac2dd2004-04-26 14:10:20 +0000720 assert( pPage->pBt!=0 );
drh4b70f112004-05-02 21:12:19 +0000721 assert( pParent==0 || pParent->pBt==pPage->pBt );
drha34b6762004-05-07 13:30:42 +0000722 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
drhde647132004-05-07 17:57:49 +0000723 assert( pPage->aData == &((unsigned char*)pPage)[-pPage->pBt->pageSize] );
drhda200cc2004-05-09 11:51:38 +0000724 assert( pPage->pParent==0 || pPage->pParent==pParent );
drh10617cd2004-05-14 15:27:27 +0000725 assert( pPage->pParent==pParent || !pPage->isInit );
726 if( pPage->isInit ) return SQLITE_OK;
drhda200cc2004-05-09 11:51:38 +0000727 if( pPage->pParent==0 && pParent!=0 ){
728 pPage->pParent = pParent;
drha34b6762004-05-07 13:30:42 +0000729 sqlite3pager_ref(pParent->aData);
drh5e2f8b92001-05-28 00:41:15 +0000730 }
drh4b70f112004-05-02 21:12:19 +0000731 pPage->nCell = pPage->nCellAlloc = 0;
drhde647132004-05-07 17:57:49 +0000732 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
733 hdr = pPage->hdrOffset;
drha34b6762004-05-07 13:30:42 +0000734 data = pPage->aData;
735 c = data[hdr];
drh8b18dd42004-05-12 19:18:15 +0000736 pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0;
drh9e572e62004-04-23 23:43:10 +0000737 pPage->zeroData = (c & PTF_ZERODATA)!=0;
drh8b18dd42004-05-12 19:18:15 +0000738 pPage->leafData = (c & PTF_LEAFDATA)!=0;
drh4b70f112004-05-02 21:12:19 +0000739 pPage->leaf = (c & PTF_LEAF)!=0;
drh8b18dd42004-05-12 19:18:15 +0000740 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
drhc8629a12004-05-08 20:07:40 +0000741 pPage->isOverfull = 0;
drhda200cc2004-05-09 11:51:38 +0000742 pPage->needRelink = 0;
drhc8629a12004-05-08 20:07:40 +0000743 pPage->idxShift = 0;
drhb6f41482004-05-14 01:58:11 +0000744 usableSize = pPage->pBt->usableSize;
drh2af926b2001-05-15 00:39:25 +0000745
drh9e572e62004-04-23 23:43:10 +0000746 /* Initialize the cell count and cell pointers */
drh3add3672004-05-15 00:29:24 +0000747 i = 0;
drh9e572e62004-04-23 23:43:10 +0000748 pc = get2byte(&data[hdr+3]);
drh3add3672004-05-15 00:29:24 +0000749 nCell = 0;
drh9e572e62004-04-23 23:43:10 +0000750 while( pc>0 ){
drhb6f41482004-05-14 01:58:11 +0000751 if( pc>=usableSize ) return SQLITE_CORRUPT;
drh3add3672004-05-15 00:29:24 +0000752 if( nCell>sizeof(aCell)/sizeof(aCell[0]) ) return SQLITE_CORRUPT;
753 aCell[nCell++] = &data[pc];
drh9e572e62004-04-23 23:43:10 +0000754 pc = get2byte(&data[pc]);
755 }
drh3add3672004-05-15 00:29:24 +0000756 if( resizeCellArray(pPage, nCell) ){
drh9e572e62004-04-23 23:43:10 +0000757 return SQLITE_NOMEM;
758 }
drh3add3672004-05-15 00:29:24 +0000759 pPage->nCell = nCell;
760 memcpy(pPage->aCell, aCell, nCell*sizeof(aCell[0]));
drh9e572e62004-04-23 23:43:10 +0000761
762 /* Compute the total free space on the page */
drh9e572e62004-04-23 23:43:10 +0000763 pc = get2byte(&data[hdr+1]);
drh3add3672004-05-15 00:29:24 +0000764 nFree = data[hdr+5];
765 i = 0;
drh9e572e62004-04-23 23:43:10 +0000766 while( pc>0 ){
767 int next, size;
drhb6f41482004-05-14 01:58:11 +0000768 if( pc>=usableSize ) return SQLITE_CORRUPT;
drh3add3672004-05-15 00:29:24 +0000769 if( i++>MX_PAGE_SIZE ) return SQLITE_CORRUPT;
drh9e572e62004-04-23 23:43:10 +0000770 next = get2byte(&data[pc]);
771 size = get2byte(&data[pc+2]);
drh3aac2dd2004-04-26 14:10:20 +0000772 if( next>0 && next<=pc+size+3 ) return SQLITE_CORRUPT;
drh3add3672004-05-15 00:29:24 +0000773 nFree += size;
drh9e572e62004-04-23 23:43:10 +0000774 pc = next;
775 }
drh3add3672004-05-15 00:29:24 +0000776 pPage->nFree = nFree;
777 if( nFree>=usableSize ) return SQLITE_CORRUPT;
drh9e572e62004-04-23 23:43:10 +0000778
drhde647132004-05-07 17:57:49 +0000779 pPage->isInit = 1;
drhda200cc2004-05-09 11:51:38 +0000780 pageIntegrity(pPage);
drh9e572e62004-04-23 23:43:10 +0000781 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +0000782}
783
784/*
drh8b2f49b2001-06-08 00:21:52 +0000785** Set up a raw page so that it looks like a database page holding
786** no entries.
drhbd03cae2001-06-02 02:40:57 +0000787*/
drh9e572e62004-04-23 23:43:10 +0000788static void zeroPage(MemPage *pPage, int flags){
789 unsigned char *data = pPage->aData;
790 Btree *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +0000791 int hdr = pPage->hdrOffset;
drh9e572e62004-04-23 23:43:10 +0000792 int first;
793
drhda200cc2004-05-09 11:51:38 +0000794 assert( sqlite3pager_pagenumber(data)==pPage->pgno );
795 assert( &data[pBt->pageSize] == (unsigned char*)pPage );
drha34b6762004-05-07 13:30:42 +0000796 assert( sqlite3pager_iswriteable(data) );
drhb6f41482004-05-14 01:58:11 +0000797 memset(&data[hdr], 0, pBt->usableSize - hdr);
drh9e572e62004-04-23 23:43:10 +0000798 data[hdr] = flags;
drhde647132004-05-07 17:57:49 +0000799 first = hdr + 6 + 4*((flags&PTF_LEAF)==0);
drh9e572e62004-04-23 23:43:10 +0000800 put2byte(&data[hdr+1], first);
drhb6f41482004-05-14 01:58:11 +0000801 put2byte(&data[first+2], pBt->usableSize - first);
drh9e572e62004-04-23 23:43:10 +0000802 sqliteFree(pPage->aCell);
803 pPage->aCell = 0;
drh8c42ca92001-06-22 19:15:00 +0000804 pPage->nCell = 0;
drhde647132004-05-07 17:57:49 +0000805 pPage->nCellAlloc = 0;
drhb6f41482004-05-14 01:58:11 +0000806 pPage->nFree = pBt->usableSize - first;
drh8b18dd42004-05-12 19:18:15 +0000807 pPage->intKey = (flags & (PTF_INTKEY|PTF_LEAFDATA))!=0;
drh9e572e62004-04-23 23:43:10 +0000808 pPage->zeroData = (flags & PTF_ZERODATA)!=0;
drh8b18dd42004-05-12 19:18:15 +0000809 pPage->leafData = (flags & PTF_LEAFDATA)!=0;
810 pPage->leaf = (flags & PTF_LEAF)!=0;
811 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
drh9e572e62004-04-23 23:43:10 +0000812 pPage->hdrOffset = hdr;
drhda200cc2004-05-09 11:51:38 +0000813 pPage->isOverfull = 0;
814 pPage->needRelink = 0;
815 pPage->idxShift = 0;
816 pPage->isInit = 1;
817 pageIntegrity(pPage);
drhbd03cae2001-06-02 02:40:57 +0000818}
819
820/*
drh3aac2dd2004-04-26 14:10:20 +0000821** Get a page from the pager. Initialize the MemPage.pBt and
822** MemPage.aData elements if needed.
823*/
824static int getPage(Btree *pBt, Pgno pgno, MemPage **ppPage){
825 int rc;
826 unsigned char *aData;
827 MemPage *pPage;
drha34b6762004-05-07 13:30:42 +0000828 rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData);
drh3aac2dd2004-04-26 14:10:20 +0000829 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +0000830 pPage = (MemPage*)&aData[pBt->pageSize];
drh3aac2dd2004-04-26 14:10:20 +0000831 pPage->aData = aData;
832 pPage->pBt = pBt;
833 pPage->pgno = pgno;
drhde647132004-05-07 17:57:49 +0000834 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
drh3aac2dd2004-04-26 14:10:20 +0000835 *ppPage = pPage;
836 return SQLITE_OK;
837}
838
839/*
drhde647132004-05-07 17:57:49 +0000840** Get a page from the pager and initialize it. This routine
841** is just a convenience wrapper around separate calls to
842** getPage() and initPage().
843*/
844static int getAndInitPage(
845 Btree *pBt, /* The database file */
846 Pgno pgno, /* Number of the page to get */
847 MemPage **ppPage, /* Write the page pointer here */
848 MemPage *pParent /* Parent of the page */
849){
850 int rc;
851 rc = getPage(pBt, pgno, ppPage);
drh10617cd2004-05-14 15:27:27 +0000852 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
drhde647132004-05-07 17:57:49 +0000853 rc = initPage(*ppPage, pParent);
854 }
855 return rc;
856}
857
858/*
drh3aac2dd2004-04-26 14:10:20 +0000859** Release a MemPage. This should be called once for each prior
860** call to getPage.
861*/
drh4b70f112004-05-02 21:12:19 +0000862static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +0000863 if( pPage ){
864 assert( pPage->aData );
865 assert( pPage->pBt );
866 assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage );
drha34b6762004-05-07 13:30:42 +0000867 sqlite3pager_unref(pPage->aData);
drh3aac2dd2004-04-26 14:10:20 +0000868 }
869}
870
871/*
drh72f82862001-05-24 21:06:34 +0000872** This routine is called when the reference count for a page
873** reaches zero. We need to unref the pParent pointer when that
874** happens.
875*/
drhb6f41482004-05-14 01:58:11 +0000876static void pageDestructor(void *pData, int pageSize){
877 MemPage *pPage = (MemPage*)&((char*)pData)[pageSize];
drhda200cc2004-05-09 11:51:38 +0000878 assert( pPage->isInit==0 || pPage->needRelink==0 );
drh72f82862001-05-24 21:06:34 +0000879 if( pPage->pParent ){
880 MemPage *pParent = pPage->pParent;
881 pPage->pParent = 0;
drha34b6762004-05-07 13:30:42 +0000882 releasePage(pParent);
drh72f82862001-05-24 21:06:34 +0000883 }
drh9e572e62004-04-23 23:43:10 +0000884 sqliteFree(pPage->aCell);
885 pPage->aCell = 0;
drh3aac2dd2004-04-26 14:10:20 +0000886 pPage->isInit = 0;
drh72f82862001-05-24 21:06:34 +0000887}
888
889/*
drh306dc212001-05-21 13:45:10 +0000890** Open a new database.
891**
892** Actually, this routine just sets up the internal data structures
drh72f82862001-05-24 21:06:34 +0000893** for accessing the database. We do not open the database file
894** until the first page is loaded.
drh382c0242001-10-06 16:33:02 +0000895**
896** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +0000897** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +0000898** database file will be deleted when sqlite3BtreeClose() is called.
drha059ad02001-04-17 20:09:11 +0000899*/
drh23e11ca2004-05-04 17:27:28 +0000900int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +0000901 const char *zFilename, /* Name of the file containing the BTree database */
902 Btree **ppBtree, /* Pointer to new Btree object written here */
903 int nCache, /* Number of cache pages */
904 int flags /* Options */
drh6019e162001-07-02 17:51:45 +0000905){
drha059ad02001-04-17 20:09:11 +0000906 Btree *pBt;
drha34b6762004-05-07 13:30:42 +0000907 int rc;
drha059ad02001-04-17 20:09:11 +0000908
drhd62d3d02003-01-24 12:14:20 +0000909 /*
910 ** The following asserts make sure that structures used by the btree are
911 ** the right size. This is to guard against size changes that result
912 ** when compiling on a different architecture.
913 */
drh4a1c3802004-05-12 15:15:47 +0000914 assert( sizeof(i64)==8 );
drh9e572e62004-04-23 23:43:10 +0000915 assert( sizeof(u64)==8 );
drhd62d3d02003-01-24 12:14:20 +0000916 assert( sizeof(u32)==4 );
917 assert( sizeof(u16)==2 );
918 assert( sizeof(Pgno)==4 );
drhd62d3d02003-01-24 12:14:20 +0000919 assert( sizeof(ptr)==sizeof(char*) );
920 assert( sizeof(uptr)==sizeof(ptr) );
921
drha059ad02001-04-17 20:09:11 +0000922 pBt = sqliteMalloc( sizeof(*pBt) );
923 if( pBt==0 ){
drh8c42ca92001-06-22 19:15:00 +0000924 *ppBtree = 0;
drha059ad02001-04-17 20:09:11 +0000925 return SQLITE_NOMEM;
926 }
drh6019e162001-07-02 17:51:45 +0000927 if( nCache<10 ) nCache = 10;
drha34b6762004-05-07 13:30:42 +0000928 rc = sqlite3pager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
drh3aac2dd2004-04-26 14:10:20 +0000929 (flags & BTREE_OMIT_JOURNAL)==0);
drha059ad02001-04-17 20:09:11 +0000930 if( rc!=SQLITE_OK ){
drha34b6762004-05-07 13:30:42 +0000931 if( pBt->pPager ) sqlite3pager_close(pBt->pPager);
drha059ad02001-04-17 20:09:11 +0000932 sqliteFree(pBt);
933 *ppBtree = 0;
934 return rc;
935 }
drha34b6762004-05-07 13:30:42 +0000936 sqlite3pager_set_destructor(pBt->pPager, pageDestructor);
drha059ad02001-04-17 20:09:11 +0000937 pBt->pCursor = 0;
drha34b6762004-05-07 13:30:42 +0000938 pBt->pPage1 = 0;
939 pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager);
drh4b70f112004-05-02 21:12:19 +0000940 pBt->pageSize = SQLITE_PAGE_SIZE; /* FIX ME - read from header */
drhb6f41482004-05-14 01:58:11 +0000941 pBt->usableSize = pBt->pageSize;
drh6f11bef2004-05-13 01:12:56 +0000942 pBt->maxEmbedFrac = 64; /* FIX ME - read from header */
943 pBt->minEmbedFrac = 32; /* FIX ME - read from header */
944 pBt->minLeafFrac = 32; /* FIX ME - read from header */
drh3a4c1412004-05-09 20:40:11 +0000945
drha059ad02001-04-17 20:09:11 +0000946 *ppBtree = pBt;
947 return SQLITE_OK;
948}
949
950/*
951** Close an open database and invalidate all cursors.
952*/
drh3aac2dd2004-04-26 14:10:20 +0000953int sqlite3BtreeClose(Btree *pBt){
drha059ad02001-04-17 20:09:11 +0000954 while( pBt->pCursor ){
drh3aac2dd2004-04-26 14:10:20 +0000955 sqlite3BtreeCloseCursor(pBt->pCursor);
drha059ad02001-04-17 20:09:11 +0000956 }
drha34b6762004-05-07 13:30:42 +0000957 sqlite3pager_close(pBt->pPager);
drha059ad02001-04-17 20:09:11 +0000958 sqliteFree(pBt);
959 return SQLITE_OK;
960}
961
962/*
drhda47d772002-12-02 04:25:19 +0000963** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +0000964**
965** The maximum number of cache pages is set to the absolute
966** value of mxPage. If mxPage is negative, the pager will
967** operate asynchronously - it will not stop to do fsync()s
968** to insure data is written to the disk surface before
969** continuing. Transactions still work if synchronous is off,
970** and the database cannot be corrupted if this program
971** crashes. But if the operating system crashes or there is
972** an abrupt power failure when synchronous is off, the database
973** could be left in an inconsistent and unrecoverable state.
974** Synchronous is on by default so database corruption is not
975** normally a worry.
drhf57b14a2001-09-14 18:54:08 +0000976*/
drh23e11ca2004-05-04 17:27:28 +0000977int sqlite3BtreeSetCacheSize(Btree *pBt, int mxPage){
drha34b6762004-05-07 13:30:42 +0000978 sqlite3pager_set_cachesize(pBt->pPager, mxPage);
drhf57b14a2001-09-14 18:54:08 +0000979 return SQLITE_OK;
980}
981
982/*
drh973b6e32003-02-12 14:09:42 +0000983** Change the way data is synced to disk in order to increase or decrease
984** how well the database resists damage due to OS crashes and power
985** failures. Level 1 is the same as asynchronous (no syncs() occur and
986** there is a high probability of damage) Level 2 is the default. There
987** is a very low but non-zero probability of damage. Level 3 reduces the
988** probability of damage to near zero but with a write performance reduction.
989*/
drh3aac2dd2004-04-26 14:10:20 +0000990int sqlite3BtreeSetSafetyLevel(Btree *pBt, int level){
drha34b6762004-05-07 13:30:42 +0000991 sqlite3pager_set_safety_level(pBt->pPager, level);
drh973b6e32003-02-12 14:09:42 +0000992 return SQLITE_OK;
993}
994
995/*
drha34b6762004-05-07 13:30:42 +0000996** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +0000997** also acquire a readlock on that file.
998**
999** SQLITE_OK is returned on success. If the file is not a
1000** well-formed database file, then SQLITE_CORRUPT is returned.
1001** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
1002** is returned if we run out of memory. SQLITE_PROTOCOL is returned
1003** if there is a locking protocol violation.
1004*/
1005static int lockBtree(Btree *pBt){
1006 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001007 MemPage *pPage1;
drha34b6762004-05-07 13:30:42 +00001008 if( pBt->pPage1 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001009 rc = getPage(pBt, 1, &pPage1);
drh306dc212001-05-21 13:45:10 +00001010 if( rc!=SQLITE_OK ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00001011
drh306dc212001-05-21 13:45:10 +00001012
1013 /* Do some checking to help insure the file we opened really is
1014 ** a valid database file.
1015 */
drhb6f41482004-05-14 01:58:11 +00001016 rc = SQLITE_NOTADB;
drha34b6762004-05-07 13:30:42 +00001017 if( sqlite3pager_pagecount(pBt->pPager)>0 ){
drhb6f41482004-05-14 01:58:11 +00001018 u8 *page1 = pPage1->aData;
1019 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00001020 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00001021 }
drhb6f41482004-05-14 01:58:11 +00001022 if( page1[18]>1 || page1[19]>1 ){
1023 goto page1_init_failed;
1024 }
1025 pBt->pageSize = get2byte(&page1[16]);
1026 pBt->usableSize = pBt->pageSize - page1[20];
1027 if( pBt->usableSize<500 ){
1028 goto page1_init_failed;
1029 }
1030 pBt->maxEmbedFrac = page1[21];
1031 pBt->minEmbedFrac = page1[22];
1032 pBt->minLeafFrac = page1[23];
drh306dc212001-05-21 13:45:10 +00001033 }
drhb6f41482004-05-14 01:58:11 +00001034
1035 /* maxLocal is the maximum amount of payload to store locally for
1036 ** a cell. Make sure it is small enough so that at least minFanout
1037 ** cells can will fit on one page. We assume a 10-byte page header.
1038 ** Besides the payload, the cell must store:
1039 ** 2-byte pointer to next cell
1040 ** 4-byte child pointer
1041 ** 9-byte nKey value
1042 ** 4-byte nData value
1043 ** 4-byte overflow page pointer
1044 ** So a cell consists of a header which is as much as 19 bytes long,
1045 ** 0 to N bytes of payload, and an optional 4 byte overflow page pointer.
1046 */
1047 pBt->maxLocal = (pBt->usableSize-10)*pBt->maxEmbedFrac/255 - 23;
1048 pBt->minLocal = (pBt->usableSize-10)*pBt->minEmbedFrac/255 - 23;
1049 pBt->maxLeaf = pBt->usableSize - 33;
1050 pBt->minLeaf = (pBt->usableSize-10)*pBt->minLeafFrac/255 - 23;
1051 if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
1052 goto page1_init_failed;
1053 }
1054 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE );
drh3aac2dd2004-04-26 14:10:20 +00001055 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00001056 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00001057
drh72f82862001-05-24 21:06:34 +00001058page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00001059 releasePage(pPage1);
1060 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00001061 return rc;
drh306dc212001-05-21 13:45:10 +00001062}
1063
1064/*
drhb8ca3072001-12-05 00:21:20 +00001065** If there are no outstanding cursors and we are not in the middle
1066** of a transaction but there is a read lock on the database, then
1067** this routine unrefs the first page of the database file which
1068** has the effect of releasing the read lock.
1069**
1070** If there are any outstanding cursors, this routine is a no-op.
1071**
1072** If there is a transaction in progress, this routine is a no-op.
1073*/
1074static void unlockBtreeIfUnused(Btree *pBt){
drh3aac2dd2004-04-26 14:10:20 +00001075 if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->pPage1!=0 ){
1076 releasePage(pBt->pPage1);
1077 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00001078 pBt->inTrans = 0;
drh3aac2dd2004-04-26 14:10:20 +00001079 pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001080 }
1081}
1082
1083/*
drh9e572e62004-04-23 23:43:10 +00001084** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00001085** file.
drh8b2f49b2001-06-08 00:21:52 +00001086*/
1087static int newDatabase(Btree *pBt){
drh9e572e62004-04-23 23:43:10 +00001088 MemPage *pP1;
1089 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00001090 int rc;
drhde647132004-05-07 17:57:49 +00001091 if( sqlite3pager_pagecount(pBt->pPager)>0 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001092 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00001093 assert( pP1!=0 );
1094 data = pP1->aData;
drha34b6762004-05-07 13:30:42 +00001095 rc = sqlite3pager_write(data);
drh8b2f49b2001-06-08 00:21:52 +00001096 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00001097 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
1098 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00001099 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00001100 data[18] = 1;
1101 data[19] = 1;
drhb6f41482004-05-14 01:58:11 +00001102 data[20] = pBt->pageSize - pBt->usableSize;
1103 data[21] = pBt->maxEmbedFrac;
1104 data[22] = pBt->minEmbedFrac;
1105 data[23] = pBt->minLeafFrac;
1106 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00001107 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drh8b2f49b2001-06-08 00:21:52 +00001108 return SQLITE_OK;
1109}
1110
1111/*
drh72f82862001-05-24 21:06:34 +00001112** Attempt to start a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00001113**
1114** A transaction must be started before attempting any changes
1115** to the database. None of the following routines will work
1116** unless a transaction is started first:
1117**
drh23e11ca2004-05-04 17:27:28 +00001118** sqlite3BtreeCreateTable()
1119** sqlite3BtreeCreateIndex()
1120** sqlite3BtreeClearTable()
1121** sqlite3BtreeDropTable()
1122** sqlite3BtreeInsert()
1123** sqlite3BtreeDelete()
1124** sqlite3BtreeUpdateMeta()
drha059ad02001-04-17 20:09:11 +00001125*/
drh3aac2dd2004-04-26 14:10:20 +00001126int sqlite3BtreeBeginTrans(Btree *pBt){
drha059ad02001-04-17 20:09:11 +00001127 int rc;
1128 if( pBt->inTrans ) return SQLITE_ERROR;
drhf74b8d92002-09-01 23:20:45 +00001129 if( pBt->readOnly ) return SQLITE_READONLY;
drh3aac2dd2004-04-26 14:10:20 +00001130 if( pBt->pPage1==0 ){
drh7e3b0a02001-04-28 16:52:40 +00001131 rc = lockBtree(pBt);
drh8c42ca92001-06-22 19:15:00 +00001132 if( rc!=SQLITE_OK ){
1133 return rc;
1134 }
drha059ad02001-04-17 20:09:11 +00001135 }
drha34b6762004-05-07 13:30:42 +00001136 rc = sqlite3pager_begin(pBt->pPage1->aData);
drhf74b8d92002-09-01 23:20:45 +00001137 if( rc==SQLITE_OK ){
1138 rc = newDatabase(pBt);
drha059ad02001-04-17 20:09:11 +00001139 }
drhb8ca3072001-12-05 00:21:20 +00001140 if( rc==SQLITE_OK ){
1141 pBt->inTrans = 1;
drh3aac2dd2004-04-26 14:10:20 +00001142 pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001143 }else{
1144 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001145 }
drhb8ca3072001-12-05 00:21:20 +00001146 return rc;
drha059ad02001-04-17 20:09:11 +00001147}
1148
1149/*
drh2aa679f2001-06-25 02:11:07 +00001150** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00001151**
1152** This will release the write lock on the database file. If there
1153** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00001154*/
drh3aac2dd2004-04-26 14:10:20 +00001155int sqlite3BtreeCommit(Btree *pBt){
drha059ad02001-04-17 20:09:11 +00001156 int rc;
drha34b6762004-05-07 13:30:42 +00001157 rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_commit(pBt->pPager);
drh7c717f72001-06-24 20:39:41 +00001158 pBt->inTrans = 0;
drh3aac2dd2004-04-26 14:10:20 +00001159 pBt->inStmt = 0;
drh5e00f6c2001-09-13 13:46:56 +00001160 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001161 return rc;
1162}
1163
1164/*
drhc39e0002004-05-07 23:50:57 +00001165** Invalidate all cursors
1166*/
1167static void invalidateCursors(Btree *pBt){
1168 BtCursor *pCur;
1169 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1170 MemPage *pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00001171 if( pPage /* && !pPage->isInit */ ){
1172 pageIntegrity(pPage);
drhc39e0002004-05-07 23:50:57 +00001173 releasePage(pPage);
1174 pCur->pPage = 0;
1175 pCur->isValid = 0;
1176 pCur->status = SQLITE_ABORT;
1177 }
1178 }
1179}
1180
drhda200cc2004-05-09 11:51:38 +00001181#ifdef SQLITE_TEST
1182/*
1183** Print debugging information about all cursors to standard output.
