blob: eace01fff112098cdfcefa47e907f689f359ab92 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh86f8c192007-08-22 00:39:19 +000035
36
drhe53831d2007-08-17 01:14:38 +000037#ifndef SQLITE_OMIT_SHARED_CACHE
38/*
danielk1977502b4e02008-09-02 14:07:24 +000039** A list of BtShared objects that are eligible for participation
40** in shared cache. This variable has file scope during normal builds,
41** but the test harness needs to access it so we make it global for
42** test builds.
drh7555d8e2009-03-20 13:15:30 +000043**
44** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000045*/
46#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000047BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000048#else
drh78f82d12008-09-02 00:52:52 +000049static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#endif
drhe53831d2007-08-17 01:14:38 +000051#endif /* SQLITE_OMIT_SHARED_CACHE */
52
53#ifndef SQLITE_OMIT_SHARED_CACHE
54/*
55** Enable or disable the shared pager and schema features.
56**
57** This routine has no effect on existing database connections.
58** The shared cache setting effects only future calls to
59** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
60*/
61int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000062 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000063 return SQLITE_OK;
64}
65#endif
66
drhd677b3d2007-08-20 22:48:41 +000067
danielk1977aef0bf62005-12-30 16:28:01 +000068
69#ifdef SQLITE_OMIT_SHARED_CACHE
70 /*
drhc25eabe2009-02-24 18:57:31 +000071 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
72 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000073 ** manipulate entries in the BtShared.pLock linked list used to store
74 ** shared-cache table level locks. If the library is compiled with the
75 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000076 ** of each BtShared structure and so this locking is not necessary.
77 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000078 */
drhc25eabe2009-02-24 18:57:31 +000079 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
80 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
81 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000082 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000083 #define hasSharedCacheTableLock(a,b,c,d) 1
84 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000085#endif
danielk1977aef0bf62005-12-30 16:28:01 +000086
drhe53831d2007-08-17 01:14:38 +000087#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000088
89#ifdef SQLITE_DEBUG
90/*
drh0ee3dbe2009-10-16 15:05:18 +000091**** This function is only used as part of an assert() statement. ***
92**
93** Check to see if pBtree holds the required locks to read or write to the
94** table with root page iRoot. Return 1 if it does and 0 if not.
95**
96** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +000097** Btree connection pBtree:
98**
99** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
100**
drh0ee3dbe2009-10-16 15:05:18 +0000101** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000102** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000103** the corresponding table. This makes things a bit more complicated,
104** as this module treats each table as a separate structure. To determine
105** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000106** function has to search through the database schema.
107**
drh0ee3dbe2009-10-16 15:05:18 +0000108** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000109** hold a write-lock on the schema table (root page 1). This is also
110** acceptable.
111*/
112static int hasSharedCacheTableLock(
113 Btree *pBtree, /* Handle that must hold lock */
114 Pgno iRoot, /* Root page of b-tree */
115 int isIndex, /* True if iRoot is the root of an index b-tree */
116 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
117){
118 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
119 Pgno iTab = 0;
120 BtLock *pLock;
121
drh0ee3dbe2009-10-16 15:05:18 +0000122 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000123 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000124 ** Return true immediately.
125 */
danielk197796d48e92009-06-29 06:00:37 +0000126 if( (pBtree->sharable==0)
127 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000128 ){
129 return 1;
130 }
131
drh0ee3dbe2009-10-16 15:05:18 +0000132 /* If the client is reading or writing an index and the schema is
133 ** not loaded, then it is too difficult to actually check to see if
134 ** the correct locks are held. So do not bother - just return true.
135 ** This case does not come up very often anyhow.
136 */
137 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
138 return 1;
139 }
140
danielk197796d48e92009-06-29 06:00:37 +0000141 /* Figure out the root-page that the lock should be held on. For table
142 ** b-trees, this is just the root page of the b-tree being read or
143 ** written. For index b-trees, it is the root page of the associated
144 ** table. */
145 if( isIndex ){
146 HashElem *p;
147 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
148 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000149 if( pIdx->tnum==(int)iRoot ){
150 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000151 }
152 }
153 }else{
154 iTab = iRoot;
155 }
156
157 /* Search for the required lock. Either a write-lock on root-page iTab, a
158 ** write-lock on the schema table, or (if the client is reading) a
159 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
160 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
161 if( pLock->pBtree==pBtree
162 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
163 && pLock->eLock>=eLockType
164 ){
165 return 1;
166 }
167 }
168
169 /* Failed to find the required lock. */
170 return 0;
171}
drh0ee3dbe2009-10-16 15:05:18 +0000172#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000173
drh0ee3dbe2009-10-16 15:05:18 +0000174#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000175/*
drh0ee3dbe2009-10-16 15:05:18 +0000176**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000177**
drh0ee3dbe2009-10-16 15:05:18 +0000178** Return true if it would be illegal for pBtree to write into the
179** table or index rooted at iRoot because other shared connections are
180** simultaneously reading that same table or index.
181**
182** It is illegal for pBtree to write if some other Btree object that
183** shares the same BtShared object is currently reading or writing
184** the iRoot table. Except, if the other Btree object has the
185** read-uncommitted flag set, then it is OK for the other object to
186** have a read cursor.
187**
188** For example, before writing to any part of the table or index
189** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000190**
191** assert( !hasReadConflicts(pBtree, iRoot) );
192*/
193static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
194 BtCursor *p;
195 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
196 if( p->pgnoRoot==iRoot
197 && p->pBtree!=pBtree
198 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
199 ){
200 return 1;
201 }
202 }
203 return 0;
204}
205#endif /* #ifdef SQLITE_DEBUG */
206
danielk1977da184232006-01-05 11:34:32 +0000207/*
drh0ee3dbe2009-10-16 15:05:18 +0000208** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000209** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000210** SQLITE_OK if the lock may be obtained (by calling
211** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000212*/
drhc25eabe2009-02-24 18:57:31 +0000213static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000214 BtShared *pBt = p->pBt;
215 BtLock *pIter;
216
drh1fee73e2007-08-29 04:00:57 +0000217 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000218 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
219 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000220 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000221
danielk19775b413d72009-04-01 09:41:54 +0000222 /* If requesting a write-lock, then the Btree must have an open write
223 ** transaction on this file. And, obviously, for this to be so there
224 ** must be an open write transaction on the file itself.
225 */
226 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
227 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
228
drh0ee3dbe2009-10-16 15:05:18 +0000229 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000230 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000231 return SQLITE_OK;
232 }
233
danielk1977641b0f42007-12-21 04:47:25 +0000234 /* If some other connection is holding an exclusive lock, the
235 ** requested lock may not be obtained.
236 */
danielk1977404ca072009-03-16 13:19:36 +0000237 if( pBt->pWriter!=p && pBt->isExclusive ){
238 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
239 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000240 }
241
danielk1977e0d9e6f2009-07-03 16:25:06 +0000242 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
243 /* The condition (pIter->eLock!=eLock) in the following if(...)
244 ** statement is a simplification of:
245 **
246 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
247 **
248 ** since we know that if eLock==WRITE_LOCK, then no other connection
249 ** may hold a WRITE_LOCK on any table in this file (since there can
250 ** only be a single writer).
251 */
252 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
253 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
254 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
255 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
256 if( eLock==WRITE_LOCK ){
257 assert( p==pBt->pWriter );
258 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000259 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000260 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000261 }
262 }
263 return SQLITE_OK;
264}
drhe53831d2007-08-17 01:14:38 +0000265#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000266
drhe53831d2007-08-17 01:14:38 +0000267#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000268/*
269** Add a lock on the table with root-page iTable to the shared-btree used
270** by Btree handle p. Parameter eLock must be either READ_LOCK or
271** WRITE_LOCK.
272**
danielk19779d104862009-07-09 08:27:14 +0000273** This function assumes the following:
274**
drh0ee3dbe2009-10-16 15:05:18 +0000275** (a) The specified Btree object p is connected to a sharable
276** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000277**
drh0ee3dbe2009-10-16 15:05:18 +0000278** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000279** with the requested lock (i.e. querySharedCacheTableLock() has
280** already been called and returned SQLITE_OK).
281**
282** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
283** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000284*/
drhc25eabe2009-02-24 18:57:31 +0000285static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000286 BtShared *pBt = p->pBt;
287 BtLock *pLock = 0;
288 BtLock *pIter;
289
drh1fee73e2007-08-29 04:00:57 +0000290 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000291 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
292 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000293
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 /* A connection with the read-uncommitted flag set will never try to
295 ** obtain a read-lock using this function. The only read-lock obtained
296 ** by a connection in read-uncommitted mode is on the sqlite_master
297 ** table, and that lock is obtained in BtreeBeginTrans(). */
298 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
299
danielk19779d104862009-07-09 08:27:14 +0000300 /* This function should only be called on a sharable b-tree after it
301 ** has been determined that no other b-tree holds a conflicting lock. */
302 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000303 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000304
305 /* First search the list for an existing lock on this table. */
306 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
307 if( pIter->iTable==iTable && pIter->pBtree==p ){
308 pLock = pIter;
309 break;
310 }
311 }
312
313 /* If the above search did not find a BtLock struct associating Btree p
314 ** with table iTable, allocate one and link it into the list.
315 */
316 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000317 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000318 if( !pLock ){
319 return SQLITE_NOMEM;
320 }
321 pLock->iTable = iTable;
322 pLock->pBtree = p;
323 pLock->pNext = pBt->pLock;
324 pBt->pLock = pLock;
325 }
326
327 /* Set the BtLock.eLock variable to the maximum of the current lock
328 ** and the requested lock. This means if a write-lock was already held
329 ** and a read-lock requested, we don't incorrectly downgrade the lock.
330 */
331 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000332 if( eLock>pLock->eLock ){
333 pLock->eLock = eLock;
334 }
danielk1977aef0bf62005-12-30 16:28:01 +0000335
336 return SQLITE_OK;
337}
drhe53831d2007-08-17 01:14:38 +0000338#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000339
drhe53831d2007-08-17 01:14:38 +0000340#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000341/*
drhc25eabe2009-02-24 18:57:31 +0000342** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000343** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000344**
drh0ee3dbe2009-10-16 15:05:18 +0000345** This function assumes that Btree p has an open read or write
danielk1977fa542f12009-04-02 18:28:08 +0000346** transaction. If it does not, then the BtShared.isPending variable
347** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000348*/
drhc25eabe2009-02-24 18:57:31 +0000349static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000350 BtShared *pBt = p->pBt;
351 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000352
drh1fee73e2007-08-29 04:00:57 +0000353 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000354 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000355 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000356
danielk1977aef0bf62005-12-30 16:28:01 +0000357 while( *ppIter ){
358 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000359 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000360 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000361 if( pLock->pBtree==p ){
362 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000363 assert( pLock->iTable!=1 || pLock==&p->lock );
364 if( pLock->iTable!=1 ){
365 sqlite3_free(pLock);
366 }
danielk1977aef0bf62005-12-30 16:28:01 +0000367 }else{
368 ppIter = &pLock->pNext;
369 }
370 }
danielk1977641b0f42007-12-21 04:47:25 +0000371
danielk1977404ca072009-03-16 13:19:36 +0000372 assert( pBt->isPending==0 || pBt->pWriter );
373 if( pBt->pWriter==p ){
374 pBt->pWriter = 0;
375 pBt->isExclusive = 0;
376 pBt->isPending = 0;
377 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000378 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000379 ** transaction. If there currently exists a writer, and p is not
380 ** that writer, then the number of locks held by connections other
381 ** than the writer must be about to drop to zero. In this case
382 ** set the isPending flag to 0.
383 **
384 ** If there is not currently a writer, then BtShared.isPending must
385 ** be zero already. So this next line is harmless in that case.
386 */
387 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000388 }
danielk1977aef0bf62005-12-30 16:28:01 +0000389}
danielk197794b30732009-07-02 17:21:57 +0000390
danielk1977e0d9e6f2009-07-03 16:25:06 +0000391/*
drh0ee3dbe2009-10-16 15:05:18 +0000392** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000393*/
danielk197794b30732009-07-02 17:21:57 +0000394static void downgradeAllSharedCacheTableLocks(Btree *p){
395 BtShared *pBt = p->pBt;
396 if( pBt->pWriter==p ){
397 BtLock *pLock;
398 pBt->pWriter = 0;
399 pBt->isExclusive = 0;
400 pBt->isPending = 0;
401 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
402 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
403 pLock->eLock = READ_LOCK;
404 }
405 }
406}
407
danielk1977aef0bf62005-12-30 16:28:01 +0000408#endif /* SQLITE_OMIT_SHARED_CACHE */
409
drh980b1a72006-08-16 16:42:48 +0000410static void releasePage(MemPage *pPage); /* Forward reference */
411
drh1fee73e2007-08-29 04:00:57 +0000412/*
drh0ee3dbe2009-10-16 15:05:18 +0000413***** This routine is used inside of assert() only ****
414**
415** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000416*/
drh0ee3dbe2009-10-16 15:05:18 +0000417#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000418static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000419 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000420}
421#endif
422
423
danielk197792d4d7a2007-05-04 12:05:56 +0000424#ifndef SQLITE_OMIT_INCRBLOB
425/*
426** Invalidate the overflow page-list cache for cursor pCur, if any.
427*/
428static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000429 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000430 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000431 pCur->aOverflow = 0;
432}
433
434/*
435** Invalidate the overflow page-list cache for all cursors opened
436** on the shared btree structure pBt.
437*/
438static void invalidateAllOverflowCache(BtShared *pBt){
439 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000440 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000441 for(p=pBt->pCursor; p; p=p->pNext){
442 invalidateOverflowCache(p);
443 }
444}
danielk197796d48e92009-06-29 06:00:37 +0000445
446/*
447** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000448** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000449** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000450**
451** If argument isClearTable is true, then the entire contents of the
452** table is about to be deleted. In this case invalidate all incrblob
453** cursors open on any row within the table with root-page pgnoRoot.
454**
455** Otherwise, if argument isClearTable is false, then the row with
456** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000457** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000458*/
459static void invalidateIncrblobCursors(
460 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000461 i64 iRow, /* The rowid that might be changing */
462 int isClearTable /* True if all rows are being deleted */
463){
464 BtCursor *p;
465 BtShared *pBt = pBtree->pBt;
466 assert( sqlite3BtreeHoldsMutex(pBtree) );
467 for(p=pBt->pCursor; p; p=p->pNext){
468 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
469 p->eState = CURSOR_INVALID;
470 }
471 }
472}
473
danielk197792d4d7a2007-05-04 12:05:56 +0000474#else
drh0ee3dbe2009-10-16 15:05:18 +0000475 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000476 #define invalidateOverflowCache(x)
477 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000478 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000479#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000480
drh980b1a72006-08-16 16:42:48 +0000481/*
danielk1977bea2a942009-01-20 17:06:27 +0000482** Set bit pgno of the BtShared.pHasContent bitvec. This is called
483** when a page that previously contained data becomes a free-list leaf
484** page.
485**
486** The BtShared.pHasContent bitvec exists to work around an obscure
487** bug caused by the interaction of two useful IO optimizations surrounding
488** free-list leaf pages:
489**
490** 1) When all data is deleted from a page and the page becomes
491** a free-list leaf page, the page is not written to the database
492** (as free-list leaf pages contain no meaningful data). Sometimes
493** such a page is not even journalled (as it will not be modified,
494** why bother journalling it?).
495**
496** 2) When a free-list leaf page is reused, its content is not read
497** from the database or written to the journal file (why should it
498** be, if it is not at all meaningful?).
499**
500** By themselves, these optimizations work fine and provide a handy
501** performance boost to bulk delete or insert operations. However, if
502** a page is moved to the free-list and then reused within the same
503** transaction, a problem comes up. If the page is not journalled when
504** it is moved to the free-list and it is also not journalled when it
505** is extracted from the free-list and reused, then the original data
506** may be lost. In the event of a rollback, it may not be possible
507** to restore the database to its original configuration.
508**
509** The solution is the BtShared.pHasContent bitvec. Whenever a page is
510** moved to become a free-list leaf page, the corresponding bit is
511** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000512** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000513** set in BtShared.pHasContent. The contents of the bitvec are cleared
514** at the end of every transaction.
515*/
516static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
517 int rc = SQLITE_OK;
518 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000519 assert( pgno<=pBt->nPage );
520 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000521 if( !pBt->pHasContent ){
522 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000523 }
524 }
525 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
526 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
527 }
528 return rc;
529}
530
531/*
532** Query the BtShared.pHasContent vector.
533**
534** This function is called when a free-list leaf page is removed from the
535** free-list for reuse. It returns false if it is safe to retrieve the
536** page from the pager layer with the 'no-content' flag set. True otherwise.
537*/
538static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
539 Bitvec *p = pBt->pHasContent;
540 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
541}
542
543/*
544** Clear (destroy) the BtShared.pHasContent bitvec. This should be
545** invoked at the conclusion of each write-transaction.
546*/
547static void btreeClearHasContent(BtShared *pBt){
548 sqlite3BitvecDestroy(pBt->pHasContent);
549 pBt->pHasContent = 0;
550}
551
552/*
drh980b1a72006-08-16 16:42:48 +0000553** Save the current cursor position in the variables BtCursor.nKey
554** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000555**
556** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
557** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000558*/
559static int saveCursorPosition(BtCursor *pCur){
560 int rc;
561
562 assert( CURSOR_VALID==pCur->eState );
563 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000564 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000565
566 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000567 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000568
569 /* If this is an intKey table, then the above call to BtreeKeySize()
570 ** stores the integer key in pCur->nKey. In this case this value is
571 ** all that is required. Otherwise, if pCur is not open on an intKey
572 ** table, then malloc space for and store the pCur->nKey bytes of key
573 ** data.
574 */
drh4c301aa2009-07-15 17:25:45 +0000575 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000576 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000577 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000578 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000579 if( rc==SQLITE_OK ){
580 pCur->pKey = pKey;
581 }else{
drh17435752007-08-16 04:30:38 +0000582 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000583 }
584 }else{
585 rc = SQLITE_NOMEM;
586 }
587 }
danielk197771d5d2c2008-09-29 11:49:47 +0000588 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000589
590 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000591 int i;
592 for(i=0; i<=pCur->iPage; i++){
593 releasePage(pCur->apPage[i]);
594 pCur->apPage[i] = 0;
595 }
596 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000597 pCur->eState = CURSOR_REQUIRESEEK;
598 }
599
danielk197792d4d7a2007-05-04 12:05:56 +0000600 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000601 return rc;
602}
603
604/*
drh0ee3dbe2009-10-16 15:05:18 +0000605** Save the positions of all cursors (except pExcept) that are open on
606** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000607** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
608*/
609static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
610 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000611 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000612 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000613 for(p=pBt->pCursor; p; p=p->pNext){
614 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
615 p->eState==CURSOR_VALID ){
616 int rc = saveCursorPosition(p);
617 if( SQLITE_OK!=rc ){
618 return rc;
619 }
620 }
621 }
622 return SQLITE_OK;
623}
624
625/*
drhbf700f32007-03-31 02:36:44 +0000626** Clear the current cursor position.
627*/
danielk1977be51a652008-10-08 17:58:48 +0000628void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000629 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000630 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000631 pCur->pKey = 0;
632 pCur->eState = CURSOR_INVALID;
633}
634
635/*
danielk19773509a652009-07-06 18:56:13 +0000636** In this version of BtreeMoveto, pKey is a packed index record
637** such as is generated by the OP_MakeRecord opcode. Unpack the
638** record and then call BtreeMovetoUnpacked() to do the work.
639*/
640static int btreeMoveto(
641 BtCursor *pCur, /* Cursor open on the btree to be searched */
642 const void *pKey, /* Packed key if the btree is an index */
643 i64 nKey, /* Integer key for tables. Size of pKey for indices */
644 int bias, /* Bias search to the high end */
645 int *pRes /* Write search results here */
646){
647 int rc; /* Status code */
648 UnpackedRecord *pIdxKey; /* Unpacked index key */
649 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
650
651 if( pKey ){
652 assert( nKey==(i64)(int)nKey );
653 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
654 aSpace, sizeof(aSpace));
655 if( pIdxKey==0 ) return SQLITE_NOMEM;
656 }else{
657 pIdxKey = 0;
658 }
659 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
660 if( pKey ){
661 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
662 }
663 return rc;
664}
665
666/*
drh980b1a72006-08-16 16:42:48 +0000667** Restore the cursor to the position it was in (or as close to as possible)
668** when saveCursorPosition() was called. Note that this call deletes the
669** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000670** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000671** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000672*/
danielk197730548662009-07-09 05:07:37 +0000673static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000674 int rc;
drh1fee73e2007-08-29 04:00:57 +0000675 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000676 assert( pCur->eState>=CURSOR_REQUIRESEEK );
677 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000678 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000679 }
drh980b1a72006-08-16 16:42:48 +0000680 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000681 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000682 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000683 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000684 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000685 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000686 }
687 return rc;
688}
689
drha3460582008-07-11 21:02:53 +0000690#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000691 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000692 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000693 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000694
drha3460582008-07-11 21:02:53 +0000695/*
696** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000697** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000698** at is deleted out from under them.
699**
700** This routine returns an error code if something goes wrong. The
701** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
702*/
703int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
704 int rc;
705
706 rc = restoreCursorPosition(pCur);
707 if( rc ){
708 *pHasMoved = 1;
709 return rc;
710 }
drh4c301aa2009-07-15 17:25:45 +0000711 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000712 *pHasMoved = 1;
713 }else{
714 *pHasMoved = 0;
715 }
716 return SQLITE_OK;
717}
718
danielk1977599fcba2004-11-08 07:13:13 +0000719#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000720/*
drha3152892007-05-05 11:48:52 +0000721** Given a page number of a regular database page, return the page
722** number for the pointer-map page that contains the entry for the
723** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000724*/
danielk1977266664d2006-02-10 08:24:21 +0000725static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000726 int nPagesPerMapPage;
727 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000728 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000729 nPagesPerMapPage = (pBt->usableSize/5)+1;
730 iPtrMap = (pgno-2)/nPagesPerMapPage;
731 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000732 if( ret==PENDING_BYTE_PAGE(pBt) ){
733 ret++;
734 }
735 return ret;
736}
danielk1977a19df672004-11-03 11:37:07 +0000737
danielk1977afcdd022004-10-31 16:25:42 +0000738/*
danielk1977afcdd022004-10-31 16:25:42 +0000739** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000740**
741** This routine updates the pointer map entry for page number 'key'
742** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000743**
744** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
745** a no-op. If an error occurs, the appropriate error code is written
746** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000747*/
drh98add2e2009-07-20 17:11:49 +0000748static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000749 DbPage *pDbPage; /* The pointer map page */
750 u8 *pPtrmap; /* The pointer map data */
751 Pgno iPtrmap; /* The pointer map page number */
752 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000753 int rc; /* Return code from subfunctions */
754
755 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000756
drh1fee73e2007-08-29 04:00:57 +0000757 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000758 /* The master-journal page number must never be used as a pointer map page */
759 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
760
danielk1977ac11ee62005-01-15 12:45:51 +0000761 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000762 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000763 *pRC = SQLITE_CORRUPT_BKPT;
764 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000765 }
danielk1977266664d2006-02-10 08:24:21 +0000766 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000767 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000768 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000769 *pRC = rc;
770 return;
danielk1977afcdd022004-10-31 16:25:42 +0000771 }
danielk19778c666b12008-07-18 09:34:57 +0000772 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000773 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000774 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000775 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000776 }
danielk19773b8a05f2007-03-19 17:44:26 +0000777 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000778
drh615ae552005-01-16 23:21:00 +0000779 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
780 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000781 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000782 if( rc==SQLITE_OK ){
783 pPtrmap[offset] = eType;
784 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000785 }
danielk1977afcdd022004-10-31 16:25:42 +0000786 }
787
drh4925a552009-07-07 11:39:58 +0000788ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000789 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000790}
791
792/*
793** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000794**
795** This routine retrieves the pointer map entry for page 'key', writing
796** the type and parent page number to *pEType and *pPgno respectively.
797** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000798*/
danielk1977aef0bf62005-12-30 16:28:01 +0000799static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000800 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000801 int iPtrmap; /* Pointer map page index */
802 u8 *pPtrmap; /* Pointer map page data */
803 int offset; /* Offset of entry in pointer map */
804 int rc;
805
drh1fee73e2007-08-29 04:00:57 +0000806 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000807
danielk1977266664d2006-02-10 08:24:21 +0000808 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000809 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000810 if( rc!=0 ){
811 return rc;
812 }
danielk19773b8a05f2007-03-19 17:44:26 +0000813 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000814
danielk19778c666b12008-07-18 09:34:57 +0000815 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000816 assert( pEType!=0 );
817 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000818 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000819
danielk19773b8a05f2007-03-19 17:44:26 +0000820 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000821 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000822 return SQLITE_OK;
823}
824
danielk197785d90ca2008-07-19 14:25:15 +0000825#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000826 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000827 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000828 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000829#endif
danielk1977afcdd022004-10-31 16:25:42 +0000830
drh0d316a42002-08-11 20:10:47 +0000831/*
drh271efa52004-05-30 19:19:05 +0000832** Given a btree page and a cell index (0 means the first cell on
833** the page, 1 means the second cell, and so forth) return a pointer
834** to the cell content.
835**
836** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000837*/
drh1688c862008-07-18 02:44:17 +0000838#define findCell(P,I) \
839 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000840
841/*
drh93a960a2008-07-10 00:32:42 +0000842** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000843** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000844*/
845static u8 *findOverflowCell(MemPage *pPage, int iCell){
846 int i;
drh1fee73e2007-08-29 04:00:57 +0000847 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000848 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000849 int k;
850 struct _OvflCell *pOvfl;
851 pOvfl = &pPage->aOvfl[i];
852 k = pOvfl->idx;
853 if( k<=iCell ){
854 if( k==iCell ){
855 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000856 }
857 iCell--;
858 }
859 }
danielk19771cc5ed82007-05-16 17:28:43 +0000860 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000861}
862
863/*
864** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000865** are two versions of this function. btreeParseCell() takes a
866** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000867** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000868**
869** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000870** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000871*/
danielk197730548662009-07-09 05:07:37 +0000872static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000873 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000874 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000875 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000876){
drhf49661a2008-12-10 16:45:50 +0000877 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000878 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000879
drh1fee73e2007-08-29 04:00:57 +0000880 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000881
drh43605152004-05-29 21:46:49 +0000882 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000883 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000884 n = pPage->childPtrSize;
885 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000886 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000887 if( pPage->hasData ){
888 n += getVarint32(&pCell[n], nPayload);
889 }else{
890 nPayload = 0;
891 }
drh1bd10f82008-12-10 21:19:56 +0000892 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000893 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000894 }else{
drh79df1f42008-07-18 00:57:33 +0000895 pInfo->nData = 0;
896 n += getVarint32(&pCell[n], nPayload);
897 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000898 }
drh72365832007-03-06 15:53:44 +0000899 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000900 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000901 testcase( nPayload==pPage->maxLocal );
902 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000903 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000904 /* This is the (easy) common case where the entire payload fits
905 ** on the local page. No overflow is required.
906 */
907 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000908 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000909 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000910 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000911 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000912 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000913 }
drh1bd10f82008-12-10 21:19:56 +0000914 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000915 }else{
drh271efa52004-05-30 19:19:05 +0000916 /* If the payload will not fit completely on the local page, we have
917 ** to decide how much to store locally and how much to spill onto
918 ** overflow pages. The strategy is to minimize the amount of unused
919 ** space on overflow pages while keeping the amount of local storage
920 ** in between minLocal and maxLocal.
921 **
922 ** Warning: changing the way overflow payload is distributed in any
923 ** way will result in an incompatible file format.
924 */
925 int minLocal; /* Minimum amount of payload held locally */
926 int maxLocal; /* Maximum amount of payload held locally */
927 int surplus; /* Overflow payload available for local storage */
928
929 minLocal = pPage->minLocal;
930 maxLocal = pPage->maxLocal;
931 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000932 testcase( surplus==maxLocal );
933 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000934 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000935 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000936 }else{
drhf49661a2008-12-10 16:45:50 +0000937 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000938 }
drhf49661a2008-12-10 16:45:50 +0000939 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000940 pInfo->nSize = pInfo->iOverflow + 4;
941 }
drh3aac2dd2004-04-26 14:10:20 +0000942}
danielk19771cc5ed82007-05-16 17:28:43 +0000943#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000944 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
945static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000946 MemPage *pPage, /* Page containing the cell */
947 int iCell, /* The cell index. First cell is 0 */
948 CellInfo *pInfo /* Fill in this structure */
949){
danielk19771cc5ed82007-05-16 17:28:43 +0000950 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000951}
drh3aac2dd2004-04-26 14:10:20 +0000952
953/*
drh43605152004-05-29 21:46:49 +0000954** Compute the total number of bytes that a Cell needs in the cell
955** data area of the btree-page. The return number includes the cell
956** data header and the local payload, but not any overflow page or
957** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000958*/
danielk1977ae5558b2009-04-29 11:31:47 +0000959static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
960 u8 *pIter = &pCell[pPage->childPtrSize];
961 u32 nSize;
962
963#ifdef SQLITE_DEBUG
964 /* The value returned by this function should always be the same as
965 ** the (CellInfo.nSize) value found by doing a full parse of the
966 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
967 ** this function verifies that this invariant is not violated. */
968 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000969 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000970#endif
971
972 if( pPage->intKey ){
973 u8 *pEnd;
974 if( pPage->hasData ){
975 pIter += getVarint32(pIter, nSize);
976 }else{
977 nSize = 0;
978 }
979
980 /* pIter now points at the 64-bit integer key value, a variable length
981 ** integer. The following block moves pIter to point at the first byte
982 ** past the end of the key value. */
983 pEnd = &pIter[9];
984 while( (*pIter++)&0x80 && pIter<pEnd );
985 }else{
986 pIter += getVarint32(pIter, nSize);
987 }
988
drh0a45c272009-07-08 01:49:11 +0000989 testcase( nSize==pPage->maxLocal );
990 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000991 if( nSize>pPage->maxLocal ){
992 int minLocal = pPage->minLocal;
993 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000994 testcase( nSize==pPage->maxLocal );
995 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000996 if( nSize>pPage->maxLocal ){
997 nSize = minLocal;
998 }
999 nSize += 4;
1000 }
shane75ac1de2009-06-09 18:58:52 +00001001 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001002
1003 /* The minimum size of any cell is 4 bytes. */
1004 if( nSize<4 ){
1005 nSize = 4;
1006 }
1007
1008 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001009 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001010}
drh0ee3dbe2009-10-16 15:05:18 +00001011
1012#ifdef SQLITE_DEBUG
1013/* This variation on cellSizePtr() is used inside of assert() statements
1014** only. */
drha9121e42008-02-19 14:59:35 +00001015static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001016 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001017}
danielk1977bc6ada42004-06-30 08:20:16 +00001018#endif
drh3b7511c2001-05-26 13:15:44 +00001019
danielk197779a40da2005-01-16 08:00:01 +00001020#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001021/*
danielk197726836652005-01-17 01:33:13 +00001022** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001023** to an overflow page, insert an entry into the pointer-map
1024** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001025*/
drh98add2e2009-07-20 17:11:49 +00001026static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001027 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001028 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001029 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001030 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001031 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001032 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001033 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001034 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001035 }
danielk1977ac11ee62005-01-15 12:45:51 +00001036}
danielk197779a40da2005-01-16 08:00:01 +00001037#endif
1038
danielk1977ac11ee62005-01-15 12:45:51 +00001039
drhda200cc2004-05-09 11:51:38 +00001040/*
drh72f82862001-05-24 21:06:34 +00001041** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001042** end of the page and all free space is collected into one
1043** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001044** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001045*/
shane0af3f892008-11-12 04:55:34 +00001046static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001047 int i; /* Loop counter */
1048 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001049 int hdr; /* Offset to the page header */
1050 int size; /* Size of a cell */
1051 int usableSize; /* Number of usable bytes on a page */
1052 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001053 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001054 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001055 unsigned char *data; /* The page data */
1056 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001057 int iCellFirst; /* First allowable cell index */
1058 int iCellLast; /* Last possible cell index */
1059
drh2af926b2001-05-15 00:39:25 +00001060
danielk19773b8a05f2007-03-19 17:44:26 +00001061 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001062 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001063 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001064 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001065 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001066 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001067 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001068 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001069 cellOffset = pPage->cellOffset;
1070 nCell = pPage->nCell;
1071 assert( nCell==get2byte(&data[hdr+3]) );
1072 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001073 cbrk = get2byte(&data[hdr+5]);
1074 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1075 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001076 iCellFirst = cellOffset + 2*nCell;
1077 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001078 for(i=0; i<nCell; i++){
1079 u8 *pAddr; /* The i-th cell pointer */
1080 pAddr = &data[cellOffset + i*2];
1081 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001082 testcase( pc==iCellFirst );
1083 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001084#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001085 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001086 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1087 */
1088 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001089 return SQLITE_CORRUPT_BKPT;
1090 }
drh17146622009-07-07 17:38:38 +00001091#endif
1092 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001093 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001094 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001095#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1096 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001097 return SQLITE_CORRUPT_BKPT;
1098 }
drh17146622009-07-07 17:38:38 +00001099#else
1100 if( cbrk<iCellFirst || pc+size>usableSize ){
1101 return SQLITE_CORRUPT_BKPT;
1102 }
1103#endif
drh7157e1d2009-07-09 13:25:32 +00001104 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001105 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001106 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001107 memcpy(&data[cbrk], &temp[pc], size);
1108 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001109 }
drh17146622009-07-07 17:38:38 +00001110 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001111 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001112 data[hdr+1] = 0;
1113 data[hdr+2] = 0;
1114 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001115 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001116 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001117 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001118 return SQLITE_CORRUPT_BKPT;
1119 }
shane0af3f892008-11-12 04:55:34 +00001120 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001121}
1122
drha059ad02001-04-17 20:09:11 +00001123/*
danielk19776011a752009-04-01 16:25:32 +00001124** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001125** as the first argument. Write into *pIdx the index into pPage->aData[]
1126** of the first byte of allocated space. Return either SQLITE_OK or
1127** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001128**
drh0a45c272009-07-08 01:49:11 +00001129** The caller guarantees that there is sufficient space to make the
1130** allocation. This routine might need to defragment in order to bring
1131** all the space together, however. This routine will avoid using
1132** the first two bytes past the cell pointer area since presumably this
1133** allocation is being made in order to insert a new cell, so we will
1134** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001135*/
drh0a45c272009-07-08 01:49:11 +00001136static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001137 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1138 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1139 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001140 int top; /* First byte of cell content area */
1141 int gap; /* First byte of gap between cell pointers and cell content */
1142 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001143 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001144
danielk19773b8a05f2007-03-19 17:44:26 +00001145 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001146 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001147 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001148 assert( nByte>=0 ); /* Minimum cell size is 4 */
1149 assert( pPage->nFree>=nByte );
1150 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001151 usableSize = pPage->pBt->usableSize;
1152 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001153
1154 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001155 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1156 gap = pPage->cellOffset + 2*pPage->nCell;
1157 top = get2byte(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001158 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001159 testcase( gap+2==top );
1160 testcase( gap+1==top );
1161 testcase( gap==top );
1162
danielk19776011a752009-04-01 16:25:32 +00001163 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001164 /* Always defragment highly fragmented pages */
1165 rc = defragmentPage(pPage);
1166 if( rc ) return rc;
1167 top = get2byte(&data[hdr+5]);
1168 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001169 /* Search the freelist looking for a free slot big enough to satisfy
1170 ** the request. The allocation is made from the first free slot in
1171 ** the list that is large enough to accomadate it.
