blob: 099d4a09e277fdaa029814fcf769a3dd6496f71f [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drhfa1a98a2004-05-14 19:08:17 +000012** $Id: btree.c,v 1.138 2004/05/14 19:08:18 drh Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
15** For a detailed discussion of BTrees, refer to
16**
17** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
18** "Sorting And Searching", pages 473-480. Addison-Wesley
19** Publishing Company, Reading, Massachusetts.
20**
21** The basic idea is that each page of the file contains N database
22** entries and N+1 pointers to subpages.
23**
24** ----------------------------------------------------------------
25** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
26** ----------------------------------------------------------------
27**
28** All of the keys on the page that Ptr(0) points to have values less
29** than Key(0). All of the keys on page Ptr(1) and its subpages have
30** values greater than Key(0) and less than Key(1). All of the keys
31** on Ptr(N+1) and its subpages have values greater than Key(N). And
32** so forth.
33**
drh5e00f6c2001-09-13 13:46:56 +000034** Finding a particular key requires reading O(log(M)) pages from the
35** disk where M is the number of entries in the tree.
drh8b2f49b2001-06-08 00:21:52 +000036**
37** In this implementation, a single file can hold one or more separate
38** BTrees. Each BTree is identified by the index of its root page. The
drh9e572e62004-04-23 23:43:10 +000039** key and data for any entry are combined to form the "payload". A
40** fixed amount of payload can be carried directly on the database
41** page. If the payload is larger than the preset amount then surplus
42** bytes are stored on overflow pages. The payload for an entry
43** and the preceding pointer are combined to form a "Cell". Each
44** page has a small header which contains the Ptr(N+1) pointer and other
45** information such as the size of key and data.
drh8b2f49b2001-06-08 00:21:52 +000046**
drh9e572e62004-04-23 23:43:10 +000047** FORMAT DETAILS
48**
49** The file is divided into pages. The first page is called page 1,
50** the second is page 2, and so forth. A page number of zero indicates
51** "no such page". The page size can be anything between 512 and 65536.
52** Each page can be either a btree page, a freelist page or an overflow
53** page.
54**
55** The first page is always a btree page. The first 100 bytes of the first
56** page contain a special header that describes the file. The format
57** of that header is as follows:
58**
59** OFFSET SIZE DESCRIPTION
drhde647132004-05-07 17:57:49 +000060** 0 16 Header string: "SQLite format 3\000"
drh9e572e62004-04-23 23:43:10 +000061** 16 2 Page size in bytes.
62** 18 1 File format write version
63** 19 1 File format read version
drh6f11bef2004-05-13 01:12:56 +000064** 20 1 Bytes of unused space at the end of each page
65** 21 1 Max embedded payload fraction
66** 22 1 Min embedded payload fraction
67** 23 1 Min leaf payload fraction
68** 24 4 File change counter
69** 28 4 Reserved for future use
drh9e572e62004-04-23 23:43:10 +000070** 32 4 First freelist page
71** 36 4 Number of freelist pages in the file
72** 40 60 15 4-byte meta values passed to higher layers
73**
74** All of the integer values are big-endian (most significant byte first).
drh6f11bef2004-05-13 01:12:56 +000075**
76** The file change counter is incremented every time the database is more
77** than once within the same second. This counter, together with the
78** modification time of the file, allows other processes to know
79** when the file has changed and thus when they need to flush their
80** cache.
81**
82** The max embedded payload fraction is the amount of the total usable
83** space in a page that can be consumed by a single cell for standard
84** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
85** is to limit the maximum cell size so that at least 4 cells will fit
86** on one pages. Thus the default max embedded payload fraction is 64.
87**
88** If the payload for a cell is larger than the max payload, then extra
89** payload is spilled to overflow pages. Once an overflow page is allocated,
90** as many bytes as possible are moved into the overflow pages without letting
91** the cell size drop below the min embedded payload fraction.
92**
93** The min leaf payload fraction is like the min embedded payload fraction
94** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
95** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
96** not specified in the header.
drh9e572e62004-04-23 23:43:10 +000097**
98** Each btree page begins with a header described below. Note that the
99** header for page one begins at byte 100. For all other btree pages, the
100** header begins on byte zero.
101**
102** OFFSET SIZE DESCRIPTION
drh6f11bef2004-05-13 01:12:56 +0000103** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
drh9e572e62004-04-23 23:43:10 +0000104** 1 2 byte offset to the first freeblock
105** 3 2 byte offset to the first cell
106** 5 1 number of fragmented free bytes
107** 6 4 Right child (the Ptr(N+1) value). Omitted if leaf
108**
109** The flags define the format of this btree page. The leaf flag means that
110** this page has no children. The zerodata flag means that this page carries
111** only keys and no data. The intkey flag means that the key is a single
112** variable length integer at the beginning of the payload.
113**
114** A variable-length integer is 1 to 9 bytes where the lower 7 bits of each
115** byte are used. The integer consists of all bytes that have bit 8 set and
drh6f11bef2004-05-13 01:12:56 +0000116** the first byte with bit 8 clear. The most significant byte of the integer
117** appears first.
drh9e572e62004-04-23 23:43:10 +0000118**
119** 0x00 becomes 0x00000000
drh6f11bef2004-05-13 01:12:56 +0000120** 0x7f becomes 0x0000007f
121** 0x81 0x00 becomes 0x00000080
122** 0x82 0x00 becomes 0x00000100
123** 0x80 0x7f becomes 0x0000007f
124** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
drh9e572e62004-04-23 23:43:10 +0000125** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
126**
127** Variable length integers are used for rowids and to hold the number of
128** bytes of key and data in a btree cell.
129**
130** Unused space within a btree page is collected into a linked list of
131** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
132** to the first freeblock is given in the header. Freeblocks occur in
133** increasing order. Because a freeblock is 4 bytes in size, the minimum
134** size allocation on a btree page is 4 bytes. Because a freeblock must be
135** at least 4 bytes in size, any group of 3 or fewer unused bytes cannot
136** exist on the freeblock chain. The total number of such fragmented bytes
137** is recorded in the page header at offset 5.
138**
139** SIZE DESCRIPTION
140** 2 Byte offset of the next freeblock
141** 2 Bytes in this freeblock
142**
143** Cells are of variable length. The first cell begins on the byte defined
144** in the page header. Cells do not necessarily occur in order - they can
145** skip around on the page.
146**
147** SIZE DESCRIPTION
148** 2 Byte offset of the next cell. 0 if this is the last cell
drh3aac2dd2004-04-26 14:10:20 +0000149** 4 Page number of the left child. Omitted if leaf flag is set.
150** var Number of bytes of data. Omitted if the zerodata flag is set.
151** var Number of bytes of key. Or the key itself if intkey flag is set.
drh9e572e62004-04-23 23:43:10 +0000152** * Payload
153** 4 First page of the overflow chain. Omitted if no overflow
154**
155** Overflow pages form a linked list. Each page except the last is completely
156** filled with data (pagesize - 4 bytes). The last page can have as little
157** as 1 byte of data.
158**
159** SIZE DESCRIPTION
160** 4 Page number of next overflow page
161** * Data
162**
163** Freelist pages come in two subtypes: trunk pages and leaf pages. The
164** file header points to first in a linked list of trunk page. Each trunk
165** page points to multiple leaf pages. The content of a leaf page is
166** unspecified. A trunk page looks like this:
167**
168** SIZE DESCRIPTION
169** 4 Page number of next trunk page
170** 4 Number of leaf pointers on this page
171** * zero or more pages numbers of leaves
drha059ad02001-04-17 20:09:11 +0000172*/
173#include "sqliteInt.h"
174#include "pager.h"
175#include "btree.h"
176#include <assert.h>
177
drh4b70f112004-05-02 21:12:19 +0000178
179/* Maximum page size. The upper bound on this value is 65536 (a limit
180** imposed by the 2-byte offset at the beginning of each cell.) The
181** maximum page size determines the amount of stack space allocated
182** by many of the routines in this module. On embedded architectures
183** or any machine where memory and especially stack memory is limited,
184** one may wish to chose a smaller value for the maximum page size.
185*/
186#ifndef MX_PAGE_SIZE
187# define MX_PAGE_SIZE 1024
188#endif
189
drh4b70f112004-05-02 21:12:19 +0000190/* The following value is the maximum cell size assuming a maximum page
191** size give above.
192*/
drh6f11bef2004-05-13 01:12:56 +0000193#define MX_CELL_SIZE (MX_PAGE_SIZE-10)
drh4b70f112004-05-02 21:12:19 +0000194
195/* The maximum number of cells on a single page of the database. This
196** assumes a minimum cell size of 3 bytes. Such small cells will be
197** exceedingly rare, but they are possible.
198*/
199#define MX_CELL ((MX_PAGE_SIZE-10)/3)
200
paulb95a8862003-04-01 21:16:41 +0000201/* Forward declarations */
drh3aac2dd2004-04-26 14:10:20 +0000202typedef struct MemPage MemPage;
paulb95a8862003-04-01 21:16:41 +0000203
drh8c42ca92001-06-22 19:15:00 +0000204/*
drhbd03cae2001-06-02 02:40:57 +0000205** This is a magic string that appears at the beginning of every
drh8c42ca92001-06-22 19:15:00 +0000206** SQLite database in order to identify the file as a real database.
drhde647132004-05-07 17:57:49 +0000207** 123456789 123456 */
208static const char zMagicHeader[] = "SQLite format 3";
drh08ed44e2001-04-29 23:32:55 +0000209
210/*
drh4b70f112004-05-02 21:12:19 +0000211** Page type flags. An ORed combination of these flags appear as the
212** first byte of every BTree page.
drh8c42ca92001-06-22 19:15:00 +0000213*/
drhde647132004-05-07 17:57:49 +0000214#define PTF_INTKEY 0x01
drh9e572e62004-04-23 23:43:10 +0000215#define PTF_ZERODATA 0x02
drh8b18dd42004-05-12 19:18:15 +0000216#define PTF_LEAFDATA 0x04
217#define PTF_LEAF 0x08
drh8c42ca92001-06-22 19:15:00 +0000218
219/*
drh9e572e62004-04-23 23:43:10 +0000220** As each page of the file is loaded into memory, an instance of the following
221** structure is appended and initialized to zero. This structure stores
222** information about the page that is decoded from the raw file page.
drh14acc042001-06-10 19:56:58 +0000223**
drh72f82862001-05-24 21:06:34 +0000224** The pParent field points back to the parent page. This allows us to
225** walk up the BTree from any leaf to the root. Care must be taken to
226** unref() the parent page pointer when this page is no longer referenced.
drhbd03cae2001-06-02 02:40:57 +0000227** The pageDestructor() routine handles that chore.
drh7e3b0a02001-04-28 16:52:40 +0000228*/
229struct MemPage {
drhde647132004-05-07 17:57:49 +0000230 u32 notUsed;
drh3aac2dd2004-04-26 14:10:20 +0000231 u8 isInit; /* True if previously initialized */
drh9e572e62004-04-23 23:43:10 +0000232 u8 idxShift; /* True if Cell indices have changed */
drh3aac2dd2004-04-26 14:10:20 +0000233 u8 isOverfull; /* Some aCell[] do not fit on page */
drh9e572e62004-04-23 23:43:10 +0000234 u8 intKey; /* True if intkey flag is set */
235 u8 leaf; /* True if leaf flag is set */
drh8b18dd42004-05-12 19:18:15 +0000236 u8 zeroData; /* True if table stores keys only */
237 u8 leafData; /* True if tables stores data on leaves only */
238 u8 hasData; /* True if this page stores data */
drh9e572e62004-04-23 23:43:10 +0000239 u8 hdrOffset; /* 100 for page 1. 0 otherwise */
drhda200cc2004-05-09 11:51:38 +0000240 u8 needRelink; /* True if need to run relinkCellList() */
drh3aac2dd2004-04-26 14:10:20 +0000241 int idxParent; /* Index in pParent->aCell[] of this node */
drh9e572e62004-04-23 23:43:10 +0000242 int nFree; /* Number of free bytes on the page */
drh306dc212001-05-21 13:45:10 +0000243 int nCell; /* Number of entries on this page */
drh4b70f112004-05-02 21:12:19 +0000244 int nCellAlloc; /* Number of slots allocated in aCell[] */
drh9e572e62004-04-23 23:43:10 +0000245 unsigned char **aCell; /* Pointer to start of each cell */
drhc8629a12004-05-08 20:07:40 +0000246 struct Btree *pBt; /* Pointer back to BTree structure */
247
248 unsigned char *aData; /* Pointer back to the start of the page */
249 Pgno pgno; /* Page number for this page */
250 MemPage *pParent; /* The parent of this page. NULL for root */
drh8c42ca92001-06-22 19:15:00 +0000251};
drh7e3b0a02001-04-28 16:52:40 +0000252
253/*
drh3b7511c2001-05-26 13:15:44 +0000254** The in-memory image of a disk page has the auxiliary information appended
255** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
256** that extra information.
257*/
drh3aac2dd2004-04-26 14:10:20 +0000258#define EXTRA_SIZE sizeof(MemPage)
drh3b7511c2001-05-26 13:15:44 +0000259
260/*
drha059ad02001-04-17 20:09:11 +0000261** Everything we need to know about an open database
262*/
263struct Btree {
264 Pager *pPager; /* The page cache */
drh306dc212001-05-21 13:45:10 +0000265 BtCursor *pCursor; /* A list of all open cursors */
drh3aac2dd2004-04-26 14:10:20 +0000266 MemPage *pPage1; /* First page of the database */
drh663fc632002-02-02 18:49:19 +0000267 u8 inTrans; /* True if a transaction is in progress */
drh3aac2dd2004-04-26 14:10:20 +0000268 u8 inStmt; /* True if there is a checkpoint on the transaction */
drh5df72a52002-06-06 23:16:05 +0000269 u8 readOnly; /* True if the underlying file is readonly */
drhb6f41482004-05-14 01:58:11 +0000270 int pageSize; /* Total number of bytes on a page */
271 int usableSize; /* Number of usable bytes on each page */
drh6f11bef2004-05-13 01:12:56 +0000272 int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
273 int minLocal; /* Minimum local payload in non-LEAFDATA tables */
274 int maxLeaf; /* Maximum local payload in a LEAFDATA table */
275 int minLeaf; /* Minimum local payload in a LEAFDATA table */
276 u8 maxEmbedFrac; /* Maximum payload as % of total page size */
277 u8 minEmbedFrac; /* Minimum payload as % of total page size */
278 u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
drha059ad02001-04-17 20:09:11 +0000279};
280typedef Btree Bt;
281
drh365d68f2001-05-11 11:02:46 +0000282/*
drhfa1a98a2004-05-14 19:08:17 +0000283** An instance of the following structure is used to hold information
284** about a cell. The parseCell() function fills the structure in.
285*/
286typedef struct CellInfo CellInfo;
287struct CellInfo {
288 i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
289 u32 nData; /* Number of bytes of data */
290 u16 nHeader; /* Size of the header in bytes */
291 u16 nLocal; /* Amount of payload held locally */
292 u16 iOverflow; /* Offset to overflow page number. Zero if none */
293 u16 nSize; /* Size of the cell */
294};
295
296/*
drh365d68f2001-05-11 11:02:46 +0000297** A cursor is a pointer to a particular entry in the BTree.
298** The entry is identified by its MemPage and the index in
drha34b6762004-05-07 13:30:42 +0000299** MemPage.aCell[] of the entry.
drh365d68f2001-05-11 11:02:46 +0000300*/
drh72f82862001-05-24 21:06:34 +0000301struct BtCursor {
drh5e2f8b92001-05-28 00:41:15 +0000302 Btree *pBt; /* The Btree to which this cursor belongs */
drh14acc042001-06-10 19:56:58 +0000303 BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
drhf74b8d92002-09-01 23:20:45 +0000304 BtCursor *pShared; /* Loop of cursors with the same root page */
drh3aac2dd2004-04-26 14:10:20 +0000305 int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
306 void *pArg; /* First arg to xCompare() */
drh8b2f49b2001-06-08 00:21:52 +0000307 Pgno pgnoRoot; /* The root page of this tree */
drh5e2f8b92001-05-28 00:41:15 +0000308 MemPage *pPage; /* Page that contains the entry */
drh3aac2dd2004-04-26 14:10:20 +0000309 int idx; /* Index of the entry in pPage->aCell[] */
drhfa1a98a2004-05-14 19:08:17 +0000310 CellInfo info; /* A parse of the cell we are pointing at */
311 u8 infoValid; /* True if information in BtCursor.info is valid */
drhecdc7532001-09-23 02:35:53 +0000312 u8 wrFlag; /* True if writable */
drh23e11ca2004-05-04 17:27:28 +0000313 u8 iMatch; /* compare result from last sqlite3BtreeMoveto() */
drhc39e0002004-05-07 23:50:57 +0000314 u8 isValid; /* TRUE if points to a valid entry */
315 u8 status; /* Set to SQLITE_ABORT if cursors is invalidated */
drh365d68f2001-05-11 11:02:46 +0000316};
drh7e3b0a02001-04-28 16:52:40 +0000317
drha059ad02001-04-17 20:09:11 +0000318/*
drh3aac2dd2004-04-26 14:10:20 +0000319** Read or write a two-, four-, and eight-byte big-endian integer values.
drh0d316a42002-08-11 20:10:47 +0000320*/
drh9e572e62004-04-23 23:43:10 +0000321static u32 get2byte(unsigned char *p){
322 return (p[0]<<8) | p[1];
drh0d316a42002-08-11 20:10:47 +0000323}
drh9e572e62004-04-23 23:43:10 +0000324static u32 get4byte(unsigned char *p){
325 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
326}
drh9e572e62004-04-23 23:43:10 +0000327static void put2byte(unsigned char *p, u32 v){
328 p[0] = v>>8;
329 p[1] = v;
330}
331static void put4byte(unsigned char *p, u32 v){
332 p[0] = v>>24;
333 p[1] = v>>16;
334 p[2] = v>>8;
335 p[3] = v;
336}
drh6f11bef2004-05-13 01:12:56 +0000337
drh9e572e62004-04-23 23:43:10 +0000338/*
drh6d2fb152004-05-14 16:50:06 +0000339** Routines to read and write variable-length integers.
drh9e572e62004-04-23 23:43:10 +0000340*/
drh6d2fb152004-05-14 16:50:06 +0000341#define getVarint sqlite3GetVarint
342#define getVarint32 sqlite3GetVarint32
343#define putVarint sqlite3PutVarint
drh0d316a42002-08-11 20:10:47 +0000344
345/*
drh3aac2dd2004-04-26 14:10:20 +0000346** Parse a cell header and fill in the CellInfo structure.
347*/
drh6f11bef2004-05-13 01:12:56 +0000348static void parseCell(
drh3aac2dd2004-04-26 14:10:20 +0000349 MemPage *pPage, /* Page containing the cell */
350 unsigned char *pCell, /* The cell */
drh6f11bef2004-05-13 01:12:56 +0000351 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000352){
353 int n;
drh6f11bef2004-05-13 01:12:56 +0000354 int nPayload;
355 Btree *pBt;
356 int minLocal, maxLocal;
drh3aac2dd2004-04-26 14:10:20 +0000357 if( pPage->leaf ){
358 n = 2;
359 }else{
360 n = 6;
361 }
drh8b18dd42004-05-12 19:18:15 +0000362 if( pPage->hasData ){
drh6f11bef2004-05-13 01:12:56 +0000363 n += getVarint32(&pCell[n], &pInfo->nData);
drh8b18dd42004-05-12 19:18:15 +0000364 }else{
drh6f11bef2004-05-13 01:12:56 +0000365 pInfo->nData = 0;
drh3aac2dd2004-04-26 14:10:20 +0000366 }
drh6f11bef2004-05-13 01:12:56 +0000367 n += getVarint(&pCell[n], &pInfo->nKey);
368 pInfo->nHeader = n;
369 nPayload = pInfo->nData;
370 if( !pPage->intKey ){
371 nPayload += pInfo->nKey;
372 }
373 pBt = pPage->pBt;
374 if( pPage->leafData ){
375 minLocal = pBt->minLeaf;
drhb6f41482004-05-14 01:58:11 +0000376 maxLocal = pBt->usableSize - 23;
drh6f11bef2004-05-13 01:12:56 +0000377 }else{
378 minLocal = pBt->minLocal;
379 maxLocal = pBt->maxLocal;
380 }
381 if( nPayload<=maxLocal ){
382 pInfo->nLocal = nPayload;
383 pInfo->iOverflow = 0;
384 pInfo->nSize = nPayload + n;
385 }else{
drhb6f41482004-05-14 01:58:11 +0000386 int surplus = minLocal + (nPayload - minLocal)%(pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000387 if( surplus <= maxLocal ){
388 pInfo->nLocal = surplus;
389 }else{
390 pInfo->nLocal = minLocal;
391 }
392 pInfo->iOverflow = pInfo->nLocal + n;
393 pInfo->nSize = pInfo->iOverflow + 4;
394 }
drh3aac2dd2004-04-26 14:10:20 +0000395}
396
397/*
drh3b7511c2001-05-26 13:15:44 +0000398** Compute the total number of bytes that a Cell needs on the main
drh5e2f8b92001-05-28 00:41:15 +0000399** database page. The number returned includes the Cell header,
400** local payload storage, and the pointer to overflow pages (if
drh8c42ca92001-06-22 19:15:00 +0000401** applicable). Additional space allocated on overflow pages
drhbd03cae2001-06-02 02:40:57 +0000402** is NOT included in the value returned from this routine.
drh3b7511c2001-05-26 13:15:44 +0000403*/
drh9e572e62004-04-23 23:43:10 +0000404static int cellSize(MemPage *pPage, unsigned char *pCell){
drh6f11bef2004-05-13 01:12:56 +0000405 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +0000406
drh6f11bef2004-05-13 01:12:56 +0000407 parseCell(pPage, pCell, &info);
408 return info.nSize;
drh3b7511c2001-05-26 13:15:44 +0000409}
410
411/*
drhda200cc2004-05-09 11:51:38 +0000412** Do sanity checking on a page. Throw an exception if anything is
413** not right.
414**
415** This routine is used for internal error checking only. It is omitted
416** from most builds.
417*/
418#if defined(BTREE_DEBUG) && !defined(NDEBUG) && 0
419static void _pageIntegrity(MemPage *pPage){
drhb6f41482004-05-14 01:58:11 +0000420 int usableSize;
drhda200cc2004-05-09 11:51:38 +0000421 u8 *data;
422 int i, idx, c, pc, hdr, nFree;
423 u8 used[MX_PAGE_SIZE];
424
drhb6f41482004-05-14 01:58:11 +0000425 usableSize = pPage->pBt->usableSize;
426 assert( pPage->aData==&((unsigned char*)pPage)[-pPage->pBt->pageSize] );
drhda200cc2004-05-09 11:51:38 +0000427 hdr = pPage->hdrOffset;
428 assert( hdr==(pPage->pgno==1 ? 100 : 0) );
429 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
430 c = pPage->aData[hdr];
431 if( pPage->isInit ){
432 assert( pPage->leaf == ((c & PTF_LEAF)!=0) );
433 assert( pPage->zeroData == ((c & PTF_ZERODATA)!=0) );
drh8b18dd42004-05-12 19:18:15 +0000434 assert( pPage->leafData == ((c & PTF_LEAFDATA)!=0) );
435 assert( pPage->intKey == ((c & (PTF_INTKEY|PTF_LEAFDATA))!=0) );
436 assert( pPage->hasData ==
437 !(pPage->zeroData || (!pPage->leaf && pPage->leafData)) );
drhda200cc2004-05-09 11:51:38 +0000438 }
439 data = pPage->aData;
drhb6f41482004-05-14 01:58:11 +0000440 memset(used, 0, usableSize);
drhda200cc2004-05-09 11:51:38 +0000441 for(i=0; i<hdr+10-pPage->leaf*4; i++) used[i] = 1;
442 nFree = 0;
443 pc = get2byte(&data[hdr+1]);
444 while( pc ){
445 int size;
drhb6f41482004-05-14 01:58:11 +0000446 assert( pc>0 && pc<usableSize-4 );
drhda200cc2004-05-09 11:51:38 +0000447 size = get2byte(&data[pc+2]);
drhb6f41482004-05-14 01:58:11 +0000448 assert( pc+size<=usableSize );
drhda200cc2004-05-09 11:51:38 +0000449 nFree += size;
450 for(i=pc; i<pc+size; i++){
451 assert( used[i]==0 );
452 used[i] = 1;
453 }
454 pc = get2byte(&data[pc]);
455 }
456 assert( pPage->isInit==0 || pPage->nFree==nFree+data[hdr+5] );
457 idx = 0;
458 pc = get2byte(&data[hdr+3]);
459 while( pc ){
460 int size;
461 assert( pPage->isInit==0 || idx<pPage->nCell );
drhb6f41482004-05-14 01:58:11 +0000462 assert( pc>0 && pc<usableSize-4 );
drhda200cc2004-05-09 11:51:38 +0000463 assert( pPage->isInit==0 || pPage->aCell[idx]==&data[pc] );
464 size = cellSize(pPage, &data[pc]);
drhb6f41482004-05-14 01:58:11 +0000465 assert( pc+size<=usableSize );
drhda200cc2004-05-09 11:51:38 +0000466 for(i=pc; i<pc+size; i++){
467 assert( used[i]==0 );
468 used[i] = 1;
469 }
470 pc = get2byte(&data[pc]);
471 idx++;
472 }
473 assert( idx==pPage->nCell );
474 nFree = 0;
drhb6f41482004-05-14 01:58:11 +0000475 for(i=0; i<usableSize; i++){
drhda200cc2004-05-09 11:51:38 +0000476 assert( used[i]<=1 );
477 if( used[i]==0 ) nFree++;
478 }
479 assert( nFree==data[hdr+5] );
480}
481#define pageIntegrity(X) _pageIntegrity(X)
482#else
483# define pageIntegrity(X)
484#endif
485
486/*
drh72f82862001-05-24 21:06:34 +0000487** Defragment the page given. All Cells are moved to the
488** beginning of the page and all free space is collected
489** into one big FreeBlk at the end of the page.
drh365d68f2001-05-11 11:02:46 +0000490*/
drh9e572e62004-04-23 23:43:10 +0000491static void defragmentPage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +0000492 int pc, i, n, addr;
493 int start, hdr, size;
drh9e572e62004-04-23 23:43:10 +0000494 int leftover;
495 unsigned char *oldPage;
drh23e11ca2004-05-04 17:27:28 +0000496 unsigned char newPage[MX_PAGE_SIZE];
drh2af926b2001-05-15 00:39:25 +0000497
drha34b6762004-05-07 13:30:42 +0000498 assert( sqlite3pager_iswriteable(pPage->aData) );
drh9e572e62004-04-23 23:43:10 +0000499 assert( pPage->pBt!=0 );
drhb6f41482004-05-14 01:58:11 +0000500 assert( pPage->pBt->usableSize <= MX_PAGE_SIZE );
drhda200cc2004-05-09 11:51:38 +0000501 assert( !pPage->needRelink );
502 assert( !pPage->isOverfull );
drh9e572e62004-04-23 23:43:10 +0000503 oldPage = pPage->aData;
504 hdr = pPage->hdrOffset;
drh3aac2dd2004-04-26 14:10:20 +0000505 addr = 3+hdr;
drh9e572e62004-04-23 23:43:10 +0000506 n = 6+hdr;
507 if( !pPage->leaf ){
508 n += 4;
drh2af926b2001-05-15 00:39:25 +0000509 }
drhc39e0002004-05-07 23:50:57 +0000510 memcpy(&newPage[hdr], &oldPage[hdr], n-hdr);
drh9e572e62004-04-23 23:43:10 +0000511 start = n;
drh3aac2dd2004-04-26 14:10:20 +0000512 pc = get2byte(&oldPage[addr]);
drh9e572e62004-04-23 23:43:10 +0000513 i = 0;
514 while( pc>0 ){
drhb6f41482004-05-14 01:58:11 +0000515 assert( n<pPage->pBt->usableSize );
drh9e572e62004-04-23 23:43:10 +0000516 size = cellSize(pPage, &oldPage[pc]);
517 memcpy(&newPage[n], &oldPage[pc], size);
drh3aac2dd2004-04-26 14:10:20 +0000518 put2byte(&newPage[addr],n);
drhda200cc2004-05-09 11:51:38 +0000519 assert( pPage->aCell[i]==&oldPage[pc] );
drhc39e0002004-05-07 23:50:57 +0000520 pPage->aCell[i++] = &oldPage[n];
drhda200cc2004-05-09 11:51:38 +0000521 addr = n;
drh9e572e62004-04-23 23:43:10 +0000522 n += size;
drh9e572e62004-04-23 23:43:10 +0000523 pc = get2byte(&oldPage[pc]);
drh2aa679f2001-06-25 02:11:07 +0000524 }
drhc39e0002004-05-07 23:50:57 +0000525 assert( i==pPage->nCell );
drhb6f41482004-05-14 01:58:11 +0000526 leftover = pPage->pBt->usableSize - n;
drh9e572e62004-04-23 23:43:10 +0000527 assert( leftover>=0 );
528 assert( pPage->nFree==leftover );
529 if( leftover<4 ){
530 oldPage[hdr+5] = leftover;
531 leftover = 0;
drhb6f41482004-05-14 01:58:11 +0000532 n = pPage->pBt->usableSize;
drh9e572e62004-04-23 23:43:10 +0000533 }
drhc39e0002004-05-07 23:50:57 +0000534 memcpy(&oldPage[hdr], &newPage[hdr], n-hdr);
drh9e572e62004-04-23 23:43:10 +0000535 if( leftover==0 ){
drhc39e0002004-05-07 23:50:57 +0000536 put2byte(&oldPage[hdr+1], 0);
drh9e572e62004-04-23 23:43:10 +0000537 }else if( leftover>=4 ){
drhc39e0002004-05-07 23:50:57 +0000538 put2byte(&oldPage[hdr+1], n);
drh9e572e62004-04-23 23:43:10 +0000539 put2byte(&oldPage[n], 0);
540 put2byte(&oldPage[n+2], leftover);
541 memset(&oldPage[n+4], 0, leftover-4);
542 }
drhc39e0002004-05-07 23:50:57 +0000543 oldPage[hdr+5] = 0;
drh365d68f2001-05-11 11:02:46 +0000544}
545
drha059ad02001-04-17 20:09:11 +0000546/*
drh9e572e62004-04-23 23:43:10 +0000547** Allocate nByte bytes of space on a page. If nByte is less than
548** 4 it is rounded up to 4.