1184*/
1185void sqlite3BtreeCursorList(Btree *pBt){
1186 BtCursor *pCur;
1187 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1188 MemPage *pPage = pCur->pPage;
1189 char *zMode = pCur->wrFlag ? "rw" : "ro";
1190 printf("CURSOR %08x rooted at %4d(%s) currently at %d.%d%s\n",
1191 (int)pCur, pCur->pgnoRoot, zMode,
1192 pPage ? pPage->pgno : 0, pCur->idx,
1193 pCur->isValid ? "" : " eof"
1194 );
1195 }
1196}
1197#endif
1198
drhc39e0002004-05-07 23:50:57 +00001199/*
drhecdc7532001-09-23 02:35:53 +00001200** Rollback the transaction in progress. All cursors will be
1201** invalided by this operation. Any attempt to use a cursor
1202** that was open at the beginning of this operation will result
1203** in an error.
drh5e00f6c2001-09-13 13:46:56 +00001204**
1205** This will release the write lock on the database file. If there
1206** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00001207*/
drh3aac2dd2004-04-26 14:10:20 +00001208int sqlite3BtreeRollback(Btree *pBt){
drha059ad02001-04-17 20:09:11 +00001209 int rc;
drh24cd67e2004-05-10 16:18:47 +00001210 MemPage *pPage1;
drh7c717f72001-06-24 20:39:41 +00001211 if( pBt->inTrans==0 ) return SQLITE_OK;
1212 pBt->inTrans = 0;
drh3aac2dd2004-04-26 14:10:20 +00001213 pBt->inStmt = 0;
drh24cd67e2004-05-10 16:18:47 +00001214 if( pBt->readOnly ){
1215 rc = SQLITE_OK;
1216 }else{
1217 rc = sqlite3pager_rollback(pBt->pPager);
1218 /* The rollback may have destroyed the pPage1->aData value. So
1219 ** call getPage() on page 1 again to make sure pPage1->aData is
1220 ** set correctly. */
1221 if( getPage(pBt, 1, &pPage1)==SQLITE_OK ){
1222 releasePage(pPage1);
1223 }
1224 }
drhc39e0002004-05-07 23:50:57 +00001225 invalidateCursors(pBt);
drh5e00f6c2001-09-13 13:46:56 +00001226 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001227 return rc;
1228}
1229
1230/*
drhab01f612004-05-22 02:55:23 +00001231** Start a statement subtransaction. The subtransaction can
1232** can be rolled back independently of the main transaction.
1233** You must start a transaction before starting a subtransaction.
1234** The subtransaction is ended automatically if the main transaction
drh663fc632002-02-02 18:49:19 +00001235** commits or rolls back.
1236**
drhab01f612004-05-22 02:55:23 +00001237** Only one subtransaction may be active at a time. It is an error to try
1238** to start a new subtransaction if another subtransaction is already active.
1239**
1240** Statement subtransactions are used around individual SQL statements
1241** that are contained within a BEGIN...COMMIT block. If a constraint
1242** error occurs within the statement, the effect of that one statement
1243** can be rolled back without having to rollback the entire transaction.
drh663fc632002-02-02 18:49:19 +00001244*/
drh3aac2dd2004-04-26 14:10:20 +00001245int sqlite3BtreeBeginStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001246 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001247 if( !pBt->inTrans || pBt->inStmt ){
drhf74b8d92002-09-01 23:20:45 +00001248 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh0d65dc02002-02-03 00:56:09 +00001249 }
drha34b6762004-05-07 13:30:42 +00001250 rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager);
drh3aac2dd2004-04-26 14:10:20 +00001251 pBt->inStmt = 1;
drh663fc632002-02-02 18:49:19 +00001252 return rc;
1253}
1254
1255
1256/*
drhab01f612004-05-22 02:55:23 +00001257** Commit the statment subtransaction currently in progress. If no
1258** subtransaction is active, this is a no-op.
drh663fc632002-02-02 18:49:19 +00001259*/
drh3aac2dd2004-04-26 14:10:20 +00001260int sqlite3BtreeCommitStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001261 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001262 if( pBt->inStmt && !pBt->readOnly ){
drha34b6762004-05-07 13:30:42 +00001263 rc = sqlite3pager_stmt_commit(pBt->pPager);
drh663fc632002-02-02 18:49:19 +00001264 }else{
1265 rc = SQLITE_OK;
1266 }
drh3aac2dd2004-04-26 14:10:20 +00001267 pBt->inStmt = 0;
drh663fc632002-02-02 18:49:19 +00001268 return rc;
1269}
1270
1271/*
drhab01f612004-05-22 02:55:23 +00001272** Rollback the active statement subtransaction. If no subtransaction
1273** is active this routine is a no-op.
drh663fc632002-02-02 18:49:19 +00001274**
drhab01f612004-05-22 02:55:23 +00001275** All cursors will be invalidated by this operation. Any attempt
drh663fc632002-02-02 18:49:19 +00001276** to use a cursor that was open at the beginning of this operation
1277** will result in an error.
1278*/
drh3aac2dd2004-04-26 14:10:20 +00001279int sqlite3BtreeRollbackStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001280 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001281 if( pBt->inStmt==0 || pBt->readOnly ) return SQLITE_OK;
drha34b6762004-05-07 13:30:42 +00001282 rc = sqlite3pager_stmt_rollback(pBt->pPager);
drhc39e0002004-05-07 23:50:57 +00001283 invalidateCursors(pBt);
drh3aac2dd2004-04-26 14:10:20 +00001284 pBt->inStmt = 0;
drh663fc632002-02-02 18:49:19 +00001285 return rc;
1286}
1287
1288/*
drh3aac2dd2004-04-26 14:10:20 +00001289** Default key comparison function to be used if no comparison function
1290** is specified on the sqlite3BtreeCursor() call.
1291*/
1292static int dfltCompare(
1293 void *NotUsed, /* User data is not used */
1294 int n1, const void *p1, /* First key to compare */
1295 int n2, const void *p2 /* Second key to compare */
1296){
1297 int c;
1298 c = memcmp(p1, p2, n1<n2 ? n1 : n2);
1299 if( c==0 ){
1300 c = n1 - n2;
1301 }
1302 return c;
1303}
1304
1305/*
drh8b2f49b2001-06-08 00:21:52 +00001306** Create a new cursor for the BTree whose root is on the page
1307** iTable. The act of acquiring a cursor gets a read lock on
1308** the database file.
drh1bee3d72001-10-15 00:44:35 +00001309**
1310** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00001311** If wrFlag==1, then the cursor can be used for reading or for
1312** writing if other conditions for writing are also met. These
1313** are the conditions that must be met in order for writing to
1314** be allowed:
drh6446c4d2001-12-15 14:22:18 +00001315**
drhf74b8d92002-09-01 23:20:45 +00001316** 1: The cursor must have been opened with wrFlag==1
1317**
1318** 2: No other cursors may be open with wrFlag==0 on the same table
1319**
1320** 3: The database must be writable (not on read-only media)
1321**
1322** 4: There must be an active transaction.
1323**
1324** Condition 2 warrants further discussion. If any cursor is opened
1325** on a table with wrFlag==0, that prevents all other cursors from
1326** writing to that table. This is a kind of "read-lock". When a cursor
1327** is opened with wrFlag==0 it is guaranteed that the table will not
1328** change as long as the cursor is open. This allows the cursor to
1329** do a sequential scan of the table without having to worry about
1330** entries being inserted or deleted during the scan. Cursors should
1331** be opened with wrFlag==0 only if this read-lock property is needed.
1332** That is to say, cursors should be opened with wrFlag==0 only if they
drh23e11ca2004-05-04 17:27:28 +00001333** intend to use the sqlite3BtreeNext() system call. All other cursors
drhf74b8d92002-09-01 23:20:45 +00001334** should be opened with wrFlag==1 even if they never really intend
1335** to write.
1336**
drh6446c4d2001-12-15 14:22:18 +00001337** No checking is done to make sure that page iTable really is the
1338** root page of a b-tree. If it is not, then the cursor acquired
1339** will not work correctly.
drh3aac2dd2004-04-26 14:10:20 +00001340**
1341** The comparison function must be logically the same for every cursor
1342** on a particular table. Changing the comparison function will result
1343** in incorrect operations. If the comparison function is NULL, a
1344** default comparison function is used. The comparison function is
1345** always ignored for INTKEY tables.
drha059ad02001-04-17 20:09:11 +00001346*/
drh3aac2dd2004-04-26 14:10:20 +00001347int sqlite3BtreeCursor(
1348 Btree *pBt, /* The btree */
1349 int iTable, /* Root page of table to open */
1350 int wrFlag, /* 1 to write. 0 read-only */
1351 int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
1352 void *pArg, /* First arg to xCompare() */
1353 BtCursor **ppCur /* Write new cursor here */
1354){
drha059ad02001-04-17 20:09:11 +00001355 int rc;
drhf74b8d92002-09-01 23:20:45 +00001356 BtCursor *pCur, *pRing;
drhecdc7532001-09-23 02:35:53 +00001357
drha0c9a112004-03-10 13:42:37 +00001358 if( pBt->readOnly && wrFlag ){
1359 *ppCur = 0;
1360 return SQLITE_READONLY;
1361 }
drh4b70f112004-05-02 21:12:19 +00001362 if( pBt->pPage1==0 ){
drha059ad02001-04-17 20:09:11 +00001363 rc = lockBtree(pBt);
1364 if( rc!=SQLITE_OK ){
1365 *ppCur = 0;
1366 return rc;
1367 }
1368 }
1369 pCur = sqliteMalloc( sizeof(*pCur) );
1370 if( pCur==0 ){
drhbd03cae2001-06-02 02:40:57 +00001371 rc = SQLITE_NOMEM;
1372 goto create_cursor_exception;
1373 }
drh8b2f49b2001-06-08 00:21:52 +00001374 pCur->pgnoRoot = (Pgno)iTable;
drh24cd67e2004-05-10 16:18:47 +00001375 if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){
1376 rc = SQLITE_EMPTY;
1377 goto create_cursor_exception;
1378 }
drhde647132004-05-07 17:57:49 +00001379 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
drhbd03cae2001-06-02 02:40:57 +00001380 if( rc!=SQLITE_OK ){
1381 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00001382 }
drh3aac2dd2004-04-26 14:10:20 +00001383 pCur->xCompare = xCmp ? xCmp : dfltCompare;
1384 pCur->pArg = pArg;
drh14acc042001-06-10 19:56:58 +00001385 pCur->pBt = pBt;
drhecdc7532001-09-23 02:35:53 +00001386 pCur->wrFlag = wrFlag;
drh14acc042001-06-10 19:56:58 +00001387 pCur->idx = 0;
drhfa1a98a2004-05-14 19:08:17 +00001388 pCur->infoValid = 0;
drha059ad02001-04-17 20:09:11 +00001389 pCur->pNext = pBt->pCursor;
1390 if( pCur->pNext ){
1391 pCur->pNext->pPrev = pCur;
1392 }
drh14acc042001-06-10 19:56:58 +00001393 pCur->pPrev = 0;
drhf74b8d92002-09-01 23:20:45 +00001394 pRing = pBt->pCursor;
1395 while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
1396 if( pRing ){
1397 pCur->pShared = pRing->pShared;
1398 pRing->pShared = pCur;
1399 }else{
1400 pCur->pShared = pCur;
1401 }
drha059ad02001-04-17 20:09:11 +00001402 pBt->pCursor = pCur;
drhc39e0002004-05-07 23:50:57 +00001403 pCur->isValid = 0;
1404 pCur->status = SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +00001405 *ppCur = pCur;
1406 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00001407
1408create_cursor_exception:
1409 *ppCur = 0;
1410 if( pCur ){
drh3aac2dd2004-04-26 14:10:20 +00001411 releasePage(pCur->pPage);
drhbd03cae2001-06-02 02:40:57 +00001412 sqliteFree(pCur);
1413 }
drh5e00f6c2001-09-13 13:46:56 +00001414 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00001415 return rc;
drha059ad02001-04-17 20:09:11 +00001416}
1417
drhd3d39e92004-05-20 22:16:29 +00001418/*
1419** Change the value of the comparison function used by a cursor.
1420*/
danielk1977bf3b7212004-05-18 10:06:24 +00001421void sqlite3BtreeSetCompare(
drhd3d39e92004-05-20 22:16:29 +00001422 BtCursor *pCur, /* The cursor to whose comparison function is changed */
1423 int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */
1424 void *pArg /* First argument to xCmp() */
danielk1977bf3b7212004-05-18 10:06:24 +00001425){
1426 pCur->xCompare = xCmp ? xCmp : dfltCompare;
1427 pCur->pArg = pArg;
1428}
1429
drha059ad02001-04-17 20:09:11 +00001430/*
drh5e00f6c2001-09-13 13:46:56 +00001431** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00001432** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00001433*/
drh3aac2dd2004-04-26 14:10:20 +00001434int sqlite3BtreeCloseCursor(BtCursor *pCur){
drha059ad02001-04-17 20:09:11 +00001435 Btree *pBt = pCur->pBt;
drha059ad02001-04-17 20:09:11 +00001436 if( pCur->pPrev ){
1437 pCur->pPrev->pNext = pCur->pNext;
1438 }else{
1439 pBt->pCursor = pCur->pNext;
1440 }
1441 if( pCur->pNext ){
1442 pCur->pNext->pPrev = pCur->pPrev;
1443 }
drh3aac2dd2004-04-26 14:10:20 +00001444 releasePage(pCur->pPage);
drhf74b8d92002-09-01 23:20:45 +00001445 if( pCur->pShared!=pCur ){
1446 BtCursor *pRing = pCur->pShared;
1447 while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
1448 pRing->pShared = pCur->pShared;
1449 }
drh5e00f6c2001-09-13 13:46:56 +00001450 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001451 sqliteFree(pCur);
drh8c42ca92001-06-22 19:15:00 +00001452 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00001453}
1454
drh7e3b0a02001-04-28 16:52:40 +00001455/*
drh5e2f8b92001-05-28 00:41:15 +00001456** Make a temporary cursor by filling in the fields of pTempCur.
1457** The temporary cursor is not on the cursor list for the Btree.
1458*/
drh14acc042001-06-10 19:56:58 +00001459static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
drh5e2f8b92001-05-28 00:41:15 +00001460 memcpy(pTempCur, pCur, sizeof(*pCur));
1461 pTempCur->pNext = 0;
1462 pTempCur->pPrev = 0;
drhecdc7532001-09-23 02:35:53 +00001463 if( pTempCur->pPage ){
drha34b6762004-05-07 13:30:42 +00001464 sqlite3pager_ref(pTempCur->pPage->aData);
drhecdc7532001-09-23 02:35:53 +00001465 }
drh5e2f8b92001-05-28 00:41:15 +00001466}
1467
1468/*
drhbd03cae2001-06-02 02:40:57 +00001469** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00001470** function above.
1471*/
drh14acc042001-06-10 19:56:58 +00001472static void releaseTempCursor(BtCursor *pCur){
drhecdc7532001-09-23 02:35:53 +00001473 if( pCur->pPage ){
drha34b6762004-05-07 13:30:42 +00001474 sqlite3pager_unref(pCur->pPage->aData);
drhecdc7532001-09-23 02:35:53 +00001475 }
drh5e2f8b92001-05-28 00:41:15 +00001476}
1477
1478/*
drh9188b382004-05-14 21:12:22 +00001479** Make sure the BtCursor.info field of the given cursor is valid.
drhab01f612004-05-22 02:55:23 +00001480** If it is not already valid, call parseCell() to fill it in.
1481**
1482** BtCursor.info is a cache of the information in the current cell.
1483** Using this cache reduces the number of calls to parseCell().
drh9188b382004-05-14 21:12:22 +00001484*/
1485static void getCellInfo(BtCursor *pCur){
1486 MemPage *pPage = pCur->pPage;
1487 if( !pCur->infoValid ){
1488 parseCell(pPage, pPage->aCell[pCur->idx], &pCur->info);
1489 pCur->infoValid = 1;
1490 }else{
1491#ifndef NDEBUG
1492 CellInfo info;
1493 parseCell(pPage, pPage->aCell[pCur->idx], &info);
1494 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
1495#endif
1496 }
1497}
1498
1499/*
drh3aac2dd2004-04-26 14:10:20 +00001500** Set *pSize to the size of the buffer needed to hold the value of
1501** the key for the current entry. If the cursor is not pointing
1502** to a valid entry, *pSize is set to 0.
1503**
drh4b70f112004-05-02 21:12:19 +00001504** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00001505** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00001506*/
drh4a1c3802004-05-12 15:15:47 +00001507int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhc39e0002004-05-07 23:50:57 +00001508 if( !pCur->isValid ){
drh72f82862001-05-24 21:06:34 +00001509 *pSize = 0;
1510 }else{
drh9188b382004-05-14 21:12:22 +00001511 getCellInfo(pCur);
1512 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00001513 }
1514 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00001515}
drh2af926b2001-05-15 00:39:25 +00001516
drh72f82862001-05-24 21:06:34 +00001517/*
drh0e1c19e2004-05-11 00:58:56 +00001518** Set *pSize to the number of bytes of data in the entry the
1519** cursor currently points to. Always return SQLITE_OK.
1520** Failure is not possible. If the cursor is not currently
1521** pointing to an entry (which can happen, for example, if
1522** the database is empty) then *pSize is set to 0.
1523*/
1524int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh0e1c19e2004-05-11 00:58:56 +00001525 if( !pCur->isValid ){
danielk197796fc5fe2004-05-13 11:34:16 +00001526 /* Not pointing at a valid entry - set *pSize to 0. */
drh0e1c19e2004-05-11 00:58:56 +00001527 *pSize = 0;
1528 }else{
drh9188b382004-05-14 21:12:22 +00001529 getCellInfo(pCur);
1530 *pSize = pCur->info.nData;
drh0e1c19e2004-05-11 00:58:56 +00001531 }
1532 return SQLITE_OK;
1533}
1534
1535/*
drh72f82862001-05-24 21:06:34 +00001536** Read payload information from the entry that the pCur cursor is
1537** pointing to. Begin reading the payload at "offset" and read
1538** a total of "amt" bytes. Put the result in zBuf.
1539**
1540** This routine does not make a distinction between key and data.
drhab01f612004-05-22 02:55:23 +00001541** It just reads bytes from the payload area. Data might appear
1542** on the main page or be scattered out on multiple overflow pages.
drh72f82862001-05-24 21:06:34 +00001543*/
drh3aac2dd2004-04-26 14:10:20 +00001544static int getPayload(
1545 BtCursor *pCur, /* Cursor pointing to entry to read from */
1546 int offset, /* Begin reading this far into payload */
1547 int amt, /* Read this many bytes */
1548 unsigned char *pBuf, /* Write the bytes into this buffer */
1549 int skipKey /* offset begins at data if this is true */
1550){
1551 unsigned char *aPayload;
drh2af926b2001-05-15 00:39:25 +00001552 Pgno nextPage;
drh8c42ca92001-06-22 19:15:00 +00001553 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001554 MemPage *pPage;
1555 Btree *pBt;
drh6f11bef2004-05-13 01:12:56 +00001556 int ovflSize;
drhfa1a98a2004-05-14 19:08:17 +00001557 u32 nKey;
drh3aac2dd2004-04-26 14:10:20 +00001558
drh72f82862001-05-24 21:06:34 +00001559 assert( pCur!=0 && pCur->pPage!=0 );
drhc39e0002004-05-07 23:50:57 +00001560 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00001561 pBt = pCur->pBt;
1562 pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00001563 pageIntegrity(pPage);
drh3aac2dd2004-04-26 14:10:20 +00001564 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
1565 aPayload = pPage->aCell[pCur->idx];
drh9188b382004-05-14 21:12:22 +00001566 getCellInfo(pCur);
drhfa1a98a2004-05-14 19:08:17 +00001567 aPayload += pCur->info.nHeader;
drh3aac2dd2004-04-26 14:10:20 +00001568 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00001569 nKey = 0;
1570 }else{
1571 nKey = pCur->info.nKey;
drh3aac2dd2004-04-26 14:10:20 +00001572 }
1573 assert( offset>=0 );
1574 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00001575 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00001576 }
drhfa1a98a2004-05-14 19:08:17 +00001577 if( offset+amt > nKey+pCur->info.nData ){
drha34b6762004-05-07 13:30:42 +00001578 return SQLITE_ERROR;
drh3aac2dd2004-04-26 14:10:20 +00001579 }
drhfa1a98a2004-05-14 19:08:17 +00001580 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00001581 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00001582 if( a+offset>pCur->info.nLocal ){
1583 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00001584 }
drha34b6762004-05-07 13:30:42 +00001585 memcpy(pBuf, &aPayload[offset], a);
drh2af926b2001-05-15 00:39:25 +00001586 if( a==amt ){
1587 return SQLITE_OK;
1588 }
drh2aa679f2001-06-25 02:11:07 +00001589 offset = 0;
drha34b6762004-05-07 13:30:42 +00001590 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00001591 amt -= a;
drhdd793422001-06-28 01:54:48 +00001592 }else{
drhfa1a98a2004-05-14 19:08:17 +00001593 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00001594 }
1595 if( amt>0 ){
drhfa1a98a2004-05-14 19:08:17 +00001596 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
drh2af926b2001-05-15 00:39:25 +00001597 }
drhb6f41482004-05-14 01:58:11 +00001598 ovflSize = pBt->usableSize - 4;
drh2af926b2001-05-15 00:39:25 +00001599 while( amt>0 && nextPage ){
drha34b6762004-05-07 13:30:42 +00001600 rc = sqlite3pager_get(pBt->pPager, nextPage, (void**)&aPayload);
drh2af926b2001-05-15 00:39:25 +00001601 if( rc!=0 ){
1602 return rc;
1603 }
drha34b6762004-05-07 13:30:42 +00001604 nextPage = get4byte(aPayload);
drh3aac2dd2004-04-26 14:10:20 +00001605 if( offset<ovflSize ){
drh2af926b2001-05-15 00:39:25 +00001606 int a = amt;
drh3aac2dd2004-04-26 14:10:20 +00001607 if( a + offset > ovflSize ){
1608 a = ovflSize - offset;
drh2af926b2001-05-15 00:39:25 +00001609 }
drh9b171272004-05-08 02:03:22 +00001610 memcpy(pBuf, &aPayload[offset+4], a);
drh2aa679f2001-06-25 02:11:07 +00001611 offset = 0;
drh2af926b2001-05-15 00:39:25 +00001612 amt -= a;
drha34b6762004-05-07 13:30:42 +00001613 pBuf += a;
drh2aa679f2001-06-25 02:11:07 +00001614 }else{
drh3aac2dd2004-04-26 14:10:20 +00001615 offset -= ovflSize;
drh2af926b2001-05-15 00:39:25 +00001616 }
drha34b6762004-05-07 13:30:42 +00001617 sqlite3pager_unref(aPayload);
drh2af926b2001-05-15 00:39:25 +00001618 }
drha7fcb052001-12-14 15:09:55 +00001619 if( amt>0 ){
1620 return SQLITE_CORRUPT;
1621 }
1622 return SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +00001623}
1624
drh72f82862001-05-24 21:06:34 +00001625/*
drh3aac2dd2004-04-26 14:10:20 +00001626** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00001627** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00001628** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00001629**
drh3aac2dd2004-04-26 14:10:20 +00001630** Return SQLITE_OK on success or an error code if anything goes
1631** wrong. An error is returned if "offset+amt" is larger than
1632** the available payload.
drh72f82862001-05-24 21:06:34 +00001633*/
drha34b6762004-05-07 13:30:42 +00001634int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh8c1238a2003-01-02 14:43:55 +00001635 assert( amt>=0 );
1636 assert( offset>=0 );
drhc39e0002004-05-07 23:50:57 +00001637 if( pCur->isValid==0 ){
1638 return pCur->status;
drh3aac2dd2004-04-26 14:10:20 +00001639 }
drhc39e0002004-05-07 23:50:57 +00001640 assert( pCur->pPage!=0 );
1641 assert( pCur->pPage->intKey==0 );
1642 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh3aac2dd2004-04-26 14:10:20 +00001643 return getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
1644}
1645
1646/*
drh3aac2dd2004-04-26 14:10:20 +00001647** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00001648** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00001649** begins at "offset".
