blob: bbec2dd0a24957a6c63a163d9f25b97ff6138922 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
453#endif
454
danielk197792d4d7a2007-05-04 12:05:56 +0000455/*
dan5a500af2014-03-11 20:33:04 +0000456** Invalidate the overflow cache of the cursor passed as the first argument.
457** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000458*/
drh036dbec2014-03-11 23:40:44 +0000459#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000460
461/*
462** Invalidate the overflow page-list cache for all cursors opened
463** on the shared btree structure pBt.
464*/
465static void invalidateAllOverflowCache(BtShared *pBt){
466 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000467 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000468 for(p=pBt->pCursor; p; p=p->pNext){
469 invalidateOverflowCache(p);
470 }
471}
danielk197796d48e92009-06-29 06:00:37 +0000472
dan5a500af2014-03-11 20:33:04 +0000473#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000474/*
475** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000476** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000477** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000478**
479** If argument isClearTable is true, then the entire contents of the
480** table is about to be deleted. In this case invalidate all incrblob
481** cursors open on any row within the table with root-page pgnoRoot.
482**
483** Otherwise, if argument isClearTable is false, then the row with
484** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000485** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000486*/
487static void invalidateIncrblobCursors(
488 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000489 i64 iRow, /* The rowid that might be changing */
490 int isClearTable /* True if all rows are being deleted */
491){
492 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000493 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000494 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000495 pBtree->hasIncrblobCur = 0;
496 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
497 if( (p->curFlags & BTCF_Incrblob)!=0 ){
498 pBtree->hasIncrblobCur = 1;
499 if( isClearTable || p->info.nKey==iRow ){
500 p->eState = CURSOR_INVALID;
501 }
danielk197796d48e92009-06-29 06:00:37 +0000502 }
503 }
504}
505
danielk197792d4d7a2007-05-04 12:05:56 +0000506#else
dan5a500af2014-03-11 20:33:04 +0000507 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000508 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000509#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000510
drh980b1a72006-08-16 16:42:48 +0000511/*
danielk1977bea2a942009-01-20 17:06:27 +0000512** Set bit pgno of the BtShared.pHasContent bitvec. This is called
513** when a page that previously contained data becomes a free-list leaf
514** page.
515**
516** The BtShared.pHasContent bitvec exists to work around an obscure
517** bug caused by the interaction of two useful IO optimizations surrounding
518** free-list leaf pages:
519**
520** 1) When all data is deleted from a page and the page becomes
521** a free-list leaf page, the page is not written to the database
522** (as free-list leaf pages contain no meaningful data). Sometimes
523** such a page is not even journalled (as it will not be modified,
524** why bother journalling it?).
525**
526** 2) When a free-list leaf page is reused, its content is not read
527** from the database or written to the journal file (why should it
528** be, if it is not at all meaningful?).
529**
530** By themselves, these optimizations work fine and provide a handy
531** performance boost to bulk delete or insert operations. However, if
532** a page is moved to the free-list and then reused within the same
533** transaction, a problem comes up. If the page is not journalled when
534** it is moved to the free-list and it is also not journalled when it
535** is extracted from the free-list and reused, then the original data
536** may be lost. In the event of a rollback, it may not be possible
537** to restore the database to its original configuration.
538**
539** The solution is the BtShared.pHasContent bitvec. Whenever a page is
540** moved to become a free-list leaf page, the corresponding bit is
541** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000542** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000543** set in BtShared.pHasContent. The contents of the bitvec are cleared
544** at the end of every transaction.
545*/
546static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
547 int rc = SQLITE_OK;
548 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000549 assert( pgno<=pBt->nPage );
550 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000551 if( !pBt->pHasContent ){
552 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000553 }
554 }
555 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
556 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
557 }
558 return rc;
559}
560
561/*
562** Query the BtShared.pHasContent vector.
563**
564** This function is called when a free-list leaf page is removed from the
565** free-list for reuse. It returns false if it is safe to retrieve the
566** page from the pager layer with the 'no-content' flag set. True otherwise.
567*/
568static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
569 Bitvec *p = pBt->pHasContent;
570 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
571}
572
573/*
574** Clear (destroy) the BtShared.pHasContent bitvec. This should be
575** invoked at the conclusion of each write-transaction.
576*/
577static void btreeClearHasContent(BtShared *pBt){
578 sqlite3BitvecDestroy(pBt->pHasContent);
579 pBt->pHasContent = 0;
580}
581
582/*
drh138eeeb2013-03-27 03:15:23 +0000583** Release all of the apPage[] pages for a cursor.
584*/
585static void btreeReleaseAllCursorPages(BtCursor *pCur){
586 int i;
587 for(i=0; i<=pCur->iPage; i++){
588 releasePage(pCur->apPage[i]);
589 pCur->apPage[i] = 0;
590 }
591 pCur->iPage = -1;
592}
593
594
595/*
drh980b1a72006-08-16 16:42:48 +0000596** Save the current cursor position in the variables BtCursor.nKey
597** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000598**
599** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
600** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000601*/
602static int saveCursorPosition(BtCursor *pCur){
603 int rc;
604
drhd2f83132015-03-25 17:35:01 +0000605 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000606 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000607 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000608
drhd2f83132015-03-25 17:35:01 +0000609 if( pCur->eState==CURSOR_SKIPNEXT ){
610 pCur->eState = CURSOR_VALID;
611 }else{
612 pCur->skipNext = 0;
613 }
drh980b1a72006-08-16 16:42:48 +0000614 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000615 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000616
617 /* If this is an intKey table, then the above call to BtreeKeySize()
618 ** stores the integer key in pCur->nKey. In this case this value is
619 ** all that is required. Otherwise, if pCur is not open on an intKey
620 ** table, then malloc space for and store the pCur->nKey bytes of key
621 ** data.
622 */
drh4c301aa2009-07-15 17:25:45 +0000623 if( 0==pCur->apPage[0]->intKey ){
drhda4ca9d2014-09-09 17:27:35 +0000624 void *pKey = sqlite3Malloc( pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000625 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000626 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000627 if( rc==SQLITE_OK ){
628 pCur->pKey = pKey;
629 }else{
drh17435752007-08-16 04:30:38 +0000630 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000631 }
632 }else{
633 rc = SQLITE_NOMEM;
634 }
635 }
danielk197771d5d2c2008-09-29 11:49:47 +0000636 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000637
638 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000639 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000640 pCur->eState = CURSOR_REQUIRESEEK;
641 }
642
danielk197792d4d7a2007-05-04 12:05:56 +0000643 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000644 return rc;
645}
646
drh637f3d82014-08-22 22:26:07 +0000647/* Forward reference */
648static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
649
drh980b1a72006-08-16 16:42:48 +0000650/*
drh0ee3dbe2009-10-16 15:05:18 +0000651** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000652** the table with root-page iRoot. "Saving the cursor position" means that
653** the location in the btree is remembered in such a way that it can be
654** moved back to the same spot after the btree has been modified. This
655** routine is called just before cursor pExcept is used to modify the
656** table, for example in BtreeDelete() or BtreeInsert().
657**
658** Implementation note: This routine merely checks to see if any cursors
659** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
660** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000661*/
662static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000663 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000664 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000665 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000666 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000667 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
668 }
669 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;
670}
671
672/* This helper routine to saveAllCursors does the actual work of saving
673** the cursors if and when a cursor is found that actually requires saving.
674** The common case is that no cursors need to be saved, so this routine is
675** broken out from its caller to avoid unnecessary stack pointer movement.
676*/
677static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000678 BtCursor *p, /* The first cursor that needs saving */
679 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
680 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000681){
682 do{
drh138eeeb2013-03-27 03:15:23 +0000683 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000684 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000685 int rc = saveCursorPosition(p);
686 if( SQLITE_OK!=rc ){
687 return rc;
688 }
689 }else{
690 testcase( p->iPage>0 );
691 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000692 }
693 }
drh637f3d82014-08-22 22:26:07 +0000694 p = p->pNext;
695 }while( p );
drh980b1a72006-08-16 16:42:48 +0000696 return SQLITE_OK;
697}
698
699/*
drhbf700f32007-03-31 02:36:44 +0000700** Clear the current cursor position.
701*/
danielk1977be51a652008-10-08 17:58:48 +0000702void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000703 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000704 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000705 pCur->pKey = 0;
706 pCur->eState = CURSOR_INVALID;
707}
708
709/*
danielk19773509a652009-07-06 18:56:13 +0000710** In this version of BtreeMoveto, pKey is a packed index record
711** such as is generated by the OP_MakeRecord opcode. Unpack the
712** record and then call BtreeMovetoUnpacked() to do the work.
713*/
714static int btreeMoveto(
715 BtCursor *pCur, /* Cursor open on the btree to be searched */
716 const void *pKey, /* Packed key if the btree is an index */
717 i64 nKey, /* Integer key for tables. Size of pKey for indices */
718 int bias, /* Bias search to the high end */
719 int *pRes /* Write search results here */
720){
721 int rc; /* Status code */
722 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000723 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000724 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000725
726 if( pKey ){
727 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000728 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
729 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
730 );
danielk19773509a652009-07-06 18:56:13 +0000731 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000732 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000733 if( pIdxKey->nField==0 ){
734 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
735 return SQLITE_CORRUPT_BKPT;
736 }
danielk19773509a652009-07-06 18:56:13 +0000737 }else{
738 pIdxKey = 0;
739 }
740 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000741 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000742 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000743 }
744 return rc;
745}
746
747/*
drh980b1a72006-08-16 16:42:48 +0000748** Restore the cursor to the position it was in (or as close to as possible)
749** when saveCursorPosition() was called. Note that this call deletes the
750** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000751** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000752** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000753*/
danielk197730548662009-07-09 05:07:37 +0000754static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000755 int rc;
drhd2f83132015-03-25 17:35:01 +0000756 int skipNext;
drh1fee73e2007-08-29 04:00:57 +0000757 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000758 assert( pCur->eState>=CURSOR_REQUIRESEEK );
759 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000760 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000761 }
drh980b1a72006-08-16 16:42:48 +0000762 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000763 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000764 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000765 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000766 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000767 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000768 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000769 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
770 pCur->eState = CURSOR_SKIPNEXT;
771 }
drh980b1a72006-08-16 16:42:48 +0000772 }
773 return rc;
774}
775
drha3460582008-07-11 21:02:53 +0000776#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000777 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000778 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000779 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000780
drha3460582008-07-11 21:02:53 +0000781/*
drh6848dad2014-08-22 23:33:03 +0000782** Determine whether or not a cursor has moved from the position where
783** it was last placed, or has been invalidated for any other reason.
784** Cursors can move when the row they are pointing at is deleted out
785** from under them, for example. Cursor might also move if a btree
786** is rebalanced.
drha3460582008-07-11 21:02:53 +0000787**
drh6848dad2014-08-22 23:33:03 +0000788** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000789**
drh6848dad2014-08-22 23:33:03 +0000790** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
791** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000792*/
drh6848dad2014-08-22 23:33:03 +0000793int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000794 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000795}
796
797/*
798** This routine restores a cursor back to its original position after it
799** has been moved by some outside activity (such as a btree rebalance or
800** a row having been deleted out from under the cursor).
801**
802** On success, the *pDifferentRow parameter is false if the cursor is left
803** pointing at exactly the same row. *pDifferntRow is the row the cursor
804** was pointing to has been deleted, forcing the cursor to point to some
805** nearby row.
806**
807** This routine should only be called for a cursor that just returned
808** TRUE from sqlite3BtreeCursorHasMoved().
809*/
810int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000811 int rc;
812
drh6848dad2014-08-22 23:33:03 +0000813 assert( pCur!=0 );
814 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000815 rc = restoreCursorPosition(pCur);
816 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000817 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000818 return rc;
819 }
drh606a3572015-03-25 18:29:10 +0000820 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000821 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000822 }else{
drh606a3572015-03-25 18:29:10 +0000823 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000824 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000825 }
826 return SQLITE_OK;
827}
828
danielk1977599fcba2004-11-08 07:13:13 +0000829#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000830/*
drha3152892007-05-05 11:48:52 +0000831** Given a page number of a regular database page, return the page
832** number for the pointer-map page that contains the entry for the
833** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000834**
835** Return 0 (not a valid page) for pgno==1 since there is
836** no pointer map associated with page 1. The integrity_check logic
837** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000838*/
danielk1977266664d2006-02-10 08:24:21 +0000839static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000840 int nPagesPerMapPage;
841 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000842 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000843 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000844 nPagesPerMapPage = (pBt->usableSize/5)+1;
845 iPtrMap = (pgno-2)/nPagesPerMapPage;
846 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000847 if( ret==PENDING_BYTE_PAGE(pBt) ){
848 ret++;
849 }
850 return ret;
851}
danielk1977a19df672004-11-03 11:37:07 +0000852
danielk1977afcdd022004-10-31 16:25:42 +0000853/*
danielk1977afcdd022004-10-31 16:25:42 +0000854** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000855**
856** This routine updates the pointer map entry for page number 'key'
857** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000858**
859** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
860** a no-op. If an error occurs, the appropriate error code is written
861** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000862*/
drh98add2e2009-07-20 17:11:49 +0000863static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000864 DbPage *pDbPage; /* The pointer map page */
865 u8 *pPtrmap; /* The pointer map data */
866 Pgno iPtrmap; /* The pointer map page number */
867 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000868 int rc; /* Return code from subfunctions */
869
870 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000871
drh1fee73e2007-08-29 04:00:57 +0000872 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000873 /* The master-journal page number must never be used as a pointer map page */
874 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
875
danielk1977ac11ee62005-01-15 12:45:51 +0000876 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000877 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000878 *pRC = SQLITE_CORRUPT_BKPT;
879 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000880 }
danielk1977266664d2006-02-10 08:24:21 +0000881 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000882 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000883 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000884 *pRC = rc;
885 return;
danielk1977afcdd022004-10-31 16:25:42 +0000886 }
danielk19778c666b12008-07-18 09:34:57 +0000887 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000888 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000889 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000890 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000891 }
drhfc243732011-05-17 15:21:56 +0000892 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000893 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000894
drh615ae552005-01-16 23:21:00 +0000895 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
896 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000897 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000898 if( rc==SQLITE_OK ){
899 pPtrmap[offset] = eType;
900 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000901 }
danielk1977afcdd022004-10-31 16:25:42 +0000902 }
903
drh4925a552009-07-07 11:39:58 +0000904ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000905 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000906}
907
908/*
909** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000910**
911** This routine retrieves the pointer map entry for page 'key', writing
912** the type and parent page number to *pEType and *pPgno respectively.
913** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000914*/
danielk1977aef0bf62005-12-30 16:28:01 +0000915static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000916 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000917 int iPtrmap; /* Pointer map page index */
918 u8 *pPtrmap; /* Pointer map page data */
919 int offset; /* Offset of entry in pointer map */
920 int rc;
921
drh1fee73e2007-08-29 04:00:57 +0000922 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000923
danielk1977266664d2006-02-10 08:24:21 +0000924 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000925 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000926 if( rc!=0 ){
927 return rc;
928 }
danielk19773b8a05f2007-03-19 17:44:26 +0000929 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000930
danielk19778c666b12008-07-18 09:34:57 +0000931 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000932 if( offset<0 ){
933 sqlite3PagerUnref(pDbPage);
934 return SQLITE_CORRUPT_BKPT;
935 }
936 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000937 assert( pEType!=0 );
938 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000939 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000940
danielk19773b8a05f2007-03-19 17:44:26 +0000941 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000942 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000943 return SQLITE_OK;
944}
945
danielk197785d90ca2008-07-19 14:25:15 +0000946#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000947 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000948 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000949 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000950#endif
danielk1977afcdd022004-10-31 16:25:42 +0000951
drh0d316a42002-08-11 20:10:47 +0000952/*
drh271efa52004-05-30 19:19:05 +0000953** Given a btree page and a cell index (0 means the first cell on
954** the page, 1 means the second cell, and so forth) return a pointer
955** to the cell content.