drhbd03cae2001-06-02 02:40:57 +0000549**
drh9e572e62004-04-23 23:43:10 +0000550** Return the index into pPage->aData[] of the first byte of
drhbd03cae2001-06-02 02:40:57 +0000551** the new allocation. Or return 0 if there is not enough free
552** space on the page to satisfy the allocation request.
drh2af926b2001-05-15 00:39:25 +0000553**
drh72f82862001-05-24 21:06:34 +0000554** If the page contains nBytes of free space but does not contain
drh8b2f49b2001-06-08 00:21:52 +0000555** nBytes of contiguous free space, then this routine automatically
556** calls defragementPage() to consolidate all free space before
557** allocating the new chunk.
drh9e572e62004-04-23 23:43:10 +0000558**
559** Algorithm: Carve a piece off of the first freeblock that is
560** nByte in size or that larger.
drh7e3b0a02001-04-28 16:52:40 +0000561*/
drh9e572e62004-04-23 23:43:10 +0000562static int allocateSpace(MemPage *pPage, int nByte){
drh3aac2dd2004-04-26 14:10:20 +0000563 int addr, pc, hdr;
drh9e572e62004-04-23 23:43:10 +0000564 int size;
drh24cd67e2004-05-10 16:18:47 +0000565 int nFrag;
drh9e572e62004-04-23 23:43:10 +0000566 unsigned char *data;
drh44ce7e22003-06-17 02:57:17 +0000567#ifndef NDEBUG
568 int cnt = 0;
569#endif
drh72f82862001-05-24 21:06:34 +0000570
drh9e572e62004-04-23 23:43:10 +0000571 data = pPage->aData;
drha34b6762004-05-07 13:30:42 +0000572 assert( sqlite3pager_iswriteable(data) );
drh9e572e62004-04-23 23:43:10 +0000573 assert( pPage->pBt );
574 if( nByte<4 ) nByte = 4;
drh14acc042001-06-10 19:56:58 +0000575 if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
drh9e572e62004-04-23 23:43:10 +0000576 hdr = pPage->hdrOffset;
drh24cd67e2004-05-10 16:18:47 +0000577 nFrag = data[hdr+5];
578 if( nFrag>=60 || nFrag>pPage->nFree-nByte ){
drh9e572e62004-04-23 23:43:10 +0000579 defragmentPage(pPage);
drh2af926b2001-05-15 00:39:25 +0000580 }
drh3aac2dd2004-04-26 14:10:20 +0000581 addr = hdr+1;
582 pc = get2byte(&data[addr]);
583 assert( addr<pc );
drhb6f41482004-05-14 01:58:11 +0000584 assert( pc<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000585 while( (size = get2byte(&data[pc+2]))<nByte ){
586 addr = pc;
587 pc = get2byte(&data[addr]);
drhb6f41482004-05-14 01:58:11 +0000588 assert( pc<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000589 assert( pc>=addr+size+4 || pc==0 );
drh9e572e62004-04-23 23:43:10 +0000590 if( pc==0 ){
591 assert( (cnt++)==0 );
592 defragmentPage(pPage);
593 assert( data[hdr+5]==0 );
drh3aac2dd2004-04-26 14:10:20 +0000594 addr = pPage->hdrOffset+1;
595 pc = get2byte(&data[addr]);
drh9e572e62004-04-23 23:43:10 +0000596 }
597 }
598 assert( pc>0 && size>=nByte );
drhb6f41482004-05-14 01:58:11 +0000599 assert( pc+size<=pPage->pBt->usableSize );
drh9e572e62004-04-23 23:43:10 +0000600 if( size>nByte+4 ){
drhde647132004-05-07 17:57:49 +0000601 int newStart = pc+nByte;
602 put2byte(&data[addr], newStart);
603 put2byte(&data[newStart], get2byte(&data[pc]));
604 put2byte(&data[newStart+2], size-nByte);
drh2af926b2001-05-15 00:39:25 +0000605 }else{
drh3aac2dd2004-04-26 14:10:20 +0000606 put2byte(&data[addr], get2byte(&data[pc]));
drh9e572e62004-04-23 23:43:10 +0000607 data[hdr+5] += size-nByte;
drh2af926b2001-05-15 00:39:25 +0000608 }
609 pPage->nFree -= nByte;
drh9e572e62004-04-23 23:43:10 +0000610 assert( pPage->nFree>=0 );
611 return pc;
drh7e3b0a02001-04-28 16:52:40 +0000612}
613
614/*
drh9e572e62004-04-23 23:43:10 +0000615** Return a section of the pPage->aData to the freelist.
616** The first byte of the new free block is pPage->aDisk[start]
617** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +0000618**
619** Most of the effort here is involved in coalesing adjacent
620** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000621*/
drh9e572e62004-04-23 23:43:10 +0000622static void freeSpace(MemPage *pPage, int start, int size){
623 int end = start + size; /* End of the segment being freed */
drha34b6762004-05-07 13:30:42 +0000624 int addr, pbegin;
drh9e572e62004-04-23 23:43:10 +0000625#ifndef NDEBUG
626 int tsize = 0; /* Total size of all freeblocks */
627#endif
628 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +0000629
drh9e572e62004-04-23 23:43:10 +0000630 assert( pPage->pBt!=0 );
drha34b6762004-05-07 13:30:42 +0000631 assert( sqlite3pager_iswriteable(data) );
drh9e572e62004-04-23 23:43:10 +0000632 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
drhb6f41482004-05-14 01:58:11 +0000633 assert( end<=pPage->pBt->usableSize );
drh9e572e62004-04-23 23:43:10 +0000634 if( size<4 ) size = 4;
635
636 /* Add the space back into the linked list of freeblocks */
drh3aac2dd2004-04-26 14:10:20 +0000637 addr = pPage->hdrOffset + 1;
638 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +0000639 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000640 assert( pbegin>addr );
641 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +0000642 }
drhb6f41482004-05-14 01:58:11 +0000643 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000644 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +0000645 put2byte(&data[addr], start);
646 put2byte(&data[start], pbegin);
647 put2byte(&data[start+2], size);
drh2af926b2001-05-15 00:39:25 +0000648 pPage->nFree += size;
drh9e572e62004-04-23 23:43:10 +0000649
650 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +0000651 addr = pPage->hdrOffset + 1;
652 while( (pbegin = get2byte(&data[addr]))>0 ){
drh9e572e62004-04-23 23:43:10 +0000653 int pnext, psize;
drh3aac2dd2004-04-26 14:10:20 +0000654 assert( pbegin>addr );
drhb6f41482004-05-14 01:58:11 +0000655 assert( pbegin<pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +0000656 pnext = get2byte(&data[pbegin]);
657 psize = get2byte(&data[pbegin+2]);
658 if( pbegin + psize + 3 >= pnext && pnext>0 ){
659 int frag = pnext - (pbegin+psize);
660 assert( frag<=data[pPage->hdrOffset+5] );
661 data[pPage->hdrOffset+5] -= frag;
662 put2byte(&data[pbegin], get2byte(&data[pnext]));
663 put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
664 }else{
665 assert( (tsize += psize)>0 );
drh3aac2dd2004-04-26 14:10:20 +0000666 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +0000667 }
668 }
669 assert( tsize+data[pPage->hdrOffset+5]==pPage->nFree );
drh7e3b0a02001-04-28 16:52:40 +0000670}
671
drh9e572e62004-04-23 23:43:10 +0000672/*
drh4b70f112004-05-02 21:12:19 +0000673** Resize the aCell[] array of the given page so that it is able to
674** hold at least nNewSz entries.
675**
676** Return SQLITE_OK or SQLITE_NOMEM.
677*/
678static int resizeCellArray(MemPage *pPage, int nNewSz){
drha34b6762004-05-07 13:30:42 +0000679 if( pPage->nCellAlloc<nNewSz ){
drhfa1a98a2004-05-14 19:08:17 +0000680 int n = nNewSz*sizeof(pPage->aCell[0]);
681 if( pPage->aCell==0 ){
682 pPage->aCell = sqliteMallocRaw( n );
683 }else{
684 pPage->aCell = sqliteRealloc(pPage->aCell, n);
685 }
danielk197724b03fd2004-05-10 10:34:34 +0000686 if( sqlite3_malloc_failed ) return SQLITE_NOMEM;
drha34b6762004-05-07 13:30:42 +0000687 pPage->nCellAlloc = nNewSz;
drh4b70f112004-05-02 21:12:19 +0000688 }
689 return SQLITE_OK;
690}
691
692/*
drh7e3b0a02001-04-28 16:52:40 +0000693** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +0000694**
drhbd03cae2001-06-02 02:40:57 +0000695** The pParent parameter must be a pointer to the MemPage which
drh9e572e62004-04-23 23:43:10 +0000696** is the parent of the page being initialized. The root of a
697** BTree has no parent and so for that page, pParent==NULL.
drh5e2f8b92001-05-28 00:41:15 +0000698**
drh72f82862001-05-24 21:06:34 +0000699** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +0000700** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +0000701** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
702** guarantee that the page is well-formed. It only shows that
703** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +0000704*/
drh9e572e62004-04-23 23:43:10 +0000705static int initPage(
drh3aac2dd2004-04-26 14:10:20 +0000706 MemPage *pPage, /* The page to be initialized */
drh9e572e62004-04-23 23:43:10 +0000707 MemPage *pParent /* The parent. Might be NULL */
708){
drh3aac2dd2004-04-26 14:10:20 +0000709 int c, pc, i, hdr;
drha34b6762004-05-07 13:30:42 +0000710 unsigned char *data;
drhb6f41482004-05-14 01:58:11 +0000711 int usableSize;
drh10617cd2004-05-14 15:27:27 +0000712 /* int sumCell = 0; // Total size of all cells */
713
drh2af926b2001-05-15 00:39:25 +0000714
drh3aac2dd2004-04-26 14:10:20 +0000715 assert( pPage->pBt!=0 );
drh4b70f112004-05-02 21:12:19 +0000716 assert( pParent==0 || pParent->pBt==pPage->pBt );
drha34b6762004-05-07 13:30:42 +0000717 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
drhde647132004-05-07 17:57:49 +0000718 assert( pPage->aData == &((unsigned char*)pPage)[-pPage->pBt->pageSize] );
drhda200cc2004-05-09 11:51:38 +0000719 assert( pPage->pParent==0 || pPage->pParent==pParent );
drh10617cd2004-05-14 15:27:27 +0000720 assert( pPage->pParent==pParent || !pPage->isInit );
721 if( pPage->isInit ) return SQLITE_OK;
drhda200cc2004-05-09 11:51:38 +0000722 if( pPage->pParent==0 && pParent!=0 ){
723 pPage->pParent = pParent;
drha34b6762004-05-07 13:30:42 +0000724 sqlite3pager_ref(pParent->aData);
drh5e2f8b92001-05-28 00:41:15 +0000725 }
drh4b70f112004-05-02 21:12:19 +0000726 pPage->nCell = pPage->nCellAlloc = 0;
drhde647132004-05-07 17:57:49 +0000727 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
728 hdr = pPage->hdrOffset;
drha34b6762004-05-07 13:30:42 +0000729 data = pPage->aData;
730 c = data[hdr];
drh8b18dd42004-05-12 19:18:15 +0000731 pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0;
drh9e572e62004-04-23 23:43:10 +0000732 pPage->zeroData = (c & PTF_ZERODATA)!=0;
drh8b18dd42004-05-12 19:18:15 +0000733 pPage->leafData = (c & PTF_LEAFDATA)!=0;
drh4b70f112004-05-02 21:12:19 +0000734 pPage->leaf = (c & PTF_LEAF)!=0;
drh8b18dd42004-05-12 19:18:15 +0000735 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
drhc8629a12004-05-08 20:07:40 +0000736 pPage->isOverfull = 0;
drhda200cc2004-05-09 11:51:38 +0000737 pPage->needRelink = 0;
drhc8629a12004-05-08 20:07:40 +0000738 pPage->idxShift = 0;
drhb6f41482004-05-14 01:58:11 +0000739 usableSize = pPage->pBt->usableSize;
drh2af926b2001-05-15 00:39:25 +0000740
drh9e572e62004-04-23 23:43:10 +0000741 /* Initialize the cell count and cell pointers */
742 pc = get2byte(&data[hdr+3]);
743 while( pc>0 ){
drhb6f41482004-05-14 01:58:11 +0000744 if( pc>=usableSize ) return SQLITE_CORRUPT;
745 if( pPage->nCell>usableSize ) return SQLITE_CORRUPT;
drh9e572e62004-04-23 23:43:10 +0000746 pPage->nCell++;
747 pc = get2byte(&data[pc]);
748 }
drh4b70f112004-05-02 21:12:19 +0000749 if( resizeCellArray(pPage, pPage->nCell) ){
drh9e572e62004-04-23 23:43:10 +0000750 return SQLITE_NOMEM;
751 }
752 pc = get2byte(&data[hdr+3]);
753 for(i=0; pc>0; i++){
754 pPage->aCell[i] = &data[pc];
drh10617cd2004-05-14 15:27:27 +0000755 /* sumCell += cellSize(pPage, &data[pc]); */
drhde647132004-05-07 17:57:49 +0000756 pc = get2byte(&data[pc]);
drh9e572e62004-04-23 23:43:10 +0000757 }
758
759 /* Compute the total free space on the page */
760 pPage->nFree = data[hdr+5];
761 pc = get2byte(&data[hdr+1]);
762 while( pc>0 ){
763 int next, size;
drhb6f41482004-05-14 01:58:11 +0000764 if( pc>=usableSize ) return SQLITE_CORRUPT;
drh9e572e62004-04-23 23:43:10 +0000765 next = get2byte(&data[pc]);
766 size = get2byte(&data[pc+2]);
drh3aac2dd2004-04-26 14:10:20 +0000767 if( next>0 && next<=pc+size+3 ) return SQLITE_CORRUPT;
drh9e572e62004-04-23 23:43:10 +0000768 pPage->nFree += size;
769 pc = next;
770 }
drhb6f41482004-05-14 01:58:11 +0000771 if( pPage->nFree>=usableSize ) return SQLITE_CORRUPT;
drh9e572e62004-04-23 23:43:10 +0000772
773 /* Sanity check: Cells and freespace and header must sum to the size
drh10617cd2004-05-14 15:27:27 +0000774 ** a page.
drhb6f41482004-05-14 01:58:11 +0000775 if( sumCell+pPage->nFree+hdr+10-pPage->leaf*4 != usableSize ){
drha34b6762004-05-07 13:30:42 +0000776 return SQLITE_CORRUPT;
drh9e572e62004-04-23 23:43:10 +0000777 }
drh10617cd2004-05-14 15:27:27 +0000778 */
drh9e572e62004-04-23 23:43:10 +0000779
drhde647132004-05-07 17:57:49 +0000780 pPage->isInit = 1;
drhda200cc2004-05-09 11:51:38 +0000781 pageIntegrity(pPage);
drh9e572e62004-04-23 23:43:10 +0000782 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +0000783}
784
785/*
drh8b2f49b2001-06-08 00:21:52 +0000786** Set up a raw page so that it looks like a database page holding
787** no entries.
drhbd03cae2001-06-02 02:40:57 +0000788*/
drh9e572e62004-04-23 23:43:10 +0000789static void zeroPage(MemPage *pPage, int flags){
790 unsigned char *data = pPage->aData;
791 Btree *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +0000792 int hdr = pPage->hdrOffset;
drh9e572e62004-04-23 23:43:10 +0000793 int first;
794
drhda200cc2004-05-09 11:51:38 +0000795 assert( sqlite3pager_pagenumber(data)==pPage->pgno );
796 assert( &data[pBt->pageSize] == (unsigned char*)pPage );
drha34b6762004-05-07 13:30:42 +0000797 assert( sqlite3pager_iswriteable(data) );
drhb6f41482004-05-14 01:58:11 +0000798 memset(&data[hdr], 0, pBt->usableSize - hdr);
drh9e572e62004-04-23 23:43:10 +0000799 data[hdr] = flags;
drhde647132004-05-07 17:57:49 +0000800 first = hdr + 6 + 4*((flags&PTF_LEAF)==0);
drh9e572e62004-04-23 23:43:10 +0000801 put2byte(&data[hdr+1], first);
drhb6f41482004-05-14 01:58:11 +0000802 put2byte(&data[first+2], pBt->usableSize - first);
drh9e572e62004-04-23 23:43:10 +0000803 sqliteFree(pPage->aCell);
804 pPage->aCell = 0;
drh8c42ca92001-06-22 19:15:00 +0000805 pPage->nCell = 0;
drhde647132004-05-07 17:57:49 +0000806 pPage->nCellAlloc = 0;
drhb6f41482004-05-14 01:58:11 +0000807 pPage->nFree = pBt->usableSize - first;
drh8b18dd42004-05-12 19:18:15 +0000808 pPage->intKey = (flags & (PTF_INTKEY|PTF_LEAFDATA))!=0;
drh9e572e62004-04-23 23:43:10 +0000809 pPage->zeroData = (flags & PTF_ZERODATA)!=0;
drh8b18dd42004-05-12 19:18:15 +0000810 pPage->leafData = (flags & PTF_LEAFDATA)!=0;
811 pPage->leaf = (flags & PTF_LEAF)!=0;
812 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
drh9e572e62004-04-23 23:43:10 +0000813 pPage->hdrOffset = hdr;
drhda200cc2004-05-09 11:51:38 +0000814 pPage->isOverfull = 0;
815 pPage->needRelink = 0;
816 pPage->idxShift = 0;
817 pPage->isInit = 1;
818 pageIntegrity(pPage);
drhbd03cae2001-06-02 02:40:57 +0000819}
820
821/*
drh3aac2dd2004-04-26 14:10:20 +0000822** Get a page from the pager. Initialize the MemPage.pBt and
823** MemPage.aData elements if needed.
824*/
825static int getPage(Btree *pBt, Pgno pgno, MemPage **ppPage){
826 int rc;
827 unsigned char *aData;
828 MemPage *pPage;
drha34b6762004-05-07 13:30:42 +0000829 rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData);
drh3aac2dd2004-04-26 14:10:20 +0000830 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +0000831 pPage = (MemPage*)&aData[pBt->pageSize];
drh3aac2dd2004-04-26 14:10:20 +0000832 pPage->aData = aData;
833 pPage->pBt = pBt;
834 pPage->pgno = pgno;
drhde647132004-05-07 17:57:49 +0000835 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
drh3aac2dd2004-04-26 14:10:20 +0000836 *ppPage = pPage;
837 return SQLITE_OK;
838}
839
840/*
drhde647132004-05-07 17:57:49 +0000841** Get a page from the pager and initialize it. This routine
842** is just a convenience wrapper around separate calls to
843** getPage() and initPage().
844*/
845static int getAndInitPage(
846 Btree *pBt, /* The database file */
847 Pgno pgno, /* Number of the page to get */
848 MemPage **ppPage, /* Write the page pointer here */
849 MemPage *pParent /* Parent of the page */
850){
851 int rc;
852 rc = getPage(pBt, pgno, ppPage);
drh10617cd2004-05-14 15:27:27 +0000853 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
drhde647132004-05-07 17:57:49 +0000854 rc = initPage(*ppPage, pParent);
855 }
856 return rc;
857}
858
859/*
drh3aac2dd2004-04-26 14:10:20 +0000860** Release a MemPage. This should be called once for each prior
861** call to getPage.
862*/
drh4b70f112004-05-02 21:12:19 +0000863static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +0000864 if( pPage ){
865 assert( pPage->aData );
866 assert( pPage->pBt );
867 assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage );
drha34b6762004-05-07 13:30:42 +0000868 sqlite3pager_unref(pPage->aData);
drh3aac2dd2004-04-26 14:10:20 +0000869 }
870}
871
872/*
drh72f82862001-05-24 21:06:34 +0000873** This routine is called when the reference count for a page
874** reaches zero. We need to unref the pParent pointer when that
875** happens.
876*/
drhb6f41482004-05-14 01:58:11 +0000877static void pageDestructor(void *pData, int pageSize){
878 MemPage *pPage = (MemPage*)&((char*)pData)[pageSize];
drhda200cc2004-05-09 11:51:38 +0000879 assert( pPage->isInit==0 || pPage->needRelink==0 );
drh72f82862001-05-24 21:06:34 +0000880 if( pPage->pParent ){
881 MemPage *pParent = pPage->pParent;
882 pPage->pParent = 0;
drha34b6762004-05-07 13:30:42 +0000883 releasePage(pParent);
drh72f82862001-05-24 21:06:34 +0000884 }
drh9e572e62004-04-23 23:43:10 +0000885 sqliteFree(pPage->aCell);
886 pPage->aCell = 0;
drh3aac2dd2004-04-26 14:10:20 +0000887 pPage->isInit = 0;
drh72f82862001-05-24 21:06:34 +0000888}
889
890/*
drh306dc212001-05-21 13:45:10 +0000891** Open a new database.
892**
893** Actually, this routine just sets up the internal data structures
drh72f82862001-05-24 21:06:34 +0000894** for accessing the database. We do not open the database file
895** until the first page is loaded.
drh382c0242001-10-06 16:33:02 +0000896**
897** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +0000898** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +0000899** database file will be deleted when sqlite3BtreeClose() is called.
drha059ad02001-04-17 20:09:11 +0000900*/
drh23e11ca2004-05-04 17:27:28 +0000901int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +0000902 const char *zFilename, /* Name of the file containing the BTree database */
903 Btree **ppBtree, /* Pointer to new Btree object written here */
904 int nCache, /* Number of cache pages */
905 int flags /* Options */
drh6019e162001-07-02 17:51:45 +0000906){
drha059ad02001-04-17 20:09:11 +0000907 Btree *pBt;
drha34b6762004-05-07 13:30:42 +0000908 int rc;
drha059ad02001-04-17 20:09:11 +0000909
drhd62d3d02003-01-24 12:14:20 +0000910 /*
911 ** The following asserts make sure that structures used by the btree are
912 ** the right size. This is to guard against size changes that result
913 ** when compiling on a different architecture.
914 */
drh4a1c3802004-05-12 15:15:47 +0000915 assert( sizeof(i64)==8 );
drh9e572e62004-04-23 23:43:10 +0000916 assert( sizeof(u64)==8 );
drhd62d3d02003-01-24 12:14:20 +0000917 assert( sizeof(u32)==4 );
918 assert( sizeof(u16)==2 );
919 assert( sizeof(Pgno)==4 );
drhd62d3d02003-01-24 12:14:20 +0000920 assert( sizeof(ptr)==sizeof(char*) );
921 assert( sizeof(uptr)==sizeof(ptr) );
922
drha059ad02001-04-17 20:09:11 +0000923 pBt = sqliteMalloc( sizeof(*pBt) );
924 if( pBt==0 ){
drh8c42ca92001-06-22 19:15:00 +0000925 *ppBtree = 0;
drha059ad02001-04-17 20:09:11 +0000926 return SQLITE_NOMEM;
927 }
drh6019e162001-07-02 17:51:45 +0000928 if( nCache<10 ) nCache = 10;
drha34b6762004-05-07 13:30:42 +0000929 rc = sqlite3pager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
drh3aac2dd2004-04-26 14:10:20 +0000930 (flags & BTREE_OMIT_JOURNAL)==0);
drha059ad02001-04-17 20:09:11 +0000931 if( rc!=SQLITE_OK ){
drha34b6762004-05-07 13:30:42 +0000932 if( pBt->pPager ) sqlite3pager_close(pBt->pPager);
drha059ad02001-04-17 20:09:11 +0000933 sqliteFree(pBt);
934 *ppBtree = 0;
935 return rc;
936 }
drha34b6762004-05-07 13:30:42 +0000937 sqlite3pager_set_destructor(pBt->pPager, pageDestructor);
drha059ad02001-04-17 20:09:11 +0000938 pBt->pCursor = 0;
drha34b6762004-05-07 13:30:42 +0000939 pBt->pPage1 = 0;
940 pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager);
drh4b70f112004-05-02 21:12:19 +0000941 pBt->pageSize = SQLITE_PAGE_SIZE; /* FIX ME - read from header */
drhb6f41482004-05-14 01:58:11 +0000942 pBt->usableSize = pBt->pageSize;
drh6f11bef2004-05-13 01:12:56 +0000943 pBt->maxEmbedFrac = 64; /* FIX ME - read from header */
944 pBt->minEmbedFrac = 32; /* FIX ME - read from header */
945 pBt->minLeafFrac = 32; /* FIX ME - read from header */
drh3a4c1412004-05-09 20:40:11 +0000946
drha059ad02001-04-17 20:09:11 +0000947 *ppBtree = pBt;
948 return SQLITE_OK;
949}
950
951/*
952** Close an open database and invalidate all cursors.
953*/
drh3aac2dd2004-04-26 14:10:20 +0000954int sqlite3BtreeClose(Btree *pBt){
drha059ad02001-04-17 20:09:11 +0000955 while( pBt->pCursor ){
drh3aac2dd2004-04-26 14:10:20 +0000956 sqlite3BtreeCloseCursor(pBt->pCursor);
drha059ad02001-04-17 20:09:11 +0000957 }
drha34b6762004-05-07 13:30:42 +0000958 sqlite3pager_close(pBt->pPager);
drha059ad02001-04-17 20:09:11 +0000959 sqliteFree(pBt);
960 return SQLITE_OK;
961}
962
963/*
drhda47d772002-12-02 04:25:19 +0000964** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +0000965**
966** The maximum number of cache pages is set to the absolute
967** value of mxPage. If mxPage is negative, the pager will
968** operate asynchronously - it will not stop to do fsync()s
969** to insure data is written to the disk surface before
970** continuing. Transactions still work if synchronous is off,
971** and the database cannot be corrupted if this program
972** crashes. But if the operating system crashes or there is
973** an abrupt power failure when synchronous is off, the database
974** could be left in an inconsistent and unrecoverable state.
975** Synchronous is on by default so database corruption is not
976** normally a worry.
drhf57b14a2001-09-14 18:54:08 +0000977*/
drh23e11ca2004-05-04 17:27:28 +0000978int sqlite3BtreeSetCacheSize(Btree *pBt, int mxPage){
drha34b6762004-05-07 13:30:42 +0000979 sqlite3pager_set_cachesize(pBt->pPager, mxPage);
drhf57b14a2001-09-14 18:54:08 +0000980 return SQLITE_OK;
981}
982
983/*
drh973b6e32003-02-12 14:09:42 +0000984** Change the way data is synced to disk in order to increase or decrease
985** how well the database resists damage due to OS crashes and power
986** failures. Level 1 is the same as asynchronous (no syncs() occur and
987** there is a high probability of damage) Level 2 is the default. There
988** is a very low but non-zero probability of damage. Level 3 reduces the
989** probability of damage to near zero but with a write performance reduction.
990*/
drh3aac2dd2004-04-26 14:10:20 +0000991int sqlite3BtreeSetSafetyLevel(Btree *pBt, int level){
drha34b6762004-05-07 13:30:42 +0000992 sqlite3pager_set_safety_level(pBt->pPager, level);
drh973b6e32003-02-12 14:09:42 +0000993 return SQLITE_OK;
994}
995
996/*
drha34b6762004-05-07 13:30:42 +0000997** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +0000998** also acquire a readlock on that file.