1172 */
1173 int pc, addr;
1174 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001175 int size; /* Size of the free slot */
1176 if( pc>usableSize-4 || pc<addr+4 ){
1177 return SQLITE_CORRUPT_BKPT;
1178 }
1179 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001180 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001181 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001182 testcase( x==4 );
1183 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001184 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001185 /* Remove the slot from the free-list. Update the number of
1186 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001187 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001188 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001189 }else if( size+pc > usableSize ){
1190 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001191 }else{
danielk1977fad91942009-04-29 17:49:59 +00001192 /* The slot remains on the free-list. Reduce its size to account
1193 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001194 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001195 }
drh0a45c272009-07-08 01:49:11 +00001196 *pIdx = pc + x;
1197 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001198 }
drh9e572e62004-04-23 23:43:10 +00001199 }
1200 }
drh43605152004-05-29 21:46:49 +00001201
drh0a45c272009-07-08 01:49:11 +00001202 /* Check to make sure there is enough space in the gap to satisfy
1203 ** the allocation. If not, defragment.
1204 */
1205 testcase( gap+2+nByte==top );
1206 if( gap+2+nByte>top ){
1207 rc = defragmentPage(pPage);
1208 if( rc ) return rc;
1209 top = get2byte(&data[hdr+5]);
1210 assert( gap+nByte<=top );
1211 }
1212
1213
drh43605152004-05-29 21:46:49 +00001214 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001215 ** and the cell content area. The btreeInitPage() call has already
1216 ** validated the freelist. Given that the freelist is valid, there
1217 ** is no way that the allocation can extend off the end of the page.
1218 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001219 */
drh0a45c272009-07-08 01:49:11 +00001220 top -= nByte;
drh43605152004-05-29 21:46:49 +00001221 put2byte(&data[hdr+5], top);
drhc314dc72009-07-21 11:52:34 +00001222 assert( top+nByte <= pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001223 *pIdx = top;
1224 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001225}
1226
1227/*
drh9e572e62004-04-23 23:43:10 +00001228** Return a section of the pPage->aData to the freelist.
1229** The first byte of the new free block is pPage->aDisk[start]
1230** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001231**
1232** Most of the effort here is involved in coalesing adjacent
1233** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001234*/
shanedcc50b72008-11-13 18:29:50 +00001235static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001236 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001237 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001238 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001239
drh9e572e62004-04-23 23:43:10 +00001240 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001241 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001242 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
danielk1977bc6ada42004-06-30 08:20:16 +00001243 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001244 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001245 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001246
drh5b47efa2010-02-12 18:18:39 +00001247 if( pPage->pBt->secureDelete ){
1248 /* Overwrite deleted information with zeros when the secure_delete
1249 ** option is enabled */
1250 memset(&data[start], 0, size);
1251 }
drhfcce93f2006-02-22 03:08:32 +00001252
drh0a45c272009-07-08 01:49:11 +00001253 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001254 ** even though the freeblock list was checked by btreeInitPage(),
1255 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001256 ** freeblocks that overlapped cells. Nor does it detect when the
1257 ** cell content area exceeds the value in the page header. If these
1258 ** situations arise, then subsequent insert operations might corrupt
1259 ** the freelist. So we do need to check for corruption while scanning
1260 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001261 */
drh43605152004-05-29 21:46:49 +00001262 hdr = pPage->hdrOffset;
1263 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001264 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001265 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001266 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001267 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001268 return SQLITE_CORRUPT_BKPT;
1269 }
drh3aac2dd2004-04-26 14:10:20 +00001270 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001271 }
drh0a45c272009-07-08 01:49:11 +00001272 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001273 return SQLITE_CORRUPT_BKPT;
1274 }
drh3aac2dd2004-04-26 14:10:20 +00001275 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001276 put2byte(&data[addr], start);
1277 put2byte(&data[start], pbegin);
1278 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001279 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001280
1281 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001282 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001283 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001284 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001285 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001286 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001287 pnext = get2byte(&data[pbegin]);
1288 psize = get2byte(&data[pbegin+2]);
1289 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1290 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001291 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001292 return SQLITE_CORRUPT_BKPT;
1293 }
drh0a45c272009-07-08 01:49:11 +00001294 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001295 x = get2byte(&data[pnext]);
1296 put2byte(&data[pbegin], x);
1297 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1298 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001299 }else{
drh3aac2dd2004-04-26 14:10:20 +00001300 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001301 }
1302 }
drh7e3b0a02001-04-28 16:52:40 +00001303
drh43605152004-05-29 21:46:49 +00001304 /* If the cell content area begins with a freeblock, remove it. */
1305 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1306 int top;
1307 pbegin = get2byte(&data[hdr+1]);
1308 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001309 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1310 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001311 }
drhc5053fb2008-11-27 02:22:10 +00001312 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001313 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001314}
1315
1316/*
drh271efa52004-05-30 19:19:05 +00001317** Decode the flags byte (the first byte of the header) for a page
1318** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001319**
1320** Only the following combinations are supported. Anything different
1321** indicates a corrupt database files:
1322**
1323** PTF_ZERODATA
1324** PTF_ZERODATA | PTF_LEAF
1325** PTF_LEAFDATA | PTF_INTKEY
1326** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001327*/
drh44845222008-07-17 18:39:57 +00001328static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001329 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001330
1331 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001332 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001333 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001334 flagByte &= ~PTF_LEAF;
1335 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001336 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001337 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1338 pPage->intKey = 1;
1339 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001340 pPage->maxLocal = pBt->maxLeaf;
1341 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001342 }else if( flagByte==PTF_ZERODATA ){
1343 pPage->intKey = 0;
1344 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001345 pPage->maxLocal = pBt->maxLocal;
1346 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001347 }else{
1348 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001349 }
drh44845222008-07-17 18:39:57 +00001350 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001351}
1352
1353/*
drh7e3b0a02001-04-28 16:52:40 +00001354** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001355**
1356** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001357** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001358** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1359** guarantee that the page is well-formed. It only shows that
1360** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001361*/
danielk197730548662009-07-09 05:07:37 +00001362static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001363
danielk197771d5d2c2008-09-29 11:49:47 +00001364 assert( pPage->pBt!=0 );
1365 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001366 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001367 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1368 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001369
1370 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001371 u16 pc; /* Address of a freeblock within pPage->aData[] */
1372 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001373 u8 *data; /* Equal to pPage->aData */
1374 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001375 u16 usableSize; /* Amount of usable space on each page */
1376 u16 cellOffset; /* Offset from start of page to first cell pointer */
1377 u16 nFree; /* Number of unused bytes on the page */
1378 u16 top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001379 int iCellFirst; /* First allowable cell or freeblock offset */
1380 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001381
1382 pBt = pPage->pBt;
1383
danielk1977eaa06f62008-09-18 17:34:44 +00001384 hdr = pPage->hdrOffset;
1385 data = pPage->aData;
1386 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1387 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1388 pPage->maskPage = pBt->pageSize - 1;
1389 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001390 usableSize = pBt->usableSize;
1391 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1392 top = get2byte(&data[hdr+5]);
1393 pPage->nCell = get2byte(&data[hdr+3]);
1394 if( pPage->nCell>MX_CELL(pBt) ){
1395 /* To many cells for a single page. The page must be corrupt */
1396 return SQLITE_CORRUPT_BKPT;
1397 }
drhb908d762009-07-08 16:54:40 +00001398 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001399
shane5eff7cf2009-08-10 03:57:58 +00001400 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001401 ** of page when parsing a cell.
1402 **
1403 ** The following block of code checks early to see if a cell extends
1404 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1405 ** returned if it does.
1406 */
drh0a45c272009-07-08 01:49:11 +00001407 iCellFirst = cellOffset + 2*pPage->nCell;
1408 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001409#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001410 {
drh69e931e2009-06-03 21:04:35 +00001411 int i; /* Index into the cell pointer array */
1412 int sz; /* Size of a cell */
1413
drh69e931e2009-06-03 21:04:35 +00001414 if( !pPage->leaf ) iCellLast--;
1415 for(i=0; i<pPage->nCell; i++){
1416 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001417 testcase( pc==iCellFirst );
1418 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001419 if( pc<iCellFirst || pc>iCellLast ){
1420 return SQLITE_CORRUPT_BKPT;
1421 }
1422 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001423 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001424 if( pc+sz>usableSize ){
1425 return SQLITE_CORRUPT_BKPT;
1426 }
1427 }
drh0a45c272009-07-08 01:49:11 +00001428 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001429 }
1430#endif
1431
danielk1977eaa06f62008-09-18 17:34:44 +00001432 /* Compute the total free space on the page */
1433 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001434 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001435 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001436 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001437 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001438 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001439 return SQLITE_CORRUPT_BKPT;
1440 }
1441 next = get2byte(&data[pc]);
1442 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001443 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1444 /* Free blocks must be in ascending order. And the last byte of
1445 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001446 return SQLITE_CORRUPT_BKPT;
1447 }
shane85095702009-06-15 16:27:08 +00001448 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001449 pc = next;
1450 }
danielk197793c829c2009-06-03 17:26:17 +00001451
1452 /* At this point, nFree contains the sum of the offset to the start
1453 ** of the cell-content area plus the number of free bytes within
1454 ** the cell-content area. If this is greater than the usable-size
1455 ** of the page, then the page must be corrupted. This check also
1456 ** serves to verify that the offset to the start of the cell-content
1457 ** area, according to the page header, lies within the page.
1458 */
1459 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001460 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001461 }
shane5eff7cf2009-08-10 03:57:58 +00001462 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001463 pPage->isInit = 1;
1464 }
drh9e572e62004-04-23 23:43:10 +00001465 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001466}
1467
1468/*
drh8b2f49b2001-06-08 00:21:52 +00001469** Set up a raw page so that it looks like a database page holding
1470** no entries.
drhbd03cae2001-06-02 02:40:57 +00001471*/
drh9e572e62004-04-23 23:43:10 +00001472static void zeroPage(MemPage *pPage, int flags){
1473 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001474 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001475 u8 hdr = pPage->hdrOffset;
1476 u16 first;
drh9e572e62004-04-23 23:43:10 +00001477
danielk19773b8a05f2007-03-19 17:44:26 +00001478 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001479 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1480 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001481 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001482 assert( sqlite3_mutex_held(pBt->mutex) );
drh5b47efa2010-02-12 18:18:39 +00001483 if( pBt->secureDelete ){
1484 memset(&data[hdr], 0, pBt->usableSize - hdr);
1485 }
drh1bd10f82008-12-10 21:19:56 +00001486 data[hdr] = (char)flags;
1487 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001488 memset(&data[hdr+1], 0, 4);
1489 data[hdr+7] = 0;
1490 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001491 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001492 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001493 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001494 pPage->cellOffset = first;
1495 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001496 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1497 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001498 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001499 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001500}
1501
drh897a8202008-09-18 01:08:15 +00001502
1503/*
1504** Convert a DbPage obtained from the pager into a MemPage used by
1505** the btree layer.
1506*/
1507static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1508 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1509 pPage->aData = sqlite3PagerGetData(pDbPage);
1510 pPage->pDbPage = pDbPage;
1511 pPage->pBt = pBt;
1512 pPage->pgno = pgno;
1513 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1514 return pPage;
1515}
1516
drhbd03cae2001-06-02 02:40:57 +00001517/*
drh3aac2dd2004-04-26 14:10:20 +00001518** Get a page from the pager. Initialize the MemPage.pBt and
1519** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001520**
1521** If the noContent flag is set, it means that we do not care about
1522** the content of the page at this time. So do not go to the disk
1523** to fetch the content. Just fill in the content with zeros for now.
1524** If in the future we call sqlite3PagerWrite() on this page, that
1525** means we have started to be concerned about content and the disk
1526** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001527*/
danielk197730548662009-07-09 05:07:37 +00001528static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001529 BtShared *pBt, /* The btree */
1530 Pgno pgno, /* Number of the page to fetch */
1531 MemPage **ppPage, /* Return the page in this parameter */
1532 int noContent /* Do not load page content if true */
1533){
drh3aac2dd2004-04-26 14:10:20 +00001534 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001535 DbPage *pDbPage;
1536
drh1fee73e2007-08-29 04:00:57 +00001537 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001538 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001539 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001540 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001541 return SQLITE_OK;
1542}
1543
1544/*
danielk1977bea2a942009-01-20 17:06:27 +00001545** Retrieve a page from the pager cache. If the requested page is not
1546** already in the pager cache return NULL. Initialize the MemPage.pBt and
1547** MemPage.aData elements if needed.
1548*/
1549static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1550 DbPage *pDbPage;
1551 assert( sqlite3_mutex_held(pBt->mutex) );
1552 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1553 if( pDbPage ){
1554 return btreePageFromDbPage(pDbPage, pgno, pBt);
1555 }
1556 return 0;
1557}
1558
1559/*
danielk197789d40042008-11-17 14:20:56 +00001560** Return the size of the database file in pages. If there is any kind of
1561** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001562*/
drhb1299152010-03-30 22:58:33 +00001563static Pgno btreePagecount(BtShared *pBt){
1564 return pBt->nPage;
1565}
1566u32 sqlite3BtreeLastPage(Btree *p){
1567 assert( sqlite3BtreeHoldsMutex(p) );
1568 assert( ((p->pBt->nPage)&0x8000000)==0 );
1569 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001570}
1571
1572/*
danielk197789bc4bc2009-07-21 19:25:24 +00001573** Get a page from the pager and initialize it. This routine is just a
1574** convenience wrapper around separate calls to btreeGetPage() and
1575** btreeInitPage().
1576**
1577** If an error occurs, then the value *ppPage is set to is undefined. It
1578** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001579*/
1580static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001581 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001582 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001583 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001584){
1585 int rc;
drh1fee73e2007-08-29 04:00:57 +00001586 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001587
drh8d8626f2010-03-31 20:29:06 +00001588 if( pgno<=0 || pgno>btreePagecount(pBt) ){
1589 return SQLITE_CORRUPT_BKPT;
1590 }
danielk197789bc4bc2009-07-21 19:25:24 +00001591 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1592 if( rc==SQLITE_OK ){
1593 rc = btreeInitPage(*ppPage);
1594 if( rc!=SQLITE_OK ){
1595 releasePage(*ppPage);
1596 }
drhee696e22004-08-30 16:52:17 +00001597 }
drhde647132004-05-07 17:57:49 +00001598 return rc;
1599}
1600
1601/*
drh3aac2dd2004-04-26 14:10:20 +00001602** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001603** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001604*/
drh4b70f112004-05-02 21:12:19 +00001605static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001606 if( pPage ){
1607 assert( pPage->aData );
1608 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001609 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1610 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001611 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001612 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001613 }
1614}
1615
1616/*
drha6abd042004-06-09 17:37:22 +00001617** During a rollback, when the pager reloads information into the cache
1618** so that the cache is restored to its original state at the start of
1619** the transaction, for each page restored this routine is called.
1620**
1621** This routine needs to reset the extra data section at the end of the
1622** page to agree with the restored data.
1623*/
danielk1977eaa06f62008-09-18 17:34:44 +00001624static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001625 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001626 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001627 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001628 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001629 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001630 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001631 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001632 /* pPage might not be a btree page; it might be an overflow page
1633 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001634 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001635 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001636 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001637 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001638 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001639 }
drha6abd042004-06-09 17:37:22 +00001640 }
1641}
1642
1643/*
drhe5fe6902007-12-07 18:55:28 +00001644** Invoke the busy handler for a btree.
1645*/
danielk19771ceedd32008-11-19 10:22:33 +00001646static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001647 BtShared *pBt = (BtShared*)pArg;
1648 assert( pBt->db );
1649 assert( sqlite3_mutex_held(pBt->db->mutex) );
1650 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1651}
1652
1653/*
drhad3e0102004-09-03 23:32:18 +00001654** Open a database file.
1655**
drh382c0242001-10-06 16:33:02 +00001656** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001657** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001658** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001659** If zFilename is ":memory:" then an in-memory database is created
1660** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001661**
1662** If the database is already opened in the same database connection
1663** and we are in shared cache mode, then the open will fail with an
1664** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1665** objects in the same database connection since doing so will lead
1666** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001667*/
drh23e11ca2004-05-04 17:27:28 +00001668int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001669 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001670 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001671 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001672 int flags, /* Options */
1673 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001674){
drh7555d8e2009-03-20 13:15:30 +00001675 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1676 BtShared *pBt = 0; /* Shared part of btree structure */
1677 Btree *p; /* Handle to return */
1678 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1679 int rc = SQLITE_OK; /* Result code from this function */
1680 u8 nReserve; /* Byte of unused space on each page */
1681 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001682
1683 /* Set the variable isMemdb to true for an in-memory database, or
1684 ** false for a file-based database. This symbol is only required if
1685 ** either of the shared-data or autovacuum features are compiled
1686 ** into the library.
1687 */
1688#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1689 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001690 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001691 #else
drh980b1a72006-08-16 16:42:48 +00001692 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001693 #endif
1694#endif
1695
drhe5fe6902007-12-07 18:55:28 +00001696 assert( db!=0 );
1697 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001698
drhe5fe6902007-12-07 18:55:28 +00001699 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001700 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001701 if( !p ){
1702 return SQLITE_NOMEM;
1703 }
1704 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001705 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001706#ifndef SQLITE_OMIT_SHARED_CACHE
1707 p->lock.pBtree = p;
1708 p->lock.iTable = 1;
1709#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001710
drh198bf392006-01-06 21:52:49 +00001711#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001712 /*
1713 ** If this Btree is a candidate for shared cache, try to find an
1714 ** existing BtShared object that we can share with
1715 */
danielk197720c6cc22009-04-01 18:03:00 +00001716 if( isMemdb==0 && zFilename && zFilename[0] ){
drhf1f12682009-09-09 14:17:52 +00001717 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001718 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001719 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001720 sqlite3_mutex *mutexShared;
1721 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001722 if( !zFullPathname ){
1723 sqlite3_free(p);
1724 return SQLITE_NOMEM;
1725 }
danielk1977adfb9b02007-09-17 07:02:56 +00001726 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001727 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1728 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001729 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001730 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001731 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001732 assert( pBt->nRef>0 );
1733 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1734 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001735 int iDb;
1736 for(iDb=db->nDb-1; iDb>=0; iDb--){
1737 Btree *pExisting = db->aDb[iDb].pBt;
1738 if( pExisting && pExisting->pBt==pBt ){
1739 sqlite3_mutex_leave(mutexShared);
1740 sqlite3_mutex_leave(mutexOpen);
1741 sqlite3_free(zFullPathname);
1742 sqlite3_free(p);
1743 return SQLITE_CONSTRAINT;
1744 }
1745 }
drhff0587c2007-08-29 17:43:19 +00001746 p->pBt = pBt;
1747 pBt->nRef++;
1748 break;
1749 }
1750 }
1751 sqlite3_mutex_leave(mutexShared);
1752 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001753 }
drhff0587c2007-08-29 17:43:19 +00001754#ifdef SQLITE_DEBUG
1755 else{
1756 /* In debug mode, we mark all persistent databases as sharable
1757 ** even when they are not. This exercises the locking code and
1758 ** gives more opportunity for asserts(sqlite3_mutex_held())
1759 ** statements to find locking problems.
1760 */
1761 p->sharable = 1;
1762 }
1763#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001764 }
1765#endif
drha059ad02001-04-17 20:09:11 +00001766 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001767 /*
1768 ** The following asserts make sure that structures used by the btree are
1769 ** the right size. This is to guard against size changes that result
1770 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001771 */
drhe53831d2007-08-17 01:14:38 +00001772 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1773 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1774 assert( sizeof(u32)==4 );
1775 assert( sizeof(u16)==2 );
1776 assert( sizeof(Pgno)==4 );
1777
1778 pBt = sqlite3MallocZero( sizeof(*pBt) );
1779 if( pBt==0 ){
1780 rc = SQLITE_NOMEM;
1781 goto btree_open_out;
1782 }
danielk197771d5d2c2008-09-29 11:49:47 +00001783 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001784 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001785 if( rc==SQLITE_OK ){
1786 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1787 }
1788 if( rc!=SQLITE_OK ){
1789 goto btree_open_out;
1790 }
danielk19772a50ff02009-04-10 09:47:06 +00001791 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001792 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001793 p->pBt = pBt;
1794
drhe53831d2007-08-17 01:14:38 +00001795 pBt->pCursor = 0;
1796 pBt->pPage1 = 0;
1797 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
drh5b47efa2010-02-12 18:18:39 +00001798#ifdef SQLITE_SECURE_DELETE
1799 pBt->secureDelete = 1;
1800#endif
drhe53831d2007-08-17 01:14:38 +00001801 pBt->pageSize = get2byte(&zDbHeader[16]);
1802 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1803 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001804 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001805#ifndef SQLITE_OMIT_AUTOVACUUM
1806 /* If the magic name ":memory:" will create an in-memory database, then
1807 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1808 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1809 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1810 ** regular file-name. In this case the auto-vacuum applies as per normal.
1811 */
1812 if( zFilename && !isMemdb ){
1813 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1814 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1815 }
1816#endif
1817 nReserve = 0;
1818 }else{
1819 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001820 pBt->pageSizeFixed = 1;
1821#ifndef SQLITE_OMIT_AUTOVACUUM
1822 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1823 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1824#endif
1825 }
drhfa9601a2009-06-18 17:22:39 +00001826 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001827 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001828 pBt->usableSize = pBt->pageSize - nReserve;
1829 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001830
1831#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1832 /* Add the new BtShared object to the linked list sharable BtShareds.
1833 */
1834 if( p->sharable ){
1835 sqlite3_mutex *mutexShared;
1836 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001837 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001838 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001839 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001840 if( pBt->mutex==0 ){
1841 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001842 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001843 goto btree_open_out;
1844 }
drhff0587c2007-08-29 17:43:19 +00001845 }
drhe53831d2007-08-17 01:14:38 +00001846 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001847 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1848 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001849 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001850 }
drheee46cf2004-11-06 00:02:48 +00001851#endif
drh90f5ecb2004-07-22 01:19:35 +00001852 }
danielk1977aef0bf62005-12-30 16:28:01 +00001853
drhcfed7bc2006-03-13 14:28:05 +00001854#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001855 /* If the new Btree uses a sharable pBtShared, then link the new
1856 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001857 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001858 */
drhe53831d2007-08-17 01:14:38 +00001859 if( p->sharable ){
1860 int i;
1861 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001862 for(i=0; i<db->nDb; i++){
1863 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001864 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1865 if( p->pBt<pSib->pBt ){
1866 p->pNext = pSib;
1867 p->pPrev = 0;
1868 pSib->pPrev = p;
1869 }else{
drhabddb0c2007-08-20 13:14:28 +00001870 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001871 pSib = pSib->pNext;
1872 }
1873 p->pNext = pSib->pNext;
1874 p->pPrev = pSib;
1875 if( p->pNext ){
1876 p->pNext->pPrev = p;
1877 }
1878 pSib->pNext = p;
1879 }
1880 break;
1881 }
1882 }
danielk1977aef0bf62005-12-30 16:28:01 +00001883 }
danielk1977aef0bf62005-12-30 16:28:01 +00001884#endif
1885 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001886
1887btree_open_out:
1888 if( rc!=SQLITE_OK ){
1889 if( pBt && pBt->pPager ){
1890 sqlite3PagerClose(pBt->pPager);
1891 }
drh17435752007-08-16 04:30:38 +00001892 sqlite3_free(pBt);
1893 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001894 *ppBtree = 0;
1895 }
drh7555d8e2009-03-20 13:15:30 +00001896 if( mutexOpen ){
1897 assert( sqlite3_mutex_held(mutexOpen) );
1898 sqlite3_mutex_leave(mutexOpen);
1899 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001900 return rc;
drha059ad02001-04-17 20:09:11 +00001901}
1902
1903/*
drhe53831d2007-08-17 01:14:38 +00001904** Decrement the BtShared.nRef counter. When it reaches zero,
1905** remove the BtShared structure from the sharing list. Return
1906** true if the BtShared.nRef counter reaches zero and return
1907** false if it is still positive.
1908*/
1909static int removeFromSharingList(BtShared *pBt){
1910#ifndef SQLITE_OMIT_SHARED_CACHE
1911 sqlite3_mutex *pMaster;
1912 BtShared *pList;
1913 int removed = 0;
1914
drhd677b3d2007-08-20 22:48:41 +00001915 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001916 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001917 sqlite3_mutex_enter(pMaster);
1918 pBt->nRef--;
1919 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001920 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1921 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001922 }else{
drh78f82d12008-09-02 00:52:52 +00001923 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001924 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001925 pList=pList->pNext;
1926 }
drh34004ce2008-07-11 16:15:17 +00001927 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001928 pList->pNext = pBt->pNext;
1929 }
1930 }
drh3285db22007-09-03 22:00:39 +00001931 if( SQLITE_THREADSAFE ){
1932 sqlite3_mutex_free(pBt->mutex);
1933 }
drhe53831d2007-08-17 01:14:38 +00001934 removed = 1;
1935 }
1936 sqlite3_mutex_leave(pMaster);
1937 return removed;
1938#else
1939 return 1;
1940#endif
1941}
1942
1943/*
drhf7141992008-06-19 00:16:08 +00001944** Make sure pBt->pTmpSpace points to an allocation of
1945** MX_CELL_SIZE(pBt) bytes.
1946*/
1947static void allocateTempSpace(BtShared *pBt){
1948 if( !pBt->pTmpSpace ){
1949 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1950 }
1951}
1952
1953/*
1954** Free the pBt->pTmpSpace allocation
1955*/
1956static void freeTempSpace(BtShared *pBt){
1957 sqlite3PageFree( pBt->pTmpSpace);
1958 pBt->pTmpSpace = 0;
1959}
1960
1961/*
drha059ad02001-04-17 20:09:11 +00001962** Close an open database and invalidate all cursors.
1963*/
danielk1977aef0bf62005-12-30 16:28:01 +00001964int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001965 BtShared *pBt = p->pBt;
1966 BtCursor *pCur;
1967
danielk1977aef0bf62005-12-30 16:28:01 +00001968 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001969 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001970 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001971 pCur = pBt->pCursor;
1972 while( pCur ){
1973 BtCursor *pTmp = pCur;
1974 pCur = pCur->pNext;
1975 if( pTmp->pBtree==p ){
1976 sqlite3BtreeCloseCursor(pTmp);
1977 }
drha059ad02001-04-17 20:09:11 +00001978 }
danielk1977aef0bf62005-12-30 16:28:01 +00001979
danielk19778d34dfd2006-01-24 16:37:57 +00001980 /* Rollback any active transaction and free the handle structure.
1981 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1982 ** this handle.
1983 */
danielk1977b597f742006-01-15 11:39:18 +00001984 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001985 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001986
danielk1977aef0bf62005-12-30 16:28:01 +00001987 /* If there are still other outstanding references to the shared-btree
1988 ** structure, return now. The remainder of this procedure cleans
1989 ** up the shared-btree.
1990 */
drhe53831d2007-08-17 01:14:38 +00001991 assert( p->wantToLock==0 && p->locked==0 );
1992 if( !p->sharable || removeFromSharingList(pBt) ){
1993 /* The pBt is no longer on the sharing list, so we can access
1994 ** it without having to hold the mutex.
1995 **
1996 ** Clean out and delete the BtShared object.
1997 */
1998 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001999 sqlite3PagerClose(pBt->pPager);
2000 if( pBt->xFreeSchema && pBt->pSchema ){
2001 pBt->xFreeSchema(pBt->pSchema);
2002 }
2003 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002004 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002005 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002006 }
2007
drhe53831d2007-08-17 01:14:38 +00002008#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002009 assert( p->wantToLock==0 );
2010 assert( p->locked==0 );
2011 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2012 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002013#endif
2014
drhe53831d2007-08-17 01:14:38 +00002015 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002016 return SQLITE_OK;
2017}
2018
2019/*
drhda47d772002-12-02 04:25:19 +00002020** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002021**
2022** The maximum number of cache pages is set to the absolute
2023** value of mxPage. If mxPage is negative, the pager will
2024** operate asynchronously - it will not stop to do fsync()s
2025** to insure data is written to the disk surface before
2026** continuing. Transactions still work if synchronous is off,
2027** and the database cannot be corrupted if this program
2028** crashes. But if the operating system crashes or there is
2029** an abrupt power failure when synchronous is off, the database
2030** could be left in an inconsistent and unrecoverable state.
2031** Synchronous is on by default so database corruption is not
2032** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002033*/
danielk1977aef0bf62005-12-30 16:28:01 +00002034int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2035 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002036 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002037 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002038 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002039 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002040 return SQLITE_OK;
2041}
2042
2043/*
drh973b6e32003-02-12 14:09:42 +00002044** Change the way data is synced to disk in order to increase or decrease
2045** how well the database resists damage due to OS crashes and power
2046** failures. Level 1 is the same as asynchronous (no syncs() occur and
2047** there is a high probability of damage) Level 2 is the default. There
2048** is a very low but non-zero probability of damage. Level 3 reduces the
2049** probability of damage to near zero but with a write performance reduction.
2050*/
danielk197793758c82005-01-21 08:13:14 +00002051#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002052int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002053 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002054 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002055 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002056 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002057 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002058 return SQLITE_OK;
2059}
danielk197793758c82005-01-21 08:13:14 +00002060#endif
drh973b6e32003-02-12 14:09:42 +00002061
drh2c8997b2005-08-27 16:36:48 +00002062/*
2063** Return TRUE if the given btree is set to safety level 1. In other
2064** words, return TRUE if no sync() occurs on the disk files.