956**
drhf44890a2015-06-27 03:58:15 +0000957** findCellPastPtr() does the same except it skips past the initial
958** 4-byte child pointer found on interior pages, if there is one.
959**
drh271efa52004-05-30 19:19:05 +0000960** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000961*/
drh1688c862008-07-18 02:44:17 +0000962#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000963 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +0000964#define findCellPastPtr(P,I) \
965 ((P)->aDataOfst + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
966
drh68f2a572011-06-03 17:50:49 +0000967
drh43605152004-05-29 21:46:49 +0000968/*
drh5fa60512015-06-19 17:19:34 +0000969** This is common tail processing for btreeParseCellPtr() and
970** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
971** on a single B-tree page. Make necessary adjustments to the CellInfo
972** structure.
drh43605152004-05-29 21:46:49 +0000973*/
drh5fa60512015-06-19 17:19:34 +0000974static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
975 MemPage *pPage, /* Page containing the cell */
976 u8 *pCell, /* Pointer to the cell text. */
977 CellInfo *pInfo /* Fill in this structure */
978){
979 /* If the payload will not fit completely on the local page, we have
980 ** to decide how much to store locally and how much to spill onto
981 ** overflow pages. The strategy is to minimize the amount of unused
982 ** space on overflow pages while keeping the amount of local storage
983 ** in between minLocal and maxLocal.
984 **
985 ** Warning: changing the way overflow payload is distributed in any
986 ** way will result in an incompatible file format.
987 */
988 int minLocal; /* Minimum amount of payload held locally */
989 int maxLocal; /* Maximum amount of payload held locally */
990 int surplus; /* Overflow payload available for local storage */
991
992 minLocal = pPage->minLocal;
993 maxLocal = pPage->maxLocal;
994 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
995 testcase( surplus==maxLocal );
996 testcase( surplus==maxLocal+1 );
997 if( surplus <= maxLocal ){
998 pInfo->nLocal = (u16)surplus;
999 }else{
1000 pInfo->nLocal = (u16)minLocal;
1001 }
1002 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
1003 pInfo->nSize = pInfo->iOverflow + 4;
1004}
1005
1006/*
1007** The following routines are implementations of the MemPage.xParseCell()
1008** method.
1009**
1010** Parse a cell content block and fill in the CellInfo structure.
1011**
1012** btreeParseCellPtr() => table btree leaf nodes
1013** btreeParseCellNoPayload() => table btree internal nodes
1014** btreeParseCellPtrIndex() => index btree nodes
1015**
1016** There is also a wrapper function btreeParseCell() that works for
1017** all MemPage types and that references the cell by index rather than
1018** by pointer.
1019*/
1020static void btreeParseCellPtrNoPayload(
1021 MemPage *pPage, /* Page containing the cell */
1022 u8 *pCell, /* Pointer to the cell text. */
1023 CellInfo *pInfo /* Fill in this structure */
1024){
1025 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1026 assert( pPage->leaf==0 );
1027 assert( pPage->noPayload );
1028 assert( pPage->childPtrSize==4 );
1029 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1030 pInfo->nPayload = 0;
1031 pInfo->nLocal = 0;
1032 pInfo->iOverflow = 0;
1033 pInfo->pPayload = 0;
1034 return;
1035}
danielk197730548662009-07-09 05:07:37 +00001036static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001037 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001038 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001039 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001040){
drh3e28ff52014-09-24 00:59:08 +00001041 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001042 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001043 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001044
drh1fee73e2007-08-29 04:00:57 +00001045 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001046 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001047 assert( pPage->intKeyLeaf || pPage->noPayload );
1048 assert( pPage->noPayload==0 );
1049 assert( pPage->intKeyLeaf );
1050 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001051 pIter = pCell;
1052
1053 /* The next block of code is equivalent to:
1054 **
1055 ** pIter += getVarint32(pIter, nPayload);
1056 **
1057 ** The code is inlined to avoid a function call.
1058 */
1059 nPayload = *pIter;
1060 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001061 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001062 nPayload &= 0x7f;
1063 do{
1064 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1065 }while( (*pIter)>=0x80 && pIter<pEnd );
1066 }
1067 pIter++;
1068
1069 /* The next block of code is equivalent to:
1070 **
1071 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1072 **
1073 ** The code is inlined to avoid a function call.
1074 */
1075 iKey = *pIter;
1076 if( iKey>=0x80 ){
1077 u8 *pEnd = &pIter[7];
1078 iKey &= 0x7f;
1079 while(1){
1080 iKey = (iKey<<7) | (*++pIter & 0x7f);
1081 if( (*pIter)<0x80 ) break;
1082 if( pIter>=pEnd ){
1083 iKey = (iKey<<8) | *++pIter;
1084 break;
1085 }
1086 }
1087 }
1088 pIter++;
1089
1090 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001091 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001092 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001093 testcase( nPayload==pPage->maxLocal );
1094 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001095 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001096 /* This is the (easy) common case where the entire payload fits
1097 ** on the local page. No overflow is required.
1098 */
drhab1cc582014-09-23 21:25:19 +00001099 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1100 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001101 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001102 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001103 }else{
drh5fa60512015-06-19 17:19:34 +00001104 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1105 }
1106}
1107static void btreeParseCellPtrIndex(
1108 MemPage *pPage, /* Page containing the cell */
1109 u8 *pCell, /* Pointer to the cell text. */
1110 CellInfo *pInfo /* Fill in this structure */
1111){
1112 u8 *pIter; /* For scanning through pCell */
1113 u32 nPayload; /* Number of bytes of cell payload */
drh271efa52004-05-30 19:19:05 +00001114
drh5fa60512015-06-19 17:19:34 +00001115 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1116 assert( pPage->leaf==0 || pPage->leaf==1 );
1117 assert( pPage->intKeyLeaf==0 );
1118 assert( pPage->noPayload==0 );
1119 pIter = pCell + pPage->childPtrSize;
1120 nPayload = *pIter;
1121 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001122 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001123 nPayload &= 0x7f;
1124 do{
1125 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1126 }while( *(pIter)>=0x80 && pIter<pEnd );
1127 }
1128 pIter++;
1129 pInfo->nKey = nPayload;
1130 pInfo->nPayload = nPayload;
1131 pInfo->pPayload = pIter;
1132 testcase( nPayload==pPage->maxLocal );
1133 testcase( nPayload==pPage->maxLocal+1 );
1134 if( nPayload<=pPage->maxLocal ){
1135 /* This is the (easy) common case where the entire payload fits
1136 ** on the local page. No overflow is required.
1137 */
1138 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1139 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1140 pInfo->nLocal = (u16)nPayload;
1141 pInfo->iOverflow = 0;
1142 }else{
1143 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001144 }
drh3aac2dd2004-04-26 14:10:20 +00001145}
danielk197730548662009-07-09 05:07:37 +00001146static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001147 MemPage *pPage, /* Page containing the cell */
1148 int iCell, /* The cell index. First cell is 0 */
1149 CellInfo *pInfo /* Fill in this structure */
1150){
drh5fa60512015-06-19 17:19:34 +00001151 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001152}
drh3aac2dd2004-04-26 14:10:20 +00001153
1154/*
drh5fa60512015-06-19 17:19:34 +00001155** The following routines are implementations of the MemPage.xCellSize
1156** method.
1157**
drh43605152004-05-29 21:46:49 +00001158** Compute the total number of bytes that a Cell needs in the cell
1159** data area of the btree-page. The return number includes the cell
1160** data header and the local payload, but not any overflow page or
1161** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001162**
drh5fa60512015-06-19 17:19:34 +00001163** cellSizePtrNoPayload() => table internal nodes
1164** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001165*/
danielk1977ae5558b2009-04-29 11:31:47 +00001166static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001167 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1168 u8 *pEnd; /* End mark for a varint */
1169 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001170
1171#ifdef SQLITE_DEBUG
1172 /* The value returned by this function should always be the same as
1173 ** the (CellInfo.nSize) value found by doing a full parse of the
1174 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1175 ** this function verifies that this invariant is not violated. */
1176 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001177 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001178#endif
1179
drh25ada072015-06-19 15:07:14 +00001180 assert( pPage->noPayload==0 );
drh3e28ff52014-09-24 00:59:08 +00001181 nSize = *pIter;
1182 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001183 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001184 nSize &= 0x7f;
1185 do{
1186 nSize = (nSize<<7) | (*++pIter & 0x7f);
1187 }while( *(pIter)>=0x80 && pIter<pEnd );
1188 }
1189 pIter++;
drhdc41d602014-09-22 19:51:35 +00001190 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001191 /* pIter now points at the 64-bit integer key value, a variable length
1192 ** integer. The following block moves pIter to point at the first byte
1193 ** past the end of the key value. */
1194 pEnd = &pIter[9];
1195 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001196 }
drh0a45c272009-07-08 01:49:11 +00001197 testcase( nSize==pPage->maxLocal );
1198 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001199 if( nSize<=pPage->maxLocal ){
1200 nSize += (u32)(pIter - pCell);
1201 if( nSize<4 ) nSize = 4;
1202 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001203 int minLocal = pPage->minLocal;
1204 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001205 testcase( nSize==pPage->maxLocal );
1206 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001207 if( nSize>pPage->maxLocal ){
1208 nSize = minLocal;
1209 }
drh3e28ff52014-09-24 00:59:08 +00001210 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001211 }
drhdc41d602014-09-22 19:51:35 +00001212 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001213 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001214}
drh25ada072015-06-19 15:07:14 +00001215static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1216 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1217 u8 *pEnd; /* End mark for a varint */
1218
1219#ifdef SQLITE_DEBUG
1220 /* The value returned by this function should always be the same as
1221 ** the (CellInfo.nSize) value found by doing a full parse of the
1222 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1223 ** this function verifies that this invariant is not violated. */
1224 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001225 pPage->xParseCell(pPage, pCell, &debuginfo);
drh25ada072015-06-19 15:07:14 +00001226#endif
1227
1228 assert( pPage->childPtrSize==4 );
1229 pEnd = pIter + 9;
1230 while( (*pIter++)&0x80 && pIter<pEnd );
1231 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1232 return (u16)(pIter - pCell);
1233}
1234
drh0ee3dbe2009-10-16 15:05:18 +00001235
1236#ifdef SQLITE_DEBUG
1237/* This variation on cellSizePtr() is used inside of assert() statements
1238** only. */
drha9121e42008-02-19 14:59:35 +00001239static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001240 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001241}
danielk1977bc6ada42004-06-30 08:20:16 +00001242#endif
drh3b7511c2001-05-26 13:15:44 +00001243
danielk197779a40da2005-01-16 08:00:01 +00001244#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001245/*
danielk197726836652005-01-17 01:33:13 +00001246** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001247** to an overflow page, insert an entry into the pointer-map
1248** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001249*/
drh98add2e2009-07-20 17:11:49 +00001250static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001251 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001252 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001253 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001254 pPage->xParseCell(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001255 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001256 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001257 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001258 }
danielk1977ac11ee62005-01-15 12:45:51 +00001259}
danielk197779a40da2005-01-16 08:00:01 +00001260#endif
1261
danielk1977ac11ee62005-01-15 12:45:51 +00001262
drhda200cc2004-05-09 11:51:38 +00001263/*
drh72f82862001-05-24 21:06:34 +00001264** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001265** end of the page and all free space is collected into one
1266** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001267** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001268**
1269** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1270** b-tree page so that there are no freeblocks or fragment bytes, all
1271** unused bytes are contained in the unallocated space region, and all
1272** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001273*/
shane0af3f892008-11-12 04:55:34 +00001274static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001275 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001276 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001277 int hdr; /* Offset to the page header */
1278 int size; /* Size of a cell */
1279 int usableSize; /* Number of usable bytes on a page */
1280 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001281 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001282 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001283 unsigned char *data; /* The page data */
1284 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001285 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001286 int iCellFirst; /* First allowable cell index */
1287 int iCellLast; /* Last possible cell index */
1288
drh2af926b2001-05-15 00:39:25 +00001289
danielk19773b8a05f2007-03-19 17:44:26 +00001290 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001291 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001292 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001293 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001294 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001295 temp = 0;
1296 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001297 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001298 cellOffset = pPage->cellOffset;
1299 nCell = pPage->nCell;
1300 assert( nCell==get2byte(&data[hdr+3]) );
1301 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001302 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001303 iCellFirst = cellOffset + 2*nCell;
1304 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001305 for(i=0; i<nCell; i++){
1306 u8 *pAddr; /* The i-th cell pointer */
1307 pAddr = &data[cellOffset + i*2];
1308 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001309 testcase( pc==iCellFirst );
1310 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001311 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001312 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001313 */
1314 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001315 return SQLITE_CORRUPT_BKPT;
1316 }
drh17146622009-07-07 17:38:38 +00001317 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001318 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001319 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001320 if( cbrk<iCellFirst || pc+size>usableSize ){
1321 return SQLITE_CORRUPT_BKPT;
1322 }
drh7157e1d2009-07-09 13:25:32 +00001323 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001324 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001325 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001326 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001327 if( temp==0 ){
1328 int x;
1329 if( cbrk==pc ) continue;
1330 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1331 x = get2byte(&data[hdr+5]);
1332 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1333 src = temp;
1334 }
1335 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001336 }
drh17146622009-07-07 17:38:38 +00001337 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001338 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001339 data[hdr+1] = 0;
1340 data[hdr+2] = 0;
1341 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001342 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001343 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001344 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001345 return SQLITE_CORRUPT_BKPT;
1346 }
shane0af3f892008-11-12 04:55:34 +00001347 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001348}
1349
drha059ad02001-04-17 20:09:11 +00001350/*
dan8e9ba0c2014-10-14 17:27:04 +00001351** Search the free-list on page pPg for space to store a cell nByte bytes in
1352** size. If one can be found, return a pointer to the space and remove it
1353** from the free-list.
1354**
1355** If no suitable space can be found on the free-list, return NULL.
1356**
drhba0f9992014-10-30 20:48:44 +00001357** This function may detect corruption within pPg. If corruption is
1358** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001359**
drhb7580e82015-06-25 18:36:13 +00001360** Slots on the free list that are between 1 and 3 bytes larger than nByte
1361** will be ignored if adding the extra space to the fragmentation count
1362** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001363*/
drhb7580e82015-06-25 18:36:13 +00001364static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001365 const int hdr = pPg->hdrOffset;
1366 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001367 int iAddr = hdr + 1;
1368 int pc = get2byte(&aData[iAddr]);
1369 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001370 int usableSize = pPg->pBt->usableSize;
1371
drhb7580e82015-06-25 18:36:13 +00001372 assert( pc>0 );
1373 do{
dan8e9ba0c2014-10-14 17:27:04 +00001374 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001375 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1376 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001377 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001378 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001379 return 0;
1380 }
drh113762a2014-11-19 16:36:25 +00001381 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1382 ** freeblock form a big-endian integer which is the size of the freeblock
1383 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001384 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001385 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001386 testcase( x==4 );
1387 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001388 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1389 *pRc = SQLITE_CORRUPT_BKPT;
1390 return 0;
1391 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001392 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1393 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001394 if( aData[hdr+7]>57 ) return 0;
1395
dan8e9ba0c2014-10-14 17:27:04 +00001396 /* Remove the slot from the free-list. Update the number of
1397 ** fragmented bytes within the page. */
1398 memcpy(&aData[iAddr], &aData[pc], 2);
1399 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001400 }else{
1401 /* The slot remains on the free-list. Reduce its size to account
1402 ** for the portion used by the new allocation. */
1403 put2byte(&aData[pc+2], x);
1404 }
1405 return &aData[pc + x];
1406 }
drhb7580e82015-06-25 18:36:13 +00001407 iAddr = pc;
1408 pc = get2byte(&aData[pc]);
1409 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001410
1411 return 0;
1412}
1413
1414/*
danielk19776011a752009-04-01 16:25:32 +00001415** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001416** as the first argument. Write into *pIdx the index into pPage->aData[]
1417** of the first byte of allocated space. Return either SQLITE_OK or
1418** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001419**
drh0a45c272009-07-08 01:49:11 +00001420** The caller guarantees that there is sufficient space to make the
1421** allocation. This routine might need to defragment in order to bring
1422** all the space together, however. This routine will avoid using
1423** the first two bytes past the cell pointer area since presumably this
1424** allocation is being made in order to insert a new cell, so we will
1425** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001426*/
drh0a45c272009-07-08 01:49:11 +00001427static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001428 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1429 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001430 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001431 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001432 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001433
danielk19773b8a05f2007-03-19 17:44:26 +00001434 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001435 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001436 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001437 assert( nByte>=0 ); /* Minimum cell size is 4 */
1438 assert( pPage->nFree>=nByte );
1439 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001440 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001441
drh0a45c272009-07-08 01:49:11 +00001442 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1443 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001444 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001445 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1446 ** and the reserved space is zero (the usual value for reserved space)
1447 ** then the cell content offset of an empty page wants to be 65536.