999**
1000** SQLITE_OK is returned on success. If the file is not a
1001** well-formed database file, then SQLITE_CORRUPT is returned.
1002** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
1003** is returned if we run out of memory. SQLITE_PROTOCOL is returned
1004** if there is a locking protocol violation.
1005*/
1006static int lockBtree(Btree *pBt){
1007 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001008 MemPage *pPage1;
drha34b6762004-05-07 13:30:42 +00001009 if( pBt->pPage1 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001010 rc = getPage(pBt, 1, &pPage1);
drh306dc212001-05-21 13:45:10 +00001011 if( rc!=SQLITE_OK ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00001012
drh306dc212001-05-21 13:45:10 +00001013
1014 /* Do some checking to help insure the file we opened really is
1015 ** a valid database file.
1016 */
drhb6f41482004-05-14 01:58:11 +00001017 rc = SQLITE_NOTADB;
drha34b6762004-05-07 13:30:42 +00001018 if( sqlite3pager_pagecount(pBt->pPager)>0 ){
drhb6f41482004-05-14 01:58:11 +00001019 u8 *page1 = pPage1->aData;
1020 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00001021 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00001022 }
drhb6f41482004-05-14 01:58:11 +00001023 if( page1[18]>1 || page1[19]>1 ){
1024 goto page1_init_failed;
1025 }
1026 pBt->pageSize = get2byte(&page1[16]);
1027 pBt->usableSize = pBt->pageSize - page1[20];
1028 if( pBt->usableSize<500 ){
1029 goto page1_init_failed;
1030 }
1031 pBt->maxEmbedFrac = page1[21];
1032 pBt->minEmbedFrac = page1[22];
1033 pBt->minLeafFrac = page1[23];
drh306dc212001-05-21 13:45:10 +00001034 }
drhb6f41482004-05-14 01:58:11 +00001035
1036 /* maxLocal is the maximum amount of payload to store locally for
1037 ** a cell. Make sure it is small enough so that at least minFanout
1038 ** cells can will fit on one page. We assume a 10-byte page header.
1039 ** Besides the payload, the cell must store:
1040 ** 2-byte pointer to next cell
1041 ** 4-byte child pointer
1042 ** 9-byte nKey value
1043 ** 4-byte nData value
1044 ** 4-byte overflow page pointer
1045 ** So a cell consists of a header which is as much as 19 bytes long,
1046 ** 0 to N bytes of payload, and an optional 4 byte overflow page pointer.
1047 */
1048 pBt->maxLocal = (pBt->usableSize-10)*pBt->maxEmbedFrac/255 - 23;
1049 pBt->minLocal = (pBt->usableSize-10)*pBt->minEmbedFrac/255 - 23;
1050 pBt->maxLeaf = pBt->usableSize - 33;
1051 pBt->minLeaf = (pBt->usableSize-10)*pBt->minLeafFrac/255 - 23;
1052 if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
1053 goto page1_init_failed;
1054 }
1055 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE );
drh3aac2dd2004-04-26 14:10:20 +00001056 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00001057 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00001058
drh72f82862001-05-24 21:06:34 +00001059page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00001060 releasePage(pPage1);
1061 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00001062 return rc;
drh306dc212001-05-21 13:45:10 +00001063}
1064
1065/*
drhb8ca3072001-12-05 00:21:20 +00001066** If there are no outstanding cursors and we are not in the middle
1067** of a transaction but there is a read lock on the database, then
1068** this routine unrefs the first page of the database file which
1069** has the effect of releasing the read lock.
1070**
1071** If there are any outstanding cursors, this routine is a no-op.
1072**
1073** If there is a transaction in progress, this routine is a no-op.
1074*/
1075static void unlockBtreeIfUnused(Btree *pBt){
drh3aac2dd2004-04-26 14:10:20 +00001076 if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->pPage1!=0 ){
1077 releasePage(pBt->pPage1);
1078 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00001079 pBt->inTrans = 0;
drh3aac2dd2004-04-26 14:10:20 +00001080 pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001081 }
1082}
1083
1084/*
drh9e572e62004-04-23 23:43:10 +00001085** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00001086** file.
drh8b2f49b2001-06-08 00:21:52 +00001087*/
1088static int newDatabase(Btree *pBt){
drh9e572e62004-04-23 23:43:10 +00001089 MemPage *pP1;
1090 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00001091 int rc;
drhde647132004-05-07 17:57:49 +00001092 if( sqlite3pager_pagecount(pBt->pPager)>0 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001093 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00001094 assert( pP1!=0 );
1095 data = pP1->aData;
drha34b6762004-05-07 13:30:42 +00001096 rc = sqlite3pager_write(data);
drh8b2f49b2001-06-08 00:21:52 +00001097 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00001098 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
1099 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00001100 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00001101 data[18] = 1;
1102 data[19] = 1;
drhb6f41482004-05-14 01:58:11 +00001103 data[20] = pBt->pageSize - pBt->usableSize;
1104 data[21] = pBt->maxEmbedFrac;
1105 data[22] = pBt->minEmbedFrac;
1106 data[23] = pBt->minLeafFrac;
1107 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00001108 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drh8b2f49b2001-06-08 00:21:52 +00001109 return SQLITE_OK;
1110}
1111
1112/*
drh72f82862001-05-24 21:06:34 +00001113** Attempt to start a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00001114**
1115** A transaction must be started before attempting any changes
1116** to the database. None of the following routines will work
1117** unless a transaction is started first:
1118**
drh23e11ca2004-05-04 17:27:28 +00001119** sqlite3BtreeCreateTable()
1120** sqlite3BtreeCreateIndex()
1121** sqlite3BtreeClearTable()
1122** sqlite3BtreeDropTable()
1123** sqlite3BtreeInsert()
1124** sqlite3BtreeDelete()
1125** sqlite3BtreeUpdateMeta()
drha059ad02001-04-17 20:09:11 +00001126*/
drh3aac2dd2004-04-26 14:10:20 +00001127int sqlite3BtreeBeginTrans(Btree *pBt){
drha059ad02001-04-17 20:09:11 +00001128 int rc;
1129 if( pBt->inTrans ) return SQLITE_ERROR;
drhf74b8d92002-09-01 23:20:45 +00001130 if( pBt->readOnly ) return SQLITE_READONLY;
drh3aac2dd2004-04-26 14:10:20 +00001131 if( pBt->pPage1==0 ){
drh7e3b0a02001-04-28 16:52:40 +00001132 rc = lockBtree(pBt);
drh8c42ca92001-06-22 19:15:00 +00001133 if( rc!=SQLITE_OK ){
1134 return rc;
1135 }
drha059ad02001-04-17 20:09:11 +00001136 }
drha34b6762004-05-07 13:30:42 +00001137 rc = sqlite3pager_begin(pBt->pPage1->aData);
drhf74b8d92002-09-01 23:20:45 +00001138 if( rc==SQLITE_OK ){
1139 rc = newDatabase(pBt);
drha059ad02001-04-17 20:09:11 +00001140 }
drhb8ca3072001-12-05 00:21:20 +00001141 if( rc==SQLITE_OK ){
1142 pBt->inTrans = 1;
drh3aac2dd2004-04-26 14:10:20 +00001143 pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001144 }else{
1145 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001146 }
drhb8ca3072001-12-05 00:21:20 +00001147 return rc;
drha059ad02001-04-17 20:09:11 +00001148}
1149
1150/*
drh2aa679f2001-06-25 02:11:07 +00001151** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00001152**
1153** This will release the write lock on the database file. If there
1154** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00001155*/
drh3aac2dd2004-04-26 14:10:20 +00001156int sqlite3BtreeCommit(Btree *pBt){
drha059ad02001-04-17 20:09:11 +00001157 int rc;
drha34b6762004-05-07 13:30:42 +00001158 rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_commit(pBt->pPager);
drh7c717f72001-06-24 20:39:41 +00001159 pBt->inTrans = 0;
drh3aac2dd2004-04-26 14:10:20 +00001160 pBt->inStmt = 0;
drh5e00f6c2001-09-13 13:46:56 +00001161 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001162 return rc;
1163}
1164
1165/*
drhc39e0002004-05-07 23:50:57 +00001166** Invalidate all cursors
1167*/
1168static void invalidateCursors(Btree *pBt){
1169 BtCursor *pCur;
1170 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1171 MemPage *pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00001172 if( pPage /* && !pPage->isInit */ ){
1173 pageIntegrity(pPage);
drhc39e0002004-05-07 23:50:57 +00001174 releasePage(pPage);
1175 pCur->pPage = 0;
1176 pCur->isValid = 0;
1177 pCur->status = SQLITE_ABORT;
1178 }
1179 }
1180}
1181
drhda200cc2004-05-09 11:51:38 +00001182#ifdef SQLITE_TEST
1183/*
1184** Print debugging information about all cursors to standard output.
1185*/
1186void sqlite3BtreeCursorList(Btree *pBt){
1187 BtCursor *pCur;
1188 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1189 MemPage *pPage = pCur->pPage;
1190 char *zMode = pCur->wrFlag ? "rw" : "ro";
1191 printf("CURSOR %08x rooted at %4d(%s) currently at %d.%d%s\n",
1192 (int)pCur, pCur->pgnoRoot, zMode,
1193 pPage ? pPage->pgno : 0, pCur->idx,
1194 pCur->isValid ? "" : " eof"
1195 );
1196 }
1197}
1198#endif
1199
drhc39e0002004-05-07 23:50:57 +00001200/*
drhecdc7532001-09-23 02:35:53 +00001201** Rollback the transaction in progress. All cursors will be
1202** invalided by this operation. Any attempt to use a cursor
1203** that was open at the beginning of this operation will result
1204** in an error.
drh5e00f6c2001-09-13 13:46:56 +00001205**
1206** This will release the write lock on the database file. If there
1207** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00001208*/
drh3aac2dd2004-04-26 14:10:20 +00001209int sqlite3BtreeRollback(Btree *pBt){
drha059ad02001-04-17 20:09:11 +00001210 int rc;
drh24cd67e2004-05-10 16:18:47 +00001211 MemPage *pPage1;
drh7c717f72001-06-24 20:39:41 +00001212 if( pBt->inTrans==0 ) return SQLITE_OK;
1213 pBt->inTrans = 0;
drh3aac2dd2004-04-26 14:10:20 +00001214 pBt->inStmt = 0;
drh24cd67e2004-05-10 16:18:47 +00001215 if( pBt->readOnly ){
1216 rc = SQLITE_OK;
1217 }else{
1218 rc = sqlite3pager_rollback(pBt->pPager);
1219 /* The rollback may have destroyed the pPage1->aData value. So
1220 ** call getPage() on page 1 again to make sure pPage1->aData is
1221 ** set correctly. */
1222 if( getPage(pBt, 1, &pPage1)==SQLITE_OK ){
1223 releasePage(pPage1);
1224 }
1225 }
drhc39e0002004-05-07 23:50:57 +00001226 invalidateCursors(pBt);
drh5e00f6c2001-09-13 13:46:56 +00001227 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001228 return rc;
1229}
1230
1231/*
drh663fc632002-02-02 18:49:19 +00001232** Set the checkpoint for the current transaction. The checkpoint serves
1233** as a sub-transaction that can be rolled back independently of the
1234** main transaction. You must start a transaction before starting a
1235** checkpoint. The checkpoint is ended automatically if the transaction
1236** commits or rolls back.
1237**
1238** Only one checkpoint may be active at a time. It is an error to try
1239** to start a new checkpoint if another checkpoint is already active.
1240*/
drh3aac2dd2004-04-26 14:10:20 +00001241int sqlite3BtreeBeginStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001242 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001243 if( !pBt->inTrans || pBt->inStmt ){
drhf74b8d92002-09-01 23:20:45 +00001244 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh0d65dc02002-02-03 00:56:09 +00001245 }
drha34b6762004-05-07 13:30:42 +00001246 rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager);
drh3aac2dd2004-04-26 14:10:20 +00001247 pBt->inStmt = 1;
drh663fc632002-02-02 18:49:19 +00001248 return rc;
1249}
1250
1251
1252/*
1253** Commit a checkpoint to transaction currently in progress. If no
1254** checkpoint is active, this is a no-op.
1255*/
drh3aac2dd2004-04-26 14:10:20 +00001256int sqlite3BtreeCommitStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001257 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001258 if( pBt->inStmt && !pBt->readOnly ){
drha34b6762004-05-07 13:30:42 +00001259 rc = sqlite3pager_stmt_commit(pBt->pPager);
drh663fc632002-02-02 18:49:19 +00001260 }else{
1261 rc = SQLITE_OK;
1262 }
drh3aac2dd2004-04-26 14:10:20 +00001263 pBt->inStmt = 0;
drh663fc632002-02-02 18:49:19 +00001264 return rc;
1265}
1266
1267/*
1268** Rollback the checkpoint to the current transaction. If there
1269** is no active checkpoint or transaction, this routine is a no-op.
1270**
1271** All cursors will be invalided by this operation. Any attempt
1272** to use a cursor that was open at the beginning of this operation
1273** will result in an error.
1274*/
drh3aac2dd2004-04-26 14:10:20 +00001275int sqlite3BtreeRollbackStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001276 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001277 if( pBt->inStmt==0 || pBt->readOnly ) return SQLITE_OK;
drha34b6762004-05-07 13:30:42 +00001278 rc = sqlite3pager_stmt_rollback(pBt->pPager);
drhc39e0002004-05-07 23:50:57 +00001279 invalidateCursors(pBt);
drh3aac2dd2004-04-26 14:10:20 +00001280 pBt->inStmt = 0;
drh663fc632002-02-02 18:49:19 +00001281 return rc;
1282}
1283
1284/*
drh3aac2dd2004-04-26 14:10:20 +00001285** Default key comparison function to be used if no comparison function
1286** is specified on the sqlite3BtreeCursor() call.
1287*/
1288static int dfltCompare(
1289 void *NotUsed, /* User data is not used */
1290 int n1, const void *p1, /* First key to compare */
1291 int n2, const void *p2 /* Second key to compare */
1292){
1293 int c;
1294 c = memcmp(p1, p2, n1<n2 ? n1 : n2);
1295 if( c==0 ){
1296 c = n1 - n2;
1297 }
1298 return c;
1299}
1300
1301/*
drh8b2f49b2001-06-08 00:21:52 +00001302** Create a new cursor for the BTree whose root is on the page
1303** iTable. The act of acquiring a cursor gets a read lock on
1304** the database file.
drh1bee3d72001-10-15 00:44:35 +00001305**
1306** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00001307** If wrFlag==1, then the cursor can be used for reading or for
1308** writing if other conditions for writing are also met. These
1309** are the conditions that must be met in order for writing to
1310** be allowed:
drh6446c4d2001-12-15 14:22:18 +00001311**
drhf74b8d92002-09-01 23:20:45 +00001312** 1: The cursor must have been opened with wrFlag==1
1313**
1314** 2: No other cursors may be open with wrFlag==0 on the same table
1315**
1316** 3: The database must be writable (not on read-only media)
1317**
1318** 4: There must be an active transaction.
1319**
1320** Condition 2 warrants further discussion. If any cursor is opened
1321** on a table with wrFlag==0, that prevents all other cursors from
1322** writing to that table. This is a kind of "read-lock". When a cursor
1323** is opened with wrFlag==0 it is guaranteed that the table will not
1324** change as long as the cursor is open. This allows the cursor to
1325** do a sequential scan of the table without having to worry about
1326** entries being inserted or deleted during the scan. Cursors should
1327** be opened with wrFlag==0 only if this read-lock property is needed.
1328** That is to say, cursors should be opened with wrFlag==0 only if they
drh23e11ca2004-05-04 17:27:28 +00001329** intend to use the sqlite3BtreeNext() system call. All other cursors
drhf74b8d92002-09-01 23:20:45 +00001330** should be opened with wrFlag==1 even if they never really intend
1331** to write.
1332**
drh6446c4d2001-12-15 14:22:18 +00001333** No checking is done to make sure that page iTable really is the
1334** root page of a b-tree. If it is not, then the cursor acquired
1335** will not work correctly.
drh3aac2dd2004-04-26 14:10:20 +00001336**
1337** The comparison function must be logically the same for every cursor
1338** on a particular table. Changing the comparison function will result
1339** in incorrect operations. If the comparison function is NULL, a
1340** default comparison function is used. The comparison function is
1341** always ignored for INTKEY tables.
drha059ad02001-04-17 20:09:11 +00001342*/
drh3aac2dd2004-04-26 14:10:20 +00001343int sqlite3BtreeCursor(
1344 Btree *pBt, /* The btree */
1345 int iTable, /* Root page of table to open */
1346 int wrFlag, /* 1 to write. 0 read-only */
1347 int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
1348 void *pArg, /* First arg to xCompare() */
1349 BtCursor **ppCur /* Write new cursor here */
1350){
drha059ad02001-04-17 20:09:11 +00001351 int rc;
drhf74b8d92002-09-01 23:20:45 +00001352 BtCursor *pCur, *pRing;
drhecdc7532001-09-23 02:35:53 +00001353
drha0c9a112004-03-10 13:42:37 +00001354 if( pBt->readOnly && wrFlag ){
1355 *ppCur = 0;
1356 return SQLITE_READONLY;
1357 }
drh4b70f112004-05-02 21:12:19 +00001358 if( pBt->pPage1==0 ){
drha059ad02001-04-17 20:09:11 +00001359 rc = lockBtree(pBt);
1360 if( rc!=SQLITE_OK ){
1361 *ppCur = 0;
1362 return rc;
1363 }
1364 }
1365 pCur = sqliteMalloc( sizeof(*pCur) );
1366 if( pCur==0 ){
drhbd03cae2001-06-02 02:40:57 +00001367 rc = SQLITE_NOMEM;
1368 goto create_cursor_exception;
1369 }
drh8b2f49b2001-06-08 00:21:52 +00001370 pCur->pgnoRoot = (Pgno)iTable;
drh24cd67e2004-05-10 16:18:47 +00001371 if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){
1372 rc = SQLITE_EMPTY;
1373 goto create_cursor_exception;
1374 }
drhde647132004-05-07 17:57:49 +00001375 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
drhbd03cae2001-06-02 02:40:57 +00001376 if( rc!=SQLITE_OK ){
1377 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00001378 }
drh3aac2dd2004-04-26 14:10:20 +00001379 pCur->xCompare = xCmp ? xCmp : dfltCompare;
1380 pCur->pArg = pArg;
drh14acc042001-06-10 19:56:58 +00001381 pCur->pBt = pBt;
drhecdc7532001-09-23 02:35:53 +00001382 pCur->wrFlag = wrFlag;
drh14acc042001-06-10 19:56:58 +00001383 pCur->idx = 0;
drhfa1a98a2004-05-14 19:08:17 +00001384 pCur->infoValid = 0;
drha059ad02001-04-17 20:09:11 +00001385 pCur->pNext = pBt->pCursor;
1386 if( pCur->pNext ){
1387 pCur->pNext->pPrev = pCur;
1388 }
drh14acc042001-06-10 19:56:58 +00001389 pCur->pPrev = 0;
drhf74b8d92002-09-01 23:20:45 +00001390 pRing = pBt->pCursor;
1391 while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
1392 if( pRing ){
1393 pCur->pShared = pRing->pShared;
1394 pRing->pShared = pCur;
1395 }else{
1396 pCur->pShared = pCur;
1397 }
drha059ad02001-04-17 20:09:11 +00001398 pBt->pCursor = pCur;
drhc39e0002004-05-07 23:50:57 +00001399 pCur->isValid = 0;
1400 pCur->status = SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +00001401 *ppCur = pCur;
1402 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00001403
1404create_cursor_exception:
1405 *ppCur = 0;
1406 if( pCur ){
drh3aac2dd2004-04-26 14:10:20 +00001407 releasePage(pCur->pPage);
drhbd03cae2001-06-02 02:40:57 +00001408 sqliteFree(pCur);
1409 }
drh5e00f6c2001-09-13 13:46:56 +00001410 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00001411 return rc;
drha059ad02001-04-17 20:09:11 +00001412}
1413
1414/*
drh5e00f6c2001-09-13 13:46:56 +00001415** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00001416** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00001417*/
drh3aac2dd2004-04-26 14:10:20 +00001418int sqlite3BtreeCloseCursor(BtCursor *pCur){
drha059ad02001-04-17 20:09:11 +00001419 Btree *pBt = pCur->pBt;
drha059ad02001-04-17 20:09:11 +00001420 if( pCur->pPrev ){
1421 pCur->pPrev->pNext = pCur->pNext;
1422 }else{
1423 pBt->pCursor = pCur->pNext;
1424 }
1425 if( pCur->pNext ){
1426 pCur->pNext->pPrev = pCur->pPrev;
1427 }
drh3aac2dd2004-04-26 14:10:20 +00001428 releasePage(pCur->pPage);
drhf74b8d92002-09-01 23:20:45 +00001429 if( pCur->pShared!=pCur ){
1430 BtCursor *pRing = pCur->pShared;
1431 while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
1432 pRing->pShared = pCur->pShared;
1433 }
drh5e00f6c2001-09-13 13:46:56 +00001434 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001435 sqliteFree(pCur);
drh8c42ca92001-06-22 19:15:00 +00001436 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00001437}
1438
drh7e3b0a02001-04-28 16:52:40 +00001439/*
drh5e2f8b92001-05-28 00:41:15 +00001440** Make a temporary cursor by filling in the fields of pTempCur.
1441** The temporary cursor is not on the cursor list for the Btree.
1442*/
drh14acc042001-06-10 19:56:58 +00001443static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
drh5e2f8b92001-05-28 00:41:15 +00001444 memcpy(pTempCur, pCur, sizeof(*pCur));
1445 pTempCur->pNext = 0;
1446 pTempCur->pPrev = 0;
drhecdc7532001-09-23 02:35:53 +00001447 if( pTempCur->pPage ){
drha34b6762004-05-07 13:30:42 +00001448 sqlite3pager_ref(pTempCur->pPage->aData);
drhecdc7532001-09-23 02:35:53 +00001449 }
drh5e2f8b92001-05-28 00:41:15 +00001450}
1451
1452/*
drhbd03cae2001-06-02 02:40:57 +00001453** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00001454** function above.
1455*/
drh14acc042001-06-10 19:56:58 +00001456static void releaseTempCursor(BtCursor *pCur){
drhecdc7532001-09-23 02:35:53 +00001457 if( pCur->pPage ){
drha34b6762004-05-07 13:30:42 +00001458 sqlite3pager_unref(pCur->pPage->aData);
drhecdc7532001-09-23 02:35:53 +00001459 }
drh5e2f8b92001-05-28 00:41:15 +00001460}
1461
1462/*
drh3aac2dd2004-04-26 14:10:20 +00001463** Set *pSize to the size of the buffer needed to hold the value of
1464** the key for the current entry. If the cursor is not pointing
1465** to a valid entry, *pSize is set to 0.
1466**
drh4b70f112004-05-02 21:12:19 +00001467** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00001468** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00001469*/
drh4a1c3802004-05-12 15:15:47 +00001470int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh2af926b2001-05-15 00:39:25 +00001471 MemPage *pPage;
drhc39e0002004-05-07 23:50:57 +00001472 unsigned char *cell;
drh2af926b2001-05-15 00:39:25 +00001473
drhc39e0002004-05-07 23:50:57 +00001474 if( !pCur->isValid ){
drh72f82862001-05-24 21:06:34 +00001475 *pSize = 0;
1476 }else{
drhc39e0002004-05-07 23:50:57 +00001477 pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00001478 pageIntegrity(pPage);
drhc39e0002004-05-07 23:50:57 +00001479 assert( pPage!=0 );
1480 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
1481 cell = pPage->aCell[pCur->idx];
drh3aac2dd2004-04-26 14:10:20 +00001482 cell += 2; /* Skip the offset to the next cell */
drhde647132004-05-07 17:57:49 +00001483 if( !pPage->leaf ){
drh3aac2dd2004-04-26 14:10:20 +00001484 cell += 4; /* Skip the child pointer */
1485 }
drh8b18dd42004-05-12 19:18:15 +00001486 if( pPage->hasData ){
drha34b6762004-05-07 13:30:42 +00001487 while( (0x80&*(cell++))!=0 ){} /* Skip the data size number */
drh3aac2dd2004-04-26 14:10:20 +00001488 }
drha34b6762004-05-07 13:30:42 +00001489 getVarint(cell, pSize);
drh72f82862001-05-24 21:06:34 +00001490 }
1491 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00001492}
drh2af926b2001-05-15 00:39:25 +00001493
drh72f82862001-05-24 21:06:34 +00001494/*
drh0e1c19e2004-05-11 00:58:56 +00001495** Set *pSize to the number of bytes of data in the entry the
1496** cursor currently points to. Always return SQLITE_OK.
1497** Failure is not possible. If the cursor is not currently
1498** pointing to an entry (which can happen, for example, if
1499** the database is empty) then *pSize is set to 0.
1500*/
1501int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
1502 MemPage *pPage;
1503 unsigned char *cell;
drh0e1c19e2004-05-11 00:58:56 +00001504
1505 if( !pCur->isValid ){
danielk197796fc5fe2004-05-13 11:34:16 +00001506 /* Not pointing at a valid entry - set *pSize to 0. */
drh0e1c19e2004-05-11 00:58:56 +00001507 *pSize = 0;
1508 }else{
danielk197796fc5fe2004-05-13 11:34:16 +00001509 pPage = pCur->pPage;
1510 assert( pPage!=0 );
1511 assert( pPage->isInit );
1512 pageIntegrity(pPage);
1513 if( !pPage->hasData ){
1514 *pSize = 0;
1515 }else{
1516 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
1517 cell = pPage->aCell[pCur->idx];
1518 cell += 2; /* Skip the offset to the next cell */
1519 if( !pPage->leaf ){
1520 cell += 4; /* Skip the child pointer */
1521 }
1522 getVarint32(cell, pSize);
drh0e1c19e2004-05-11 00:58:56 +00001523 }
drh0e1c19e2004-05-11 00:58:56 +00001524 }
1525 return SQLITE_OK;
1526}
1527
1528/*
drh72f82862001-05-24 21:06:34 +00001529** Read payload information from the entry that the pCur cursor is
1530** pointing to. Begin reading the payload at "offset" and read
1531** a total of "amt" bytes. Put the result in zBuf.
1532**
1533** This routine does not make a distinction between key and data.
1534** It just reads bytes from the payload area.