2065*/
danielk1977aef0bf62005-12-30 16:28:01 +00002066int sqlite3BtreeSyncDisabled(Btree *p){
2067 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002068 int rc;
drhe5fe6902007-12-07 18:55:28 +00002069 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002070 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002071 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002072 rc = sqlite3PagerNosync(pBt->pPager);
2073 sqlite3BtreeLeave(p);
2074 return rc;
drh2c8997b2005-08-27 16:36:48 +00002075}
2076
danielk1977576ec6b2005-01-21 11:55:25 +00002077#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002078/*
drh90f5ecb2004-07-22 01:19:35 +00002079** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002080** Or, if the page size has already been fixed, return SQLITE_READONLY
2081** without changing anything.
drh06f50212004-11-02 14:24:33 +00002082**
2083** The page size must be a power of 2 between 512 and 65536. If the page
2084** size supplied does not meet this constraint then the page size is not
2085** changed.
2086**
2087** Page sizes are constrained to be a power of two so that the region
2088** of the database file used for locking (beginning at PENDING_BYTE,
2089** the first byte past the 1GB boundary, 0x40000000) needs to occur
2090** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002091**
2092** If parameter nReserve is less than zero, then the number of reserved
2093** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002094**
2095** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2096** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002097*/
drhce4869f2009-04-02 20:16:58 +00002098int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002099 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002100 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002101 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002102 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002103 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002104 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002105 return SQLITE_READONLY;
2106 }
2107 if( nReserve<0 ){
2108 nReserve = pBt->pageSize - pBt->usableSize;
2109 }
drhf49661a2008-12-10 16:45:50 +00002110 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002111 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2112 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002113 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002114 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00002115 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002116 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002117 }
drhfa9601a2009-06-18 17:22:39 +00002118 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002119 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002120 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002121 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002122 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002123}
2124
2125/*
2126** Return the currently defined page size
2127*/
danielk1977aef0bf62005-12-30 16:28:01 +00002128int sqlite3BtreeGetPageSize(Btree *p){
2129 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002130}
drh7f751222009-03-17 22:33:00 +00002131
2132/*
2133** Return the number of bytes of space at the end of every page that
2134** are intentually left unused. This is the "reserved" space that is
2135** sometimes used by extensions.
2136*/
danielk1977aef0bf62005-12-30 16:28:01 +00002137int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002138 int n;
2139 sqlite3BtreeEnter(p);
2140 n = p->pBt->pageSize - p->pBt->usableSize;
2141 sqlite3BtreeLeave(p);
2142 return n;
drh2011d5f2004-07-22 02:40:37 +00002143}
drhf8e632b2007-05-08 14:51:36 +00002144
2145/*
2146** Set the maximum page count for a database if mxPage is positive.
2147** No changes are made if mxPage is 0 or negative.
2148** Regardless of the value of mxPage, return the maximum page count.
2149*/
2150int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002151 int n;
2152 sqlite3BtreeEnter(p);
2153 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2154 sqlite3BtreeLeave(p);
2155 return n;
drhf8e632b2007-05-08 14:51:36 +00002156}
drh5b47efa2010-02-12 18:18:39 +00002157
2158/*
2159** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1,
2160** then make no changes. Always return the value of the secureDelete
2161** setting after the change.
2162*/
2163int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2164 int b;
drhaf034ed2010-02-12 19:46:26 +00002165 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002166 sqlite3BtreeEnter(p);
2167 if( newFlag>=0 ){
2168 p->pBt->secureDelete = (newFlag!=0) ? 1 : 0;
2169 }
2170 b = p->pBt->secureDelete;
2171 sqlite3BtreeLeave(p);
2172 return b;
2173}
danielk1977576ec6b2005-01-21 11:55:25 +00002174#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002175
2176/*
danielk1977951af802004-11-05 15:45:09 +00002177** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2178** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2179** is disabled. The default value for the auto-vacuum property is
2180** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2181*/
danielk1977aef0bf62005-12-30 16:28:01 +00002182int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002183#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002184 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002185#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002186 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002187 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002188 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002189
2190 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002191 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002192 rc = SQLITE_READONLY;
2193 }else{
drh076d4662009-02-18 20:31:18 +00002194 pBt->autoVacuum = av ?1:0;
2195 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002196 }
drhd677b3d2007-08-20 22:48:41 +00002197 sqlite3BtreeLeave(p);
2198 return rc;
danielk1977951af802004-11-05 15:45:09 +00002199#endif
2200}
2201
2202/*
2203** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2204** enabled 1 is returned. Otherwise 0.
2205*/
danielk1977aef0bf62005-12-30 16:28:01 +00002206int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002207#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002208 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002209#else
drhd677b3d2007-08-20 22:48:41 +00002210 int rc;
2211 sqlite3BtreeEnter(p);
2212 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002213 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2214 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2215 BTREE_AUTOVACUUM_INCR
2216 );
drhd677b3d2007-08-20 22:48:41 +00002217 sqlite3BtreeLeave(p);
2218 return rc;
danielk1977951af802004-11-05 15:45:09 +00002219#endif
2220}
2221
2222
2223/*
drha34b6762004-05-07 13:30:42 +00002224** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002225** also acquire a readlock on that file.
2226**
2227** SQLITE_OK is returned on success. If the file is not a
2228** well-formed database file, then SQLITE_CORRUPT is returned.
2229** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002230** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002231*/
danielk1977aef0bf62005-12-30 16:28:01 +00002232static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002233 int rc; /* Result code from subfunctions */
2234 MemPage *pPage1; /* Page 1 of the database file */
2235 int nPage; /* Number of pages in the database */
2236 int nPageFile = 0; /* Number of pages in the database file */
2237 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002238
drh1fee73e2007-08-29 04:00:57 +00002239 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002240 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002241 rc = sqlite3PagerSharedLock(pBt->pPager);
2242 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002243 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002244 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002245
2246 /* Do some checking to help insure the file we opened really is
2247 ** a valid database file.
2248 */
drhc2a4bab2010-04-02 12:46:45 +00002249 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
2250 if( (rc = sqlite3PagerPagecount(pBt->pPager, &nPageFile))!=SQLITE_OK ){;
2251 goto page1_init_failed;
2252 }
drh97b59a52010-03-31 02:31:33 +00002253 if( nPage==0 ){
drhc2a4bab2010-04-02 12:46:45 +00002254 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002255 }
2256 if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002257 int pageSize;
2258 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002259 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002260 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002261 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002262 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002263 }
dan5cf53532010-05-01 16:40:20 +00002264
2265#ifdef SQLITE_OMIT_WAL
2266 if( page1[18]>1 ){
2267 pBt->readOnly = 1;
2268 }
2269 if( page1[19]>1 ){
2270 goto page1_init_failed;
2271 }
2272#else
dane04dc882010-04-20 18:53:15 +00002273 if( page1[18]>2 ){
drh309169a2007-04-24 17:27:51 +00002274 pBt->readOnly = 1;
2275 }
dane04dc882010-04-20 18:53:15 +00002276 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002277 goto page1_init_failed;
2278 }
drhe5ae5732008-06-15 02:51:47 +00002279
dana470aeb2010-04-21 11:43:38 +00002280 /* If the write version is set to 2, this database should be accessed
2281 ** in WAL mode. If the log is not already open, open it now. Then
2282 ** return SQLITE_OK and return without populating BtShared.pPage1.
2283 ** The caller detects this and calls this function again. This is
2284 ** required as the version of page 1 currently in the page1 buffer
2285 ** may not be the latest version - there may be a newer one in the log
2286 ** file.
2287 */
danb9780022010-04-21 18:37:57 +00002288 if( page1[19]==2 && pBt->doNotUseWAL==0 ){
dane04dc882010-04-20 18:53:15 +00002289 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002290 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002291 if( rc!=SQLITE_OK ){
2292 goto page1_init_failed;
2293 }else if( isOpen==0 ){
2294 releasePage(pPage1);
2295 return SQLITE_OK;
2296 }
dan8b5444b2010-04-27 14:37:47 +00002297 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002298 }
dan5cf53532010-05-01 16:40:20 +00002299#endif
dane04dc882010-04-20 18:53:15 +00002300
drhe5ae5732008-06-15 02:51:47 +00002301 /* The maximum embedded fraction must be exactly 25%. And the minimum
2302 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2303 ** The original design allowed these amounts to vary, but as of
2304 ** version 3.6.0, we require them to be fixed.
2305 */
2306 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2307 goto page1_init_failed;
2308 }
drh07d183d2005-05-01 22:52:42 +00002309 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002310 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2311 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2312 ){
drh07d183d2005-05-01 22:52:42 +00002313 goto page1_init_failed;
2314 }
2315 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002316 usableSize = pageSize - page1[20];
2317 if( pageSize!=pBt->pageSize ){
2318 /* After reading the first page of the database assuming a page size
2319 ** of BtShared.pageSize, we have discovered that the page-size is
2320 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2321 ** zero and return SQLITE_OK. The caller will call this function
2322 ** again with the correct page-size.
2323 */
2324 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002325 pBt->usableSize = (u16)usableSize;
2326 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002327 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002328 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2329 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002330 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002331 }
drhc2a4bab2010-04-02 12:46:45 +00002332 if( nPageHeader>nPageFile ){
2333 rc = SQLITE_CORRUPT_BKPT;
2334 goto page1_init_failed;
2335 }
drhb33e1b92009-06-18 11:29:20 +00002336 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002337 goto page1_init_failed;
2338 }
drh1bd10f82008-12-10 21:19:56 +00002339 pBt->pageSize = (u16)pageSize;
2340 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002341#ifndef SQLITE_OMIT_AUTOVACUUM
2342 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002343 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002344#endif
drh306dc212001-05-21 13:45:10 +00002345 }
drhb6f41482004-05-14 01:58:11 +00002346
2347 /* maxLocal is the maximum amount of payload to store locally for
2348 ** a cell. Make sure it is small enough so that at least minFanout
2349 ** cells can will fit on one page. We assume a 10-byte page header.
2350 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002351 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002352 ** 4-byte child pointer
2353 ** 9-byte nKey value
2354 ** 4-byte nData value
2355 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002356 ** So a cell consists of a 2-byte poiner, a header which is as much as
2357 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2358 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002359 */
drhe5ae5732008-06-15 02:51:47 +00002360 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2361 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002362 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002363 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002364 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002365 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002366 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002367 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002368
drh72f82862001-05-24 21:06:34 +00002369page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002370 releasePage(pPage1);
2371 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002372 return rc;
drh306dc212001-05-21 13:45:10 +00002373}
2374
2375/*
drhb8ca3072001-12-05 00:21:20 +00002376** If there are no outstanding cursors and we are not in the middle
2377** of a transaction but there is a read lock on the database, then
2378** this routine unrefs the first page of the database file which
2379** has the effect of releasing the read lock.
2380**
drhb8ca3072001-12-05 00:21:20 +00002381** If there is a transaction in progress, this routine is a no-op.
2382*/
danielk1977aef0bf62005-12-30 16:28:01 +00002383static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002384 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002385 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2386 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002387 assert( pBt->pPage1->aData );
2388 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2389 assert( pBt->pPage1->aData );
2390 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002391 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002392 }
2393}
2394
2395/*
drhe39f2f92009-07-23 01:43:59 +00002396** If pBt points to an empty file then convert that empty file
2397** into a new empty database by initializing the first page of
2398** the database.
drh8b2f49b2001-06-08 00:21:52 +00002399*/
danielk1977aef0bf62005-12-30 16:28:01 +00002400static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002401 MemPage *pP1;
2402 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002403 int rc;
drhd677b3d2007-08-20 22:48:41 +00002404
drh1fee73e2007-08-29 04:00:57 +00002405 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002406 if( pBt->nPage>0 ){
2407 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002408 }
drh3aac2dd2004-04-26 14:10:20 +00002409 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002410 assert( pP1!=0 );
2411 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002412 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002413 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002414 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2415 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002416 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002417 data[18] = 1;
2418 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002419 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2420 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002421 data[21] = 64;
2422 data[22] = 32;
2423 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002424 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002425 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002426 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002427#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002428 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002429 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002430 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002431 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002432#endif
drhdd3cd972010-03-27 17:12:36 +00002433 pBt->nPage = 1;
2434 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002435 return SQLITE_OK;
2436}
2437
2438/*
danielk1977ee5741e2004-05-31 10:01:34 +00002439** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002440** is started if the second argument is nonzero, otherwise a read-
2441** transaction. If the second argument is 2 or more and exclusive
2442** transaction is started, meaning that no other process is allowed
2443** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002444** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002445** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002446**
danielk1977ee5741e2004-05-31 10:01:34 +00002447** A write-transaction must be started before attempting any
2448** changes to the database. None of the following routines
2449** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002450**
drh23e11ca2004-05-04 17:27:28 +00002451** sqlite3BtreeCreateTable()
2452** sqlite3BtreeCreateIndex()
2453** sqlite3BtreeClearTable()
2454** sqlite3BtreeDropTable()
2455** sqlite3BtreeInsert()
2456** sqlite3BtreeDelete()
2457** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002458**
drhb8ef32c2005-03-14 02:01:49 +00002459** If an initial attempt to acquire the lock fails because of lock contention
2460** and the database was previously unlocked, then invoke the busy handler
2461** if there is one. But if there was previously a read-lock, do not
2462** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2463** returned when there is already a read-lock in order to avoid a deadlock.
2464**
2465** Suppose there are two processes A and B. A has a read lock and B has
2466** a reserved lock. B tries to promote to exclusive but is blocked because
2467** of A's read lock. A tries to promote to reserved but is blocked by B.
2468** One or the other of the two processes must give way or there can be
2469** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2470** when A already has a read lock, we encourage A to give up and let B
2471** proceed.
drha059ad02001-04-17 20:09:11 +00002472*/
danielk1977aef0bf62005-12-30 16:28:01 +00002473int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002474 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002475 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002476 int rc = SQLITE_OK;
2477
drhd677b3d2007-08-20 22:48:41 +00002478 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002479 btreeIntegrity(p);
2480
danielk1977ee5741e2004-05-31 10:01:34 +00002481 /* If the btree is already in a write-transaction, or it
2482 ** is already in a read-transaction and a read-transaction
2483 ** is requested, this is a no-op.
2484 */
danielk1977aef0bf62005-12-30 16:28:01 +00002485 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002486 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002487 }
drhb8ef32c2005-03-14 02:01:49 +00002488
2489 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002490 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002491 rc = SQLITE_READONLY;
2492 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002493 }
2494
danielk1977404ca072009-03-16 13:19:36 +00002495#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002496 /* If another database handle has already opened a write transaction
2497 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002498 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002499 */
danielk1977404ca072009-03-16 13:19:36 +00002500 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2501 pBlock = pBt->pWriter->db;
2502 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002503 BtLock *pIter;
2504 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2505 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002506 pBlock = pIter->pBtree->db;
2507 break;
danielk1977641b0f42007-12-21 04:47:25 +00002508 }
2509 }
2510 }
danielk1977404ca072009-03-16 13:19:36 +00002511 if( pBlock ){
2512 sqlite3ConnectionBlocked(p->db, pBlock);
2513 rc = SQLITE_LOCKED_SHAREDCACHE;
2514 goto trans_begun;
2515 }
danielk1977641b0f42007-12-21 04:47:25 +00002516#endif
2517
danielk1977602b4662009-07-02 07:47:33 +00002518 /* Any read-only or read-write transaction implies a read-lock on
2519 ** page 1. So if some other shared-cache client already has a write-lock
2520 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002521 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2522 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002523
drh25a80ad2010-03-29 21:13:12 +00002524 pBt->initiallyEmpty = pBt->nPage==0;
drhb8ef32c2005-03-14 02:01:49 +00002525 do {
danielk1977295dc102009-04-01 19:07:03 +00002526 /* Call lockBtree() until either pBt->pPage1 is populated or
2527 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2528 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2529 ** reading page 1 it discovers that the page-size of the database
2530 ** file is not pBt->pageSize. In this case lockBtree() will update
2531 ** pBt->pageSize to the page-size of the file on disk.
2532 */
2533 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002534
drhb8ef32c2005-03-14 02:01:49 +00002535 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002536 if( pBt->readOnly ){
2537 rc = SQLITE_READONLY;
2538 }else{
danielk1977d8293352009-04-30 09:10:37 +00002539 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002540 if( rc==SQLITE_OK ){
2541 rc = newDatabase(pBt);
2542 }
drhb8ef32c2005-03-14 02:01:49 +00002543 }
2544 }
2545
danielk1977bd434552009-03-18 10:33:00 +00002546 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002547 unlockBtreeIfUnused(pBt);
2548 }
danielk1977aef0bf62005-12-30 16:28:01 +00002549 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002550 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002551
2552 if( rc==SQLITE_OK ){
2553 if( p->inTrans==TRANS_NONE ){
2554 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002555#ifndef SQLITE_OMIT_SHARED_CACHE
2556 if( p->sharable ){
2557 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2558 p->lock.eLock = READ_LOCK;
2559 p->lock.pNext = pBt->pLock;
2560 pBt->pLock = &p->lock;
2561 }
2562#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002563 }
2564 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2565 if( p->inTrans>pBt->inTransaction ){
2566 pBt->inTransaction = p->inTrans;
2567 }
danielk1977641b0f42007-12-21 04:47:25 +00002568#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002569 if( wrflag ){
2570 assert( !pBt->pWriter );
2571 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002572 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002573 }
2574#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002575 }
2576
drhd677b3d2007-08-20 22:48:41 +00002577
2578trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002579 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002580 /* This call makes sure that the pager has the correct number of
2581 ** open savepoints. If the second parameter is greater than 0 and
2582 ** the sub-journal is not already open, then it will be opened here.
2583 */
danielk1977fd7f0452008-12-17 17:30:26 +00002584 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2585 }
danielk197712dd5492008-12-18 15:45:07 +00002586
danielk1977aef0bf62005-12-30 16:28:01 +00002587 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002588 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002589 return rc;
drha059ad02001-04-17 20:09:11 +00002590}
2591
danielk1977687566d2004-11-02 12:56:41 +00002592#ifndef SQLITE_OMIT_AUTOVACUUM
2593
2594/*
2595** Set the pointer-map entries for all children of page pPage. Also, if
2596** pPage contains cells that point to overflow pages, set the pointer
2597** map entries for the overflow pages as well.
2598*/
2599static int setChildPtrmaps(MemPage *pPage){
2600 int i; /* Counter variable */
2601 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002602 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002603 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002604 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002605 Pgno pgno = pPage->pgno;
2606
drh1fee73e2007-08-29 04:00:57 +00002607 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002608 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002609 if( rc!=SQLITE_OK ){
2610 goto set_child_ptrmaps_out;
2611 }
danielk1977687566d2004-11-02 12:56:41 +00002612 nCell = pPage->nCell;
2613
2614 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002615 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002616
drh98add2e2009-07-20 17:11:49 +00002617 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002618
danielk1977687566d2004-11-02 12:56:41 +00002619 if( !pPage->leaf ){
2620 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002621 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002622 }
2623 }
2624
2625 if( !pPage->leaf ){
2626 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002627 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002628 }
2629
2630set_child_ptrmaps_out:
2631 pPage->isInit = isInitOrig;
2632 return rc;
2633}
2634
2635/*
drhf3aed592009-07-08 18:12:49 +00002636** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2637** that it points to iTo. Parameter eType describes the type of pointer to
2638** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002639**
2640** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2641** page of pPage.
2642**
2643** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2644** page pointed to by one of the cells on pPage.
2645**
2646** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2647** overflow page in the list.
2648*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002649static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002650 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002651 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002652 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002653 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002654 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002655 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002656 }
danielk1977f78fc082004-11-02 14:40:32 +00002657 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002658 }else{
drhf49661a2008-12-10 16:45:50 +00002659 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002660 int i;
2661 int nCell;
2662
danielk197730548662009-07-09 05:07:37 +00002663 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002664 nCell = pPage->nCell;
2665
danielk1977687566d2004-11-02 12:56:41 +00002666 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002667 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002668 if( eType==PTRMAP_OVERFLOW1 ){
2669 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002670 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002671 if( info.iOverflow ){
2672 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2673 put4byte(&pCell[info.iOverflow], iTo);
2674 break;
2675 }
2676 }
2677 }else{
2678 if( get4byte(pCell)==iFrom ){
2679 put4byte(pCell, iTo);
2680 break;
2681 }
2682 }
2683 }
2684
2685 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002686 if( eType!=PTRMAP_BTREE ||
2687 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002688 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002689 }
danielk1977687566d2004-11-02 12:56:41 +00002690 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2691 }
2692
2693 pPage->isInit = isInitOrig;
2694 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002695 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002696}
2697
danielk1977003ba062004-11-04 02:57:33 +00002698
danielk19777701e812005-01-10 12:59:51 +00002699/*
2700** Move the open database page pDbPage to location iFreePage in the
2701** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002702**
2703** The isCommit flag indicates that there is no need to remember that
2704** the journal needs to be sync()ed before database page pDbPage->pgno
2705** can be written to. The caller has already promised not to write to that
2706** page.
danielk19777701e812005-01-10 12:59:51 +00002707*/
danielk1977003ba062004-11-04 02:57:33 +00002708static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002709 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002710 MemPage *pDbPage, /* Open page to move */
2711 u8 eType, /* Pointer map 'type' entry for pDbPage */
2712 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002713 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002714 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002715){
2716 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2717 Pgno iDbPage = pDbPage->pgno;
2718 Pager *pPager = pBt->pPager;
2719 int rc;
2720
danielk1977a0bf2652004-11-04 14:30:04 +00002721 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2722 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002723 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002724 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002725
drh85b623f2007-12-13 21:54:09 +00002726 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002727 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2728 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002729 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002730 if( rc!=SQLITE_OK ){
2731 return rc;
2732 }
2733 pDbPage->pgno = iFreePage;
2734
2735 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2736 ** that point to overflow pages. The pointer map entries for all these
2737 ** pages need to be changed.
2738 **
2739 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2740 ** pointer to a subsequent overflow page. If this is the case, then
2741 ** the pointer map needs to be updated for the subsequent overflow page.
2742 */
danielk1977a0bf2652004-11-04 14:30:04 +00002743 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002744 rc = setChildPtrmaps(pDbPage);
2745 if( rc!=SQLITE_OK ){
2746 return rc;
2747 }
2748 }else{
2749 Pgno nextOvfl = get4byte(pDbPage->aData);
2750 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002751 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002752 if( rc!=SQLITE_OK ){
2753 return rc;
2754 }
2755 }
2756 }
2757
2758 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2759 ** that it points at iFreePage. Also fix the pointer map entry for
2760 ** iPtrPage.
2761 */
danielk1977a0bf2652004-11-04 14:30:04 +00002762 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002763 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002764 if( rc!=SQLITE_OK ){
2765 return rc;
2766 }
danielk19773b8a05f2007-03-19 17:44:26 +00002767 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002768 if( rc!=SQLITE_OK ){
2769 releasePage(pPtrPage);
2770 return rc;
2771 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002772 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002773 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002774 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002775 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002776 }
danielk1977003ba062004-11-04 02:57:33 +00002777 }
danielk1977003ba062004-11-04 02:57:33 +00002778 return rc;
2779}
2780
danielk1977dddbcdc2007-04-26 14:42:34 +00002781/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002782static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002783
2784/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002785** Perform a single step of an incremental-vacuum. If successful,
2786** return SQLITE_OK. If there is no work to do (and therefore no
2787** point in calling this function again), return SQLITE_DONE.
2788**
2789** More specificly, this function attempts to re-organize the
2790** database so that the last page of the file currently in use
2791** is no longer in use.
2792**
drhea8ffdf2009-07-22 00:35:23 +00002793** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002794** that the caller will keep calling incrVacuumStep() until
2795** it returns SQLITE_DONE or an error, and that nFin is the
2796** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002797** process is complete. If nFin is zero, it is assumed that
2798** incrVacuumStep() will be called a finite amount of times
2799** which may or may not empty the freelist. A full autovacuum
2800** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002801*/
danielk19773460d192008-12-27 15:23:13 +00002802static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002803 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002804 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002805
drh1fee73e2007-08-29 04:00:57 +00002806 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002807 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002808
2809 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002810 u8 eType;
2811 Pgno iPtrPage;
2812
2813 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002814 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002815 return SQLITE_DONE;
2816 }
2817
2818 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2819 if( rc!=SQLITE_OK ){
2820 return rc;
2821 }
2822 if( eType==PTRMAP_ROOTPAGE ){
2823 return SQLITE_CORRUPT_BKPT;
2824 }
2825
2826 if( eType==PTRMAP_FREEPAGE ){
2827 if( nFin==0 ){
2828 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002829 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002830 ** truncated to zero after this function returns, so it doesn't
2831 ** matter if it still contains some garbage entries.
2832 */
2833 Pgno iFreePg;
2834 MemPage *pFreePg;
2835 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2836 if( rc!=SQLITE_OK ){
2837 return rc;
2838 }
2839 assert( iFreePg==iLastPg );
2840 releasePage(pFreePg);
2841 }
2842 } else {
2843 Pgno iFreePg; /* Index of free page to move pLastPg to */
2844 MemPage *pLastPg;
2845
danielk197730548662009-07-09 05:07:37 +00002846 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002847 if( rc!=SQLITE_OK ){
2848 return rc;
2849 }
2850
danielk1977b4626a32007-04-28 15:47:43 +00002851 /* If nFin is zero, this loop runs exactly once and page pLastPg
2852 ** is swapped with the first free page pulled off the free list.
2853 **
2854 ** On the other hand, if nFin is greater than zero, then keep
2855 ** looping until a free-page located within the first nFin pages
2856 ** of the file is found.
2857 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002858 do {
2859 MemPage *pFreePg;
2860 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2861 if( rc!=SQLITE_OK ){
2862 releasePage(pLastPg);
2863 return rc;
2864 }
2865 releasePage(pFreePg);
2866 }while( nFin!=0 && iFreePg>nFin );
2867 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002868
2869 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002870 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002871 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002872 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002873 releasePage(pLastPg);
2874 if( rc!=SQLITE_OK ){
2875 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002876 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002877 }
2878 }
2879
danielk19773460d192008-12-27 15:23:13 +00002880 if( nFin==0 ){
2881 iLastPg--;
2882 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002883 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2884 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002885 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002886 if( rc!=SQLITE_OK ){
2887 return rc;
2888 }
2889 rc = sqlite3PagerWrite(pPg->pDbPage);
2890 releasePage(pPg);
2891 if( rc!=SQLITE_OK ){
2892 return rc;
2893 }
2894 }
danielk19773460d192008-12-27 15:23:13 +00002895 iLastPg--;
2896 }
2897 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002898 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002899 }
2900 return SQLITE_OK;
2901}
2902
2903/*
2904** A write-transaction must be opened before calling this function.
2905** It performs a single unit of work towards an incremental vacuum.
2906**
2907** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002908** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002909** SQLITE_OK is returned. Otherwise an SQLite error code.
2910*/
2911int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002912 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002913 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002914
2915 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002916 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2917 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002918 rc = SQLITE_DONE;
2919 }else{
2920 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00002921 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00002922 if( rc==SQLITE_OK ){
2923 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2924 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
2925 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002926 }
drhd677b3d2007-08-20 22:48:41 +00002927 sqlite3BtreeLeave(p);
2928 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002929}
2930
2931/*
danielk19773b8a05f2007-03-19 17:44:26 +00002932** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002933** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002934**
2935** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2936** the database file should be truncated to during the commit process.
2937** i.e. the database has been reorganized so that only the first *pnTrunc
2938** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002939*/
danielk19773460d192008-12-27 15:23:13 +00002940static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002941 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002942 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002943 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002944
drh1fee73e2007-08-29 04:00:57 +00002945 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002946 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002947 assert(pBt->autoVacuum);
2948 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00002949 Pgno nFin; /* Number of pages in database after autovacuuming */
2950 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00002951 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
2952 Pgno iFree; /* The next page to be freed */
2953 int nEntry; /* Number of entries on one ptrmap page */
2954 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00002955
drhb1299152010-03-30 22:58:33 +00002956 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00002957 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2958 /* It is not possible to create a database for which the final page
2959 ** is either a pointer-map page or the pending-byte page. If one
2960 ** is encountered, this indicates corruption.
2961 */
danielk19773460d192008-12-27 15:23:13 +00002962 return SQLITE_CORRUPT_BKPT;
2963 }
danielk1977ef165ce2009-04-06 17:50:03 +00002964
danielk19773460d192008-12-27 15:23:13 +00002965 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00002966 nEntry = pBt->usableSize/5;
2967 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00002968 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002969 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002970 nFin--;
2971 }
2972 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2973 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002974 }
drhc5e47ac2009-06-04 00:11:56 +00002975 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002976
danielk19773460d192008-12-27 15:23:13 +00002977 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2978 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002979 }
danielk19773460d192008-12-27 15:23:13 +00002980 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00002981 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2982 put4byte(&pBt->pPage1->aData[32], 0);
2983 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00002984 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00002985 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00002986 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00002987 }
2988 if( rc!=SQLITE_OK ){
2989 sqlite3PagerRollback(pPager);
2990 }
danielk1977687566d2004-11-02 12:56:41 +00002991 }
2992
danielk19773b8a05f2007-03-19 17:44:26 +00002993 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002994 return rc;
2995}
danielk1977dddbcdc2007-04-26 14:42:34 +00002996
danielk1977a50d9aa2009-06-08 14:49:45 +00002997#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2998# define setChildPtrmaps(x) SQLITE_OK
2999#endif
danielk1977687566d2004-11-02 12:56:41 +00003000
3001/*
drh80e35f42007-03-30 14:06:34 +00003002** This routine does the first phase of a two-phase commit. This routine
3003** causes a rollback journal to be created (if it does not already exist)
3004** and populated with enough information so that if a power loss occurs
3005** the database can be restored to its original state by playing back
3006** the journal. Then the contents of the journal are flushed out to
3007** the disk. After the journal is safely on oxide, the changes to the
3008** database are written into the database file and flushed to oxide.
3009** At the end of this call, the rollback journal still exists on the
3010** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003011** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003012** commit process.
3013**
3014** This call is a no-op if no write-transaction is currently active on pBt.
3015**
3016** Otherwise, sync the database file for the btree pBt. zMaster points to
3017** the name of a master journal file that should be written into the
3018** individual journal file, or is NULL, indicating no master journal file
3019** (single database transaction).
3020**
3021** When this is called, the master journal should already have been
3022** created, populated with this journal pointer and synced to disk.
3023**
3024** Once this is routine has returned, the only thing required to commit
3025** the write-transaction for this database file is to delete the journal.
3026*/
3027int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3028 int rc = SQLITE_OK;
3029 if( p->inTrans==TRANS_WRITE ){
3030 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003031 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003032#ifndef SQLITE_OMIT_AUTOVACUUM
3033 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003034 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003035 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003036 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003037 return rc;
3038 }
3039 }
3040#endif
drh49b9d332009-01-02 18:10:42 +00003041 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003042 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003043 }
3044 return rc;
3045}
3046
3047/*
danielk197794b30732009-07-02 17:21:57 +00003048** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3049** at the conclusion of a transaction.
3050*/
3051static void btreeEndTransaction(Btree *p){
3052 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003053 assert( sqlite3BtreeHoldsMutex(p) );
3054
danielk197794b30732009-07-02 17:21:57 +00003055 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003056 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3057 /* If there are other active statements that belong to this database
3058 ** handle, downgrade to a read-only transaction. The other statements
3059 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003060 downgradeAllSharedCacheTableLocks(p);
3061 p->inTrans = TRANS_READ;
3062 }else{
3063 /* If the handle had any kind of transaction open, decrement the
3064 ** transaction count of the shared btree. If the transaction count
3065 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3066 ** call below will unlock the pager. */
3067 if( p->inTrans!=TRANS_NONE ){
3068 clearAllSharedCacheTableLocks(p);
3069 pBt->nTransaction--;
3070 if( 0==pBt->nTransaction ){
3071 pBt->inTransaction = TRANS_NONE;
3072 }
3073 }
3074
3075 /* Set the current transaction state to TRANS_NONE and unlock the
3076 ** pager if this call closed the only read or write transaction. */
3077 p->inTrans = TRANS_NONE;
3078 unlockBtreeIfUnused(pBt);
3079 }
3080
3081 btreeIntegrity(p);
3082}
3083
3084/*
drh2aa679f2001-06-25 02:11:07 +00003085** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003086**
drh6e345992007-03-30 11:12:08 +00003087** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003088** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3089** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3090** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003091** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003092** routine has to do is delete or truncate or zero the header in the
3093** the rollback journal (which causes the transaction to commit) and
3094** drop locks.
drh6e345992007-03-30 11:12:08 +00003095**
drh5e00f6c2001-09-13 13:46:56 +00003096** This will release the write lock on the database file. If there
3097** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003098*/
drh80e35f42007-03-30 14:06:34 +00003099int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003100 BtShared *pBt = p->pBt;
3101
drhd677b3d2007-08-20 22:48:41 +00003102 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003103 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003104
3105 /* If the handle has a write-transaction open, commit the shared-btrees
3106 ** transaction and set the shared state to TRANS_READ.