1448 ** However, that integer is too large to be stored in a 2-byte unsigned
1449 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001450 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001451 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001452 if( gap>top ){
1453 if( top==0 && pPage->pBt->usableSize==65536 ){
1454 top = 65536;
1455 }else{
1456 return SQLITE_CORRUPT_BKPT;
1457 }
drhe7266222015-05-29 17:51:16 +00001458 }
drh4c04f3c2014-08-20 11:56:14 +00001459
1460 /* If there is enough space between gap and top for one more cell pointer
1461 ** array entry offset, and if the freelist is not empty, then search the
1462 ** freelist looking for a free slot big enough to satisfy the request.
1463 */
drh0a45c272009-07-08 01:49:11 +00001464 testcase( gap+2==top );
1465 testcase( gap+1==top );
1466 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001467 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001468 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001469 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001470 assert( pSpace>=data && (pSpace - data)<65536 );
1471 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001472 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001473 }else if( rc ){
1474 return rc;
drh9e572e62004-04-23 23:43:10 +00001475 }
1476 }
drh43605152004-05-29 21:46:49 +00001477
drh4c04f3c2014-08-20 11:56:14 +00001478 /* The request could not be fulfilled using a freelist slot. Check
1479 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001480 */
1481 testcase( gap+2+nByte==top );
1482 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001483 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001484 rc = defragmentPage(pPage);
1485 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001486 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001487 assert( gap+nByte<=top );
1488 }
1489
1490
drh43605152004-05-29 21:46:49 +00001491 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001492 ** and the cell content area. The btreeInitPage() call has already
1493 ** validated the freelist. Given that the freelist is valid, there
1494 ** is no way that the allocation can extend off the end of the page.
1495 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001496 */
drh0a45c272009-07-08 01:49:11 +00001497 top -= nByte;
drh43605152004-05-29 21:46:49 +00001498 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001499 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001500 *pIdx = top;
1501 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001502}
1503
1504/*
drh9e572e62004-04-23 23:43:10 +00001505** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001506** The first byte of the new free block is pPage->aData[iStart]
1507** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001508**
drh5f5c7532014-08-20 17:56:27 +00001509** Adjacent freeblocks are coalesced.
1510**
1511** Note that even though the freeblock list was checked by btreeInitPage(),
1512** that routine will not detect overlap between cells or freeblocks. Nor
1513** does it detect cells or freeblocks that encrouch into the reserved bytes
1514** at the end of the page. So do additional corruption checks inside this
1515** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001516*/
drh5f5c7532014-08-20 17:56:27 +00001517static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001518 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001519 u16 iFreeBlk; /* Address of the next freeblock */
1520 u8 hdr; /* Page header size. 0 or 100 */
1521 u8 nFrag = 0; /* Reduction in fragmentation */
1522 u16 iOrigSize = iSize; /* Original value of iSize */
1523 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1524 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001525 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001526
drh9e572e62004-04-23 23:43:10 +00001527 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001528 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001529 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001530 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001531 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001532 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001533 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001534
drh5f5c7532014-08-20 17:56:27 +00001535 /* Overwrite deleted information with zeros when the secure_delete
1536 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001537 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001538 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001539 }
drhfcce93f2006-02-22 03:08:32 +00001540
drh5f5c7532014-08-20 17:56:27 +00001541 /* The list of freeblocks must be in ascending order. Find the
1542 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001543 */
drh43605152004-05-29 21:46:49 +00001544 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001545 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001546 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1547 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1548 }else{
1549 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1550 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1551 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001552 }
drh7bc4c452014-08-20 18:43:44 +00001553 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1554 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1555
1556 /* At this point:
1557 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001558 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001559 **
1560 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1561 */
1562 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1563 nFrag = iFreeBlk - iEnd;
1564 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1565 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001566 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001567 iSize = iEnd - iStart;
1568 iFreeBlk = get2byte(&data[iFreeBlk]);
1569 }
1570
drh3f387402014-09-24 01:23:00 +00001571 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1572 ** pointer in the page header) then check to see if iStart should be
1573 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001574 */
1575 if( iPtr>hdr+1 ){
1576 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1577 if( iPtrEnd+3>=iStart ){
1578 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1579 nFrag += iStart - iPtrEnd;
1580 iSize = iEnd - iPtr;
1581 iStart = iPtr;
1582 }
1583 }
1584 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1585 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001586 }
drh7bc4c452014-08-20 18:43:44 +00001587 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001588 /* The new freeblock is at the beginning of the cell content area,
1589 ** so just extend the cell content area rather than create another
1590 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001591 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001592 put2byte(&data[hdr+1], iFreeBlk);
1593 put2byte(&data[hdr+5], iEnd);
1594 }else{
1595 /* Insert the new freeblock into the freelist */
1596 put2byte(&data[iPtr], iStart);
1597 put2byte(&data[iStart], iFreeBlk);
1598 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001599 }
drh5f5c7532014-08-20 17:56:27 +00001600 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001601 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001602}
1603
1604/*
drh271efa52004-05-30 19:19:05 +00001605** Decode the flags byte (the first byte of the header) for a page
1606** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001607**
1608** Only the following combinations are supported. Anything different
1609** indicates a corrupt database files:
1610**
1611** PTF_ZERODATA
1612** PTF_ZERODATA | PTF_LEAF
1613** PTF_LEAFDATA | PTF_INTKEY
1614** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001615*/
drh44845222008-07-17 18:39:57 +00001616static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001617 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001618
1619 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001620 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001621 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001622 flagByte &= ~PTF_LEAF;
1623 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001624 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001625 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001626 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001627 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1628 ** table b-tree page. */
1629 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1630 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1631 ** table b-tree page. */
1632 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001633 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001634 if( pPage->leaf ){
1635 pPage->intKeyLeaf = 1;
1636 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001637 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001638 }else{
1639 pPage->intKeyLeaf = 0;
1640 pPage->noPayload = 1;
1641 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001642 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001643 }
drh271efa52004-05-30 19:19:05 +00001644 pPage->maxLocal = pBt->maxLeaf;
1645 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001646 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001647 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1648 ** index b-tree page. */
1649 assert( (PTF_ZERODATA)==2 );
1650 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1651 ** index b-tree page. */
1652 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001653 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001654 pPage->intKeyLeaf = 0;
1655 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001656 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001657 pPage->maxLocal = pBt->maxLocal;
1658 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001659 }else{
drhfdab0262014-11-20 15:30:50 +00001660 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1661 ** an error. */
drh44845222008-07-17 18:39:57 +00001662 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001663 }
drhc9166342012-01-05 23:32:06 +00001664 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001665 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001666}
1667
1668/*
drh7e3b0a02001-04-28 16:52:40 +00001669** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001670**
1671** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001672** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001673** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1674** guarantee that the page is well-formed. It only shows that
1675** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001676*/
danielk197730548662009-07-09 05:07:37 +00001677static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001678
danielk197771d5d2c2008-09-29 11:49:47 +00001679 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001680 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001681 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001682 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001683 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1684 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001685
1686 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001687 u16 pc; /* Address of a freeblock within pPage->aData[] */
1688 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001689 u8 *data; /* Equal to pPage->aData */
1690 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001691 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001692 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001693 int nFree; /* Number of unused bytes on the page */
1694 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001695 int iCellFirst; /* First allowable cell or freeblock offset */
1696 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001697
1698 pBt = pPage->pBt;
1699
danielk1977eaa06f62008-09-18 17:34:44 +00001700 hdr = pPage->hdrOffset;
1701 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001702 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1703 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001704 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001705 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1706 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001707 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001708 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001709 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001710 pPage->aDataEnd = &data[usableSize];
1711 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001712 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001713 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1714 ** the start of the cell content area. A zero value for this integer is
1715 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001716 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001717 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1718 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001719 pPage->nCell = get2byte(&data[hdr+3]);
1720 if( pPage->nCell>MX_CELL(pBt) ){
1721 /* To many cells for a single page. The page must be corrupt */
1722 return SQLITE_CORRUPT_BKPT;
1723 }
drhb908d762009-07-08 16:54:40 +00001724 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001725 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1726 ** possible for a root page of a table that contains no rows) then the
1727 ** offset to the cell content area will equal the page size minus the
1728 ** bytes of reserved space. */
1729 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001730
shane5eff7cf2009-08-10 03:57:58 +00001731 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001732 ** of page when parsing a cell.
1733 **
1734 ** The following block of code checks early to see if a cell extends
1735 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1736 ** returned if it does.
1737 */
drh0a45c272009-07-08 01:49:11 +00001738 iCellFirst = cellOffset + 2*pPage->nCell;
1739 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001740 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001741 int i; /* Index into the cell pointer array */
1742 int sz; /* Size of a cell */
1743
drh69e931e2009-06-03 21:04:35 +00001744 if( !pPage->leaf ) iCellLast--;
1745 for(i=0; i<pPage->nCell; i++){
1746 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001747 testcase( pc==iCellFirst );
1748 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001749 if( pc<iCellFirst || pc>iCellLast ){
1750 return SQLITE_CORRUPT_BKPT;
1751 }
drh25ada072015-06-19 15:07:14 +00001752 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001753 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001754 if( pc+sz>usableSize ){
1755 return SQLITE_CORRUPT_BKPT;
1756 }
1757 }
drh0a45c272009-07-08 01:49:11 +00001758 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001759 }
drh69e931e2009-06-03 21:04:35 +00001760
drhfdab0262014-11-20 15:30:50 +00001761 /* Compute the total free space on the page
1762 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1763 ** start of the first freeblock on the page, or is zero if there are no
1764 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001765 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001766 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001767 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001768 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001769 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001770 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1771 ** always be at least one cell before the first freeblock.
1772 **
1773 ** Or, the freeblock is off the end of the page
1774 */
danielk1977eaa06f62008-09-18 17:34:44 +00001775 return SQLITE_CORRUPT_BKPT;
1776 }
1777 next = get2byte(&data[pc]);
1778 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001779 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1780 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001781 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001782 return SQLITE_CORRUPT_BKPT;
1783 }
shane85095702009-06-15 16:27:08 +00001784 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001785 pc = next;
1786 }
danielk197793c829c2009-06-03 17:26:17 +00001787
1788 /* At this point, nFree contains the sum of the offset to the start
1789 ** of the cell-content area plus the number of free bytes within
1790 ** the cell-content area. If this is greater than the usable-size
1791 ** of the page, then the page must be corrupted. This check also
1792 ** serves to verify that the offset to the start of the cell-content
1793 ** area, according to the page header, lies within the page.
1794 */
1795 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001796 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001797 }
shane5eff7cf2009-08-10 03:57:58 +00001798 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001799 pPage->isInit = 1;
1800 }
drh9e572e62004-04-23 23:43:10 +00001801 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001802}
1803
1804/*
drh8b2f49b2001-06-08 00:21:52 +00001805** Set up a raw page so that it looks like a database page holding
1806** no entries.
drhbd03cae2001-06-02 02:40:57 +00001807*/
drh9e572e62004-04-23 23:43:10 +00001808static void zeroPage(MemPage *pPage, int flags){
1809 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001810 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001811 u8 hdr = pPage->hdrOffset;
1812 u16 first;
drh9e572e62004-04-23 23:43:10 +00001813
danielk19773b8a05f2007-03-19 17:44:26 +00001814 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001815 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1816 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001817 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001818 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001819 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001820 memset(&data[hdr], 0, pBt->usableSize - hdr);
1821 }
drh1bd10f82008-12-10 21:19:56 +00001822 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001823 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001824 memset(&data[hdr+1], 0, 4);
1825 data[hdr+7] = 0;
1826 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001827 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001828 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001829 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001830 pPage->aDataEnd = &data[pBt->usableSize];
1831 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001832 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001833 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001834 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1835 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001836 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001837 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001838}
1839
drh897a8202008-09-18 01:08:15 +00001840
1841/*
1842** Convert a DbPage obtained from the pager into a MemPage used by
1843** the btree layer.
1844*/
1845static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1846 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1847 pPage->aData = sqlite3PagerGetData(pDbPage);
1848 pPage->pDbPage = pDbPage;
1849 pPage->pBt = pBt;
1850 pPage->pgno = pgno;
1851 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1852 return pPage;
1853}
1854
drhbd03cae2001-06-02 02:40:57 +00001855/*
drh3aac2dd2004-04-26 14:10:20 +00001856** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001857** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001858**
drh7e8c6f12015-05-28 03:28:27 +00001859** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1860** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001861** to fetch the content. Just fill in the content with zeros for now.
1862** If in the future we call sqlite3PagerWrite() on this page, that
1863** means we have started to be concerned about content and the disk
1864** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001865*/
danielk197730548662009-07-09 05:07:37 +00001866static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001867 BtShared *pBt, /* The btree */
1868 Pgno pgno, /* Number of the page to fetch */
1869 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001870 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001871){
drh3aac2dd2004-04-26 14:10:20 +00001872 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001873 DbPage *pDbPage;
1874
drhb00fc3b2013-08-21 23:42:32 +00001875 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001876 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001877 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001878 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001879 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001880 return SQLITE_OK;
1881}
1882
1883/*
danielk1977bea2a942009-01-20 17:06:27 +00001884** Retrieve a page from the pager cache. If the requested page is not
1885** already in the pager cache return NULL. Initialize the MemPage.pBt and
1886** MemPage.aData elements if needed.
1887*/
1888static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1889 DbPage *pDbPage;
1890 assert( sqlite3_mutex_held(pBt->mutex) );
1891 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1892 if( pDbPage ){
1893 return btreePageFromDbPage(pDbPage, pgno, pBt);
1894 }
1895 return 0;
1896}
1897
1898/*
danielk197789d40042008-11-17 14:20:56 +00001899** Return the size of the database file in pages. If there is any kind of
1900** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001901*/
drhb1299152010-03-30 22:58:33 +00001902static Pgno btreePagecount(BtShared *pBt){
1903 return pBt->nPage;
1904}
1905u32 sqlite3BtreeLastPage(Btree *p){
1906 assert( sqlite3BtreeHoldsMutex(p) );
1907 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001908 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001909}
1910
1911/*
danielk197789bc4bc2009-07-21 19:25:24 +00001912** Get a page from the pager and initialize it. This routine is just a
1913** convenience wrapper around separate calls to btreeGetPage() and
1914** btreeInitPage().
1915**
1916** If an error occurs, then the value *ppPage is set to is undefined. It
1917** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001918*/
1919static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001920 BtShared *pBt, /* The database file */
1921 Pgno pgno, /* Number of the page to get */
1922 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001923 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001924){
1925 int rc;
drh1fee73e2007-08-29 04:00:57 +00001926 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001927 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001928
danba3cbf32010-06-30 04:29:03 +00001929 if( pgno>btreePagecount(pBt) ){
1930 rc = SQLITE_CORRUPT_BKPT;
1931 }else{
drhb00fc3b2013-08-21 23:42:32 +00001932 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001933 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001934 rc = btreeInitPage(*ppPage);
1935 if( rc!=SQLITE_OK ){
1936 releasePage(*ppPage);
1937 }
danielk197789bc4bc2009-07-21 19:25:24 +00001938 }
drhee696e22004-08-30 16:52:17 +00001939 }
danba3cbf32010-06-30 04:29:03 +00001940
1941 testcase( pgno==0 );
1942 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001943 return rc;
1944}
1945
1946/*
drh3aac2dd2004-04-26 14:10:20 +00001947** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001948** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001949*/
drh4b70f112004-05-02 21:12:19 +00001950static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001951 if( pPage ){
1952 assert( pPage->aData );
1953 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001954 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001955 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1956 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001957 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001958 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001959 }
1960}
1961
1962/*
drh7e8c6f12015-05-28 03:28:27 +00001963** Get an unused page.