1650**
1651** Return SQLITE_OK on success or an error code if anything goes
1652** wrong. An error is returned if "offset+amt" is larger than
1653** the available payload.
drh72f82862001-05-24 21:06:34 +00001654*/
drh3aac2dd2004-04-26 14:10:20 +00001655int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhc39e0002004-05-07 23:50:57 +00001656 if( !pCur->isValid ){
1657 return pCur->status ? pCur->status : SQLITE_INTERNAL;
1658 }
drh8c1238a2003-01-02 14:43:55 +00001659 assert( amt>=0 );
1660 assert( offset>=0 );
1661 assert( pCur->pPage!=0 );
drhc39e0002004-05-07 23:50:57 +00001662 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh3aac2dd2004-04-26 14:10:20 +00001663 return getPayload(pCur, offset, amt, pBuf, 1);
drh2af926b2001-05-15 00:39:25 +00001664}
1665
drh72f82862001-05-24 21:06:34 +00001666/*
drh0e1c19e2004-05-11 00:58:56 +00001667** Return a pointer to payload information from the entry that the
1668** pCur cursor is pointing to. The pointer is to the beginning of
1669** the key if skipKey==0 and it points to the beginning of data if
1670** skipKey==1.
1671**
1672** At least amt bytes of information must be available on the local
1673** page or else this routine returns NULL. If amt<0 then the entire
1674** key/data must be available.
1675**
1676** This routine is an optimization. It is common for the entire key
1677** and data to fit on the local page and for there to be no overflow
1678** pages. When that is so, this routine can be used to access the
1679** key and data without making a copy. If the key and/or data spills
1680** onto overflow pages, then getPayload() must be used to reassembly
1681** the key/data and copy it into a preallocated buffer.
1682**
1683** The pointer returned by this routine looks directly into the cached
1684** page of the database. The data might change or move the next time
1685** any btree routine is called.
1686*/
1687static const unsigned char *fetchPayload(
1688 BtCursor *pCur, /* Cursor pointing to entry to read from */
1689 int amt, /* Amount requested */
1690 int skipKey /* read beginning at data if this is true */
1691){
1692 unsigned char *aPayload;
1693 MemPage *pPage;
1694 Btree *pBt;
drhfa1a98a2004-05-14 19:08:17 +00001695 u32 nKey;
1696 int nLocal;
drh0e1c19e2004-05-11 00:58:56 +00001697
1698 assert( pCur!=0 && pCur->pPage!=0 );
1699 assert( pCur->isValid );
1700 pBt = pCur->pBt;
1701 pPage = pCur->pPage;
1702 pageIntegrity(pPage);
1703 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
1704 aPayload = pPage->aCell[pCur->idx];
drh9188b382004-05-14 21:12:22 +00001705 getCellInfo(pCur);
drhfa1a98a2004-05-14 19:08:17 +00001706 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00001707 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00001708 nKey = 0;
1709 }else{
1710 nKey = pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00001711 }
drh0e1c19e2004-05-11 00:58:56 +00001712 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00001713 aPayload += nKey;
1714 nLocal = pCur->info.nLocal - nKey;
1715 if( amt<0 ) amt = pCur->info.nData;
1716 assert( amt<=pCur->info.nData );
drh0e1c19e2004-05-11 00:58:56 +00001717 }else{
drhfa1a98a2004-05-14 19:08:17 +00001718 nLocal = pCur->info.nLocal;
1719 if( amt<0 ) amt = nKey;
1720 assert( amt<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00001721 }
drhfa1a98a2004-05-14 19:08:17 +00001722 if( amt>nLocal ){
drh0e1c19e2004-05-11 00:58:56 +00001723 return 0; /* If any of the data is not local, return nothing */
1724 }
1725 return aPayload;
1726}
1727
1728
1729/*
1730** Return a pointer to the first amt bytes of the key or data
1731** for record that cursor pCur is point to if the entire request
1732** exists in contiguous memory on the main tree page. If any
1733** any part of the request is on an overflow page, return 0.
1734** If pCur is not pointing to a valid entry return 0.
1735**
1736** If amt<0 then return the entire key or data.
1737**
1738** The pointer returned is ephemeral. The key/data may move
1739** or be destroyed on the next call to any Btree routine.
1740**
1741** These routines is used to get quick access to key and data
1742** in the common case where no overflow pages are used.
1743**
1744** It is a fatal error to call these routines with amt values that
1745** are larger than the key/data size.
1746*/
1747const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int amt){
1748 return (const void*)fetchPayload(pCur, amt, 0);
1749}
1750const void *sqlite3BtreeDataFetch(BtCursor *pCur, int amt){
1751 return (const void*)fetchPayload(pCur, amt, 1);
1752}
1753
1754
1755/*
drh8178a752003-01-05 21:41:40 +00001756** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00001757** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00001758*/
drh3aac2dd2004-04-26 14:10:20 +00001759static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00001760 int rc;
1761 MemPage *pNewPage;
drh3aac2dd2004-04-26 14:10:20 +00001762 MemPage *pOldPage;
drh0d316a42002-08-11 20:10:47 +00001763 Btree *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00001764
drhc39e0002004-05-07 23:50:57 +00001765 assert( pCur->isValid );
drhde647132004-05-07 17:57:49 +00001766 rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
drh6019e162001-07-02 17:51:45 +00001767 if( rc ) return rc;
drhda200cc2004-05-09 11:51:38 +00001768 pageIntegrity(pNewPage);
drh428ae8c2003-01-04 16:48:09 +00001769 pNewPage->idxParent = pCur->idx;
drh3aac2dd2004-04-26 14:10:20 +00001770 pOldPage = pCur->pPage;
1771 pOldPage->idxShift = 0;
1772 releasePage(pOldPage);
drh72f82862001-05-24 21:06:34 +00001773 pCur->pPage = pNewPage;
1774 pCur->idx = 0;
drhfa1a98a2004-05-14 19:08:17 +00001775 pCur->infoValid = 0;
drh4be295b2003-12-16 03:44:47 +00001776 if( pNewPage->nCell<1 ){
1777 return SQLITE_CORRUPT;
1778 }
drh72f82862001-05-24 21:06:34 +00001779 return SQLITE_OK;
1780}
1781
1782/*
drh8856d6a2004-04-29 14:42:46 +00001783** Return true if the page is the virtual root of its table.
1784**
1785** The virtual root page is the root page for most tables. But
1786** for the table rooted on page 1, sometime the real root page
1787** is empty except for the right-pointer. In such cases the
1788** virtual root page is the page that the right-pointer of page
1789** 1 is pointing to.
1790*/
1791static int isRootPage(MemPage *pPage){
1792 MemPage *pParent = pPage->pParent;
drhda200cc2004-05-09 11:51:38 +00001793 if( pParent==0 ) return 1;
1794 if( pParent->pgno>1 ) return 0;
1795 if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
drh8856d6a2004-04-29 14:42:46 +00001796 return 0;
1797}
1798
1799/*
drh5e2f8b92001-05-28 00:41:15 +00001800** Move the cursor up to the parent page.
1801**
1802** pCur->idx is set to the cell index that contains the pointer
1803** to the page we are coming from. If we are coming from the
1804** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00001805** the largest cell index.
drh72f82862001-05-24 21:06:34 +00001806*/
drh8178a752003-01-05 21:41:40 +00001807static void moveToParent(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00001808 Pgno oldPgno;
1809 MemPage *pParent;
drh8178a752003-01-05 21:41:40 +00001810 MemPage *pPage;
drh428ae8c2003-01-04 16:48:09 +00001811 int idxParent;
drh3aac2dd2004-04-26 14:10:20 +00001812
drhc39e0002004-05-07 23:50:57 +00001813 assert( pCur->isValid );
drh8178a752003-01-05 21:41:40 +00001814 pPage = pCur->pPage;
1815 assert( pPage!=0 );
drh8856d6a2004-04-29 14:42:46 +00001816 assert( !isRootPage(pPage) );
drhda200cc2004-05-09 11:51:38 +00001817 pageIntegrity(pPage);
drh8178a752003-01-05 21:41:40 +00001818 pParent = pPage->pParent;
1819 assert( pParent!=0 );
drhda200cc2004-05-09 11:51:38 +00001820 pageIntegrity(pParent);
drh8178a752003-01-05 21:41:40 +00001821 idxParent = pPage->idxParent;
drha34b6762004-05-07 13:30:42 +00001822 sqlite3pager_ref(pParent->aData);
drh3aac2dd2004-04-26 14:10:20 +00001823 oldPgno = pPage->pgno;
1824 releasePage(pPage);
drh72f82862001-05-24 21:06:34 +00001825 pCur->pPage = pParent;
drhfa1a98a2004-05-14 19:08:17 +00001826 pCur->infoValid = 0;
drh428ae8c2003-01-04 16:48:09 +00001827 assert( pParent->idxShift==0 );
1828 if( pParent->idxShift==0 ){
1829 pCur->idx = idxParent;
1830#ifndef NDEBUG
1831 /* Verify that pCur->idx is the correct index to point back to the child
1832 ** page we just came from
1833 */
drh428ae8c2003-01-04 16:48:09 +00001834 if( pCur->idx<pParent->nCell ){
drha34b6762004-05-07 13:30:42 +00001835 assert( get4byte(&pParent->aCell[idxParent][2])==oldPgno );
drh428ae8c2003-01-04 16:48:09 +00001836 }else{
drha34b6762004-05-07 13:30:42 +00001837 assert( get4byte(&pParent->aData[pParent->hdrOffset+6])==oldPgno );
drh428ae8c2003-01-04 16:48:09 +00001838 }
1839#endif
1840 }else{
1841 /* The MemPage.idxShift flag indicates that cell indices might have
1842 ** changed since idxParent was set and hence idxParent might be out
1843 ** of date. So recompute the parent cell index by scanning all cells
1844 ** and locating the one that points to the child we just came from.
1845 */
1846 int i;
1847 pCur->idx = pParent->nCell;
drh428ae8c2003-01-04 16:48:09 +00001848 for(i=0; i<pParent->nCell; i++){
drh3aac2dd2004-04-26 14:10:20 +00001849 if( get4byte(&pParent->aCell[i][2])==oldPgno ){
drh428ae8c2003-01-04 16:48:09 +00001850 pCur->idx = i;
1851 break;
1852 }
drh72f82862001-05-24 21:06:34 +00001853 }
1854 }
1855}
1856
1857/*
1858** Move the cursor to the root page
1859*/
drh5e2f8b92001-05-28 00:41:15 +00001860static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00001861 MemPage *pRoot;
drhbd03cae2001-06-02 02:40:57 +00001862 int rc;
drh0d316a42002-08-11 20:10:47 +00001863 Btree *pBt = pCur->pBt;
drhbd03cae2001-06-02 02:40:57 +00001864
drhde647132004-05-07 17:57:49 +00001865 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0);
drhc39e0002004-05-07 23:50:57 +00001866 if( rc ){
1867 pCur->isValid = 0;
1868 return rc;
1869 }
drh3aac2dd2004-04-26 14:10:20 +00001870 releasePage(pCur->pPage);
drhda200cc2004-05-09 11:51:38 +00001871 pageIntegrity(pRoot);
drh3aac2dd2004-04-26 14:10:20 +00001872 pCur->pPage = pRoot;
drh72f82862001-05-24 21:06:34 +00001873 pCur->idx = 0;
drhfa1a98a2004-05-14 19:08:17 +00001874 pCur->infoValid = 0;
drh8856d6a2004-04-29 14:42:46 +00001875 if( pRoot->nCell==0 && !pRoot->leaf ){
1876 Pgno subpage;
1877 assert( pRoot->pgno==1 );
1878 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+6]);
1879 assert( subpage>0 );
drh3644f082004-05-10 18:45:09 +00001880 pCur->isValid = 1;
drh4b70f112004-05-02 21:12:19 +00001881 rc = moveToChild(pCur, subpage);
drh8856d6a2004-04-29 14:42:46 +00001882 }
drhc39e0002004-05-07 23:50:57 +00001883 pCur->isValid = pCur->pPage->nCell>0;
drh8856d6a2004-04-29 14:42:46 +00001884 return rc;
drh72f82862001-05-24 21:06:34 +00001885}
drh2af926b2001-05-15 00:39:25 +00001886
drh5e2f8b92001-05-28 00:41:15 +00001887/*
1888** Move the cursor down to the left-most leaf entry beneath the
1889** entry to which it is currently pointing.
1890*/
1891static int moveToLeftmost(BtCursor *pCur){
1892 Pgno pgno;
1893 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001894 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00001895
drhc39e0002004-05-07 23:50:57 +00001896 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00001897 while( !(pPage = pCur->pPage)->leaf ){
drha34b6762004-05-07 13:30:42 +00001898 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
1899 pgno = get4byte(&pPage->aCell[pCur->idx][2]);
drh8178a752003-01-05 21:41:40 +00001900 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00001901 if( rc ) return rc;
1902 }
1903 return SQLITE_OK;
1904}
1905
drh2dcc9aa2002-12-04 13:40:25 +00001906/*
1907** Move the cursor down to the right-most leaf entry beneath the
1908** page to which it is currently pointing. Notice the difference
1909** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
1910** finds the left-most entry beneath the *entry* whereas moveToRightmost()
1911** finds the right-most entry beneath the *page*.
1912*/
1913static int moveToRightmost(BtCursor *pCur){
1914 Pgno pgno;
1915 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001916 MemPage *pPage;
drh2dcc9aa2002-12-04 13:40:25 +00001917
drhc39e0002004-05-07 23:50:57 +00001918 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00001919 while( !(pPage = pCur->pPage)->leaf ){
1920 pgno = get4byte(&pPage->aData[pPage->hdrOffset+6]);
1921 pCur->idx = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00001922 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00001923 if( rc ) return rc;
1924 }
drh3aac2dd2004-04-26 14:10:20 +00001925 pCur->idx = pPage->nCell - 1;
drhfa1a98a2004-05-14 19:08:17 +00001926 pCur->infoValid = 0;
drh2dcc9aa2002-12-04 13:40:25 +00001927 return SQLITE_OK;
1928}
1929
drh5e00f6c2001-09-13 13:46:56 +00001930/* Move the cursor to the first entry in the table. Return SQLITE_OK
1931** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00001932** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00001933*/
drh3aac2dd2004-04-26 14:10:20 +00001934int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00001935 int rc;
drhc39e0002004-05-07 23:50:57 +00001936 if( pCur->status ){
1937 return pCur->status;
1938 }
drh5e00f6c2001-09-13 13:46:56 +00001939 rc = moveToRoot(pCur);
1940 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00001941 if( pCur->isValid==0 ){
1942 assert( pCur->pPage->nCell==0 );
drh5e00f6c2001-09-13 13:46:56 +00001943 *pRes = 1;
1944 return SQLITE_OK;
1945 }
drhc39e0002004-05-07 23:50:57 +00001946 assert( pCur->pPage->nCell>0 );
drh5e00f6c2001-09-13 13:46:56 +00001947 *pRes = 0;
1948 rc = moveToLeftmost(pCur);
1949 return rc;
1950}
drh5e2f8b92001-05-28 00:41:15 +00001951
drh9562b552002-02-19 15:00:07 +00001952/* Move the cursor to the last entry in the table. Return SQLITE_OK
1953** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00001954** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00001955*/
drh3aac2dd2004-04-26 14:10:20 +00001956int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00001957 int rc;
drhc39e0002004-05-07 23:50:57 +00001958 if( pCur->status ){
1959 return pCur->status;
1960 }
drh9562b552002-02-19 15:00:07 +00001961 rc = moveToRoot(pCur);
1962 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00001963 if( pCur->isValid==0 ){
1964 assert( pCur->pPage->nCell==0 );
drh9562b552002-02-19 15:00:07 +00001965 *pRes = 1;
1966 return SQLITE_OK;
1967 }
drhc39e0002004-05-07 23:50:57 +00001968 assert( pCur->isValid );
drh9562b552002-02-19 15:00:07 +00001969 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00001970 rc = moveToRightmost(pCur);
drh9562b552002-02-19 15:00:07 +00001971 return rc;
1972}
1973
drh3aac2dd2004-04-26 14:10:20 +00001974/* Move the cursor so that it points to an entry near pKey/nKey.
drh72f82862001-05-24 21:06:34 +00001975** Return a success code.
1976**
drh3aac2dd2004-04-26 14:10:20 +00001977** For INTKEY tables, only the nKey parameter is used. pKey is
1978** ignored. For other tables, nKey is the number of bytes of data
1979** in nKey. The comparison function specified when the cursor was
1980** created is used to compare keys.
1981**
drh5e2f8b92001-05-28 00:41:15 +00001982** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00001983** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00001984** were present. The cursor might point to an entry that comes
1985** before or after the key.
1986**
drhbd03cae2001-06-02 02:40:57 +00001987** The result of comparing the key with the entry to which the
drhab01f612004-05-22 02:55:23 +00001988** cursor is written to *pRes if pRes!=NULL. The meaning of
drhbd03cae2001-06-02 02:40:57 +00001989** this value is as follows:
1990**
1991** *pRes<0 The cursor is left pointing at an entry that
drh1a844c32002-12-04 22:29:28 +00001992** is smaller than pKey or if the table is empty
1993** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00001994**
1995** *pRes==0 The cursor is left pointing at an entry that
1996** exactly matches pKey.
1997**
1998** *pRes>0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00001999** is larger than pKey.
drha059ad02001-04-17 20:09:11 +00002000*/
drh4a1c3802004-05-12 15:15:47 +00002001int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){
drh72f82862001-05-24 21:06:34 +00002002 int rc;
drhc39e0002004-05-07 23:50:57 +00002003
2004 if( pCur->status ){
2005 return pCur->status;
2006 }
drh5e2f8b92001-05-28 00:41:15 +00002007 rc = moveToRoot(pCur);
drh72f82862001-05-24 21:06:34 +00002008 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00002009 assert( pCur->pPage );
2010 assert( pCur->pPage->isInit );
2011 if( pCur->isValid==0 ){
drhf328bc82004-05-10 23:29:49 +00002012 *pRes = -1;
drhc39e0002004-05-07 23:50:57 +00002013 assert( pCur->pPage->nCell==0 );
2014 return SQLITE_OK;
2015 }
drh72f82862001-05-24 21:06:34 +00002016 for(;;){
2017 int lwr, upr;
2018 Pgno chldPg;
2019 MemPage *pPage = pCur->pPage;
drh1a844c32002-12-04 22:29:28 +00002020 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00002021 lwr = 0;
2022 upr = pPage->nCell-1;
drhda200cc2004-05-09 11:51:38 +00002023 pageIntegrity(pPage);
drh72f82862001-05-24 21:06:34 +00002024 while( lwr<=upr ){
drh0e1c19e2004-05-11 00:58:56 +00002025 const void *pCellKey;
drh4a1c3802004-05-12 15:15:47 +00002026 i64 nCellKey;
drh72f82862001-05-24 21:06:34 +00002027 pCur->idx = (lwr+upr)/2;
drhfa1a98a2004-05-14 19:08:17 +00002028 pCur->infoValid = 0;
drhde647132004-05-07 17:57:49 +00002029 sqlite3BtreeKeySize(pCur, &nCellKey);
drh3aac2dd2004-04-26 14:10:20 +00002030 if( pPage->intKey ){
2031 if( nCellKey<nKey ){
2032 c = -1;
2033 }else if( nCellKey>nKey ){
2034 c = +1;
2035 }else{
2036 c = 0;
2037 }
drh0e1c19e2004-05-11 00:58:56 +00002038 }else if( (pCellKey = sqlite3BtreeKeyFetch(pCur, nCellKey))!=0 ){
drh3aac2dd2004-04-26 14:10:20 +00002039 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
2040 }else{
drh0e1c19e2004-05-11 00:58:56 +00002041 u8 *pCellKey = sqliteMalloc( nCellKey );
drh3aac2dd2004-04-26 14:10:20 +00002042 if( pCellKey==0 ) return SQLITE_NOMEM;
2043 rc = sqlite3BtreeKey(pCur, 0, nCellKey, pCellKey);
2044 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
2045 sqliteFree(pCellKey);
2046 if( rc ) return rc;
2047 }
drh72f82862001-05-24 21:06:34 +00002048 if( c==0 ){
drh8b18dd42004-05-12 19:18:15 +00002049 if( pPage->leafData && !pPage->leaf ){
drhfc70e6f2004-05-12 21:11:27 +00002050 lwr = pCur->idx;
2051 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00002052 break;
2053 }else{
drh8b18dd42004-05-12 19:18:15 +00002054 if( pRes ) *pRes = 0;
2055 return SQLITE_OK;
2056 }
drh72f82862001-05-24 21:06:34 +00002057 }
2058 if( c<0 ){
2059 lwr = pCur->idx+1;
2060 }else{
2061 upr = pCur->idx-1;
2062 }
2063 }
2064 assert( lwr==upr+1 );
drh7aa128d2002-06-21 13:09:16 +00002065 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00002066 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00002067 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00002068 }else if( lwr>=pPage->nCell ){
2069 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+6]);
drh72f82862001-05-24 21:06:34 +00002070 }else{
drh3aac2dd2004-04-26 14:10:20 +00002071 chldPg = get4byte(&pPage->aCell[lwr][2]);
drh72f82862001-05-24 21:06:34 +00002072 }
2073 if( chldPg==0 ){
drhc39e0002004-05-07 23:50:57 +00002074 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh72f82862001-05-24 21:06:34 +00002075 if( pRes ) *pRes = c;
2076 return SQLITE_OK;
2077 }
drh428ae8c2003-01-04 16:48:09 +00002078 pCur->idx = lwr;
drhfa1a98a2004-05-14 19:08:17 +00002079 pCur->infoValid = 0;
drh8178a752003-01-05 21:41:40 +00002080 rc = moveToChild(pCur, chldPg);
drhc39e0002004-05-07 23:50:57 +00002081 if( rc ){
2082 return rc;
2083 }
drh72f82862001-05-24 21:06:34 +00002084 }
drhbd03cae2001-06-02 02:40:57 +00002085 /* NOT REACHED */
drh72f82862001-05-24 21:06:34 +00002086}
2087
2088/*
drhc39e0002004-05-07 23:50:57 +00002089** Return TRUE if the cursor is not pointing at an entry of the table.