3107 */
3108 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003109 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003110 assert( pBt->inTransaction==TRANS_WRITE );
3111 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003112 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003113 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003114 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003115 return rc;
3116 }
danielk1977aef0bf62005-12-30 16:28:01 +00003117 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003118 }
danielk1977aef0bf62005-12-30 16:28:01 +00003119
danielk197794b30732009-07-02 17:21:57 +00003120 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003121 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003122 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003123}
3124
drh80e35f42007-03-30 14:06:34 +00003125/*
3126** Do both phases of a commit.
3127*/
3128int sqlite3BtreeCommit(Btree *p){
3129 int rc;
drhd677b3d2007-08-20 22:48:41 +00003130 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003131 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3132 if( rc==SQLITE_OK ){
3133 rc = sqlite3BtreeCommitPhaseTwo(p);
3134 }
drhd677b3d2007-08-20 22:48:41 +00003135 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003136 return rc;
3137}
3138
danielk1977fbcd5852004-06-15 02:44:18 +00003139#ifndef NDEBUG
3140/*
3141** Return the number of write-cursors open on this handle. This is for use
3142** in assert() expressions, so it is only compiled if NDEBUG is not
3143** defined.
drhfb982642007-08-30 01:19:59 +00003144**
3145** For the purposes of this routine, a write-cursor is any cursor that
3146** is capable of writing to the databse. That means the cursor was
3147** originally opened for writing and the cursor has not be disabled
3148** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003149*/
danielk1977aef0bf62005-12-30 16:28:01 +00003150static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003151 BtCursor *pCur;
3152 int r = 0;
3153 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003154 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003155 }
3156 return r;
3157}
3158#endif
3159
drhc39e0002004-05-07 23:50:57 +00003160/*
drhfb982642007-08-30 01:19:59 +00003161** This routine sets the state to CURSOR_FAULT and the error
3162** code to errCode for every cursor on BtShared that pBtree
3163** references.
3164**
3165** Every cursor is tripped, including cursors that belong
3166** to other database connections that happen to be sharing
3167** the cache with pBtree.
3168**
3169** This routine gets called when a rollback occurs.
3170** All cursors using the same cache must be tripped
3171** to prevent them from trying to use the btree after
3172** the rollback. The rollback may have deleted tables
3173** or moved root pages, so it is not sufficient to
3174** save the state of the cursor. The cursor must be
3175** invalidated.
3176*/
3177void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3178 BtCursor *p;
3179 sqlite3BtreeEnter(pBtree);
3180 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003181 int i;
danielk1977be51a652008-10-08 17:58:48 +00003182 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003183 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003184 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003185 for(i=0; i<=p->iPage; i++){
3186 releasePage(p->apPage[i]);
3187 p->apPage[i] = 0;
3188 }
drhfb982642007-08-30 01:19:59 +00003189 }
3190 sqlite3BtreeLeave(pBtree);
3191}
3192
3193/*
drhecdc7532001-09-23 02:35:53 +00003194** Rollback the transaction in progress. All cursors will be
3195** invalided by this operation. Any attempt to use a cursor
3196** that was open at the beginning of this operation will result
3197** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003198**
3199** This will release the write lock on the database file. If there
3200** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003201*/
danielk1977aef0bf62005-12-30 16:28:01 +00003202int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003203 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003204 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003205 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003206
drhd677b3d2007-08-20 22:48:41 +00003207 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003208 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003209#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003210 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003211 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003212 ** trying to save cursor positions. If this is an automatic rollback (as
3213 ** the result of a constraint, malloc() failure or IO error) then
3214 ** the cache may be internally inconsistent (not contain valid trees) so
3215 ** we cannot simply return the error to the caller. Instead, abort
3216 ** all queries that may be using any of the cursors that failed to save.
3217 */
drhfb982642007-08-30 01:19:59 +00003218 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003219 }
danielk19778d34dfd2006-01-24 16:37:57 +00003220#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003221 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003222
3223 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003224 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003225
danielk19778d34dfd2006-01-24 16:37:57 +00003226 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003227 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003228 if( rc2!=SQLITE_OK ){
3229 rc = rc2;
3230 }
3231
drh24cd67e2004-05-10 16:18:47 +00003232 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003233 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003234 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003235 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003236 int nPage = get4byte(28+(u8*)pPage1->aData);
3237 testcase( nPage==0 );
3238 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3239 testcase( pBt->nPage!=nPage );
3240 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003241 releasePage(pPage1);
3242 }
danielk1977fbcd5852004-06-15 02:44:18 +00003243 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003244 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003245 }
danielk1977aef0bf62005-12-30 16:28:01 +00003246
danielk197794b30732009-07-02 17:21:57 +00003247 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003248 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003249 return rc;
3250}
3251
3252/*
danielk1977bd434552009-03-18 10:33:00 +00003253** Start a statement subtransaction. The subtransaction can can be rolled
3254** back independently of the main transaction. You must start a transaction
3255** before starting a subtransaction. The subtransaction is ended automatically
3256** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003257**
3258** Statement subtransactions are used around individual SQL statements
3259** that are contained within a BEGIN...COMMIT block. If a constraint
3260** error occurs within the statement, the effect of that one statement
3261** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003262**
3263** A statement sub-transaction is implemented as an anonymous savepoint. The
3264** value passed as the second parameter is the total number of savepoints,
3265** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3266** are no active savepoints and no other statement-transactions open,
3267** iStatement is 1. This anonymous savepoint can be released or rolled back
3268** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003269*/
danielk1977bd434552009-03-18 10:33:00 +00003270int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003271 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003272 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003273 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003274 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003275 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003276 assert( iStatement>0 );
3277 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003278 assert( pBt->inTransaction==TRANS_WRITE );
3279 /* At the pager level, a statement transaction is a savepoint with
3280 ** an index greater than all savepoints created explicitly using
3281 ** SQL statements. It is illegal to open, release or rollback any
3282 ** such savepoints while the statement transaction savepoint is active.
3283 */
3284 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003285 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003286 return rc;
3287}
3288
3289/*
danielk1977fd7f0452008-12-17 17:30:26 +00003290** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3291** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003292** savepoint identified by parameter iSavepoint, depending on the value
3293** of op.
3294**
3295** Normally, iSavepoint is greater than or equal to zero. However, if op is
3296** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3297** contents of the entire transaction are rolled back. This is different
3298** from a normal transaction rollback, as no locks are released and the
3299** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003300*/
3301int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3302 int rc = SQLITE_OK;
3303 if( p && p->inTrans==TRANS_WRITE ){
3304 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003305 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3306 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3307 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003308 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003309 if( rc==SQLITE_OK ){
drh25a80ad2010-03-29 21:13:12 +00003310 if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0;
drh9f0bbf92009-01-02 21:08:09 +00003311 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003312 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhd14133e2010-04-07 20:29:56 +00003313 if( pBt->nPage==0 ){
3314 sqlite3PagerPagecount(pBt->pPager, (int*)&pBt->nPage);
3315 }
drh9f0bbf92009-01-02 21:08:09 +00003316 }
danielk1977fd7f0452008-12-17 17:30:26 +00003317 sqlite3BtreeLeave(p);
3318 }
3319 return rc;
3320}
3321
3322/*
drh8b2f49b2001-06-08 00:21:52 +00003323** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003324** iTable. If a read-only cursor is requested, it is assumed that
3325** the caller already has at least a read-only transaction open
3326** on the database already. If a write-cursor is requested, then
3327** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003328**
3329** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003330** If wrFlag==1, then the cursor can be used for reading or for
3331** writing if other conditions for writing are also met. These
3332** are the conditions that must be met in order for writing to
3333** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003334**
drhf74b8d92002-09-01 23:20:45 +00003335** 1: The cursor must have been opened with wrFlag==1
3336**
drhfe5d71d2007-03-19 11:54:10 +00003337** 2: Other database connections that share the same pager cache
3338** but which are not in the READ_UNCOMMITTED state may not have
3339** cursors open with wrFlag==0 on the same table. Otherwise
3340** the changes made by this write cursor would be visible to
3341** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003342**
3343** 3: The database must be writable (not on read-only media)
3344**
3345** 4: There must be an active transaction.
3346**
drh6446c4d2001-12-15 14:22:18 +00003347** No checking is done to make sure that page iTable really is the
3348** root page of a b-tree. If it is not, then the cursor acquired
3349** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003350**
drhf25a5072009-11-18 23:01:25 +00003351** It is assumed that the sqlite3BtreeCursorZero() has been called
3352** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003353*/
drhd677b3d2007-08-20 22:48:41 +00003354static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003355 Btree *p, /* The btree */
3356 int iTable, /* Root page of table to open */
3357 int wrFlag, /* 1 to write. 0 read-only */
3358 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3359 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003360){
danielk19773e8add92009-07-04 17:16:00 +00003361 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003362
drh1fee73e2007-08-29 04:00:57 +00003363 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003364 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003365
danielk1977602b4662009-07-02 07:47:33 +00003366 /* The following assert statements verify that if this is a sharable
3367 ** b-tree database, the connection is holding the required table locks,
3368 ** and that no other connection has any open cursor that conflicts with
3369 ** this lock. */
3370 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003371 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3372
danielk19773e8add92009-07-04 17:16:00 +00003373 /* Assert that the caller has opened the required transaction. */
3374 assert( p->inTrans>TRANS_NONE );
3375 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3376 assert( pBt->pPage1 && pBt->pPage1->aData );
3377
danielk197796d48e92009-06-29 06:00:37 +00003378 if( NEVER(wrFlag && pBt->readOnly) ){
3379 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003380 }
drhb1299152010-03-30 22:58:33 +00003381 if( iTable==1 && btreePagecount(pBt)==0 ){
danielk19773e8add92009-07-04 17:16:00 +00003382 return SQLITE_EMPTY;
3383 }
danielk1977aef0bf62005-12-30 16:28:01 +00003384
danielk1977aef0bf62005-12-30 16:28:01 +00003385 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003386 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003387 pCur->pgnoRoot = (Pgno)iTable;
3388 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003389 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003390 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003391 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003392 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003393 pCur->pNext = pBt->pCursor;
3394 if( pCur->pNext ){
3395 pCur->pNext->pPrev = pCur;
3396 }
3397 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003398 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003399 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003400 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003401}
drhd677b3d2007-08-20 22:48:41 +00003402int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003403 Btree *p, /* The btree */
3404 int iTable, /* Root page of table to open */
3405 int wrFlag, /* 1 to write. 0 read-only */
3406 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3407 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003408){
3409 int rc;
3410 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003411 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003412 sqlite3BtreeLeave(p);
3413 return rc;
3414}
drh7f751222009-03-17 22:33:00 +00003415
3416/*
3417** Return the size of a BtCursor object in bytes.
3418**
3419** This interfaces is needed so that users of cursors can preallocate
3420** sufficient storage to hold a cursor. The BtCursor object is opaque
3421** to users so they cannot do the sizeof() themselves - they must call
3422** this routine.
3423*/
3424int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003425 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003426}
3427
drh7f751222009-03-17 22:33:00 +00003428/*
drhf25a5072009-11-18 23:01:25 +00003429** Initialize memory that will be converted into a BtCursor object.
3430**
3431** The simple approach here would be to memset() the entire object
3432** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3433** do not need to be zeroed and they are large, so we can save a lot
3434** of run-time by skipping the initialization of those elements.
3435*/
3436void sqlite3BtreeCursorZero(BtCursor *p){
3437 memset(p, 0, offsetof(BtCursor, iPage));
3438}
3439
3440/*
drh7f751222009-03-17 22:33:00 +00003441** Set the cached rowid value of every cursor in the same database file
3442** as pCur and having the same root page number as pCur. The value is
3443** set to iRowid.
3444**
3445** Only positive rowid values are considered valid for this cache.
3446** The cache is initialized to zero, indicating an invalid cache.
3447** A btree will work fine with zero or negative rowids. We just cannot
3448** cache zero or negative rowids, which means tables that use zero or
3449** negative rowids might run a little slower. But in practice, zero
3450** or negative rowids are very uncommon so this should not be a problem.
3451*/
3452void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3453 BtCursor *p;
3454 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3455 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3456 }
3457 assert( pCur->cachedRowid==iRowid );
3458}
drhd677b3d2007-08-20 22:48:41 +00003459
drh7f751222009-03-17 22:33:00 +00003460/*
3461** Return the cached rowid for the given cursor. A negative or zero
3462** return value indicates that the rowid cache is invalid and should be
3463** ignored. If the rowid cache has never before been set, then a
3464** zero is returned.
3465*/
3466sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3467 return pCur->cachedRowid;
3468}
drha059ad02001-04-17 20:09:11 +00003469
3470/*
drh5e00f6c2001-09-13 13:46:56 +00003471** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003472** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003473*/
drh3aac2dd2004-04-26 14:10:20 +00003474int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003475 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003476 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003477 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003478 BtShared *pBt = pCur->pBt;
3479 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003480 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003481 if( pCur->pPrev ){
3482 pCur->pPrev->pNext = pCur->pNext;
3483 }else{
3484 pBt->pCursor = pCur->pNext;
3485 }
3486 if( pCur->pNext ){
3487 pCur->pNext->pPrev = pCur->pPrev;
3488 }
danielk197771d5d2c2008-09-29 11:49:47 +00003489 for(i=0; i<=pCur->iPage; i++){
3490 releasePage(pCur->apPage[i]);
3491 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003492 unlockBtreeIfUnused(pBt);
3493 invalidateOverflowCache(pCur);
3494 /* sqlite3_free(pCur); */
3495 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003496 }
drh8c42ca92001-06-22 19:15:00 +00003497 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003498}
3499
drh5e2f8b92001-05-28 00:41:15 +00003500/*
drh86057612007-06-26 01:04:48 +00003501** Make sure the BtCursor* given in the argument has a valid
3502** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003503** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003504**
3505** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003506** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003507**
3508** 2007-06-25: There is a bug in some versions of MSVC that cause the
3509** compiler to crash when getCellInfo() is implemented as a macro.
3510** But there is a measureable speed advantage to using the macro on gcc
3511** (when less compiler optimizations like -Os or -O0 are used and the
3512** compiler is not doing agressive inlining.) So we use a real function
3513** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003514*/
drh9188b382004-05-14 21:12:22 +00003515#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003516 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003517 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003518 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003519 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003520 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003521 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003522 }
danielk19771cc5ed82007-05-16 17:28:43 +00003523#else
3524 #define assertCellInfo(x)
3525#endif
drh86057612007-06-26 01:04:48 +00003526#ifdef _MSC_VER
3527 /* Use a real function in MSVC to work around bugs in that compiler. */
3528 static void getCellInfo(BtCursor *pCur){
3529 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003530 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003531 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003532 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003533 }else{
3534 assertCellInfo(pCur);
3535 }
3536 }
3537#else /* if not _MSC_VER */
3538 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003539#define getCellInfo(pCur) \
3540 if( pCur->info.nSize==0 ){ \
3541 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003542 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003543 pCur->validNKey = 1; \
3544 }else{ \
3545 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003546 }
3547#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003548
drhea8ffdf2009-07-22 00:35:23 +00003549#ifndef NDEBUG /* The next routine used only within assert() statements */
3550/*
3551** Return true if the given BtCursor is valid. A valid cursor is one
3552** that is currently pointing to a row in a (non-empty) table.
3553** This is a verification routine is used only within assert() statements.
3554*/
3555int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3556 return pCur && pCur->eState==CURSOR_VALID;
3557}
3558#endif /* NDEBUG */
3559
drh9188b382004-05-14 21:12:22 +00003560/*
drh3aac2dd2004-04-26 14:10:20 +00003561** Set *pSize to the size of the buffer needed to hold the value of
3562** the key for the current entry. If the cursor is not pointing
3563** to a valid entry, *pSize is set to 0.
3564**
drh4b70f112004-05-02 21:12:19 +00003565** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003566** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003567**
3568** The caller must position the cursor prior to invoking this routine.
3569**
3570** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003571*/
drh4a1c3802004-05-12 15:15:47 +00003572int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003573 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003574 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3575 if( pCur->eState!=CURSOR_VALID ){
3576 *pSize = 0;
3577 }else{
3578 getCellInfo(pCur);
3579 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003580 }
drhea8ffdf2009-07-22 00:35:23 +00003581 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003582}
drh2af926b2001-05-15 00:39:25 +00003583
drh72f82862001-05-24 21:06:34 +00003584/*
drh0e1c19e2004-05-11 00:58:56 +00003585** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003586** cursor currently points to.
3587**
3588** The caller must guarantee that the cursor is pointing to a non-NULL
3589** valid entry. In other words, the calling procedure must guarantee
3590** that the cursor has Cursor.eState==CURSOR_VALID.
3591**
3592** Failure is not possible. This function always returns SQLITE_OK.
3593** It might just as well be a procedure (returning void) but we continue
3594** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003595*/
3596int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003597 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003598 assert( pCur->eState==CURSOR_VALID );
3599 getCellInfo(pCur);
3600 *pSize = pCur->info.nData;
3601 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003602}
3603
3604/*
danielk1977d04417962007-05-02 13:16:30 +00003605** Given the page number of an overflow page in the database (parameter
3606** ovfl), this function finds the page number of the next page in the
3607** linked list of overflow pages. If possible, it uses the auto-vacuum
3608** pointer-map data instead of reading the content of page ovfl to do so.
3609**
3610** If an error occurs an SQLite error code is returned. Otherwise:
3611**
danielk1977bea2a942009-01-20 17:06:27 +00003612** The page number of the next overflow page in the linked list is
3613** written to *pPgnoNext. If page ovfl is the last page in its linked
3614** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003615**
danielk1977bea2a942009-01-20 17:06:27 +00003616** If ppPage is not NULL, and a reference to the MemPage object corresponding
3617** to page number pOvfl was obtained, then *ppPage is set to point to that
3618** reference. It is the responsibility of the caller to call releasePage()
3619** on *ppPage to free the reference. In no reference was obtained (because
3620** the pointer-map was used to obtain the value for *pPgnoNext), then
3621** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003622*/
3623static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003624 BtShared *pBt, /* The database file */
3625 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003626 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003627 Pgno *pPgnoNext /* OUT: Next overflow page number */
3628){
3629 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003630 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003631 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003632
drh1fee73e2007-08-29 04:00:57 +00003633 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003634 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003635
3636#ifndef SQLITE_OMIT_AUTOVACUUM
3637 /* Try to find the next page in the overflow list using the
3638 ** autovacuum pointer-map pages. Guess that the next page in
3639 ** the overflow list is page number (ovfl+1). If that guess turns
3640 ** out to be wrong, fall back to loading the data of page
3641 ** number ovfl to determine the next page number.
3642 */
3643 if( pBt->autoVacuum ){
3644 Pgno pgno;
3645 Pgno iGuess = ovfl+1;
3646 u8 eType;
3647
3648 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3649 iGuess++;
3650 }
3651
drhb1299152010-03-30 22:58:33 +00003652 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003653 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003654 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003655 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003656 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003657 }
3658 }
3659 }
3660#endif
3661
danielk1977d8a3f3d2009-07-11 11:45:23 +00003662 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003663 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003664 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003665 assert( rc==SQLITE_OK || pPage==0 );
3666 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003667 next = get4byte(pPage->aData);
3668 }
danielk1977443c0592009-01-16 15:21:05 +00003669 }
danielk197745d68822009-01-16 16:23:38 +00003670
danielk1977bea2a942009-01-20 17:06:27 +00003671 *pPgnoNext = next;
3672 if( ppPage ){
3673 *ppPage = pPage;
3674 }else{
3675 releasePage(pPage);
3676 }
3677 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003678}
3679
danielk1977da107192007-05-04 08:32:13 +00003680/*
3681** Copy data from a buffer to a page, or from a page to a buffer.
3682**
3683** pPayload is a pointer to data stored on database page pDbPage.
3684** If argument eOp is false, then nByte bytes of data are copied
3685** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3686** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3687** of data are copied from the buffer pBuf to pPayload.
3688**
3689** SQLITE_OK is returned on success, otherwise an error code.
3690*/
3691static int copyPayload(
3692 void *pPayload, /* Pointer to page data */
3693 void *pBuf, /* Pointer to buffer */
3694 int nByte, /* Number of bytes to copy */
3695 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3696 DbPage *pDbPage /* Page containing pPayload */
3697){
3698 if( eOp ){
3699 /* Copy data from buffer to page (a write operation) */
3700 int rc = sqlite3PagerWrite(pDbPage);
3701 if( rc!=SQLITE_OK ){
3702 return rc;
3703 }
3704 memcpy(pPayload, pBuf, nByte);
3705 }else{
3706 /* Copy data from page to buffer (a read operation) */
3707 memcpy(pBuf, pPayload, nByte);
3708 }
3709 return SQLITE_OK;
3710}
danielk1977d04417962007-05-02 13:16:30 +00003711
3712/*
danielk19779f8d6402007-05-02 17:48:45 +00003713** This function is used to read or overwrite payload information
3714** for the entry that the pCur cursor is pointing to. If the eOp
3715** parameter is 0, this is a read operation (data copied into
3716** buffer pBuf). If it is non-zero, a write (data copied from
3717** buffer pBuf).
3718**
3719** A total of "amt" bytes are read or written beginning at "offset".
3720** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003721**
drh3bcdfd22009-07-12 02:32:21 +00003722** The content being read or written might appear on the main page
3723** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003724**
danielk1977dcbb5d32007-05-04 18:36:44 +00003725** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003726** cursor entry uses one or more overflow pages, this function
3727** allocates space for and lazily popluates the overflow page-list
3728** cache array (BtCursor.aOverflow). Subsequent calls use this
3729** cache to make seeking to the supplied offset more efficient.
3730**
3731** Once an overflow page-list cache has been allocated, it may be
3732** invalidated if some other cursor writes to the same table, or if
3733** the cursor is moved to a different row. Additionally, in auto-vacuum
3734** mode, the following events may invalidate an overflow page-list cache.
3735**
3736** * An incremental vacuum,
3737** * A commit in auto_vacuum="full" mode,
3738** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003739*/
danielk19779f8d6402007-05-02 17:48:45 +00003740static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003741 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003742 u32 offset, /* Begin reading this far into payload */
3743 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003744 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003745 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003746){
3747 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003748 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003749 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003750 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003751 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003752 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003753
danielk1977da107192007-05-04 08:32:13 +00003754 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003755 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003756 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003757 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003758
drh86057612007-06-26 01:04:48 +00003759 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003760 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003761 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003762
drh3bcdfd22009-07-12 02:32:21 +00003763 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003764 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3765 ){
danielk1977da107192007-05-04 08:32:13 +00003766 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003767 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003768 }
danielk1977da107192007-05-04 08:32:13 +00003769
3770 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003771 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003772 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003773 if( a+offset>pCur->info.nLocal ){
3774 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003775 }
danielk1977da107192007-05-04 08:32:13 +00003776 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003777 offset = 0;
drha34b6762004-05-07 13:30:42 +00003778 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003779 amt -= a;
drhdd793422001-06-28 01:54:48 +00003780 }else{
drhfa1a98a2004-05-14 19:08:17 +00003781 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003782 }
danielk1977da107192007-05-04 08:32:13 +00003783
3784 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003785 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003786 Pgno nextPage;
3787
drhfa1a98a2004-05-14 19:08:17 +00003788 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003789
danielk19772dec9702007-05-02 16:48:37 +00003790#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003791 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003792 ** has not been allocated, allocate it now. The array is sized at
3793 ** one entry for each overflow page in the overflow chain. The
3794 ** page number of the first overflow page is stored in aOverflow[0],
3795 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3796 ** (the cache is lazily populated).
3797 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003798 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003799 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003800 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003801 /* nOvfl is always positive. If it were zero, fetchPayload would have
3802 ** been used instead of this routine. */
3803 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003804 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003805 }
3806 }
danielk1977da107192007-05-04 08:32:13 +00003807
3808 /* If the overflow page-list cache has been allocated and the
3809 ** entry for the first required overflow page is valid, skip
3810 ** directly to it.
3811 */
danielk19772dec9702007-05-02 16:48:37 +00003812 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3813 iIdx = (offset/ovflSize);
3814 nextPage = pCur->aOverflow[iIdx];
3815 offset = (offset%ovflSize);
3816 }
3817#endif
danielk1977da107192007-05-04 08:32:13 +00003818
3819 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3820
3821#ifndef SQLITE_OMIT_INCRBLOB
3822 /* If required, populate the overflow page-list cache. */
3823 if( pCur->aOverflow ){
3824 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3825 pCur->aOverflow[iIdx] = nextPage;
3826 }
3827#endif
3828
danielk1977d04417962007-05-02 13:16:30 +00003829 if( offset>=ovflSize ){
3830 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003831 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003832 ** data is not required. So first try to lookup the overflow
3833 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003834 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003835 */
danielk19772dec9702007-05-02 16:48:37 +00003836#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003837 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3838 nextPage = pCur->aOverflow[iIdx+1];
3839 } else
danielk19772dec9702007-05-02 16:48:37 +00003840#endif
danielk1977da107192007-05-04 08:32:13 +00003841 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003842 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003843 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003844 /* Need to read this page properly. It contains some of the
3845 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003846 */
3847 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003848 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003849 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003850 if( rc==SQLITE_OK ){
3851 aPayload = sqlite3PagerGetData(pDbPage);
3852 nextPage = get4byte(aPayload);
3853 if( a + offset > ovflSize ){
3854 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003855 }
danielk1977da107192007-05-04 08:32:13 +00003856 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3857 sqlite3PagerUnref(pDbPage);
3858 offset = 0;
3859 amt -= a;
3860 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003861 }
danielk1977cfe9a692004-06-16 12:00:29 +00003862 }
drh2af926b2001-05-15 00:39:25 +00003863 }
drh2af926b2001-05-15 00:39:25 +00003864 }
danielk1977cfe9a692004-06-16 12:00:29 +00003865
danielk1977da107192007-05-04 08:32:13 +00003866 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003867 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003868 }
danielk1977da107192007-05-04 08:32:13 +00003869 return rc;
drh2af926b2001-05-15 00:39:25 +00003870}
3871
drh72f82862001-05-24 21:06:34 +00003872/*
drh3aac2dd2004-04-26 14:10:20 +00003873** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003874** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003875** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003876**
drh5d1a8722009-07-22 18:07:40 +00003877** The caller must ensure that pCur is pointing to a valid row
3878** in the table.
3879**
drh3aac2dd2004-04-26 14:10:20 +00003880** Return SQLITE_OK on success or an error code if anything goes
3881** wrong. An error is returned if "offset+amt" is larger than
3882** the available payload.
drh72f82862001-05-24 21:06:34 +00003883*/
drha34b6762004-05-07 13:30:42 +00003884int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00003885 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00003886 assert( pCur->eState==CURSOR_VALID );
3887 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3888 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
3889 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00003890}
3891
3892/*
drh3aac2dd2004-04-26 14:10:20 +00003893** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003894** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003895** begins at "offset".
3896**
3897** Return SQLITE_OK on success or an error code if anything goes
3898** wrong. An error is returned if "offset+amt" is larger than
3899** the available payload.
drh72f82862001-05-24 21:06:34 +00003900*/
drh3aac2dd2004-04-26 14:10:20 +00003901int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003902 int rc;
3903
danielk19773588ceb2008-06-10 17:30:26 +00003904#ifndef SQLITE_OMIT_INCRBLOB
3905 if ( pCur->eState==CURSOR_INVALID ){
3906 return SQLITE_ABORT;
3907 }
3908#endif
3909
drh1fee73e2007-08-29 04:00:57 +00003910 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003911 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003912 if( rc==SQLITE_OK ){
3913 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003914 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3915 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003916 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00003917 }
3918 return rc;
drh2af926b2001-05-15 00:39:25 +00003919}
3920
drh72f82862001-05-24 21:06:34 +00003921/*
drh0e1c19e2004-05-11 00:58:56 +00003922** Return a pointer to payload information from the entry that the
3923** pCur cursor is pointing to. The pointer is to the beginning of
3924** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003925** skipKey==1. The number of bytes of available key/data is written
3926** into *pAmt. If *pAmt==0, then the value returned will not be
3927** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003928**
3929** This routine is an optimization. It is common for the entire key
3930** and data to fit on the local page and for there to be no overflow
3931** pages. When that is so, this routine can be used to access the
3932** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003933** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003934** the key/data and copy it into a preallocated buffer.
3935**
3936** The pointer returned by this routine looks directly into the cached
3937** page of the database. The data might change or move the next time
3938** any btree routine is called.
3939*/
3940static const unsigned char *fetchPayload(
3941 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003942 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003943 int skipKey /* read beginning at data if this is true */
3944){
3945 unsigned char *aPayload;
3946 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003947 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003948 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003949
danielk197771d5d2c2008-09-29 11:49:47 +00003950 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003951 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003952 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003953 pPage = pCur->apPage[pCur->iPage];
3954 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00003955 if( NEVER(pCur->info.nSize==0) ){
3956 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
3957 &pCur->info);
3958 }
drh43605152004-05-29 21:46:49 +00003959 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003960 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003961 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003962 nKey = 0;
3963 }else{
drhf49661a2008-12-10 16:45:50 +00003964 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003965 }
drh0e1c19e2004-05-11 00:58:56 +00003966 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003967 aPayload += nKey;
3968 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003969 }else{
drhfa1a98a2004-05-14 19:08:17 +00003970 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00003971 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00003972 }
drhe51c44f2004-05-30 20:46:09 +00003973 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003974 return aPayload;
3975}
3976
3977
3978/*
drhe51c44f2004-05-30 20:46:09 +00003979** For the entry that cursor pCur is point to, return as
3980** many bytes of the key or data as are available on the local
3981** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003982**
3983** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003984** or be destroyed on the next call to any Btree routine,
3985** including calls from other threads against the same cache.
3986** Hence, a mutex on the BtShared should be held prior to calling
3987** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003988**
3989** These routines is used to get quick access to key and data
3990** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003991*/
drhe51c44f2004-05-30 20:46:09 +00003992const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00003993 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00003994 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003995 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00003996 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
3997 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00003998 }
drhfe3313f2009-07-21 19:02:20 +00003999 return p;
drh0e1c19e2004-05-11 00:58:56 +00004000}
drhe51c44f2004-05-30 20:46:09 +00004001const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004002 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004003 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004004 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004005 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4006 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004007 }
drhfe3313f2009-07-21 19:02:20 +00004008 return p;
drh0e1c19e2004-05-11 00:58:56 +00004009}
4010
4011
4012/*
drh8178a752003-01-05 21:41:40 +00004013** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004014** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004015**
4016** This function returns SQLITE_CORRUPT if the page-header flags field of
4017** the new child page does not match the flags field of the parent (i.e.
4018** if an intkey page appears to be the parent of a non-intkey page, or
4019** vice-versa).
drh72f82862001-05-24 21:06:34 +00004020*/
drh3aac2dd2004-04-26 14:10:20 +00004021static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004022 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004023 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004024 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004025 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004026
drh1fee73e2007-08-29 04:00:57 +00004027 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004028 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004029 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4030 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4031 return SQLITE_CORRUPT_BKPT;
4032 }
4033 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004034 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004035 pCur->apPage[i+1] = pNewPage;
4036 pCur->aiIdx[i+1] = 0;
4037 pCur->iPage++;
4038
drh271efa52004-05-30 19:19:05 +00004039 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004040 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004041 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004042 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004043 }
drh72f82862001-05-24 21:06:34 +00004044 return SQLITE_OK;
4045}
4046
danielk1977bf93c562008-09-29 15:53:25 +00004047#ifndef NDEBUG
4048/*
4049** Page pParent is an internal (non-leaf) tree page. This function
4050** asserts that page number iChild is the left-child if the iIdx'th
4051** cell in page pParent. Or, if iIdx is equal to the total number of
4052** cells in pParent, that page number iChild is the right-child of
4053** the page.