1964**
1965** This works just like btreeGetPage() with the addition:
1966**
1967** * If the page is already in use for some other purpose, immediately
1968** release it and return an SQLITE_CURRUPT error.
1969** * Make sure the isInit flag is clear
1970*/
1971static int btreeGetUnusedPage(
1972 BtShared *pBt, /* The btree */
1973 Pgno pgno, /* Number of the page to fetch */
1974 MemPage **ppPage, /* Return the page in this parameter */
1975 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1976){
1977 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
1978 if( rc==SQLITE_OK ){
1979 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
1980 releasePage(*ppPage);
1981 *ppPage = 0;
1982 return SQLITE_CORRUPT_BKPT;
1983 }
1984 (*ppPage)->isInit = 0;
1985 }else{
1986 *ppPage = 0;
1987 }
1988 return rc;
1989}
1990
1991
1992/*
drha6abd042004-06-09 17:37:22 +00001993** During a rollback, when the pager reloads information into the cache
1994** so that the cache is restored to its original state at the start of
1995** the transaction, for each page restored this routine is called.
1996**
1997** This routine needs to reset the extra data section at the end of the
1998** page to agree with the restored data.
1999*/
danielk1977eaa06f62008-09-18 17:34:44 +00002000static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002001 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002002 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002003 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002004 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002005 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002006 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002007 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002008 /* pPage might not be a btree page; it might be an overflow page
2009 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002010 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002011 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002012 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002013 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002014 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002015 }
drha6abd042004-06-09 17:37:22 +00002016 }
2017}
2018
2019/*
drhe5fe6902007-12-07 18:55:28 +00002020** Invoke the busy handler for a btree.
2021*/
danielk19771ceedd32008-11-19 10:22:33 +00002022static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002023 BtShared *pBt = (BtShared*)pArg;
2024 assert( pBt->db );
2025 assert( sqlite3_mutex_held(pBt->db->mutex) );
2026 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2027}
2028
2029/*
drhad3e0102004-09-03 23:32:18 +00002030** Open a database file.
2031**
drh382c0242001-10-06 16:33:02 +00002032** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002033** then an ephemeral database is created. The ephemeral database might
2034** be exclusively in memory, or it might use a disk-based memory cache.
2035** Either way, the ephemeral database will be automatically deleted
2036** when sqlite3BtreeClose() is called.
2037**
drhe53831d2007-08-17 01:14:38 +00002038** If zFilename is ":memory:" then an in-memory database is created
2039** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002040**
drh33f111d2012-01-17 15:29:14 +00002041** The "flags" parameter is a bitmask that might contain bits like
2042** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002043**
drhc47fd8e2009-04-30 13:30:32 +00002044** If the database is already opened in the same database connection
2045** and we are in shared cache mode, then the open will fail with an
2046** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2047** objects in the same database connection since doing so will lead
2048** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002049*/
drh23e11ca2004-05-04 17:27:28 +00002050int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002051 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002052 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002053 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002054 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002055 int flags, /* Options */
2056 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002057){
drh7555d8e2009-03-20 13:15:30 +00002058 BtShared *pBt = 0; /* Shared part of btree structure */
2059 Btree *p; /* Handle to return */
2060 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2061 int rc = SQLITE_OK; /* Result code from this function */
2062 u8 nReserve; /* Byte of unused space on each page */
2063 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002064
drh75c014c2010-08-30 15:02:28 +00002065 /* True if opening an ephemeral, temporary database */
2066 const int isTempDb = zFilename==0 || zFilename[0]==0;
2067
danielk1977aef0bf62005-12-30 16:28:01 +00002068 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002069 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002070 */
drhb0a7c9c2010-12-06 21:09:59 +00002071#ifdef SQLITE_OMIT_MEMORYDB
2072 const int isMemdb = 0;
2073#else
2074 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002075 || (isTempDb && sqlite3TempInMemory(db))
2076 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002077#endif
2078
drhe5fe6902007-12-07 18:55:28 +00002079 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002080 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002081 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002082 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2083
2084 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2085 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2086
2087 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2088 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002089
drh75c014c2010-08-30 15:02:28 +00002090 if( isMemdb ){
2091 flags |= BTREE_MEMORY;
2092 }
2093 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2094 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2095 }
drh17435752007-08-16 04:30:38 +00002096 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002097 if( !p ){
2098 return SQLITE_NOMEM;
2099 }
2100 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002101 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002102#ifndef SQLITE_OMIT_SHARED_CACHE
2103 p->lock.pBtree = p;
2104 p->lock.iTable = 1;
2105#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002106
drh198bf392006-01-06 21:52:49 +00002107#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002108 /*
2109 ** If this Btree is a candidate for shared cache, try to find an
2110 ** existing BtShared object that we can share with
2111 */
drh4ab9d252012-05-26 20:08:49 +00002112 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002113 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002114 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002115 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002116 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002117 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002118
drhff0587c2007-08-29 17:43:19 +00002119 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002120 if( !zFullPathname ){
2121 sqlite3_free(p);
2122 return SQLITE_NOMEM;
2123 }
drhafc8b7f2012-05-26 18:06:38 +00002124 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002125 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002126 }else{
2127 rc = sqlite3OsFullPathname(pVfs, zFilename,
2128 nFullPathname, zFullPathname);
2129 if( rc ){
2130 sqlite3_free(zFullPathname);
2131 sqlite3_free(p);
2132 return rc;
2133 }
drh070ad6b2011-11-17 11:43:19 +00002134 }
drh30ddce62011-10-15 00:16:30 +00002135#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002136 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2137 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002138 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002139 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002140#endif
drh78f82d12008-09-02 00:52:52 +00002141 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002142 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002143 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002144 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002145 int iDb;
2146 for(iDb=db->nDb-1; iDb>=0; iDb--){
2147 Btree *pExisting = db->aDb[iDb].pBt;
2148 if( pExisting && pExisting->pBt==pBt ){
2149 sqlite3_mutex_leave(mutexShared);
2150 sqlite3_mutex_leave(mutexOpen);
2151 sqlite3_free(zFullPathname);
2152 sqlite3_free(p);
2153 return SQLITE_CONSTRAINT;
2154 }
2155 }
drhff0587c2007-08-29 17:43:19 +00002156 p->pBt = pBt;
2157 pBt->nRef++;
2158 break;
2159 }
2160 }
2161 sqlite3_mutex_leave(mutexShared);
2162 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002163 }
drhff0587c2007-08-29 17:43:19 +00002164#ifdef SQLITE_DEBUG
2165 else{
2166 /* In debug mode, we mark all persistent databases as sharable
2167 ** even when they are not. This exercises the locking code and
2168 ** gives more opportunity for asserts(sqlite3_mutex_held())
2169 ** statements to find locking problems.
2170 */
2171 p->sharable = 1;
2172 }
2173#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002174 }
2175#endif
drha059ad02001-04-17 20:09:11 +00002176 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002177 /*
2178 ** The following asserts make sure that structures used by the btree are
2179 ** the right size. This is to guard against size changes that result
2180 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002181 */
drh062cf272015-03-23 19:03:51 +00002182 assert( sizeof(i64)==8 );
2183 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002184 assert( sizeof(u32)==4 );
2185 assert( sizeof(u16)==2 );
2186 assert( sizeof(Pgno)==4 );
2187
2188 pBt = sqlite3MallocZero( sizeof(*pBt) );
2189 if( pBt==0 ){
2190 rc = SQLITE_NOMEM;
2191 goto btree_open_out;
2192 }
danielk197771d5d2c2008-09-29 11:49:47 +00002193 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002194 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002195 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002196 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002197 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2198 }
2199 if( rc!=SQLITE_OK ){
2200 goto btree_open_out;
2201 }
shanehbd2aaf92010-09-01 02:38:21 +00002202 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002203 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002204 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002205 p->pBt = pBt;
2206
drhe53831d2007-08-17 01:14:38 +00002207 pBt->pCursor = 0;
2208 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002209 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002210#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002211 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002212#endif
drh113762a2014-11-19 16:36:25 +00002213 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2214 ** determined by the 2-byte integer located at an offset of 16 bytes from
2215 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002216 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002217 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2218 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002219 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002220#ifndef SQLITE_OMIT_AUTOVACUUM
2221 /* If the magic name ":memory:" will create an in-memory database, then
2222 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2223 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2224 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2225 ** regular file-name. In this case the auto-vacuum applies as per normal.
2226 */
2227 if( zFilename && !isMemdb ){
2228 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2229 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2230 }
2231#endif
2232 nReserve = 0;
2233 }else{
drh113762a2014-11-19 16:36:25 +00002234 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2235 ** determined by the one-byte unsigned integer found at an offset of 20
2236 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002237 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002238 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002239#ifndef SQLITE_OMIT_AUTOVACUUM
2240 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2241 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2242#endif
2243 }
drhfa9601a2009-06-18 17:22:39 +00002244 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002245 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002246 pBt->usableSize = pBt->pageSize - nReserve;
2247 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002248
2249#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2250 /* Add the new BtShared object to the linked list sharable BtShareds.
2251 */
2252 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002253 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002254 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002255 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002256 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002257 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002258 if( pBt->mutex==0 ){
2259 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002260 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002261 goto btree_open_out;
2262 }
drhff0587c2007-08-29 17:43:19 +00002263 }
drhe53831d2007-08-17 01:14:38 +00002264 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002265 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2266 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002267 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002268 }
drheee46cf2004-11-06 00:02:48 +00002269#endif
drh90f5ecb2004-07-22 01:19:35 +00002270 }
danielk1977aef0bf62005-12-30 16:28:01 +00002271
drhcfed7bc2006-03-13 14:28:05 +00002272#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002273 /* If the new Btree uses a sharable pBtShared, then link the new
2274 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002275 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002276 */
drhe53831d2007-08-17 01:14:38 +00002277 if( p->sharable ){
2278 int i;
2279 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002280 for(i=0; i<db->nDb; i++){
2281 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002282 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2283 if( p->pBt<pSib->pBt ){
2284 p->pNext = pSib;
2285 p->pPrev = 0;
2286 pSib->pPrev = p;
2287 }else{
drhabddb0c2007-08-20 13:14:28 +00002288 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002289 pSib = pSib->pNext;
2290 }
2291 p->pNext = pSib->pNext;
2292 p->pPrev = pSib;
2293 if( p->pNext ){
2294 p->pNext->pPrev = p;
2295 }
2296 pSib->pNext = p;
2297 }
2298 break;
2299 }
2300 }
danielk1977aef0bf62005-12-30 16:28:01 +00002301 }
danielk1977aef0bf62005-12-30 16:28:01 +00002302#endif
2303 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002304
2305btree_open_out:
2306 if( rc!=SQLITE_OK ){
2307 if( pBt && pBt->pPager ){
2308 sqlite3PagerClose(pBt->pPager);
2309 }
drh17435752007-08-16 04:30:38 +00002310 sqlite3_free(pBt);
2311 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002312 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002313 }else{
2314 /* If the B-Tree was successfully opened, set the pager-cache size to the
2315 ** default value. Except, when opening on an existing shared pager-cache,
2316 ** do not change the pager-cache size.
2317 */
2318 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2319 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2320 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002321 }
drh7555d8e2009-03-20 13:15:30 +00002322 if( mutexOpen ){
2323 assert( sqlite3_mutex_held(mutexOpen) );
2324 sqlite3_mutex_leave(mutexOpen);
2325 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002326 return rc;
drha059ad02001-04-17 20:09:11 +00002327}
2328
2329/*
drhe53831d2007-08-17 01:14:38 +00002330** Decrement the BtShared.nRef counter. When it reaches zero,
2331** remove the BtShared structure from the sharing list. Return
2332** true if the BtShared.nRef counter reaches zero and return
2333** false if it is still positive.
2334*/
2335static int removeFromSharingList(BtShared *pBt){
2336#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002337 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002338 BtShared *pList;
2339 int removed = 0;
2340
drhd677b3d2007-08-20 22:48:41 +00002341 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002342 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002343 sqlite3_mutex_enter(pMaster);
2344 pBt->nRef--;
2345 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002346 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2347 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002348 }else{
drh78f82d12008-09-02 00:52:52 +00002349 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002350 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002351 pList=pList->pNext;
2352 }
drh34004ce2008-07-11 16:15:17 +00002353 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002354 pList->pNext = pBt->pNext;
2355 }
2356 }
drh3285db22007-09-03 22:00:39 +00002357 if( SQLITE_THREADSAFE ){
2358 sqlite3_mutex_free(pBt->mutex);
2359 }
drhe53831d2007-08-17 01:14:38 +00002360 removed = 1;
2361 }
2362 sqlite3_mutex_leave(pMaster);
2363 return removed;
2364#else
2365 return 1;
2366#endif
2367}
2368
2369/*
drhf7141992008-06-19 00:16:08 +00002370** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002371** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2372** pointer.
drhf7141992008-06-19 00:16:08 +00002373*/
2374static void allocateTempSpace(BtShared *pBt){
2375 if( !pBt->pTmpSpace ){
2376 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002377
2378 /* One of the uses of pBt->pTmpSpace is to format cells before
2379 ** inserting them into a leaf page (function fillInCell()). If
2380 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2381 ** by the various routines that manipulate binary cells. Which
2382 ** can mean that fillInCell() only initializes the first 2 or 3
2383 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2384 ** it into a database page. This is not actually a problem, but it
2385 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2386 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002387 ** zero the first 4 bytes of temp space here.
2388 **
2389 ** Also: Provide four bytes of initialized space before the
2390 ** beginning of pTmpSpace as an area available to prepend the
2391 ** left-child pointer to the beginning of a cell.
2392 */
2393 if( pBt->pTmpSpace ){
2394 memset(pBt->pTmpSpace, 0, 8);
2395 pBt->pTmpSpace += 4;
2396 }
drhf7141992008-06-19 00:16:08 +00002397 }
2398}
2399
2400/*
2401** Free the pBt->pTmpSpace allocation
2402*/
2403static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002404 if( pBt->pTmpSpace ){
2405 pBt->pTmpSpace -= 4;
2406 sqlite3PageFree(pBt->pTmpSpace);
2407 pBt->pTmpSpace = 0;
2408 }
drhf7141992008-06-19 00:16:08 +00002409}
2410
2411/*
drha059ad02001-04-17 20:09:11 +00002412** Close an open database and invalidate all cursors.
2413*/
danielk1977aef0bf62005-12-30 16:28:01 +00002414int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002415 BtShared *pBt = p->pBt;
2416 BtCursor *pCur;
2417
danielk1977aef0bf62005-12-30 16:28:01 +00002418 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002419 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002420 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002421 pCur = pBt->pCursor;
2422 while( pCur ){
2423 BtCursor *pTmp = pCur;
2424 pCur = pCur->pNext;
2425 if( pTmp->pBtree==p ){
2426 sqlite3BtreeCloseCursor(pTmp);
2427 }
drha059ad02001-04-17 20:09:11 +00002428 }
danielk1977aef0bf62005-12-30 16:28:01 +00002429
danielk19778d34dfd2006-01-24 16:37:57 +00002430 /* Rollback any active transaction and free the handle structure.
2431 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2432 ** this handle.
2433 */
drh47b7fc72014-11-11 01:33:57 +00002434 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002435 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002436
danielk1977aef0bf62005-12-30 16:28:01 +00002437 /* If there are still other outstanding references to the shared-btree
2438 ** structure, return now. The remainder of this procedure cleans
2439 ** up the shared-btree.