1535*/
drh3aac2dd2004-04-26 14:10:20 +00001536static int getPayload(
1537 BtCursor *pCur, /* Cursor pointing to entry to read from */
1538 int offset, /* Begin reading this far into payload */
1539 int amt, /* Read this many bytes */
1540 unsigned char *pBuf, /* Write the bytes into this buffer */
1541 int skipKey /* offset begins at data if this is true */
1542){
1543 unsigned char *aPayload;
drh2af926b2001-05-15 00:39:25 +00001544 Pgno nextPage;
drh8c42ca92001-06-22 19:15:00 +00001545 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001546 MemPage *pPage;
1547 Btree *pBt;
drh6f11bef2004-05-13 01:12:56 +00001548 int ovflSize;
drhfa1a98a2004-05-14 19:08:17 +00001549 u32 nKey;
drh3aac2dd2004-04-26 14:10:20 +00001550
drh72f82862001-05-24 21:06:34 +00001551 assert( pCur!=0 && pCur->pPage!=0 );
drhc39e0002004-05-07 23:50:57 +00001552 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00001553 pBt = pCur->pBt;
1554 pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00001555 pageIntegrity(pPage);
drh3aac2dd2004-04-26 14:10:20 +00001556 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
1557 aPayload = pPage->aCell[pCur->idx];
drhfa1a98a2004-05-14 19:08:17 +00001558 if( !pCur->infoValid ){
1559 parseCell(pPage, aPayload, &pCur->info);
1560 pCur->infoValid = 1;
1561 }else{
1562#ifndef NDEBUG
1563 CellInfo info;
1564 parseCell(pPage, aPayload, &info);
1565 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
1566#endif
1567 }
1568 aPayload += pCur->info.nHeader;
drh3aac2dd2004-04-26 14:10:20 +00001569 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00001570 nKey = 0;
1571 }else{
1572 nKey = pCur->info.nKey;
drh3aac2dd2004-04-26 14:10:20 +00001573 }
1574 assert( offset>=0 );
1575 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00001576 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00001577 }
drhfa1a98a2004-05-14 19:08:17 +00001578 if( offset+amt > nKey+pCur->info.nData ){
drha34b6762004-05-07 13:30:42 +00001579 return SQLITE_ERROR;
drh3aac2dd2004-04-26 14:10:20 +00001580 }
drhfa1a98a2004-05-14 19:08:17 +00001581 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00001582 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00001583 if( a+offset>pCur->info.nLocal ){
1584 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00001585 }
drha34b6762004-05-07 13:30:42 +00001586 memcpy(pBuf, &aPayload[offset], a);
drh2af926b2001-05-15 00:39:25 +00001587 if( a==amt ){
1588 return SQLITE_OK;
1589 }
drh2aa679f2001-06-25 02:11:07 +00001590 offset = 0;
drha34b6762004-05-07 13:30:42 +00001591 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00001592 amt -= a;
drhdd793422001-06-28 01:54:48 +00001593 }else{
drhfa1a98a2004-05-14 19:08:17 +00001594 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00001595 }
1596 if( amt>0 ){
drhfa1a98a2004-05-14 19:08:17 +00001597 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
drh2af926b2001-05-15 00:39:25 +00001598 }
drhb6f41482004-05-14 01:58:11 +00001599 ovflSize = pBt->usableSize - 4;
drh2af926b2001-05-15 00:39:25 +00001600 while( amt>0 && nextPage ){
drha34b6762004-05-07 13:30:42 +00001601 rc = sqlite3pager_get(pBt->pPager, nextPage, (void**)&aPayload);
drh2af926b2001-05-15 00:39:25 +00001602 if( rc!=0 ){
1603 return rc;
1604 }
drha34b6762004-05-07 13:30:42 +00001605 nextPage = get4byte(aPayload);
drh3aac2dd2004-04-26 14:10:20 +00001606 if( offset<ovflSize ){
drh2af926b2001-05-15 00:39:25 +00001607 int a = amt;
drh3aac2dd2004-04-26 14:10:20 +00001608 if( a + offset > ovflSize ){
1609 a = ovflSize - offset;
drh2af926b2001-05-15 00:39:25 +00001610 }
drh9b171272004-05-08 02:03:22 +00001611 memcpy(pBuf, &aPayload[offset+4], a);
drh2aa679f2001-06-25 02:11:07 +00001612 offset = 0;
drh2af926b2001-05-15 00:39:25 +00001613 amt -= a;
drha34b6762004-05-07 13:30:42 +00001614 pBuf += a;
drh2aa679f2001-06-25 02:11:07 +00001615 }else{
drh3aac2dd2004-04-26 14:10:20 +00001616 offset -= ovflSize;
drh2af926b2001-05-15 00:39:25 +00001617 }
drha34b6762004-05-07 13:30:42 +00001618 sqlite3pager_unref(aPayload);
drh2af926b2001-05-15 00:39:25 +00001619 }
drha7fcb052001-12-14 15:09:55 +00001620 if( amt>0 ){
1621 return SQLITE_CORRUPT;
1622 }
1623 return SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +00001624}
1625
drh72f82862001-05-24 21:06:34 +00001626/*
drh3aac2dd2004-04-26 14:10:20 +00001627** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00001628** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00001629** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00001630**
drh3aac2dd2004-04-26 14:10:20 +00001631** Return SQLITE_OK on success or an error code if anything goes
1632** wrong. An error is returned if "offset+amt" is larger than
1633** the available payload.
drh72f82862001-05-24 21:06:34 +00001634*/
drha34b6762004-05-07 13:30:42 +00001635int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh8c1238a2003-01-02 14:43:55 +00001636 assert( amt>=0 );
1637 assert( offset>=0 );
drhc39e0002004-05-07 23:50:57 +00001638 if( pCur->isValid==0 ){
1639 return pCur->status;
drh3aac2dd2004-04-26 14:10:20 +00001640 }
drhc39e0002004-05-07 23:50:57 +00001641 assert( pCur->pPage!=0 );
1642 assert( pCur->pPage->intKey==0 );
1643 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh3aac2dd2004-04-26 14:10:20 +00001644 return getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
1645}
1646
1647/*
drh3aac2dd2004-04-26 14:10:20 +00001648** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00001649** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00001650** begins at "offset".
1651**
1652** Return SQLITE_OK on success or an error code if anything goes
1653** wrong. An error is returned if "offset+amt" is larger than
1654** the available payload.
drh72f82862001-05-24 21:06:34 +00001655*/
drh3aac2dd2004-04-26 14:10:20 +00001656int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhc39e0002004-05-07 23:50:57 +00001657 if( !pCur->isValid ){
1658 return pCur->status ? pCur->status : SQLITE_INTERNAL;
1659 }
drh8c1238a2003-01-02 14:43:55 +00001660 assert( amt>=0 );
1661 assert( offset>=0 );
1662 assert( pCur->pPage!=0 );
drhc39e0002004-05-07 23:50:57 +00001663 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh3aac2dd2004-04-26 14:10:20 +00001664 return getPayload(pCur, offset, amt, pBuf, 1);
drh2af926b2001-05-15 00:39:25 +00001665}
1666
drh72f82862001-05-24 21:06:34 +00001667/*
drh0e1c19e2004-05-11 00:58:56 +00001668** Return a pointer to payload information from the entry that the
1669** pCur cursor is pointing to. The pointer is to the beginning of
1670** the key if skipKey==0 and it points to the beginning of data if
1671** skipKey==1.
1672**
1673** At least amt bytes of information must be available on the local
1674** page or else this routine returns NULL. If amt<0 then the entire
1675** key/data must be available.
1676**
1677** This routine is an optimization. It is common for the entire key
1678** and data to fit on the local page and for there to be no overflow
1679** pages. When that is so, this routine can be used to access the
1680** key and data without making a copy. If the key and/or data spills
1681** onto overflow pages, then getPayload() must be used to reassembly
1682** the key/data and copy it into a preallocated buffer.
1683**
1684** The pointer returned by this routine looks directly into the cached
1685** page of the database. The data might change or move the next time
1686** any btree routine is called.
1687*/
1688static const unsigned char *fetchPayload(
1689 BtCursor *pCur, /* Cursor pointing to entry to read from */
1690 int amt, /* Amount requested */
1691 int skipKey /* read beginning at data if this is true */
1692){
1693 unsigned char *aPayload;
1694 MemPage *pPage;
1695 Btree *pBt;
drhfa1a98a2004-05-14 19:08:17 +00001696 u32 nKey;
1697 int nLocal;
drh0e1c19e2004-05-11 00:58:56 +00001698
1699 assert( pCur!=0 && pCur->pPage!=0 );
1700 assert( pCur->isValid );
1701 pBt = pCur->pBt;
1702 pPage = pCur->pPage;
1703 pageIntegrity(pPage);
1704 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
1705 aPayload = pPage->aCell[pCur->idx];
drhfa1a98a2004-05-14 19:08:17 +00001706 if( !pCur->infoValid ){
1707 parseCell(pPage, aPayload, &pCur->info);
1708 pCur->infoValid = 1;
1709 }else{
1710#ifndef NDEBUG
1711 CellInfo info;
1712 parseCell(pPage, aPayload, &info);
1713 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
1714#endif
1715 }
1716 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00001717 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00001718 nKey = 0;
1719 }else{
1720 nKey = pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00001721 }
drh0e1c19e2004-05-11 00:58:56 +00001722 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00001723 aPayload += nKey;
1724 nLocal = pCur->info.nLocal - nKey;
1725 if( amt<0 ) amt = pCur->info.nData;
1726 assert( amt<=pCur->info.nData );
drh0e1c19e2004-05-11 00:58:56 +00001727 }else{
drhfa1a98a2004-05-14 19:08:17 +00001728 nLocal = pCur->info.nLocal;
1729 if( amt<0 ) amt = nKey;
1730 assert( amt<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00001731 }
drhfa1a98a2004-05-14 19:08:17 +00001732 if( amt>nLocal ){
drh0e1c19e2004-05-11 00:58:56 +00001733 return 0; /* If any of the data is not local, return nothing */
1734 }
1735 return aPayload;
1736}
1737
1738
1739/*
1740** Return a pointer to the first amt bytes of the key or data
1741** for record that cursor pCur is point to if the entire request
1742** exists in contiguous memory on the main tree page. If any
1743** any part of the request is on an overflow page, return 0.
1744** If pCur is not pointing to a valid entry return 0.
1745**
1746** If amt<0 then return the entire key or data.
1747**
1748** The pointer returned is ephemeral. The key/data may move
1749** or be destroyed on the next call to any Btree routine.
1750**
1751** These routines is used to get quick access to key and data
1752** in the common case where no overflow pages are used.
1753**
1754** It is a fatal error to call these routines with amt values that
1755** are larger than the key/data size.
1756*/
1757const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int amt){
1758 return (const void*)fetchPayload(pCur, amt, 0);
1759}
1760const void *sqlite3BtreeDataFetch(BtCursor *pCur, int amt){
1761 return (const void*)fetchPayload(pCur, amt, 1);
1762}
1763
1764
1765/*
drh8178a752003-01-05 21:41:40 +00001766** Move the cursor down to a new child page. The newPgno argument is the
1767** page number of the child page in the byte order of the disk image.
drh72f82862001-05-24 21:06:34 +00001768*/
drh3aac2dd2004-04-26 14:10:20 +00001769static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00001770 int rc;
1771 MemPage *pNewPage;
drh3aac2dd2004-04-26 14:10:20 +00001772 MemPage *pOldPage;
drh0d316a42002-08-11 20:10:47 +00001773 Btree *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00001774
drhc39e0002004-05-07 23:50:57 +00001775 assert( pCur->isValid );
drhde647132004-05-07 17:57:49 +00001776 rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
drh6019e162001-07-02 17:51:45 +00001777 if( rc ) return rc;
drhda200cc2004-05-09 11:51:38 +00001778 pageIntegrity(pNewPage);
drh428ae8c2003-01-04 16:48:09 +00001779 pNewPage->idxParent = pCur->idx;
drh3aac2dd2004-04-26 14:10:20 +00001780 pOldPage = pCur->pPage;
1781 pOldPage->idxShift = 0;
1782 releasePage(pOldPage);
drh72f82862001-05-24 21:06:34 +00001783 pCur->pPage = pNewPage;
1784 pCur->idx = 0;
drhfa1a98a2004-05-14 19:08:17 +00001785 pCur->infoValid = 0;
drh4be295b2003-12-16 03:44:47 +00001786 if( pNewPage->nCell<1 ){
1787 return SQLITE_CORRUPT;
1788 }
drh72f82862001-05-24 21:06:34 +00001789 return SQLITE_OK;
1790}
1791
1792/*
drh8856d6a2004-04-29 14:42:46 +00001793** Return true if the page is the virtual root of its table.
1794**
1795** The virtual root page is the root page for most tables. But
1796** for the table rooted on page 1, sometime the real root page
1797** is empty except for the right-pointer. In such cases the
1798** virtual root page is the page that the right-pointer of page
1799** 1 is pointing to.
1800*/
1801static int isRootPage(MemPage *pPage){
1802 MemPage *pParent = pPage->pParent;
drhda200cc2004-05-09 11:51:38 +00001803 if( pParent==0 ) return 1;
1804 if( pParent->pgno>1 ) return 0;
1805 if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
drh8856d6a2004-04-29 14:42:46 +00001806 return 0;
1807}
1808
1809/*
drh5e2f8b92001-05-28 00:41:15 +00001810** Move the cursor up to the parent page.
1811**
1812** pCur->idx is set to the cell index that contains the pointer
1813** to the page we are coming from. If we are coming from the
1814** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00001815** the largest cell index.
drh72f82862001-05-24 21:06:34 +00001816*/
drh8178a752003-01-05 21:41:40 +00001817static void moveToParent(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00001818 Pgno oldPgno;
1819 MemPage *pParent;
drh8178a752003-01-05 21:41:40 +00001820 MemPage *pPage;
drh428ae8c2003-01-04 16:48:09 +00001821 int idxParent;
drh3aac2dd2004-04-26 14:10:20 +00001822
drhc39e0002004-05-07 23:50:57 +00001823 assert( pCur->isValid );
drh8178a752003-01-05 21:41:40 +00001824 pPage = pCur->pPage;
1825 assert( pPage!=0 );
drh8856d6a2004-04-29 14:42:46 +00001826 assert( !isRootPage(pPage) );
drhda200cc2004-05-09 11:51:38 +00001827 pageIntegrity(pPage);
drh8178a752003-01-05 21:41:40 +00001828 pParent = pPage->pParent;
1829 assert( pParent!=0 );
drhda200cc2004-05-09 11:51:38 +00001830 pageIntegrity(pParent);
drh8178a752003-01-05 21:41:40 +00001831 idxParent = pPage->idxParent;
drha34b6762004-05-07 13:30:42 +00001832 sqlite3pager_ref(pParent->aData);
drh3aac2dd2004-04-26 14:10:20 +00001833 oldPgno = pPage->pgno;
1834 releasePage(pPage);
drh72f82862001-05-24 21:06:34 +00001835 pCur->pPage = pParent;
drhfa1a98a2004-05-14 19:08:17 +00001836 pCur->infoValid = 0;
drh428ae8c2003-01-04 16:48:09 +00001837 assert( pParent->idxShift==0 );
1838 if( pParent->idxShift==0 ){
1839 pCur->idx = idxParent;
1840#ifndef NDEBUG
1841 /* Verify that pCur->idx is the correct index to point back to the child
1842 ** page we just came from
1843 */
drh428ae8c2003-01-04 16:48:09 +00001844 if( pCur->idx<pParent->nCell ){
drha34b6762004-05-07 13:30:42 +00001845 assert( get4byte(&pParent->aCell[idxParent][2])==oldPgno );
drh428ae8c2003-01-04 16:48:09 +00001846 }else{
drha34b6762004-05-07 13:30:42 +00001847 assert( get4byte(&pParent->aData[pParent->hdrOffset+6])==oldPgno );
drh428ae8c2003-01-04 16:48:09 +00001848 }
1849#endif
1850 }else{
1851 /* The MemPage.idxShift flag indicates that cell indices might have
1852 ** changed since idxParent was set and hence idxParent might be out
1853 ** of date. So recompute the parent cell index by scanning all cells
1854 ** and locating the one that points to the child we just came from.
1855 */
1856 int i;
1857 pCur->idx = pParent->nCell;
drh428ae8c2003-01-04 16:48:09 +00001858 for(i=0; i<pParent->nCell; i++){
drh3aac2dd2004-04-26 14:10:20 +00001859 if( get4byte(&pParent->aCell[i][2])==oldPgno ){
drh428ae8c2003-01-04 16:48:09 +00001860 pCur->idx = i;
1861 break;
1862 }
drh72f82862001-05-24 21:06:34 +00001863 }
1864 }
1865}
1866
1867/*
1868** Move the cursor to the root page
1869*/
drh5e2f8b92001-05-28 00:41:15 +00001870static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00001871 MemPage *pRoot;
drhbd03cae2001-06-02 02:40:57 +00001872 int rc;
drh0d316a42002-08-11 20:10:47 +00001873 Btree *pBt = pCur->pBt;
drhbd03cae2001-06-02 02:40:57 +00001874
drhde647132004-05-07 17:57:49 +00001875 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0);
drhc39e0002004-05-07 23:50:57 +00001876 if( rc ){
1877 pCur->isValid = 0;
1878 return rc;
1879 }
drh3aac2dd2004-04-26 14:10:20 +00001880 releasePage(pCur->pPage);
drhda200cc2004-05-09 11:51:38 +00001881 pageIntegrity(pRoot);
drh3aac2dd2004-04-26 14:10:20 +00001882 pCur->pPage = pRoot;
drh72f82862001-05-24 21:06:34 +00001883 pCur->idx = 0;
drhfa1a98a2004-05-14 19:08:17 +00001884 pCur->infoValid = 0;
drh8856d6a2004-04-29 14:42:46 +00001885 if( pRoot->nCell==0 && !pRoot->leaf ){
1886 Pgno subpage;
1887 assert( pRoot->pgno==1 );
1888 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+6]);
1889 assert( subpage>0 );
drh3644f082004-05-10 18:45:09 +00001890 pCur->isValid = 1;
drh4b70f112004-05-02 21:12:19 +00001891 rc = moveToChild(pCur, subpage);
drh8856d6a2004-04-29 14:42:46 +00001892 }
drhc39e0002004-05-07 23:50:57 +00001893 pCur->isValid = pCur->pPage->nCell>0;
drh8856d6a2004-04-29 14:42:46 +00001894 return rc;
drh72f82862001-05-24 21:06:34 +00001895}
drh2af926b2001-05-15 00:39:25 +00001896
drh5e2f8b92001-05-28 00:41:15 +00001897/*
1898** Move the cursor down to the left-most leaf entry beneath the
1899** entry to which it is currently pointing.
1900*/
1901static int moveToLeftmost(BtCursor *pCur){
1902 Pgno pgno;
1903 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001904 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00001905
drhc39e0002004-05-07 23:50:57 +00001906 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00001907 while( !(pPage = pCur->pPage)->leaf ){
drha34b6762004-05-07 13:30:42 +00001908 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
1909 pgno = get4byte(&pPage->aCell[pCur->idx][2]);
drh8178a752003-01-05 21:41:40 +00001910 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00001911 if( rc ) return rc;
1912 }
1913 return SQLITE_OK;
1914}
1915
drh2dcc9aa2002-12-04 13:40:25 +00001916/*
1917** Move the cursor down to the right-most leaf entry beneath the
1918** page to which it is currently pointing. Notice the difference
1919** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
1920** finds the left-most entry beneath the *entry* whereas moveToRightmost()
1921** finds the right-most entry beneath the *page*.
1922*/
1923static int moveToRightmost(BtCursor *pCur){
1924 Pgno pgno;
1925 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001926 MemPage *pPage;
drh2dcc9aa2002-12-04 13:40:25 +00001927
drhc39e0002004-05-07 23:50:57 +00001928 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00001929 while( !(pPage = pCur->pPage)->leaf ){
1930 pgno = get4byte(&pPage->aData[pPage->hdrOffset+6]);
1931 pCur->idx = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00001932 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00001933 if( rc ) return rc;
1934 }
drh3aac2dd2004-04-26 14:10:20 +00001935 pCur->idx = pPage->nCell - 1;
drhfa1a98a2004-05-14 19:08:17 +00001936 pCur->infoValid = 0;
drh2dcc9aa2002-12-04 13:40:25 +00001937 return SQLITE_OK;
1938}
1939
drh5e00f6c2001-09-13 13:46:56 +00001940/* Move the cursor to the first entry in the table. Return SQLITE_OK
1941** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00001942** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00001943*/
drh3aac2dd2004-04-26 14:10:20 +00001944int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00001945 int rc;
drhc39e0002004-05-07 23:50:57 +00001946 if( pCur->status ){
1947 return pCur->status;
1948 }
drh5e00f6c2001-09-13 13:46:56 +00001949 rc = moveToRoot(pCur);
1950 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00001951 if( pCur->isValid==0 ){
1952 assert( pCur->pPage->nCell==0 );
drh5e00f6c2001-09-13 13:46:56 +00001953 *pRes = 1;
1954 return SQLITE_OK;
1955 }
drhc39e0002004-05-07 23:50:57 +00001956 assert( pCur->pPage->nCell>0 );
drh5e00f6c2001-09-13 13:46:56 +00001957 *pRes = 0;
1958 rc = moveToLeftmost(pCur);
1959 return rc;
1960}
drh5e2f8b92001-05-28 00:41:15 +00001961
drh9562b552002-02-19 15:00:07 +00001962/* Move the cursor to the last entry in the table. Return SQLITE_OK
1963** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00001964** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00001965*/
drh3aac2dd2004-04-26 14:10:20 +00001966int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00001967 int rc;
drhc39e0002004-05-07 23:50:57 +00001968 if( pCur->status ){
1969 return pCur->status;
1970 }
drh9562b552002-02-19 15:00:07 +00001971 rc = moveToRoot(pCur);
1972 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00001973 if( pCur->isValid==0 ){
1974 assert( pCur->pPage->nCell==0 );
drh9562b552002-02-19 15:00:07 +00001975 *pRes = 1;
1976 return SQLITE_OK;
1977 }
drhc39e0002004-05-07 23:50:57 +00001978 assert( pCur->isValid );
drh9562b552002-02-19 15:00:07 +00001979 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00001980 rc = moveToRightmost(pCur);
drh9562b552002-02-19 15:00:07 +00001981 return rc;
1982}
1983
drh3aac2dd2004-04-26 14:10:20 +00001984/* Move the cursor so that it points to an entry near pKey/nKey.
drh72f82862001-05-24 21:06:34 +00001985** Return a success code.
1986**
drh3aac2dd2004-04-26 14:10:20 +00001987** For INTKEY tables, only the nKey parameter is used. pKey is
1988** ignored. For other tables, nKey is the number of bytes of data
1989** in nKey. The comparison function specified when the cursor was
1990** created is used to compare keys.
1991**
drh5e2f8b92001-05-28 00:41:15 +00001992** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00001993** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00001994** were present. The cursor might point to an entry that comes
1995** before or after the key.
1996**
drhbd03cae2001-06-02 02:40:57 +00001997** The result of comparing the key with the entry to which the
1998** cursor is left pointing is stored in pCur->iMatch. The same
1999** value is also written to *pRes if pRes!=NULL. The meaning of
2000** this value is as follows:
2001**
2002** *pRes<0 The cursor is left pointing at an entry that
drh1a844c32002-12-04 22:29:28 +00002003** is smaller than pKey or if the table is empty
2004** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00002005**
2006** *pRes==0 The cursor is left pointing at an entry that
2007** exactly matches pKey.
2008**
2009** *pRes>0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00002010** is larger than pKey.
drha059ad02001-04-17 20:09:11 +00002011*/
drh4a1c3802004-05-12 15:15:47 +00002012int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){
drh72f82862001-05-24 21:06:34 +00002013 int rc;
drhc39e0002004-05-07 23:50:57 +00002014
2015 if( pCur->status ){
2016 return pCur->status;
2017 }
drh5e2f8b92001-05-28 00:41:15 +00002018 rc = moveToRoot(pCur);
drh72f82862001-05-24 21:06:34 +00002019 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00002020 assert( pCur->pPage );
2021 assert( pCur->pPage->isInit );
2022 if( pCur->isValid==0 ){
drhf328bc82004-05-10 23:29:49 +00002023 *pRes = -1;
drhc39e0002004-05-07 23:50:57 +00002024 assert( pCur->pPage->nCell==0 );
2025 return SQLITE_OK;
2026 }
drh72f82862001-05-24 21:06:34 +00002027 for(;;){
2028 int lwr, upr;
2029 Pgno chldPg;
2030 MemPage *pPage = pCur->pPage;
drh1a844c32002-12-04 22:29:28 +00002031 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00002032 lwr = 0;
2033 upr = pPage->nCell-1;
drhda200cc2004-05-09 11:51:38 +00002034 pageIntegrity(pPage);
drh72f82862001-05-24 21:06:34 +00002035 while( lwr<=upr ){
drh0e1c19e2004-05-11 00:58:56 +00002036 const void *pCellKey;
drh4a1c3802004-05-12 15:15:47 +00002037 i64 nCellKey;
drh72f82862001-05-24 21:06:34 +00002038 pCur->idx = (lwr+upr)/2;
drhfa1a98a2004-05-14 19:08:17 +00002039 pCur->infoValid = 0;
drhde647132004-05-07 17:57:49 +00002040 sqlite3BtreeKeySize(pCur, &nCellKey);
drh3aac2dd2004-04-26 14:10:20 +00002041 if( pPage->intKey ){
2042 if( nCellKey<nKey ){
2043 c = -1;
2044 }else if( nCellKey>nKey ){
2045 c = +1;
2046 }else{
2047 c = 0;
2048 }
drh0e1c19e2004-05-11 00:58:56 +00002049 }else if( (pCellKey = sqlite3BtreeKeyFetch(pCur, nCellKey))!=0 ){
drh3aac2dd2004-04-26 14:10:20 +00002050 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
2051 }else{
drh0e1c19e2004-05-11 00:58:56 +00002052 u8 *pCellKey = sqliteMalloc( nCellKey );
drh3aac2dd2004-04-26 14:10:20 +00002053 if( pCellKey==0 ) return SQLITE_NOMEM;
2054 rc = sqlite3BtreeKey(pCur, 0, nCellKey, pCellKey);
2055 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
2056 sqliteFree(pCellKey);
2057 if( rc ) return rc;
2058 }
drh72f82862001-05-24 21:06:34 +00002059 if( c==0 ){
drh8b18dd42004-05-12 19:18:15 +00002060 if( pPage->leafData && !pPage->leaf ){
drhfc70e6f2004-05-12 21:11:27 +00002061 lwr = pCur->idx;
2062 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00002063 break;
2064 }else{
2065 pCur->iMatch = c;
2066 if( pRes ) *pRes = 0;
2067 return SQLITE_OK;
2068 }
drh72f82862001-05-24 21:06:34 +00002069 }
2070 if( c<0 ){
2071 lwr = pCur->idx+1;
2072 }else{
2073 upr = pCur->idx-1;
2074 }
2075 }
2076 assert( lwr==upr+1 );
drh7aa128d2002-06-21 13:09:16 +00002077 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00002078 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00002079 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00002080 }else if( lwr>=pPage->nCell ){
2081 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+6]);
drh72f82862001-05-24 21:06:34 +00002082 }else{
drh3aac2dd2004-04-26 14:10:20 +00002083 chldPg = get4byte(&pPage->aCell[lwr][2]);
drh72f82862001-05-24 21:06:34 +00002084 }
2085 if( chldPg==0 ){
drh5e2f8b92001-05-28 00:41:15 +00002086 pCur->iMatch = c;
drhc39e0002004-05-07 23:50:57 +00002087 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh72f82862001-05-24 21:06:34 +00002088 if( pRes ) *pRes = c;
2089 return SQLITE_OK;
2090 }
drh428ae8c2003-01-04 16:48:09 +00002091 pCur->idx = lwr;
drhfa1a98a2004-05-14 19:08:17 +00002092 pCur->infoValid = 0;
drh8178a752003-01-05 21:41:40 +00002093 rc = moveToChild(pCur, chldPg);
drhc39e0002004-05-07 23:50:57 +00002094 if( rc ){
2095 return rc;
2096 }
drh72f82862001-05-24 21:06:34 +00002097 }
drhbd03cae2001-06-02 02:40:57 +00002098 /* NOT REACHED */
drh72f82862001-05-24 21:06:34 +00002099}
2100
2101/*
drhc39e0002004-05-07 23:50:57 +00002102** Return TRUE if the cursor is not pointing at an entry of the table.
2103**
2104** TRUE will be returned after a call to sqlite3BtreeNext() moves
2105** past the last entry in the table or sqlite3BtreePrev() moves past
2106** the first entry. TRUE is also returned if the table is empty.