4054*/
4055static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4056 assert( iIdx<=pParent->nCell );
4057 if( iIdx==pParent->nCell ){
4058 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4059 }else{
4060 assert( get4byte(findCell(pParent, iIdx))==iChild );
4061 }
4062}
4063#else
4064# define assertParentIndex(x,y,z)
4065#endif
4066
drh72f82862001-05-24 21:06:34 +00004067/*
drh5e2f8b92001-05-28 00:41:15 +00004068** Move the cursor up to the parent page.
4069**
4070** pCur->idx is set to the cell index that contains the pointer
4071** to the page we are coming from. If we are coming from the
4072** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004073** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004074*/
danielk197730548662009-07-09 05:07:37 +00004075static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004076 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004077 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004078 assert( pCur->iPage>0 );
4079 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004080 assertParentIndex(
4081 pCur->apPage[pCur->iPage-1],
4082 pCur->aiIdx[pCur->iPage-1],
4083 pCur->apPage[pCur->iPage]->pgno
4084 );
danielk197771d5d2c2008-09-29 11:49:47 +00004085 releasePage(pCur->apPage[pCur->iPage]);
4086 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004087 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004088 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004089}
4090
4091/*
danielk19778f880a82009-07-13 09:41:45 +00004092** Move the cursor to point to the root page of its b-tree structure.
4093**
4094** If the table has a virtual root page, then the cursor is moved to point
4095** to the virtual root page instead of the actual root page. A table has a
4096** virtual root page when the actual root page contains no cells and a
4097** single child page. This can only happen with the table rooted at page 1.
4098**
4099** If the b-tree structure is empty, the cursor state is set to
4100** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4101** cell located on the root (or virtual root) page and the cursor state
4102** is set to CURSOR_VALID.
4103**
4104** If this function returns successfully, it may be assumed that the
4105** page-header flags indicate that the [virtual] root-page is the expected
4106** kind of b-tree page (i.e. if when opening the cursor the caller did not
4107** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4108** indicating a table b-tree, or if the caller did specify a KeyInfo
4109** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4110** b-tree).
drh72f82862001-05-24 21:06:34 +00004111*/
drh5e2f8b92001-05-28 00:41:15 +00004112static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004113 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004114 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004115 Btree *p = pCur->pBtree;
4116 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004117
drh1fee73e2007-08-29 04:00:57 +00004118 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004119 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4120 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4121 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4122 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4123 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004124 assert( pCur->skipNext!=SQLITE_OK );
4125 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004126 }
danielk1977be51a652008-10-08 17:58:48 +00004127 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004128 }
danielk197771d5d2c2008-09-29 11:49:47 +00004129
4130 if( pCur->iPage>=0 ){
4131 int i;
4132 for(i=1; i<=pCur->iPage; i++){
4133 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004134 }
danielk1977172114a2009-07-07 15:47:12 +00004135 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004136 }else{
drh4c301aa2009-07-15 17:25:45 +00004137 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4138 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004139 pCur->eState = CURSOR_INVALID;
4140 return rc;
4141 }
danielk1977172114a2009-07-07 15:47:12 +00004142 pCur->iPage = 0;
4143
4144 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4145 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4146 ** NULL, the caller expects a table b-tree. If this is not the case,
4147 ** return an SQLITE_CORRUPT error. */
4148 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4149 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4150 return SQLITE_CORRUPT_BKPT;
4151 }
drhc39e0002004-05-07 23:50:57 +00004152 }
danielk197771d5d2c2008-09-29 11:49:47 +00004153
danielk19778f880a82009-07-13 09:41:45 +00004154 /* Assert that the root page is of the correct type. This must be the
4155 ** case as the call to this function that loaded the root-page (either
4156 ** this call or a previous invocation) would have detected corruption
4157 ** if the assumption were not true, and it is not possible for the flags
4158 ** byte to have been modified while this cursor is holding a reference
4159 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004160 pRoot = pCur->apPage[0];
4161 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004162 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4163
danielk197771d5d2c2008-09-29 11:49:47 +00004164 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004165 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004166 pCur->atLast = 0;
4167 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004168
drh8856d6a2004-04-29 14:42:46 +00004169 if( pRoot->nCell==0 && !pRoot->leaf ){
4170 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004171 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004172 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004173 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004174 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004175 }else{
4176 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004177 }
4178 return rc;
drh72f82862001-05-24 21:06:34 +00004179}
drh2af926b2001-05-15 00:39:25 +00004180
drh5e2f8b92001-05-28 00:41:15 +00004181/*
4182** Move the cursor down to the left-most leaf entry beneath the
4183** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004184**
4185** The left-most leaf is the one with the smallest key - the first
4186** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004187*/
4188static int moveToLeftmost(BtCursor *pCur){
4189 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004190 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004191 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004192
drh1fee73e2007-08-29 04:00:57 +00004193 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004194 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004195 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4196 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4197 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004198 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004199 }
drhd677b3d2007-08-20 22:48:41 +00004200 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004201}
4202
drh2dcc9aa2002-12-04 13:40:25 +00004203/*
4204** Move the cursor down to the right-most leaf entry beneath the
4205** page to which it is currently pointing. Notice the difference
4206** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4207** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4208** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004209**
4210** The right-most entry is the one with the largest key - the last
4211** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004212*/
4213static int moveToRightmost(BtCursor *pCur){
4214 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004215 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004216 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004217
drh1fee73e2007-08-29 04:00:57 +00004218 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004219 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004220 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004221 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004222 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004223 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004224 }
drhd677b3d2007-08-20 22:48:41 +00004225 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004226 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004227 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004228 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004229 }
danielk1977518002e2008-09-05 05:02:46 +00004230 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004231}
4232
drh5e00f6c2001-09-13 13:46:56 +00004233/* Move the cursor to the first entry in the table. Return SQLITE_OK
4234** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004235** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004236*/
drh3aac2dd2004-04-26 14:10:20 +00004237int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004238 int rc;
drhd677b3d2007-08-20 22:48:41 +00004239
drh1fee73e2007-08-29 04:00:57 +00004240 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004241 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004242 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004243 if( rc==SQLITE_OK ){
4244 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004245 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004246 *pRes = 1;
4247 rc = SQLITE_OK;
4248 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004249 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004250 *pRes = 0;
4251 rc = moveToLeftmost(pCur);
4252 }
drh5e00f6c2001-09-13 13:46:56 +00004253 }
drh5e00f6c2001-09-13 13:46:56 +00004254 return rc;
4255}
drh5e2f8b92001-05-28 00:41:15 +00004256
drh9562b552002-02-19 15:00:07 +00004257/* Move the cursor to the last entry in the table. Return SQLITE_OK
4258** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004259** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004260*/
drh3aac2dd2004-04-26 14:10:20 +00004261int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004262 int rc;
drhd677b3d2007-08-20 22:48:41 +00004263
drh1fee73e2007-08-29 04:00:57 +00004264 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004265 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004266
4267 /* If the cursor already points to the last entry, this is a no-op. */
4268 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4269#ifdef SQLITE_DEBUG
4270 /* This block serves to assert() that the cursor really does point
4271 ** to the last entry in the b-tree. */
4272 int ii;
4273 for(ii=0; ii<pCur->iPage; ii++){
4274 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4275 }
4276 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4277 assert( pCur->apPage[pCur->iPage]->leaf );
4278#endif
4279 return SQLITE_OK;
4280 }
4281
drh9562b552002-02-19 15:00:07 +00004282 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004283 if( rc==SQLITE_OK ){
4284 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004285 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004286 *pRes = 1;
4287 }else{
4288 assert( pCur->eState==CURSOR_VALID );
4289 *pRes = 0;
4290 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004291 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004292 }
drh9562b552002-02-19 15:00:07 +00004293 }
drh9562b552002-02-19 15:00:07 +00004294 return rc;
4295}
4296
drhe14006d2008-03-25 17:23:32 +00004297/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004298** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004299**
drhe63d9992008-08-13 19:11:48 +00004300** For INTKEY tables, the intKey parameter is used. pIdxKey
4301** must be NULL. For index tables, pIdxKey is used and intKey
4302** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004303**
drh5e2f8b92001-05-28 00:41:15 +00004304** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004305** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004306** were present. The cursor might point to an entry that comes
4307** before or after the key.
4308**
drh64022502009-01-09 14:11:04 +00004309** An integer is written into *pRes which is the result of
4310** comparing the key with the entry to which the cursor is
4311** pointing. The meaning of the integer written into
4312** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004313**
4314** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004315** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004316** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004317**
4318** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004319** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004320**
4321** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004322** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004323**
drha059ad02001-04-17 20:09:11 +00004324*/
drhe63d9992008-08-13 19:11:48 +00004325int sqlite3BtreeMovetoUnpacked(
4326 BtCursor *pCur, /* The cursor to be moved */
4327 UnpackedRecord *pIdxKey, /* Unpacked index key */
4328 i64 intKey, /* The table key */
4329 int biasRight, /* If true, bias the search to the high end */
4330 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004331){
drh72f82862001-05-24 21:06:34 +00004332 int rc;
drhd677b3d2007-08-20 22:48:41 +00004333
drh1fee73e2007-08-29 04:00:57 +00004334 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004335 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004336 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004337 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004338
4339 /* If the cursor is already positioned at the point we are trying
4340 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004341 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4342 && pCur->apPage[0]->intKey
4343 ){
drhe63d9992008-08-13 19:11:48 +00004344 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004345 *pRes = 0;
4346 return SQLITE_OK;
4347 }
drhe63d9992008-08-13 19:11:48 +00004348 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004349 *pRes = -1;
4350 return SQLITE_OK;
4351 }
4352 }
4353
drh5e2f8b92001-05-28 00:41:15 +00004354 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004355 if( rc ){
4356 return rc;
4357 }
danielk197771d5d2c2008-09-29 11:49:47 +00004358 assert( pCur->apPage[pCur->iPage] );
4359 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004360 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004361 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004362 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004363 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004364 return SQLITE_OK;
4365 }
danielk197771d5d2c2008-09-29 11:49:47 +00004366 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004367 for(;;){
drh72f82862001-05-24 21:06:34 +00004368 int lwr, upr;
4369 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004370 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004371 int c;
4372
4373 /* pPage->nCell must be greater than zero. If this is the root-page
4374 ** the cursor would have been INVALID above and this for(;;) loop
4375 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004376 ** would have already detected db corruption. Similarly, pPage must
4377 ** be the right kind (index or table) of b-tree page. Otherwise
4378 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004379 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004380 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004381 lwr = 0;
4382 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004383 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004384 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004385 }else{
drhf49661a2008-12-10 16:45:50 +00004386 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004387 }
drh64022502009-01-09 14:11:04 +00004388 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004389 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4390 u8 *pCell; /* Pointer to current cell in pPage */
4391
drh366fda62006-01-13 02:35:09 +00004392 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004393 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004394 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004395 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004396 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004397 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004398 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004399 }
drha2c20e42008-03-29 16:01:04 +00004400 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004401 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004402 c = 0;
drhe63d9992008-08-13 19:11:48 +00004403 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004404 c = -1;
4405 }else{
drhe63d9992008-08-13 19:11:48 +00004406 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004407 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004408 }
danielk197711c327a2009-05-04 19:01:26 +00004409 pCur->validNKey = 1;
4410 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004411 }else{
danielk197711c327a2009-05-04 19:01:26 +00004412 /* The maximum supported page-size is 32768 bytes. This means that
4413 ** the maximum number of record bytes stored on an index B-Tree
4414 ** page is at most 8198 bytes, which may be stored as a 2-byte
4415 ** varint. This information is used to attempt to avoid parsing
4416 ** the entire cell by checking for the cases where the record is
4417 ** stored entirely within the b-tree page by inspecting the first
4418 ** 2 bytes of the cell.
4419 */
4420 int nCell = pCell[0];
4421 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4422 /* This branch runs if the record-size field of the cell is a
4423 ** single byte varint and the record fits entirely on the main
4424 ** b-tree page. */
4425 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4426 }else if( !(pCell[1] & 0x80)
4427 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4428 ){
4429 /* The record-size field is a 2 byte varint and the record
4430 ** fits entirely on the main b-tree page. */
4431 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004432 }else{
danielk197711c327a2009-05-04 19:01:26 +00004433 /* The record flows over onto one or more overflow pages. In
4434 ** this case the whole cell needs to be parsed, a buffer allocated
4435 ** and accessPayload() used to retrieve the record into the
4436 ** buffer before VdbeRecordCompare() can be called. */
4437 void *pCellKey;
4438 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004439 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004440 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004441 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004442 if( pCellKey==0 ){
4443 rc = SQLITE_NOMEM;
4444 goto moveto_finish;
4445 }
drhfb192682009-07-11 18:26:28 +00004446 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004447 if( rc ){
4448 sqlite3_free(pCellKey);
4449 goto moveto_finish;
4450 }
danielk197711c327a2009-05-04 19:01:26 +00004451 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004452 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004453 }
drh3aac2dd2004-04-26 14:10:20 +00004454 }
drh72f82862001-05-24 21:06:34 +00004455 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004456 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004457 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004458 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004459 break;
4460 }else{
drh64022502009-01-09 14:11:04 +00004461 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004462 rc = SQLITE_OK;
4463 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004464 }
drh72f82862001-05-24 21:06:34 +00004465 }
4466 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004467 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004468 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004469 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004470 }
drhf1d68b32007-03-29 04:43:26 +00004471 if( lwr>upr ){
4472 break;
4473 }
drhf49661a2008-12-10 16:45:50 +00004474 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004475 }
4476 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004477 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004478 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004479 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004480 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004481 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004482 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004483 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004484 }
4485 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004486 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004487 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004488 rc = SQLITE_OK;
4489 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004490 }
drhf49661a2008-12-10 16:45:50 +00004491 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004492 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004493 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004494 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004495 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004496 }
drh1e968a02008-03-25 00:22:21 +00004497moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004498 return rc;
4499}
4500
drhd677b3d2007-08-20 22:48:41 +00004501
drh72f82862001-05-24 21:06:34 +00004502/*
drhc39e0002004-05-07 23:50:57 +00004503** Return TRUE if the cursor is not pointing at an entry of the table.
4504**
4505** TRUE will be returned after a call to sqlite3BtreeNext() moves
4506** past the last entry in the table or sqlite3BtreePrev() moves past
4507** the first entry. TRUE is also returned if the table is empty.
4508*/
4509int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004510 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4511 ** have been deleted? This API will need to change to return an error code
4512 ** as well as the boolean result value.
4513 */
4514 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004515}
4516
4517/*
drhbd03cae2001-06-02 02:40:57 +00004518** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004519** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004520** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004521** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004522*/
drhd094db12008-04-03 21:46:57 +00004523int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004524 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004525 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004526 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004527
drh1fee73e2007-08-29 04:00:57 +00004528 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004529 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004530 if( rc!=SQLITE_OK ){
4531 return rc;
4532 }
drh8c4d3a62007-04-06 01:03:32 +00004533 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004534 if( CURSOR_INVALID==pCur->eState ){
4535 *pRes = 1;
4536 return SQLITE_OK;
4537 }
drh4c301aa2009-07-15 17:25:45 +00004538 if( pCur->skipNext>0 ){
4539 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004540 *pRes = 0;
4541 return SQLITE_OK;
4542 }
drh4c301aa2009-07-15 17:25:45 +00004543 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004544
danielk197771d5d2c2008-09-29 11:49:47 +00004545 pPage = pCur->apPage[pCur->iPage];
4546 idx = ++pCur->aiIdx[pCur->iPage];
4547 assert( pPage->isInit );
4548 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004549
drh271efa52004-05-30 19:19:05 +00004550 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004551 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004552 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004553 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004554 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004555 if( rc ) return rc;
4556 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004557 *pRes = 0;
4558 return rc;
drh72f82862001-05-24 21:06:34 +00004559 }
drh5e2f8b92001-05-28 00:41:15 +00004560 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004561 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004562 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004563 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004564 return SQLITE_OK;
4565 }
danielk197730548662009-07-09 05:07:37 +00004566 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004567 pPage = pCur->apPage[pCur->iPage];
4568 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004569 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004570 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004571 rc = sqlite3BtreeNext(pCur, pRes);
4572 }else{
4573 rc = SQLITE_OK;
4574 }
4575 return rc;
drh8178a752003-01-05 21:41:40 +00004576 }
4577 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004578 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004579 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004580 }
drh5e2f8b92001-05-28 00:41:15 +00004581 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004582 return rc;
drh72f82862001-05-24 21:06:34 +00004583}
drhd677b3d2007-08-20 22:48:41 +00004584
drh72f82862001-05-24 21:06:34 +00004585
drh3b7511c2001-05-26 13:15:44 +00004586/*
drh2dcc9aa2002-12-04 13:40:25 +00004587** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004588** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004589** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004590** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004591*/
drhd094db12008-04-03 21:46:57 +00004592int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004593 int rc;
drh8178a752003-01-05 21:41:40 +00004594 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004595
drh1fee73e2007-08-29 04:00:57 +00004596 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004597 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004598 if( rc!=SQLITE_OK ){
4599 return rc;
4600 }
drha2c20e42008-03-29 16:01:04 +00004601 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004602 if( CURSOR_INVALID==pCur->eState ){
4603 *pRes = 1;
4604 return SQLITE_OK;
4605 }
drh4c301aa2009-07-15 17:25:45 +00004606 if( pCur->skipNext<0 ){
4607 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004608 *pRes = 0;
4609 return SQLITE_OK;
4610 }
drh4c301aa2009-07-15 17:25:45 +00004611 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004612
danielk197771d5d2c2008-09-29 11:49:47 +00004613 pPage = pCur->apPage[pCur->iPage];
4614 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004615 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004616 int idx = pCur->aiIdx[pCur->iPage];
4617 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004618 if( rc ){
4619 return rc;
4620 }
drh2dcc9aa2002-12-04 13:40:25 +00004621 rc = moveToRightmost(pCur);
4622 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004623 while( pCur->aiIdx[pCur->iPage]==0 ){
4624 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004625 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004626 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004627 return SQLITE_OK;
4628 }
danielk197730548662009-07-09 05:07:37 +00004629 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004630 }
drh271efa52004-05-30 19:19:05 +00004631 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004632 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004633
4634 pCur->aiIdx[pCur->iPage]--;
4635 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004636 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004637 rc = sqlite3BtreePrevious(pCur, pRes);
4638 }else{
4639 rc = SQLITE_OK;
4640 }
drh2dcc9aa2002-12-04 13:40:25 +00004641 }
drh8178a752003-01-05 21:41:40 +00004642 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004643 return rc;
4644}
4645
4646/*
drh3b7511c2001-05-26 13:15:44 +00004647** Allocate a new page from the database file.
4648**
danielk19773b8a05f2007-03-19 17:44:26 +00004649** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004650** has already been called on the new page.) The new page has also
4651** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004652** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004653**
4654** SQLITE_OK is returned on success. Any other return value indicates
4655** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004656** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004657**
drh199e3cf2002-07-18 11:01:47 +00004658** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4659** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004660** attempt to keep related pages close to each other in the database file,
4661** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004662**
4663** If the "exact" parameter is not 0, and the page-number nearby exists
4664** anywhere on the free-list, then it is guarenteed to be returned. This
4665** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004666*/
drh4f0c5872007-03-26 22:05:01 +00004667static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004668 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004669 MemPage **ppPage,
4670 Pgno *pPgno,
4671 Pgno nearby,
4672 u8 exact
4673){
drh3aac2dd2004-04-26 14:10:20 +00004674 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004675 int rc;
drh35cd6432009-06-05 14:17:21 +00004676 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004677 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004678 MemPage *pTrunk = 0;
4679 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004680 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004681
drh1fee73e2007-08-29 04:00:57 +00004682 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004683 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004684 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004685 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004686 testcase( n==mxPage-1 );
4687 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004688 return SQLITE_CORRUPT_BKPT;
4689 }
drh3aac2dd2004-04-26 14:10:20 +00004690 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004691 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004692 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004693 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4694
4695 /* If the 'exact' parameter was true and a query of the pointer-map
4696 ** shows that the page 'nearby' is somewhere on the free-list, then
4697 ** the entire-list will be searched for that page.
4698 */
4699#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004700 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004701 u8 eType;
4702 assert( nearby>0 );
4703 assert( pBt->autoVacuum );
4704 rc = ptrmapGet(pBt, nearby, &eType, 0);
4705 if( rc ) return rc;
4706 if( eType==PTRMAP_FREEPAGE ){
4707 searchList = 1;
4708 }
4709 *pPgno = nearby;
4710 }
4711#endif
4712
4713 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4714 ** first free-list trunk page. iPrevTrunk is initially 1.
4715 */
danielk19773b8a05f2007-03-19 17:44:26 +00004716 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004717 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004718 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004719
4720 /* The code within this loop is run only once if the 'searchList' variable
4721 ** is not true. Otherwise, it runs once for each trunk-page on the
4722 ** free-list until the page 'nearby' is located.
4723 */
4724 do {
4725 pPrevTrunk = pTrunk;
4726 if( pPrevTrunk ){
4727 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004728 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004729 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004730 }
drhdf35a082009-07-09 02:24:35 +00004731 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004732 if( iTrunk>mxPage ){
4733 rc = SQLITE_CORRUPT_BKPT;
4734 }else{
danielk197730548662009-07-09 05:07:37 +00004735 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004736 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004737 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004738 pTrunk = 0;
4739 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004740 }
4741
4742 k = get4byte(&pTrunk->aData[4]);
4743 if( k==0 && !searchList ){
4744 /* The trunk has no leaves and the list is not being searched.
4745 ** So extract the trunk page itself and use it as the newly
4746 ** allocated page */
4747 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004748 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004749 if( rc ){
4750 goto end_allocate_page;
4751 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004752 *pPgno = iTrunk;
4753 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4754 *ppPage = pTrunk;
4755 pTrunk = 0;
4756 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004757 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004758 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004759 rc = SQLITE_CORRUPT_BKPT;
4760 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004761#ifndef SQLITE_OMIT_AUTOVACUUM
4762 }else if( searchList && nearby==iTrunk ){
4763 /* The list is being searched and this trunk page is the page
4764 ** to allocate, regardless of whether it has leaves.
4765 */
4766 assert( *pPgno==iTrunk );
4767 *ppPage = pTrunk;
4768 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004769 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004770 if( rc ){
4771 goto end_allocate_page;
4772 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004773 if( k==0 ){
4774 if( !pPrevTrunk ){
4775 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4776 }else{
4777 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4778 }
4779 }else{
4780 /* The trunk page is required by the caller but it contains
4781 ** pointers to free-list leaves. The first leaf becomes a trunk
4782 ** page in this case.
4783 */
4784 MemPage *pNewTrunk;
4785 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004786 if( iNewTrunk>mxPage ){
4787 rc = SQLITE_CORRUPT_BKPT;
4788 goto end_allocate_page;
4789 }
drhdf35a082009-07-09 02:24:35 +00004790 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004791 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004792 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004793 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004794 }
danielk19773b8a05f2007-03-19 17:44:26 +00004795 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004796 if( rc!=SQLITE_OK ){
4797 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004798 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004799 }
4800 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4801 put4byte(&pNewTrunk->aData[4], k-1);
4802 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004803 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004804 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004805 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004806 put4byte(&pPage1->aData[32], iNewTrunk);
4807 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004808 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004809 if( rc ){
4810 goto end_allocate_page;
4811 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004812 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4813 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004814 }
4815 pTrunk = 0;
4816 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4817#endif
danielk1977e5765212009-06-17 11:13:28 +00004818 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004819 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004820 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004821 Pgno iPage;
4822 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004823 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004824 if( rc ){
4825 goto end_allocate_page;
4826 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004827 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004828 u32 i;
4829 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004830 closest = 0;
4831 dist = get4byte(&aData[8]) - nearby;
4832 if( dist<0 ) dist = -dist;
4833 for(i=1; i<k; i++){
4834 int d2 = get4byte(&aData[8+i*4]) - nearby;
4835 if( d2<0 ) d2 = -d2;
4836 if( d2<dist ){
4837 closest = i;
4838 dist = d2;
4839 }
4840 }
4841 }else{
4842 closest = 0;
4843 }
4844
4845 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004846 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004847 if( iPage>mxPage ){
4848 rc = SQLITE_CORRUPT_BKPT;
4849 goto end_allocate_page;
4850 }
drhdf35a082009-07-09 02:24:35 +00004851 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004852 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004853 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004854 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004855 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4856 ": %d more free pages\n",
4857 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4858 if( closest<k-1 ){
4859 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4860 }
4861 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004862 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004863 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004864 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004865 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004866 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004867 if( rc!=SQLITE_OK ){
4868 releasePage(*ppPage);
4869 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004870 }
4871 searchList = 0;
4872 }
drhee696e22004-08-30 16:52:17 +00004873 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004874 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004875 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004876 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004877 }else{
drh3aac2dd2004-04-26 14:10:20 +00004878 /* There are no pages on the freelist, so create a new page at the
4879 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00004880 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4881 if( rc ) return rc;
4882 pBt->nPage++;
4883 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00004884
danielk1977afcdd022004-10-31 16:25:42 +00004885#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00004886 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00004887 /* If *pPgno refers to a pointer-map page, allocate two new pages
4888 ** at the end of the file instead of one. The first allocated page
4889 ** becomes a new pointer-map page, the second is used by the caller.
4890 */
danielk1977ac861692009-03-28 10:54:22 +00004891 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00004892 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
4893 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004894 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00004895 if( rc==SQLITE_OK ){
4896 rc = sqlite3PagerWrite(pPg->pDbPage);
4897 releasePage(pPg);
4898 }
4899 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00004900 pBt->nPage++;
4901 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00004902 }
4903#endif
drhdd3cd972010-03-27 17:12:36 +00004904 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
4905 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00004906
danielk1977599fcba2004-11-08 07:13:13 +00004907 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004908 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00004909 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004910 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004911 if( rc!=SQLITE_OK ){
4912 releasePage(*ppPage);
4913 }
drh3a4c1412004-05-09 20:40:11 +00004914 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004915 }
danielk1977599fcba2004-11-08 07:13:13 +00004916
4917 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004918
4919end_allocate_page:
4920 releasePage(pTrunk);
4921 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004922 if( rc==SQLITE_OK ){
4923 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4924 releasePage(*ppPage);
4925 return SQLITE_CORRUPT_BKPT;
4926 }
4927 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004928 }else{
4929 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004930 }
drh3b7511c2001-05-26 13:15:44 +00004931 return rc;
4932}
4933
4934/*
danielk1977bea2a942009-01-20 17:06:27 +00004935** This function is used to add page iPage to the database file free-list.
4936** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004937**
danielk1977bea2a942009-01-20 17:06:27 +00004938** The value passed as the second argument to this function is optional.
4939** If the caller happens to have a pointer to the MemPage object
4940** corresponding to page iPage handy, it may pass it as the second value.
4941** Otherwise, it may pass NULL.
4942**
4943** If a pointer to a MemPage object is passed as the second argument,
4944** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004945*/
danielk1977bea2a942009-01-20 17:06:27 +00004946static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4947 MemPage *pTrunk = 0; /* Free-list trunk page */
4948 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4949 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4950 MemPage *pPage; /* Page being freed. May be NULL. */
4951 int rc; /* Return Code */
4952 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004953
danielk1977bea2a942009-01-20 17:06:27 +00004954 assert( sqlite3_mutex_held(pBt->mutex) );
4955 assert( iPage>1 );
4956 assert( !pMemPage || pMemPage->pgno==iPage );
4957
4958 if( pMemPage ){
4959 pPage = pMemPage;
4960 sqlite3PagerRef(pPage->pDbPage);
4961 }else{
4962 pPage = btreePageLookup(pBt, iPage);
4963 }
drh3aac2dd2004-04-26 14:10:20 +00004964
drha34b6762004-05-07 13:30:42 +00004965 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004966 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004967 if( rc ) goto freepage_out;
4968 nFree = get4byte(&pPage1->aData[36]);
4969 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004970
drh5b47efa2010-02-12 18:18:39 +00004971 if( pBt->secureDelete ){
4972 /* If the secure_delete option is enabled, then
4973 ** always fully overwrite deleted information with zeros.
4974 */
shaneh84f4b2f2010-02-26 01:46:54 +00004975 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
4976 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00004977 ){
4978 goto freepage_out;
4979 }
4980 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00004981 }
drhfcce93f2006-02-22 03:08:32 +00004982
danielk1977687566d2004-11-02 12:56:41 +00004983 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004984 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004985 */
danielk197785d90ca2008-07-19 14:25:15 +00004986 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00004987 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00004988 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004989 }
danielk1977687566d2004-11-02 12:56:41 +00004990
danielk1977bea2a942009-01-20 17:06:27 +00004991 /* Now manipulate the actual database free-list structure. There are two
4992 ** possibilities. If the free-list is currently empty, or if the first
4993 ** trunk page in the free-list is full, then this page will become a
4994 ** new free-list trunk page. Otherwise, it will become a leaf of the
4995 ** first trunk page in the current free-list. This block tests if it
4996 ** is possible to add the page as a new free-list leaf.
4997 */
4998 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00004999 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005000
5001 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005002 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005003 if( rc!=SQLITE_OK ){
5004 goto freepage_out;
5005 }
5006
5007 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005008 assert( pBt->usableSize>32 );
5009 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005010 rc = SQLITE_CORRUPT_BKPT;
5011 goto freepage_out;
5012 }
drheeb844a2009-08-08 18:01:07 +00005013 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005014 /* In this case there is room on the trunk page to insert the page
5015 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005016 **
5017 ** Note that the trunk page is not really full until it contains
5018 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5019 ** coded. But due to a coding error in versions of SQLite prior to
5020 ** 3.6.0, databases with freelist trunk pages holding more than
5021 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5022 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005023 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005024 ** for now. At some point in the future (once everyone has upgraded
5025 ** to 3.6.0 or later) we should consider fixing the conditional above
5026 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5027 */
danielk19773b8a05f2007-03-19 17:44:26 +00005028 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005029 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005030 put4byte(&pTrunk->aData[4], nLeaf+1);
5031 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drh5b47efa2010-02-12 18:18:39 +00005032 if( pPage && !pBt->secureDelete ){
danielk1977bea2a942009-01-20 17:06:27 +00005033 sqlite3PagerDontWrite(pPage->pDbPage);
5034 }
danielk1977bea2a942009-01-20 17:06:27 +00005035 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005036 }
drh3a4c1412004-05-09 20:40:11 +00005037 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005038 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005039 }
drh3b7511c2001-05-26 13:15:44 +00005040 }
danielk1977bea2a942009-01-20 17:06:27 +00005041
5042 /* If control flows to this point, then it was not possible to add the
5043 ** the page being freed as a leaf page of the first trunk in the free-list.
5044 ** Possibly because the free-list is empty, or possibly because the
5045 ** first trunk in the free-list is full. Either way, the page being freed
5046 ** will become the new first trunk page in the free-list.
5047 */
drhc046e3e2009-07-15 11:26:44 +00005048 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5049 goto freepage_out;
5050 }
5051 rc = sqlite3PagerWrite(pPage->pDbPage);
5052 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005053 goto freepage_out;
5054 }
5055 put4byte(pPage->aData, iTrunk);
5056 put4byte(&pPage->aData[4], 0);
5057 put4byte(&pPage1->aData[32], iPage);
5058 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5059
5060freepage_out:
5061 if( pPage ){
5062 pPage->isInit = 0;
5063 }
5064 releasePage(pPage);
5065 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005066 return rc;
5067}
drhc314dc72009-07-21 11:52:34 +00005068static void freePage(MemPage *pPage, int *pRC){
5069 if( (*pRC)==SQLITE_OK ){
5070 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5071 }
danielk1977bea2a942009-01-20 17:06:27 +00005072}
drh3b7511c2001-05-26 13:15:44 +00005073
5074/*
drh3aac2dd2004-04-26 14:10:20 +00005075** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005076*/
drh3aac2dd2004-04-26 14:10:20 +00005077static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005078 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005079 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005080 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005081 int rc;
drh94440812007-03-06 11:42:19 +00005082 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00005083 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005084
drh1fee73e2007-08-29 04:00:57 +00005085 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005086 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005087 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005088 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005089 }
drh6f11bef2004-05-13 01:12:56 +00005090 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005091 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005092 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005093 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5094 assert( ovflPgno==0 || nOvfl>0 );
5095 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005096 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005097 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005098 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005099 /* 0 is not a legal page number and page 1 cannot be an
5100 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5101 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005102 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005103 }
danielk1977bea2a942009-01-20 17:06:27 +00005104 if( nOvfl ){
5105 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5106 if( rc ) return rc;
5107 }
dan887d4b22010-02-25 12:09:16 +00005108
shaneh1da207e2010-03-09 14:41:12 +00005109 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005110 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5111 ){
5112 /* There is no reason any cursor should have an outstanding reference
5113 ** to an overflow page belonging to a cell that is being deleted/updated.