2440 */
drhe53831d2007-08-17 01:14:38 +00002441 assert( p->wantToLock==0 && p->locked==0 );
2442 if( !p->sharable || removeFromSharingList(pBt) ){
2443 /* The pBt is no longer on the sharing list, so we can access
2444 ** it without having to hold the mutex.
2445 **
2446 ** Clean out and delete the BtShared object.
2447 */
2448 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002449 sqlite3PagerClose(pBt->pPager);
2450 if( pBt->xFreeSchema && pBt->pSchema ){
2451 pBt->xFreeSchema(pBt->pSchema);
2452 }
drhb9755982010-07-24 16:34:37 +00002453 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002454 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002455 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002456 }
2457
drhe53831d2007-08-17 01:14:38 +00002458#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002459 assert( p->wantToLock==0 );
2460 assert( p->locked==0 );
2461 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2462 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002463#endif
2464
drhe53831d2007-08-17 01:14:38 +00002465 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002466 return SQLITE_OK;
2467}
2468
2469/*
drhda47d772002-12-02 04:25:19 +00002470** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002471**
2472** The maximum number of cache pages is set to the absolute
2473** value of mxPage. If mxPage is negative, the pager will
2474** operate asynchronously - it will not stop to do fsync()s
2475** to insure data is written to the disk surface before
2476** continuing. Transactions still work if synchronous is off,
2477** and the database cannot be corrupted if this program
2478** crashes. But if the operating system crashes or there is
2479** an abrupt power failure when synchronous is off, the database
2480** could be left in an inconsistent and unrecoverable state.
2481** Synchronous is on by default so database corruption is not
2482** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002483*/
danielk1977aef0bf62005-12-30 16:28:01 +00002484int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2485 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002486 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002487 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002488 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002489 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002490 return SQLITE_OK;
2491}
2492
drh18c7e402014-03-14 11:46:10 +00002493#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002494/*
dan5d8a1372013-03-19 19:28:06 +00002495** Change the limit on the amount of the database file that may be
2496** memory mapped.
2497*/
drh9b4c59f2013-04-15 17:03:42 +00002498int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002499 BtShared *pBt = p->pBt;
2500 assert( sqlite3_mutex_held(p->db->mutex) );
2501 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002502 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002503 sqlite3BtreeLeave(p);
2504 return SQLITE_OK;
2505}
drh18c7e402014-03-14 11:46:10 +00002506#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002507
2508/*
drh973b6e32003-02-12 14:09:42 +00002509** Change the way data is synced to disk in order to increase or decrease
2510** how well the database resists damage due to OS crashes and power
2511** failures. Level 1 is the same as asynchronous (no syncs() occur and
2512** there is a high probability of damage) Level 2 is the default. There
2513** is a very low but non-zero probability of damage. Level 3 reduces the
2514** probability of damage to near zero but with a write performance reduction.
2515*/
danielk197793758c82005-01-21 08:13:14 +00002516#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002517int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002518 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002519 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002520){
danielk1977aef0bf62005-12-30 16:28:01 +00002521 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002522 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002523 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002524 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002525 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002526 return SQLITE_OK;
2527}
danielk197793758c82005-01-21 08:13:14 +00002528#endif
drh973b6e32003-02-12 14:09:42 +00002529
drh2c8997b2005-08-27 16:36:48 +00002530/*
2531** Return TRUE if the given btree is set to safety level 1. In other
2532** words, return TRUE if no sync() occurs on the disk files.
2533*/
danielk1977aef0bf62005-12-30 16:28:01 +00002534int sqlite3BtreeSyncDisabled(Btree *p){
2535 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002536 int rc;
drhe5fe6902007-12-07 18:55:28 +00002537 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002538 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002539 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002540 rc = sqlite3PagerNosync(pBt->pPager);
2541 sqlite3BtreeLeave(p);
2542 return rc;
drh2c8997b2005-08-27 16:36:48 +00002543}
2544
drh973b6e32003-02-12 14:09:42 +00002545/*
drh90f5ecb2004-07-22 01:19:35 +00002546** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002547** Or, if the page size has already been fixed, return SQLITE_READONLY
2548** without changing anything.
drh06f50212004-11-02 14:24:33 +00002549**
2550** The page size must be a power of 2 between 512 and 65536. If the page
2551** size supplied does not meet this constraint then the page size is not
2552** changed.
2553**
2554** Page sizes are constrained to be a power of two so that the region
2555** of the database file used for locking (beginning at PENDING_BYTE,
2556** the first byte past the 1GB boundary, 0x40000000) needs to occur
2557** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002558**
2559** If parameter nReserve is less than zero, then the number of reserved
2560** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002561**
drhc9166342012-01-05 23:32:06 +00002562** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002563** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002564*/
drhce4869f2009-04-02 20:16:58 +00002565int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002566 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002567 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002568 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002569 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002570#if SQLITE_HAS_CODEC
2571 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2572#endif
drhc9166342012-01-05 23:32:06 +00002573 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002574 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002575 return SQLITE_READONLY;
2576 }
2577 if( nReserve<0 ){
2578 nReserve = pBt->pageSize - pBt->usableSize;
2579 }
drhf49661a2008-12-10 16:45:50 +00002580 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002581 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2582 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002583 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002584 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002585 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002586 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002587 }
drhfa9601a2009-06-18 17:22:39 +00002588 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002589 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002590 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002591 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002592 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002593}
2594
2595/*
2596** Return the currently defined page size
2597*/
danielk1977aef0bf62005-12-30 16:28:01 +00002598int sqlite3BtreeGetPageSize(Btree *p){
2599 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002600}
drh7f751222009-03-17 22:33:00 +00002601
dan0094f372012-09-28 20:23:42 +00002602/*
2603** This function is similar to sqlite3BtreeGetReserve(), except that it
2604** may only be called if it is guaranteed that the b-tree mutex is already
2605** held.
2606**
2607** This is useful in one special case in the backup API code where it is
2608** known that the shared b-tree mutex is held, but the mutex on the
2609** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2610** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002611** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002612*/
2613int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002614 int n;
dan0094f372012-09-28 20:23:42 +00002615 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002616 n = p->pBt->pageSize - p->pBt->usableSize;
2617 return n;
dan0094f372012-09-28 20:23:42 +00002618}
2619
drh7f751222009-03-17 22:33:00 +00002620/*
2621** Return the number of bytes of space at the end of every page that
2622** are intentually left unused. This is the "reserved" space that is
2623** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002624**
2625** If SQLITE_HAS_MUTEX is defined then the number returned is the
2626** greater of the current reserved space and the maximum requested
2627** reserve space.
drh7f751222009-03-17 22:33:00 +00002628*/
drhad0961b2015-02-21 00:19:25 +00002629int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002630 int n;
2631 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002632 n = sqlite3BtreeGetReserveNoMutex(p);
2633#ifdef SQLITE_HAS_CODEC
2634 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2635#endif
drhd677b3d2007-08-20 22:48:41 +00002636 sqlite3BtreeLeave(p);
2637 return n;
drh2011d5f2004-07-22 02:40:37 +00002638}
drhf8e632b2007-05-08 14:51:36 +00002639
drhad0961b2015-02-21 00:19:25 +00002640
drhf8e632b2007-05-08 14:51:36 +00002641/*
2642** Set the maximum page count for a database if mxPage is positive.
2643** No changes are made if mxPage is 0 or negative.
2644** Regardless of the value of mxPage, return the maximum page count.
2645*/
2646int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002647 int n;
2648 sqlite3BtreeEnter(p);
2649 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2650 sqlite3BtreeLeave(p);
2651 return n;
drhf8e632b2007-05-08 14:51:36 +00002652}
drh5b47efa2010-02-12 18:18:39 +00002653
2654/*
drhc9166342012-01-05 23:32:06 +00002655** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2656** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002657** setting after the change.
2658*/
2659int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2660 int b;
drhaf034ed2010-02-12 19:46:26 +00002661 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002662 sqlite3BtreeEnter(p);
2663 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002664 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2665 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002666 }
drhc9166342012-01-05 23:32:06 +00002667 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002668 sqlite3BtreeLeave(p);
2669 return b;
2670}
drh90f5ecb2004-07-22 01:19:35 +00002671
2672/*
danielk1977951af802004-11-05 15:45:09 +00002673** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2674** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2675** is disabled. The default value for the auto-vacuum property is
2676** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2677*/
danielk1977aef0bf62005-12-30 16:28:01 +00002678int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002679#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002680 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002681#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002682 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002683 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002684 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002685
2686 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002687 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002688 rc = SQLITE_READONLY;
2689 }else{
drh076d4662009-02-18 20:31:18 +00002690 pBt->autoVacuum = av ?1:0;
2691 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002692 }
drhd677b3d2007-08-20 22:48:41 +00002693 sqlite3BtreeLeave(p);
2694 return rc;
danielk1977951af802004-11-05 15:45:09 +00002695#endif
2696}
2697
2698/*
2699** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2700** enabled 1 is returned. Otherwise 0.
2701*/
danielk1977aef0bf62005-12-30 16:28:01 +00002702int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002703#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002704 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002705#else
drhd677b3d2007-08-20 22:48:41 +00002706 int rc;
2707 sqlite3BtreeEnter(p);
2708 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002709 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2710 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2711 BTREE_AUTOVACUUM_INCR
2712 );
drhd677b3d2007-08-20 22:48:41 +00002713 sqlite3BtreeLeave(p);
2714 return rc;
danielk1977951af802004-11-05 15:45:09 +00002715#endif
2716}
2717
2718
2719/*
drha34b6762004-05-07 13:30:42 +00002720** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002721** also acquire a readlock on that file.
2722**
2723** SQLITE_OK is returned on success. If the file is not a
2724** well-formed database file, then SQLITE_CORRUPT is returned.
2725** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002726** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002727*/
danielk1977aef0bf62005-12-30 16:28:01 +00002728static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002729 int rc; /* Result code from subfunctions */
2730 MemPage *pPage1; /* Page 1 of the database file */
2731 int nPage; /* Number of pages in the database */
2732 int nPageFile = 0; /* Number of pages in the database file */
2733 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002734
drh1fee73e2007-08-29 04:00:57 +00002735 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002736 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002737 rc = sqlite3PagerSharedLock(pBt->pPager);
2738 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002739 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002740 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002741
2742 /* Do some checking to help insure the file we opened really is
2743 ** a valid database file.
2744 */
drhc2a4bab2010-04-02 12:46:45 +00002745 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002746 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002747 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002748 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002749 }
2750 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002751 u32 pageSize;
2752 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002753 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002754 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002755 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2756 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2757 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002758 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002759 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002760 }
dan5cf53532010-05-01 16:40:20 +00002761
2762#ifdef SQLITE_OMIT_WAL
2763 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002764 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002765 }
2766 if( page1[19]>1 ){
2767 goto page1_init_failed;
2768 }
2769#else
dane04dc882010-04-20 18:53:15 +00002770 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002771 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002772 }
dane04dc882010-04-20 18:53:15 +00002773 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002774 goto page1_init_failed;
2775 }
drhe5ae5732008-06-15 02:51:47 +00002776
dana470aeb2010-04-21 11:43:38 +00002777 /* If the write version is set to 2, this database should be accessed
2778 ** in WAL mode. If the log is not already open, open it now. Then
2779 ** return SQLITE_OK and return without populating BtShared.pPage1.
2780 ** The caller detects this and calls this function again. This is
2781 ** required as the version of page 1 currently in the page1 buffer
2782 ** may not be the latest version - there may be a newer one in the log
2783 ** file.
2784 */
drhc9166342012-01-05 23:32:06 +00002785 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002786 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002787 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002788 if( rc!=SQLITE_OK ){
2789 goto page1_init_failed;
2790 }else if( isOpen==0 ){
2791 releasePage(pPage1);
2792 return SQLITE_OK;
2793 }
dan8b5444b2010-04-27 14:37:47 +00002794 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002795 }
dan5cf53532010-05-01 16:40:20 +00002796#endif
dane04dc882010-04-20 18:53:15 +00002797
drh113762a2014-11-19 16:36:25 +00002798 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2799 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2800 **
drhe5ae5732008-06-15 02:51:47 +00002801 ** The original design allowed these amounts to vary, but as of
2802 ** version 3.6.0, we require them to be fixed.
2803 */
2804 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2805 goto page1_init_failed;
2806 }
drh113762a2014-11-19 16:36:25 +00002807 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2808 ** determined by the 2-byte integer located at an offset of 16 bytes from
2809 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002810 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002811 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2812 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002813 if( ((pageSize-1)&pageSize)!=0
2814 || pageSize>SQLITE_MAX_PAGE_SIZE
2815 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002816 ){
drh07d183d2005-05-01 22:52:42 +00002817 goto page1_init_failed;
2818 }
2819 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002820 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2821 ** integer at offset 20 is the number of bytes of space at the end of
2822 ** each page to reserve for extensions.
2823 **
2824 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2825 ** determined by the one-byte unsigned integer found at an offset of 20
2826 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002827 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002828 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002829 /* After reading the first page of the database assuming a page size
2830 ** of BtShared.pageSize, we have discovered that the page-size is
2831 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2832 ** zero and return SQLITE_OK. The caller will call this function
2833 ** again with the correct page-size.
2834 */
2835 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002836 pBt->usableSize = usableSize;
2837 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002838 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002839 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2840 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002841 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002842 }
danecac6702011-02-09 18:19:20 +00002843 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002844 rc = SQLITE_CORRUPT_BKPT;
2845 goto page1_init_failed;
2846 }
drh113762a2014-11-19 16:36:25 +00002847 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2848 ** be less than 480. In other words, if the page size is 512, then the
2849 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002850 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002851 goto page1_init_failed;
2852 }
drh43b18e12010-08-17 19:40:08 +00002853 pBt->pageSize = pageSize;
2854 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002855#ifndef SQLITE_OMIT_AUTOVACUUM
2856 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002857 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002858#endif
drh306dc212001-05-21 13:45:10 +00002859 }
drhb6f41482004-05-14 01:58:11 +00002860
2861 /* maxLocal is the maximum amount of payload to store locally for
2862 ** a cell. Make sure it is small enough so that at least minFanout
2863 ** cells can will fit on one page. We assume a 10-byte page header.
2864 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002865 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002866 ** 4-byte child pointer
2867 ** 9-byte nKey value
2868 ** 4-byte nData value
2869 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002870 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002871 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2872 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002873 */
shaneh1df2db72010-08-18 02:28:48 +00002874 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2875 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2876 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2877 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002878 if( pBt->maxLocal>127 ){
2879 pBt->max1bytePayload = 127;
2880 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002881 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002882 }
drh2e38c322004-09-03 18:38:44 +00002883 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002884 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002885 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002886 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002887
drh72f82862001-05-24 21:06:34 +00002888page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002889 releasePage(pPage1);
2890 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002891 return rc;
drh306dc212001-05-21 13:45:10 +00002892}
2893
drh85ec3b62013-05-14 23:12:06 +00002894#ifndef NDEBUG
2895/*
2896** Return the number of cursors open on pBt. This is for use
2897** in assert() expressions, so it is only compiled if NDEBUG is not
2898** defined.
2899**
2900** Only write cursors are counted if wrOnly is true. If wrOnly is
2901** false then all cursors are counted.
2902**
2903** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002904** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002905** have been tripped into the CURSOR_FAULT state are not counted.
2906*/
2907static int countValidCursors(BtShared *pBt, int wrOnly){
2908 BtCursor *pCur;
2909 int r = 0;
2910 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002911 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2912 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002913 }
2914 return r;
2915}
2916#endif
2917
drh306dc212001-05-21 13:45:10 +00002918/*
drhb8ca3072001-12-05 00:21:20 +00002919** If there are no outstanding cursors and we are not in the middle
2920** of a transaction but there is a read lock on the database, then
2921** this routine unrefs the first page of the database file which
2922** has the effect of releasing the read lock.
2923**
drhb8ca3072001-12-05 00:21:20 +00002924** If there is a transaction in progress, this routine is a no-op.