2090**
2091** TRUE will be returned after a call to sqlite3BtreeNext() moves
2092** past the last entry in the table or sqlite3BtreePrev() moves past
2093** the first entry. TRUE is also returned if the table is empty.
2094*/
2095int sqlite3BtreeEof(BtCursor *pCur){
2096 return pCur->isValid==0;
2097}
2098
2099/*
drhbd03cae2001-06-02 02:40:57 +00002100** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00002101** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00002102** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00002103** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00002104*/
drh3aac2dd2004-04-26 14:10:20 +00002105int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00002106 int rc;
drh8178a752003-01-05 21:41:40 +00002107 MemPage *pPage = pCur->pPage;
drh8b18dd42004-05-12 19:18:15 +00002108
drh8c1238a2003-01-02 14:43:55 +00002109 assert( pRes!=0 );
drhc39e0002004-05-07 23:50:57 +00002110 if( pCur->isValid==0 ){
drh8c1238a2003-01-02 14:43:55 +00002111 *pRes = 1;
drhc39e0002004-05-07 23:50:57 +00002112 return SQLITE_OK;
drhecdc7532001-09-23 02:35:53 +00002113 }
drh8178a752003-01-05 21:41:40 +00002114 assert( pPage->isInit );
drh8178a752003-01-05 21:41:40 +00002115 assert( pCur->idx<pPage->nCell );
drh72f82862001-05-24 21:06:34 +00002116 pCur->idx++;
drhfa1a98a2004-05-14 19:08:17 +00002117 pCur->infoValid = 0;
drh8178a752003-01-05 21:41:40 +00002118 if( pCur->idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00002119 if( !pPage->leaf ){
2120 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+6]));
drh5e2f8b92001-05-28 00:41:15 +00002121 if( rc ) return rc;
2122 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00002123 *pRes = 0;
2124 return rc;
drh72f82862001-05-24 21:06:34 +00002125 }
drh5e2f8b92001-05-28 00:41:15 +00002126 do{
drh8856d6a2004-04-29 14:42:46 +00002127 if( isRootPage(pPage) ){
drh8c1238a2003-01-02 14:43:55 +00002128 *pRes = 1;
drhc39e0002004-05-07 23:50:57 +00002129 pCur->isValid = 0;
drh5e2f8b92001-05-28 00:41:15 +00002130 return SQLITE_OK;
2131 }
drh8178a752003-01-05 21:41:40 +00002132 moveToParent(pCur);
2133 pPage = pCur->pPage;
2134 }while( pCur->idx>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00002135 *pRes = 0;
drh8b18dd42004-05-12 19:18:15 +00002136 if( pPage->leafData ){
2137 rc = sqlite3BtreeNext(pCur, pRes);
2138 }else{
2139 rc = SQLITE_OK;
2140 }
2141 return rc;
drh8178a752003-01-05 21:41:40 +00002142 }
2143 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00002144 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00002145 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00002146 }
drh5e2f8b92001-05-28 00:41:15 +00002147 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00002148 return rc;
drh72f82862001-05-24 21:06:34 +00002149}
2150
drh3b7511c2001-05-26 13:15:44 +00002151/*
drh2dcc9aa2002-12-04 13:40:25 +00002152** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00002153** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00002154** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00002155** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00002156*/
drh3aac2dd2004-04-26 14:10:20 +00002157int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00002158 int rc;
2159 Pgno pgno;
drh8178a752003-01-05 21:41:40 +00002160 MemPage *pPage;
drhc39e0002004-05-07 23:50:57 +00002161 if( pCur->isValid==0 ){
2162 *pRes = 1;
2163 return SQLITE_OK;
2164 }
drh8178a752003-01-05 21:41:40 +00002165 pPage = pCur->pPage;
drh8178a752003-01-05 21:41:40 +00002166 assert( pPage->isInit );
drh2dcc9aa2002-12-04 13:40:25 +00002167 assert( pCur->idx>=0 );
drha34b6762004-05-07 13:30:42 +00002168 if( !pPage->leaf ){
drh3aac2dd2004-04-26 14:10:20 +00002169 pgno = get4byte(&pPage->aCell[pCur->idx][2]);
drh8178a752003-01-05 21:41:40 +00002170 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00002171 if( rc ) return rc;
2172 rc = moveToRightmost(pCur);
2173 }else{
2174 while( pCur->idx==0 ){
drh8856d6a2004-04-29 14:42:46 +00002175 if( isRootPage(pPage) ){
drhc39e0002004-05-07 23:50:57 +00002176 pCur->isValid = 0;
2177 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00002178 return SQLITE_OK;
2179 }
drh8178a752003-01-05 21:41:40 +00002180 moveToParent(pCur);
2181 pPage = pCur->pPage;
drh2dcc9aa2002-12-04 13:40:25 +00002182 }
2183 pCur->idx--;
drhfa1a98a2004-05-14 19:08:17 +00002184 pCur->infoValid = 0;
drh8b18dd42004-05-12 19:18:15 +00002185 if( pPage->leafData ){
2186 rc = sqlite3BtreePrevious(pCur, pRes);
2187 }else{
2188 rc = SQLITE_OK;
2189 }
drh2dcc9aa2002-12-04 13:40:25 +00002190 }
drh8178a752003-01-05 21:41:40 +00002191 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00002192 return rc;
2193}
2194
2195/*
drh3a4c1412004-05-09 20:40:11 +00002196** The TRACE macro will print high-level status information about the
2197** btree operation when the global variable sqlite3_btree_trace is
2198** enabled.
2199*/
2200#if SQLITE_TEST
2201# define TRACE(X) if( sqlite3_btree_trace ){ printf X; fflush(stdout); }
2202#else
2203# define TRACE(X)
2204#endif
2205int sqlite3_btree_trace=0; /* True to enable tracing */
2206
2207/*
drh3b7511c2001-05-26 13:15:44 +00002208** Allocate a new page from the database file.
2209**
drha34b6762004-05-07 13:30:42 +00002210** The new page is marked as dirty. (In other words, sqlite3pager_write()
drh3b7511c2001-05-26 13:15:44 +00002211** has already been called on the new page.) The new page has also
2212** been referenced and the calling routine is responsible for calling
drha34b6762004-05-07 13:30:42 +00002213** sqlite3pager_unref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00002214**
2215** SQLITE_OK is returned on success. Any other return value indicates
2216** an error. *ppPage and *pPgno are undefined in the event of an error.
drha34b6762004-05-07 13:30:42 +00002217** Do not invoke sqlite3pager_unref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00002218**
drh199e3cf2002-07-18 11:01:47 +00002219** If the "nearby" parameter is not 0, then a (feeble) effort is made to
2220** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00002221** attempt to keep related pages close to each other in the database file,
2222** which in turn can make database access faster.
drh3b7511c2001-05-26 13:15:44 +00002223*/
drh199e3cf2002-07-18 11:01:47 +00002224static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
drh3aac2dd2004-04-26 14:10:20 +00002225 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00002226 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002227 int n; /* Number of pages on the freelist */
2228 int k; /* Number of leaves on the trunk of the freelist */
drh30e58752002-03-02 20:41:57 +00002229
drh3aac2dd2004-04-26 14:10:20 +00002230 pPage1 = pBt->pPage1;
2231 n = get4byte(&pPage1->aData[36]);
2232 if( n>0 ){
drh91025292004-05-03 19:49:32 +00002233 /* There are pages on the freelist. Reuse one of those pages. */
drh3aac2dd2004-04-26 14:10:20 +00002234 MemPage *pTrunk;
drha34b6762004-05-07 13:30:42 +00002235 rc = sqlite3pager_write(pPage1->aData);
drh3b7511c2001-05-26 13:15:44 +00002236 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002237 put4byte(&pPage1->aData[36], n-1);
2238 rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002239 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002240 rc = sqlite3pager_write(pTrunk->aData);
drh3b7511c2001-05-26 13:15:44 +00002241 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00002242 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002243 return rc;
2244 }
drh3aac2dd2004-04-26 14:10:20 +00002245 k = get4byte(&pTrunk->aData[4]);
2246 if( k==0 ){
2247 /* The trunk has no leaves. So extract the trunk page itself and
2248 ** use it as the newly allocated page */
drha34b6762004-05-07 13:30:42 +00002249 *pPgno = get4byte(&pPage1->aData[32]);
drh3aac2dd2004-04-26 14:10:20 +00002250 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
2251 *ppPage = pTrunk;
drh3a4c1412004-05-09 20:40:11 +00002252 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh30e58752002-03-02 20:41:57 +00002253 }else{
drh3aac2dd2004-04-26 14:10:20 +00002254 /* Extract a leaf from the trunk */
2255 int closest;
2256 unsigned char *aData = pTrunk->aData;
2257 if( nearby>0 ){
drhbea00b92002-07-08 10:59:50 +00002258 int i, dist;
2259 closest = 0;
drh3aac2dd2004-04-26 14:10:20 +00002260 dist = get4byte(&aData[8]) - nearby;
drhbea00b92002-07-08 10:59:50 +00002261 if( dist<0 ) dist = -dist;
drh3a4c1412004-05-09 20:40:11 +00002262 for(i=1; i<k; i++){
drh3aac2dd2004-04-26 14:10:20 +00002263 int d2 = get4byte(&aData[8+i*4]) - nearby;
drhbea00b92002-07-08 10:59:50 +00002264 if( d2<0 ) d2 = -d2;
2265 if( d2<dist ) closest = i;
2266 }
2267 }else{
2268 closest = 0;
2269 }
drha34b6762004-05-07 13:30:42 +00002270 *pPgno = get4byte(&aData[8+closest*4]);
drh3a4c1412004-05-09 20:40:11 +00002271 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d: %d more free pages\n",
2272 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh9b171272004-05-08 02:03:22 +00002273 if( closest<k-1 ){
2274 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
2275 }
drh3a4c1412004-05-09 20:40:11 +00002276 put4byte(&aData[4], k-1);
drh3aac2dd2004-04-26 14:10:20 +00002277 rc = getPage(pBt, *pPgno, ppPage);
2278 releasePage(pTrunk);
drh30e58752002-03-02 20:41:57 +00002279 if( rc==SQLITE_OK ){
drh9b171272004-05-08 02:03:22 +00002280 sqlite3pager_dont_rollback((*ppPage)->aData);
drha34b6762004-05-07 13:30:42 +00002281 rc = sqlite3pager_write((*ppPage)->aData);
drh30e58752002-03-02 20:41:57 +00002282 }
2283 }
drh3b7511c2001-05-26 13:15:44 +00002284 }else{
drh3aac2dd2004-04-26 14:10:20 +00002285 /* There are no pages on the freelist, so create a new page at the
2286 ** end of the file */
drha34b6762004-05-07 13:30:42 +00002287 *pPgno = sqlite3pager_pagecount(pBt->pPager) + 1;
drh3aac2dd2004-04-26 14:10:20 +00002288 rc = getPage(pBt, *pPgno, ppPage);
drh3b7511c2001-05-26 13:15:44 +00002289 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002290 rc = sqlite3pager_write((*ppPage)->aData);
drh3a4c1412004-05-09 20:40:11 +00002291 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00002292 }
2293 return rc;
2294}
2295
2296/*
drh3aac2dd2004-04-26 14:10:20 +00002297** Add a page of the database file to the freelist.
drh5e2f8b92001-05-28 00:41:15 +00002298**
drha34b6762004-05-07 13:30:42 +00002299** sqlite3pager_unref() is NOT called for pPage.
drh3b7511c2001-05-26 13:15:44 +00002300*/
drh3aac2dd2004-04-26 14:10:20 +00002301static int freePage(MemPage *pPage){
2302 Btree *pBt = pPage->pBt;
2303 MemPage *pPage1 = pBt->pPage1;
2304 int rc, n, k;
drh8b2f49b2001-06-08 00:21:52 +00002305
drh3aac2dd2004-04-26 14:10:20 +00002306 /* Prepare the page for freeing */
2307 assert( pPage->pgno>1 );
2308 pPage->isInit = 0;
2309 releasePage(pPage->pParent);
2310 pPage->pParent = 0;
2311
drha34b6762004-05-07 13:30:42 +00002312 /* Increment the free page count on pPage1 */
2313 rc = sqlite3pager_write(pPage1->aData);
drh3aac2dd2004-04-26 14:10:20 +00002314 if( rc ) return rc;
2315 n = get4byte(&pPage1->aData[36]);
2316 put4byte(&pPage1->aData[36], n+1);
2317
2318 if( n==0 ){
2319 /* This is the first free page */
drhda200cc2004-05-09 11:51:38 +00002320 rc = sqlite3pager_write(pPage->aData);
2321 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002322 memset(pPage->aData, 0, 8);
drha34b6762004-05-07 13:30:42 +00002323 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00002324 TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
drh3aac2dd2004-04-26 14:10:20 +00002325 }else{
2326 /* Other free pages already exist. Retrive the first trunk page
2327 ** of the freelist and find out how many leaves it has. */
drha34b6762004-05-07 13:30:42 +00002328 MemPage *pTrunk;
2329 rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002330 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002331 k = get4byte(&pTrunk->aData[4]);
drhb6f41482004-05-14 01:58:11 +00002332 if( k==pBt->usableSize/4 - 8 ){
drh3aac2dd2004-04-26 14:10:20 +00002333 /* The trunk is full. Turn the page being freed into a new
2334 ** trunk page with no leaves. */
drha34b6762004-05-07 13:30:42 +00002335 rc = sqlite3pager_write(pPage->aData);
drh3aac2dd2004-04-26 14:10:20 +00002336 if( rc ) return rc;
2337 put4byte(pPage->aData, pTrunk->pgno);
2338 put4byte(&pPage->aData[4], 0);
2339 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00002340 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
2341 pPage->pgno, pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00002342 }else{
2343 /* Add the newly freed page as a leaf on the current trunk */
drha34b6762004-05-07 13:30:42 +00002344 rc = sqlite3pager_write(pTrunk->aData);
drh3aac2dd2004-04-26 14:10:20 +00002345 if( rc ) return rc;
2346 put4byte(&pTrunk->aData[4], k+1);
2347 put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
drha34b6762004-05-07 13:30:42 +00002348 sqlite3pager_dont_write(pBt->pPager, pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00002349 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00002350 }
2351 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002352 }
drh3b7511c2001-05-26 13:15:44 +00002353 return rc;
2354}
2355
2356/*
drh3aac2dd2004-04-26 14:10:20 +00002357** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00002358*/
drh3aac2dd2004-04-26 14:10:20 +00002359static int clearCell(MemPage *pPage, unsigned char *pCell){
2360 Btree *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00002361 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00002362 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00002363 int rc;
drh3b7511c2001-05-26 13:15:44 +00002364
drh6f11bef2004-05-13 01:12:56 +00002365 parseCell(pPage, pCell, &info);
2366 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00002367 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00002368 }
drh6f11bef2004-05-13 01:12:56 +00002369 ovflPgno = get4byte(&pCell[info.iOverflow]);
drh3aac2dd2004-04-26 14:10:20 +00002370 while( ovflPgno!=0 ){
2371 MemPage *pOvfl;
2372 rc = getPage(pBt, ovflPgno, &pOvfl);
drh3b7511c2001-05-26 13:15:44 +00002373 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002374 ovflPgno = get4byte(pOvfl->aData);
drha34b6762004-05-07 13:30:42 +00002375 rc = freePage(pOvfl);
drhbd03cae2001-06-02 02:40:57 +00002376 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002377 sqlite3pager_unref(pOvfl->aData);
drh3b7511c2001-05-26 13:15:44 +00002378 }
drh5e2f8b92001-05-28 00:41:15 +00002379 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00002380}
2381
2382/*
drh91025292004-05-03 19:49:32 +00002383** Create the byte sequence used to represent a cell on page pPage
2384** and write that byte sequence into pCell[]. Overflow pages are
2385** allocated and filled in as necessary. The calling procedure
2386** is responsible for making sure sufficient space has been allocated
2387** for pCell[].
2388**
2389** Note that pCell does not necessary need to point to the pPage->aData
2390** area. pCell might point to some temporary storage. The cell will
2391** be constructed in this temporary area then copied into pPage->aData
2392** later.
drh3b7511c2001-05-26 13:15:44 +00002393*/
2394static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00002395 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00002396 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00002397 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00002398 const void *pData,int nData, /* The data */
2399 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00002400){
drh3b7511c2001-05-26 13:15:44 +00002401 int nPayload;
drh3aac2dd2004-04-26 14:10:20 +00002402 const void *pSrc;
drha34b6762004-05-07 13:30:42 +00002403 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00002404 int spaceLeft;
2405 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00002406 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00002407 unsigned char *pPrior;
2408 unsigned char *pPayload;
2409 Btree *pBt = pPage->pBt;
2410 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00002411 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00002412 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00002413
drh91025292004-05-03 19:49:32 +00002414 /* Fill in the header. */
2415 nHeader = 2;
2416 if( !pPage->leaf ){
2417 nHeader += 4;
2418 }
drh8b18dd42004-05-12 19:18:15 +00002419 if( pPage->hasData ){
drh91025292004-05-03 19:49:32 +00002420 nHeader += putVarint(&pCell[nHeader], nData);
drh6f11bef2004-05-13 01:12:56 +00002421 }else{
drh91025292004-05-03 19:49:32 +00002422 nData = 0;
2423 }
drh6f11bef2004-05-13 01:12:56 +00002424 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
2425 parseCell(pPage, pCell, &info);
2426 assert( info.nHeader==nHeader );
2427 assert( info.nKey==nKey );
2428 assert( info.nData==nData );
2429
2430 /* Fill in the payload */
drh3aac2dd2004-04-26 14:10:20 +00002431 nPayload = nData;
2432 if( pPage->intKey ){
2433 pSrc = pData;
2434 nSrc = nData;
drh91025292004-05-03 19:49:32 +00002435 nData = 0;
drh3aac2dd2004-04-26 14:10:20 +00002436 }else{
2437 nPayload += nKey;
2438 pSrc = pKey;
2439 nSrc = nKey;
2440 }
drh6f11bef2004-05-13 01:12:56 +00002441 *pnSize = info.nSize;
2442 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00002443 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00002444 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00002445
drh3b7511c2001-05-26 13:15:44 +00002446 while( nPayload>0 ){
2447 if( spaceLeft==0 ){
drh3aac2dd2004-04-26 14:10:20 +00002448 rc = allocatePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl);
drh3b7511c2001-05-26 13:15:44 +00002449 if( rc ){
drh9b171272004-05-08 02:03:22 +00002450 releasePage(pToRelease);
drh3aac2dd2004-04-26 14:10:20 +00002451 clearCell(pPage, pCell);
drh3b7511c2001-05-26 13:15:44 +00002452 return rc;
2453 }
drh3aac2dd2004-04-26 14:10:20 +00002454 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00002455 releasePage(pToRelease);
2456 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00002457 pPrior = pOvfl->aData;
2458 put4byte(pPrior, 0);
2459 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00002460 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00002461 }
2462 n = nPayload;
2463 if( n>spaceLeft ) n = spaceLeft;
drh3aac2dd2004-04-26 14:10:20 +00002464 if( n>nSrc ) n = nSrc;
2465 memcpy(pPayload, pSrc, n);
drh3b7511c2001-05-26 13:15:44 +00002466 nPayload -= n;
drhde647132004-05-07 17:57:49 +00002467 pPayload += n;
drh9b171272004-05-08 02:03:22 +00002468 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00002469 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00002470 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00002471 if( nSrc==0 ){
2472 nSrc = nData;
2473 pSrc = pData;
2474 }
drhdd793422001-06-28 01:54:48 +00002475 }
drh9b171272004-05-08 02:03:22 +00002476 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00002477 return SQLITE_OK;
2478}
2479
2480/*
drhbd03cae2001-06-02 02:40:57 +00002481** Change the MemPage.pParent pointer on the page whose number is
drh8b2f49b2001-06-08 00:21:52 +00002482** given in the second argument so that MemPage.pParent holds the
drhbd03cae2001-06-02 02:40:57 +00002483** pointer in the third argument.
2484*/
drh4b70f112004-05-02 21:12:19 +00002485static void reparentPage(Btree *pBt, Pgno pgno, MemPage *pNewParent, int idx){
drhbd03cae2001-06-02 02:40:57 +00002486 MemPage *pThis;
drh4b70f112004-05-02 21:12:19 +00002487 unsigned char *aData;
drhbd03cae2001-06-02 02:40:57 +00002488
drhdd793422001-06-28 01:54:48 +00002489 if( pgno==0 ) return;
drh4b70f112004-05-02 21:12:19 +00002490 assert( pBt->pPager!=0 );
drha34b6762004-05-07 13:30:42 +00002491 aData = sqlite3pager_lookup(pBt->pPager, pgno);
drhda200cc2004-05-09 11:51:38 +00002492 if( aData ){
drhb6f41482004-05-14 01:58:11 +00002493 pThis = (MemPage*)&aData[pBt->usableSize];
drhda200cc2004-05-09 11:51:38 +00002494 if( pThis->isInit ){
2495 if( pThis->pParent!=pNewParent ){
2496 if( pThis->pParent ) sqlite3pager_unref(pThis->pParent->aData);
2497 pThis->pParent = pNewParent;
2498 if( pNewParent ) sqlite3pager_ref(pNewParent->aData);
2499 }
2500 pThis->idxParent = idx;
drhdd793422001-06-28 01:54:48 +00002501 }
drha34b6762004-05-07 13:30:42 +00002502 sqlite3pager_unref(aData);
drhbd03cae2001-06-02 02:40:57 +00002503 }
2504}
2505
2506/*
drh4b70f112004-05-02 21:12:19 +00002507** Change the pParent pointer of all children of pPage to point back
2508** to pPage.
2509**
drhbd03cae2001-06-02 02:40:57 +00002510** In other words, for every child of pPage, invoke reparentPage()
drh5e00f6c2001-09-13 13:46:56 +00002511** to make sure that each child knows that pPage is its parent.
drhbd03cae2001-06-02 02:40:57 +00002512**
2513** This routine gets called after you memcpy() one page into
2514** another.
2515*/
drh4b70f112004-05-02 21:12:19 +00002516static void reparentChildPages(MemPage *pPage){
drhbd03cae2001-06-02 02:40:57 +00002517 int i;
drh4b70f112004-05-02 21:12:19 +00002518 Btree *pBt;
2519
drha34b6762004-05-07 13:30:42 +00002520 if( pPage->leaf ) return;
drh4b70f112004-05-02 21:12:19 +00002521 pBt = pPage->pBt;
drhbd03cae2001-06-02 02:40:57 +00002522 for(i=0; i<pPage->nCell; i++){
drh4b70f112004-05-02 21:12:19 +00002523 reparentPage(pBt, get4byte(&pPage->aCell[i][2]), pPage, i);
drhbd03cae2001-06-02 02:40:57 +00002524 }
drh4b70f112004-05-02 21:12:19 +00002525 reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+6]), pPage, i);
drh428ae8c2003-01-04 16:48:09 +00002526 pPage->idxShift = 0;
drh14acc042001-06-10 19:56:58 +00002527}
2528
2529/*
2530** Remove the i-th cell from pPage. This routine effects pPage only.
2531** The cell content is not freed or deallocated. It is assumed that
2532** the cell content has been copied someplace else. This routine just
2533** removes the reference to the cell from pPage.
2534**
2535** "sz" must be the number of bytes in the cell.