2107*/
2108int sqlite3BtreeEof(BtCursor *pCur){
2109 return pCur->isValid==0;
2110}
2111
2112/*
drhbd03cae2001-06-02 02:40:57 +00002113** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00002114** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00002115** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00002116** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00002117*/
drh3aac2dd2004-04-26 14:10:20 +00002118int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00002119 int rc;
drh8178a752003-01-05 21:41:40 +00002120 MemPage *pPage = pCur->pPage;
drh8b18dd42004-05-12 19:18:15 +00002121
drh8c1238a2003-01-02 14:43:55 +00002122 assert( pRes!=0 );
drhc39e0002004-05-07 23:50:57 +00002123 if( pCur->isValid==0 ){
drh8c1238a2003-01-02 14:43:55 +00002124 *pRes = 1;
drhc39e0002004-05-07 23:50:57 +00002125 return SQLITE_OK;
drhecdc7532001-09-23 02:35:53 +00002126 }
drh8178a752003-01-05 21:41:40 +00002127 assert( pPage->isInit );
drh8178a752003-01-05 21:41:40 +00002128 assert( pCur->idx<pPage->nCell );
drh72f82862001-05-24 21:06:34 +00002129 pCur->idx++;
drhfa1a98a2004-05-14 19:08:17 +00002130 pCur->infoValid = 0;
drh8178a752003-01-05 21:41:40 +00002131 if( pCur->idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00002132 if( !pPage->leaf ){
2133 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+6]));
drh5e2f8b92001-05-28 00:41:15 +00002134 if( rc ) return rc;
2135 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00002136 *pRes = 0;
2137 return rc;
drh72f82862001-05-24 21:06:34 +00002138 }
drh5e2f8b92001-05-28 00:41:15 +00002139 do{
drh8856d6a2004-04-29 14:42:46 +00002140 if( isRootPage(pPage) ){
drh8c1238a2003-01-02 14:43:55 +00002141 *pRes = 1;
drhc39e0002004-05-07 23:50:57 +00002142 pCur->isValid = 0;
drh5e2f8b92001-05-28 00:41:15 +00002143 return SQLITE_OK;
2144 }
drh8178a752003-01-05 21:41:40 +00002145 moveToParent(pCur);
2146 pPage = pCur->pPage;
2147 }while( pCur->idx>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00002148 *pRes = 0;
drh8b18dd42004-05-12 19:18:15 +00002149 if( pPage->leafData ){
2150 rc = sqlite3BtreeNext(pCur, pRes);
2151 }else{
2152 rc = SQLITE_OK;
2153 }
2154 return rc;
drh8178a752003-01-05 21:41:40 +00002155 }
2156 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00002157 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00002158 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00002159 }
drh5e2f8b92001-05-28 00:41:15 +00002160 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00002161 return rc;
drh72f82862001-05-24 21:06:34 +00002162}
2163
drh3b7511c2001-05-26 13:15:44 +00002164/*
drh2dcc9aa2002-12-04 13:40:25 +00002165** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00002166** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00002167** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00002168** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00002169*/
drh3aac2dd2004-04-26 14:10:20 +00002170int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00002171 int rc;
2172 Pgno pgno;
drh8178a752003-01-05 21:41:40 +00002173 MemPage *pPage;
drhc39e0002004-05-07 23:50:57 +00002174 if( pCur->isValid==0 ){
2175 *pRes = 1;
2176 return SQLITE_OK;
2177 }
drh8178a752003-01-05 21:41:40 +00002178 pPage = pCur->pPage;
drh8178a752003-01-05 21:41:40 +00002179 assert( pPage->isInit );
drh2dcc9aa2002-12-04 13:40:25 +00002180 assert( pCur->idx>=0 );
drha34b6762004-05-07 13:30:42 +00002181 if( !pPage->leaf ){
drh3aac2dd2004-04-26 14:10:20 +00002182 pgno = get4byte(&pPage->aCell[pCur->idx][2]);
drh8178a752003-01-05 21:41:40 +00002183 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00002184 if( rc ) return rc;
2185 rc = moveToRightmost(pCur);
2186 }else{
2187 while( pCur->idx==0 ){
drh8856d6a2004-04-29 14:42:46 +00002188 if( isRootPage(pPage) ){
drhc39e0002004-05-07 23:50:57 +00002189 pCur->isValid = 0;
2190 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00002191 return SQLITE_OK;
2192 }
drh8178a752003-01-05 21:41:40 +00002193 moveToParent(pCur);
2194 pPage = pCur->pPage;
drh2dcc9aa2002-12-04 13:40:25 +00002195 }
2196 pCur->idx--;
drhfa1a98a2004-05-14 19:08:17 +00002197 pCur->infoValid = 0;
drh8b18dd42004-05-12 19:18:15 +00002198 if( pPage->leafData ){
2199 rc = sqlite3BtreePrevious(pCur, pRes);
2200 }else{
2201 rc = SQLITE_OK;
2202 }
drh2dcc9aa2002-12-04 13:40:25 +00002203 }
drh8178a752003-01-05 21:41:40 +00002204 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00002205 return rc;
2206}
2207
2208/*
drh3a4c1412004-05-09 20:40:11 +00002209** The TRACE macro will print high-level status information about the
2210** btree operation when the global variable sqlite3_btree_trace is
2211** enabled.
2212*/
2213#if SQLITE_TEST
2214# define TRACE(X) if( sqlite3_btree_trace ){ printf X; fflush(stdout); }
2215#else
2216# define TRACE(X)
2217#endif
2218int sqlite3_btree_trace=0; /* True to enable tracing */
2219
2220/*
drh3b7511c2001-05-26 13:15:44 +00002221** Allocate a new page from the database file.
2222**
drha34b6762004-05-07 13:30:42 +00002223** The new page is marked as dirty. (In other words, sqlite3pager_write()
drh3b7511c2001-05-26 13:15:44 +00002224** has already been called on the new page.) The new page has also
2225** been referenced and the calling routine is responsible for calling
drha34b6762004-05-07 13:30:42 +00002226** sqlite3pager_unref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00002227**
2228** SQLITE_OK is returned on success. Any other return value indicates
2229** an error. *ppPage and *pPgno are undefined in the event of an error.
drha34b6762004-05-07 13:30:42 +00002230** Do not invoke sqlite3pager_unref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00002231**
drh199e3cf2002-07-18 11:01:47 +00002232** If the "nearby" parameter is not 0, then a (feeble) effort is made to
2233** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00002234** attempt to keep related pages close to each other in the database file,
2235** which in turn can make database access faster.
drh3b7511c2001-05-26 13:15:44 +00002236*/
drh199e3cf2002-07-18 11:01:47 +00002237static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
drh3aac2dd2004-04-26 14:10:20 +00002238 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00002239 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002240 int n; /* Number of pages on the freelist */
2241 int k; /* Number of leaves on the trunk of the freelist */
drh30e58752002-03-02 20:41:57 +00002242
drh3aac2dd2004-04-26 14:10:20 +00002243 pPage1 = pBt->pPage1;
2244 n = get4byte(&pPage1->aData[36]);
2245 if( n>0 ){
drh91025292004-05-03 19:49:32 +00002246 /* There are pages on the freelist. Reuse one of those pages. */
drh3aac2dd2004-04-26 14:10:20 +00002247 MemPage *pTrunk;
drha34b6762004-05-07 13:30:42 +00002248 rc = sqlite3pager_write(pPage1->aData);
drh3b7511c2001-05-26 13:15:44 +00002249 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002250 put4byte(&pPage1->aData[36], n-1);
2251 rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002252 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002253 rc = sqlite3pager_write(pTrunk->aData);
drh3b7511c2001-05-26 13:15:44 +00002254 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00002255 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002256 return rc;
2257 }
drh3aac2dd2004-04-26 14:10:20 +00002258 k = get4byte(&pTrunk->aData[4]);
2259 if( k==0 ){
2260 /* The trunk has no leaves. So extract the trunk page itself and
2261 ** use it as the newly allocated page */
drha34b6762004-05-07 13:30:42 +00002262 *pPgno = get4byte(&pPage1->aData[32]);
drh3aac2dd2004-04-26 14:10:20 +00002263 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
2264 *ppPage = pTrunk;
drh3a4c1412004-05-09 20:40:11 +00002265 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh30e58752002-03-02 20:41:57 +00002266 }else{
drh3aac2dd2004-04-26 14:10:20 +00002267 /* Extract a leaf from the trunk */
2268 int closest;
2269 unsigned char *aData = pTrunk->aData;
2270 if( nearby>0 ){
drhbea00b92002-07-08 10:59:50 +00002271 int i, dist;
2272 closest = 0;
drh3aac2dd2004-04-26 14:10:20 +00002273 dist = get4byte(&aData[8]) - nearby;
drhbea00b92002-07-08 10:59:50 +00002274 if( dist<0 ) dist = -dist;
drh3a4c1412004-05-09 20:40:11 +00002275 for(i=1; i<k; i++){
drh3aac2dd2004-04-26 14:10:20 +00002276 int d2 = get4byte(&aData[8+i*4]) - nearby;
drhbea00b92002-07-08 10:59:50 +00002277 if( d2<0 ) d2 = -d2;
2278 if( d2<dist ) closest = i;
2279 }
2280 }else{
2281 closest = 0;
2282 }
drha34b6762004-05-07 13:30:42 +00002283 *pPgno = get4byte(&aData[8+closest*4]);
drh3a4c1412004-05-09 20:40:11 +00002284 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d: %d more free pages\n",
2285 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh9b171272004-05-08 02:03:22 +00002286 if( closest<k-1 ){
2287 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
2288 }
drh3a4c1412004-05-09 20:40:11 +00002289 put4byte(&aData[4], k-1);
drh3aac2dd2004-04-26 14:10:20 +00002290 rc = getPage(pBt, *pPgno, ppPage);
2291 releasePage(pTrunk);
drh30e58752002-03-02 20:41:57 +00002292 if( rc==SQLITE_OK ){
drh9b171272004-05-08 02:03:22 +00002293 sqlite3pager_dont_rollback((*ppPage)->aData);
drha34b6762004-05-07 13:30:42 +00002294 rc = sqlite3pager_write((*ppPage)->aData);
drh30e58752002-03-02 20:41:57 +00002295 }
2296 }
drh3b7511c2001-05-26 13:15:44 +00002297 }else{
drh3aac2dd2004-04-26 14:10:20 +00002298 /* There are no pages on the freelist, so create a new page at the
2299 ** end of the file */
drha34b6762004-05-07 13:30:42 +00002300 *pPgno = sqlite3pager_pagecount(pBt->pPager) + 1;
drh3aac2dd2004-04-26 14:10:20 +00002301 rc = getPage(pBt, *pPgno, ppPage);
drh3b7511c2001-05-26 13:15:44 +00002302 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002303 rc = sqlite3pager_write((*ppPage)->aData);
drh3a4c1412004-05-09 20:40:11 +00002304 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00002305 }
2306 return rc;
2307}
2308
2309/*
drh3aac2dd2004-04-26 14:10:20 +00002310** Add a page of the database file to the freelist.
drh5e2f8b92001-05-28 00:41:15 +00002311**
drha34b6762004-05-07 13:30:42 +00002312** sqlite3pager_unref() is NOT called for pPage.
drh3b7511c2001-05-26 13:15:44 +00002313*/
drh3aac2dd2004-04-26 14:10:20 +00002314static int freePage(MemPage *pPage){
2315 Btree *pBt = pPage->pBt;
2316 MemPage *pPage1 = pBt->pPage1;
2317 int rc, n, k;
drh8b2f49b2001-06-08 00:21:52 +00002318
drh3aac2dd2004-04-26 14:10:20 +00002319 /* Prepare the page for freeing */
2320 assert( pPage->pgno>1 );
2321 pPage->isInit = 0;
2322 releasePage(pPage->pParent);
2323 pPage->pParent = 0;
2324
drha34b6762004-05-07 13:30:42 +00002325 /* Increment the free page count on pPage1 */
2326 rc = sqlite3pager_write(pPage1->aData);
drh3aac2dd2004-04-26 14:10:20 +00002327 if( rc ) return rc;
2328 n = get4byte(&pPage1->aData[36]);
2329 put4byte(&pPage1->aData[36], n+1);
2330
2331 if( n==0 ){
2332 /* This is the first free page */
drhda200cc2004-05-09 11:51:38 +00002333 rc = sqlite3pager_write(pPage->aData);
2334 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002335 memset(pPage->aData, 0, 8);
drha34b6762004-05-07 13:30:42 +00002336 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00002337 TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
drh3aac2dd2004-04-26 14:10:20 +00002338 }else{
2339 /* Other free pages already exist. Retrive the first trunk page
2340 ** of the freelist and find out how many leaves it has. */
drha34b6762004-05-07 13:30:42 +00002341 MemPage *pTrunk;
2342 rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002343 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002344 k = get4byte(&pTrunk->aData[4]);
drhb6f41482004-05-14 01:58:11 +00002345 if( k==pBt->usableSize/4 - 8 ){
drh3aac2dd2004-04-26 14:10:20 +00002346 /* The trunk is full. Turn the page being freed into a new
2347 ** trunk page with no leaves. */
drha34b6762004-05-07 13:30:42 +00002348 rc = sqlite3pager_write(pPage->aData);
drh3aac2dd2004-04-26 14:10:20 +00002349 if( rc ) return rc;
2350 put4byte(pPage->aData, pTrunk->pgno);
2351 put4byte(&pPage->aData[4], 0);
2352 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00002353 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
2354 pPage->pgno, pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00002355 }else{
2356 /* Add the newly freed page as a leaf on the current trunk */
drha34b6762004-05-07 13:30:42 +00002357 rc = sqlite3pager_write(pTrunk->aData);
drh3aac2dd2004-04-26 14:10:20 +00002358 if( rc ) return rc;
2359 put4byte(&pTrunk->aData[4], k+1);
2360 put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
drha34b6762004-05-07 13:30:42 +00002361 sqlite3pager_dont_write(pBt->pPager, pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00002362 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00002363 }
2364 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002365 }
drh3b7511c2001-05-26 13:15:44 +00002366 return rc;
2367}
2368
2369/*
drh3aac2dd2004-04-26 14:10:20 +00002370** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00002371*/
drh3aac2dd2004-04-26 14:10:20 +00002372static int clearCell(MemPage *pPage, unsigned char *pCell){
2373 Btree *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00002374 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00002375 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00002376 int rc;
drh3b7511c2001-05-26 13:15:44 +00002377
drh6f11bef2004-05-13 01:12:56 +00002378 parseCell(pPage, pCell, &info);
2379 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00002380 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00002381 }
drh6f11bef2004-05-13 01:12:56 +00002382 ovflPgno = get4byte(&pCell[info.iOverflow]);
drh3aac2dd2004-04-26 14:10:20 +00002383 while( ovflPgno!=0 ){
2384 MemPage *pOvfl;
2385 rc = getPage(pBt, ovflPgno, &pOvfl);
drh3b7511c2001-05-26 13:15:44 +00002386 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002387 ovflPgno = get4byte(pOvfl->aData);
drha34b6762004-05-07 13:30:42 +00002388 rc = freePage(pOvfl);
drhbd03cae2001-06-02 02:40:57 +00002389 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002390 sqlite3pager_unref(pOvfl->aData);
drh3b7511c2001-05-26 13:15:44 +00002391 }
drh5e2f8b92001-05-28 00:41:15 +00002392 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00002393}
2394
2395/*
drh91025292004-05-03 19:49:32 +00002396** Create the byte sequence used to represent a cell on page pPage
2397** and write that byte sequence into pCell[]. Overflow pages are
2398** allocated and filled in as necessary. The calling procedure
2399** is responsible for making sure sufficient space has been allocated
2400** for pCell[].
2401**
2402** Note that pCell does not necessary need to point to the pPage->aData
2403** area. pCell might point to some temporary storage. The cell will
2404** be constructed in this temporary area then copied into pPage->aData
2405** later.
drh3b7511c2001-05-26 13:15:44 +00002406*/
2407static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00002408 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00002409 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00002410 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00002411 const void *pData,int nData, /* The data */
2412 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00002413){
drh3b7511c2001-05-26 13:15:44 +00002414 int nPayload;
drh3aac2dd2004-04-26 14:10:20 +00002415 const void *pSrc;
drha34b6762004-05-07 13:30:42 +00002416 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00002417 int spaceLeft;
2418 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00002419 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00002420 unsigned char *pPrior;
2421 unsigned char *pPayload;
2422 Btree *pBt = pPage->pBt;
2423 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00002424 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00002425 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00002426
drh91025292004-05-03 19:49:32 +00002427 /* Fill in the header. */
2428 nHeader = 2;
2429 if( !pPage->leaf ){
2430 nHeader += 4;
2431 }
drh8b18dd42004-05-12 19:18:15 +00002432 if( pPage->hasData ){
drh91025292004-05-03 19:49:32 +00002433 nHeader += putVarint(&pCell[nHeader], nData);
drh6f11bef2004-05-13 01:12:56 +00002434 }else{
drh91025292004-05-03 19:49:32 +00002435 nData = 0;
2436 }
drh6f11bef2004-05-13 01:12:56 +00002437 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
2438 parseCell(pPage, pCell, &info);
2439 assert( info.nHeader==nHeader );
2440 assert( info.nKey==nKey );
2441 assert( info.nData==nData );
2442
2443 /* Fill in the payload */
drh3aac2dd2004-04-26 14:10:20 +00002444 nPayload = nData;
2445 if( pPage->intKey ){
2446 pSrc = pData;
2447 nSrc = nData;
drh91025292004-05-03 19:49:32 +00002448 nData = 0;
drh3aac2dd2004-04-26 14:10:20 +00002449 }else{
2450 nPayload += nKey;
2451 pSrc = pKey;
2452 nSrc = nKey;
2453 }
drh6f11bef2004-05-13 01:12:56 +00002454 *pnSize = info.nSize;
2455 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00002456 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00002457 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00002458
drh3b7511c2001-05-26 13:15:44 +00002459 while( nPayload>0 ){
2460 if( spaceLeft==0 ){
drh3aac2dd2004-04-26 14:10:20 +00002461 rc = allocatePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl);
drh3b7511c2001-05-26 13:15:44 +00002462 if( rc ){
drh9b171272004-05-08 02:03:22 +00002463 releasePage(pToRelease);
drh3aac2dd2004-04-26 14:10:20 +00002464 clearCell(pPage, pCell);
drh3b7511c2001-05-26 13:15:44 +00002465 return rc;
2466 }
drh3aac2dd2004-04-26 14:10:20 +00002467 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00002468 releasePage(pToRelease);
2469 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00002470 pPrior = pOvfl->aData;
2471 put4byte(pPrior, 0);
2472 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00002473 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00002474 }
2475 n = nPayload;
2476 if( n>spaceLeft ) n = spaceLeft;
drh3aac2dd2004-04-26 14:10:20 +00002477 if( n>nSrc ) n = nSrc;
2478 memcpy(pPayload, pSrc, n);
drh3b7511c2001-05-26 13:15:44 +00002479 nPayload -= n;
drhde647132004-05-07 17:57:49 +00002480 pPayload += n;
drh9b171272004-05-08 02:03:22 +00002481 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00002482 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00002483 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00002484 if( nSrc==0 ){
2485 nSrc = nData;
2486 pSrc = pData;
2487 }
drhdd793422001-06-28 01:54:48 +00002488 }
drh9b171272004-05-08 02:03:22 +00002489 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00002490 return SQLITE_OK;
2491}
2492
2493/*
drhbd03cae2001-06-02 02:40:57 +00002494** Change the MemPage.pParent pointer on the page whose number is
drh8b2f49b2001-06-08 00:21:52 +00002495** given in the second argument so that MemPage.pParent holds the
drhbd03cae2001-06-02 02:40:57 +00002496** pointer in the third argument.
2497*/
drh4b70f112004-05-02 21:12:19 +00002498static void reparentPage(Btree *pBt, Pgno pgno, MemPage *pNewParent, int idx){
drhbd03cae2001-06-02 02:40:57 +00002499 MemPage *pThis;
drh4b70f112004-05-02 21:12:19 +00002500 unsigned char *aData;
drhbd03cae2001-06-02 02:40:57 +00002501
drhdd793422001-06-28 01:54:48 +00002502 if( pgno==0 ) return;
drh4b70f112004-05-02 21:12:19 +00002503 assert( pBt->pPager!=0 );
drha34b6762004-05-07 13:30:42 +00002504 aData = sqlite3pager_lookup(pBt->pPager, pgno);
drhda200cc2004-05-09 11:51:38 +00002505 if( aData ){
drhb6f41482004-05-14 01:58:11 +00002506 pThis = (MemPage*)&aData[pBt->usableSize];
drhda200cc2004-05-09 11:51:38 +00002507 if( pThis->isInit ){
2508 if( pThis->pParent!=pNewParent ){
2509 if( pThis->pParent ) sqlite3pager_unref(pThis->pParent->aData);
2510 pThis->pParent = pNewParent;
2511 if( pNewParent ) sqlite3pager_ref(pNewParent->aData);
2512 }
2513 pThis->idxParent = idx;
drhdd793422001-06-28 01:54:48 +00002514 }
drha34b6762004-05-07 13:30:42 +00002515 sqlite3pager_unref(aData);
drhbd03cae2001-06-02 02:40:57 +00002516 }
2517}
2518
2519/*
drh4b70f112004-05-02 21:12:19 +00002520** Change the pParent pointer of all children of pPage to point back
2521** to pPage.
2522**
drhbd03cae2001-06-02 02:40:57 +00002523** In other words, for every child of pPage, invoke reparentPage()
drh5e00f6c2001-09-13 13:46:56 +00002524** to make sure that each child knows that pPage is its parent.
drhbd03cae2001-06-02 02:40:57 +00002525**
2526** This routine gets called after you memcpy() one page into
2527** another.
2528*/
drh4b70f112004-05-02 21:12:19 +00002529static void reparentChildPages(MemPage *pPage){
drhbd03cae2001-06-02 02:40:57 +00002530 int i;
drh4b70f112004-05-02 21:12:19 +00002531 Btree *pBt;
2532
drha34b6762004-05-07 13:30:42 +00002533 if( pPage->leaf ) return;
drh4b70f112004-05-02 21:12:19 +00002534 pBt = pPage->pBt;
drhbd03cae2001-06-02 02:40:57 +00002535 for(i=0; i<pPage->nCell; i++){
drh4b70f112004-05-02 21:12:19 +00002536 reparentPage(pBt, get4byte(&pPage->aCell[i][2]), pPage, i);
drhbd03cae2001-06-02 02:40:57 +00002537 }
drh4b70f112004-05-02 21:12:19 +00002538 reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+6]), pPage, i);
drh428ae8c2003-01-04 16:48:09 +00002539 pPage->idxShift = 0;
drh14acc042001-06-10 19:56:58 +00002540}
2541
2542/*
2543** Remove the i-th cell from pPage. This routine effects pPage only.
2544** The cell content is not freed or deallocated. It is assumed that
2545** the cell content has been copied someplace else. This routine just
2546** removes the reference to the cell from pPage.
2547**
2548** "sz" must be the number of bytes in the cell.
2549**
drhda200cc2004-05-09 11:51:38 +00002550** Try to maintain the integrity of the linked list of cells. But if
2551** the cell being inserted does not fit on the page, this will not be
2552** possible. If the linked list is not maintained, then just update
2553** pPage->aCell[] and set the pPage->needRelink flag so that we will
2554** know to rebuild the linked list later.
drh14acc042001-06-10 19:56:58 +00002555*/
drh4b70f112004-05-02 21:12:19 +00002556static void dropCell(MemPage *pPage, int idx, int sz){
drhde647132004-05-07 17:57:49 +00002557 int j, pc;
drhda200cc2004-05-09 11:51:38 +00002558 u8 *data;
drh8c42ca92001-06-22 19:15:00 +00002559 assert( idx>=0 && idx<pPage->nCell );
drh4b70f112004-05-02 21:12:19 +00002560 assert( sz==cellSize(pPage, pPage->aCell[idx]) );
drha34b6762004-05-07 13:30:42 +00002561 assert( sqlite3pager_iswriteable(pPage->aData) );
drh4b70f112004-05-02 21:12:19 +00002562 assert( pPage->aCell[idx]>=pPage->aData );
drhb6f41482004-05-14 01:58:11 +00002563 assert( pPage->aCell[idx]<=&pPage->aData[pPage->pBt->usableSize-sz] );
drhda200cc2004-05-09 11:51:38 +00002564 data = pPage->aData;
2565 pc = Addr(pPage->aCell[idx]) - Addr(data);
drhb6f41482004-05-14 01:58:11 +00002566 assert( pc>pPage->hdrOffset && pc+sz<=pPage->pBt->usableSize );
drhde647132004-05-07 17:57:49 +00002567 freeSpace(pPage, pc, sz);
drh7c717f72001-06-24 20:39:41 +00002568 for(j=idx; j<pPage->nCell-1; j++){
drh4b70f112004-05-02 21:12:19 +00002569 pPage->aCell[j] = pPage->aCell[j+1];
drh14acc042001-06-10 19:56:58 +00002570 }
2571 pPage->nCell--;
drhda200cc2004-05-09 11:51:38 +00002572 if( !pPage->isOverfull && !pPage->needRelink ){
2573 u8 *pPrev;
2574 if( idx==0 ){
2575 pPrev = &data[pPage->hdrOffset+3];
2576 }else{
2577 pPrev = pPage->aCell[idx-1];
2578 }
2579 if( idx<pPage->nCell ){
2580 pc = Addr(pPage->aCell[idx]) - Addr(data);
2581 }else{
2582 pc = 0;
2583 }
2584 put2byte(pPrev, pc);
2585 pageIntegrity(pPage);
2586 }else{
2587 pPage->needRelink = 1;
2588 }
drh428ae8c2003-01-04 16:48:09 +00002589 pPage->idxShift = 1;
drh14acc042001-06-10 19:56:58 +00002590}
2591
2592/*
2593** Insert a new cell on pPage at cell index "i". pCell points to the
2594** content of the cell.
2595**
2596** If the cell content will fit on the page, then put it there. If it
drh24cd67e2004-05-10 16:18:47 +00002597** will not fit and pTemp is not NULL, then make a copy of the content
2598** into pTemp, set pPage->aCell[i] point to pTemp, and set pPage->isOverfull.
2599** If the content will not fit and pTemp is NULL, then make pPage->aCell[i]
2600** point to pCell and set pPage->isOverfull.
drh14acc042001-06-10 19:56:58 +00002601**
drhda200cc2004-05-09 11:51:38 +00002602** Try to maintain the integrity of the linked list of cells. But if
2603** the cell being inserted does not fit on the page, this will not be
2604** possible. If the linked list is not maintained, then just update
2605** pPage->aCell[] and set the pPage->needRelink flag so that we will
2606** know to rebuild the linked list later.
drh14acc042001-06-10 19:56:58 +00002607*/
drh24cd67e2004-05-10 16:18:47 +00002608static void insertCell(
2609 MemPage *pPage, /* Page into which we are copying */
2610 int i, /* Which cell on pPage to insert after */
2611 u8 *pCell, /* Text of the new cell to insert */
2612 int sz, /* Bytes of data in pCell */
2613 u8 *pTemp /* Temp storage space for pCell, if needed */
2614){
drh14acc042001-06-10 19:56:58 +00002615 int idx, j;
2616 assert( i>=0 && i<=pPage->nCell );
drha34b6762004-05-07 13:30:42 +00002617 assert( sz==cellSize(pPage, pCell) );
2618 assert( sqlite3pager_iswriteable(pPage->aData) );
drhda200cc2004-05-09 11:51:38 +00002619 idx = pPage->needRelink ? 0 : allocateSpace(pPage, sz);
drh4b70f112004-05-02 21:12:19 +00002620 resizeCellArray(pPage, pPage->nCell+1);
drh14acc042001-06-10 19:56:58 +00002621 for(j=pPage->nCell; j>i; j--){
drh4b70f112004-05-02 21:12:19 +00002622 pPage->aCell[j] = pPage->aCell[j-1];
drh14acc042001-06-10 19:56:58 +00002623 }
2624 pPage->nCell++;
drh14acc042001-06-10 19:56:58 +00002625 if( idx<=0 ){
2626 pPage->isOverfull = 1;
drh24cd67e2004-05-10 16:18:47 +00002627 if( pTemp ){
2628 memcpy(pTemp, pCell, sz);
2629 }else{
2630 pTemp = pCell;
2631 }
2632 pPage->aCell[i] = pTemp;
drh14acc042001-06-10 19:56:58 +00002633 }else{
drhda200cc2004-05-09 11:51:38 +00002634 u8 *data = pPage->aData;
2635 memcpy(&data[idx], pCell, sz);
2636 pPage->aCell[i] = &data[idx];
2637 }
2638 if( !pPage->isOverfull && !pPage->needRelink ){
2639 u8 *pPrev;
2640 int pc;
2641 if( i==0 ){
2642 pPrev = &pPage->aData[pPage->hdrOffset+3];
2643 }else{
2644 pPrev = pPage->aCell[i-1];
2645 }
2646 pc = get2byte(pPrev);
2647 put2byte(pPrev, idx);
2648 put2byte(pPage->aCell[i], pc);
2649 pageIntegrity(pPage);
2650 }else{
2651 pPage->needRelink = 1;
drh14acc042001-06-10 19:56:58 +00002652 }
drh428ae8c2003-01-04 16:48:09 +00002653 pPage->idxShift = 1;
drh14acc042001-06-10 19:56:58 +00002654}
2655
2656/*
drhfa1a98a2004-05-14 19:08:17 +00002657** Add a list of cells to a page. The page should be initially empty.
2658** The cells are guaranteed to fit on the page.
2659*/
2660static void assemblePage(
2661 MemPage *pPage, /* The page to be assemblied */
2662 int nCell, /* The number of cells to add to this page */
2663 u8 **apCell, /* Pointers to cell text */
2664 int *aSize /* Sizes of the cells */
2665){
2666 int i; /* Loop counter */
2667 int totalSize; /* Total size of all cells */
2668 int hdr; /* Index of page header */
2669 int pc, prevpc; /* Addresses of cells being inserted */
2670 u8 *data; /* Data for the page */
2671
2672 assert( pPage->needRelink==0 );
2673 assert( pPage->isOverfull==0 );
2674 totalSize = 0;
2675 for(i=0; i<nCell; i++){
2676 totalSize += aSize[i];
2677 }
2678 assert( totalSize<=pPage->nFree );
2679 assert( pPage->nCell==0 );
2680 resizeCellArray(pPage, nCell);
2681 pc = allocateSpace(pPage, totalSize);
2682 data = pPage->aData;
2683 hdr = pPage->hdrOffset;
2684 prevpc = hdr+3;
2685 for(i=0; i<nCell; i++){
2686 memcpy(data+pc, apCell[i], aSize[i]);
2687 put2byte(data+prevpc, pc);
2688 pPage->aCell[i] = data+pc;
2689 prevpc = pc;
2690 pc += aSize[i];
2691 assert( pc<=pPage->pBt->usableSize );
2692 }
2693 pPage->nCell = nCell;
2694 put2byte(data+prevpc, 0);
2695}
2696
2697/*
drh14acc042001-06-10 19:56:58 +00002698** Rebuild the linked list of cells on a page so that the cells
drh4b70f112004-05-02 21:12:19 +00002699** occur in the order specified by the pPage->aCell[] array.
drh8c42ca92001-06-22 19:15:00 +00002700** Invoke this routine once to repair damage after one or more
2701** invocations of either insertCell() or dropCell().
drh14acc042001-06-10 19:56:58 +00002702*/
drh4b70f112004-05-02 21:12:19 +00002703static void relinkCellList(MemPage *pPage){
2704 int i, idxFrom;
drha34b6762004-05-07 13:30:42 +00002705 assert( sqlite3pager_iswriteable(pPage->aData) );
drhda200cc2004-05-09 11:51:38 +00002706 if( !pPage->needRelink ) return;
drh4b70f112004-05-02 21:12:19 +00002707 idxFrom = pPage->hdrOffset+3;
drh14acc042001-06-10 19:56:58 +00002708 for(i=0; i<pPage->nCell; i++){
drhde647132004-05-07 17:57:49 +00002709 int idx = Addr(pPage->aCell[i]) - Addr(pPage->aData);
drhb6f41482004-05-14 01:58:11 +00002710 assert( idx>pPage->hdrOffset && idx<pPage->pBt->usableSize );
drh4b70f112004-05-02 21:12:19 +00002711 put2byte(&pPage->aData[idxFrom], idx);
2712 idxFrom = idx;
drh14acc042001-06-10 19:56:58 +00002713 }
drh4b70f112004-05-02 21:12:19 +00002714 put2byte(&pPage->aData[idxFrom], 0);
drhda200cc2004-05-09 11:51:38 +00002715 pPage->needRelink = 0;
drh14acc042001-06-10 19:56:58 +00002716}
2717
2718/*
drhc8629a12004-05-08 20:07:40 +00002719** GCC does not define the offsetof() macro so we'll have to do it
2720** ourselves.