2925*/
danielk1977aef0bf62005-12-30 16:28:01 +00002926static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002927 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002928 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002929 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00002930 MemPage *pPage1 = pBt->pPage1;
2931 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00002932 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00002933 pBt->pPage1 = 0;
drhb2325b72014-09-24 18:31:07 +00002934 releasePage(pPage1);
drhb8ca3072001-12-05 00:21:20 +00002935 }
2936}
2937
2938/*
drhe39f2f92009-07-23 01:43:59 +00002939** If pBt points to an empty file then convert that empty file
2940** into a new empty database by initializing the first page of
2941** the database.
drh8b2f49b2001-06-08 00:21:52 +00002942*/
danielk1977aef0bf62005-12-30 16:28:01 +00002943static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002944 MemPage *pP1;
2945 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002946 int rc;
drhd677b3d2007-08-20 22:48:41 +00002947
drh1fee73e2007-08-29 04:00:57 +00002948 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002949 if( pBt->nPage>0 ){
2950 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002951 }
drh3aac2dd2004-04-26 14:10:20 +00002952 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002953 assert( pP1!=0 );
2954 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002955 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002956 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002957 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2958 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002959 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2960 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002961 data[18] = 1;
2962 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002963 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2964 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002965 data[21] = 64;
2966 data[22] = 32;
2967 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002968 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002969 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002970 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002971#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002972 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002973 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002974 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002975 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002976#endif
drhdd3cd972010-03-27 17:12:36 +00002977 pBt->nPage = 1;
2978 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002979 return SQLITE_OK;
2980}
2981
2982/*
danb483eba2012-10-13 19:58:11 +00002983** Initialize the first page of the database file (creating a database
2984** consisting of a single page and no schema objects). Return SQLITE_OK
2985** if successful, or an SQLite error code otherwise.
2986*/
2987int sqlite3BtreeNewDb(Btree *p){
2988 int rc;
2989 sqlite3BtreeEnter(p);
2990 p->pBt->nPage = 0;
2991 rc = newDatabase(p->pBt);
2992 sqlite3BtreeLeave(p);
2993 return rc;
2994}
2995
2996/*
danielk1977ee5741e2004-05-31 10:01:34 +00002997** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002998** is started if the second argument is nonzero, otherwise a read-
2999** transaction. If the second argument is 2 or more and exclusive
3000** transaction is started, meaning that no other process is allowed
3001** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003002** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003003** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003004**
danielk1977ee5741e2004-05-31 10:01:34 +00003005** A write-transaction must be started before attempting any
3006** changes to the database. None of the following routines
3007** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003008**
drh23e11ca2004-05-04 17:27:28 +00003009** sqlite3BtreeCreateTable()
3010** sqlite3BtreeCreateIndex()
3011** sqlite3BtreeClearTable()
3012** sqlite3BtreeDropTable()
3013** sqlite3BtreeInsert()
3014** sqlite3BtreeDelete()
3015** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003016**
drhb8ef32c2005-03-14 02:01:49 +00003017** If an initial attempt to acquire the lock fails because of lock contention
3018** and the database was previously unlocked, then invoke the busy handler
3019** if there is one. But if there was previously a read-lock, do not
3020** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3021** returned when there is already a read-lock in order to avoid a deadlock.
3022**
3023** Suppose there are two processes A and B. A has a read lock and B has
3024** a reserved lock. B tries to promote to exclusive but is blocked because
3025** of A's read lock. A tries to promote to reserved but is blocked by B.
3026** One or the other of the two processes must give way or there can be
3027** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3028** when A already has a read lock, we encourage A to give up and let B
3029** proceed.
drha059ad02001-04-17 20:09:11 +00003030*/
danielk1977aef0bf62005-12-30 16:28:01 +00003031int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00003032 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003033 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003034 int rc = SQLITE_OK;
3035
drhd677b3d2007-08-20 22:48:41 +00003036 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003037 btreeIntegrity(p);
3038
danielk1977ee5741e2004-05-31 10:01:34 +00003039 /* If the btree is already in a write-transaction, or it
3040 ** is already in a read-transaction and a read-transaction
3041 ** is requested, this is a no-op.
3042 */
danielk1977aef0bf62005-12-30 16:28:01 +00003043 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003044 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003045 }
dan56c517a2013-09-26 11:04:33 +00003046 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003047
3048 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003049 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003050 rc = SQLITE_READONLY;
3051 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003052 }
3053
danielk1977404ca072009-03-16 13:19:36 +00003054#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00003055 /* If another database handle has already opened a write transaction
3056 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00003057 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00003058 */
drhc9166342012-01-05 23:32:06 +00003059 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3060 || (pBt->btsFlags & BTS_PENDING)!=0
3061 ){
danielk1977404ca072009-03-16 13:19:36 +00003062 pBlock = pBt->pWriter->db;
3063 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00003064 BtLock *pIter;
3065 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3066 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00003067 pBlock = pIter->pBtree->db;
3068 break;
danielk1977641b0f42007-12-21 04:47:25 +00003069 }
3070 }
3071 }
danielk1977404ca072009-03-16 13:19:36 +00003072 if( pBlock ){
3073 sqlite3ConnectionBlocked(p->db, pBlock);
3074 rc = SQLITE_LOCKED_SHAREDCACHE;
3075 goto trans_begun;
3076 }
danielk1977641b0f42007-12-21 04:47:25 +00003077#endif
3078
danielk1977602b4662009-07-02 07:47:33 +00003079 /* Any read-only or read-write transaction implies a read-lock on
3080 ** page 1. So if some other shared-cache client already has a write-lock
3081 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003082 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3083 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003084
drhc9166342012-01-05 23:32:06 +00003085 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3086 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003087 do {
danielk1977295dc102009-04-01 19:07:03 +00003088 /* Call lockBtree() until either pBt->pPage1 is populated or
3089 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3090 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3091 ** reading page 1 it discovers that the page-size of the database
3092 ** file is not pBt->pageSize. In this case lockBtree() will update
3093 ** pBt->pageSize to the page-size of the file on disk.
3094 */
3095 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003096
drhb8ef32c2005-03-14 02:01:49 +00003097 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003098 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003099 rc = SQLITE_READONLY;
3100 }else{
danielk1977d8293352009-04-30 09:10:37 +00003101 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003102 if( rc==SQLITE_OK ){
3103 rc = newDatabase(pBt);
3104 }
drhb8ef32c2005-03-14 02:01:49 +00003105 }
3106 }
3107
danielk1977bd434552009-03-18 10:33:00 +00003108 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003109 unlockBtreeIfUnused(pBt);
3110 }
danf9b76712010-06-01 14:12:45 +00003111 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003112 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003113
3114 if( rc==SQLITE_OK ){
3115 if( p->inTrans==TRANS_NONE ){
3116 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003117#ifndef SQLITE_OMIT_SHARED_CACHE
3118 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003119 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003120 p->lock.eLock = READ_LOCK;
3121 p->lock.pNext = pBt->pLock;
3122 pBt->pLock = &p->lock;
3123 }
3124#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003125 }
3126 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3127 if( p->inTrans>pBt->inTransaction ){
3128 pBt->inTransaction = p->inTrans;
3129 }
danielk1977404ca072009-03-16 13:19:36 +00003130 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003131 MemPage *pPage1 = pBt->pPage1;
3132#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003133 assert( !pBt->pWriter );
3134 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003135 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3136 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003137#endif
dan59257dc2010-08-04 11:34:31 +00003138
3139 /* If the db-size header field is incorrect (as it may be if an old
3140 ** client has been writing the database file), update it now. Doing
3141 ** this sooner rather than later means the database size can safely
3142 ** re-read the database size from page 1 if a savepoint or transaction
3143 ** rollback occurs within the transaction.
3144 */
3145 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3146 rc = sqlite3PagerWrite(pPage1->pDbPage);
3147 if( rc==SQLITE_OK ){
3148 put4byte(&pPage1->aData[28], pBt->nPage);
3149 }
3150 }
3151 }
danielk1977aef0bf62005-12-30 16:28:01 +00003152 }
3153
drhd677b3d2007-08-20 22:48:41 +00003154
3155trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003156 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003157 /* This call makes sure that the pager has the correct number of
3158 ** open savepoints. If the second parameter is greater than 0 and
3159 ** the sub-journal is not already open, then it will be opened here.
3160 */
danielk1977fd7f0452008-12-17 17:30:26 +00003161 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3162 }
danielk197712dd5492008-12-18 15:45:07 +00003163
danielk1977aef0bf62005-12-30 16:28:01 +00003164 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003165 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003166 return rc;
drha059ad02001-04-17 20:09:11 +00003167}
3168
danielk1977687566d2004-11-02 12:56:41 +00003169#ifndef SQLITE_OMIT_AUTOVACUUM
3170
3171/*
3172** Set the pointer-map entries for all children of page pPage. Also, if
3173** pPage contains cells that point to overflow pages, set the pointer
3174** map entries for the overflow pages as well.
3175*/
3176static int setChildPtrmaps(MemPage *pPage){
3177 int i; /* Counter variable */
3178 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003179 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003180 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003181 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003182 Pgno pgno = pPage->pgno;
3183
drh1fee73e2007-08-29 04:00:57 +00003184 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003185 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003186 if( rc!=SQLITE_OK ){
3187 goto set_child_ptrmaps_out;
3188 }
danielk1977687566d2004-11-02 12:56:41 +00003189 nCell = pPage->nCell;
3190
3191 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003192 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003193
drh98add2e2009-07-20 17:11:49 +00003194 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003195
danielk1977687566d2004-11-02 12:56:41 +00003196 if( !pPage->leaf ){
3197 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003198 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003199 }
3200 }
3201
3202 if( !pPage->leaf ){
3203 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003204 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003205 }
3206
3207set_child_ptrmaps_out:
3208 pPage->isInit = isInitOrig;
3209 return rc;
3210}
3211
3212/*
drhf3aed592009-07-08 18:12:49 +00003213** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3214** that it points to iTo. Parameter eType describes the type of pointer to
3215** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003216**
3217** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3218** page of pPage.
3219**
3220** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3221** page pointed to by one of the cells on pPage.
3222**
3223** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3224** overflow page in the list.
3225*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003226static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003227 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003228 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003229 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003230 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003231 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003232 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003233 }
danielk1977f78fc082004-11-02 14:40:32 +00003234 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003235 }else{
drhf49661a2008-12-10 16:45:50 +00003236 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003237 int i;
3238 int nCell;
drha1f75d92015-05-24 10:18:12 +00003239 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003240
drha1f75d92015-05-24 10:18:12 +00003241 rc = btreeInitPage(pPage);
3242 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003243 nCell = pPage->nCell;
3244
danielk1977687566d2004-11-02 12:56:41 +00003245 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003246 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003247 if( eType==PTRMAP_OVERFLOW1 ){
3248 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003249 pPage->xParseCell(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00003250 if( info.iOverflow
3251 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3252 && iFrom==get4byte(&pCell[info.iOverflow])
3253 ){
3254 put4byte(&pCell[info.iOverflow], iTo);
3255 break;
danielk1977687566d2004-11-02 12:56:41 +00003256 }
3257 }else{
3258 if( get4byte(pCell)==iFrom ){
3259 put4byte(pCell, iTo);
3260 break;
3261 }
3262 }
3263 }
3264
3265 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003266 if( eType!=PTRMAP_BTREE ||
3267 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003268 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003269 }
danielk1977687566d2004-11-02 12:56:41 +00003270 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3271 }
3272
3273 pPage->isInit = isInitOrig;
3274 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003275 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003276}
3277
danielk1977003ba062004-11-04 02:57:33 +00003278
danielk19777701e812005-01-10 12:59:51 +00003279/*
3280** Move the open database page pDbPage to location iFreePage in the
3281** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003282**
3283** The isCommit flag indicates that there is no need to remember that
3284** the journal needs to be sync()ed before database page pDbPage->pgno
3285** can be written to. The caller has already promised not to write to that
3286** page.
danielk19777701e812005-01-10 12:59:51 +00003287*/
danielk1977003ba062004-11-04 02:57:33 +00003288static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003289 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003290 MemPage *pDbPage, /* Open page to move */
3291 u8 eType, /* Pointer map 'type' entry for pDbPage */
3292 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003293 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003294 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003295){
3296 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3297 Pgno iDbPage = pDbPage->pgno;
3298 Pager *pPager = pBt->pPager;
3299 int rc;
3300
danielk1977a0bf2652004-11-04 14:30:04 +00003301 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3302 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003303 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003304 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003305
drh85b623f2007-12-13 21:54:09 +00003306 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003307 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3308 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003309 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003310 if( rc!=SQLITE_OK ){
3311 return rc;
3312 }
3313 pDbPage->pgno = iFreePage;
3314
3315 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3316 ** that point to overflow pages. The pointer map entries for all these
3317 ** pages need to be changed.
3318 **
3319 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3320 ** pointer to a subsequent overflow page. If this is the case, then
3321 ** the pointer map needs to be updated for the subsequent overflow page.
3322 */
danielk1977a0bf2652004-11-04 14:30:04 +00003323 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003324 rc = setChildPtrmaps(pDbPage);
3325 if( rc!=SQLITE_OK ){
3326 return rc;
3327 }
3328 }else{
3329 Pgno nextOvfl = get4byte(pDbPage->aData);
3330 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003331 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003332 if( rc!=SQLITE_OK ){
3333 return rc;
3334 }
3335 }
3336 }
3337
3338 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3339 ** that it points at iFreePage. Also fix the pointer map entry for
3340 ** iPtrPage.
3341 */
danielk1977a0bf2652004-11-04 14:30:04 +00003342 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003343 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003344 if( rc!=SQLITE_OK ){
3345 return rc;
3346 }
danielk19773b8a05f2007-03-19 17:44:26 +00003347 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003348 if( rc!=SQLITE_OK ){
3349 releasePage(pPtrPage);
3350 return rc;
3351 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003352 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003353 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003354 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003355 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003356 }
danielk1977003ba062004-11-04 02:57:33 +00003357 }
danielk1977003ba062004-11-04 02:57:33 +00003358 return rc;
3359}
3360
danielk1977dddbcdc2007-04-26 14:42:34 +00003361/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003362static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003363
3364/*
dan51f0b6d2013-02-22 20:16:34 +00003365** Perform a single step of an incremental-vacuum. If successful, return
3366** SQLITE_OK. If there is no work to do (and therefore no point in
3367** calling this function again), return SQLITE_DONE. Or, if an error
3368** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003369**
peter.d.reid60ec9142014-09-06 16:39:46 +00003370** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003371** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003372**
dan51f0b6d2013-02-22 20:16:34 +00003373** Parameter nFin is the number of pages that this database would contain
3374** were this function called until it returns SQLITE_DONE.
3375**
3376** If the bCommit parameter is non-zero, this function assumes that the
3377** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003378** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003379** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003380*/
dan51f0b6d2013-02-22 20:16:34 +00003381static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003382 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003383 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003384
drh1fee73e2007-08-29 04:00:57 +00003385 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003386 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003387
3388 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003389 u8 eType;
3390 Pgno iPtrPage;
3391
3392 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003393 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003394 return SQLITE_DONE;
3395 }
3396
3397 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3398 if( rc!=SQLITE_OK ){
3399 return rc;
3400 }
3401 if( eType==PTRMAP_ROOTPAGE ){
3402 return SQLITE_CORRUPT_BKPT;
3403 }
3404
3405 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003406 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003407 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003408 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003409 ** truncated to zero after this function returns, so it doesn't
3410 ** matter if it still contains some garbage entries.
3411 */
3412 Pgno iFreePg;
3413 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003414 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003415 if( rc!=SQLITE_OK ){
3416 return rc;
3417 }
3418 assert( iFreePg==iLastPg );
3419 releasePage(pFreePg);
3420 }
3421 } else {
3422 Pgno iFreePg; /* Index of free page to move pLastPg to */
3423 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003424 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3425 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003426
drhb00fc3b2013-08-21 23:42:32 +00003427 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003428 if( rc!=SQLITE_OK ){
3429 return rc;
3430 }
3431
dan51f0b6d2013-02-22 20:16:34 +00003432 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003433 ** is swapped with the first free page pulled off the free list.