5114 ** So if there exists more than one reference to this page, then it
5115 ** must not really be an overflow page and the database must be corrupt.
5116 ** It is helpful to detect this before calling freePage2(), as
5117 ** freePage2() may zero the page contents if secure-delete mode is
5118 ** enabled. If this 'overflow' page happens to be a page that the
5119 ** caller is iterating through or using in some other way, this
5120 ** can be problematic.
5121 */
5122 rc = SQLITE_CORRUPT_BKPT;
5123 }else{
5124 rc = freePage2(pBt, pOvfl, ovflPgno);
5125 }
5126
danielk1977bea2a942009-01-20 17:06:27 +00005127 if( pOvfl ){
5128 sqlite3PagerUnref(pOvfl->pDbPage);
5129 }
drh3b7511c2001-05-26 13:15:44 +00005130 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005131 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005132 }
drh5e2f8b92001-05-28 00:41:15 +00005133 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005134}
5135
5136/*
drh91025292004-05-03 19:49:32 +00005137** Create the byte sequence used to represent a cell on page pPage
5138** and write that byte sequence into pCell[]. Overflow pages are
5139** allocated and filled in as necessary. The calling procedure
5140** is responsible for making sure sufficient space has been allocated
5141** for pCell[].
5142**
5143** Note that pCell does not necessary need to point to the pPage->aData
5144** area. pCell might point to some temporary storage. The cell will
5145** be constructed in this temporary area then copied into pPage->aData
5146** later.
drh3b7511c2001-05-26 13:15:44 +00005147*/
5148static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005149 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005150 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005151 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005152 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005153 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005154 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005155){
drh3b7511c2001-05-26 13:15:44 +00005156 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005157 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005158 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005159 int spaceLeft;
5160 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005161 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005162 unsigned char *pPrior;
5163 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005164 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005165 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005166 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005167 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005168
drh1fee73e2007-08-29 04:00:57 +00005169 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005170
drhc5053fb2008-11-27 02:22:10 +00005171 /* pPage is not necessarily writeable since pCell might be auxiliary
5172 ** buffer space that is separate from the pPage buffer area */
5173 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5174 || sqlite3PagerIswriteable(pPage->pDbPage) );
5175
drh91025292004-05-03 19:49:32 +00005176 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005177 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005178 if( !pPage->leaf ){
5179 nHeader += 4;
5180 }
drh8b18dd42004-05-12 19:18:15 +00005181 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005182 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005183 }else{
drhb026e052007-05-02 01:34:31 +00005184 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005185 }
drh6f11bef2004-05-13 01:12:56 +00005186 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005187 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005188 assert( info.nHeader==nHeader );
5189 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005190 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005191
5192 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005193 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005194 if( pPage->intKey ){
5195 pSrc = pData;
5196 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005197 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005198 }else{
danielk197731d31b82009-07-13 13:18:07 +00005199 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5200 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005201 }
drhf49661a2008-12-10 16:45:50 +00005202 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005203 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005204 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005205 }
drh6f11bef2004-05-13 01:12:56 +00005206 *pnSize = info.nSize;
5207 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005208 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005209 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005210
drh3b7511c2001-05-26 13:15:44 +00005211 while( nPayload>0 ){
5212 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005213#ifndef SQLITE_OMIT_AUTOVACUUM
5214 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005215 if( pBt->autoVacuum ){
5216 do{
5217 pgnoOvfl++;
5218 } while(
5219 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5220 );
danielk1977b39f70b2007-05-17 18:28:11 +00005221 }
danielk1977afcdd022004-10-31 16:25:42 +00005222#endif
drhf49661a2008-12-10 16:45:50 +00005223 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005224#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005225 /* If the database supports auto-vacuum, and the second or subsequent
5226 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005227 ** for that page now.
5228 **
5229 ** If this is the first overflow page, then write a partial entry
5230 ** to the pointer-map. If we write nothing to this pointer-map slot,
5231 ** then the optimistic overflow chain processing in clearCell()
5232 ** may misinterpret the uninitialised values and delete the
5233 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005234 */
danielk19774ef24492007-05-23 09:52:41 +00005235 if( pBt->autoVacuum && rc==SQLITE_OK ){
5236 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005237 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005238 if( rc ){
5239 releasePage(pOvfl);
5240 }
danielk1977afcdd022004-10-31 16:25:42 +00005241 }
5242#endif
drh3b7511c2001-05-26 13:15:44 +00005243 if( rc ){
drh9b171272004-05-08 02:03:22 +00005244 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005245 return rc;
5246 }
drhc5053fb2008-11-27 02:22:10 +00005247
5248 /* If pToRelease is not zero than pPrior points into the data area
5249 ** of pToRelease. Make sure pToRelease is still writeable. */
5250 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5251
5252 /* If pPrior is part of the data area of pPage, then make sure pPage
5253 ** is still writeable */
5254 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5255 || sqlite3PagerIswriteable(pPage->pDbPage) );
5256
drh3aac2dd2004-04-26 14:10:20 +00005257 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005258 releasePage(pToRelease);
5259 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005260 pPrior = pOvfl->aData;
5261 put4byte(pPrior, 0);
5262 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005263 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005264 }
5265 n = nPayload;
5266 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005267
5268 /* If pToRelease is not zero than pPayload points into the data area
5269 ** of pToRelease. Make sure pToRelease is still writeable. */
5270 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5271
5272 /* If pPayload is part of the data area of pPage, then make sure pPage
5273 ** is still writeable */
5274 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5275 || sqlite3PagerIswriteable(pPage->pDbPage) );
5276
drhb026e052007-05-02 01:34:31 +00005277 if( nSrc>0 ){
5278 if( n>nSrc ) n = nSrc;
5279 assert( pSrc );
5280 memcpy(pPayload, pSrc, n);
5281 }else{
5282 memset(pPayload, 0, n);
5283 }
drh3b7511c2001-05-26 13:15:44 +00005284 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005285 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005286 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005287 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005288 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005289 if( nSrc==0 ){
5290 nSrc = nData;
5291 pSrc = pData;
5292 }
drhdd793422001-06-28 01:54:48 +00005293 }
drh9b171272004-05-08 02:03:22 +00005294 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005295 return SQLITE_OK;
5296}
5297
drh14acc042001-06-10 19:56:58 +00005298/*
5299** Remove the i-th cell from pPage. This routine effects pPage only.
5300** The cell content is not freed or deallocated. It is assumed that
5301** the cell content has been copied someplace else. This routine just
5302** removes the reference to the cell from pPage.
5303**
5304** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005305*/
drh98add2e2009-07-20 17:11:49 +00005306static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43605152004-05-29 21:46:49 +00005307 int i; /* Loop counter */
5308 int pc; /* Offset to cell content of cell being deleted */
5309 u8 *data; /* pPage->aData */
5310 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005311 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005312 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005313
drh98add2e2009-07-20 17:11:49 +00005314 if( *pRC ) return;
5315
drh8c42ca92001-06-22 19:15:00 +00005316 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005317 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005318 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005319 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005320 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005321 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005322 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005323 hdr = pPage->hdrOffset;
5324 testcase( pc==get2byte(&data[hdr+5]) );
5325 testcase( pc+sz==pPage->pBt->usableSize );
5326 if( pc < get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005327 *pRC = SQLITE_CORRUPT_BKPT;
5328 return;
shane0af3f892008-11-12 04:55:34 +00005329 }
shanedcc50b72008-11-13 18:29:50 +00005330 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005331 if( rc ){
5332 *pRC = rc;
5333 return;
shanedcc50b72008-11-13 18:29:50 +00005334 }
drh43605152004-05-29 21:46:49 +00005335 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5336 ptr[0] = ptr[2];
5337 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005338 }
5339 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005340 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005341 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005342}
5343
5344/*
5345** Insert a new cell on pPage at cell index "i". pCell points to the
5346** content of the cell.
5347**
5348** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005349** will not fit, then make a copy of the cell content into pTemp if
5350** pTemp is not null. Regardless of pTemp, allocate a new entry
5351** in pPage->aOvfl[] and make it point to the cell content (either
5352** in pTemp or the original pCell) and also record its index.
5353** Allocating a new entry in pPage->aCell[] implies that
5354** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005355**
5356** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5357** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005358** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005359** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005360*/
drh98add2e2009-07-20 17:11:49 +00005361static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005362 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005363 int i, /* New cell becomes the i-th cell of the page */
5364 u8 *pCell, /* Content of the new cell */
5365 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005366 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005367 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5368 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005369){
drh383d30f2010-02-26 13:07:37 +00005370 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005371 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005372 int end; /* First byte past the last cell pointer in data[] */
5373 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005374 int cellOffset; /* Address of first cell pointer in data[] */
5375 u8 *data; /* The content of the whole page */
5376 u8 *ptr; /* Used for moving information around in data[] */
5377
danielk19774dbaa892009-06-16 16:50:22 +00005378 int nSkip = (iChild ? 4 : 0);
5379
drh98add2e2009-07-20 17:11:49 +00005380 if( *pRC ) return;
5381
drh43605152004-05-29 21:46:49 +00005382 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005383 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5384 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005385 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005386 /* The cell should normally be sized correctly. However, when moving a
5387 ** malformed cell from a leaf page to an interior page, if the cell size
5388 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5389 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5390 ** the term after the || in the following assert(). */
5391 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005392 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005393 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005394 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005395 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005396 }
danielk19774dbaa892009-06-16 16:50:22 +00005397 if( iChild ){
5398 put4byte(pCell, iChild);
5399 }
drh43605152004-05-29 21:46:49 +00005400 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005401 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005402 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005403 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005404 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005405 int rc = sqlite3PagerWrite(pPage->pDbPage);
5406 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005407 *pRC = rc;
5408 return;
danielk19776e465eb2007-08-21 13:11:00 +00005409 }
5410 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005411 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005412 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005413 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005414 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005415 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005416 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005417 /* The allocateSpace() routine guarantees the following two properties
5418 ** if it returns success */
5419 assert( idx >= end+2 );
5420 assert( idx+sz <= pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005421 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005422 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005423 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005424 if( iChild ){
5425 put4byte(&data[idx], iChild);
5426 }
drh0a45c272009-07-08 01:49:11 +00005427 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005428 ptr[0] = ptr[-2];
5429 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005430 }
drh43605152004-05-29 21:46:49 +00005431 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005432 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005433#ifndef SQLITE_OMIT_AUTOVACUUM
5434 if( pPage->pBt->autoVacuum ){
5435 /* The cell may contain a pointer to an overflow page. If so, write
5436 ** the entry for the overflow page into the pointer map.
5437 */
drh98add2e2009-07-20 17:11:49 +00005438 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005439 }
5440#endif
drh14acc042001-06-10 19:56:58 +00005441 }
5442}
5443
5444/*
drhfa1a98a2004-05-14 19:08:17 +00005445** Add a list of cells to a page. The page should be initially empty.
5446** The cells are guaranteed to fit on the page.
5447*/
5448static void assemblePage(
5449 MemPage *pPage, /* The page to be assemblied */
5450 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005451 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005452 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005453){
5454 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005455 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005456 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005457 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5458 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5459 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005460
drh43605152004-05-29 21:46:49 +00005461 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005462 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005463 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005464 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005465
5466 /* Check that the page has just been zeroed by zeroPage() */
5467 assert( pPage->nCell==0 );
5468 assert( get2byte(&data[hdr+5])==nUsable );
5469
5470 pCellptr = &data[pPage->cellOffset + nCell*2];
5471 cellbody = nUsable;
5472 for(i=nCell-1; i>=0; i--){
5473 pCellptr -= 2;
5474 cellbody -= aSize[i];
5475 put2byte(pCellptr, cellbody);
5476 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005477 }
danielk1977fad91942009-04-29 17:49:59 +00005478 put2byte(&data[hdr+3], nCell);
5479 put2byte(&data[hdr+5], cellbody);
5480 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005481 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005482}
5483
drh14acc042001-06-10 19:56:58 +00005484/*
drhc3b70572003-01-04 19:44:07 +00005485** The following parameters determine how many adjacent pages get involved
5486** in a balancing operation. NN is the number of neighbors on either side
5487** of the page that participate in the balancing operation. NB is the
5488** total number of pages that participate, including the target page and
5489** NN neighbors on either side.
5490**
5491** The minimum value of NN is 1 (of course). Increasing NN above 1
5492** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5493** in exchange for a larger degradation in INSERT and UPDATE performance.
5494** The value of NN appears to give the best results overall.
5495*/
5496#define NN 1 /* Number of neighbors on either side of pPage */
5497#define NB (NN*2+1) /* Total pages involved in the balance */
5498
danielk1977ac245ec2005-01-14 13:50:11 +00005499
drh615ae552005-01-16 23:21:00 +00005500#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005501/*
5502** This version of balance() handles the common special case where
5503** a new entry is being inserted on the extreme right-end of the
5504** tree, in other words, when the new entry will become the largest
5505** entry in the tree.
5506**
drhc314dc72009-07-21 11:52:34 +00005507** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005508** a new page to the right-hand side and put the one new entry in
5509** that page. This leaves the right side of the tree somewhat
5510** unbalanced. But odds are that we will be inserting new entries
5511** at the end soon afterwards so the nearly empty page will quickly
5512** fill up. On average.
5513**
5514** pPage is the leaf page which is the right-most page in the tree.
5515** pParent is its parent. pPage must have a single overflow entry
5516** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005517**
5518** The pSpace buffer is used to store a temporary copy of the divider
5519** cell that will be inserted into pParent. Such a cell consists of a 4
5520** byte page number followed by a variable length integer. In other
5521** words, at most 13 bytes. Hence the pSpace buffer must be at
5522** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005523*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005524static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5525 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005526 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005527 int rc; /* Return Code */
5528 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005529
drh1fee73e2007-08-29 04:00:57 +00005530 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005531 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005532 assert( pPage->nOverflow==1 );
5533
drh5d1a8722009-07-22 18:07:40 +00005534 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005535
danielk1977a50d9aa2009-06-08 14:49:45 +00005536 /* Allocate a new page. This page will become the right-sibling of
5537 ** pPage. Make the parent page writable, so that the new divider cell
5538 ** may be inserted. If both these operations are successful, proceed.
5539 */
drh4f0c5872007-03-26 22:05:01 +00005540 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005541
danielk1977eaa06f62008-09-18 17:34:44 +00005542 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005543
5544 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005545 u8 *pCell = pPage->aOvfl[0].pCell;
5546 u16 szCell = cellSizePtr(pPage, pCell);
5547 u8 *pStop;
5548
drhc5053fb2008-11-27 02:22:10 +00005549 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005550 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5551 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005552 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005553
5554 /* If this is an auto-vacuum database, update the pointer map
5555 ** with entries for the new page, and any pointer from the
5556 ** cell on the page to an overflow page. If either of these
5557 ** operations fails, the return code is set, but the contents
5558 ** of the parent page are still manipulated by thh code below.
5559 ** That is Ok, at this point the parent page is guaranteed to
5560 ** be marked as dirty. Returning an error code will cause a
5561 ** rollback, undoing any changes made to the parent page.
5562 */
5563 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005564 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5565 if( szCell>pNew->minLocal ){
5566 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005567 }
5568 }
danielk1977eaa06f62008-09-18 17:34:44 +00005569
danielk19776f235cc2009-06-04 14:46:08 +00005570 /* Create a divider cell to insert into pParent. The divider cell
5571 ** consists of a 4-byte page number (the page number of pPage) and
5572 ** a variable length key value (which must be the same value as the
5573 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005574 **
danielk19776f235cc2009-06-04 14:46:08 +00005575 ** To find the largest key value on pPage, first find the right-most
5576 ** cell on pPage. The first two fields of this cell are the
5577 ** record-length (a variable length integer at most 32-bits in size)
5578 ** and the key value (a variable length integer, may have any value).
5579 ** The first of the while(...) loops below skips over the record-length
5580 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005581 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005582 */
danielk1977eaa06f62008-09-18 17:34:44 +00005583 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005584 pStop = &pCell[9];
5585 while( (*(pCell++)&0x80) && pCell<pStop );
5586 pStop = &pCell[9];
5587 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5588
danielk19774dbaa892009-06-16 16:50:22 +00005589 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005590 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5591 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005592
5593 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005594 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5595
danielk1977e08a3c42008-09-18 18:17:03 +00005596 /* Release the reference to the new page. */
5597 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005598 }
5599
danielk1977eaa06f62008-09-18 17:34:44 +00005600 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005601}
drh615ae552005-01-16 23:21:00 +00005602#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005603
danielk19774dbaa892009-06-16 16:50:22 +00005604#if 0
drhc3b70572003-01-04 19:44:07 +00005605/*
danielk19774dbaa892009-06-16 16:50:22 +00005606** This function does not contribute anything to the operation of SQLite.
5607** it is sometimes activated temporarily while debugging code responsible
5608** for setting pointer-map entries.
5609*/
5610static int ptrmapCheckPages(MemPage **apPage, int nPage){
5611 int i, j;
5612 for(i=0; i<nPage; i++){
5613 Pgno n;
5614 u8 e;
5615 MemPage *pPage = apPage[i];
5616 BtShared *pBt = pPage->pBt;
5617 assert( pPage->isInit );
5618
5619 for(j=0; j<pPage->nCell; j++){
5620 CellInfo info;
5621 u8 *z;
5622
5623 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005624 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005625 if( info.iOverflow ){
5626 Pgno ovfl = get4byte(&z[info.iOverflow]);
5627 ptrmapGet(pBt, ovfl, &e, &n);
5628 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5629 }
5630 if( !pPage->leaf ){
5631 Pgno child = get4byte(z);
5632 ptrmapGet(pBt, child, &e, &n);
5633 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5634 }
5635 }
5636 if( !pPage->leaf ){
5637 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5638 ptrmapGet(pBt, child, &e, &n);
5639 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5640 }
5641 }
5642 return 1;
5643}
5644#endif
5645
danielk1977cd581a72009-06-23 15:43:39 +00005646/*
5647** This function is used to copy the contents of the b-tree node stored
5648** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5649** the pointer-map entries for each child page are updated so that the
5650** parent page stored in the pointer map is page pTo. If pFrom contained
5651** any cells with overflow page pointers, then the corresponding pointer
5652** map entries are also updated so that the parent page is page pTo.
5653**
5654** If pFrom is currently carrying any overflow cells (entries in the
5655** MemPage.aOvfl[] array), they are not copied to pTo.
5656**
danielk197730548662009-07-09 05:07:37 +00005657** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005658**
5659** The performance of this function is not critical. It is only used by
5660** the balance_shallower() and balance_deeper() procedures, neither of
5661** which are called often under normal circumstances.
5662*/
drhc314dc72009-07-21 11:52:34 +00005663static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5664 if( (*pRC)==SQLITE_OK ){
5665 BtShared * const pBt = pFrom->pBt;
5666 u8 * const aFrom = pFrom->aData;
5667 u8 * const aTo = pTo->aData;
5668 int const iFromHdr = pFrom->hdrOffset;
5669 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005670 int rc;
drhc314dc72009-07-21 11:52:34 +00005671 int iData;
5672
5673
5674 assert( pFrom->isInit );
5675 assert( pFrom->nFree>=iToHdr );
5676 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5677
5678 /* Copy the b-tree node content from page pFrom to page pTo. */
5679 iData = get2byte(&aFrom[iFromHdr+5]);
5680 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5681 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5682
5683 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005684 ** match the new data. The initialization of pTo can actually fail under
5685 ** fairly obscure circumstances, even though it is a copy of initialized
5686 ** page pFrom.
5687 */
drhc314dc72009-07-21 11:52:34 +00005688 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005689 rc = btreeInitPage(pTo);
5690 if( rc!=SQLITE_OK ){
5691 *pRC = rc;
5692 return;
5693 }
drhc314dc72009-07-21 11:52:34 +00005694
5695 /* If this is an auto-vacuum database, update the pointer-map entries
5696 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5697 */
5698 if( ISAUTOVACUUM ){
5699 *pRC = setChildPtrmaps(pTo);
5700 }
danielk1977cd581a72009-06-23 15:43:39 +00005701 }
danielk1977cd581a72009-06-23 15:43:39 +00005702}
5703
5704/*
danielk19774dbaa892009-06-16 16:50:22 +00005705** This routine redistributes cells on the iParentIdx'th child of pParent
5706** (hereafter "the page") and up to 2 siblings so that all pages have about the
5707** same amount of free space. Usually a single sibling on either side of the
5708** page are used in the balancing, though both siblings might come from one
5709** side if the page is the first or last child of its parent. If the page
5710** has fewer than 2 siblings (something which can only happen if the page
5711** is a root page or a child of a root page) then all available siblings
5712** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005713**
danielk19774dbaa892009-06-16 16:50:22 +00005714** The number of siblings of the page might be increased or decreased by
5715** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005716**
danielk19774dbaa892009-06-16 16:50:22 +00005717** Note that when this routine is called, some of the cells on the page
5718** might not actually be stored in MemPage.aData[]. This can happen
5719** if the page is overfull. This routine ensures that all cells allocated
5720** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005721**
danielk19774dbaa892009-06-16 16:50:22 +00005722** In the course of balancing the page and its siblings, cells may be
5723** inserted into or removed from the parent page (pParent). Doing so
5724** may cause the parent page to become overfull or underfull. If this
5725** happens, it is the responsibility of the caller to invoke the correct
5726** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005727**
drh5e00f6c2001-09-13 13:46:56 +00005728** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005729** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005730** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005731**
5732** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005733** buffer big enough to hold one page. If while inserting cells into the parent
5734** page (pParent) the parent page becomes overfull, this buffer is
5735** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005736** a maximum of four divider cells into the parent page, and the maximum
5737** size of a cell stored within an internal node is always less than 1/4
5738** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5739** enough for all overflow cells.
5740**
5741** If aOvflSpace is set to a null pointer, this function returns
5742** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005743*/
danielk19774dbaa892009-06-16 16:50:22 +00005744static int balance_nonroot(
5745 MemPage *pParent, /* Parent page of siblings being balanced */
5746 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005747 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5748 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005749){
drh16a9b832007-05-05 18:39:25 +00005750 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005751 int nCell = 0; /* Number of cells in apCell[] */
5752 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005753 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005754 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005755 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005756 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005757 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005758 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005759 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005760 int usableSpace; /* Bytes in pPage beyond the header */
5761 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005762 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005763 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005764 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005765 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005766 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005767 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005768 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005769 u8 *pRight; /* Location in parent of right-sibling pointer */
5770 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005771 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5772 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005773 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005774 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005775 u8 *aSpace1; /* Space for copies of dividers cells */
5776 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005777
danielk1977a50d9aa2009-06-08 14:49:45 +00005778 pBt = pParent->pBt;
5779 assert( sqlite3_mutex_held(pBt->mutex) );
5780 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005781
danielk1977e5765212009-06-17 11:13:28 +00005782#if 0
drh43605152004-05-29 21:46:49 +00005783 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005784#endif
drh2e38c322004-09-03 18:38:44 +00005785
danielk19774dbaa892009-06-16 16:50:22 +00005786 /* At this point pParent may have at most one overflow cell. And if
5787 ** this overflow cell is present, it must be the cell with
5788 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005789 ** is called (indirectly) from sqlite3BtreeDelete().
5790 */
danielk19774dbaa892009-06-16 16:50:22 +00005791 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5792 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5793
danielk197711a8a862009-06-17 11:49:52 +00005794 if( !aOvflSpace ){
5795 return SQLITE_NOMEM;
5796 }
5797
danielk1977a50d9aa2009-06-08 14:49:45 +00005798 /* Find the sibling pages to balance. Also locate the cells in pParent
5799 ** that divide the siblings. An attempt is made to find NN siblings on
5800 ** either side of pPage. More siblings are taken from one side, however,
5801 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005802 ** has NB or fewer children then all children of pParent are taken.
5803 **
5804 ** This loop also drops the divider cells from the parent page. This
5805 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005806 ** overflow cells in the parent page, since if any existed they will
5807 ** have already been removed.
5808 */
danielk19774dbaa892009-06-16 16:50:22 +00005809 i = pParent->nOverflow + pParent->nCell;
5810 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005811 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005812 nOld = i+1;
5813 }else{
5814 nOld = 3;
5815 if( iParentIdx==0 ){
5816 nxDiv = 0;
5817 }else if( iParentIdx==i ){
5818 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005819 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005820 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005821 }
danielk19774dbaa892009-06-16 16:50:22 +00005822 i = 2;
5823 }
5824 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5825 pRight = &pParent->aData[pParent->hdrOffset+8];
5826 }else{
5827 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5828 }
5829 pgno = get4byte(pRight);
5830 while( 1 ){
5831 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5832 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00005833 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00005834 goto balance_cleanup;
5835 }
danielk1977634f2982005-03-28 08:44:07 +00005836 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005837 if( (i--)==0 ) break;
5838
drhcd09c532009-07-20 19:30:00 +00005839 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00005840 apDiv[i] = pParent->aOvfl[0].pCell;
5841 pgno = get4byte(apDiv[i]);
5842 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5843 pParent->nOverflow = 0;
5844 }else{
5845 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5846 pgno = get4byte(apDiv[i]);
5847 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5848
5849 /* Drop the cell from the parent page. apDiv[i] still points to
5850 ** the cell within the parent, even though it has been dropped.
5851 ** This is safe because dropping a cell only overwrites the first
5852 ** four bytes of it, and this function does not need the first
5853 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005854 ** later on.
5855 **
5856 ** Unless SQLite is compiled in secure-delete mode. In this case,
5857 ** the dropCell() routine will overwrite the entire cell with zeroes.
5858 ** In this case, temporarily copy the cell into the aOvflSpace[]
5859 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5860 ** is allocated. */
drh5b47efa2010-02-12 18:18:39 +00005861 if( pBt->secureDelete ){
shaneh1da207e2010-03-09 14:41:12 +00005862 int iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
dan2ed11e72010-02-26 15:09:19 +00005863 if( (iOff+szNew[i])>pBt->usableSize ){
5864 rc = SQLITE_CORRUPT_BKPT;
5865 memset(apOld, 0, (i+1)*sizeof(MemPage*));
5866 goto balance_cleanup;
5867 }else{
5868 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
5869 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5870 }
drh5b47efa2010-02-12 18:18:39 +00005871 }
drh98add2e2009-07-20 17:11:49 +00005872 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005873 }
drh8b2f49b2001-06-08 00:21:52 +00005874 }
5875
drha9121e42008-02-19 14:59:35 +00005876 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005877 ** alignment */
drha9121e42008-02-19 14:59:35 +00005878 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005879
drh8b2f49b2001-06-08 00:21:52 +00005880 /*
danielk1977634f2982005-03-28 08:44:07 +00005881 ** Allocate space for memory structures
5882 */
danielk19774dbaa892009-06-16 16:50:22 +00005883 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005884 szScratch =
drha9121e42008-02-19 14:59:35 +00005885 nMaxCells*sizeof(u8*) /* apCell */
5886 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005887 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005888 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005889 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005890 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005891 rc = SQLITE_NOMEM;
5892 goto balance_cleanup;
5893 }
drha9121e42008-02-19 14:59:35 +00005894 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005895 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005896 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005897
5898 /*
5899 ** Load pointers to all cells on sibling pages and the divider cells
5900 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005901 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005902 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005903 **
5904 ** If the siblings are on leaf pages, then the child pointers of the
5905 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005906 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005907 ** child pointers. If siblings are not leaves, then all cell in
5908 ** apCell[] include child pointers. Either way, all cells in apCell[]
5909 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005910 **
5911 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5912 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005913 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005914 leafCorrection = apOld[0]->leaf*4;
5915 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005916 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005917 int limit;
5918
5919 /* Before doing anything else, take a copy of the i'th original sibling
5920 ** The rest of this function will use data from the copies rather
5921 ** that the original pages since the original pages will be in the
5922 ** process of being overwritten. */
5923 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5924 memcpy(pOld, apOld[i], sizeof(MemPage));
5925 pOld->aData = (void*)&pOld[1];
5926 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5927
5928 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005929 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005930 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005931 apCell[nCell] = findOverflowCell(pOld, j);
5932 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005933 nCell++;
5934 }
5935 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005936 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005937 u8 *pTemp;
5938 assert( nCell<nMaxCells );
5939 szCell[nCell] = sz;
5940 pTemp = &aSpace1[iSpace1];
5941 iSpace1 += sz;
5942 assert( sz<=pBt->pageSize/4 );
5943 assert( iSpace1<=pBt->pageSize );
5944 memcpy(pTemp, apDiv[i], sz);
5945 apCell[nCell] = pTemp+leafCorrection;
5946 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005947 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005948 if( !pOld->leaf ){
5949 assert( leafCorrection==0 );
5950 assert( pOld->hdrOffset==0 );
5951 /* The right pointer of the child page pOld becomes the left
5952 ** pointer of the divider cell */
5953 memcpy(apCell[nCell], &pOld->aData[8], 4);
5954 }else{
5955 assert( leafCorrection==4 );
5956 if( szCell[nCell]<4 ){
5957 /* Do not allow any cells smaller than 4 bytes. */
5958 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005959 }
5960 }
drh14acc042001-06-10 19:56:58 +00005961 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005962 }
drh8b2f49b2001-06-08 00:21:52 +00005963 }
5964
5965 /*
drh6019e162001-07-02 17:51:45 +00005966 ** Figure out the number of pages needed to hold all nCell cells.
5967 ** Store this number in "k". Also compute szNew[] which is the total
5968 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005969 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005970 ** cntNew[k] should equal nCell.
5971 **
drh96f5b762004-05-16 16:24:36 +00005972 ** Values computed by this block:
5973 **
5974 ** k: The total number of sibling pages
5975 ** szNew[i]: Spaced used on the i-th sibling page.
5976 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5977 ** the right of the i-th sibling page.
5978 ** usableSpace: Number of bytes of space available on each sibling.
5979 **
drh8b2f49b2001-06-08 00:21:52 +00005980 */
drh43605152004-05-29 21:46:49 +00005981 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005982 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005983 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005984 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005985 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005986 szNew[k] = subtotal - szCell[i];
5987 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005988 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005989 subtotal = 0;
5990 k++;
drh9978c972010-02-23 17:36:32 +00005991 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00005992 }
5993 }
5994 szNew[k] = subtotal;
5995 cntNew[k] = nCell;
5996 k++;
drh96f5b762004-05-16 16:24:36 +00005997
5998 /*
5999 ** The packing computed by the previous block is biased toward the siblings
6000 ** on the left side. The left siblings are always nearly full, while the
6001 ** right-most sibling might be nearly empty. This block of code attempts
6002 ** to adjust the packing of siblings to get a better balance.
6003 **
6004 ** This adjustment is more than an optimization. The packing above might
6005 ** be so out of balance as to be illegal. For example, the right-most
6006 ** sibling might be completely empty. This adjustment is not optional.
6007 */
drh6019e162001-07-02 17:51:45 +00006008 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006009 int szRight = szNew[i]; /* Size of sibling on the right */
6010 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6011 int r; /* Index of right-most cell in left sibling */
6012 int d; /* Index of first cell to the left of right sibling */
6013
6014 r = cntNew[i-1] - 1;
6015 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006016 assert( d<nMaxCells );
6017 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00006018 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
6019 szRight += szCell[d] + 2;
6020 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006021 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006022 r = cntNew[i-1] - 1;
6023 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006024 }
drh96f5b762004-05-16 16:24:36 +00006025 szNew[i] = szRight;
6026 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006027 }
drh09d0deb2005-08-02 17:13:09 +00006028
danielk19776f235cc2009-06-04 14:46:08 +00006029 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006030 ** a virtual root page. A virtual root page is when the real root
6031 ** page is page 1 and we are the only child of that page.