2721*/
2722#ifndef offsetof
2723#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
2724#endif
2725
2726/*
drh91025292004-05-03 19:49:32 +00002727** Move the content of the page at pFrom over to pTo. The pFrom->aCell[]
drh4b70f112004-05-02 21:12:19 +00002728** pointers that point into pFrom->aData[] must be adjusted to point
2729** into pTo->aData[] instead. But some pFrom->aCell[] entries might
2730** not point to pFrom->aData[]. Those are unchanged.
drh91025292004-05-03 19:49:32 +00002731**
2732** Over this operation completes, the meta data for pFrom is zeroed.
drh14acc042001-06-10 19:56:58 +00002733*/
drhda200cc2004-05-09 11:51:38 +00002734static void movePage(MemPage *pTo, MemPage *pFrom){
drh14acc042001-06-10 19:56:58 +00002735 uptr from, to;
2736 int i;
drhb6f41482004-05-14 01:58:11 +00002737 int usableSize;
drh4b70f112004-05-02 21:12:19 +00002738 int ofst;
2739
2740 assert( pTo->hdrOffset==0 );
drh3a4c1412004-05-09 20:40:11 +00002741 assert( pFrom->isInit );
drh4b70f112004-05-02 21:12:19 +00002742 ofst = pFrom->hdrOffset;
drhb6f41482004-05-14 01:58:11 +00002743 usableSize = pFrom->pBt->usableSize;
drh91025292004-05-03 19:49:32 +00002744 sqliteFree(pTo->aCell);
drhb6f41482004-05-14 01:58:11 +00002745 memcpy(pTo->aData, &pFrom->aData[ofst], usableSize - ofst);
drhc8629a12004-05-08 20:07:40 +00002746 memcpy(pTo, pFrom, offsetof(MemPage, aData));
2747 pFrom->isInit = 0;
2748 pFrom->aCell = 0;
drh4b70f112004-05-02 21:12:19 +00002749 assert( pTo->aData[5]<155 );
2750 pTo->aData[5] += ofst;
drh14acc042001-06-10 19:56:58 +00002751 pTo->isOverfull = pFrom->isOverfull;
drh4b70f112004-05-02 21:12:19 +00002752 to = Addr(pTo->aData);
drh91025292004-05-03 19:49:32 +00002753 from = Addr(&pFrom->aData[ofst]);
drh14acc042001-06-10 19:56:58 +00002754 for(i=0; i<pTo->nCell; i++){
drh91025292004-05-03 19:49:32 +00002755 uptr x = Addr(pTo->aCell[i]);
drhb6f41482004-05-14 01:58:11 +00002756 if( x>from && x<from+usableSize-ofst ){
drh4b70f112004-05-02 21:12:19 +00002757 *((uptr*)&pTo->aCell[i]) = x + to - from;
drh14acc042001-06-10 19:56:58 +00002758 }
2759 }
drhbd03cae2001-06-02 02:40:57 +00002760}
2761
2762/*
drhc3b70572003-01-04 19:44:07 +00002763** The following parameters determine how many adjacent pages get involved
2764** in a balancing operation. NN is the number of neighbors on either side
2765** of the page that participate in the balancing operation. NB is the
2766** total number of pages that participate, including the target page and
2767** NN neighbors on either side.
2768**
2769** The minimum value of NN is 1 (of course). Increasing NN above 1
2770** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
2771** in exchange for a larger degradation in INSERT and UPDATE performance.
2772** The value of NN appears to give the best results overall.
2773*/
2774#define NN 1 /* Number of neighbors on either side of pPage */
2775#define NB (NN*2+1) /* Total pages involved in the balance */
2776
2777/*
drh8b2f49b2001-06-08 00:21:52 +00002778** This routine redistributes Cells on pPage and up to two siblings
2779** of pPage so that all pages have about the same amount of free space.
drh14acc042001-06-10 19:56:58 +00002780** Usually one sibling on either side of pPage is used in the balancing,
drh8b2f49b2001-06-08 00:21:52 +00002781** though both siblings might come from one side if pPage is the first
2782** or last child of its parent. If pPage has fewer than two siblings
2783** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00002784** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00002785**
2786** The number of siblings of pPage might be increased or decreased by
drh8c42ca92001-06-22 19:15:00 +00002787** one in an effort to keep pages between 66% and 100% full. The root page
2788** is special and is allowed to be less than 66% full. If pPage is
2789** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00002790** or decreased by one, as necessary, to keep the root page from being
2791** overfull or empty.
2792**
drh4b70f112004-05-02 21:12:19 +00002793** This routine alwyas calls relinkCellList() on its input page regardless of
drh14acc042001-06-10 19:56:58 +00002794** whether or not it does any real balancing. Client routines will typically
2795** invoke insertCell() or dropCell() before calling this routine, so we
2796** need to call relinkCellList() to clean up the mess that those other
2797** routines left behind.
2798**
drh8b2f49b2001-06-08 00:21:52 +00002799** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00002800** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00002801** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00002802** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00002803**
drh8c42ca92001-06-22 19:15:00 +00002804** In the course of balancing the siblings of pPage, the parent of pPage
2805** might become overfull or underfull. If that happens, then this routine
2806** is called recursively on the parent.
2807**
drh5e00f6c2001-09-13 13:46:56 +00002808** If this routine fails for any reason, it might leave the database
2809** in a corrupted state. So if this routine fails, the database should
2810** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00002811*/
drh4b70f112004-05-02 21:12:19 +00002812static int balance(MemPage *pPage){
drh8b2f49b2001-06-08 00:21:52 +00002813 MemPage *pParent; /* The parent of pPage */
drh4b70f112004-05-02 21:12:19 +00002814 Btree *pBt; /* The whole database */
drha34b6762004-05-07 13:30:42 +00002815 int nCell; /* Number of cells in aCell[] */
drh8b2f49b2001-06-08 00:21:52 +00002816 int nOld; /* Number of pages in apOld[] */
2817 int nNew; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00002818 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00002819 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00002820 int idx; /* Index of pPage in pParent->aCell[] */
2821 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00002822 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00002823 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00002824 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00002825 int usableSpace; /* Bytes in pPage beyond the header */
2826 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00002827 int subtotal; /* Subtotal of bytes in cells on one page */
drhb6f41482004-05-14 01:58:11 +00002828 int iSpace = 0; /* First unused byte of aSpace[] */
drhda200cc2004-05-09 11:51:38 +00002829 MemPage *extraUnref = 0; /* Unref this page if not zero */
drhc3b70572003-01-04 19:44:07 +00002830 MemPage *apOld[NB]; /* pPage and up to two siblings */
2831 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00002832 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drhc3b70572003-01-04 19:44:07 +00002833 MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */
2834 Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */
2835 int idxDiv[NB]; /* Indices of divider cells in pParent */
drh4b70f112004-05-02 21:12:19 +00002836 u8 *apDiv[NB]; /* Divider cells in pParent */
drha34b6762004-05-07 13:30:42 +00002837 int cntNew[NB+1]; /* Index in aCell[] of cell after i-th page */
drhc3b70572003-01-04 19:44:07 +00002838 int szNew[NB+1]; /* Combined size of cells place on i-th page */
drh4b70f112004-05-02 21:12:19 +00002839 u8 *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
drhc3b70572003-01-04 19:44:07 +00002840 int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
drh4b70f112004-05-02 21:12:19 +00002841 u8 aCopy[NB][MX_PAGE_SIZE+sizeof(MemPage)]; /* Space for apCopy[] */
drhb6f41482004-05-14 01:58:11 +00002842 u8 aSpace[MX_PAGE_SIZE*4]; /* Space to copies of divider cells */
drh8b2f49b2001-06-08 00:21:52 +00002843
drh14acc042001-06-10 19:56:58 +00002844 /*
2845 ** Return without doing any work if pPage is neither overfull nor
2846 ** underfull.
drh8b2f49b2001-06-08 00:21:52 +00002847 */
drh3a4c1412004-05-09 20:40:11 +00002848 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00002849 assert( sqlite3pager_iswriteable(pPage->aData) );
drh4b70f112004-05-02 21:12:19 +00002850 pBt = pPage->pBt;
drhb6f41482004-05-14 01:58:11 +00002851 if( !pPage->isOverfull && pPage->nFree<pBt->usableSize*2/3 && pPage->nCell>=2){
drh4b70f112004-05-02 21:12:19 +00002852 relinkCellList(pPage);
drh8b2f49b2001-06-08 00:21:52 +00002853 return SQLITE_OK;
2854 }
2855
2856 /*
drh4b70f112004-05-02 21:12:19 +00002857 ** Find the parent of the page to be balanced. If there is no parent,
2858 ** it means this page is the root page and special rules apply.
drh8b2f49b2001-06-08 00:21:52 +00002859 */
drh14acc042001-06-10 19:56:58 +00002860 pParent = pPage->pParent;
drh8b2f49b2001-06-08 00:21:52 +00002861 if( pParent==0 ){
2862 Pgno pgnoChild;
drh8c42ca92001-06-22 19:15:00 +00002863 MemPage *pChild;
drh7aa128d2002-06-21 13:09:16 +00002864 assert( pPage->isInit );
drh8b2f49b2001-06-08 00:21:52 +00002865 if( pPage->nCell==0 ){
drh8856d6a2004-04-29 14:42:46 +00002866 if( pPage->leaf ){
2867 /* The table is completely empty */
2868 relinkCellList(pPage);
drh3a4c1412004-05-09 20:40:11 +00002869 TRACE(("BALANCE: empty table %d\n", pPage->pgno));
drh8856d6a2004-04-29 14:42:46 +00002870 }else{
2871 /* The root page is empty but has one child. Transfer the
2872 ** information from that one child into the root page if it
drh3a4c1412004-05-09 20:40:11 +00002873 ** will fit. This reduces the depth of the tree by one.
drh8856d6a2004-04-29 14:42:46 +00002874 **
2875 ** If the root page is page 1, it has less space available than
drh4b70f112004-05-02 21:12:19 +00002876 ** its child (due to the 100 byte header that occurs at the beginning
2877 ** of the database fle), so it might not be able to hold all of the
2878 ** information currently contained in the child. If this is the
2879 ** case, then do not do the transfer. Leave page 1 empty except
2880 ** for the right-pointer to the child page. The child page becomes
2881 ** the virtual root of the tree.
drh8b2f49b2001-06-08 00:21:52 +00002882 */
drha34b6762004-05-07 13:30:42 +00002883 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+6]);
2884 assert( pgnoChild>0 && pgnoChild<=sqlite3pager_pagecount(pBt->pPager) );
drh8856d6a2004-04-29 14:42:46 +00002885 rc = getPage(pBt, pgnoChild, &pChild);
drh8b2f49b2001-06-08 00:21:52 +00002886 if( rc ) return rc;
drh8856d6a2004-04-29 14:42:46 +00002887 if( pPage->pgno==1 ){
drh4b70f112004-05-02 21:12:19 +00002888 rc = initPage(pChild, pPage);
drh8856d6a2004-04-29 14:42:46 +00002889 if( rc ) return rc;
2890 if( pChild->nFree>=100 ){
drh4b70f112004-05-02 21:12:19 +00002891 /* The child information will fit on the root page, so do the
2892 ** copy */
2893 zeroPage(pPage, pChild->aData[0]);
drh4b70f112004-05-02 21:12:19 +00002894 for(i=0; i<pChild->nCell; i++){
drhfa1a98a2004-05-14 19:08:17 +00002895 szCell[i] = cellSize(pChild, pChild->aCell[i]);
drh4b70f112004-05-02 21:12:19 +00002896 }
drhfa1a98a2004-05-14 19:08:17 +00002897 assemblePage(pPage, pChild->nCell, pChild->aCell, szCell);
drh4b70f112004-05-02 21:12:19 +00002898 freePage(pChild);
drhda200cc2004-05-09 11:51:38 +00002899 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
drh4b70f112004-05-02 21:12:19 +00002900 }else{
2901 /* The child has more information that will fit on the root.
2902 ** The tree is already balanced. Do nothing. */
drhda200cc2004-05-09 11:51:38 +00002903 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
drh8856d6a2004-04-29 14:42:46 +00002904 }
2905 }else{
drhb6f41482004-05-14 01:58:11 +00002906 memcpy(pPage->aData, pChild->aData, pBt->usableSize);
drh8856d6a2004-04-29 14:42:46 +00002907 pPage->isInit = 0;
drh4b70f112004-05-02 21:12:19 +00002908 pPage->pParent = 0;
2909 rc = initPage(pPage, 0);
drh8856d6a2004-04-29 14:42:46 +00002910 assert( rc==SQLITE_OK );
drh4b70f112004-05-02 21:12:19 +00002911 freePage(pChild);
drh3a4c1412004-05-09 20:40:11 +00002912 TRACE(("BALANCE: transfer child %d into root %d\n",
2913 pChild->pgno, pPage->pgno));
drh5edc3122001-09-13 21:53:09 +00002914 }
drh4b70f112004-05-02 21:12:19 +00002915 reparentChildPages(pPage);
2916 releasePage(pChild);
drh8b2f49b2001-06-08 00:21:52 +00002917 }
2918 return SQLITE_OK;
2919 }
drh14acc042001-06-10 19:56:58 +00002920 if( !pPage->isOverfull ){
drh8b2f49b2001-06-08 00:21:52 +00002921 /* It is OK for the root page to be less than half full.
2922 */
drha34b6762004-05-07 13:30:42 +00002923 relinkCellList(pPage);
drh3a4c1412004-05-09 20:40:11 +00002924 TRACE(("BALANCE: root page %d is low - no changes\n", pPage->pgno));
drh8b2f49b2001-06-08 00:21:52 +00002925 return SQLITE_OK;
2926 }
drh14acc042001-06-10 19:56:58 +00002927 /*
2928 ** If we get to here, it means the root page is overfull.
drh8b2f49b2001-06-08 00:21:52 +00002929 ** When this happens, Create a new child page and copy the
2930 ** contents of the root into the child. Then make the root
drh14acc042001-06-10 19:56:58 +00002931 ** page an empty page with rightChild pointing to the new
drh8b2f49b2001-06-08 00:21:52 +00002932 ** child. Then fall thru to the code below which will cause
2933 ** the overfull child page to be split.
2934 */
drh4b70f112004-05-02 21:12:19 +00002935 rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno);
drh14acc042001-06-10 19:56:58 +00002936 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002937 assert( sqlite3pager_iswriteable(pChild->aData) );
drhda200cc2004-05-09 11:51:38 +00002938 movePage(pChild, pPage);
drhc8629a12004-05-08 20:07:40 +00002939 assert( pChild->aData[0]==pPage->aData[pPage->hdrOffset] );
drh14acc042001-06-10 19:56:58 +00002940 pChild->pParent = pPage;
drh457f5012004-05-09 01:35:05 +00002941 sqlite3pager_ref(pPage->aData);
drhda200cc2004-05-09 11:51:38 +00002942 pChild->idxParent = 0;
drh14acc042001-06-10 19:56:58 +00002943 pChild->isOverfull = 1;
drhc8629a12004-05-08 20:07:40 +00002944 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
drh4b70f112004-05-02 21:12:19 +00002945 put4byte(&pPage->aData[pPage->hdrOffset+6], pChild->pgno);
drh8b2f49b2001-06-08 00:21:52 +00002946 pParent = pPage;
2947 pPage = pChild;
drhda200cc2004-05-09 11:51:38 +00002948 extraUnref = pChild;
drh3a4c1412004-05-09 20:40:11 +00002949 TRACE(("BALANCE: copy root %d into %d and balance %d\n",
2950 pParent->pgno, pPage->pgno, pPage->pgno));
2951 }else{
2952 TRACE(("BALANCE: begin page %d child of %d\n",
2953 pPage->pgno, pParent->pgno));
drh8b2f49b2001-06-08 00:21:52 +00002954 }
drha34b6762004-05-07 13:30:42 +00002955 rc = sqlite3pager_write(pParent->aData);
drh6019e162001-07-02 17:51:45 +00002956 if( rc ) return rc;
drh7aa128d2002-06-21 13:09:16 +00002957 assert( pParent->isInit );
drh14acc042001-06-10 19:56:58 +00002958
drh8b2f49b2001-06-08 00:21:52 +00002959 /*
drh4b70f112004-05-02 21:12:19 +00002960 ** Find the cell in the parent page whose left child points back
drh14acc042001-06-10 19:56:58 +00002961 ** to pPage. The "idx" variable is the index of that cell. If pPage
2962 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00002963 */
drhbb49aba2003-01-04 18:53:27 +00002964 if( pParent->idxShift ){
drha34b6762004-05-07 13:30:42 +00002965 Pgno pgno;
drh4b70f112004-05-02 21:12:19 +00002966 pgno = pPage->pgno;
drha34b6762004-05-07 13:30:42 +00002967 assert( pgno==sqlite3pager_pagenumber(pPage->aData) );
drhbb49aba2003-01-04 18:53:27 +00002968 for(idx=0; idx<pParent->nCell; idx++){
drha34b6762004-05-07 13:30:42 +00002969 if( get4byte(&pParent->aCell[idx][2])==pgno ){
drhbb49aba2003-01-04 18:53:27 +00002970 break;
2971 }
drh8b2f49b2001-06-08 00:21:52 +00002972 }
drh4b70f112004-05-02 21:12:19 +00002973 assert( idx<pParent->nCell
2974 || get4byte(&pParent->aData[pParent->hdrOffset+6])==pgno );
drhbb49aba2003-01-04 18:53:27 +00002975 }else{
2976 idx = pPage->idxParent;
drh8b2f49b2001-06-08 00:21:52 +00002977 }
drh8b2f49b2001-06-08 00:21:52 +00002978
2979 /*
drh14acc042001-06-10 19:56:58 +00002980 ** Initialize variables so that it will be safe to jump
drh5edc3122001-09-13 21:53:09 +00002981 ** directly to balance_cleanup at any moment.
drh8b2f49b2001-06-08 00:21:52 +00002982 */
drh14acc042001-06-10 19:56:58 +00002983 nOld = nNew = 0;
drha34b6762004-05-07 13:30:42 +00002984 sqlite3pager_ref(pParent->aData);
drh14acc042001-06-10 19:56:58 +00002985
2986 /*
drh4b70f112004-05-02 21:12:19 +00002987 ** Find sibling pages to pPage and the cells in pParent that divide
drhc3b70572003-01-04 19:44:07 +00002988 ** the siblings. An attempt is made to find NN siblings on either
2989 ** side of pPage. More siblings are taken from one side, however, if
2990 ** pPage there are fewer than NN siblings on the other side. If pParent
2991 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00002992 */
drhc3b70572003-01-04 19:44:07 +00002993 nxDiv = idx - NN;
2994 if( nxDiv + NB > pParent->nCell ){
2995 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00002996 }
drhc3b70572003-01-04 19:44:07 +00002997 if( nxDiv<0 ){
2998 nxDiv = 0;
2999 }
drh8b2f49b2001-06-08 00:21:52 +00003000 nDiv = 0;
drhc3b70572003-01-04 19:44:07 +00003001 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00003002 if( k<pParent->nCell ){
3003 idxDiv[i] = k;
drh4b70f112004-05-02 21:12:19 +00003004 apDiv[i] = pParent->aCell[k];
drh8b2f49b2001-06-08 00:21:52 +00003005 nDiv++;
drha34b6762004-05-07 13:30:42 +00003006 assert( !pParent->leaf );
3007 pgnoOld[i] = get4byte(&apDiv[i][2]);
drh14acc042001-06-10 19:56:58 +00003008 }else if( k==pParent->nCell ){
drh4b70f112004-05-02 21:12:19 +00003009 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+6]);
drh14acc042001-06-10 19:56:58 +00003010 }else{
3011 break;
drh8b2f49b2001-06-08 00:21:52 +00003012 }
drhde647132004-05-07 17:57:49 +00003013 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
drh6019e162001-07-02 17:51:45 +00003014 if( rc ) goto balance_cleanup;
drh428ae8c2003-01-04 16:48:09 +00003015 apOld[i]->idxParent = k;
drh91025292004-05-03 19:49:32 +00003016 apCopy[i] = 0;
3017 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00003018 nOld++;
drh8b2f49b2001-06-08 00:21:52 +00003019 }
3020
3021 /*
drh14acc042001-06-10 19:56:58 +00003022 ** Make copies of the content of pPage and its siblings into aOld[].
3023 ** The rest of this function will use data from the copies rather
3024 ** that the original pages since the original pages will be in the
3025 ** process of being overwritten.
3026 */
3027 for(i=0; i<nOld; i++){
drhc8629a12004-05-08 20:07:40 +00003028 MemPage *p = apCopy[i] = (MemPage*)&aCopy[i+1][-sizeof(MemPage)];
drhb6f41482004-05-14 01:58:11 +00003029 p->aData = &((u8*)p)[-pBt->usableSize];
drhda200cc2004-05-09 11:51:38 +00003030 p->aCell = 0;
3031 p->hdrOffset = 0;
3032 movePage(p, apOld[i]);
drh14acc042001-06-10 19:56:58 +00003033 }
3034
3035 /*
3036 ** Load pointers to all cells on sibling pages and the divider cells
3037 ** into the local apCell[] array. Make copies of the divider cells
drhb6f41482004-05-14 01:58:11 +00003038 ** into space obtained form aSpace[] and remove the the divider Cells
3039 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00003040 **
3041 ** If the siblings are on leaf pages, then the child pointers of the
3042 ** divider cells are stripped from the cells before they are copied
drhb6f41482004-05-14 01:58:11 +00003043 ** into aSpace[]. In this wall, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00003044 ** child pointers. If siblings are not leaves, then all cell in
3045 ** apCell[] include child pointers. Either way, all cells in apCell[]
3046 ** are alike.
drh8b2f49b2001-06-08 00:21:52 +00003047 */
3048 nCell = 0;
drh4b70f112004-05-02 21:12:19 +00003049 leafCorrection = pPage->leaf*4;
drh8b18dd42004-05-12 19:18:15 +00003050 leafData = pPage->leafData && pPage->leaf;
drh8b2f49b2001-06-08 00:21:52 +00003051 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00003052 MemPage *pOld = apCopy[i];
drh8b2f49b2001-06-08 00:21:52 +00003053 for(j=0; j<pOld->nCell; j++){
drh4b70f112004-05-02 21:12:19 +00003054 apCell[nCell] = pOld->aCell[j];
3055 szCell[nCell] = cellSize(pOld, apCell[nCell]);
drh14acc042001-06-10 19:56:58 +00003056 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00003057 }
3058 if( i<nOld-1 ){
drhb6f41482004-05-14 01:58:11 +00003059 int sz = cellSize(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00003060 if( leafData ){
drh8b18dd42004-05-12 19:18:15 +00003061 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00003062 }else{
drhb6f41482004-05-14 01:58:11 +00003063 u8 *pTemp;
3064 szCell[nCell] = sz;
3065 pTemp = &aSpace[iSpace];
3066 iSpace += sz;
3067 assert( iSpace<=sizeof(aSpace) );
3068 memcpy(pTemp, apDiv[i], sz);
3069 apCell[nCell] = pTemp+leafCorrection;
3070 dropCell(pParent, nxDiv, sz);
drh8b18dd42004-05-12 19:18:15 +00003071 szCell[nCell] -= leafCorrection;
drhb6f41482004-05-14 01:58:11 +00003072 assert( get4byte(pTemp+2)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00003073 if( !pOld->leaf ){
3074 assert( leafCorrection==0 );
3075 /* The right pointer of the child page pOld becomes the left
3076 ** pointer of the divider cell */
3077 memcpy(&apCell[nCell][2], &pOld->aData[pOld->hdrOffset+6], 4);
3078 }else{
3079 assert( leafCorrection==4 );
3080 }
3081 nCell++;
drh4b70f112004-05-02 21:12:19 +00003082 }
drh8b2f49b2001-06-08 00:21:52 +00003083 }
3084 }
3085
3086 /*
drh6019e162001-07-02 17:51:45 +00003087 ** Figure out the number of pages needed to hold all nCell cells.
3088 ** Store this number in "k". Also compute szNew[] which is the total
3089 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00003090 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00003091 ** cntNew[k] should equal nCell.
3092 **
3093 ** This little patch of code is critical for keeping the tree
3094 ** balanced.
drh8b2f49b2001-06-08 00:21:52 +00003095 */
drhb6f41482004-05-14 01:58:11 +00003096 usableSpace = pBt->usableSize - 10 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00003097 for(subtotal=k=i=0; i<nCell; i++){
3098 subtotal += szCell[i];
drh4b70f112004-05-02 21:12:19 +00003099 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00003100 szNew[k] = subtotal - szCell[i];
3101 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00003102 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00003103 subtotal = 0;
3104 k++;
3105 }
3106 }
3107 szNew[k] = subtotal;
3108 cntNew[k] = nCell;
3109 k++;
3110 for(i=k-1; i>0; i--){
drh4b70f112004-05-02 21:12:19 +00003111 while( szNew[i]<usableSpace/2 ){
drh6019e162001-07-02 17:51:45 +00003112 cntNew[i-1]--;
3113 assert( cntNew[i-1]>0 );
3114 szNew[i] += szCell[cntNew[i-1]];
3115 szNew[i-1] -= szCell[cntNew[i-1]-1];
3116 }
3117 }
3118 assert( cntNew[0]>0 );
drh8b2f49b2001-06-08 00:21:52 +00003119
3120 /*
drh6b308672002-07-08 02:16:37 +00003121 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00003122 */
drh4b70f112004-05-02 21:12:19 +00003123 assert( pPage->pgno>1 );
3124 pageFlags = pPage->aData[0];
drh14acc042001-06-10 19:56:58 +00003125 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00003126 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00003127 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00003128 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00003129 pgnoNew[i] = pgnoOld[i];
3130 apOld[i] = 0;
drhda200cc2004-05-09 11:51:38 +00003131 sqlite3pager_write(pNew->aData);
drh6b308672002-07-08 02:16:37 +00003132 }else{
drhda200cc2004-05-09 11:51:38 +00003133 rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1]);
drh6b308672002-07-08 02:16:37 +00003134 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00003135 apNew[i] = pNew;
drh6b308672002-07-08 02:16:37 +00003136 }
drh14acc042001-06-10 19:56:58 +00003137 nNew++;
drhda200cc2004-05-09 11:51:38 +00003138 zeroPage(pNew, pageFlags);
drh8b2f49b2001-06-08 00:21:52 +00003139 }
3140
drh6b308672002-07-08 02:16:37 +00003141 /* Free any old pages that were not reused as new pages.
3142 */
3143 while( i<nOld ){
drh4b70f112004-05-02 21:12:19 +00003144 rc = freePage(apOld[i]);
drh6b308672002-07-08 02:16:37 +00003145 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00003146 releasePage(apOld[i]);
drh6b308672002-07-08 02:16:37 +00003147 apOld[i] = 0;
3148 i++;
3149 }
3150
drh8b2f49b2001-06-08 00:21:52 +00003151 /*
drhf9ffac92002-03-02 19:00:31 +00003152 ** Put the new pages in accending order. This helps to
3153 ** keep entries in the disk file in order so that a scan
3154 ** of the table is a linear scan through the file. That
3155 ** in turn helps the operating system to deliver pages
3156 ** from the disk more rapidly.