2536**
drhda200cc2004-05-09 11:51:38 +00002537** Try to maintain the integrity of the linked list of cells. But if
2538** the cell being inserted does not fit on the page, this will not be
2539** possible. If the linked list is not maintained, then just update
2540** pPage->aCell[] and set the pPage->needRelink flag so that we will
2541** know to rebuild the linked list later.
drh14acc042001-06-10 19:56:58 +00002542*/
drh4b70f112004-05-02 21:12:19 +00002543static void dropCell(MemPage *pPage, int idx, int sz){
drhde647132004-05-07 17:57:49 +00002544 int j, pc;
drhda200cc2004-05-09 11:51:38 +00002545 u8 *data;
drh8c42ca92001-06-22 19:15:00 +00002546 assert( idx>=0 && idx<pPage->nCell );
drh4b70f112004-05-02 21:12:19 +00002547 assert( sz==cellSize(pPage, pPage->aCell[idx]) );
drha34b6762004-05-07 13:30:42 +00002548 assert( sqlite3pager_iswriteable(pPage->aData) );
drh4b70f112004-05-02 21:12:19 +00002549 assert( pPage->aCell[idx]>=pPage->aData );
drhb6f41482004-05-14 01:58:11 +00002550 assert( pPage->aCell[idx]<=&pPage->aData[pPage->pBt->usableSize-sz] );
drhda200cc2004-05-09 11:51:38 +00002551 data = pPage->aData;
2552 pc = Addr(pPage->aCell[idx]) - Addr(data);
drhb6f41482004-05-14 01:58:11 +00002553 assert( pc>pPage->hdrOffset && pc+sz<=pPage->pBt->usableSize );
drhde647132004-05-07 17:57:49 +00002554 freeSpace(pPage, pc, sz);
drh7c717f72001-06-24 20:39:41 +00002555 for(j=idx; j<pPage->nCell-1; j++){
drh4b70f112004-05-02 21:12:19 +00002556 pPage->aCell[j] = pPage->aCell[j+1];
drh14acc042001-06-10 19:56:58 +00002557 }
2558 pPage->nCell--;
drhda200cc2004-05-09 11:51:38 +00002559 if( !pPage->isOverfull && !pPage->needRelink ){
2560 u8 *pPrev;
2561 if( idx==0 ){
2562 pPrev = &data[pPage->hdrOffset+3];
2563 }else{
2564 pPrev = pPage->aCell[idx-1];
2565 }
2566 if( idx<pPage->nCell ){
2567 pc = Addr(pPage->aCell[idx]) - Addr(data);
2568 }else{
2569 pc = 0;
2570 }
2571 put2byte(pPrev, pc);
2572 pageIntegrity(pPage);
2573 }else{
2574 pPage->needRelink = 1;
2575 }
drh428ae8c2003-01-04 16:48:09 +00002576 pPage->idxShift = 1;
drh14acc042001-06-10 19:56:58 +00002577}
2578
2579/*
2580** Insert a new cell on pPage at cell index "i". pCell points to the
2581** content of the cell.
2582**
2583** If the cell content will fit on the page, then put it there. If it
drh24cd67e2004-05-10 16:18:47 +00002584** will not fit and pTemp is not NULL, then make a copy of the content
2585** into pTemp, set pPage->aCell[i] point to pTemp, and set pPage->isOverfull.
2586** If the content will not fit and pTemp is NULL, then make pPage->aCell[i]
2587** point to pCell and set pPage->isOverfull.
drh14acc042001-06-10 19:56:58 +00002588**
drhda200cc2004-05-09 11:51:38 +00002589** Try to maintain the integrity of the linked list of cells. But if
2590** the cell being inserted does not fit on the page, this will not be
2591** possible. If the linked list is not maintained, then just update
2592** pPage->aCell[] and set the pPage->needRelink flag so that we will
2593** know to rebuild the linked list later.
drh14acc042001-06-10 19:56:58 +00002594*/
drh24cd67e2004-05-10 16:18:47 +00002595static void insertCell(
2596 MemPage *pPage, /* Page into which we are copying */
2597 int i, /* Which cell on pPage to insert after */
2598 u8 *pCell, /* Text of the new cell to insert */
2599 int sz, /* Bytes of data in pCell */
2600 u8 *pTemp /* Temp storage space for pCell, if needed */
2601){
drh14acc042001-06-10 19:56:58 +00002602 int idx, j;
2603 assert( i>=0 && i<=pPage->nCell );
drha34b6762004-05-07 13:30:42 +00002604 assert( sz==cellSize(pPage, pCell) );
2605 assert( sqlite3pager_iswriteable(pPage->aData) );
drhda200cc2004-05-09 11:51:38 +00002606 idx = pPage->needRelink ? 0 : allocateSpace(pPage, sz);
drh4b70f112004-05-02 21:12:19 +00002607 resizeCellArray(pPage, pPage->nCell+1);
drh14acc042001-06-10 19:56:58 +00002608 for(j=pPage->nCell; j>i; j--){
drh4b70f112004-05-02 21:12:19 +00002609 pPage->aCell[j] = pPage->aCell[j-1];
drh14acc042001-06-10 19:56:58 +00002610 }
2611 pPage->nCell++;
drh14acc042001-06-10 19:56:58 +00002612 if( idx<=0 ){
2613 pPage->isOverfull = 1;
drh24cd67e2004-05-10 16:18:47 +00002614 if( pTemp ){
2615 memcpy(pTemp, pCell, sz);
2616 }else{
2617 pTemp = pCell;
2618 }
2619 pPage->aCell[i] = pTemp;
drh14acc042001-06-10 19:56:58 +00002620 }else{
drhda200cc2004-05-09 11:51:38 +00002621 u8 *data = pPage->aData;
2622 memcpy(&data[idx], pCell, sz);
2623 pPage->aCell[i] = &data[idx];
2624 }
2625 if( !pPage->isOverfull && !pPage->needRelink ){
2626 u8 *pPrev;
2627 int pc;
2628 if( i==0 ){
2629 pPrev = &pPage->aData[pPage->hdrOffset+3];
2630 }else{
2631 pPrev = pPage->aCell[i-1];
2632 }
2633 pc = get2byte(pPrev);
2634 put2byte(pPrev, idx);
2635 put2byte(pPage->aCell[i], pc);
2636 pageIntegrity(pPage);
2637 }else{
2638 pPage->needRelink = 1;
drh14acc042001-06-10 19:56:58 +00002639 }
drh428ae8c2003-01-04 16:48:09 +00002640 pPage->idxShift = 1;
drh14acc042001-06-10 19:56:58 +00002641}
2642
2643/*
drhfa1a98a2004-05-14 19:08:17 +00002644** Add a list of cells to a page. The page should be initially empty.
2645** The cells are guaranteed to fit on the page.
2646*/
2647static void assemblePage(
2648 MemPage *pPage, /* The page to be assemblied */
2649 int nCell, /* The number of cells to add to this page */
2650 u8 **apCell, /* Pointers to cell text */
2651 int *aSize /* Sizes of the cells */
2652){
2653 int i; /* Loop counter */
2654 int totalSize; /* Total size of all cells */
2655 int hdr; /* Index of page header */
2656 int pc, prevpc; /* Addresses of cells being inserted */
2657 u8 *data; /* Data for the page */
2658
2659 assert( pPage->needRelink==0 );
2660 assert( pPage->isOverfull==0 );
2661 totalSize = 0;
2662 for(i=0; i<nCell; i++){
2663 totalSize += aSize[i];
2664 }
2665 assert( totalSize<=pPage->nFree );
2666 assert( pPage->nCell==0 );
2667 resizeCellArray(pPage, nCell);
2668 pc = allocateSpace(pPage, totalSize);
2669 data = pPage->aData;
2670 hdr = pPage->hdrOffset;
2671 prevpc = hdr+3;
2672 for(i=0; i<nCell; i++){
2673 memcpy(data+pc, apCell[i], aSize[i]);
2674 put2byte(data+prevpc, pc);
2675 pPage->aCell[i] = data+pc;
2676 prevpc = pc;
2677 pc += aSize[i];
2678 assert( pc<=pPage->pBt->usableSize );
2679 }
2680 pPage->nCell = nCell;
2681 put2byte(data+prevpc, 0);
2682}
2683
drhab01f612004-05-22 02:55:23 +00002684#if 0 /* Never Used */
drhfa1a98a2004-05-14 19:08:17 +00002685/*
drh14acc042001-06-10 19:56:58 +00002686** Rebuild the linked list of cells on a page so that the cells
drh4b70f112004-05-02 21:12:19 +00002687** occur in the order specified by the pPage->aCell[] array.
drh8c42ca92001-06-22 19:15:00 +00002688** Invoke this routine once to repair damage after one or more
2689** invocations of either insertCell() or dropCell().
drh14acc042001-06-10 19:56:58 +00002690*/
drh4b70f112004-05-02 21:12:19 +00002691static void relinkCellList(MemPage *pPage){
2692 int i, idxFrom;
drha34b6762004-05-07 13:30:42 +00002693 assert( sqlite3pager_iswriteable(pPage->aData) );
drhda200cc2004-05-09 11:51:38 +00002694 if( !pPage->needRelink ) return;
drh4b70f112004-05-02 21:12:19 +00002695 idxFrom = pPage->hdrOffset+3;
drh14acc042001-06-10 19:56:58 +00002696 for(i=0; i<pPage->nCell; i++){
drhde647132004-05-07 17:57:49 +00002697 int idx = Addr(pPage->aCell[i]) - Addr(pPage->aData);
drhb6f41482004-05-14 01:58:11 +00002698 assert( idx>pPage->hdrOffset && idx<pPage->pBt->usableSize );
drh4b70f112004-05-02 21:12:19 +00002699 put2byte(&pPage->aData[idxFrom], idx);
2700 idxFrom = idx;
drh14acc042001-06-10 19:56:58 +00002701 }
drh4b70f112004-05-02 21:12:19 +00002702 put2byte(&pPage->aData[idxFrom], 0);
drhda200cc2004-05-09 11:51:38 +00002703 pPage->needRelink = 0;
drh14acc042001-06-10 19:56:58 +00002704}
drhab01f612004-05-22 02:55:23 +00002705#endif
drh14acc042001-06-10 19:56:58 +00002706
2707/*
drhc8629a12004-05-08 20:07:40 +00002708** GCC does not define the offsetof() macro so we'll have to do it
2709** ourselves.
2710*/
2711#ifndef offsetof
2712#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
2713#endif
2714
2715/*
drh91025292004-05-03 19:49:32 +00002716** Move the content of the page at pFrom over to pTo. The pFrom->aCell[]
drh4b70f112004-05-02 21:12:19 +00002717** pointers that point into pFrom->aData[] must be adjusted to point
2718** into pTo->aData[] instead. But some pFrom->aCell[] entries might
2719** not point to pFrom->aData[]. Those are unchanged.
drh91025292004-05-03 19:49:32 +00002720**
2721** Over this operation completes, the meta data for pFrom is zeroed.
drh14acc042001-06-10 19:56:58 +00002722*/
drhda200cc2004-05-09 11:51:38 +00002723static void movePage(MemPage *pTo, MemPage *pFrom){
drh14acc042001-06-10 19:56:58 +00002724 uptr from, to;
2725 int i;
drhb6f41482004-05-14 01:58:11 +00002726 int usableSize;
drh4b70f112004-05-02 21:12:19 +00002727 int ofst;
2728
2729 assert( pTo->hdrOffset==0 );
drh3a4c1412004-05-09 20:40:11 +00002730 assert( pFrom->isInit );
drh4b70f112004-05-02 21:12:19 +00002731 ofst = pFrom->hdrOffset;
drhb6f41482004-05-14 01:58:11 +00002732 usableSize = pFrom->pBt->usableSize;
drh91025292004-05-03 19:49:32 +00002733 sqliteFree(pTo->aCell);
drhb6f41482004-05-14 01:58:11 +00002734 memcpy(pTo->aData, &pFrom->aData[ofst], usableSize - ofst);
drhc8629a12004-05-08 20:07:40 +00002735 memcpy(pTo, pFrom, offsetof(MemPage, aData));
2736 pFrom->isInit = 0;
2737 pFrom->aCell = 0;
drh4b70f112004-05-02 21:12:19 +00002738 assert( pTo->aData[5]<155 );
2739 pTo->aData[5] += ofst;
drh14acc042001-06-10 19:56:58 +00002740 pTo->isOverfull = pFrom->isOverfull;
drh4b70f112004-05-02 21:12:19 +00002741 to = Addr(pTo->aData);
drh91025292004-05-03 19:49:32 +00002742 from = Addr(&pFrom->aData[ofst]);
drh14acc042001-06-10 19:56:58 +00002743 for(i=0; i<pTo->nCell; i++){
drh91025292004-05-03 19:49:32 +00002744 uptr x = Addr(pTo->aCell[i]);
drhb6f41482004-05-14 01:58:11 +00002745 if( x>from && x<from+usableSize-ofst ){
drh4b70f112004-05-02 21:12:19 +00002746 *((uptr*)&pTo->aCell[i]) = x + to - from;
drh14acc042001-06-10 19:56:58 +00002747 }
2748 }
drhbd03cae2001-06-02 02:40:57 +00002749}
2750
2751/*
drhc3b70572003-01-04 19:44:07 +00002752** The following parameters determine how many adjacent pages get involved
2753** in a balancing operation. NN is the number of neighbors on either side
2754** of the page that participate in the balancing operation. NB is the
2755** total number of pages that participate, including the target page and
2756** NN neighbors on either side.
2757**
2758** The minimum value of NN is 1 (of course). Increasing NN above 1
2759** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
2760** in exchange for a larger degradation in INSERT and UPDATE performance.
2761** The value of NN appears to give the best results overall.
2762*/
2763#define NN 1 /* Number of neighbors on either side of pPage */
2764#define NB (NN*2+1) /* Total pages involved in the balance */
2765
2766/*
drhab01f612004-05-22 02:55:23 +00002767** This routine redistributes Cells on pPage and up to NN*2 siblings
drh8b2f49b2001-06-08 00:21:52 +00002768** of pPage so that all pages have about the same amount of free space.
drh14acc042001-06-10 19:56:58 +00002769** Usually one sibling on either side of pPage is used in the balancing,
drh8b2f49b2001-06-08 00:21:52 +00002770** though both siblings might come from one side if pPage is the first
drhab01f612004-05-22 02:55:23 +00002771** or last child of its parent. If pPage has fewer than 2*NN siblings
drh8b2f49b2001-06-08 00:21:52 +00002772** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00002773** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00002774**
2775** The number of siblings of pPage might be increased or decreased by
drhab01f612004-05-22 02:55:23 +00002776** one in an effort to keep pages nearly full but not over full. The root page
2777** is special and is allowed to be nearly empty. If pPage is
drh8c42ca92001-06-22 19:15:00 +00002778** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00002779** or decreased by one, as necessary, to keep the root page from being
drhab01f612004-05-22 02:55:23 +00002780** overfull or completely empty.
drh14acc042001-06-10 19:56:58 +00002781**
drh8b2f49b2001-06-08 00:21:52 +00002782** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00002783** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00002784** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00002785** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00002786**
drh8c42ca92001-06-22 19:15:00 +00002787** In the course of balancing the siblings of pPage, the parent of pPage
2788** might become overfull or underfull. If that happens, then this routine
2789** is called recursively on the parent.
2790**
drh5e00f6c2001-09-13 13:46:56 +00002791** If this routine fails for any reason, it might leave the database
2792** in a corrupted state. So if this routine fails, the database should
2793** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00002794*/
drh4b70f112004-05-02 21:12:19 +00002795static int balance(MemPage *pPage){
drh8b2f49b2001-06-08 00:21:52 +00002796 MemPage *pParent; /* The parent of pPage */
drh4b70f112004-05-02 21:12:19 +00002797 Btree *pBt; /* The whole database */
drha34b6762004-05-07 13:30:42 +00002798 int nCell; /* Number of cells in aCell[] */
drh8b2f49b2001-06-08 00:21:52 +00002799 int nOld; /* Number of pages in apOld[] */
2800 int nNew; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00002801 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00002802 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00002803 int idx; /* Index of pPage in pParent->aCell[] */
2804 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00002805 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00002806 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00002807 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00002808 int usableSpace; /* Bytes in pPage beyond the header */
2809 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00002810 int subtotal; /* Subtotal of bytes in cells on one page */
drhb6f41482004-05-14 01:58:11 +00002811 int iSpace = 0; /* First unused byte of aSpace[] */
drhda200cc2004-05-09 11:51:38 +00002812 MemPage *extraUnref = 0; /* Unref this page if not zero */
drhc3b70572003-01-04 19:44:07 +00002813 MemPage *apOld[NB]; /* pPage and up to two siblings */
2814 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00002815 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drhc3b70572003-01-04 19:44:07 +00002816 MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */
2817 Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */
2818 int idxDiv[NB]; /* Indices of divider cells in pParent */
drh4b70f112004-05-02 21:12:19 +00002819 u8 *apDiv[NB]; /* Divider cells in pParent */
drha34b6762004-05-07 13:30:42 +00002820 int cntNew[NB+1]; /* Index in aCell[] of cell after i-th page */
drhc3b70572003-01-04 19:44:07 +00002821 int szNew[NB+1]; /* Combined size of cells place on i-th page */
drh4b70f112004-05-02 21:12:19 +00002822 u8 *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
drhc3b70572003-01-04 19:44:07 +00002823 int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
drh4b70f112004-05-02 21:12:19 +00002824 u8 aCopy[NB][MX_PAGE_SIZE+sizeof(MemPage)]; /* Space for apCopy[] */
drhb6f41482004-05-14 01:58:11 +00002825 u8 aSpace[MX_PAGE_SIZE*4]; /* Space to copies of divider cells */
drh8b2f49b2001-06-08 00:21:52 +00002826
drh14acc042001-06-10 19:56:58 +00002827 /*
2828 ** Return without doing any work if pPage is neither overfull nor
2829 ** underfull.
drh8b2f49b2001-06-08 00:21:52 +00002830 */
drh3a4c1412004-05-09 20:40:11 +00002831 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00002832 assert( sqlite3pager_iswriteable(pPage->aData) );
drh4b70f112004-05-02 21:12:19 +00002833 pBt = pPage->pBt;
drh96f5b762004-05-16 16:24:36 +00002834 if( !pPage->isOverfull && pPage->nFree<pBt->usableSize*2/3
2835 && pPage->nCell>=2){
drhab01f612004-05-22 02:55:23 +00002836 assert( pPage->needRelink==0 );
drh8b2f49b2001-06-08 00:21:52 +00002837 return SQLITE_OK;
2838 }
2839
2840 /*
drh4b70f112004-05-02 21:12:19 +00002841 ** Find the parent of the page to be balanced. If there is no parent,
2842 ** it means this page is the root page and special rules apply.
drh8b2f49b2001-06-08 00:21:52 +00002843 */
drh14acc042001-06-10 19:56:58 +00002844 pParent = pPage->pParent;
drh8b2f49b2001-06-08 00:21:52 +00002845 if( pParent==0 ){
2846 Pgno pgnoChild;
drh8c42ca92001-06-22 19:15:00 +00002847 MemPage *pChild;
drh7aa128d2002-06-21 13:09:16 +00002848 assert( pPage->isInit );
drh8b2f49b2001-06-08 00:21:52 +00002849 if( pPage->nCell==0 ){
drh8856d6a2004-04-29 14:42:46 +00002850 if( pPage->leaf ){
2851 /* The table is completely empty */
drhab01f612004-05-22 02:55:23 +00002852 assert( pPage->needRelink==0 );
drh3a4c1412004-05-09 20:40:11 +00002853 TRACE(("BALANCE: empty table %d\n", pPage->pgno));
drh8856d6a2004-04-29 14:42:46 +00002854 }else{
2855 /* The root page is empty but has one child. Transfer the
2856 ** information from that one child into the root page if it
drh3a4c1412004-05-09 20:40:11 +00002857 ** will fit. This reduces the depth of the tree by one.
drh8856d6a2004-04-29 14:42:46 +00002858 **
2859 ** If the root page is page 1, it has less space available than
drh4b70f112004-05-02 21:12:19 +00002860 ** its child (due to the 100 byte header that occurs at the beginning
2861 ** of the database fle), so it might not be able to hold all of the
2862 ** information currently contained in the child. If this is the
2863 ** case, then do not do the transfer. Leave page 1 empty except
2864 ** for the right-pointer to the child page. The child page becomes
2865 ** the virtual root of the tree.
drh8b2f49b2001-06-08 00:21:52 +00002866 */
drha34b6762004-05-07 13:30:42 +00002867 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+6]);
2868 assert( pgnoChild>0 && pgnoChild<=sqlite3pager_pagecount(pBt->pPager) );
drh8856d6a2004-04-29 14:42:46 +00002869 rc = getPage(pBt, pgnoChild, &pChild);
drh8b2f49b2001-06-08 00:21:52 +00002870 if( rc ) return rc;
drh8856d6a2004-04-29 14:42:46 +00002871 if( pPage->pgno==1 ){
drh4b70f112004-05-02 21:12:19 +00002872 rc = initPage(pChild, pPage);
drh8856d6a2004-04-29 14:42:46 +00002873 if( rc ) return rc;
2874 if( pChild->nFree>=100 ){
drh4b70f112004-05-02 21:12:19 +00002875 /* The child information will fit on the root page, so do the
2876 ** copy */
2877 zeroPage(pPage, pChild->aData[0]);
drh4b70f112004-05-02 21:12:19 +00002878 for(i=0; i<pChild->nCell; i++){
drhfa1a98a2004-05-14 19:08:17 +00002879 szCell[i] = cellSize(pChild, pChild->aCell[i]);
drh4b70f112004-05-02 21:12:19 +00002880 }
drhfa1a98a2004-05-14 19:08:17 +00002881 assemblePage(pPage, pChild->nCell, pChild->aCell, szCell);
drh4b70f112004-05-02 21:12:19 +00002882 freePage(pChild);
drhda200cc2004-05-09 11:51:38 +00002883 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
drh4b70f112004-05-02 21:12:19 +00002884 }else{
2885 /* The child has more information that will fit on the root.
2886 ** The tree is already balanced. Do nothing. */
drhda200cc2004-05-09 11:51:38 +00002887 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
drh8856d6a2004-04-29 14:42:46 +00002888 }
2889 }else{
drhb6f41482004-05-14 01:58:11 +00002890 memcpy(pPage->aData, pChild->aData, pBt->usableSize);
drh8856d6a2004-04-29 14:42:46 +00002891 pPage->isInit = 0;
drh4b70f112004-05-02 21:12:19 +00002892 pPage->pParent = 0;
2893 rc = initPage(pPage, 0);
drh8856d6a2004-04-29 14:42:46 +00002894 assert( rc==SQLITE_OK );
drh4b70f112004-05-02 21:12:19 +00002895 freePage(pChild);
drh3a4c1412004-05-09 20:40:11 +00002896 TRACE(("BALANCE: transfer child %d into root %d\n",
2897 pChild->pgno, pPage->pgno));
drh5edc3122001-09-13 21:53:09 +00002898 }
drh4b70f112004-05-02 21:12:19 +00002899 reparentChildPages(pPage);
2900 releasePage(pChild);
drh8b2f49b2001-06-08 00:21:52 +00002901 }
2902 return SQLITE_OK;
2903 }
drh14acc042001-06-10 19:56:58 +00002904 if( !pPage->isOverfull ){
drh8b2f49b2001-06-08 00:21:52 +00002905 /* It is OK for the root page to be less than half full.
2906 */
drhab01f612004-05-22 02:55:23 +00002907 assert( pPage->needRelink==0 );
drh3a4c1412004-05-09 20:40:11 +00002908 TRACE(("BALANCE: root page %d is low - no changes\n", pPage->pgno));
drh8b2f49b2001-06-08 00:21:52 +00002909 return SQLITE_OK;
2910 }
drh14acc042001-06-10 19:56:58 +00002911 /*
2912 ** If we get to here, it means the root page is overfull.
drh8b2f49b2001-06-08 00:21:52 +00002913 ** When this happens, Create a new child page and copy the
2914 ** contents of the root into the child. Then make the root
drh14acc042001-06-10 19:56:58 +00002915 ** page an empty page with rightChild pointing to the new
drh8b2f49b2001-06-08 00:21:52 +00002916 ** child. Then fall thru to the code below which will cause
2917 ** the overfull child page to be split.