6032 */
6033 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00006034
danielk1977e5765212009-06-17 11:13:28 +00006035 TRACE(("BALANCE: old: %d %d %d ",
6036 apOld[0]->pgno,
6037 nOld>=2 ? apOld[1]->pgno : 0,
6038 nOld>=3 ? apOld[2]->pgno : 0
6039 ));
6040
drh8b2f49b2001-06-08 00:21:52 +00006041 /*
drh6b308672002-07-08 02:16:37 +00006042 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006043 */
drheac74422009-06-14 12:47:11 +00006044 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006045 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006046 goto balance_cleanup;
6047 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006048 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006049 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006050 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006051 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006052 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006053 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006054 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006055 nNew++;
danielk197728129562005-01-11 10:25:06 +00006056 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006057 }else{
drh7aa8f852006-03-28 00:24:44 +00006058 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006059 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006060 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006061 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006062 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006063
6064 /* Set the pointer-map entry for the new sibling page. */
6065 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006066 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006067 if( rc!=SQLITE_OK ){
6068 goto balance_cleanup;
6069 }
6070 }
drh6b308672002-07-08 02:16:37 +00006071 }
drh8b2f49b2001-06-08 00:21:52 +00006072 }
6073
danielk1977299b1872004-11-22 10:02:10 +00006074 /* Free any old pages that were not reused as new pages.
6075 */
6076 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006077 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006078 if( rc ) goto balance_cleanup;
6079 releasePage(apOld[i]);
6080 apOld[i] = 0;
6081 i++;
6082 }
6083
drh8b2f49b2001-06-08 00:21:52 +00006084 /*
drhf9ffac92002-03-02 19:00:31 +00006085 ** Put the new pages in accending order. This helps to
6086 ** keep entries in the disk file in order so that a scan
6087 ** of the table is a linear scan through the file. That
6088 ** in turn helps the operating system to deliver pages
6089 ** from the disk more rapidly.
6090 **
6091 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006092 ** n is never more than NB (a small constant), that should
6093 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006094 **
drhc3b70572003-01-04 19:44:07 +00006095 ** When NB==3, this one optimization makes the database
6096 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006097 */
6098 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006099 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006100 int minI = i;
6101 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006102 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006103 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006104 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006105 }
6106 }
6107 if( minI>i ){
6108 int t;
6109 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00006110 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006111 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006112 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006113 apNew[minI] = pT;
6114 }
6115 }
danielk1977e5765212009-06-17 11:13:28 +00006116 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006117 apNew[0]->pgno, szNew[0],
6118 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6119 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6120 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6121 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6122
6123 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6124 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006125
drhf9ffac92002-03-02 19:00:31 +00006126 /*
drh14acc042001-06-10 19:56:58 +00006127 ** Evenly distribute the data in apCell[] across the new pages.
6128 ** Insert divider cells into pParent as necessary.
6129 */
6130 j = 0;
6131 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006132 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006133 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006134 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006135 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006136 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006137 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006138 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006139
danielk1977ac11ee62005-01-15 12:45:51 +00006140 j = cntNew[i];
6141
6142 /* If the sibling page assembled above was not the right-most sibling,
6143 ** insert a divider cell into the parent page.
6144 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006145 assert( i<nNew-1 || j==nCell );
6146 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006147 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006148 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006149 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006150
6151 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006152 pCell = apCell[j];
6153 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006154 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006155 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006156 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006157 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006158 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006159 ** then there is no divider cell in apCell[]. Instead, the divider
6160 ** cell consists of the integer key for the right-most cell of
6161 ** the sibling-page assembled above only.
6162 */
drh6f11bef2004-05-13 01:12:56 +00006163 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006164 j--;
danielk197730548662009-07-09 05:07:37 +00006165 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006166 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006167 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006168 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006169 }else{
6170 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006171 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006172 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006173 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006174 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006175 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006176 ** insertCell(), so reparse the cell now.
6177 **
6178 ** Note that this can never happen in an SQLite data file, as all
6179 ** cells are at least 4 bytes. It only happens in b-trees used
6180 ** to evaluate "IN (SELECT ...)" and similar clauses.
6181 */
6182 if( szCell[j]==4 ){
6183 assert(leafCorrection==4);
6184 sz = cellSizePtr(pParent, pCell);
6185 }
drh4b70f112004-05-02 21:12:19 +00006186 }
danielk19776067a9b2009-06-09 09:41:00 +00006187 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00006188 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006189 assert( iOvflSpace<=pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006190 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006191 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006192 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006193
drh14acc042001-06-10 19:56:58 +00006194 j++;
6195 nxDiv++;
6196 }
6197 }
drh6019e162001-07-02 17:51:45 +00006198 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006199 assert( nOld>0 );
6200 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006201 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006202 u8 *zChild = &apCopy[nOld-1]->aData[8];
6203 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006204 }
6205
danielk197713bd99f2009-06-24 05:40:34 +00006206 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6207 /* The root page of the b-tree now contains no cells. The only sibling
6208 ** page is the right-child of the parent. Copy the contents of the
6209 ** child page into the parent, decreasing the overall height of the
6210 ** b-tree structure by one. This is described as the "balance-shallower"
6211 ** sub-algorithm in some documentation.
6212 **
6213 ** If this is an auto-vacuum database, the call to copyNodeContent()
6214 ** sets all pointer-map entries corresponding to database image pages
6215 ** for which the pointer is stored within the content being copied.
6216 **
6217 ** The second assert below verifies that the child page is defragmented
6218 ** (it must be, as it was just reconstructed using assemblePage()). This
6219 ** is important if the parent page happens to be page 1 of the database
6220 ** image. */
6221 assert( nNew==1 );
6222 assert( apNew[0]->nFree ==
6223 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6224 );
drhc314dc72009-07-21 11:52:34 +00006225 copyNodeContent(apNew[0], pParent, &rc);
6226 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006227 }else if( ISAUTOVACUUM ){
6228 /* Fix the pointer-map entries for all the cells that were shifted around.
6229 ** There are several different types of pointer-map entries that need to
6230 ** be dealt with by this routine. Some of these have been set already, but
6231 ** many have not. The following is a summary:
6232 **
6233 ** 1) The entries associated with new sibling pages that were not
6234 ** siblings when this function was called. These have already
6235 ** been set. We don't need to worry about old siblings that were
6236 ** moved to the free-list - the freePage() code has taken care
6237 ** of those.
6238 **
6239 ** 2) The pointer-map entries associated with the first overflow
6240 ** page in any overflow chains used by new divider cells. These
6241 ** have also already been taken care of by the insertCell() code.
6242 **
6243 ** 3) If the sibling pages are not leaves, then the child pages of
6244 ** cells stored on the sibling pages may need to be updated.
6245 **
6246 ** 4) If the sibling pages are not internal intkey nodes, then any
6247 ** overflow pages used by these cells may need to be updated
6248 ** (internal intkey nodes never contain pointers to overflow pages).
6249 **
6250 ** 5) If the sibling pages are not leaves, then the pointer-map
6251 ** entries for the right-child pages of each sibling may need
6252 ** to be updated.
6253 **
6254 ** Cases 1 and 2 are dealt with above by other code. The next
6255 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6256 ** setting a pointer map entry is a relatively expensive operation, this
6257 ** code only sets pointer map entries for child or overflow pages that have
6258 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006259 MemPage *pNew = apNew[0];
6260 MemPage *pOld = apCopy[0];
6261 int nOverflow = pOld->nOverflow;
6262 int iNextOld = pOld->nCell + nOverflow;
6263 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6264 j = 0; /* Current 'old' sibling page */
6265 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006266 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006267 int isDivider = 0;
6268 while( i==iNextOld ){
6269 /* Cell i is the cell immediately following the last cell on old
6270 ** sibling page j. If the siblings are not leaf pages of an
6271 ** intkey b-tree, then cell i was a divider cell. */
6272 pOld = apCopy[++j];
6273 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6274 if( pOld->nOverflow ){
6275 nOverflow = pOld->nOverflow;
6276 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6277 }
6278 isDivider = !leafData;
6279 }
6280
6281 assert(nOverflow>0 || iOverflow<i );
6282 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6283 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6284 if( i==iOverflow ){
6285 isDivider = 1;
6286 if( (--nOverflow)>0 ){
6287 iOverflow++;
6288 }
6289 }
6290
6291 if( i==cntNew[k] ){
6292 /* Cell i is the cell immediately following the last cell on new
6293 ** sibling page k. If the siblings are not leaf pages of an
6294 ** intkey b-tree, then cell i is a divider cell. */
6295 pNew = apNew[++k];
6296 if( !leafData ) continue;
6297 }
danielk19774dbaa892009-06-16 16:50:22 +00006298 assert( j<nOld );
6299 assert( k<nNew );
6300
6301 /* If the cell was originally divider cell (and is not now) or
6302 ** an overflow cell, or if the cell was located on a different sibling
6303 ** page before the balancing, then the pointer map entries associated
6304 ** with any child or overflow pages need to be updated. */
6305 if( isDivider || pOld->pgno!=pNew->pgno ){
6306 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006307 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006308 }
drh98add2e2009-07-20 17:11:49 +00006309 if( szCell[i]>pNew->minLocal ){
6310 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006311 }
6312 }
6313 }
6314
6315 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006316 for(i=0; i<nNew; i++){
6317 u32 key = get4byte(&apNew[i]->aData[8]);
6318 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006319 }
6320 }
6321
6322#if 0
6323 /* The ptrmapCheckPages() contains assert() statements that verify that
6324 ** all pointer map pages are set correctly. This is helpful while
6325 ** debugging. This is usually disabled because a corrupt database may
6326 ** cause an assert() statement to fail. */
6327 ptrmapCheckPages(apNew, nNew);
6328 ptrmapCheckPages(&pParent, 1);
6329#endif
6330 }
6331
danielk197771d5d2c2008-09-29 11:49:47 +00006332 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006333 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6334 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006335
drh8b2f49b2001-06-08 00:21:52 +00006336 /*
drh14acc042001-06-10 19:56:58 +00006337 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006338 */
drh14acc042001-06-10 19:56:58 +00006339balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006340 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006341 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006342 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006343 }
drh14acc042001-06-10 19:56:58 +00006344 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006345 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006346 }
danielk1977eaa06f62008-09-18 17:34:44 +00006347
drh8b2f49b2001-06-08 00:21:52 +00006348 return rc;
6349}
6350
drh43605152004-05-29 21:46:49 +00006351
6352/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006353** This function is called when the root page of a b-tree structure is
6354** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006355**
danielk1977a50d9aa2009-06-08 14:49:45 +00006356** A new child page is allocated and the contents of the current root
6357** page, including overflow cells, are copied into the child. The root
6358** page is then overwritten to make it an empty page with the right-child
6359** pointer pointing to the new page.
6360**
6361** Before returning, all pointer-map entries corresponding to pages
6362** that the new child-page now contains pointers to are updated. The
6363** entry corresponding to the new right-child pointer of the root
6364** page is also updated.
6365**
6366** If successful, *ppChild is set to contain a reference to the child
6367** page and SQLITE_OK is returned. In this case the caller is required
6368** to call releasePage() on *ppChild exactly once. If an error occurs,
6369** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006370*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006371static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6372 int rc; /* Return value from subprocedures */
6373 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006374 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006375 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006376
danielk1977a50d9aa2009-06-08 14:49:45 +00006377 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006378 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006379
danielk1977a50d9aa2009-06-08 14:49:45 +00006380 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6381 ** page that will become the new right-child of pPage. Copy the contents
6382 ** of the node stored on pRoot into the new child page.
6383 */
drh98add2e2009-07-20 17:11:49 +00006384 rc = sqlite3PagerWrite(pRoot->pDbPage);
6385 if( rc==SQLITE_OK ){
6386 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006387 copyNodeContent(pRoot, pChild, &rc);
6388 if( ISAUTOVACUUM ){
6389 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006390 }
6391 }
6392 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006393 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006394 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006395 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006396 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006397 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6398 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6399 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006400
danielk1977a50d9aa2009-06-08 14:49:45 +00006401 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6402
6403 /* Copy the overflow cells from pRoot to pChild */
6404 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6405 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006406
6407 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6408 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6409 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6410
6411 *ppChild = pChild;
6412 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006413}
6414
6415/*
danielk197771d5d2c2008-09-29 11:49:47 +00006416** The page that pCur currently points to has just been modified in
6417** some way. This function figures out if this modification means the
6418** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006419** routine. Balancing routines are:
6420**
6421** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006422** balance_deeper()
6423** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006424*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006425static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006426 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006427 const int nMin = pCur->pBt->usableSize * 2 / 3;
6428 u8 aBalanceQuickSpace[13];
6429 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006430
shane75ac1de2009-06-09 18:58:52 +00006431 TESTONLY( int balance_quick_called = 0 );
6432 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006433
6434 do {
6435 int iPage = pCur->iPage;
6436 MemPage *pPage = pCur->apPage[iPage];
6437
6438 if( iPage==0 ){
6439 if( pPage->nOverflow ){
6440 /* The root page of the b-tree is overfull. In this case call the
6441 ** balance_deeper() function to create a new child for the root-page
6442 ** and copy the current contents of the root-page to it. The
6443 ** next iteration of the do-loop will balance the child page.
6444 */
6445 assert( (balance_deeper_called++)==0 );
6446 rc = balance_deeper(pPage, &pCur->apPage[1]);
6447 if( rc==SQLITE_OK ){
6448 pCur->iPage = 1;
6449 pCur->aiIdx[0] = 0;
6450 pCur->aiIdx[1] = 0;
6451 assert( pCur->apPage[1]->nOverflow );
6452 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006453 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006454 break;
6455 }
6456 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6457 break;
6458 }else{
6459 MemPage * const pParent = pCur->apPage[iPage-1];
6460 int const iIdx = pCur->aiIdx[iPage-1];
6461
6462 rc = sqlite3PagerWrite(pParent->pDbPage);
6463 if( rc==SQLITE_OK ){
6464#ifndef SQLITE_OMIT_QUICKBALANCE
6465 if( pPage->hasData
6466 && pPage->nOverflow==1
6467 && pPage->aOvfl[0].idx==pPage->nCell
6468 && pParent->pgno!=1
6469 && pParent->nCell==iIdx
6470 ){
6471 /* Call balance_quick() to create a new sibling of pPage on which
6472 ** to store the overflow cell. balance_quick() inserts a new cell
6473 ** into pParent, which may cause pParent overflow. If this
6474 ** happens, the next interation of the do-loop will balance pParent
6475 ** use either balance_nonroot() or balance_deeper(). Until this
6476 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6477 ** buffer.
6478 **
6479 ** The purpose of the following assert() is to check that only a
6480 ** single call to balance_quick() is made for each call to this
6481 ** function. If this were not verified, a subtle bug involving reuse
6482 ** of the aBalanceQuickSpace[] might sneak in.
6483 */
6484 assert( (balance_quick_called++)==0 );
6485 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6486 }else
6487#endif
6488 {
6489 /* In this case, call balance_nonroot() to redistribute cells
6490 ** between pPage and up to 2 of its sibling pages. This involves
6491 ** modifying the contents of pParent, which may cause pParent to
6492 ** become overfull or underfull. The next iteration of the do-loop
6493 ** will balance the parent page to correct this.
6494 **
6495 ** If the parent page becomes overfull, the overflow cell or cells
6496 ** are stored in the pSpace buffer allocated immediately below.
6497 ** A subsequent iteration of the do-loop will deal with this by
6498 ** calling balance_nonroot() (balance_deeper() may be called first,
6499 ** but it doesn't deal with overflow cells - just moves them to a
6500 ** different page). Once this subsequent call to balance_nonroot()
6501 ** has completed, it is safe to release the pSpace buffer used by
6502 ** the previous call, as the overflow cell data will have been
6503 ** copied either into the body of a database page or into the new
6504 ** pSpace buffer passed to the latter call to balance_nonroot().
6505 */
6506 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006507 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006508 if( pFree ){
6509 /* If pFree is not NULL, it points to the pSpace buffer used
6510 ** by a previous call to balance_nonroot(). Its contents are
6511 ** now stored either on real database pages or within the
6512 ** new pSpace buffer, so it may be safely freed here. */
6513 sqlite3PageFree(pFree);
6514 }
6515
danielk19774dbaa892009-06-16 16:50:22 +00006516 /* The pSpace buffer will be freed after the next call to
6517 ** balance_nonroot(), or just before this function returns, whichever
6518 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006519 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006520 }
6521 }
6522
6523 pPage->nOverflow = 0;
6524
6525 /* The next iteration of the do-loop balances the parent page. */
6526 releasePage(pPage);
6527 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006528 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006529 }while( rc==SQLITE_OK );
6530
6531 if( pFree ){
6532 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006533 }
6534 return rc;
6535}
6536
drhf74b8d92002-09-01 23:20:45 +00006537
6538/*
drh3b7511c2001-05-26 13:15:44 +00006539** Insert a new record into the BTree. The key is given by (pKey,nKey)
6540** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006541** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006542** is left pointing at a random location.
6543**
6544** For an INTKEY table, only the nKey value of the key is used. pKey is
6545** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006546**
6547** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006548** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006549** been performed. seekResult is the search result returned (a negative
6550** number if pCur points at an entry that is smaller than (pKey, nKey), or
6551** a positive value if pCur points at an etry that is larger than
6552** (pKey, nKey)).
6553**
drh3e9ca092009-09-08 01:14:48 +00006554** If the seekResult parameter is non-zero, then the caller guarantees that
6555** cursor pCur is pointing at the existing copy of a row that is to be
6556** overwritten. If the seekResult parameter is 0, then cursor pCur may
6557** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006558** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006559*/
drh3aac2dd2004-04-26 14:10:20 +00006560int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006561 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006562 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006563 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006564 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006565 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006566 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006567){
drh3b7511c2001-05-26 13:15:44 +00006568 int rc;
drh3e9ca092009-09-08 01:14:48 +00006569 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006570 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006571 int idx;
drh3b7511c2001-05-26 13:15:44 +00006572 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006573 Btree *p = pCur->pBtree;
6574 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006575 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006576 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006577
drh98add2e2009-07-20 17:11:49 +00006578 if( pCur->eState==CURSOR_FAULT ){
6579 assert( pCur->skipNext!=SQLITE_OK );
6580 return pCur->skipNext;
6581 }
6582
drh1fee73e2007-08-29 04:00:57 +00006583 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006584 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006585 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6586
danielk197731d31b82009-07-13 13:18:07 +00006587 /* Assert that the caller has been consistent. If this cursor was opened
6588 ** expecting an index b-tree, then the caller should be inserting blob
6589 ** keys with no associated data. If the cursor was opened expecting an
6590 ** intkey table, the caller should be inserting integer keys with a
6591 ** blob of associated data. */
6592 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6593
danielk197796d48e92009-06-29 06:00:37 +00006594 /* If this is an insert into a table b-tree, invalidate any incrblob
6595 ** cursors open on the row being replaced (assuming this is a replace
6596 ** operation - if it is not, the following is a no-op). */
6597 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006598 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006599 }
danielk197796d48e92009-06-29 06:00:37 +00006600
danielk19779c3acf32009-05-02 07:36:49 +00006601 /* Save the positions of any other cursors open on this table.
6602 **
danielk19773509a652009-07-06 18:56:13 +00006603 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006604 ** example, when inserting data into a table with auto-generated integer
6605 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6606 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006607 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006608 ** that the cursor is already where it needs to be and returns without
6609 ** doing any work. To avoid thwarting these optimizations, it is important
6610 ** not to clear the cursor here.
6611 */
drh4c301aa2009-07-15 17:25:45 +00006612 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6613 if( rc ) return rc;
6614 if( !loc ){
6615 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6616 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006617 }
danielk1977b980d2212009-06-22 18:03:51 +00006618 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006619
danielk197771d5d2c2008-09-29 11:49:47 +00006620 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006621 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006622 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006623
drh3a4c1412004-05-09 20:40:11 +00006624 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6625 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6626 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006627 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006628 allocateTempSpace(pBt);
6629 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006630 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006631 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006632 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006633 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006634 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006635 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006636 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006637 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006638 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006639 rc = sqlite3PagerWrite(pPage->pDbPage);
6640 if( rc ){
6641 goto end_insert;
6642 }
danielk197771d5d2c2008-09-29 11:49:47 +00006643 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006644 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006645 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006646 }
drh43605152004-05-29 21:46:49 +00006647 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006648 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006649 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006650 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006651 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006652 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006653 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006654 }else{
drh4b70f112004-05-02 21:12:19 +00006655 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006656 }
drh98add2e2009-07-20 17:11:49 +00006657 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006658 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006659
danielk1977a50d9aa2009-06-08 14:49:45 +00006660 /* If no error has occured and pPage has an overflow cell, call balance()
6661 ** to redistribute the cells within the tree. Since balance() may move
6662 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6663 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006664 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006665 ** Previous versions of SQLite called moveToRoot() to move the cursor
6666 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006667 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6668 ** set the cursor state to "invalid". This makes common insert operations
6669 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006670 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006671 ** There is a subtle but important optimization here too. When inserting
6672 ** multiple records into an intkey b-tree using a single cursor (as can
6673 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6674 ** is advantageous to leave the cursor pointing to the last entry in
6675 ** the b-tree if possible. If the cursor is left pointing to the last
6676 ** entry in the table, and the next row inserted has an integer key
6677 ** larger than the largest existing key, it is possible to insert the
6678 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006679 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006680 pCur->info.nSize = 0;
6681 pCur->validNKey = 0;
6682 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006683 rc = balance(pCur);
6684
6685 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006686 ** fails. Internal data structure corruption will result otherwise.
6687 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6688 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006689 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006690 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006691 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006692 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006693
drh2e38c322004-09-03 18:38:44 +00006694end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006695 return rc;
6696}
6697
6698/*
drh4b70f112004-05-02 21:12:19 +00006699** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006700** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006701*/
drh3aac2dd2004-04-26 14:10:20 +00006702int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006703 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006704 BtShared *pBt = p->pBt;
6705 int rc; /* Return code */
6706 MemPage *pPage; /* Page to delete cell from */
6707 unsigned char *pCell; /* Pointer to cell to delete */
6708 int iCellIdx; /* Index of cell to delete */
6709 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006710
drh1fee73e2007-08-29 04:00:57 +00006711 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006712 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006713 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006714 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006715 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6716 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6717
danielk19774dbaa892009-06-16 16:50:22 +00006718 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6719 || NEVER(pCur->eState!=CURSOR_VALID)
6720 ){
6721 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006722 }
danielk1977da184232006-01-05 11:34:32 +00006723
danielk197796d48e92009-06-29 06:00:37 +00006724 /* If this is a delete operation to remove a row from a table b-tree,
6725 ** invalidate any incrblob cursors open on the row being deleted. */
6726 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006727 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006728 }
6729
6730 iCellDepth = pCur->iPage;
6731 iCellIdx = pCur->aiIdx[iCellDepth];
6732 pPage = pCur->apPage[iCellDepth];
6733 pCell = findCell(pPage, iCellIdx);
6734
6735 /* If the page containing the entry to delete is not a leaf page, move
6736 ** the cursor to the largest entry in the tree that is smaller than
6737 ** the entry being deleted. This cell will replace the cell being deleted
6738 ** from the internal node. The 'previous' entry is used for this instead
6739 ** of the 'next' entry, as the previous entry is always a part of the
6740 ** sub-tree headed by the child page of the cell being deleted. This makes
6741 ** balancing the tree following the delete operation easier. */
6742 if( !pPage->leaf ){
6743 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006744 rc = sqlite3BtreePrevious(pCur, &notUsed);
6745 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006746 }
6747
6748 /* Save the positions of any other cursors open on this table before
6749 ** making any modifications. Make the page containing the entry to be
6750 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006751 ** entry and finally remove the cell itself from within the page.
6752 */
6753 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6754 if( rc ) return rc;
6755 rc = sqlite3PagerWrite(pPage->pDbPage);
6756 if( rc ) return rc;
6757 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006758 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006759 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006760
danielk19774dbaa892009-06-16 16:50:22 +00006761 /* If the cell deleted was not located on a leaf page, then the cursor
6762 ** is currently pointing to the largest entry in the sub-tree headed
6763 ** by the child-page of the cell that was just deleted from an internal
6764 ** node. The cell from the leaf node needs to be moved to the internal
6765 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006766 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006767 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6768 int nCell;
6769 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6770 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006771
danielk19774dbaa892009-06-16 16:50:22 +00006772 pCell = findCell(pLeaf, pLeaf->nCell-1);
6773 nCell = cellSizePtr(pLeaf, pCell);
6774 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006775
danielk19774dbaa892009-06-16 16:50:22 +00006776 allocateTempSpace(pBt);
6777 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006778
drha4ec1d42009-07-11 13:13:11 +00006779 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006780 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6781 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006782 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006783 }
danielk19774dbaa892009-06-16 16:50:22 +00006784
6785 /* Balance the tree. If the entry deleted was located on a leaf page,
6786 ** then the cursor still points to that page. In this case the first
6787 ** call to balance() repairs the tree, and the if(...) condition is
6788 ** never true.
6789 **
6790 ** Otherwise, if the entry deleted was on an internal node page, then
6791 ** pCur is pointing to the leaf page from which a cell was removed to
6792 ** replace the cell deleted from the internal node. This is slightly
6793 ** tricky as the leaf node may be underfull, and the internal node may
6794 ** be either under or overfull. In this case run the balancing algorithm
6795 ** on the leaf node first. If the balance proceeds far enough up the
6796 ** tree that we can be sure that any problem in the internal node has
6797 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6798 ** walk the cursor up the tree to the internal node and balance it as
6799 ** well. */
6800 rc = balance(pCur);
6801 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6802 while( pCur->iPage>iCellDepth ){
6803 releasePage(pCur->apPage[pCur->iPage--]);
6804 }
6805 rc = balance(pCur);
6806 }
6807
danielk19776b456a22005-03-21 04:04:02 +00006808 if( rc==SQLITE_OK ){
6809 moveToRoot(pCur);
6810 }
drh5e2f8b92001-05-28 00:41:15 +00006811 return rc;
drh3b7511c2001-05-26 13:15:44 +00006812}
drh8b2f49b2001-06-08 00:21:52 +00006813
6814/*
drhc6b52df2002-01-04 03:09:29 +00006815** Create a new BTree table. Write into *piTable the page
6816** number for the root page of the new table.
6817**
drhab01f612004-05-22 02:55:23 +00006818** The type of type is determined by the flags parameter. Only the
6819** following values of flags are currently in use. Other values for
6820** flags might not work:
6821**
6822** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6823** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006824*/
drhd677b3d2007-08-20 22:48:41 +00006825static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006826 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006827 MemPage *pRoot;
6828 Pgno pgnoRoot;
6829 int rc;
drhd677b3d2007-08-20 22:48:41 +00006830
drh1fee73e2007-08-29 04:00:57 +00006831 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006832 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006833 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006834
danielk1977003ba062004-11-04 02:57:33 +00006835#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006836 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006837 if( rc ){
6838 return rc;
6839 }
danielk1977003ba062004-11-04 02:57:33 +00006840#else
danielk1977687566d2004-11-02 12:56:41 +00006841 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006842 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6843 MemPage *pPageMove; /* The page to move to. */
6844
danielk197720713f32007-05-03 11:43:33 +00006845 /* Creating a new table may probably require moving an existing database
6846 ** to make room for the new tables root page. In case this page turns
6847 ** out to be an overflow page, delete all overflow page-map caches
6848 ** held by open cursors.
6849 */
danielk197792d4d7a2007-05-04 12:05:56 +00006850 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006851
danielk1977003ba062004-11-04 02:57:33 +00006852 /* Read the value of meta[3] from the database to determine where the
6853 ** root page of the new table should go. meta[3] is the largest root-page
6854 ** created so far, so the new root-page is (meta[3]+1).
6855 */
danielk1977602b4662009-07-02 07:47:33 +00006856 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006857 pgnoRoot++;
6858
danielk1977599fcba2004-11-08 07:13:13 +00006859 /* The new root-page may not be allocated on a pointer-map page, or the
6860 ** PENDING_BYTE page.
6861 */
drh72190432008-01-31 14:54:43 +00006862 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006863 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006864 pgnoRoot++;
6865 }
6866 assert( pgnoRoot>=3 );
6867
6868 /* Allocate a page. The page that currently resides at pgnoRoot will
6869 ** be moved to the allocated page (unless the allocated page happens
6870 ** to reside at pgnoRoot).
6871 */
drh4f0c5872007-03-26 22:05:01 +00006872 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006873 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006874 return rc;
6875 }
danielk1977003ba062004-11-04 02:57:33 +00006876
6877 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006878 /* pgnoRoot is the page that will be used for the root-page of
6879 ** the new table (assuming an error did not occur). But we were
6880 ** allocated pgnoMove. If required (i.e. if it was not allocated
6881 ** by extending the file), the current page at position pgnoMove
6882 ** is already journaled.
6883 */
drheeb844a2009-08-08 18:01:07 +00006884 u8 eType = 0;
6885 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00006886
6887 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006888
6889 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006890 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006891 if( rc!=SQLITE_OK ){
6892 return rc;
6893 }
6894 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006895 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6896 rc = SQLITE_CORRUPT_BKPT;
6897 }
6898 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006899 releasePage(pRoot);
6900 return rc;
6901 }
drhccae6022005-02-26 17:31:26 +00006902 assert( eType!=PTRMAP_ROOTPAGE );
6903 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006904 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006905 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006906
6907 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006908 if( rc!=SQLITE_OK ){
6909 return rc;
6910 }
danielk197730548662009-07-09 05:07:37 +00006911 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006912 if( rc!=SQLITE_OK ){
6913 return rc;
6914 }
danielk19773b8a05f2007-03-19 17:44:26 +00006915 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006916 if( rc!=SQLITE_OK ){
6917 releasePage(pRoot);
6918 return rc;
6919 }
6920 }else{
6921 pRoot = pPageMove;
6922 }
6923
danielk197742741be2005-01-08 12:42:39 +00006924 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00006925 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00006926 if( rc ){
6927 releasePage(pRoot);
6928 return rc;
6929 }
drhbf592832010-03-30 15:51:12 +00006930
6931 /* When the new root page was allocated, page 1 was made writable in
6932 ** order either to increase the database filesize, or to decrement the
6933 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
6934 */
6935 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00006936 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00006937 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00006938 releasePage(pRoot);
6939 return rc;
6940 }
danielk197742741be2005-01-08 12:42:39 +00006941
danielk1977003ba062004-11-04 02:57:33 +00006942 }else{
drh4f0c5872007-03-26 22:05:01 +00006943 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006944 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006945 }
6946#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006947 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006948 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006949 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006950 *piTable = (int)pgnoRoot;
6951 return SQLITE_OK;
6952}
drhd677b3d2007-08-20 22:48:41 +00006953int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6954 int rc;
6955 sqlite3BtreeEnter(p);
6956 rc = btreeCreateTable(p, piTable, flags);
6957 sqlite3BtreeLeave(p);
6958 return rc;
6959}
drh8b2f49b2001-06-08 00:21:52 +00006960
6961/*
6962** Erase the given database page and all its children. Return
6963** the page to the freelist.
6964*/
drh4b70f112004-05-02 21:12:19 +00006965static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006966 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00006967 Pgno pgno, /* Page number to clear */
6968 int freePageFlag, /* Deallocate page if true */
6969 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00006970){
danielk1977146ba992009-07-22 14:08:13 +00006971 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00006972 int rc;
drh4b70f112004-05-02 21:12:19 +00006973 unsigned char *pCell;
6974 int i;
drh8b2f49b2001-06-08 00:21:52 +00006975
drh1fee73e2007-08-29 04:00:57 +00006976 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00006977 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006978 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006979 }
6980
danielk197771d5d2c2008-09-29 11:49:47 +00006981 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00006982 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00006983 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006984 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006985 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006986 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006987 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006988 }
drh4b70f112004-05-02 21:12:19 +00006989 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006990 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006991 }
drha34b6762004-05-07 13:30:42 +00006992 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006993 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006994 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006995 }else if( pnChange ){
6996 assert( pPage->intKey );
6997 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006998 }
6999 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007000 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007001 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007002 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007003 }
danielk19776b456a22005-03-21 04:04:02 +00007004
7005cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007006 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007007 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007008}
7009
7010/*
drhab01f612004-05-22 02:55:23 +00007011** Delete all information from a single table in the database. iTable is
7012** the page number of the root of the table. After this routine returns,
7013** the root page is empty, but still exists.