3434 **
dan51f0b6d2013-02-22 20:16:34 +00003435 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003436 ** looping until a free-page located within the first nFin pages
3437 ** of the file is found.
3438 */
dan51f0b6d2013-02-22 20:16:34 +00003439 if( bCommit==0 ){
3440 eMode = BTALLOC_LE;
3441 iNear = nFin;
3442 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003443 do {
3444 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003445 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003446 if( rc!=SQLITE_OK ){
3447 releasePage(pLastPg);
3448 return rc;
3449 }
3450 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003451 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003452 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003453
dane1df4e32013-03-05 11:27:04 +00003454 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003455 releasePage(pLastPg);
3456 if( rc!=SQLITE_OK ){
3457 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003458 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003459 }
3460 }
3461
dan51f0b6d2013-02-22 20:16:34 +00003462 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003463 do {
danielk19773460d192008-12-27 15:23:13 +00003464 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003465 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3466 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003467 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003468 }
3469 return SQLITE_OK;
3470}
3471
3472/*
dan51f0b6d2013-02-22 20:16:34 +00003473** The database opened by the first argument is an auto-vacuum database
3474** nOrig pages in size containing nFree free pages. Return the expected
3475** size of the database in pages following an auto-vacuum operation.
3476*/
3477static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3478 int nEntry; /* Number of entries on one ptrmap page */
3479 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3480 Pgno nFin; /* Return value */
3481
3482 nEntry = pBt->usableSize/5;
3483 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3484 nFin = nOrig - nFree - nPtrmap;
3485 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3486 nFin--;
3487 }
3488 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3489 nFin--;
3490 }
dan51f0b6d2013-02-22 20:16:34 +00003491
3492 return nFin;
3493}
3494
3495/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003496** A write-transaction must be opened before calling this function.
3497** It performs a single unit of work towards an incremental vacuum.
3498**
3499** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003500** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003501** SQLITE_OK is returned. Otherwise an SQLite error code.
3502*/
3503int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003504 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003505 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003506
3507 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003508 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3509 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003510 rc = SQLITE_DONE;
3511 }else{
dan51f0b6d2013-02-22 20:16:34 +00003512 Pgno nOrig = btreePagecount(pBt);
3513 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3514 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3515
dan91384712013-02-24 11:50:43 +00003516 if( nOrig<nFin ){
3517 rc = SQLITE_CORRUPT_BKPT;
3518 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003519 rc = saveAllCursors(pBt, 0, 0);
3520 if( rc==SQLITE_OK ){
3521 invalidateAllOverflowCache(pBt);
3522 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3523 }
dan51f0b6d2013-02-22 20:16:34 +00003524 if( rc==SQLITE_OK ){
3525 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3526 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3527 }
3528 }else{
3529 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003530 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003531 }
drhd677b3d2007-08-20 22:48:41 +00003532 sqlite3BtreeLeave(p);
3533 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003534}
3535
3536/*
danielk19773b8a05f2007-03-19 17:44:26 +00003537** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003538** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003539**
3540** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3541** the database file should be truncated to during the commit process.
3542** i.e. the database has been reorganized so that only the first *pnTrunc
3543** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003544*/
danielk19773460d192008-12-27 15:23:13 +00003545static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003546 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003547 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003548 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003549
drh1fee73e2007-08-29 04:00:57 +00003550 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003551 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003552 assert(pBt->autoVacuum);
3553 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003554 Pgno nFin; /* Number of pages in database after autovacuuming */
3555 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003556 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003557 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003558
drhb1299152010-03-30 22:58:33 +00003559 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003560 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3561 /* It is not possible to create a database for which the final page
3562 ** is either a pointer-map page or the pending-byte page. If one
3563 ** is encountered, this indicates corruption.
3564 */
danielk19773460d192008-12-27 15:23:13 +00003565 return SQLITE_CORRUPT_BKPT;
3566 }
danielk1977ef165ce2009-04-06 17:50:03 +00003567
danielk19773460d192008-12-27 15:23:13 +00003568 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003569 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003570 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003571 if( nFin<nOrig ){
3572 rc = saveAllCursors(pBt, 0, 0);
3573 }
danielk19773460d192008-12-27 15:23:13 +00003574 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003575 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003576 }
danielk19773460d192008-12-27 15:23:13 +00003577 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003578 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3579 put4byte(&pBt->pPage1->aData[32], 0);
3580 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003581 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003582 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003583 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003584 }
3585 if( rc!=SQLITE_OK ){
3586 sqlite3PagerRollback(pPager);
3587 }
danielk1977687566d2004-11-02 12:56:41 +00003588 }
3589
dan0aed84d2013-03-26 14:16:20 +00003590 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003591 return rc;
3592}
danielk1977dddbcdc2007-04-26 14:42:34 +00003593
danielk1977a50d9aa2009-06-08 14:49:45 +00003594#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3595# define setChildPtrmaps(x) SQLITE_OK
3596#endif
danielk1977687566d2004-11-02 12:56:41 +00003597
3598/*
drh80e35f42007-03-30 14:06:34 +00003599** This routine does the first phase of a two-phase commit. This routine
3600** causes a rollback journal to be created (if it does not already exist)
3601** and populated with enough information so that if a power loss occurs
3602** the database can be restored to its original state by playing back
3603** the journal. Then the contents of the journal are flushed out to
3604** the disk. After the journal is safely on oxide, the changes to the
3605** database are written into the database file and flushed to oxide.
3606** At the end of this call, the rollback journal still exists on the
3607** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003608** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003609** commit process.
3610**
3611** This call is a no-op if no write-transaction is currently active on pBt.
3612**
3613** Otherwise, sync the database file for the btree pBt. zMaster points to
3614** the name of a master journal file that should be written into the
3615** individual journal file, or is NULL, indicating no master journal file
3616** (single database transaction).
3617**
3618** When this is called, the master journal should already have been
3619** created, populated with this journal pointer and synced to disk.
3620**
3621** Once this is routine has returned, the only thing required to commit
3622** the write-transaction for this database file is to delete the journal.
3623*/
3624int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3625 int rc = SQLITE_OK;
3626 if( p->inTrans==TRANS_WRITE ){
3627 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003628 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003629#ifndef SQLITE_OMIT_AUTOVACUUM
3630 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003631 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003632 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003633 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003634 return rc;
3635 }
3636 }
danbc1a3c62013-02-23 16:40:46 +00003637 if( pBt->bDoTruncate ){
3638 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3639 }
drh80e35f42007-03-30 14:06:34 +00003640#endif
drh49b9d332009-01-02 18:10:42 +00003641 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003642 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003643 }
3644 return rc;
3645}
3646
3647/*
danielk197794b30732009-07-02 17:21:57 +00003648** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3649** at the conclusion of a transaction.
3650*/
3651static void btreeEndTransaction(Btree *p){
3652 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003653 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003654 assert( sqlite3BtreeHoldsMutex(p) );
3655
danbc1a3c62013-02-23 16:40:46 +00003656#ifndef SQLITE_OMIT_AUTOVACUUM
3657 pBt->bDoTruncate = 0;
3658#endif
danc0537fe2013-06-28 19:41:43 +00003659 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003660 /* If there are other active statements that belong to this database
3661 ** handle, downgrade to a read-only transaction. The other statements
3662 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003663 downgradeAllSharedCacheTableLocks(p);
3664 p->inTrans = TRANS_READ;
3665 }else{
3666 /* If the handle had any kind of transaction open, decrement the
3667 ** transaction count of the shared btree. If the transaction count
3668 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3669 ** call below will unlock the pager. */
3670 if( p->inTrans!=TRANS_NONE ){
3671 clearAllSharedCacheTableLocks(p);
3672 pBt->nTransaction--;
3673 if( 0==pBt->nTransaction ){
3674 pBt->inTransaction = TRANS_NONE;
3675 }
3676 }
3677
3678 /* Set the current transaction state to TRANS_NONE and unlock the
3679 ** pager if this call closed the only read or write transaction. */
3680 p->inTrans = TRANS_NONE;
3681 unlockBtreeIfUnused(pBt);
3682 }
3683
3684 btreeIntegrity(p);
3685}
3686
3687/*
drh2aa679f2001-06-25 02:11:07 +00003688** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003689**
drh6e345992007-03-30 11:12:08 +00003690** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003691** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3692** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3693** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003694** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003695** routine has to do is delete or truncate or zero the header in the
3696** the rollback journal (which causes the transaction to commit) and
3697** drop locks.
drh6e345992007-03-30 11:12:08 +00003698**
dan60939d02011-03-29 15:40:55 +00003699** Normally, if an error occurs while the pager layer is attempting to
3700** finalize the underlying journal file, this function returns an error and
3701** the upper layer will attempt a rollback. However, if the second argument
3702** is non-zero then this b-tree transaction is part of a multi-file
3703** transaction. In this case, the transaction has already been committed
3704** (by deleting a master journal file) and the caller will ignore this
3705** functions return code. So, even if an error occurs in the pager layer,
3706** reset the b-tree objects internal state to indicate that the write
3707** transaction has been closed. This is quite safe, as the pager will have
3708** transitioned to the error state.
3709**
drh5e00f6c2001-09-13 13:46:56 +00003710** This will release the write lock on the database file. If there
3711** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003712*/
dan60939d02011-03-29 15:40:55 +00003713int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003714
drh075ed302010-10-14 01:17:30 +00003715 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003716 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003717 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003718
3719 /* If the handle has a write-transaction open, commit the shared-btrees
3720 ** transaction and set the shared state to TRANS_READ.
3721 */
3722 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003723 int rc;
drh075ed302010-10-14 01:17:30 +00003724 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003725 assert( pBt->inTransaction==TRANS_WRITE );
3726 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003727 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003728 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003729 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003730 return rc;
3731 }
drh3da9c042014-12-22 18:41:21 +00003732 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003733 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003734 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003735 }
danielk1977aef0bf62005-12-30 16:28:01 +00003736
danielk197794b30732009-07-02 17:21:57 +00003737 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003738 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003739 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003740}
3741
drh80e35f42007-03-30 14:06:34 +00003742/*
3743** Do both phases of a commit.
3744*/
3745int sqlite3BtreeCommit(Btree *p){
3746 int rc;
drhd677b3d2007-08-20 22:48:41 +00003747 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003748 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3749 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003750 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003751 }
drhd677b3d2007-08-20 22:48:41 +00003752 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003753 return rc;
3754}
3755
drhc39e0002004-05-07 23:50:57 +00003756/*
drhfb982642007-08-30 01:19:59 +00003757** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003758** code to errCode for every cursor on any BtShared that pBtree
3759** references. Or if the writeOnly flag is set to 1, then only
3760** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003761**
drh47b7fc72014-11-11 01:33:57 +00003762** Every cursor is a candidate to be tripped, including cursors
3763** that belong to other database connections that happen to be
3764** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003765**
dan80231042014-11-12 14:56:02 +00003766** This routine gets called when a rollback occurs. If the writeOnly
3767** flag is true, then only write-cursors need be tripped - read-only
3768** cursors save their current positions so that they may continue
3769** following the rollback. Or, if writeOnly is false, all cursors are
3770** tripped. In general, writeOnly is false if the transaction being
3771** rolled back modified the database schema. In this case b-tree root
3772** pages may be moved or deleted from the database altogether, making
3773** it unsafe for read cursors to continue.
3774**
3775** If the writeOnly flag is true and an error is encountered while
3776** saving the current position of a read-only cursor, all cursors,
3777** including all read-cursors are tripped.
3778**
3779** SQLITE_OK is returned if successful, or if an error occurs while
3780** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003781*/
dan80231042014-11-12 14:56:02 +00003782int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003783 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003784 int rc = SQLITE_OK;
3785
drh47b7fc72014-11-11 01:33:57 +00003786 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003787 if( pBtree ){
3788 sqlite3BtreeEnter(pBtree);
3789 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3790 int i;
3791 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003792 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003793 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003794 if( rc!=SQLITE_OK ){
3795 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3796 break;
3797 }
3798 }
3799 }else{
3800 sqlite3BtreeClearCursor(p);
3801 p->eState = CURSOR_FAULT;
3802 p->skipNext = errCode;
3803 }
3804 for(i=0; i<=p->iPage; i++){
3805 releasePage(p->apPage[i]);
3806 p->apPage[i] = 0;
3807 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003808 }
dan80231042014-11-12 14:56:02 +00003809 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003810 }
dan80231042014-11-12 14:56:02 +00003811 return rc;
drhfb982642007-08-30 01:19:59 +00003812}
3813
3814/*
drh47b7fc72014-11-11 01:33:57 +00003815** Rollback the transaction in progress.
3816**
3817** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3818** Only write cursors are tripped if writeOnly is true but all cursors are
3819** tripped if writeOnly is false. Any attempt to use
3820** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003821**
3822** This will release the write lock on the database file. If there
3823** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003824*/
drh47b7fc72014-11-11 01:33:57 +00003825int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003826 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003827 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003828 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003829
drh47b7fc72014-11-11 01:33:57 +00003830 assert( writeOnly==1 || writeOnly==0 );
3831 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003832 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003833 if( tripCode==SQLITE_OK ){
3834 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003835 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003836 }else{
3837 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003838 }
drh0f198a72012-02-13 16:43:16 +00003839 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003840 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3841 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3842 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003843 }
danielk1977aef0bf62005-12-30 16:28:01 +00003844 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003845
3846 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003847 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003848
danielk19778d34dfd2006-01-24 16:37:57 +00003849 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003850 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003851 if( rc2!=SQLITE_OK ){
3852 rc = rc2;
3853 }
3854
drh24cd67e2004-05-10 16:18:47 +00003855 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003856 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003857 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003858 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003859 int nPage = get4byte(28+(u8*)pPage1->aData);
3860 testcase( nPage==0 );
3861 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3862 testcase( pBt->nPage!=nPage );
3863 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003864 releasePage(pPage1);
3865 }
drh85ec3b62013-05-14 23:12:06 +00003866 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003867 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003868 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003869 }
danielk1977aef0bf62005-12-30 16:28:01 +00003870
danielk197794b30732009-07-02 17:21:57 +00003871 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003872 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003873 return rc;
3874}
3875
3876/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003877** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003878** back independently of the main transaction. You must start a transaction
3879** before starting a subtransaction. The subtransaction is ended automatically
3880** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003881**
3882** Statement subtransactions are used around individual SQL statements
3883** that are contained within a BEGIN...COMMIT block. If a constraint
3884** error occurs within the statement, the effect of that one statement
3885** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003886**
3887** A statement sub-transaction is implemented as an anonymous savepoint. The
3888** value passed as the second parameter is the total number of savepoints,
3889** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3890** are no active savepoints and no other statement-transactions open,
3891** iStatement is 1. This anonymous savepoint can be released or rolled back
3892** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003893*/
danielk1977bd434552009-03-18 10:33:00 +00003894int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003895 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003896 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003897 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003898 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003899 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003900 assert( iStatement>0 );
3901 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003902 assert( pBt->inTransaction==TRANS_WRITE );
3903 /* At the pager level, a statement transaction is a savepoint with
3904 ** an index greater than all savepoints created explicitly using
3905 ** SQL statements. It is illegal to open, release or rollback any
3906 ** such savepoints while the statement transaction savepoint is active.
3907 */
3908 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003909 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003910 return rc;
3911}
3912
3913/*
danielk1977fd7f0452008-12-17 17:30:26 +00003914** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3915** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003916** savepoint identified by parameter iSavepoint, depending on the value
3917** of op.