2918 */
drh4b70f112004-05-02 21:12:19 +00002919 rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno);
drh14acc042001-06-10 19:56:58 +00002920 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002921 assert( sqlite3pager_iswriteable(pChild->aData) );
drhda200cc2004-05-09 11:51:38 +00002922 movePage(pChild, pPage);
drhc8629a12004-05-08 20:07:40 +00002923 assert( pChild->aData[0]==pPage->aData[pPage->hdrOffset] );
drh14acc042001-06-10 19:56:58 +00002924 pChild->pParent = pPage;
drh457f5012004-05-09 01:35:05 +00002925 sqlite3pager_ref(pPage->aData);
drhda200cc2004-05-09 11:51:38 +00002926 pChild->idxParent = 0;
drh14acc042001-06-10 19:56:58 +00002927 pChild->isOverfull = 1;
drhc8629a12004-05-08 20:07:40 +00002928 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
drh4b70f112004-05-02 21:12:19 +00002929 put4byte(&pPage->aData[pPage->hdrOffset+6], pChild->pgno);
drh8b2f49b2001-06-08 00:21:52 +00002930 pParent = pPage;
2931 pPage = pChild;
drhda200cc2004-05-09 11:51:38 +00002932 extraUnref = pChild;
drh3a4c1412004-05-09 20:40:11 +00002933 TRACE(("BALANCE: copy root %d into %d and balance %d\n",
2934 pParent->pgno, pPage->pgno, pPage->pgno));
2935 }else{
2936 TRACE(("BALANCE: begin page %d child of %d\n",
2937 pPage->pgno, pParent->pgno));
drh8b2f49b2001-06-08 00:21:52 +00002938 }
drha34b6762004-05-07 13:30:42 +00002939 rc = sqlite3pager_write(pParent->aData);
drh6019e162001-07-02 17:51:45 +00002940 if( rc ) return rc;
drh7aa128d2002-06-21 13:09:16 +00002941 assert( pParent->isInit );
drh14acc042001-06-10 19:56:58 +00002942
drh8b2f49b2001-06-08 00:21:52 +00002943 /*
drh4b70f112004-05-02 21:12:19 +00002944 ** Find the cell in the parent page whose left child points back
drh14acc042001-06-10 19:56:58 +00002945 ** to pPage. The "idx" variable is the index of that cell. If pPage
2946 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00002947 */
drhbb49aba2003-01-04 18:53:27 +00002948 if( pParent->idxShift ){
drha34b6762004-05-07 13:30:42 +00002949 Pgno pgno;
drh4b70f112004-05-02 21:12:19 +00002950 pgno = pPage->pgno;
drha34b6762004-05-07 13:30:42 +00002951 assert( pgno==sqlite3pager_pagenumber(pPage->aData) );
drhbb49aba2003-01-04 18:53:27 +00002952 for(idx=0; idx<pParent->nCell; idx++){
drha34b6762004-05-07 13:30:42 +00002953 if( get4byte(&pParent->aCell[idx][2])==pgno ){
drhbb49aba2003-01-04 18:53:27 +00002954 break;
2955 }
drh8b2f49b2001-06-08 00:21:52 +00002956 }
drh4b70f112004-05-02 21:12:19 +00002957 assert( idx<pParent->nCell
2958 || get4byte(&pParent->aData[pParent->hdrOffset+6])==pgno );
drhbb49aba2003-01-04 18:53:27 +00002959 }else{
2960 idx = pPage->idxParent;
drh8b2f49b2001-06-08 00:21:52 +00002961 }
drh8b2f49b2001-06-08 00:21:52 +00002962
2963 /*
drh14acc042001-06-10 19:56:58 +00002964 ** Initialize variables so that it will be safe to jump
drh5edc3122001-09-13 21:53:09 +00002965 ** directly to balance_cleanup at any moment.
drh8b2f49b2001-06-08 00:21:52 +00002966 */
drh14acc042001-06-10 19:56:58 +00002967 nOld = nNew = 0;
drha34b6762004-05-07 13:30:42 +00002968 sqlite3pager_ref(pParent->aData);
drh14acc042001-06-10 19:56:58 +00002969
2970 /*
drh4b70f112004-05-02 21:12:19 +00002971 ** Find sibling pages to pPage and the cells in pParent that divide
drhc3b70572003-01-04 19:44:07 +00002972 ** the siblings. An attempt is made to find NN siblings on either
2973 ** side of pPage. More siblings are taken from one side, however, if
2974 ** pPage there are fewer than NN siblings on the other side. If pParent
2975 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00002976 */
drhc3b70572003-01-04 19:44:07 +00002977 nxDiv = idx - NN;
2978 if( nxDiv + NB > pParent->nCell ){
2979 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00002980 }
drhc3b70572003-01-04 19:44:07 +00002981 if( nxDiv<0 ){
2982 nxDiv = 0;
2983 }
drh8b2f49b2001-06-08 00:21:52 +00002984 nDiv = 0;
drhc3b70572003-01-04 19:44:07 +00002985 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00002986 if( k<pParent->nCell ){
2987 idxDiv[i] = k;
drh4b70f112004-05-02 21:12:19 +00002988 apDiv[i] = pParent->aCell[k];
drh8b2f49b2001-06-08 00:21:52 +00002989 nDiv++;
drha34b6762004-05-07 13:30:42 +00002990 assert( !pParent->leaf );
2991 pgnoOld[i] = get4byte(&apDiv[i][2]);
drh14acc042001-06-10 19:56:58 +00002992 }else if( k==pParent->nCell ){
drh4b70f112004-05-02 21:12:19 +00002993 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+6]);
drh14acc042001-06-10 19:56:58 +00002994 }else{
2995 break;
drh8b2f49b2001-06-08 00:21:52 +00002996 }
drhde647132004-05-07 17:57:49 +00002997 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
drh6019e162001-07-02 17:51:45 +00002998 if( rc ) goto balance_cleanup;
drh428ae8c2003-01-04 16:48:09 +00002999 apOld[i]->idxParent = k;
drh91025292004-05-03 19:49:32 +00003000 apCopy[i] = 0;
3001 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00003002 nOld++;
drh8b2f49b2001-06-08 00:21:52 +00003003 }
3004
3005 /*
drh14acc042001-06-10 19:56:58 +00003006 ** Make copies of the content of pPage and its siblings into aOld[].
3007 ** The rest of this function will use data from the copies rather
3008 ** that the original pages since the original pages will be in the
3009 ** process of being overwritten.
3010 */
3011 for(i=0; i<nOld; i++){
drhc8629a12004-05-08 20:07:40 +00003012 MemPage *p = apCopy[i] = (MemPage*)&aCopy[i+1][-sizeof(MemPage)];
drhb6f41482004-05-14 01:58:11 +00003013 p->aData = &((u8*)p)[-pBt->usableSize];
drhda200cc2004-05-09 11:51:38 +00003014 p->aCell = 0;
3015 p->hdrOffset = 0;
3016 movePage(p, apOld[i]);
drh14acc042001-06-10 19:56:58 +00003017 }
3018
3019 /*
3020 ** Load pointers to all cells on sibling pages and the divider cells
3021 ** into the local apCell[] array. Make copies of the divider cells
drhb6f41482004-05-14 01:58:11 +00003022 ** into space obtained form aSpace[] and remove the the divider Cells
3023 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00003024 **
3025 ** If the siblings are on leaf pages, then the child pointers of the
3026 ** divider cells are stripped from the cells before they are copied
drh96f5b762004-05-16 16:24:36 +00003027 ** into aSpace[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00003028 ** child pointers. If siblings are not leaves, then all cell in
3029 ** apCell[] include child pointers. Either way, all cells in apCell[]
3030 ** are alike.
drh96f5b762004-05-16 16:24:36 +00003031 **
3032 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
3033 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00003034 */
3035 nCell = 0;
drh4b70f112004-05-02 21:12:19 +00003036 leafCorrection = pPage->leaf*4;
drh8b18dd42004-05-12 19:18:15 +00003037 leafData = pPage->leafData && pPage->leaf;
drh8b2f49b2001-06-08 00:21:52 +00003038 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00003039 MemPage *pOld = apCopy[i];
drh8b2f49b2001-06-08 00:21:52 +00003040 for(j=0; j<pOld->nCell; j++){
drh4b70f112004-05-02 21:12:19 +00003041 apCell[nCell] = pOld->aCell[j];
3042 szCell[nCell] = cellSize(pOld, apCell[nCell]);
drh14acc042001-06-10 19:56:58 +00003043 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00003044 }
3045 if( i<nOld-1 ){
drhb6f41482004-05-14 01:58:11 +00003046 int sz = cellSize(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00003047 if( leafData ){
drh96f5b762004-05-16 16:24:36 +00003048 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
3049 ** are duplicates of keys on the child pages. We need to remove
3050 ** the divider cells from pParent, but the dividers cells are not
3051 ** added to apCell[] because they are duplicates of child cells.
3052 */
drh8b18dd42004-05-12 19:18:15 +00003053 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00003054 }else{
drhb6f41482004-05-14 01:58:11 +00003055 u8 *pTemp;
3056 szCell[nCell] = sz;
3057 pTemp = &aSpace[iSpace];
3058 iSpace += sz;
3059 assert( iSpace<=sizeof(aSpace) );
3060 memcpy(pTemp, apDiv[i], sz);
3061 apCell[nCell] = pTemp+leafCorrection;
3062 dropCell(pParent, nxDiv, sz);
drh8b18dd42004-05-12 19:18:15 +00003063 szCell[nCell] -= leafCorrection;
drhb6f41482004-05-14 01:58:11 +00003064 assert( get4byte(pTemp+2)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00003065 if( !pOld->leaf ){
3066 assert( leafCorrection==0 );
3067 /* The right pointer of the child page pOld becomes the left
3068 ** pointer of the divider cell */
3069 memcpy(&apCell[nCell][2], &pOld->aData[pOld->hdrOffset+6], 4);
3070 }else{
3071 assert( leafCorrection==4 );
3072 }
3073 nCell++;
drh4b70f112004-05-02 21:12:19 +00003074 }
drh8b2f49b2001-06-08 00:21:52 +00003075 }
3076 }
3077
3078 /*
drh6019e162001-07-02 17:51:45 +00003079 ** Figure out the number of pages needed to hold all nCell cells.
3080 ** Store this number in "k". Also compute szNew[] which is the total
3081 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00003082 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00003083 ** cntNew[k] should equal nCell.
3084 **
drh96f5b762004-05-16 16:24:36 +00003085 ** Values computed by this block:
3086 **
3087 ** k: The total number of sibling pages
3088 ** szNew[i]: Spaced used on the i-th sibling page.
3089 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
3090 ** the right of the i-th sibling page.
3091 ** usableSpace: Number of bytes of space available on each sibling.
3092 **
drh8b2f49b2001-06-08 00:21:52 +00003093 */
drhb6f41482004-05-14 01:58:11 +00003094 usableSpace = pBt->usableSize - 10 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00003095 for(subtotal=k=i=0; i<nCell; i++){
3096 subtotal += szCell[i];
drh4b70f112004-05-02 21:12:19 +00003097 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00003098 szNew[k] = subtotal - szCell[i];
3099 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00003100 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00003101 subtotal = 0;
3102 k++;
3103 }
3104 }
3105 szNew[k] = subtotal;
3106 cntNew[k] = nCell;
3107 k++;
drh96f5b762004-05-16 16:24:36 +00003108
3109 /*
3110 ** The packing computed by the previous block is biased toward the siblings
3111 ** on the left side. The left siblings are always nearly full, while the
3112 ** right-most sibling might be nearly empty. This block of code attempts
3113 ** to adjust the packing of siblings to get a better balance.
3114 **
3115 ** This adjustment is more than an optimization. The packing above might
3116 ** be so out of balance as to be illegal. For example, the right-most
3117 ** sibling might be completely empty. This adjustment is not optional.
3118 */
drh6019e162001-07-02 17:51:45 +00003119 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00003120 int szRight = szNew[i]; /* Size of sibling on the right */
3121 int szLeft = szNew[i-1]; /* Size of sibling on the left */
3122 int r; /* Index of right-most cell in left sibling */
3123 int d; /* Index of first cell to the left of right sibling */
3124
3125 r = cntNew[i-1] - 1;
3126 d = r + 1 - leafData;
3127 while( szRight==0 || szRight+szCell[d]<=szLeft-szCell[r] ){
3128 szRight += szCell[d];
3129 szLeft -= szCell[r];
drh6019e162001-07-02 17:51:45 +00003130 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00003131 r = cntNew[i-1] - 1;
3132 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00003133 }
drh96f5b762004-05-16 16:24:36 +00003134 szNew[i] = szRight;
3135 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00003136 }
3137 assert( cntNew[0]>0 );
drh8b2f49b2001-06-08 00:21:52 +00003138
3139 /*
drh6b308672002-07-08 02:16:37 +00003140 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00003141 */
drh4b70f112004-05-02 21:12:19 +00003142 assert( pPage->pgno>1 );
3143 pageFlags = pPage->aData[0];
drh14acc042001-06-10 19:56:58 +00003144 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00003145 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00003146 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00003147 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00003148 pgnoNew[i] = pgnoOld[i];
3149 apOld[i] = 0;
drhda200cc2004-05-09 11:51:38 +00003150 sqlite3pager_write(pNew->aData);
drh6b308672002-07-08 02:16:37 +00003151 }else{
drhda200cc2004-05-09 11:51:38 +00003152 rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1]);
drh6b308672002-07-08 02:16:37 +00003153 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00003154 apNew[i] = pNew;
drh6b308672002-07-08 02:16:37 +00003155 }
drh14acc042001-06-10 19:56:58 +00003156 nNew++;
drhda200cc2004-05-09 11:51:38 +00003157 zeroPage(pNew, pageFlags);
drh8b2f49b2001-06-08 00:21:52 +00003158 }
3159
drh6b308672002-07-08 02:16:37 +00003160 /* Free any old pages that were not reused as new pages.
3161 */
3162 while( i<nOld ){
drh4b70f112004-05-02 21:12:19 +00003163 rc = freePage(apOld[i]);
drh6b308672002-07-08 02:16:37 +00003164 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00003165 releasePage(apOld[i]);
drh6b308672002-07-08 02:16:37 +00003166 apOld[i] = 0;
3167 i++;
3168 }
3169
drh8b2f49b2001-06-08 00:21:52 +00003170 /*
drhf9ffac92002-03-02 19:00:31 +00003171 ** Put the new pages in accending order. This helps to
3172 ** keep entries in the disk file in order so that a scan
3173 ** of the table is a linear scan through the file. That
3174 ** in turn helps the operating system to deliver pages
3175 ** from the disk more rapidly.
3176 **
3177 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00003178 ** n is never more than NB (a small constant), that should
3179 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00003180 **
drhc3b70572003-01-04 19:44:07 +00003181 ** When NB==3, this one optimization makes the database
3182 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00003183 */
3184 for(i=0; i<k-1; i++){
3185 int minV = pgnoNew[i];
3186 int minI = i;
3187 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00003188 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00003189 minI = j;
3190 minV = pgnoNew[j];
3191 }
3192 }
3193 if( minI>i ){
3194 int t;
3195 MemPage *pT;
3196 t = pgnoNew[i];
3197 pT = apNew[i];
3198 pgnoNew[i] = pgnoNew[minI];
3199 apNew[i] = apNew[minI];
3200 pgnoNew[minI] = t;
3201 apNew[minI] = pT;
3202 }
3203 }
drh10c0fa62004-05-18 12:50:17 +00003204 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d)\n",
drh24cd67e2004-05-10 16:18:47 +00003205 pgnoOld[0],
3206 nOld>=2 ? pgnoOld[1] : 0,
3207 nOld>=3 ? pgnoOld[2] : 0,
drh10c0fa62004-05-18 12:50:17 +00003208 pgnoNew[0], szNew[0],
3209 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
3210 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
3211 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0));
drh24cd67e2004-05-10 16:18:47 +00003212
drhf9ffac92002-03-02 19:00:31 +00003213
3214 /*
drh14acc042001-06-10 19:56:58 +00003215 ** Evenly distribute the data in apCell[] across the new pages.
3216 ** Insert divider cells into pParent as necessary.
3217 */
3218 j = 0;
3219 for(i=0; i<nNew; i++){
3220 MemPage *pNew = apNew[i];
drh4b70f112004-05-02 21:12:19 +00003221 assert( pNew->pgno==pgnoNew[i] );
3222 resizeCellArray(pNew, cntNew[i] - j);
drhfa1a98a2004-05-14 19:08:17 +00003223 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
3224 j = cntNew[i];
drh6019e162001-07-02 17:51:45 +00003225 assert( pNew->nCell>0 );
drh14acc042001-06-10 19:56:58 +00003226 assert( !pNew->isOverfull );
drhab01f612004-05-22 02:55:23 +00003227 assert( pNew->needRelink==0 );
drh14acc042001-06-10 19:56:58 +00003228 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00003229 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00003230 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00003231 int sz;
3232 pCell = apCell[j];
3233 sz = szCell[j] + leafCorrection;
drh4b70f112004-05-02 21:12:19 +00003234 if( !pNew->leaf ){
drh24cd67e2004-05-10 16:18:47 +00003235 memcpy(&pNew->aData[6], pCell+2, 4);
3236 pTemp = 0;
drh8b18dd42004-05-12 19:18:15 +00003237 }else if( leafData ){
drh6f11bef2004-05-13 01:12:56 +00003238 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00003239 j--;
drh6f11bef2004-05-13 01:12:56 +00003240 parseCell(pNew, apCell[j], &info);
drhb6f41482004-05-14 01:58:11 +00003241 pCell = &aSpace[iSpace];
drh6f11bef2004-05-13 01:12:56 +00003242 fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz);
drhb6f41482004-05-14 01:58:11 +00003243 iSpace += sz;
3244 assert( iSpace<=sizeof(aSpace) );
drh8b18dd42004-05-12 19:18:15 +00003245 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00003246 }else{
3247 pCell -= 4;
drhb6f41482004-05-14 01:58:11 +00003248 pTemp = &aSpace[iSpace];
3249 iSpace += sz;
3250 assert( iSpace<=sizeof(aSpace) );
drh4b70f112004-05-02 21:12:19 +00003251 }
drh8b18dd42004-05-12 19:18:15 +00003252 insertCell(pParent, nxDiv, pCell, sz, pTemp);
drh4b70f112004-05-02 21:12:19 +00003253 put4byte(&pParent->aCell[nxDiv][2], pNew->pgno);
drh14acc042001-06-10 19:56:58 +00003254 j++;
3255 nxDiv++;
3256 }
3257 }
drh6019e162001-07-02 17:51:45 +00003258 assert( j==nCell );
drh4b70f112004-05-02 21:12:19 +00003259 if( (pageFlags & PTF_LEAF)==0 ){
3260 memcpy(&apNew[nNew-1]->aData[6], &apCopy[nOld-1]->aData[6], 4);
drh14acc042001-06-10 19:56:58 +00003261 }
drh4b70f112004-05-02 21:12:19 +00003262 if( nxDiv==pParent->nCell ){
3263 /* Right-most sibling is the right-most child of pParent */
3264 put4byte(&pParent->aData[pParent->hdrOffset+6], pgnoNew[nNew-1]);
3265 }else{
3266 /* Right-most sibling is the left child of the first entry in pParent
3267 ** past the right-most divider entry */
drha34b6762004-05-07 13:30:42 +00003268 put4byte(&pParent->aCell[nxDiv][2], pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00003269 }
3270
3271 /*
3272 ** Reparent children of all cells.
drh8b2f49b2001-06-08 00:21:52 +00003273 */
3274 for(i=0; i<nNew; i++){
drh4b70f112004-05-02 21:12:19 +00003275 reparentChildPages(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00003276 }
drh4b70f112004-05-02 21:12:19 +00003277 reparentChildPages(pParent);
drh8b2f49b2001-06-08 00:21:52 +00003278
3279 /*
drh3a4c1412004-05-09 20:40:11 +00003280 ** Balance the parent page. Note that the current page (pPage) might
3281 ** have been added to the freelist is it might no longer be initialized.
3282 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00003283 */
drhda200cc2004-05-09 11:51:38 +00003284 assert( pParent->isInit );
drh3a4c1412004-05-09 20:40:11 +00003285 /* assert( pPage->isInit ); // No! pPage might have been added to freelist */
3286 /* pageIntegrity(pPage); // No! pPage might have been added to freelist */
drh4b70f112004-05-02 21:12:19 +00003287 rc = balance(pParent);
drhda200cc2004-05-09 11:51:38 +00003288
drh8b2f49b2001-06-08 00:21:52 +00003289 /*
drh14acc042001-06-10 19:56:58 +00003290 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00003291 */
drh14acc042001-06-10 19:56:58 +00003292balance_cleanup:
drh8b2f49b2001-06-08 00:21:52 +00003293 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00003294 releasePage(apOld[i]);
3295 if( apCopy[i] ){
drh91025292004-05-03 19:49:32 +00003296 sqliteFree(apCopy[i]->aCell);
3297 }
drh8b2f49b2001-06-08 00:21:52 +00003298 }
drh14acc042001-06-10 19:56:58 +00003299 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00003300 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00003301 }
drh91025292004-05-03 19:49:32 +00003302 releasePage(pParent);
drhda200cc2004-05-09 11:51:38 +00003303 releasePage(extraUnref);
drh3a4c1412004-05-09 20:40:11 +00003304 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
3305 pPage->pgno, nOld, nNew, nCell));
drh8b2f49b2001-06-08 00:21:52 +00003306 return rc;
3307}
3308
3309/*
drhf74b8d92002-09-01 23:20:45 +00003310** This routine checks all cursors that point to the same table
3311** as pCur points to. If any of those cursors were opened with
3312** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
3313** cursors point to the same table were opened with wrFlag==1
3314** then this routine returns SQLITE_OK.
3315**
3316** In addition to checking for read-locks (where a read-lock
3317** means a cursor opened with wrFlag==0) this routine also moves
3318** all cursors other than pCur so that they are pointing to the
3319** first Cell on root page. This is necessary because an insert
3320** or delete might change the number of cells on a page or delete
3321** a page entirely and we do not want to leave any cursors
3322** pointing to non-existant pages or cells.
3323*/
3324static int checkReadLocks(BtCursor *pCur){
3325 BtCursor *p;
3326 assert( pCur->wrFlag );
3327 for(p=pCur->pShared; p!=pCur; p=p->pShared){
3328 assert( p );
3329 assert( p->pgnoRoot==pCur->pgnoRoot );
drha34b6762004-05-07 13:30:42 +00003330 assert( p->pPage->pgno==sqlite3pager_pagenumber(p->pPage->aData) );
drhf74b8d92002-09-01 23:20:45 +00003331 if( p->wrFlag==0 ) return SQLITE_LOCKED;
drh91025292004-05-03 19:49:32 +00003332 if( p->pPage->pgno!=p->pgnoRoot ){
drhf74b8d92002-09-01 23:20:45 +00003333 moveToRoot(p);
3334 }
3335 }
3336 return SQLITE_OK;
3337}
3338
3339/*
drh3b7511c2001-05-26 13:15:44 +00003340** Insert a new record into the BTree. The key is given by (pKey,nKey)
3341** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00003342** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00003343** is left pointing at a random location.