3157 **
3158 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00003159 ** n is never more than NB (a small constant), that should
3160 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00003161 **
drhc3b70572003-01-04 19:44:07 +00003162 ** When NB==3, this one optimization makes the database
3163 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00003164 */
3165 for(i=0; i<k-1; i++){
3166 int minV = pgnoNew[i];
3167 int minI = i;
3168 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00003169 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00003170 minI = j;
3171 minV = pgnoNew[j];
3172 }
3173 }
3174 if( minI>i ){
3175 int t;
3176 MemPage *pT;
3177 t = pgnoNew[i];
3178 pT = apNew[i];
3179 pgnoNew[i] = pgnoNew[minI];
3180 apNew[i] = apNew[minI];
3181 pgnoNew[minI] = t;
3182 apNew[minI] = pT;
3183 }
3184 }
drh24cd67e2004-05-10 16:18:47 +00003185 TRACE(("BALANCE: old: %d %d %d new: %d %d %d %d\n",
3186 pgnoOld[0],
3187 nOld>=2 ? pgnoOld[1] : 0,
3188 nOld>=3 ? pgnoOld[2] : 0,
3189 pgnoNew[0],
3190 nNew>=2 ? pgnoNew[1] : 0,
3191 nNew>=3 ? pgnoNew[2] : 0,
3192 nNew>=4 ? pgnoNew[3] : 0));
3193
drhf9ffac92002-03-02 19:00:31 +00003194
3195 /*
drh14acc042001-06-10 19:56:58 +00003196 ** Evenly distribute the data in apCell[] across the new pages.
3197 ** Insert divider cells into pParent as necessary.
3198 */
3199 j = 0;
3200 for(i=0; i<nNew; i++){
3201 MemPage *pNew = apNew[i];
drh4b70f112004-05-02 21:12:19 +00003202 assert( pNew->pgno==pgnoNew[i] );
3203 resizeCellArray(pNew, cntNew[i] - j);
drhfa1a98a2004-05-14 19:08:17 +00003204 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
3205 j = cntNew[i];
drh6019e162001-07-02 17:51:45 +00003206 assert( pNew->nCell>0 );
drh14acc042001-06-10 19:56:58 +00003207 assert( !pNew->isOverfull );
drh4b70f112004-05-02 21:12:19 +00003208 relinkCellList(pNew);
drh14acc042001-06-10 19:56:58 +00003209 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00003210 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00003211 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00003212 int sz;
3213 pCell = apCell[j];
3214 sz = szCell[j] + leafCorrection;
drh4b70f112004-05-02 21:12:19 +00003215 if( !pNew->leaf ){
drh24cd67e2004-05-10 16:18:47 +00003216 memcpy(&pNew->aData[6], pCell+2, 4);
3217 pTemp = 0;
drh8b18dd42004-05-12 19:18:15 +00003218 }else if( leafData ){
drh6f11bef2004-05-13 01:12:56 +00003219 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00003220 j--;
drh6f11bef2004-05-13 01:12:56 +00003221 parseCell(pNew, apCell[j], &info);
drhb6f41482004-05-14 01:58:11 +00003222 pCell = &aSpace[iSpace];
drh6f11bef2004-05-13 01:12:56 +00003223 fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz);
drhb6f41482004-05-14 01:58:11 +00003224 iSpace += sz;
3225 assert( iSpace<=sizeof(aSpace) );
drh8b18dd42004-05-12 19:18:15 +00003226 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00003227 }else{
3228 pCell -= 4;
drhb6f41482004-05-14 01:58:11 +00003229 pTemp = &aSpace[iSpace];
3230 iSpace += sz;
3231 assert( iSpace<=sizeof(aSpace) );
drh4b70f112004-05-02 21:12:19 +00003232 }
drh8b18dd42004-05-12 19:18:15 +00003233 insertCell(pParent, nxDiv, pCell, sz, pTemp);
drh4b70f112004-05-02 21:12:19 +00003234 put4byte(&pParent->aCell[nxDiv][2], pNew->pgno);
drh14acc042001-06-10 19:56:58 +00003235 j++;
3236 nxDiv++;
3237 }
3238 }
drh6019e162001-07-02 17:51:45 +00003239 assert( j==nCell );
drh4b70f112004-05-02 21:12:19 +00003240 if( (pageFlags & PTF_LEAF)==0 ){
3241 memcpy(&apNew[nNew-1]->aData[6], &apCopy[nOld-1]->aData[6], 4);
drh14acc042001-06-10 19:56:58 +00003242 }
drh4b70f112004-05-02 21:12:19 +00003243 if( nxDiv==pParent->nCell ){
3244 /* Right-most sibling is the right-most child of pParent */
3245 put4byte(&pParent->aData[pParent->hdrOffset+6], pgnoNew[nNew-1]);
3246 }else{
3247 /* Right-most sibling is the left child of the first entry in pParent
3248 ** past the right-most divider entry */
drha34b6762004-05-07 13:30:42 +00003249 put4byte(&pParent->aCell[nxDiv][2], pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00003250 }
3251
3252 /*
3253 ** Reparent children of all cells.
drh8b2f49b2001-06-08 00:21:52 +00003254 */
3255 for(i=0; i<nNew; i++){
drh4b70f112004-05-02 21:12:19 +00003256 reparentChildPages(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00003257 }
drh4b70f112004-05-02 21:12:19 +00003258 reparentChildPages(pParent);
drh8b2f49b2001-06-08 00:21:52 +00003259
3260 /*
drh3a4c1412004-05-09 20:40:11 +00003261 ** Balance the parent page. Note that the current page (pPage) might
3262 ** have been added to the freelist is it might no longer be initialized.
3263 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00003264 */
drhda200cc2004-05-09 11:51:38 +00003265 assert( pParent->isInit );
drh3a4c1412004-05-09 20:40:11 +00003266 /* assert( pPage->isInit ); // No! pPage might have been added to freelist */
3267 /* pageIntegrity(pPage); // No! pPage might have been added to freelist */
drh4b70f112004-05-02 21:12:19 +00003268 rc = balance(pParent);
drhda200cc2004-05-09 11:51:38 +00003269
drh8b2f49b2001-06-08 00:21:52 +00003270 /*
drh14acc042001-06-10 19:56:58 +00003271 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00003272 */
drh14acc042001-06-10 19:56:58 +00003273balance_cleanup:
drh8b2f49b2001-06-08 00:21:52 +00003274 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00003275 releasePage(apOld[i]);
3276 if( apCopy[i] ){
drh91025292004-05-03 19:49:32 +00003277 sqliteFree(apCopy[i]->aCell);
3278 }
drh8b2f49b2001-06-08 00:21:52 +00003279 }
drh14acc042001-06-10 19:56:58 +00003280 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00003281 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00003282 }
drh91025292004-05-03 19:49:32 +00003283 releasePage(pParent);
drhda200cc2004-05-09 11:51:38 +00003284 releasePage(extraUnref);
drh3a4c1412004-05-09 20:40:11 +00003285 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
3286 pPage->pgno, nOld, nNew, nCell));
drh8b2f49b2001-06-08 00:21:52 +00003287 return rc;
3288}
3289
3290/*
drhf74b8d92002-09-01 23:20:45 +00003291** This routine checks all cursors that point to the same table
3292** as pCur points to. If any of those cursors were opened with
3293** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
3294** cursors point to the same table were opened with wrFlag==1
3295** then this routine returns SQLITE_OK.
3296**
3297** In addition to checking for read-locks (where a read-lock
3298** means a cursor opened with wrFlag==0) this routine also moves
3299** all cursors other than pCur so that they are pointing to the
3300** first Cell on root page. This is necessary because an insert
3301** or delete might change the number of cells on a page or delete
3302** a page entirely and we do not want to leave any cursors
3303** pointing to non-existant pages or cells.
3304*/
3305static int checkReadLocks(BtCursor *pCur){
3306 BtCursor *p;
3307 assert( pCur->wrFlag );
3308 for(p=pCur->pShared; p!=pCur; p=p->pShared){
3309 assert( p );
3310 assert( p->pgnoRoot==pCur->pgnoRoot );
drha34b6762004-05-07 13:30:42 +00003311 assert( p->pPage->pgno==sqlite3pager_pagenumber(p->pPage->aData) );
drhf74b8d92002-09-01 23:20:45 +00003312 if( p->wrFlag==0 ) return SQLITE_LOCKED;
drh91025292004-05-03 19:49:32 +00003313 if( p->pPage->pgno!=p->pgnoRoot ){
drhf74b8d92002-09-01 23:20:45 +00003314 moveToRoot(p);
3315 }
3316 }
3317 return SQLITE_OK;
3318}
3319
3320/*
drh3b7511c2001-05-26 13:15:44 +00003321** Insert a new record into the BTree. The key is given by (pKey,nKey)
3322** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00003323** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00003324** is left pointing at a random location.
3325**
3326** For an INTKEY table, only the nKey value of the key is used. pKey is
3327** ignored. For a ZERODATA table, the pData and nData are both ignored.
drh3b7511c2001-05-26 13:15:44 +00003328*/
drh3aac2dd2004-04-26 14:10:20 +00003329int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00003330 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00003331 const void *pKey, i64 nKey, /* The key of the new record */
drh5c4d9702001-08-20 00:33:58 +00003332 const void *pData, int nData /* The data of the new record */
drh3b7511c2001-05-26 13:15:44 +00003333){
drh3b7511c2001-05-26 13:15:44 +00003334 int rc;
3335 int loc;
drh14acc042001-06-10 19:56:58 +00003336 int szNew;
drh3b7511c2001-05-26 13:15:44 +00003337 MemPage *pPage;
3338 Btree *pBt = pCur->pBt;
drha34b6762004-05-07 13:30:42 +00003339 unsigned char *oldCell;
3340 unsigned char newCell[MX_CELL_SIZE];
drh3b7511c2001-05-26 13:15:44 +00003341
drhc39e0002004-05-07 23:50:57 +00003342 if( pCur->status ){
3343 return pCur->status; /* A rollback destroyed this cursor */
drhecdc7532001-09-23 02:35:53 +00003344 }
danielk1977e7c8d582004-05-13 13:38:52 +00003345 if( !pBt->inTrans ){
drhf74b8d92002-09-01 23:20:45 +00003346 /* Must start a transaction before doing an insert */
3347 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003348 }
drhf74b8d92002-09-01 23:20:45 +00003349 assert( !pBt->readOnly );
drhecdc7532001-09-23 02:35:53 +00003350 if( !pCur->wrFlag ){
3351 return SQLITE_PERM; /* Cursor not open for writing */
3352 }
drhf74b8d92002-09-01 23:20:45 +00003353 if( checkReadLocks(pCur) ){
3354 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
3355 }
drh3aac2dd2004-04-26 14:10:20 +00003356 rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc);
drh3b7511c2001-05-26 13:15:44 +00003357 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00003358 pPage = pCur->pPage;
drh4a1c3802004-05-12 15:15:47 +00003359 assert( pPage->intKey || nKey>=0 );
drh8b18dd42004-05-12 19:18:15 +00003360 assert( pPage->leaf || !pPage->leafData );
drh3a4c1412004-05-09 20:40:11 +00003361 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
3362 pCur->pgnoRoot, nKey, nData, pPage->pgno,
3363 loc==0 ? "overwrite" : "new entry"));
drh7aa128d2002-06-21 13:09:16 +00003364 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00003365 rc = sqlite3pager_write(pPage->aData);
drhbd03cae2001-06-02 02:40:57 +00003366 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003367 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew);
drh3b7511c2001-05-26 13:15:44 +00003368 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003369 assert( szNew==cellSize(pPage, newCell) );
drh3a4c1412004-05-09 20:40:11 +00003370 assert( szNew<=sizeof(newCell) );
drhf328bc82004-05-10 23:29:49 +00003371 if( loc==0 && pCur->isValid ){
drha34b6762004-05-07 13:30:42 +00003372 int szOld;
3373 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh4b70f112004-05-02 21:12:19 +00003374 oldCell = pPage->aCell[pCur->idx];
3375 if( !pPage->leaf ){
3376 memcpy(&newCell[2], &oldCell[2], 4);
3377 }
3378 szOld = cellSize(pPage, oldCell);
3379 rc = clearCell(pPage, oldCell);
drh5e2f8b92001-05-28 00:41:15 +00003380 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003381 dropCell(pPage, pCur->idx, szOld);
drh7c717f72001-06-24 20:39:41 +00003382 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00003383 assert( pPage->leaf );
drh14acc042001-06-10 19:56:58 +00003384 pCur->idx++;
drhfa1a98a2004-05-14 19:08:17 +00003385 pCur->infoValid = 0;
drh14acc042001-06-10 19:56:58 +00003386 }else{
drh4b70f112004-05-02 21:12:19 +00003387 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00003388 }
drh24cd67e2004-05-10 16:18:47 +00003389 insertCell(pPage, pCur->idx, newCell, szNew, 0);
drh4b70f112004-05-02 21:12:19 +00003390 rc = balance(pPage);
drh23e11ca2004-05-04 17:27:28 +00003391 /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
drh3fc190c2001-09-14 03:24:23 +00003392 /* fflush(stdout); */
drh4b70f112004-05-02 21:12:19 +00003393 moveToRoot(pCur);
drh5e2f8b92001-05-28 00:41:15 +00003394 return rc;
3395}
3396
3397/*
drh4b70f112004-05-02 21:12:19 +00003398** Delete the entry that the cursor is pointing to. The cursor
3399** is left pointing at a random location.
drh3b7511c2001-05-26 13:15:44 +00003400*/
drh3aac2dd2004-04-26 14:10:20 +00003401int sqlite3BtreeDelete(BtCursor *pCur){
drh5e2f8b92001-05-28 00:41:15 +00003402 MemPage *pPage = pCur->pPage;
drh4b70f112004-05-02 21:12:19 +00003403 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00003404 int rc;
drh8c42ca92001-06-22 19:15:00 +00003405 Pgno pgnoChild;
drh0d316a42002-08-11 20:10:47 +00003406 Btree *pBt = pCur->pBt;
drh8b2f49b2001-06-08 00:21:52 +00003407
drh7aa128d2002-06-21 13:09:16 +00003408 assert( pPage->isInit );
drhc39e0002004-05-07 23:50:57 +00003409 if( pCur->status ){
3410 return pCur->status; /* A rollback destroyed this cursor */
drhecdc7532001-09-23 02:35:53 +00003411 }
drhf74b8d92002-09-01 23:20:45 +00003412 if( !pBt->inTrans ){
3413 /* Must start a transaction before doing a delete */
3414 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003415 }
drhf74b8d92002-09-01 23:20:45 +00003416 assert( !pBt->readOnly );
drhbd03cae2001-06-02 02:40:57 +00003417 if( pCur->idx >= pPage->nCell ){
3418 return SQLITE_ERROR; /* The cursor is not pointing to anything */
3419 }
drhecdc7532001-09-23 02:35:53 +00003420 if( !pCur->wrFlag ){
3421 return SQLITE_PERM; /* Did not open this cursor for writing */
3422 }
drhf74b8d92002-09-01 23:20:45 +00003423 if( checkReadLocks(pCur) ){
3424 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
3425 }
drha34b6762004-05-07 13:30:42 +00003426 rc = sqlite3pager_write(pPage->aData);
drhbd03cae2001-06-02 02:40:57 +00003427 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003428 pCell = pPage->aCell[pCur->idx];
3429 if( !pPage->leaf ){
3430 pgnoChild = get4byte(&pCell[2]);
3431 }
3432 clearCell(pPage, pCell);
3433 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00003434 /*
drh5e00f6c2001-09-13 13:46:56 +00003435 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00003436 ** do something we will leave a hole on an internal page.
3437 ** We have to fill the hole by moving in a cell from a leaf. The
3438 ** next Cell after the one to be deleted is guaranteed to exist and
3439 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00003440 */
drh14acc042001-06-10 19:56:58 +00003441 BtCursor leafCur;
drh4b70f112004-05-02 21:12:19 +00003442 unsigned char *pNext;
drh14acc042001-06-10 19:56:58 +00003443 int szNext;
drh8c1238a2003-01-02 14:43:55 +00003444 int notUsed;
drh24cd67e2004-05-10 16:18:47 +00003445 unsigned char tempCell[MX_CELL_SIZE];
drh8b18dd42004-05-12 19:18:15 +00003446 assert( !pPage->leafData );
drh14acc042001-06-10 19:56:58 +00003447 getTempCursor(pCur, &leafCur);
drh3aac2dd2004-04-26 14:10:20 +00003448 rc = sqlite3BtreeNext(&leafCur, &notUsed);
drh14acc042001-06-10 19:56:58 +00003449 if( rc!=SQLITE_OK ){
drh8a6ac0a2004-02-14 17:35:07 +00003450 if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
3451 return rc;
drh5e2f8b92001-05-28 00:41:15 +00003452 }
drha34b6762004-05-07 13:30:42 +00003453 rc = sqlite3pager_write(leafCur.pPage->aData);
drh6019e162001-07-02 17:51:45 +00003454 if( rc ) return rc;
drh3a4c1412004-05-09 20:40:11 +00003455 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
3456 pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
drh4b70f112004-05-02 21:12:19 +00003457 dropCell(pPage, pCur->idx, cellSize(pPage, pCell));
3458 pNext = leafCur.pPage->aCell[leafCur.idx];
3459 szNext = cellSize(leafCur.pPage, pNext);
drh24cd67e2004-05-10 16:18:47 +00003460 assert( sizeof(tempCell)>=szNext+4 );
3461 insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell);
3462 put4byte(pPage->aCell[pCur->idx]+2, pgnoChild);
drh4b70f112004-05-02 21:12:19 +00003463 rc = balance(pPage);
drh5e2f8b92001-05-28 00:41:15 +00003464 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003465 dropCell(leafCur.pPage, leafCur.idx, szNext);
3466 rc = balance(leafCur.pPage);
drh8c42ca92001-06-22 19:15:00 +00003467 releaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00003468 }else{
drh3a4c1412004-05-09 20:40:11 +00003469 TRACE(("DELETE: table=%d delete from leaf %d\n",
3470 pCur->pgnoRoot, pPage->pgno));
drh4b70f112004-05-02 21:12:19 +00003471 dropCell(pPage, pCur->idx, cellSize(pPage, pCell));
3472 rc = balance(pPage);
drh5e2f8b92001-05-28 00:41:15 +00003473 }
drh4b70f112004-05-02 21:12:19 +00003474 moveToRoot(pCur);
drh5e2f8b92001-05-28 00:41:15 +00003475 return rc;
drh3b7511c2001-05-26 13:15:44 +00003476}
drh8b2f49b2001-06-08 00:21:52 +00003477
3478/*
drhc6b52df2002-01-04 03:09:29 +00003479** Create a new BTree table. Write into *piTable the page
3480** number for the root page of the new table.
3481**
3482** In the current implementation, BTree tables and BTree indices are the
drh144f9ea2003-04-16 01:28:16 +00003483** the same. In the future, we may change this so that BTree tables
drhc6b52df2002-01-04 03:09:29 +00003484** are restricted to having a 4-byte integer key and arbitrary data and
3485** BTree indices are restricted to having an arbitrary key and no data.
drh144f9ea2003-04-16 01:28:16 +00003486** But for now, this routine also serves to create indices.
drh8b2f49b2001-06-08 00:21:52 +00003487*/
drh3aac2dd2004-04-26 14:10:20 +00003488int sqlite3BtreeCreateTable(Btree *pBt, int *piTable, int flags){
drh8b2f49b2001-06-08 00:21:52 +00003489 MemPage *pRoot;
3490 Pgno pgnoRoot;
3491 int rc;
3492 if( !pBt->inTrans ){
drhf74b8d92002-09-01 23:20:45 +00003493 /* Must start a transaction first */
3494 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003495 }
drh5df72a52002-06-06 23:16:05 +00003496 if( pBt->readOnly ){
3497 return SQLITE_READONLY;
3498 }
drhda200cc2004-05-09 11:51:38 +00003499 rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1);
drh8b2f49b2001-06-08 00:21:52 +00003500 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003501 assert( sqlite3pager_iswriteable(pRoot->aData) );
drhde647132004-05-07 17:57:49 +00003502 zeroPage(pRoot, flags | PTF_LEAF);
drha34b6762004-05-07 13:30:42 +00003503 sqlite3pager_unref(pRoot->aData);
drh8b2f49b2001-06-08 00:21:52 +00003504 *piTable = (int)pgnoRoot;
3505 return SQLITE_OK;
3506}
3507
3508/*
3509** Erase the given database page and all its children. Return
3510** the page to the freelist.
3511*/
drh4b70f112004-05-02 21:12:19 +00003512static int clearDatabasePage(
3513 Btree *pBt, /* The BTree that contains the table */
3514 Pgno pgno, /* Page number to clear */
3515 MemPage *pParent, /* Parent page. NULL for the root */
3516 int freePageFlag /* Deallocate page if true */
3517){
drh8b2f49b2001-06-08 00:21:52 +00003518 MemPage *pPage;
3519 int rc;
drh4b70f112004-05-02 21:12:19 +00003520 unsigned char *pCell;
3521 int i;
drh8b2f49b2001-06-08 00:21:52 +00003522
drhde647132004-05-07 17:57:49 +00003523 rc = getAndInitPage(pBt, pgno, &pPage, pParent);
drh8b2f49b2001-06-08 00:21:52 +00003524 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003525 rc = sqlite3pager_write(pPage->aData);
drh6019e162001-07-02 17:51:45 +00003526 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003527 for(i=0; i<pPage->nCell; i++){
3528 pCell = pPage->aCell[i];
3529 if( !pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00003530 rc = clearDatabasePage(pBt, get4byte(&pCell[2]), pPage->pParent, 1);
drh8b2f49b2001-06-08 00:21:52 +00003531 if( rc ) return rc;
3532 }
drh4b70f112004-05-02 21:12:19 +00003533 rc = clearCell(pPage, pCell);
drh8b2f49b2001-06-08 00:21:52 +00003534 if( rc ) return rc;
3535 }
drha34b6762004-05-07 13:30:42 +00003536 if( !pPage->leaf ){
3537 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[6]), pPage->pParent, 1);
drh2aa679f2001-06-25 02:11:07 +00003538 if( rc ) return rc;
3539 }
3540 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00003541 rc = freePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00003542 }else{
drh3a4c1412004-05-09 20:40:11 +00003543 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00003544 }
drh4b70f112004-05-02 21:12:19 +00003545 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00003546 return rc;
drh8b2f49b2001-06-08 00:21:52 +00003547}
3548
3549/*
3550** Delete all information from a single table in the database.
3551*/
drh3aac2dd2004-04-26 14:10:20 +00003552int sqlite3BtreeClearTable(Btree *pBt, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00003553 int rc;
drhf74b8d92002-09-01 23:20:45 +00003554 BtCursor *pCur;
drh8b2f49b2001-06-08 00:21:52 +00003555 if( !pBt->inTrans ){
drhf74b8d92002-09-01 23:20:45 +00003556 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003557 }
drhf74b8d92002-09-01 23:20:45 +00003558 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3559 if( pCur->pgnoRoot==(Pgno)iTable ){
3560 if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
3561 moveToRoot(pCur);
3562 }
drhecdc7532001-09-23 02:35:53 +00003563 }
drha34b6762004-05-07 13:30:42 +00003564 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
drh8b2f49b2001-06-08 00:21:52 +00003565 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00003566 sqlite3BtreeRollback(pBt);
drh8b2f49b2001-06-08 00:21:52 +00003567 }
drh8c42ca92001-06-22 19:15:00 +00003568 return rc;
drh8b2f49b2001-06-08 00:21:52 +00003569}
3570
3571/*
3572** Erase all information in a table and add the root of the table to
3573** the freelist. Except, the root of the principle table (the one on
3574** page 2) is never added to the freelist.
3575*/
drh3aac2dd2004-04-26 14:10:20 +00003576int sqlite3BtreeDropTable(Btree *pBt, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00003577 int rc;
3578 MemPage *pPage;
drhf74b8d92002-09-01 23:20:45 +00003579 BtCursor *pCur;
drh8b2f49b2001-06-08 00:21:52 +00003580 if( !pBt->inTrans ){
drhf74b8d92002-09-01 23:20:45 +00003581 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003582 }
drhf74b8d92002-09-01 23:20:45 +00003583 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3584 if( pCur->pgnoRoot==(Pgno)iTable ){
3585 return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
3586 }
drh5df72a52002-06-06 23:16:05 +00003587 }
drha34b6762004-05-07 13:30:42 +00003588 rc = getPage(pBt, (Pgno)iTable, &pPage);
drh2aa679f2001-06-25 02:11:07 +00003589 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003590 rc = sqlite3BtreeClearTable(pBt, iTable);
drh2aa679f2001-06-25 02:11:07 +00003591 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003592 if( iTable>1 ){
drha34b6762004-05-07 13:30:42 +00003593 rc = freePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00003594 }else{
drha34b6762004-05-07 13:30:42 +00003595 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
drh8b2f49b2001-06-08 00:21:52 +00003596 }
drh4b70f112004-05-02 21:12:19 +00003597 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00003598 return rc;
3599}
3600
drh001bbcb2003-03-19 03:14:00 +00003601
drh8b2f49b2001-06-08 00:21:52 +00003602/*
drh23e11ca2004-05-04 17:27:28 +00003603** Read the meta-information out of a database file. Meta[0]
3604** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00003605** through meta[15] are available for use by higher layers. Meta[0]
3606** is read-only, the others are read/write.
3607**
3608** The schema layer numbers meta values differently. At the schema
3609** layer (and the SetCookie and ReadCookie opcodes) the number of
3610** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00003611*/
drh3aac2dd2004-04-26 14:10:20 +00003612int sqlite3BtreeGetMeta(Btree *pBt, int idx, u32 *pMeta){
drh8b2f49b2001-06-08 00:21:52 +00003613 int rc;
drh4b70f112004-05-02 21:12:19 +00003614 unsigned char *pP1;
drh8b2f49b2001-06-08 00:21:52 +00003615
drh23e11ca2004-05-04 17:27:28 +00003616 assert( idx>=0 && idx<=15 );
drha34b6762004-05-07 13:30:42 +00003617 rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1);
drh8b2f49b2001-06-08 00:21:52 +00003618 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00003619 *pMeta = get4byte(&pP1[36 + idx*4]);
drha34b6762004-05-07 13:30:42 +00003620 sqlite3pager_unref(pP1);
drh8b2f49b2001-06-08 00:21:52 +00003621 return SQLITE_OK;
3622}
3623
3624/*
drh23e11ca2004-05-04 17:27:28 +00003625** Write meta-information back into the database. Meta[0] is
3626** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00003627*/
drh3aac2dd2004-04-26 14:10:20 +00003628int sqlite3BtreeUpdateMeta(Btree *pBt, int idx, u32 iMeta){
drh4b70f112004-05-02 21:12:19 +00003629 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00003630 int rc;
drh23e11ca2004-05-04 17:27:28 +00003631 assert( idx>=1 && idx<=15 );
drh8b2f49b2001-06-08 00:21:52 +00003632 if( !pBt->inTrans ){
drhf74b8d92002-09-01 23:20:45 +00003633 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh5df72a52002-06-06 23:16:05 +00003634 }
drhde647132004-05-07 17:57:49 +00003635 assert( pBt->pPage1!=0 );
3636 pP1 = pBt->pPage1->aData;
drha34b6762004-05-07 13:30:42 +00003637 rc = sqlite3pager_write(pP1);
drh4b70f112004-05-02 21:12:19 +00003638 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00003639 put4byte(&pP1[36 + idx*4], iMeta);
drh8b2f49b2001-06-08 00:21:52 +00003640 return SQLITE_OK;
3641}
drh8c42ca92001-06-22 19:15:00 +00003642
drhf328bc82004-05-10 23:29:49 +00003643/*
3644** Return the flag byte at the beginning of the page that the cursor
3645** is currently pointing to.
3646*/
3647int sqlite3BtreeFlags(BtCursor *pCur){
3648 MemPage *pPage = pCur->pPage;
3649 return pPage ? pPage->aData[pPage->hdrOffset] : 0;
3650}
3651
drh5eddca62001-06-30 21:53:53 +00003652/******************************************************************************
3653** The complete implementation of the BTree subsystem is above this line.
3654** All the code the follows is for testing and troubleshooting the BTree
3655** subsystem. None of the code that follows is used during normal operation.
drh5eddca62001-06-30 21:53:53 +00003656******************************************************************************/
drh5eddca62001-06-30 21:53:53 +00003657
drh8c42ca92001-06-22 19:15:00 +00003658/*
3659** Print a disassembly of the given page on standard output. This routine
3660** is used for debugging and testing only.