7014**
7015** This routine will fail with SQLITE_LOCKED if there are any open
7016** read cursors on the table. Open write cursors are moved to the
7017** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007018**
7019** If pnChange is not NULL, then table iTable must be an intkey table. The
7020** integer value pointed to by pnChange is incremented by the number of
7021** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007022*/
danielk1977c7af4842008-10-27 13:59:33 +00007023int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007024 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007025 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007026 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007027 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007028
7029 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7030 ** is the root of a table b-tree - if it is not, the following call is
7031 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00007032 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00007033
drhc046e3e2009-07-15 11:26:44 +00007034 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7035 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00007036 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007037 }
drhd677b3d2007-08-20 22:48:41 +00007038 sqlite3BtreeLeave(p);
7039 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007040}
7041
7042/*
7043** Erase all information in a table and add the root of the table to
7044** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007045** page 1) is never added to the freelist.
7046**
7047** This routine will fail with SQLITE_LOCKED if there are any open
7048** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007049**
7050** If AUTOVACUUM is enabled and the page at iTable is not the last
7051** root page in the database file, then the last root page
7052** in the database file is moved into the slot formerly occupied by
7053** iTable and that last slot formerly occupied by the last root page
7054** is added to the freelist instead of iTable. In this say, all
7055** root pages are kept at the beginning of the database file, which
7056** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7057** page number that used to be the last root page in the file before
7058** the move. If no page gets moved, *piMoved is set to 0.
7059** The last root page is recorded in meta[3] and the value of
7060** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007061*/
danielk197789d40042008-11-17 14:20:56 +00007062static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007063 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007064 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007065 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007066
drh1fee73e2007-08-29 04:00:57 +00007067 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007068 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007069
danielk1977e6efa742004-11-10 11:55:10 +00007070 /* It is illegal to drop a table if any cursors are open on the
7071 ** database. This is because in auto-vacuum mode the backend may
7072 ** need to move another root-page to fill a gap left by the deleted
7073 ** root page. If an open cursor was using this page a problem would
7074 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007075 **
7076 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007077 */
drhc046e3e2009-07-15 11:26:44 +00007078 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007079 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7080 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007081 }
danielk1977a0bf2652004-11-04 14:30:04 +00007082
danielk197730548662009-07-09 05:07:37 +00007083 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007084 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007085 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007086 if( rc ){
7087 releasePage(pPage);
7088 return rc;
7089 }
danielk1977a0bf2652004-11-04 14:30:04 +00007090
drh205f48e2004-11-05 00:43:11 +00007091 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007092
drh4b70f112004-05-02 21:12:19 +00007093 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007094#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007095 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007096 releasePage(pPage);
7097#else
7098 if( pBt->autoVacuum ){
7099 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007100 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007101
7102 if( iTable==maxRootPgno ){
7103 /* If the table being dropped is the table with the largest root-page
7104 ** number in the database, put the root page on the free list.
7105 */
drhc314dc72009-07-21 11:52:34 +00007106 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007107 releasePage(pPage);
7108 if( rc!=SQLITE_OK ){
7109 return rc;
7110 }
7111 }else{
7112 /* The table being dropped does not have the largest root-page
7113 ** number in the database. So move the page that does into the
7114 ** gap left by the deleted root-page.
7115 */
7116 MemPage *pMove;
7117 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007118 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007119 if( rc!=SQLITE_OK ){
7120 return rc;
7121 }
danielk19774c999992008-07-16 18:17:55 +00007122 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007123 releasePage(pMove);
7124 if( rc!=SQLITE_OK ){
7125 return rc;
7126 }
drhfe3313f2009-07-21 19:02:20 +00007127 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007128 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007129 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007130 releasePage(pMove);
7131 if( rc!=SQLITE_OK ){
7132 return rc;
7133 }
7134 *piMoved = maxRootPgno;
7135 }
7136
danielk1977599fcba2004-11-08 07:13:13 +00007137 /* Set the new 'max-root-page' value in the database header. This
7138 ** is the old value less one, less one more if that happens to
7139 ** be a root-page number, less one again if that is the
7140 ** PENDING_BYTE_PAGE.
7141 */
danielk197787a6e732004-11-05 12:58:25 +00007142 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007143 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7144 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007145 maxRootPgno--;
7146 }
danielk1977599fcba2004-11-08 07:13:13 +00007147 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7148
danielk1977aef0bf62005-12-30 16:28:01 +00007149 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007150 }else{
drhc314dc72009-07-21 11:52:34 +00007151 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007152 releasePage(pPage);
7153 }
7154#endif
drh2aa679f2001-06-25 02:11:07 +00007155 }else{
drhc046e3e2009-07-15 11:26:44 +00007156 /* If sqlite3BtreeDropTable was called on page 1.
7157 ** This really never should happen except in a corrupt
7158 ** database.
7159 */
drha34b6762004-05-07 13:30:42 +00007160 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007161 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007162 }
drh8b2f49b2001-06-08 00:21:52 +00007163 return rc;
7164}
drhd677b3d2007-08-20 22:48:41 +00007165int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7166 int rc;
7167 sqlite3BtreeEnter(p);
7168 rc = btreeDropTable(p, iTable, piMoved);
7169 sqlite3BtreeLeave(p);
7170 return rc;
7171}
drh8b2f49b2001-06-08 00:21:52 +00007172
drh001bbcb2003-03-19 03:14:00 +00007173
drh8b2f49b2001-06-08 00:21:52 +00007174/*
danielk1977602b4662009-07-02 07:47:33 +00007175** This function may only be called if the b-tree connection already
7176** has a read or write transaction open on the database.
7177**
drh23e11ca2004-05-04 17:27:28 +00007178** Read the meta-information out of a database file. Meta[0]
7179** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007180** through meta[15] are available for use by higher layers. Meta[0]
7181** is read-only, the others are read/write.
7182**
7183** The schema layer numbers meta values differently. At the schema
7184** layer (and the SetCookie and ReadCookie opcodes) the number of
7185** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007186*/
danielk1977602b4662009-07-02 07:47:33 +00007187void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007188 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007189
drhd677b3d2007-08-20 22:48:41 +00007190 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007191 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007192 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007193 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007194 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007195
danielk1977602b4662009-07-02 07:47:33 +00007196 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007197
danielk1977602b4662009-07-02 07:47:33 +00007198 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7199 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007200#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007201 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007202#endif
drhae157872004-08-14 19:20:09 +00007203
drhd677b3d2007-08-20 22:48:41 +00007204 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007205}
7206
7207/*
drh23e11ca2004-05-04 17:27:28 +00007208** Write meta-information back into the database. Meta[0] is
7209** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007210*/
danielk1977aef0bf62005-12-30 16:28:01 +00007211int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7212 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007213 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007214 int rc;
drh23e11ca2004-05-04 17:27:28 +00007215 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007216 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007217 assert( p->inTrans==TRANS_WRITE );
7218 assert( pBt->pPage1!=0 );
7219 pP1 = pBt->pPage1->aData;
7220 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7221 if( rc==SQLITE_OK ){
7222 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007223#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007224 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007225 assert( pBt->autoVacuum || iMeta==0 );
7226 assert( iMeta==0 || iMeta==1 );
7227 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007228 }
drh64022502009-01-09 14:11:04 +00007229#endif
drh5df72a52002-06-06 23:16:05 +00007230 }
drhd677b3d2007-08-20 22:48:41 +00007231 sqlite3BtreeLeave(p);
7232 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007233}
drh8c42ca92001-06-22 19:15:00 +00007234
danielk1977a5533162009-02-24 10:01:51 +00007235#ifndef SQLITE_OMIT_BTREECOUNT
7236/*
7237** The first argument, pCur, is a cursor opened on some b-tree. Count the
7238** number of entries in the b-tree and write the result to *pnEntry.
7239**
7240** SQLITE_OK is returned if the operation is successfully executed.
7241** Otherwise, if an error is encountered (i.e. an IO error or database
7242** corruption) an SQLite error code is returned.
7243*/
7244int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7245 i64 nEntry = 0; /* Value to return in *pnEntry */
7246 int rc; /* Return code */
7247 rc = moveToRoot(pCur);
7248
7249 /* Unless an error occurs, the following loop runs one iteration for each
7250 ** page in the B-Tree structure (not including overflow pages).
7251 */
7252 while( rc==SQLITE_OK ){
7253 int iIdx; /* Index of child node in parent */
7254 MemPage *pPage; /* Current page of the b-tree */
7255
7256 /* If this is a leaf page or the tree is not an int-key tree, then
7257 ** this page contains countable entries. Increment the entry counter
7258 ** accordingly.
7259 */
7260 pPage = pCur->apPage[pCur->iPage];
7261 if( pPage->leaf || !pPage->intKey ){
7262 nEntry += pPage->nCell;
7263 }
7264
7265 /* pPage is a leaf node. This loop navigates the cursor so that it
7266 ** points to the first interior cell that it points to the parent of
7267 ** the next page in the tree that has not yet been visited. The
7268 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7269 ** of the page, or to the number of cells in the page if the next page
7270 ** to visit is the right-child of its parent.
7271 **
7272 ** If all pages in the tree have been visited, return SQLITE_OK to the
7273 ** caller.
7274 */
7275 if( pPage->leaf ){
7276 do {
7277 if( pCur->iPage==0 ){
7278 /* All pages of the b-tree have been visited. Return successfully. */
7279 *pnEntry = nEntry;
7280 return SQLITE_OK;
7281 }
danielk197730548662009-07-09 05:07:37 +00007282 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007283 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7284
7285 pCur->aiIdx[pCur->iPage]++;
7286 pPage = pCur->apPage[pCur->iPage];
7287 }
7288
7289 /* Descend to the child node of the cell that the cursor currently
7290 ** points at. This is the right-child if (iIdx==pPage->nCell).
7291 */
7292 iIdx = pCur->aiIdx[pCur->iPage];
7293 if( iIdx==pPage->nCell ){
7294 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7295 }else{
7296 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7297 }
7298 }
7299
shanebe217792009-03-05 04:20:31 +00007300 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007301 return rc;
7302}
7303#endif
drhdd793422001-06-28 01:54:48 +00007304
drhdd793422001-06-28 01:54:48 +00007305/*
drh5eddca62001-06-30 21:53:53 +00007306** Return the pager associated with a BTree. This routine is used for
7307** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007308*/
danielk1977aef0bf62005-12-30 16:28:01 +00007309Pager *sqlite3BtreePager(Btree *p){
7310 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007311}
drh5eddca62001-06-30 21:53:53 +00007312
drhb7f91642004-10-31 02:22:47 +00007313#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007314/*
7315** Append a message to the error message string.
7316*/
drh2e38c322004-09-03 18:38:44 +00007317static void checkAppendMsg(
7318 IntegrityCk *pCheck,
7319 char *zMsg1,
7320 const char *zFormat,
7321 ...
7322){
7323 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007324 if( !pCheck->mxErr ) return;
7325 pCheck->mxErr--;
7326 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007327 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007328 if( pCheck->errMsg.nChar ){
7329 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007330 }
drhf089aa42008-07-08 19:34:06 +00007331 if( zMsg1 ){
7332 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7333 }
7334 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7335 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007336 if( pCheck->errMsg.mallocFailed ){
7337 pCheck->mallocFailed = 1;
7338 }
drh5eddca62001-06-30 21:53:53 +00007339}
drhb7f91642004-10-31 02:22:47 +00007340#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007341
drhb7f91642004-10-31 02:22:47 +00007342#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007343/*
7344** Add 1 to the reference count for page iPage. If this is the second
7345** reference to the page, add an error message to pCheck->zErrMsg.
7346** Return 1 if there are 2 ore more references to the page and 0 if
7347** if this is the first reference to the page.
7348**
7349** Also check that the page number is in bounds.
7350*/
danielk197789d40042008-11-17 14:20:56 +00007351static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007352 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007353 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007354 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007355 return 1;
7356 }
7357 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007358 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007359 return 1;
7360 }
7361 return (pCheck->anRef[iPage]++)>1;
7362}
7363
danielk1977afcdd022004-10-31 16:25:42 +00007364#ifndef SQLITE_OMIT_AUTOVACUUM
7365/*
7366** Check that the entry in the pointer-map for page iChild maps to
7367** page iParent, pointer type ptrType. If not, append an error message
7368** to pCheck.
7369*/
7370static void checkPtrmap(
7371 IntegrityCk *pCheck, /* Integrity check context */
7372 Pgno iChild, /* Child page number */
7373 u8 eType, /* Expected pointer map type */
7374 Pgno iParent, /* Expected pointer map parent page number */
7375 char *zContext /* Context description (used for error msg) */
7376){
7377 int rc;
7378 u8 ePtrmapType;
7379 Pgno iPtrmapParent;
7380
7381 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7382 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007383 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007384 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7385 return;
7386 }
7387
7388 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7389 checkAppendMsg(pCheck, zContext,
7390 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7391 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7392 }
7393}
7394#endif
7395
drh5eddca62001-06-30 21:53:53 +00007396/*
7397** Check the integrity of the freelist or of an overflow page list.
7398** Verify that the number of pages on the list is N.
7399*/
drh30e58752002-03-02 20:41:57 +00007400static void checkList(
7401 IntegrityCk *pCheck, /* Integrity checking context */
7402 int isFreeList, /* True for a freelist. False for overflow page list */
7403 int iPage, /* Page number for first page in the list */
7404 int N, /* Expected number of pages in the list */
7405 char *zContext /* Context for error messages */
7406){
7407 int i;
drh3a4c1412004-05-09 20:40:11 +00007408 int expected = N;
7409 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007410 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007411 DbPage *pOvflPage;
7412 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007413 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007414 checkAppendMsg(pCheck, zContext,
7415 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007416 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007417 break;
7418 }
7419 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007420 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007421 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007422 break;
7423 }
danielk19773b8a05f2007-03-19 17:44:26 +00007424 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007425 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007426 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007427#ifndef SQLITE_OMIT_AUTOVACUUM
7428 if( pCheck->pBt->autoVacuum ){
7429 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7430 }
7431#endif
drh45b1fac2008-07-04 17:52:42 +00007432 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007433 checkAppendMsg(pCheck, zContext,
7434 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007435 N--;
7436 }else{
7437 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007438 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007439#ifndef SQLITE_OMIT_AUTOVACUUM
7440 if( pCheck->pBt->autoVacuum ){
7441 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7442 }
7443#endif
7444 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007445 }
7446 N -= n;
drh30e58752002-03-02 20:41:57 +00007447 }
drh30e58752002-03-02 20:41:57 +00007448 }
danielk1977afcdd022004-10-31 16:25:42 +00007449#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007450 else{
7451 /* If this database supports auto-vacuum and iPage is not the last
7452 ** page in this overflow list, check that the pointer-map entry for
7453 ** the following page matches iPage.
7454 */
7455 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007456 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007457 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7458 }
danielk1977afcdd022004-10-31 16:25:42 +00007459 }
7460#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007461 iPage = get4byte(pOvflData);
7462 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007463 }
7464}
drhb7f91642004-10-31 02:22:47 +00007465#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007466
drhb7f91642004-10-31 02:22:47 +00007467#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007468/*
7469** Do various sanity checks on a single page of a tree. Return
7470** the tree depth. Root pages return 0. Parents of root pages
7471** return 1, and so forth.
7472**
7473** These checks are done:
7474**
7475** 1. Make sure that cells and freeblocks do not overlap
7476** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007477** NO 2. Make sure cell keys are in order.
7478** NO 3. Make sure no key is less than or equal to zLowerBound.
7479** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007480** 5. Check the integrity of overflow pages.
7481** 6. Recursively call checkTreePage on all children.
7482** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007483** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007484** the root of the tree.
7485*/
7486static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007487 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007488 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007489 char *zParentContext, /* Parent context */
7490 i64 *pnParentMinKey,
7491 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007492){
7493 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007494 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007495 int hdr, cellStart;
7496 int nCell;
drhda200cc2004-05-09 11:51:38 +00007497 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007498 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007499 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007500 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007501 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007502 i64 nMinKey = 0;
7503 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007504
drh5bb3eb92007-05-04 13:15:55 +00007505 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007506
drh5eddca62001-06-30 21:53:53 +00007507 /* Check that the page exists
7508 */
drhd9cb6ac2005-10-20 07:28:17 +00007509 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007510 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007511 if( iPage==0 ) return 0;
7512 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007513 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007514 checkAppendMsg(pCheck, zContext,
7515 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007516 return 0;
7517 }
danielk197793caf5a2009-07-11 06:55:33 +00007518
7519 /* Clear MemPage.isInit to make sure the corruption detection code in
7520 ** btreeInitPage() is executed. */
7521 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007522 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007523 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007524 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007525 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007526 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007527 return 0;
7528 }
7529
7530 /* Check out all the cells.
7531 */
7532 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007533 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007534 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007535 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007536 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007537
7538 /* Check payload overflow pages
7539 */
drh5bb3eb92007-05-04 13:15:55 +00007540 sqlite3_snprintf(sizeof(zContext), zContext,
7541 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007542 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007543 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007544 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007545 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007546 /* For intKey pages, check that the keys are in order.
7547 */
7548 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7549 else{
7550 if( info.nKey <= nMaxKey ){
7551 checkAppendMsg(pCheck, zContext,
7552 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7553 }
7554 nMaxKey = info.nKey;
7555 }
drh72365832007-03-06 15:53:44 +00007556 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007557 if( (sz>info.nLocal)
7558 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7559 ){
drhb6f41482004-05-14 01:58:11 +00007560 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007561 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7562#ifndef SQLITE_OMIT_AUTOVACUUM
7563 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007564 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007565 }
7566#endif
7567 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007568 }
7569
7570 /* Check sanity of left child page.
7571 */
drhda200cc2004-05-09 11:51:38 +00007572 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007573 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007574#ifndef SQLITE_OMIT_AUTOVACUUM
7575 if( pBt->autoVacuum ){
7576 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7577 }
7578#endif
shaneh195475d2010-02-19 04:28:08 +00007579 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007580 if( i>0 && d2!=depth ){
7581 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7582 }
7583 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007584 }
drh5eddca62001-06-30 21:53:53 +00007585 }
shaneh195475d2010-02-19 04:28:08 +00007586
drhda200cc2004-05-09 11:51:38 +00007587 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007588 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007589 sqlite3_snprintf(sizeof(zContext), zContext,
7590 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007591#ifndef SQLITE_OMIT_AUTOVACUUM
7592 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007593 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007594 }
7595#endif
shaneh195475d2010-02-19 04:28:08 +00007596 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007597 }
drh5eddca62001-06-30 21:53:53 +00007598
shaneh195475d2010-02-19 04:28:08 +00007599 /* For intKey leaf pages, check that the min/max keys are in order
7600 ** with any left/parent/right pages.
7601 */
7602 if( pPage->leaf && pPage->intKey ){
7603 /* if we are a left child page */
7604 if( pnParentMinKey ){
7605 /* if we are the left most child page */
7606 if( !pnParentMaxKey ){
7607 if( nMaxKey > *pnParentMinKey ){
7608 checkAppendMsg(pCheck, zContext,
7609 "Rowid %lld out of order (max larger than parent min of %lld)",
7610 nMaxKey, *pnParentMinKey);
7611 }
7612 }else{
7613 if( nMinKey <= *pnParentMinKey ){
7614 checkAppendMsg(pCheck, zContext,
7615 "Rowid %lld out of order (min less than parent min of %lld)",
7616 nMinKey, *pnParentMinKey);
7617 }
7618 if( nMaxKey > *pnParentMaxKey ){
7619 checkAppendMsg(pCheck, zContext,
7620 "Rowid %lld out of order (max larger than parent max of %lld)",
7621 nMaxKey, *pnParentMaxKey);
7622 }
7623 *pnParentMinKey = nMaxKey;
7624 }
7625 /* else if we're a right child page */
7626 } else if( pnParentMaxKey ){
7627 if( nMinKey <= *pnParentMaxKey ){
7628 checkAppendMsg(pCheck, zContext,
7629 "Rowid %lld out of order (min less than parent max of %lld)",
7630 nMinKey, *pnParentMaxKey);
7631 }
7632 }
7633 }
7634
drh5eddca62001-06-30 21:53:53 +00007635 /* Check for complete coverage of the page
7636 */
drhda200cc2004-05-09 11:51:38 +00007637 data = pPage->aData;
7638 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007639 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007640 if( hit==0 ){
7641 pCheck->mallocFailed = 1;
7642 }else{
shane5780ebd2008-11-11 17:36:30 +00007643 u16 contentOffset = get2byte(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007644 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007645 memset(hit+contentOffset, 0, usableSize-contentOffset);
7646 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007647 nCell = get2byte(&data[hdr+3]);
7648 cellStart = hdr + 12 - 4*pPage->leaf;
7649 for(i=0; i<nCell; i++){
7650 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007651 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007652 int j;
drh8c2bbb62009-07-10 02:52:20 +00007653 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007654 size = cellSizePtr(pPage, &data[pc]);
7655 }
drhd7c7ecd2009-07-14 17:48:06 +00007656 if( (pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007657 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007658 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007659 }else{
7660 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7661 }
drh2e38c322004-09-03 18:38:44 +00007662 }
drh8c2bbb62009-07-10 02:52:20 +00007663 i = get2byte(&data[hdr+1]);
7664 while( i>0 ){
7665 int size, j;
7666 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7667 size = get2byte(&data[i+2]);
7668 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7669 for(j=i+size-1; j>=i; j--) hit[j]++;
7670 j = get2byte(&data[i]);
7671 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7672 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7673 i = j;
drh2e38c322004-09-03 18:38:44 +00007674 }
7675 for(i=cnt=0; i<usableSize; i++){
7676 if( hit[i]==0 ){
7677 cnt++;
7678 }else if( hit[i]>1 ){
7679 checkAppendMsg(pCheck, 0,
7680 "Multiple uses for byte %d of page %d", i, iPage);
7681 break;
7682 }
7683 }
7684 if( cnt!=data[hdr+7] ){
7685 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007686 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007687 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007688 }
7689 }
drh8c2bbb62009-07-10 02:52:20 +00007690 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007691 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007692 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007693}
drhb7f91642004-10-31 02:22:47 +00007694#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007695
drhb7f91642004-10-31 02:22:47 +00007696#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007697/*
7698** This routine does a complete check of the given BTree file. aRoot[] is
7699** an array of pages numbers were each page number is the root page of
7700** a table. nRoot is the number of entries in aRoot.
7701**
danielk19773509a652009-07-06 18:56:13 +00007702** A read-only or read-write transaction must be opened before calling
7703** this function.
7704**
drhc890fec2008-08-01 20:10:08 +00007705** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007706** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007707** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007708** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007709*/
drh1dcdbc02007-01-27 02:24:54 +00007710char *sqlite3BtreeIntegrityCheck(
7711 Btree *p, /* The btree to be checked */
7712 int *aRoot, /* An array of root pages numbers for individual trees */
7713 int nRoot, /* Number of entries in aRoot[] */
7714 int mxErr, /* Stop reporting errors after this many */
7715 int *pnErr /* Write number of errors seen to this variable */
7716){
danielk197789d40042008-11-17 14:20:56 +00007717 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007718 int nRef;
drhaaab5722002-02-19 13:39:21 +00007719 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007720 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007721 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007722
drhd677b3d2007-08-20 22:48:41 +00007723 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007724 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007725 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007726 sCheck.pBt = pBt;
7727 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007728 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007729 sCheck.mxErr = mxErr;
7730 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007731 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007732 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007733 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007734 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007735 return 0;
7736 }
drhe5ae5732008-06-15 02:51:47 +00007737 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007738 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007739 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007740 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007741 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007742 }
drhda200cc2004-05-09 11:51:38 +00007743 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007744 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007745 if( i<=sCheck.nPage ){
7746 sCheck.anRef[i] = 1;
7747 }
drhf089aa42008-07-08 19:34:06 +00007748 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007749
7750 /* Check the integrity of the freelist
7751 */
drha34b6762004-05-07 13:30:42 +00007752 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7753 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007754
7755 /* Check all the tables.
7756 */
danielk197789d40042008-11-17 14:20:56 +00007757 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007758 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007759#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007760 if( pBt->autoVacuum && aRoot[i]>1 ){
7761 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7762 }
7763#endif
shaneh195475d2010-02-19 04:28:08 +00007764 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007765 }
7766
7767 /* Make sure every page in the file is referenced
7768 */
drh1dcdbc02007-01-27 02:24:54 +00007769 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007770#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007771 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007772 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007773 }
danielk1977afcdd022004-10-31 16:25:42 +00007774#else
7775 /* If the database supports auto-vacuum, make sure no tables contain
7776 ** references to pointer-map pages.
7777 */
7778 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007779 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007780 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7781 }
7782 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007783 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007784 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7785 }
7786#endif
drh5eddca62001-06-30 21:53:53 +00007787 }
7788
drh64022502009-01-09 14:11:04 +00007789 /* Make sure this analysis did not leave any unref() pages.
7790 ** This is an internal consistency check; an integrity check
7791 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007792 */
drh64022502009-01-09 14:11:04 +00007793 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007794 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007795 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007796 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007797 );
drh5eddca62001-06-30 21:53:53 +00007798 }
7799
7800 /* Clean up and report errors.
7801 */
drhd677b3d2007-08-20 22:48:41 +00007802 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007803 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007804 if( sCheck.mallocFailed ){
7805 sqlite3StrAccumReset(&sCheck.errMsg);
7806 *pnErr = sCheck.nErr+1;
7807 return 0;
7808 }
drh1dcdbc02007-01-27 02:24:54 +00007809 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007810 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7811 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007812}
drhb7f91642004-10-31 02:22:47 +00007813#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007814
drh73509ee2003-04-06 20:44:45 +00007815/*
7816** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007817**
7818** The pager filename is invariant as long as the pager is
7819** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007820*/
danielk1977aef0bf62005-12-30 16:28:01 +00007821const char *sqlite3BtreeGetFilename(Btree *p){
7822 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007823 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007824}
7825
7826/*
danielk19775865e3d2004-06-14 06:03:57 +00007827** Return the pathname of the journal file for this database. The return
7828** value of this routine is the same regardless of whether the journal file
7829** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007830**
7831** The pager journal filename is invariant as long as the pager is
7832** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007833*/
danielk1977aef0bf62005-12-30 16:28:01 +00007834const char *sqlite3BtreeGetJournalname(Btree *p){
7835 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007836 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007837}
7838
danielk19771d850a72004-05-31 08:26:49 +00007839/*
7840** Return non-zero if a transaction is active.
7841*/
danielk1977aef0bf62005-12-30 16:28:01 +00007842int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007843 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007844 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007845}
7846
7847/*
danielk19772372c2b2006-06-27 16:34:56 +00007848** Return non-zero if a read (or write) transaction is active.
7849*/
7850int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007851 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007852 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007853 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007854}
7855
danielk197704103022009-02-03 16:51:24 +00007856int sqlite3BtreeIsInBackup(Btree *p){
7857 assert( p );
7858 assert( sqlite3_mutex_held(p->db->mutex) );
7859 return p->nBackup!=0;
7860}
7861
danielk19772372c2b2006-06-27 16:34:56 +00007862/*
danielk1977da184232006-01-05 11:34:32 +00007863** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007864** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007865** purposes (for example, to store a high-level schema associated with
7866** the shared-btree). The btree layer manages reference counting issues.
7867**
7868** The first time this is called on a shared-btree, nBytes bytes of memory
7869** are allocated, zeroed, and returned to the caller. For each subsequent
7870** call the nBytes parameter is ignored and a pointer to the same blob
7871** of memory returned.
7872**
danielk1977171bfed2008-06-23 09:50:50 +00007873** If the nBytes parameter is 0 and the blob of memory has not yet been
7874** allocated, a null pointer is returned. If the blob has already been
7875** allocated, it is returned as normal.
7876**
danielk1977da184232006-01-05 11:34:32 +00007877** Just before the shared-btree is closed, the function passed as the
7878** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007879** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007880** on the memory, the btree layer does that.
7881*/
7882void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7883 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007884 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007885 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007886 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007887 pBt->xFreeSchema = xFree;
7888 }
drh27641702007-08-22 02:56:42 +00007889 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007890 return pBt->pSchema;
7891}
7892
danielk1977c87d34d2006-01-06 13:00:28 +00007893/*
danielk1977404ca072009-03-16 13:19:36 +00007894** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7895** btree as the argument handle holds an exclusive lock on the
7896** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007897*/
7898int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007899 int rc;
drhe5fe6902007-12-07 18:55:28 +00007900 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007901 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007902 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7903 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007904 sqlite3BtreeLeave(p);
7905 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007906}
7907
drha154dcd2006-03-22 22:10:07 +00007908
7909#ifndef SQLITE_OMIT_SHARED_CACHE
7910/*
7911** Obtain a lock on the table whose root page is iTab. The
7912** lock is a write lock if isWritelock is true or a read lock
7913** if it is false.
7914*/
danielk1977c00da102006-01-07 13:21:04 +00007915int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007916 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00007917 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00007918 if( p->sharable ){
7919 u8 lockType = READ_LOCK + isWriteLock;
7920 assert( READ_LOCK+1==WRITE_LOCK );
7921 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00007922
drh6a9ad3d2008-04-02 16:29:30 +00007923 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007924 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007925 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007926 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007927 }
7928 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007929 }
7930 return rc;
7931}
drha154dcd2006-03-22 22:10:07 +00007932#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007933
danielk1977b4e9af92007-05-01 17:49:49 +00007934#ifndef SQLITE_OMIT_INCRBLOB
7935/*
7936** Argument pCsr must be a cursor opened for writing on an
7937** INTKEY table currently pointing at a valid table entry.
7938** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00007939**
7940** Only the data content may only be modified, it is not possible to
7941** change the length of the data stored. If this function is called with
7942** parameters that attempt to write past the end of the existing data,
7943** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00007944*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007945int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00007946 int rc;
drh1fee73e2007-08-29 04:00:57 +00007947 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007948 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00007949 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00007950
danielk1977c9000e62009-07-08 13:55:28 +00007951 rc = restoreCursorPosition(pCsr);
7952 if( rc!=SQLITE_OK ){
7953 return rc;
7954 }
danielk19773588ceb2008-06-10 17:30:26 +00007955 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7956 if( pCsr->eState!=CURSOR_VALID ){
7957 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007958 }
7959
danielk1977c9000e62009-07-08 13:55:28 +00007960 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007961 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00007962 ** (b) there is a read/write transaction open,
7963 ** (c) the connection holds a write-lock on the table (if required),
7964 ** (d) there are no conflicting read-locks, and
7965 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007966 */
danielk19774f029602009-07-08 18:45:37 +00007967 if( !pCsr->wrFlag ){
7968 return SQLITE_READONLY;
7969 }
danielk197796d48e92009-06-29 06:00:37 +00007970 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
7971 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
7972 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00007973 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00007974
drhfb192682009-07-11 18:26:28 +00007975 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007976}
danielk19772dec9702007-05-02 16:48:37 +00007977
7978/*
7979** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007980** overflow list for the current row. This is used by cursors opened
7981** for incremental blob IO only.
7982**
7983** This function sets a flag only. The actual page location cache
7984** (stored in BtCursor.aOverflow[]) is allocated and used by function
7985** accessPayload() (the worker function for sqlite3BtreeData() and
7986** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007987*/
7988void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007989 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007990 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007991 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007992 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007993 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007994}
danielk1977b4e9af92007-05-01 17:49:49 +00007995#endif
dane04dc882010-04-20 18:53:15 +00007996
7997/*
7998** Set both the "read version" (single byte at byte offset 18) and
7999** "write version" (single byte at byte offset 19) fields in the database
8000** header to iVersion.
8001*/
8002int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8003 BtShared *pBt = pBtree->pBt;
8004 int rc; /* Return code */
8005
danb9780022010-04-21 18:37:57 +00008006 assert( pBtree->inTrans==TRANS_NONE );
dane04dc882010-04-20 18:53:15 +00008007 assert( iVersion==1 || iVersion==2 );
8008
danb9780022010-04-21 18:37:57 +00008009 /* If setting the version fields to 1, do not automatically open the
8010 ** WAL connection, even if the version fields are currently set to 2.
8011 */
8012 pBt->doNotUseWAL = (iVersion==1);
8013
8014 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008015 if( rc==SQLITE_OK ){
8016 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008017 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008018 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008019 if( rc==SQLITE_OK ){
8020 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8021 if( rc==SQLITE_OK ){
8022 aData[18] = (u8)iVersion;
8023 aData[19] = (u8)iVersion;
8024 }
8025 }
8026 }
dane04dc882010-04-20 18:53:15 +00008027 }
8028
danb9780022010-04-21 18:37:57 +00008029 pBt->doNotUseWAL = 0;
dane04dc882010-04-20 18:53:15 +00008030 return rc;
8031}