3344**
3345** For an INTKEY table, only the nKey value of the key is used. pKey is
3346** ignored. For a ZERODATA table, the pData and nData are both ignored.
drh3b7511c2001-05-26 13:15:44 +00003347*/
drh3aac2dd2004-04-26 14:10:20 +00003348int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00003349 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00003350 const void *pKey, i64 nKey, /* The key of the new record */
drh5c4d9702001-08-20 00:33:58 +00003351 const void *pData, int nData /* The data of the new record */
drh3b7511c2001-05-26 13:15:44 +00003352){
drh3b7511c2001-05-26 13:15:44 +00003353 int rc;
3354 int loc;
drh14acc042001-06-10 19:56:58 +00003355 int szNew;
drh3b7511c2001-05-26 13:15:44 +00003356 MemPage *pPage;
3357 Btree *pBt = pCur->pBt;
drha34b6762004-05-07 13:30:42 +00003358 unsigned char *oldCell;
3359 unsigned char newCell[MX_CELL_SIZE];
drh3b7511c2001-05-26 13:15:44 +00003360
drhc39e0002004-05-07 23:50:57 +00003361 if( pCur->status ){
3362 return pCur->status; /* A rollback destroyed this cursor */
drhecdc7532001-09-23 02:35:53 +00003363 }
danielk1977e7c8d582004-05-13 13:38:52 +00003364 if( !pBt->inTrans ){
drhf74b8d92002-09-01 23:20:45 +00003365 /* Must start a transaction before doing an insert */
3366 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003367 }
drhf74b8d92002-09-01 23:20:45 +00003368 assert( !pBt->readOnly );
drhecdc7532001-09-23 02:35:53 +00003369 if( !pCur->wrFlag ){
3370 return SQLITE_PERM; /* Cursor not open for writing */
3371 }
drhf74b8d92002-09-01 23:20:45 +00003372 if( checkReadLocks(pCur) ){
3373 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
3374 }
drh3aac2dd2004-04-26 14:10:20 +00003375 rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc);
drh3b7511c2001-05-26 13:15:44 +00003376 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00003377 pPage = pCur->pPage;
drh4a1c3802004-05-12 15:15:47 +00003378 assert( pPage->intKey || nKey>=0 );
drh8b18dd42004-05-12 19:18:15 +00003379 assert( pPage->leaf || !pPage->leafData );
drh3a4c1412004-05-09 20:40:11 +00003380 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
3381 pCur->pgnoRoot, nKey, nData, pPage->pgno,
3382 loc==0 ? "overwrite" : "new entry"));
drh7aa128d2002-06-21 13:09:16 +00003383 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00003384 rc = sqlite3pager_write(pPage->aData);
drhbd03cae2001-06-02 02:40:57 +00003385 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003386 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew);
drh3b7511c2001-05-26 13:15:44 +00003387 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003388 assert( szNew==cellSize(pPage, newCell) );
drh3a4c1412004-05-09 20:40:11 +00003389 assert( szNew<=sizeof(newCell) );
drhf328bc82004-05-10 23:29:49 +00003390 if( loc==0 && pCur->isValid ){
drha34b6762004-05-07 13:30:42 +00003391 int szOld;
3392 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh4b70f112004-05-02 21:12:19 +00003393 oldCell = pPage->aCell[pCur->idx];
3394 if( !pPage->leaf ){
3395 memcpy(&newCell[2], &oldCell[2], 4);
3396 }
3397 szOld = cellSize(pPage, oldCell);
3398 rc = clearCell(pPage, oldCell);
drh5e2f8b92001-05-28 00:41:15 +00003399 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003400 dropCell(pPage, pCur->idx, szOld);
drh7c717f72001-06-24 20:39:41 +00003401 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00003402 assert( pPage->leaf );
drh14acc042001-06-10 19:56:58 +00003403 pCur->idx++;
drhfa1a98a2004-05-14 19:08:17 +00003404 pCur->infoValid = 0;
drh14acc042001-06-10 19:56:58 +00003405 }else{
drh4b70f112004-05-02 21:12:19 +00003406 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00003407 }
drh24cd67e2004-05-10 16:18:47 +00003408 insertCell(pPage, pCur->idx, newCell, szNew, 0);
drh4b70f112004-05-02 21:12:19 +00003409 rc = balance(pPage);
drh23e11ca2004-05-04 17:27:28 +00003410 /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
drh3fc190c2001-09-14 03:24:23 +00003411 /* fflush(stdout); */
drh4b70f112004-05-02 21:12:19 +00003412 moveToRoot(pCur);
drh5e2f8b92001-05-28 00:41:15 +00003413 return rc;
3414}
3415
3416/*
drh4b70f112004-05-02 21:12:19 +00003417** Delete the entry that the cursor is pointing to. The cursor
3418** is left pointing at a random location.
drh3b7511c2001-05-26 13:15:44 +00003419*/
drh3aac2dd2004-04-26 14:10:20 +00003420int sqlite3BtreeDelete(BtCursor *pCur){
drh5e2f8b92001-05-28 00:41:15 +00003421 MemPage *pPage = pCur->pPage;
drh4b70f112004-05-02 21:12:19 +00003422 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00003423 int rc;
drh8c42ca92001-06-22 19:15:00 +00003424 Pgno pgnoChild;
drh0d316a42002-08-11 20:10:47 +00003425 Btree *pBt = pCur->pBt;
drh8b2f49b2001-06-08 00:21:52 +00003426
drh7aa128d2002-06-21 13:09:16 +00003427 assert( pPage->isInit );
drhc39e0002004-05-07 23:50:57 +00003428 if( pCur->status ){
3429 return pCur->status; /* A rollback destroyed this cursor */
drhecdc7532001-09-23 02:35:53 +00003430 }
drhf74b8d92002-09-01 23:20:45 +00003431 if( !pBt->inTrans ){
3432 /* Must start a transaction before doing a delete */
3433 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003434 }
drhf74b8d92002-09-01 23:20:45 +00003435 assert( !pBt->readOnly );
drhbd03cae2001-06-02 02:40:57 +00003436 if( pCur->idx >= pPage->nCell ){
3437 return SQLITE_ERROR; /* The cursor is not pointing to anything */
3438 }
drhecdc7532001-09-23 02:35:53 +00003439 if( !pCur->wrFlag ){
3440 return SQLITE_PERM; /* Did not open this cursor for writing */
3441 }
drhf74b8d92002-09-01 23:20:45 +00003442 if( checkReadLocks(pCur) ){
3443 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
3444 }
drha34b6762004-05-07 13:30:42 +00003445 rc = sqlite3pager_write(pPage->aData);
drhbd03cae2001-06-02 02:40:57 +00003446 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003447 pCell = pPage->aCell[pCur->idx];
3448 if( !pPage->leaf ){
3449 pgnoChild = get4byte(&pCell[2]);
3450 }
3451 clearCell(pPage, pCell);
3452 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00003453 /*
drh5e00f6c2001-09-13 13:46:56 +00003454 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00003455 ** do something we will leave a hole on an internal page.
3456 ** We have to fill the hole by moving in a cell from a leaf. The
3457 ** next Cell after the one to be deleted is guaranteed to exist and
3458 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00003459 */
drh14acc042001-06-10 19:56:58 +00003460 BtCursor leafCur;
drh4b70f112004-05-02 21:12:19 +00003461 unsigned char *pNext;
drh14acc042001-06-10 19:56:58 +00003462 int szNext;
drh8c1238a2003-01-02 14:43:55 +00003463 int notUsed;
drh24cd67e2004-05-10 16:18:47 +00003464 unsigned char tempCell[MX_CELL_SIZE];
drh8b18dd42004-05-12 19:18:15 +00003465 assert( !pPage->leafData );
drh14acc042001-06-10 19:56:58 +00003466 getTempCursor(pCur, &leafCur);
drh3aac2dd2004-04-26 14:10:20 +00003467 rc = sqlite3BtreeNext(&leafCur, &notUsed);
drh14acc042001-06-10 19:56:58 +00003468 if( rc!=SQLITE_OK ){
drh8a6ac0a2004-02-14 17:35:07 +00003469 if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
3470 return rc;
drh5e2f8b92001-05-28 00:41:15 +00003471 }
drha34b6762004-05-07 13:30:42 +00003472 rc = sqlite3pager_write(leafCur.pPage->aData);
drh6019e162001-07-02 17:51:45 +00003473 if( rc ) return rc;
drh3a4c1412004-05-09 20:40:11 +00003474 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
3475 pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
drh4b70f112004-05-02 21:12:19 +00003476 dropCell(pPage, pCur->idx, cellSize(pPage, pCell));
3477 pNext = leafCur.pPage->aCell[leafCur.idx];
3478 szNext = cellSize(leafCur.pPage, pNext);
drh24cd67e2004-05-10 16:18:47 +00003479 assert( sizeof(tempCell)>=szNext+4 );
3480 insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell);
3481 put4byte(pPage->aCell[pCur->idx]+2, pgnoChild);
drh4b70f112004-05-02 21:12:19 +00003482 rc = balance(pPage);
drh5e2f8b92001-05-28 00:41:15 +00003483 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003484 dropCell(leafCur.pPage, leafCur.idx, szNext);
3485 rc = balance(leafCur.pPage);
drh8c42ca92001-06-22 19:15:00 +00003486 releaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00003487 }else{
drh3a4c1412004-05-09 20:40:11 +00003488 TRACE(("DELETE: table=%d delete from leaf %d\n",
3489 pCur->pgnoRoot, pPage->pgno));
drh4b70f112004-05-02 21:12:19 +00003490 dropCell(pPage, pCur->idx, cellSize(pPage, pCell));
3491 rc = balance(pPage);
drh5e2f8b92001-05-28 00:41:15 +00003492 }
drh4b70f112004-05-02 21:12:19 +00003493 moveToRoot(pCur);
drh5e2f8b92001-05-28 00:41:15 +00003494 return rc;
drh3b7511c2001-05-26 13:15:44 +00003495}
drh8b2f49b2001-06-08 00:21:52 +00003496
3497/*
drhc6b52df2002-01-04 03:09:29 +00003498** Create a new BTree table. Write into *piTable the page
3499** number for the root page of the new table.
3500**
drhab01f612004-05-22 02:55:23 +00003501** The type of type is determined by the flags parameter. Only the
3502** following values of flags are currently in use. Other values for
3503** flags might not work:
3504**
3505** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
3506** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00003507*/
drh3aac2dd2004-04-26 14:10:20 +00003508int sqlite3BtreeCreateTable(Btree *pBt, int *piTable, int flags){
drh8b2f49b2001-06-08 00:21:52 +00003509 MemPage *pRoot;
3510 Pgno pgnoRoot;
3511 int rc;
3512 if( !pBt->inTrans ){
drhf74b8d92002-09-01 23:20:45 +00003513 /* Must start a transaction first */
3514 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003515 }
drh5df72a52002-06-06 23:16:05 +00003516 if( pBt->readOnly ){
3517 return SQLITE_READONLY;
3518 }
drhda200cc2004-05-09 11:51:38 +00003519 rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1);
drh8b2f49b2001-06-08 00:21:52 +00003520 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003521 assert( sqlite3pager_iswriteable(pRoot->aData) );
drhde647132004-05-07 17:57:49 +00003522 zeroPage(pRoot, flags | PTF_LEAF);
drha34b6762004-05-07 13:30:42 +00003523 sqlite3pager_unref(pRoot->aData);
drh8b2f49b2001-06-08 00:21:52 +00003524 *piTable = (int)pgnoRoot;
3525 return SQLITE_OK;
3526}
3527
3528/*
3529** Erase the given database page and all its children. Return
3530** the page to the freelist.
3531*/
drh4b70f112004-05-02 21:12:19 +00003532static int clearDatabasePage(
3533 Btree *pBt, /* The BTree that contains the table */
3534 Pgno pgno, /* Page number to clear */
3535 MemPage *pParent, /* Parent page. NULL for the root */
3536 int freePageFlag /* Deallocate page if true */
3537){
drh8b2f49b2001-06-08 00:21:52 +00003538 MemPage *pPage;
3539 int rc;
drh4b70f112004-05-02 21:12:19 +00003540 unsigned char *pCell;
3541 int i;
drh8b2f49b2001-06-08 00:21:52 +00003542
drhde647132004-05-07 17:57:49 +00003543 rc = getAndInitPage(pBt, pgno, &pPage, pParent);
drh8b2f49b2001-06-08 00:21:52 +00003544 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003545 rc = sqlite3pager_write(pPage->aData);
drh6019e162001-07-02 17:51:45 +00003546 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003547 for(i=0; i<pPage->nCell; i++){
3548 pCell = pPage->aCell[i];
3549 if( !pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00003550 rc = clearDatabasePage(pBt, get4byte(&pCell[2]), pPage->pParent, 1);
drh8b2f49b2001-06-08 00:21:52 +00003551 if( rc ) return rc;
3552 }
drh4b70f112004-05-02 21:12:19 +00003553 rc = clearCell(pPage, pCell);
drh8b2f49b2001-06-08 00:21:52 +00003554 if( rc ) return rc;
3555 }
drha34b6762004-05-07 13:30:42 +00003556 if( !pPage->leaf ){
3557 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[6]), pPage->pParent, 1);
drh2aa679f2001-06-25 02:11:07 +00003558 if( rc ) return rc;
3559 }
3560 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00003561 rc = freePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00003562 }else{
drh3a4c1412004-05-09 20:40:11 +00003563 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00003564 }
drh4b70f112004-05-02 21:12:19 +00003565 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00003566 return rc;
drh8b2f49b2001-06-08 00:21:52 +00003567}
3568
3569/*
drhab01f612004-05-22 02:55:23 +00003570** Delete all information from a single table in the database. iTable is
3571** the page number of the root of the table. After this routine returns,
3572** the root page is empty, but still exists.
3573**
3574** This routine will fail with SQLITE_LOCKED if there are any open
3575** read cursors on the table. Open write cursors are moved to the
3576** root of the table.
drh8b2f49b2001-06-08 00:21:52 +00003577*/
drh3aac2dd2004-04-26 14:10:20 +00003578int sqlite3BtreeClearTable(Btree *pBt, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00003579 int rc;
drhf74b8d92002-09-01 23:20:45 +00003580 BtCursor *pCur;
drh8b2f49b2001-06-08 00:21:52 +00003581 if( !pBt->inTrans ){
drhf74b8d92002-09-01 23:20:45 +00003582 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003583 }
drhf74b8d92002-09-01 23:20:45 +00003584 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3585 if( pCur->pgnoRoot==(Pgno)iTable ){
3586 if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
3587 moveToRoot(pCur);
3588 }
drhecdc7532001-09-23 02:35:53 +00003589 }
drha34b6762004-05-07 13:30:42 +00003590 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
drh8b2f49b2001-06-08 00:21:52 +00003591 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00003592 sqlite3BtreeRollback(pBt);
drh8b2f49b2001-06-08 00:21:52 +00003593 }
drh8c42ca92001-06-22 19:15:00 +00003594 return rc;
drh8b2f49b2001-06-08 00:21:52 +00003595}
3596
3597/*
3598** Erase all information in a table and add the root of the table to
3599** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00003600** page 1) is never added to the freelist.
3601**
3602** This routine will fail with SQLITE_LOCKED if there are any open
3603** cursors on the table.
drh8b2f49b2001-06-08 00:21:52 +00003604*/
drh3aac2dd2004-04-26 14:10:20 +00003605int sqlite3BtreeDropTable(Btree *pBt, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00003606 int rc;
3607 MemPage *pPage;
drhf74b8d92002-09-01 23:20:45 +00003608 BtCursor *pCur;
drh8b2f49b2001-06-08 00:21:52 +00003609 if( !pBt->inTrans ){
drhf74b8d92002-09-01 23:20:45 +00003610 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003611 }
drhf74b8d92002-09-01 23:20:45 +00003612 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3613 if( pCur->pgnoRoot==(Pgno)iTable ){
3614 return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
3615 }
drh5df72a52002-06-06 23:16:05 +00003616 }
drha34b6762004-05-07 13:30:42 +00003617 rc = getPage(pBt, (Pgno)iTable, &pPage);
drh2aa679f2001-06-25 02:11:07 +00003618 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003619 rc = sqlite3BtreeClearTable(pBt, iTable);
drh2aa679f2001-06-25 02:11:07 +00003620 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003621 if( iTable>1 ){
drha34b6762004-05-07 13:30:42 +00003622 rc = freePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00003623 }else{
drha34b6762004-05-07 13:30:42 +00003624 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
drh8b2f49b2001-06-08 00:21:52 +00003625 }
drh4b70f112004-05-02 21:12:19 +00003626 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00003627 return rc;
3628}
3629
drh001bbcb2003-03-19 03:14:00 +00003630
drh8b2f49b2001-06-08 00:21:52 +00003631/*
drh23e11ca2004-05-04 17:27:28 +00003632** Read the meta-information out of a database file. Meta[0]
3633** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00003634** through meta[15] are available for use by higher layers. Meta[0]
3635** is read-only, the others are read/write.
3636**
3637** The schema layer numbers meta values differently. At the schema
3638** layer (and the SetCookie and ReadCookie opcodes) the number of
3639** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00003640*/
drh3aac2dd2004-04-26 14:10:20 +00003641int sqlite3BtreeGetMeta(Btree *pBt, int idx, u32 *pMeta){
drh8b2f49b2001-06-08 00:21:52 +00003642 int rc;
drh4b70f112004-05-02 21:12:19 +00003643 unsigned char *pP1;
drh8b2f49b2001-06-08 00:21:52 +00003644
drh23e11ca2004-05-04 17:27:28 +00003645 assert( idx>=0 && idx<=15 );
drha34b6762004-05-07 13:30:42 +00003646 rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1);
drh8b2f49b2001-06-08 00:21:52 +00003647 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00003648 *pMeta = get4byte(&pP1[36 + idx*4]);
drha34b6762004-05-07 13:30:42 +00003649 sqlite3pager_unref(pP1);
drh8b2f49b2001-06-08 00:21:52 +00003650 return SQLITE_OK;
3651}
3652
3653/*
drh23e11ca2004-05-04 17:27:28 +00003654** Write meta-information back into the database. Meta[0] is
3655** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00003656*/
drh3aac2dd2004-04-26 14:10:20 +00003657int sqlite3BtreeUpdateMeta(Btree *pBt, int idx, u32 iMeta){
drh4b70f112004-05-02 21:12:19 +00003658 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00003659 int rc;
drh23e11ca2004-05-04 17:27:28 +00003660 assert( idx>=1 && idx<=15 );
drh8b2f49b2001-06-08 00:21:52 +00003661 if( !pBt->inTrans ){
drhf74b8d92002-09-01 23:20:45 +00003662 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh5df72a52002-06-06 23:16:05 +00003663 }
drhde647132004-05-07 17:57:49 +00003664 assert( pBt->pPage1!=0 );
3665 pP1 = pBt->pPage1->aData;
drha34b6762004-05-07 13:30:42 +00003666 rc = sqlite3pager_write(pP1);
drh4b70f112004-05-02 21:12:19 +00003667 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00003668 put4byte(&pP1[36 + idx*4], iMeta);
drh8b2f49b2001-06-08 00:21:52 +00003669 return SQLITE_OK;
3670}
drh8c42ca92001-06-22 19:15:00 +00003671
drhf328bc82004-05-10 23:29:49 +00003672/*
3673** Return the flag byte at the beginning of the page that the cursor
3674** is currently pointing to.
3675*/
3676int sqlite3BtreeFlags(BtCursor *pCur){
3677 MemPage *pPage = pCur->pPage;
3678 return pPage ? pPage->aData[pPage->hdrOffset] : 0;
3679}
3680
drh5eddca62001-06-30 21:53:53 +00003681/******************************************************************************
3682** The complete implementation of the BTree subsystem is above this line.
3683** All the code the follows is for testing and troubleshooting the BTree
3684** subsystem. None of the code that follows is used during normal operation.
drh5eddca62001-06-30 21:53:53 +00003685******************************************************************************/
drh5eddca62001-06-30 21:53:53 +00003686
drh8c42ca92001-06-22 19:15:00 +00003687/*
3688** Print a disassembly of the given page on standard output. This routine
3689** is used for debugging and testing only.
3690*/
drhaaab5722002-02-19 13:39:21 +00003691#ifdef SQLITE_TEST
drh23e11ca2004-05-04 17:27:28 +00003692int sqlite3BtreePageDump(Btree *pBt, int pgno, int recursive){
drh8c42ca92001-06-22 19:15:00 +00003693 int rc;
3694 MemPage *pPage;
drhc8629a12004-05-08 20:07:40 +00003695 int i, j, c;
drh8c42ca92001-06-22 19:15:00 +00003696 int nFree;
3697 u16 idx;
drhab9f7f12004-05-08 10:56:11 +00003698 int hdr;
3699 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003700 char range[20];
3701 unsigned char payload[20];
drhab9f7f12004-05-08 10:56:11 +00003702
drh4b70f112004-05-02 21:12:19 +00003703 rc = getPage(pBt, (Pgno)pgno, &pPage);
drh8c42ca92001-06-22 19:15:00 +00003704 if( rc ){
3705 return rc;
3706 }
drhab9f7f12004-05-08 10:56:11 +00003707 hdr = pPage->hdrOffset;
3708 data = pPage->aData;
drhc8629a12004-05-08 20:07:40 +00003709 c = data[hdr];
drh8b18dd42004-05-12 19:18:15 +00003710 pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0;
drhc8629a12004-05-08 20:07:40 +00003711 pPage->zeroData = (c & PTF_ZERODATA)!=0;
drh8b18dd42004-05-12 19:18:15 +00003712 pPage->leafData = (c & PTF_LEAFDATA)!=0;
drhc8629a12004-05-08 20:07:40 +00003713 pPage->leaf = (c & PTF_LEAF)!=0;
drh8b18dd42004-05-12 19:18:15 +00003714 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
drhda200cc2004-05-09 11:51:38 +00003715 printf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno,
3716 data[hdr], data[hdr+5],
3717 (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0);
drh8c42ca92001-06-22 19:15:00 +00003718 i = 0;
drhab9f7f12004-05-08 10:56:11 +00003719 assert( hdr == (pgno==1 ? 100 : 0) );
3720 idx = get2byte(&data[hdr+3]);
drhb6f41482004-05-14 01:58:11 +00003721 while( idx>0 && idx<=pBt->usableSize ){
drh6f11bef2004-05-13 01:12:56 +00003722 CellInfo info;
drh4b70f112004-05-02 21:12:19 +00003723 Pgno child;
drhab9f7f12004-05-08 10:56:11 +00003724 unsigned char *pCell = &data[idx];
drh6f11bef2004-05-13 01:12:56 +00003725 int sz;
3726
3727 pCell = &data[idx];
3728 parseCell(pPage, pCell, &info);
3729 sz = info.nSize;
drh8c42ca92001-06-22 19:15:00 +00003730 sprintf(range,"%d..%d", idx, idx+sz-1);
drh4b70f112004-05-02 21:12:19 +00003731 if( pPage->leaf ){
3732 child = 0;
3733 }else{
3734 child = get4byte(&pCell[2]);
3735 }
drh6f11bef2004-05-13 01:12:56 +00003736 sz = info.nData;
3737 if( !pPage->intKey ) sz += info.nKey;
drh8c42ca92001-06-22 19:15:00 +00003738 if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
drh6f11bef2004-05-13 01:12:56 +00003739 memcpy(payload, &pCell[info.nHeader], sz);
drh8c42ca92001-06-22 19:15:00 +00003740 for(j=0; j<sz; j++){
3741 if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
3742 }
3743 payload[sz] = 0;
3744 printf(
drh6f11bef2004-05-13 01:12:56 +00003745 "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n",
3746 i, range, child, info.nKey, info.nData, payload
drh8c42ca92001-06-22 19:15:00 +00003747 );
drh4b70f112004-05-02 21:12:19 +00003748 if( pPage->isInit && pPage->aCell[i]!=pCell ){
3749 printf("**** aCell[%d] does not match on prior entry ****\n", i);
drh2aa679f2001-06-25 02:11:07 +00003750 }
drh7c717f72001-06-24 20:39:41 +00003751 i++;
drh4b70f112004-05-02 21:12:19 +00003752 idx = get2byte(pCell);
drh8c42ca92001-06-22 19:15:00 +00003753 }
3754 if( idx!=0 ){
3755 printf("ERROR: next cell index out of range: %d\n", idx);
3756 }
drh4b70f112004-05-02 21:12:19 +00003757 if( !pPage->leaf ){
drh3644f082004-05-10 18:45:09 +00003758 printf("right_child: %d\n", get4byte(&data[hdr+6]));
drh4b70f112004-05-02 21:12:19 +00003759 }
drh8c42ca92001-06-22 19:15:00 +00003760 nFree = 0;
3761 i = 0;
drhab9f7f12004-05-08 10:56:11 +00003762 idx = get2byte(&data[hdr+1]);
drhb6f41482004-05-14 01:58:11 +00003763 while( idx>0 && idx<pPage->pBt->usableSize ){
drhab9f7f12004-05-08 10:56:11 +00003764 int sz = get2byte(&data[idx+2]);
drh4b70f112004-05-02 21:12:19 +00003765 sprintf(range,"%d..%d", idx, idx+sz-1);
3766 nFree += sz;
drh8c42ca92001-06-22 19:15:00 +00003767 printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
drh4b70f112004-05-02 21:12:19 +00003768 i, range, sz, nFree);
drhab9f7f12004-05-08 10:56:11 +00003769 idx = get2byte(&data[idx]);
drh2aa679f2001-06-25 02:11:07 +00003770 i++;
drh8c42ca92001-06-22 19:15:00 +00003771 }
3772 if( idx!=0 ){
3773 printf("ERROR: next freeblock index out of range: %d\n", idx);
3774 }
drha34b6762004-05-07 13:30:42 +00003775 if( recursive && !pPage->leaf ){
drhab9f7f12004-05-08 10:56:11 +00003776 idx = get2byte(&data[hdr+3]);
drhb6f41482004-05-14 01:58:11 +00003777 while( idx>0 && idx<pBt->usableSize ){
drhab9f7f12004-05-08 10:56:11 +00003778 unsigned char *pCell = &data[idx];
drha34b6762004-05-07 13:30:42 +00003779 sqlite3BtreePageDump(pBt, get4byte(&pCell[2]), 1);
3780 idx = get2byte(pCell);
drh6019e162001-07-02 17:51:45 +00003781 }
drhab9f7f12004-05-08 10:56:11 +00003782 sqlite3BtreePageDump(pBt, get4byte(&data[hdr+6]), 1);
drh6019e162001-07-02 17:51:45 +00003783 }
drhab9f7f12004-05-08 10:56:11 +00003784 sqlite3pager_unref(data);
drh3644f082004-05-10 18:45:09 +00003785 fflush(stdout);
drh8c42ca92001-06-22 19:15:00 +00003786 return SQLITE_OK;
3787}
drhaaab5722002-02-19 13:39:21 +00003788#endif
drh8c42ca92001-06-22 19:15:00 +00003789
drhaaab5722002-02-19 13:39:21 +00003790#ifdef SQLITE_TEST
drh8c42ca92001-06-22 19:15:00 +00003791/*
drh2aa679f2001-06-25 02:11:07 +00003792** Fill aResult[] with information about the entry and page that the
3793** cursor is pointing to.