3661*/
drhaaab5722002-02-19 13:39:21 +00003662#ifdef SQLITE_TEST
drh23e11ca2004-05-04 17:27:28 +00003663int sqlite3BtreePageDump(Btree *pBt, int pgno, int recursive){
drh8c42ca92001-06-22 19:15:00 +00003664 int rc;
3665 MemPage *pPage;
drhc8629a12004-05-08 20:07:40 +00003666 int i, j, c;
drh8c42ca92001-06-22 19:15:00 +00003667 int nFree;
3668 u16 idx;
drhab9f7f12004-05-08 10:56:11 +00003669 int hdr;
3670 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003671 char range[20];
3672 unsigned char payload[20];
drhab9f7f12004-05-08 10:56:11 +00003673
drh4b70f112004-05-02 21:12:19 +00003674 rc = getPage(pBt, (Pgno)pgno, &pPage);
drh8c42ca92001-06-22 19:15:00 +00003675 if( rc ){
3676 return rc;
3677 }
drhab9f7f12004-05-08 10:56:11 +00003678 hdr = pPage->hdrOffset;
3679 data = pPage->aData;
drhc8629a12004-05-08 20:07:40 +00003680 c = data[hdr];
drh8b18dd42004-05-12 19:18:15 +00003681 pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0;
drhc8629a12004-05-08 20:07:40 +00003682 pPage->zeroData = (c & PTF_ZERODATA)!=0;
drh8b18dd42004-05-12 19:18:15 +00003683 pPage->leafData = (c & PTF_LEAFDATA)!=0;
drhc8629a12004-05-08 20:07:40 +00003684 pPage->leaf = (c & PTF_LEAF)!=0;
drh8b18dd42004-05-12 19:18:15 +00003685 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
drhda200cc2004-05-09 11:51:38 +00003686 printf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno,
3687 data[hdr], data[hdr+5],
3688 (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0);
drh8c42ca92001-06-22 19:15:00 +00003689 i = 0;
drhab9f7f12004-05-08 10:56:11 +00003690 assert( hdr == (pgno==1 ? 100 : 0) );
3691 idx = get2byte(&data[hdr+3]);
drhb6f41482004-05-14 01:58:11 +00003692 while( idx>0 && idx<=pBt->usableSize ){
drh6f11bef2004-05-13 01:12:56 +00003693 CellInfo info;
drh4b70f112004-05-02 21:12:19 +00003694 Pgno child;
drhab9f7f12004-05-08 10:56:11 +00003695 unsigned char *pCell = &data[idx];
drh6f11bef2004-05-13 01:12:56 +00003696 int sz;
3697
3698 pCell = &data[idx];
3699 parseCell(pPage, pCell, &info);
3700 sz = info.nSize;
drh8c42ca92001-06-22 19:15:00 +00003701 sprintf(range,"%d..%d", idx, idx+sz-1);
drh4b70f112004-05-02 21:12:19 +00003702 if( pPage->leaf ){
3703 child = 0;
3704 }else{
3705 child = get4byte(&pCell[2]);
3706 }
drh6f11bef2004-05-13 01:12:56 +00003707 sz = info.nData;
3708 if( !pPage->intKey ) sz += info.nKey;
drh8c42ca92001-06-22 19:15:00 +00003709 if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
drh6f11bef2004-05-13 01:12:56 +00003710 memcpy(payload, &pCell[info.nHeader], sz);
drh8c42ca92001-06-22 19:15:00 +00003711 for(j=0; j<sz; j++){
3712 if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
3713 }
3714 payload[sz] = 0;
3715 printf(
drh6f11bef2004-05-13 01:12:56 +00003716 "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n",
3717 i, range, child, info.nKey, info.nData, payload
drh8c42ca92001-06-22 19:15:00 +00003718 );
drh4b70f112004-05-02 21:12:19 +00003719 if( pPage->isInit && pPage->aCell[i]!=pCell ){
3720 printf("**** aCell[%d] does not match on prior entry ****\n", i);
drh2aa679f2001-06-25 02:11:07 +00003721 }
drh7c717f72001-06-24 20:39:41 +00003722 i++;
drh4b70f112004-05-02 21:12:19 +00003723 idx = get2byte(pCell);
drh8c42ca92001-06-22 19:15:00 +00003724 }
3725 if( idx!=0 ){
3726 printf("ERROR: next cell index out of range: %d\n", idx);
3727 }
drh4b70f112004-05-02 21:12:19 +00003728 if( !pPage->leaf ){
drh3644f082004-05-10 18:45:09 +00003729 printf("right_child: %d\n", get4byte(&data[hdr+6]));
drh4b70f112004-05-02 21:12:19 +00003730 }
drh8c42ca92001-06-22 19:15:00 +00003731 nFree = 0;
3732 i = 0;
drhab9f7f12004-05-08 10:56:11 +00003733 idx = get2byte(&data[hdr+1]);
drhb6f41482004-05-14 01:58:11 +00003734 while( idx>0 && idx<pPage->pBt->usableSize ){
drhab9f7f12004-05-08 10:56:11 +00003735 int sz = get2byte(&data[idx+2]);
drh4b70f112004-05-02 21:12:19 +00003736 sprintf(range,"%d..%d", idx, idx+sz-1);
3737 nFree += sz;
drh8c42ca92001-06-22 19:15:00 +00003738 printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
drh4b70f112004-05-02 21:12:19 +00003739 i, range, sz, nFree);
drhab9f7f12004-05-08 10:56:11 +00003740 idx = get2byte(&data[idx]);
drh2aa679f2001-06-25 02:11:07 +00003741 i++;
drh8c42ca92001-06-22 19:15:00 +00003742 }
3743 if( idx!=0 ){
3744 printf("ERROR: next freeblock index out of range: %d\n", idx);
3745 }
drha34b6762004-05-07 13:30:42 +00003746 if( recursive && !pPage->leaf ){
drhab9f7f12004-05-08 10:56:11 +00003747 idx = get2byte(&data[hdr+3]);
drhb6f41482004-05-14 01:58:11 +00003748 while( idx>0 && idx<pBt->usableSize ){
drhab9f7f12004-05-08 10:56:11 +00003749 unsigned char *pCell = &data[idx];
drha34b6762004-05-07 13:30:42 +00003750 sqlite3BtreePageDump(pBt, get4byte(&pCell[2]), 1);
3751 idx = get2byte(pCell);
drh6019e162001-07-02 17:51:45 +00003752 }
drhab9f7f12004-05-08 10:56:11 +00003753 sqlite3BtreePageDump(pBt, get4byte(&data[hdr+6]), 1);
drh6019e162001-07-02 17:51:45 +00003754 }
drhab9f7f12004-05-08 10:56:11 +00003755 sqlite3pager_unref(data);
drh3644f082004-05-10 18:45:09 +00003756 fflush(stdout);
drh8c42ca92001-06-22 19:15:00 +00003757 return SQLITE_OK;
3758}
drhaaab5722002-02-19 13:39:21 +00003759#endif
drh8c42ca92001-06-22 19:15:00 +00003760
drhaaab5722002-02-19 13:39:21 +00003761#ifdef SQLITE_TEST
drh8c42ca92001-06-22 19:15:00 +00003762/*
drh2aa679f2001-06-25 02:11:07 +00003763** Fill aResult[] with information about the entry and page that the
3764** cursor is pointing to.
3765**
3766** aResult[0] = The page number
3767** aResult[1] = The entry number
3768** aResult[2] = Total number of entries on this page
3769** aResult[3] = Size of this entry
3770** aResult[4] = Number of free bytes on this page
3771** aResult[5] = Number of free blocks on the page
3772** aResult[6] = Page number of the left child of this entry
3773** aResult[7] = Page number of the right child for the whole page
drh5eddca62001-06-30 21:53:53 +00003774**
3775** This routine is used for testing and debugging only.
drh8c42ca92001-06-22 19:15:00 +00003776*/
drhda200cc2004-05-09 11:51:38 +00003777int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult){
drh2aa679f2001-06-25 02:11:07 +00003778 int cnt, idx;
3779 MemPage *pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00003780
3781 pageIntegrity(pPage);
drh4b70f112004-05-02 21:12:19 +00003782 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00003783 aResult[0] = sqlite3pager_pagenumber(pPage->aData);
drh91025292004-05-03 19:49:32 +00003784 assert( aResult[0]==pPage->pgno );
drh8c42ca92001-06-22 19:15:00 +00003785 aResult[1] = pCur->idx;
drh2aa679f2001-06-25 02:11:07 +00003786 aResult[2] = pPage->nCell;
3787 if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
drh4b70f112004-05-02 21:12:19 +00003788 aResult[3] = cellSize(pPage, pPage->aCell[pCur->idx]);
3789 aResult[6] = pPage->leaf ? 0 : get4byte(&pPage->aCell[pCur->idx][2]);
drh2aa679f2001-06-25 02:11:07 +00003790 }else{
3791 aResult[3] = 0;
3792 aResult[6] = 0;
3793 }
3794 aResult[4] = pPage->nFree;
3795 cnt = 0;
drh4b70f112004-05-02 21:12:19 +00003796 idx = get2byte(&pPage->aData[pPage->hdrOffset+1]);
drhb6f41482004-05-14 01:58:11 +00003797 while( idx>0 && idx<pPage->pBt->usableSize ){
drh2aa679f2001-06-25 02:11:07 +00003798 cnt++;
drh4b70f112004-05-02 21:12:19 +00003799 idx = get2byte(&pPage->aData[idx]);
drh2aa679f2001-06-25 02:11:07 +00003800 }
3801 aResult[5] = cnt;
drh4b70f112004-05-02 21:12:19 +00003802 aResult[7] = pPage->leaf ? 0 : get4byte(&pPage->aData[pPage->hdrOffset+6]);
drh8c42ca92001-06-22 19:15:00 +00003803 return SQLITE_OK;
3804}
drhaaab5722002-02-19 13:39:21 +00003805#endif
drhdd793422001-06-28 01:54:48 +00003806
drhdd793422001-06-28 01:54:48 +00003807/*
drh5eddca62001-06-30 21:53:53 +00003808** Return the pager associated with a BTree. This routine is used for
3809** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00003810*/
drh3aac2dd2004-04-26 14:10:20 +00003811Pager *sqlite3BtreePager(Btree *pBt){
drhdd793422001-06-28 01:54:48 +00003812 return pBt->pPager;
3813}
drh5eddca62001-06-30 21:53:53 +00003814
3815/*
3816** This structure is passed around through all the sanity checking routines
3817** in order to keep track of some global state information.
3818*/
drhaaab5722002-02-19 13:39:21 +00003819typedef struct IntegrityCk IntegrityCk;
3820struct IntegrityCk {
drh100569d2001-10-02 13:01:48 +00003821 Btree *pBt; /* The tree being checked out */
3822 Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
3823 int nPage; /* Number of pages in the database */
3824 int *anRef; /* Number of times each page is referenced */
drh100569d2001-10-02 13:01:48 +00003825 char *zErrMsg; /* An error message. NULL of no errors seen. */
drh5eddca62001-06-30 21:53:53 +00003826};
3827
3828/*
3829** Append a message to the error message string.
3830*/
drhaaab5722002-02-19 13:39:21 +00003831static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
drh5eddca62001-06-30 21:53:53 +00003832 if( pCheck->zErrMsg ){
3833 char *zOld = pCheck->zErrMsg;
3834 pCheck->zErrMsg = 0;
danielk19774adee202004-05-08 08:23:19 +00003835 sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00003836 sqliteFree(zOld);
3837 }else{
danielk19774adee202004-05-08 08:23:19 +00003838 sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00003839 }
3840}
3841
3842/*
3843** Add 1 to the reference count for page iPage. If this is the second
3844** reference to the page, add an error message to pCheck->zErrMsg.
3845** Return 1 if there are 2 ore more references to the page and 0 if
3846** if this is the first reference to the page.
3847**
3848** Also check that the page number is in bounds.
3849*/
drhaaab5722002-02-19 13:39:21 +00003850static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00003851 if( iPage==0 ) return 1;
drh0de8c112002-07-06 16:32:14 +00003852 if( iPage>pCheck->nPage || iPage<0 ){
drh5eddca62001-06-30 21:53:53 +00003853 char zBuf[100];
3854 sprintf(zBuf, "invalid page number %d", iPage);
3855 checkAppendMsg(pCheck, zContext, zBuf);
3856 return 1;
3857 }
3858 if( pCheck->anRef[iPage]==1 ){
3859 char zBuf[100];
3860 sprintf(zBuf, "2nd reference to page %d", iPage);
3861 checkAppendMsg(pCheck, zContext, zBuf);
3862 return 1;
3863 }
3864 return (pCheck->anRef[iPage]++)>1;
3865}
3866
3867/*
3868** Check the integrity of the freelist or of an overflow page list.
3869** Verify that the number of pages on the list is N.
3870*/
drh30e58752002-03-02 20:41:57 +00003871static void checkList(
3872 IntegrityCk *pCheck, /* Integrity checking context */
3873 int isFreeList, /* True for a freelist. False for overflow page list */
3874 int iPage, /* Page number for first page in the list */
3875 int N, /* Expected number of pages in the list */
3876 char *zContext /* Context for error messages */
3877){
3878 int i;
drh3a4c1412004-05-09 20:40:11 +00003879 int expected = N;
3880 int iFirst = iPage;
drh5eddca62001-06-30 21:53:53 +00003881 char zMsg[100];
drh30e58752002-03-02 20:41:57 +00003882 while( N-- > 0 ){
drh4b70f112004-05-02 21:12:19 +00003883 unsigned char *pOvfl;
drh5eddca62001-06-30 21:53:53 +00003884 if( iPage<1 ){
drh3a4c1412004-05-09 20:40:11 +00003885 sprintf(zMsg, "%d of %d pages missing from overflow list starting at %d",
3886 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00003887 checkAppendMsg(pCheck, zContext, zMsg);
3888 break;
3889 }
3890 if( checkRef(pCheck, iPage, zContext) ) break;
drha34b6762004-05-07 13:30:42 +00003891 if( sqlite3pager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
drh5eddca62001-06-30 21:53:53 +00003892 sprintf(zMsg, "failed to get page %d", iPage);
3893 checkAppendMsg(pCheck, zContext, zMsg);
3894 break;
3895 }
drh30e58752002-03-02 20:41:57 +00003896 if( isFreeList ){
drh4b70f112004-05-02 21:12:19 +00003897 int n = get4byte(&pOvfl[4]);
drh0d316a42002-08-11 20:10:47 +00003898 for(i=0; i<n; i++){
drh4b70f112004-05-02 21:12:19 +00003899 checkRef(pCheck, get4byte(&pOvfl[8+i*4]), zContext);
drh30e58752002-03-02 20:41:57 +00003900 }
drh0d316a42002-08-11 20:10:47 +00003901 N -= n;
drh30e58752002-03-02 20:41:57 +00003902 }
drh4b70f112004-05-02 21:12:19 +00003903 iPage = get4byte(pOvfl);
drha34b6762004-05-07 13:30:42 +00003904 sqlite3pager_unref(pOvfl);
drh5eddca62001-06-30 21:53:53 +00003905 }
3906}
3907
3908/*
3909** Do various sanity checks on a single page of a tree. Return
3910** the tree depth. Root pages return 0. Parents of root pages
3911** return 1, and so forth.
3912**
3913** These checks are done:
3914**
3915** 1. Make sure that cells and freeblocks do not overlap
3916** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00003917** NO 2. Make sure cell keys are in order.
3918** NO 3. Make sure no key is less than or equal to zLowerBound.
3919** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00003920** 5. Check the integrity of overflow pages.
3921** 6. Recursively call checkTreePage on all children.
3922** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00003923** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00003924** the root of the tree.
3925*/
3926static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00003927 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00003928 int iPage, /* Page number of the page to check */
3929 MemPage *pParent, /* Parent page */
3930 char *zParentContext, /* Parent context */
3931 char *zLowerBound, /* All keys should be greater than this, if not NULL */
drh1bffb9c2002-02-03 17:37:36 +00003932 int nLower, /* Number of characters in zLowerBound */
3933 char *zUpperBound, /* All keys should be less than this, if not NULL */
3934 int nUpper /* Number of characters in zUpperBound */
drh5eddca62001-06-30 21:53:53 +00003935){
3936 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00003937 int i, rc, depth, d2, pgno, cnt;
3938 int hdr;
3939 u8 *data;
drh5eddca62001-06-30 21:53:53 +00003940 BtCursor cur;
drh0d316a42002-08-11 20:10:47 +00003941 Btree *pBt;
drhb6f41482004-05-14 01:58:11 +00003942 int maxLocal, usableSize;
drh5eddca62001-06-30 21:53:53 +00003943 char zMsg[100];
3944 char zContext[100];
drhda200cc2004-05-09 11:51:38 +00003945 char hit[MX_PAGE_SIZE];
drh5eddca62001-06-30 21:53:53 +00003946
3947 /* Check that the page exists
3948 */
drh0d316a42002-08-11 20:10:47 +00003949 cur.pBt = pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00003950 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00003951 if( iPage==0 ) return 0;
3952 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh4b70f112004-05-02 21:12:19 +00003953 if( (rc = getPage(pBt, (Pgno)iPage, &pPage))!=0 ){
drh5eddca62001-06-30 21:53:53 +00003954 sprintf(zMsg, "unable to get the page. error code=%d", rc);
3955 checkAppendMsg(pCheck, zContext, zMsg);
3956 return 0;
3957 }
drh6f11bef2004-05-13 01:12:56 +00003958 maxLocal = pPage->leafData ? pBt->maxLeaf : pBt->maxLocal;
drh4b70f112004-05-02 21:12:19 +00003959 if( (rc = initPage(pPage, pParent))!=0 ){
drh5eddca62001-06-30 21:53:53 +00003960 sprintf(zMsg, "initPage() returns error code %d", rc);
3961 checkAppendMsg(pCheck, zContext, zMsg);
drh91025292004-05-03 19:49:32 +00003962 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00003963 return 0;
3964 }
3965
3966 /* Check out all the cells.
3967 */
3968 depth = 0;
drh5eddca62001-06-30 21:53:53 +00003969 cur.pPage = pPage;
drh5eddca62001-06-30 21:53:53 +00003970 for(i=0; i<pPage->nCell; i++){
drh6f11bef2004-05-13 01:12:56 +00003971 u8 *pCell;
3972 int sz;
3973 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00003974
3975 /* Check payload overflow pages
3976 */
drh3a4c1412004-05-09 20:40:11 +00003977 sprintf(zContext, "On tree page %d cell %d: ", iPage, i);
drh6f11bef2004-05-13 01:12:56 +00003978 pCell = pPage->aCell[i];
3979 parseCell(pPage, pCell, &info);
3980 sz = info.nData;
3981 if( !pPage->intKey ) sz += info.nKey;
3982 if( sz>info.nLocal ){
drhb6f41482004-05-14 01:58:11 +00003983 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +00003984 checkList(pCheck, 0, get4byte(&pCell[info.iOverflow]),nPage,zContext);
drh5eddca62001-06-30 21:53:53 +00003985 }
3986
3987 /* Check sanity of left child page.
3988 */
drhda200cc2004-05-09 11:51:38 +00003989 if( !pPage->leaf ){
3990 pgno = get4byte(&pCell[2]);
3991 d2 = checkTreePage(pCheck,pgno,pPage,zContext,0,0,0,0);
3992 if( i>0 && d2!=depth ){
3993 checkAppendMsg(pCheck, zContext, "Child page depth differs");
3994 }
3995 depth = d2;
drh5eddca62001-06-30 21:53:53 +00003996 }
drh5eddca62001-06-30 21:53:53 +00003997 }
drhda200cc2004-05-09 11:51:38 +00003998 if( !pPage->leaf ){
3999 pgno = get4byte(&pPage->aData[pPage->hdrOffset+6]);
4000 sprintf(zContext, "On page %d at right child: ", iPage);
4001 checkTreePage(pCheck, pgno, pPage, zContext,0,0,0,0);
4002 }
drh5eddca62001-06-30 21:53:53 +00004003
4004 /* Check for complete coverage of the page
4005 */
drhb6f41482004-05-14 01:58:11 +00004006 memset(hit, 0, usableSize);
drhda200cc2004-05-09 11:51:38 +00004007 memset(hit, 1, pPage->hdrOffset+10-4*(pPage->leaf));
4008 data = pPage->aData;
4009 hdr = pPage->hdrOffset;
drhb6f41482004-05-14 01:58:11 +00004010 for(cnt=0, i=get2byte(&data[hdr+3]); i>0 && i<usableSize && cnt<10000; cnt++){
drhda200cc2004-05-09 11:51:38 +00004011 int size = cellSize(pPage, &data[i]);
drh5eddca62001-06-30 21:53:53 +00004012 int j;
drhda200cc2004-05-09 11:51:38 +00004013 for(j=i+size-1; j>=i; j--) hit[j]++;
4014 i = get2byte(&data[i]);
drh5eddca62001-06-30 21:53:53 +00004015 }
drhb6f41482004-05-14 01:58:11 +00004016 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; cnt++){
drhda200cc2004-05-09 11:51:38 +00004017 int size = get2byte(&data[i+2]);
drh5eddca62001-06-30 21:53:53 +00004018 int j;
drhda200cc2004-05-09 11:51:38 +00004019 for(j=i+size-1; j>=i; j--) hit[j]++;
4020 i = get2byte(&data[i]);
drh5eddca62001-06-30 21:53:53 +00004021 }
drhb6f41482004-05-14 01:58:11 +00004022 for(i=cnt=0; i<usableSize; i++){
drh5eddca62001-06-30 21:53:53 +00004023 if( hit[i]==0 ){
drhda200cc2004-05-09 11:51:38 +00004024 cnt++;
drh5eddca62001-06-30 21:53:53 +00004025 }else if( hit[i]>1 ){
4026 sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
4027 checkAppendMsg(pCheck, zMsg, 0);
4028 break;
4029 }
4030 }
drhda200cc2004-05-09 11:51:38 +00004031 if( cnt!=data[hdr+5] ){
4032 sprintf(zMsg, "Fragmented space is %d byte reported as %d on page %d",
4033 cnt, data[hdr+5], iPage);
4034 checkAppendMsg(pCheck, zMsg, 0);
4035 }
drh6019e162001-07-02 17:51:45 +00004036
drh4b70f112004-05-02 21:12:19 +00004037 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00004038 return depth+1;
drh5eddca62001-06-30 21:53:53 +00004039}
4040
4041/*
4042** This routine does a complete check of the given BTree file. aRoot[] is
4043** an array of pages numbers were each page number is the root page of
4044** a table. nRoot is the number of entries in aRoot.
4045**
4046** If everything checks out, this routine returns NULL. If something is
4047** amiss, an error message is written into memory obtained from malloc()
4048** and a pointer to that error message is returned. The calling function
4049** is responsible for freeing the error message when it is done.
4050*/
drh3aac2dd2004-04-26 14:10:20 +00004051char *sqlite3BtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
drh5eddca62001-06-30 21:53:53 +00004052 int i;
4053 int nRef;
drhaaab5722002-02-19 13:39:21 +00004054 IntegrityCk sCheck;
drh5eddca62001-06-30 21:53:53 +00004055
drha34b6762004-05-07 13:30:42 +00004056 nRef = *sqlite3pager_stats(pBt->pPager);
drhefc251d2001-07-01 22:12:01 +00004057 if( lockBtree(pBt)!=SQLITE_OK ){
4058 return sqliteStrDup("Unable to acquire a read lock on the database");
4059 }
drh5eddca62001-06-30 21:53:53 +00004060 sCheck.pBt = pBt;
4061 sCheck.pPager = pBt->pPager;
drha34b6762004-05-07 13:30:42 +00004062 sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager);
drh0de8c112002-07-06 16:32:14 +00004063 if( sCheck.nPage==0 ){
4064 unlockBtreeIfUnused(pBt);
4065 return 0;
4066 }
drh8c1238a2003-01-02 14:43:55 +00004067 sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
drhda200cc2004-05-09 11:51:38 +00004068 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh5eddca62001-06-30 21:53:53 +00004069 sCheck.zErrMsg = 0;
4070
4071 /* Check the integrity of the freelist
4072 */
drha34b6762004-05-07 13:30:42 +00004073 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
4074 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00004075
4076 /* Check all the tables.
4077 */
4078 for(i=0; i<nRoot; i++){
drh4ff6dfa2002-03-03 23:06:00 +00004079 if( aRoot[i]==0 ) continue;
drh1bffb9c2002-02-03 17:37:36 +00004080 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
drh5eddca62001-06-30 21:53:53 +00004081 }
4082
4083 /* Make sure every page in the file is referenced
4084 */
4085 for(i=1; i<=sCheck.nPage; i++){
4086 if( sCheck.anRef[i]==0 ){
4087 char zBuf[100];
4088 sprintf(zBuf, "Page %d is never used", i);
4089 checkAppendMsg(&sCheck, zBuf, 0);
4090 }
4091 }
4092
4093 /* Make sure this analysis did not leave any unref() pages
4094 */
drh5e00f6c2001-09-13 13:46:56 +00004095 unlockBtreeIfUnused(pBt);
drha34b6762004-05-07 13:30:42 +00004096 if( nRef != *sqlite3pager_stats(pBt->pPager) ){
drh5eddca62001-06-30 21:53:53 +00004097 char zBuf[100];
4098 sprintf(zBuf,
4099 "Outstanding page count goes from %d to %d during this analysis",
drha34b6762004-05-07 13:30:42 +00004100 nRef, *sqlite3pager_stats(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00004101 );
4102 checkAppendMsg(&sCheck, zBuf, 0);
4103 }
4104
4105 /* Clean up and report errors.
4106 */
4107 sqliteFree(sCheck.anRef);
4108 return sCheck.zErrMsg;
4109}
paulb95a8862003-04-01 21:16:41 +00004110
drh73509ee2003-04-06 20:44:45 +00004111/*
4112** Return the full pathname of the underlying database file.
4113*/
drh3aac2dd2004-04-26 14:10:20 +00004114const char *sqlite3BtreeGetFilename(Btree *pBt){
drh73509ee2003-04-06 20:44:45 +00004115 assert( pBt->pPager!=0 );
drha34b6762004-05-07 13:30:42 +00004116 return sqlite3pager_filename(pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00004117}
4118
4119/*
drhf7c57532003-04-25 13:22:51 +00004120** Copy the complete content of pBtFrom into pBtTo. A transaction
4121** must be active for both files.
4122**
4123** The size of file pBtFrom may be reduced by this operation.
4124** If anything goes wrong, the transaction on pBtFrom is rolled back.
drh73509ee2003-04-06 20:44:45 +00004125*/
drh3aac2dd2004-04-26 14:10:20 +00004126int sqlite3BtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
drhf7c57532003-04-25 13:22:51 +00004127 int rc = SQLITE_OK;
drh2e6d11b2003-04-25 15:37:57 +00004128 Pgno i, nPage, nToPage;
drhf7c57532003-04-25 13:22:51 +00004129
4130 if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR;
drhf7c57532003-04-25 13:22:51 +00004131 if( pBtTo->pCursor ) return SQLITE_BUSY;
drhb6f41482004-05-14 01:58:11 +00004132 memcpy(pBtTo->pPage1, pBtFrom->pPage1, pBtFrom->usableSize);
drha34b6762004-05-07 13:30:42 +00004133 rc = sqlite3pager_overwrite(pBtTo->pPager, 1, pBtFrom->pPage1);
4134 nToPage = sqlite3pager_pagecount(pBtTo->pPager);
4135 nPage = sqlite3pager_pagecount(pBtFrom->pPager);
drh2e6d11b2003-04-25 15:37:57 +00004136 for(i=2; rc==SQLITE_OK && i<=nPage; i++){
drhf7c57532003-04-25 13:22:51 +00004137 void *pPage;
drha34b6762004-05-07 13:30:42 +00004138 rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage);
drhf7c57532003-04-25 13:22:51 +00004139 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00004140 rc = sqlite3pager_overwrite(pBtTo->pPager, i, pPage);
drh2e6d11b2003-04-25 15:37:57 +00004141 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00004142 sqlite3pager_unref(pPage);
drhf7c57532003-04-25 13:22:51 +00004143 }
drh2e6d11b2003-04-25 15:37:57 +00004144 for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
4145 void *pPage;
drha34b6762004-05-07 13:30:42 +00004146 rc = sqlite3pager_get(pBtTo->pPager, i, &pPage);
drh2e6d11b2003-04-25 15:37:57 +00004147 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00004148 rc = sqlite3pager_write(pPage);
4149 sqlite3pager_unref(pPage);
4150 sqlite3pager_dont_write(pBtTo->pPager, i);
drh2e6d11b2003-04-25 15:37:57 +00004151 }
4152 if( !rc && nPage<nToPage ){
drha34b6762004-05-07 13:30:42 +00004153 rc = sqlite3pager_truncate(pBtTo->pPager, nPage);
drh2e6d11b2003-04-25 15:37:57 +00004154 }
drhf7c57532003-04-25 13:22:51 +00004155 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00004156 sqlite3BtreeRollback(pBtTo);
drhf7c57532003-04-25 13:22:51 +00004157 }
4158 return rc;
drh73509ee2003-04-06 20:44:45 +00004159}