3794**
3795** aResult[0] = The page number
3796** aResult[1] = The entry number
3797** aResult[2] = Total number of entries on this page
3798** aResult[3] = Size of this entry
3799** aResult[4] = Number of free bytes on this page
3800** aResult[5] = Number of free blocks on the page
3801** aResult[6] = Page number of the left child of this entry
3802** aResult[7] = Page number of the right child for the whole page
drh5eddca62001-06-30 21:53:53 +00003803**
3804** This routine is used for testing and debugging only.
drh8c42ca92001-06-22 19:15:00 +00003805*/
drhda200cc2004-05-09 11:51:38 +00003806int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult){
drh2aa679f2001-06-25 02:11:07 +00003807 int cnt, idx;
3808 MemPage *pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00003809
3810 pageIntegrity(pPage);
drh4b70f112004-05-02 21:12:19 +00003811 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00003812 aResult[0] = sqlite3pager_pagenumber(pPage->aData);
drh91025292004-05-03 19:49:32 +00003813 assert( aResult[0]==pPage->pgno );
drh8c42ca92001-06-22 19:15:00 +00003814 aResult[1] = pCur->idx;
drh2aa679f2001-06-25 02:11:07 +00003815 aResult[2] = pPage->nCell;
3816 if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
drh4b70f112004-05-02 21:12:19 +00003817 aResult[3] = cellSize(pPage, pPage->aCell[pCur->idx]);
3818 aResult[6] = pPage->leaf ? 0 : get4byte(&pPage->aCell[pCur->idx][2]);
drh2aa679f2001-06-25 02:11:07 +00003819 }else{
3820 aResult[3] = 0;
3821 aResult[6] = 0;
3822 }
3823 aResult[4] = pPage->nFree;
3824 cnt = 0;
drh4b70f112004-05-02 21:12:19 +00003825 idx = get2byte(&pPage->aData[pPage->hdrOffset+1]);
drhb6f41482004-05-14 01:58:11 +00003826 while( idx>0 && idx<pPage->pBt->usableSize ){
drh2aa679f2001-06-25 02:11:07 +00003827 cnt++;
drh4b70f112004-05-02 21:12:19 +00003828 idx = get2byte(&pPage->aData[idx]);
drh2aa679f2001-06-25 02:11:07 +00003829 }
3830 aResult[5] = cnt;
drh4b70f112004-05-02 21:12:19 +00003831 aResult[7] = pPage->leaf ? 0 : get4byte(&pPage->aData[pPage->hdrOffset+6]);
drh8c42ca92001-06-22 19:15:00 +00003832 return SQLITE_OK;
3833}
drhaaab5722002-02-19 13:39:21 +00003834#endif
drhdd793422001-06-28 01:54:48 +00003835
drhdd793422001-06-28 01:54:48 +00003836/*
drh5eddca62001-06-30 21:53:53 +00003837** Return the pager associated with a BTree. This routine is used for
3838** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00003839*/
drh3aac2dd2004-04-26 14:10:20 +00003840Pager *sqlite3BtreePager(Btree *pBt){
drhdd793422001-06-28 01:54:48 +00003841 return pBt->pPager;
3842}
drh5eddca62001-06-30 21:53:53 +00003843
3844/*
3845** This structure is passed around through all the sanity checking routines
3846** in order to keep track of some global state information.
3847*/
drhaaab5722002-02-19 13:39:21 +00003848typedef struct IntegrityCk IntegrityCk;
3849struct IntegrityCk {
drh100569d2001-10-02 13:01:48 +00003850 Btree *pBt; /* The tree being checked out */
3851 Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
3852 int nPage; /* Number of pages in the database */
3853 int *anRef; /* Number of times each page is referenced */
drh100569d2001-10-02 13:01:48 +00003854 char *zErrMsg; /* An error message. NULL of no errors seen. */
drh5eddca62001-06-30 21:53:53 +00003855};
3856
3857/*
3858** Append a message to the error message string.
3859*/
drhaaab5722002-02-19 13:39:21 +00003860static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
drh5eddca62001-06-30 21:53:53 +00003861 if( pCheck->zErrMsg ){
3862 char *zOld = pCheck->zErrMsg;
3863 pCheck->zErrMsg = 0;
danielk19774adee202004-05-08 08:23:19 +00003864 sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00003865 sqliteFree(zOld);
3866 }else{
danielk19774adee202004-05-08 08:23:19 +00003867 sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00003868 }
3869}
3870
3871/*
3872** Add 1 to the reference count for page iPage. If this is the second
3873** reference to the page, add an error message to pCheck->zErrMsg.
3874** Return 1 if there are 2 ore more references to the page and 0 if
3875** if this is the first reference to the page.
3876**
3877** Also check that the page number is in bounds.
3878*/
drhaaab5722002-02-19 13:39:21 +00003879static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00003880 if( iPage==0 ) return 1;
drh0de8c112002-07-06 16:32:14 +00003881 if( iPage>pCheck->nPage || iPage<0 ){
drh5eddca62001-06-30 21:53:53 +00003882 char zBuf[100];
3883 sprintf(zBuf, "invalid page number %d", iPage);
3884 checkAppendMsg(pCheck, zContext, zBuf);
3885 return 1;
3886 }
3887 if( pCheck->anRef[iPage]==1 ){
3888 char zBuf[100];
3889 sprintf(zBuf, "2nd reference to page %d", iPage);
3890 checkAppendMsg(pCheck, zContext, zBuf);
3891 return 1;
3892 }
3893 return (pCheck->anRef[iPage]++)>1;
3894}
3895
3896/*
3897** Check the integrity of the freelist or of an overflow page list.
3898** Verify that the number of pages on the list is N.
3899*/
drh30e58752002-03-02 20:41:57 +00003900static void checkList(
3901 IntegrityCk *pCheck, /* Integrity checking context */
3902 int isFreeList, /* True for a freelist. False for overflow page list */
3903 int iPage, /* Page number for first page in the list */
3904 int N, /* Expected number of pages in the list */
3905 char *zContext /* Context for error messages */
3906){
3907 int i;
drh3a4c1412004-05-09 20:40:11 +00003908 int expected = N;
3909 int iFirst = iPage;
drh5eddca62001-06-30 21:53:53 +00003910 char zMsg[100];
drh30e58752002-03-02 20:41:57 +00003911 while( N-- > 0 ){
drh4b70f112004-05-02 21:12:19 +00003912 unsigned char *pOvfl;
drh5eddca62001-06-30 21:53:53 +00003913 if( iPage<1 ){
drh3a4c1412004-05-09 20:40:11 +00003914 sprintf(zMsg, "%d of %d pages missing from overflow list starting at %d",
3915 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00003916 checkAppendMsg(pCheck, zContext, zMsg);
3917 break;
3918 }
3919 if( checkRef(pCheck, iPage, zContext) ) break;
drha34b6762004-05-07 13:30:42 +00003920 if( sqlite3pager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
drh5eddca62001-06-30 21:53:53 +00003921 sprintf(zMsg, "failed to get page %d", iPage);
3922 checkAppendMsg(pCheck, zContext, zMsg);
3923 break;
3924 }
drh30e58752002-03-02 20:41:57 +00003925 if( isFreeList ){
drh4b70f112004-05-02 21:12:19 +00003926 int n = get4byte(&pOvfl[4]);
drh0d316a42002-08-11 20:10:47 +00003927 for(i=0; i<n; i++){
drh4b70f112004-05-02 21:12:19 +00003928 checkRef(pCheck, get4byte(&pOvfl[8+i*4]), zContext);
drh30e58752002-03-02 20:41:57 +00003929 }
drh0d316a42002-08-11 20:10:47 +00003930 N -= n;
drh30e58752002-03-02 20:41:57 +00003931 }
drh4b70f112004-05-02 21:12:19 +00003932 iPage = get4byte(pOvfl);
drha34b6762004-05-07 13:30:42 +00003933 sqlite3pager_unref(pOvfl);
drh5eddca62001-06-30 21:53:53 +00003934 }
3935}
3936
3937/*
3938** Do various sanity checks on a single page of a tree. Return
3939** the tree depth. Root pages return 0. Parents of root pages
3940** return 1, and so forth.
3941**
3942** These checks are done:
3943**
3944** 1. Make sure that cells and freeblocks do not overlap
3945** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00003946** NO 2. Make sure cell keys are in order.
3947** NO 3. Make sure no key is less than or equal to zLowerBound.
3948** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00003949** 5. Check the integrity of overflow pages.
3950** 6. Recursively call checkTreePage on all children.
3951** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00003952** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00003953** the root of the tree.
3954*/
3955static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00003956 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00003957 int iPage, /* Page number of the page to check */
3958 MemPage *pParent, /* Parent page */
3959 char *zParentContext, /* Parent context */
3960 char *zLowerBound, /* All keys should be greater than this, if not NULL */
drh1bffb9c2002-02-03 17:37:36 +00003961 int nLower, /* Number of characters in zLowerBound */
3962 char *zUpperBound, /* All keys should be less than this, if not NULL */
3963 int nUpper /* Number of characters in zUpperBound */
drh5eddca62001-06-30 21:53:53 +00003964){
3965 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00003966 int i, rc, depth, d2, pgno, cnt;
3967 int hdr;
3968 u8 *data;
drh5eddca62001-06-30 21:53:53 +00003969 BtCursor cur;
drh0d316a42002-08-11 20:10:47 +00003970 Btree *pBt;
drhb6f41482004-05-14 01:58:11 +00003971 int maxLocal, usableSize;
drh5eddca62001-06-30 21:53:53 +00003972 char zMsg[100];
3973 char zContext[100];
drhda200cc2004-05-09 11:51:38 +00003974 char hit[MX_PAGE_SIZE];
drh5eddca62001-06-30 21:53:53 +00003975
3976 /* Check that the page exists
3977 */
drh0d316a42002-08-11 20:10:47 +00003978 cur.pBt = pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00003979 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00003980 if( iPage==0 ) return 0;
3981 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh4b70f112004-05-02 21:12:19 +00003982 if( (rc = getPage(pBt, (Pgno)iPage, &pPage))!=0 ){
drh5eddca62001-06-30 21:53:53 +00003983 sprintf(zMsg, "unable to get the page. error code=%d", rc);
3984 checkAppendMsg(pCheck, zContext, zMsg);
3985 return 0;
3986 }
drh6f11bef2004-05-13 01:12:56 +00003987 maxLocal = pPage->leafData ? pBt->maxLeaf : pBt->maxLocal;
drh4b70f112004-05-02 21:12:19 +00003988 if( (rc = initPage(pPage, pParent))!=0 ){
drh5eddca62001-06-30 21:53:53 +00003989 sprintf(zMsg, "initPage() returns error code %d", rc);
3990 checkAppendMsg(pCheck, zContext, zMsg);
drh91025292004-05-03 19:49:32 +00003991 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00003992 return 0;
3993 }
3994
3995 /* Check out all the cells.
3996 */
3997 depth = 0;
drh5eddca62001-06-30 21:53:53 +00003998 cur.pPage = pPage;
drh5eddca62001-06-30 21:53:53 +00003999 for(i=0; i<pPage->nCell; i++){
drh6f11bef2004-05-13 01:12:56 +00004000 u8 *pCell;
4001 int sz;
4002 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00004003
4004 /* Check payload overflow pages
4005 */
drh3a4c1412004-05-09 20:40:11 +00004006 sprintf(zContext, "On tree page %d cell %d: ", iPage, i);
drh6f11bef2004-05-13 01:12:56 +00004007 pCell = pPage->aCell[i];
4008 parseCell(pPage, pCell, &info);
4009 sz = info.nData;
4010 if( !pPage->intKey ) sz += info.nKey;
4011 if( sz>info.nLocal ){
drhb6f41482004-05-14 01:58:11 +00004012 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +00004013 checkList(pCheck, 0, get4byte(&pCell[info.iOverflow]),nPage,zContext);
drh5eddca62001-06-30 21:53:53 +00004014 }
4015
4016 /* Check sanity of left child page.
4017 */
drhda200cc2004-05-09 11:51:38 +00004018 if( !pPage->leaf ){
4019 pgno = get4byte(&pCell[2]);
4020 d2 = checkTreePage(pCheck,pgno,pPage,zContext,0,0,0,0);
4021 if( i>0 && d2!=depth ){
4022 checkAppendMsg(pCheck, zContext, "Child page depth differs");
4023 }
4024 depth = d2;
drh5eddca62001-06-30 21:53:53 +00004025 }
drh5eddca62001-06-30 21:53:53 +00004026 }
drhda200cc2004-05-09 11:51:38 +00004027 if( !pPage->leaf ){
4028 pgno = get4byte(&pPage->aData[pPage->hdrOffset+6]);
4029 sprintf(zContext, "On page %d at right child: ", iPage);
4030 checkTreePage(pCheck, pgno, pPage, zContext,0,0,0,0);
4031 }
drh5eddca62001-06-30 21:53:53 +00004032
4033 /* Check for complete coverage of the page
4034 */
drhb6f41482004-05-14 01:58:11 +00004035 memset(hit, 0, usableSize);
drhda200cc2004-05-09 11:51:38 +00004036 memset(hit, 1, pPage->hdrOffset+10-4*(pPage->leaf));
4037 data = pPage->aData;
4038 hdr = pPage->hdrOffset;
drhb6f41482004-05-14 01:58:11 +00004039 for(cnt=0, i=get2byte(&data[hdr+3]); i>0 && i<usableSize && cnt<10000; cnt++){
drhda200cc2004-05-09 11:51:38 +00004040 int size = cellSize(pPage, &data[i]);
drh5eddca62001-06-30 21:53:53 +00004041 int j;
drhda200cc2004-05-09 11:51:38 +00004042 for(j=i+size-1; j>=i; j--) hit[j]++;
4043 i = get2byte(&data[i]);
drh5eddca62001-06-30 21:53:53 +00004044 }
drhb6f41482004-05-14 01:58:11 +00004045 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; cnt++){
drhda200cc2004-05-09 11:51:38 +00004046 int size = get2byte(&data[i+2]);
drh5eddca62001-06-30 21:53:53 +00004047 int j;
drhda200cc2004-05-09 11:51:38 +00004048 for(j=i+size-1; j>=i; j--) hit[j]++;
4049 i = get2byte(&data[i]);
drh5eddca62001-06-30 21:53:53 +00004050 }
drhb6f41482004-05-14 01:58:11 +00004051 for(i=cnt=0; i<usableSize; i++){
drh5eddca62001-06-30 21:53:53 +00004052 if( hit[i]==0 ){
drhda200cc2004-05-09 11:51:38 +00004053 cnt++;
drh5eddca62001-06-30 21:53:53 +00004054 }else if( hit[i]>1 ){
4055 sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
4056 checkAppendMsg(pCheck, zMsg, 0);
4057 break;
4058 }
4059 }
drhda200cc2004-05-09 11:51:38 +00004060 if( cnt!=data[hdr+5] ){
4061 sprintf(zMsg, "Fragmented space is %d byte reported as %d on page %d",
4062 cnt, data[hdr+5], iPage);
4063 checkAppendMsg(pCheck, zMsg, 0);
4064 }
drh6019e162001-07-02 17:51:45 +00004065
drh4b70f112004-05-02 21:12:19 +00004066 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00004067 return depth+1;
drh5eddca62001-06-30 21:53:53 +00004068}
4069
4070/*
4071** This routine does a complete check of the given BTree file. aRoot[] is
4072** an array of pages numbers were each page number is the root page of
4073** a table. nRoot is the number of entries in aRoot.
4074**
4075** If everything checks out, this routine returns NULL. If something is
4076** amiss, an error message is written into memory obtained from malloc()
4077** and a pointer to that error message is returned. The calling function
4078** is responsible for freeing the error message when it is done.
4079*/
drh3aac2dd2004-04-26 14:10:20 +00004080char *sqlite3BtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
drh5eddca62001-06-30 21:53:53 +00004081 int i;
4082 int nRef;
drhaaab5722002-02-19 13:39:21 +00004083 IntegrityCk sCheck;
drh5eddca62001-06-30 21:53:53 +00004084
drha34b6762004-05-07 13:30:42 +00004085 nRef = *sqlite3pager_stats(pBt->pPager);
drhefc251d2001-07-01 22:12:01 +00004086 if( lockBtree(pBt)!=SQLITE_OK ){
4087 return sqliteStrDup("Unable to acquire a read lock on the database");
4088 }
drh5eddca62001-06-30 21:53:53 +00004089 sCheck.pBt = pBt;
4090 sCheck.pPager = pBt->pPager;
drha34b6762004-05-07 13:30:42 +00004091 sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager);
drh0de8c112002-07-06 16:32:14 +00004092 if( sCheck.nPage==0 ){
4093 unlockBtreeIfUnused(pBt);
4094 return 0;
4095 }
drh8c1238a2003-01-02 14:43:55 +00004096 sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
drhda200cc2004-05-09 11:51:38 +00004097 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh5eddca62001-06-30 21:53:53 +00004098 sCheck.zErrMsg = 0;
4099
4100 /* Check the integrity of the freelist
4101 */
drha34b6762004-05-07 13:30:42 +00004102 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
4103 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00004104
4105 /* Check all the tables.
4106 */
4107 for(i=0; i<nRoot; i++){
drh4ff6dfa2002-03-03 23:06:00 +00004108 if( aRoot[i]==0 ) continue;
drh1bffb9c2002-02-03 17:37:36 +00004109 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
drh5eddca62001-06-30 21:53:53 +00004110 }
4111
4112 /* Make sure every page in the file is referenced
4113 */
4114 for(i=1; i<=sCheck.nPage; i++){
4115 if( sCheck.anRef[i]==0 ){
4116 char zBuf[100];
4117 sprintf(zBuf, "Page %d is never used", i);
4118 checkAppendMsg(&sCheck, zBuf, 0);
4119 }
4120 }
4121
4122 /* Make sure this analysis did not leave any unref() pages
4123 */
drh5e00f6c2001-09-13 13:46:56 +00004124 unlockBtreeIfUnused(pBt);
drha34b6762004-05-07 13:30:42 +00004125 if( nRef != *sqlite3pager_stats(pBt->pPager) ){
drh5eddca62001-06-30 21:53:53 +00004126 char zBuf[100];
4127 sprintf(zBuf,
4128 "Outstanding page count goes from %d to %d during this analysis",
drha34b6762004-05-07 13:30:42 +00004129 nRef, *sqlite3pager_stats(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00004130 );
4131 checkAppendMsg(&sCheck, zBuf, 0);
4132 }
4133
4134 /* Clean up and report errors.
4135 */
4136 sqliteFree(sCheck.anRef);
4137 return sCheck.zErrMsg;
4138}
paulb95a8862003-04-01 21:16:41 +00004139
drh73509ee2003-04-06 20:44:45 +00004140/*
4141** Return the full pathname of the underlying database file.
4142*/
drh3aac2dd2004-04-26 14:10:20 +00004143const char *sqlite3BtreeGetFilename(Btree *pBt){
drh73509ee2003-04-06 20:44:45 +00004144 assert( pBt->pPager!=0 );
drha34b6762004-05-07 13:30:42 +00004145 return sqlite3pager_filename(pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00004146}
4147
4148/*
drhf7c57532003-04-25 13:22:51 +00004149** Copy the complete content of pBtFrom into pBtTo. A transaction
4150** must be active for both files.
4151**
4152** The size of file pBtFrom may be reduced by this operation.
4153** If anything goes wrong, the transaction on pBtFrom is rolled back.
drh73509ee2003-04-06 20:44:45 +00004154*/
drh3aac2dd2004-04-26 14:10:20 +00004155int sqlite3BtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
drhf7c57532003-04-25 13:22:51 +00004156 int rc = SQLITE_OK;
drh2e6d11b2003-04-25 15:37:57 +00004157 Pgno i, nPage, nToPage;
drhf7c57532003-04-25 13:22:51 +00004158
4159 if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR;
drhf7c57532003-04-25 13:22:51 +00004160 if( pBtTo->pCursor ) return SQLITE_BUSY;
drh465407d2004-05-20 02:01:26 +00004161 memcpy(pBtTo->pPage1->aData, pBtFrom->pPage1->aData, pBtFrom->usableSize);
4162 rc = sqlite3pager_overwrite(pBtTo->pPager, 1, pBtFrom->pPage1->aData);
drha34b6762004-05-07 13:30:42 +00004163 nToPage = sqlite3pager_pagecount(pBtTo->pPager);
4164 nPage = sqlite3pager_pagecount(pBtFrom->pPager);
drh2e6d11b2003-04-25 15:37:57 +00004165 for(i=2; rc==SQLITE_OK && i<=nPage; i++){
drhf7c57532003-04-25 13:22:51 +00004166 void *pPage;
drha34b6762004-05-07 13:30:42 +00004167 rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage);
drhf7c57532003-04-25 13:22:51 +00004168 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00004169 rc = sqlite3pager_overwrite(pBtTo->pPager, i, pPage);
drh2e6d11b2003-04-25 15:37:57 +00004170 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00004171 sqlite3pager_unref(pPage);
drhf7c57532003-04-25 13:22:51 +00004172 }
drh2e6d11b2003-04-25 15:37:57 +00004173 for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
4174 void *pPage;
drha34b6762004-05-07 13:30:42 +00004175 rc = sqlite3pager_get(pBtTo->pPager, i, &pPage);
drh2e6d11b2003-04-25 15:37:57 +00004176 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00004177 rc = sqlite3pager_write(pPage);
4178 sqlite3pager_unref(pPage);
4179 sqlite3pager_dont_write(pBtTo->pPager, i);
drh2e6d11b2003-04-25 15:37:57 +00004180 }
4181 if( !rc && nPage<nToPage ){
drha34b6762004-05-07 13:30:42 +00004182 rc = sqlite3pager_truncate(pBtTo->pPager, nPage);
drh2e6d11b2003-04-25 15:37:57 +00004183 }
drhf7c57532003-04-25 13:22:51 +00004184 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00004185 sqlite3BtreeRollback(pBtTo);
drhf7c57532003-04-25 13:22:51 +00004186 }
4187 return rc;
drh73509ee2003-04-06 20:44:45 +00004188}