3918**
3919** Normally, iSavepoint is greater than or equal to zero. However, if op is
3920** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3921** contents of the entire transaction are rolled back. This is different
3922** from a normal transaction rollback, as no locks are released and the
3923** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003924*/
3925int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3926 int rc = SQLITE_OK;
3927 if( p && p->inTrans==TRANS_WRITE ){
3928 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003929 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3930 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3931 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003932 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003933 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003934 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3935 pBt->nPage = 0;
3936 }
drh9f0bbf92009-01-02 21:08:09 +00003937 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003938 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003939
3940 /* The database size was written into the offset 28 of the header
3941 ** when the transaction started, so we know that the value at offset
3942 ** 28 is nonzero. */
3943 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003944 }
danielk1977fd7f0452008-12-17 17:30:26 +00003945 sqlite3BtreeLeave(p);
3946 }
3947 return rc;
3948}
3949
3950/*
drh8b2f49b2001-06-08 00:21:52 +00003951** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003952** iTable. If a read-only cursor is requested, it is assumed that
3953** the caller already has at least a read-only transaction open
3954** on the database already. If a write-cursor is requested, then
3955** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003956**
3957** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003958** If wrFlag==1, then the cursor can be used for reading or for
3959** writing if other conditions for writing are also met. These
3960** are the conditions that must be met in order for writing to
3961** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003962**
drhf74b8d92002-09-01 23:20:45 +00003963** 1: The cursor must have been opened with wrFlag==1
3964**
drhfe5d71d2007-03-19 11:54:10 +00003965** 2: Other database connections that share the same pager cache
3966** but which are not in the READ_UNCOMMITTED state may not have
3967** cursors open with wrFlag==0 on the same table. Otherwise
3968** the changes made by this write cursor would be visible to
3969** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003970**
3971** 3: The database must be writable (not on read-only media)
3972**
3973** 4: There must be an active transaction.
3974**
drh6446c4d2001-12-15 14:22:18 +00003975** No checking is done to make sure that page iTable really is the
3976** root page of a b-tree. If it is not, then the cursor acquired
3977** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003978**
drhf25a5072009-11-18 23:01:25 +00003979** It is assumed that the sqlite3BtreeCursorZero() has been called
3980** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003981*/
drhd677b3d2007-08-20 22:48:41 +00003982static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003983 Btree *p, /* The btree */
3984 int iTable, /* Root page of table to open */
3985 int wrFlag, /* 1 to write. 0 read-only */
3986 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3987 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003988){
danielk19773e8add92009-07-04 17:16:00 +00003989 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003990
drh1fee73e2007-08-29 04:00:57 +00003991 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003992 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003993
danielk1977602b4662009-07-02 07:47:33 +00003994 /* The following assert statements verify that if this is a sharable
3995 ** b-tree database, the connection is holding the required table locks,
3996 ** and that no other connection has any open cursor that conflicts with
3997 ** this lock. */
3998 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003999 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4000
danielk19773e8add92009-07-04 17:16:00 +00004001 /* Assert that the caller has opened the required transaction. */
4002 assert( p->inTrans>TRANS_NONE );
4003 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4004 assert( pBt->pPage1 && pBt->pPage1->aData );
4005
drhc9166342012-01-05 23:32:06 +00004006 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00004007 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00004008 }
drh3fbb0222014-09-24 19:47:27 +00004009 if( wrFlag ){
4010 allocateTempSpace(pBt);
4011 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
4012 }
drhb1299152010-03-30 22:58:33 +00004013 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004014 assert( wrFlag==0 );
4015 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004016 }
danielk1977aef0bf62005-12-30 16:28:01 +00004017
danielk1977aef0bf62005-12-30 16:28:01 +00004018 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004019 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004020 pCur->pgnoRoot = (Pgno)iTable;
4021 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004022 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004023 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004024 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00004025 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
4026 pCur->curFlags = wrFlag;
drha059ad02001-04-17 20:09:11 +00004027 pCur->pNext = pBt->pCursor;
4028 if( pCur->pNext ){
4029 pCur->pNext->pPrev = pCur;
4030 }
4031 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004032 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004033 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004034}
drhd677b3d2007-08-20 22:48:41 +00004035int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004036 Btree *p, /* The btree */
4037 int iTable, /* Root page of table to open */
4038 int wrFlag, /* 1 to write. 0 read-only */
4039 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4040 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004041){
4042 int rc;
dan08f901b2015-05-25 19:24:36 +00004043 if( iTable<1 ){
4044 rc = SQLITE_CORRUPT_BKPT;
4045 }else{
4046 sqlite3BtreeEnter(p);
4047 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4048 sqlite3BtreeLeave(p);
4049 }
drhd677b3d2007-08-20 22:48:41 +00004050 return rc;
4051}
drh7f751222009-03-17 22:33:00 +00004052
4053/*
4054** Return the size of a BtCursor object in bytes.
4055**
4056** This interfaces is needed so that users of cursors can preallocate
4057** sufficient storage to hold a cursor. The BtCursor object is opaque
4058** to users so they cannot do the sizeof() themselves - they must call
4059** this routine.
4060*/
4061int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004062 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004063}
4064
drh7f751222009-03-17 22:33:00 +00004065/*
drhf25a5072009-11-18 23:01:25 +00004066** Initialize memory that will be converted into a BtCursor object.
4067**
4068** The simple approach here would be to memset() the entire object
4069** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4070** do not need to be zeroed and they are large, so we can save a lot
4071** of run-time by skipping the initialization of those elements.
4072*/
4073void sqlite3BtreeCursorZero(BtCursor *p){
4074 memset(p, 0, offsetof(BtCursor, iPage));
4075}
4076
4077/*
drh5e00f6c2001-09-13 13:46:56 +00004078** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004079** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004080*/
drh3aac2dd2004-04-26 14:10:20 +00004081int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004082 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004083 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004084 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004085 BtShared *pBt = pCur->pBt;
4086 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004087 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004088 if( pCur->pPrev ){
4089 pCur->pPrev->pNext = pCur->pNext;
4090 }else{
4091 pBt->pCursor = pCur->pNext;
4092 }
4093 if( pCur->pNext ){
4094 pCur->pNext->pPrev = pCur->pPrev;
4095 }
danielk197771d5d2c2008-09-29 11:49:47 +00004096 for(i=0; i<=pCur->iPage; i++){
4097 releasePage(pCur->apPage[i]);
4098 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004099 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004100 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004101 /* sqlite3_free(pCur); */
4102 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004103 }
drh8c42ca92001-06-22 19:15:00 +00004104 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004105}
4106
drh5e2f8b92001-05-28 00:41:15 +00004107/*
drh86057612007-06-26 01:04:48 +00004108** Make sure the BtCursor* given in the argument has a valid
4109** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004110** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004111**
4112** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004113** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004114*/
drh9188b382004-05-14 21:12:22 +00004115#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004116 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004117 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004118 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004119 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004120 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004121 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004122 }
danielk19771cc5ed82007-05-16 17:28:43 +00004123#else
4124 #define assertCellInfo(x)
4125#endif
drhc5b41ac2015-06-17 02:11:46 +00004126static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4127 if( pCur->info.nSize==0 ){
4128 int iPage = pCur->iPage;
4129 pCur->curFlags |= BTCF_ValidNKey;
4130 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4131 }else{
4132 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004133 }
drhc5b41ac2015-06-17 02:11:46 +00004134}
drh9188b382004-05-14 21:12:22 +00004135
drhea8ffdf2009-07-22 00:35:23 +00004136#ifndef NDEBUG /* The next routine used only within assert() statements */
4137/*
4138** Return true if the given BtCursor is valid. A valid cursor is one
4139** that is currently pointing to a row in a (non-empty) table.
4140** This is a verification routine is used only within assert() statements.
4141*/
4142int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4143 return pCur && pCur->eState==CURSOR_VALID;
4144}
4145#endif /* NDEBUG */
4146
drh9188b382004-05-14 21:12:22 +00004147/*
drh3aac2dd2004-04-26 14:10:20 +00004148** Set *pSize to the size of the buffer needed to hold the value of
4149** the key for the current entry. If the cursor is not pointing
4150** to a valid entry, *pSize is set to 0.
4151**
drh4b70f112004-05-02 21:12:19 +00004152** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004153** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004154**
4155** The caller must position the cursor prior to invoking this routine.
4156**
4157** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004158*/
drh4a1c3802004-05-12 15:15:47 +00004159int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004160 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004161 assert( pCur->eState==CURSOR_VALID );
4162 getCellInfo(pCur);
4163 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004164 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004165}
drh2af926b2001-05-15 00:39:25 +00004166
drh72f82862001-05-24 21:06:34 +00004167/*
drh0e1c19e2004-05-11 00:58:56 +00004168** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004169** cursor currently points to.
4170**
4171** The caller must guarantee that the cursor is pointing to a non-NULL
4172** valid entry. In other words, the calling procedure must guarantee
4173** that the cursor has Cursor.eState==CURSOR_VALID.
4174**
4175** Failure is not possible. This function always returns SQLITE_OK.
4176** It might just as well be a procedure (returning void) but we continue
4177** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004178*/
4179int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004180 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004181 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004182 assert( pCur->iPage>=0 );
4183 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004184 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004185 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004186 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004187 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004188}
4189
4190/*
danielk1977d04417962007-05-02 13:16:30 +00004191** Given the page number of an overflow page in the database (parameter
4192** ovfl), this function finds the page number of the next page in the
4193** linked list of overflow pages. If possible, it uses the auto-vacuum
4194** pointer-map data instead of reading the content of page ovfl to do so.
4195**
4196** If an error occurs an SQLite error code is returned. Otherwise:
4197**
danielk1977bea2a942009-01-20 17:06:27 +00004198** The page number of the next overflow page in the linked list is
4199** written to *pPgnoNext. If page ovfl is the last page in its linked
4200** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004201**
danielk1977bea2a942009-01-20 17:06:27 +00004202** If ppPage is not NULL, and a reference to the MemPage object corresponding
4203** to page number pOvfl was obtained, then *ppPage is set to point to that
4204** reference. It is the responsibility of the caller to call releasePage()
4205** on *ppPage to free the reference. In no reference was obtained (because
4206** the pointer-map was used to obtain the value for *pPgnoNext), then
4207** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004208*/
4209static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004210 BtShared *pBt, /* The database file */
4211 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004212 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004213 Pgno *pPgnoNext /* OUT: Next overflow page number */
4214){
4215 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004216 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004217 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004218
drh1fee73e2007-08-29 04:00:57 +00004219 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004220 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004221
4222#ifndef SQLITE_OMIT_AUTOVACUUM
4223 /* Try to find the next page in the overflow list using the
4224 ** autovacuum pointer-map pages. Guess that the next page in
4225 ** the overflow list is page number (ovfl+1). If that guess turns
4226 ** out to be wrong, fall back to loading the data of page
4227 ** number ovfl to determine the next page number.
4228 */
4229 if( pBt->autoVacuum ){
4230 Pgno pgno;
4231 Pgno iGuess = ovfl+1;
4232 u8 eType;
4233
4234 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4235 iGuess++;
4236 }
4237
drhb1299152010-03-30 22:58:33 +00004238 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004239 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004240 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004241 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004242 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004243 }
4244 }
4245 }
4246#endif
4247
danielk1977d8a3f3d2009-07-11 11:45:23 +00004248 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004249 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004250 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004251 assert( rc==SQLITE_OK || pPage==0 );
4252 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004253 next = get4byte(pPage->aData);
4254 }
danielk1977443c0592009-01-16 15:21:05 +00004255 }
danielk197745d68822009-01-16 16:23:38 +00004256
danielk1977bea2a942009-01-20 17:06:27 +00004257 *pPgnoNext = next;
4258 if( ppPage ){
4259 *ppPage = pPage;
4260 }else{
4261 releasePage(pPage);
4262 }
4263 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004264}
4265
danielk1977da107192007-05-04 08:32:13 +00004266/*
4267** Copy data from a buffer to a page, or from a page to a buffer.
4268**
4269** pPayload is a pointer to data stored on database page pDbPage.
4270** If argument eOp is false, then nByte bytes of data are copied
4271** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4272** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4273** of data are copied from the buffer pBuf to pPayload.
4274**
4275** SQLITE_OK is returned on success, otherwise an error code.
4276*/
4277static int copyPayload(
4278 void *pPayload, /* Pointer to page data */
4279 void *pBuf, /* Pointer to buffer */
4280 int nByte, /* Number of bytes to copy */
4281 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4282 DbPage *pDbPage /* Page containing pPayload */
4283){
4284 if( eOp ){
4285 /* Copy data from buffer to page (a write operation) */
4286 int rc = sqlite3PagerWrite(pDbPage);
4287 if( rc!=SQLITE_OK ){
4288 return rc;
4289 }
4290 memcpy(pPayload, pBuf, nByte);
4291 }else{
4292 /* Copy data from page to buffer (a read operation) */
4293 memcpy(pBuf, pPayload, nByte);
4294 }
4295 return SQLITE_OK;
4296}
danielk1977d04417962007-05-02 13:16:30 +00004297
4298/*
danielk19779f8d6402007-05-02 17:48:45 +00004299** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004300** for the entry that the pCur cursor is pointing to. The eOp
4301** argument is interpreted as follows:
4302**
4303** 0: The operation is a read. Populate the overflow cache.
4304** 1: The operation is a write. Populate the overflow cache.
4305** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004306**
4307** A total of "amt" bytes are read or written beginning at "offset".
4308** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004309**
drh3bcdfd22009-07-12 02:32:21 +00004310** The content being read or written might appear on the main page
4311** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004312**
dan5a500af2014-03-11 20:33:04 +00004313** If the current cursor entry uses one or more overflow pages and the
4314** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004315** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004316** Subsequent calls use this cache to make seeking to the supplied offset
4317** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004318**
4319** Once an overflow page-list cache has been allocated, it may be
4320** invalidated if some other cursor writes to the same table, or if
4321** the cursor is moved to a different row. Additionally, in auto-vacuum
4322** mode, the following events may invalidate an overflow page-list cache.
4323**
4324** * An incremental vacuum,
4325** * A commit in auto_vacuum="full" mode,
4326** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004327*/
danielk19779f8d6402007-05-02 17:48:45 +00004328static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004329 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004330 u32 offset, /* Begin reading this far into payload */
4331 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004332 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004333 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004334){
4335 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004336 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004337 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004338 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004339 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004340#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004341 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004342 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004343#endif
drh3aac2dd2004-04-26 14:10:20 +00004344
danielk1977da107192007-05-04 08:32:13 +00004345 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004346 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004347 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004348 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004349 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004350
drh86057612007-06-26 01:04:48 +00004351 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004352 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004353#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004354 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004355#endif
drhab1cc582014-09-23 21:25:19 +00004356 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004357
drhab1cc582014-09-23 21:25:19 +00004358 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004359 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004360 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004361 }
danielk1977da107192007-05-04 08:32:13 +00004362
4363 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004364 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004365 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004366 if( a+offset>pCur->info.nLocal ){
4367 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004368 }
dan5a500af2014-03-11 20:33:04 +00004369 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004370 offset = 0;
drha34b6762004-05-07 13:30:42 +00004371 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004372 amt -= a;
drhdd793422001-06-28 01:54:48 +00004373 }else{
drhfa1a98a2004-05-14 19:08:17 +00004374 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004375 }
danielk1977da107192007-05-04 08:32:13 +00004376
dan85753662014-12-11 16:38:18 +00004377
danielk1977da107192007-05-04 08:32:13 +00004378 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004379 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004380 Pgno nextPage;
4381
drhfa1a98a2004-05-14 19:08:17 +00004382 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004383
drha38c9512014-04-01 01:24:34 +00004384 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4385 ** Except, do not allocate aOverflow[] for eOp==2.
4386 **
4387 ** The aOverflow[] array is sized at one entry for each overflow page
4388 ** in the overflow chain. The page number of the first overflow page is
4389 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4390 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004391 */
drh036dbec2014-03-11 23:40:44 +00004392 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004393 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004394 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004395 Pgno *aNew = (Pgno*)sqlite3Realloc(
4396 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004397 );
4398 if( aNew==0 ){
4399 rc = SQLITE_NOMEM;
4400 }else{
4401 pCur->nOvflAlloc = nOvfl*2;
4402 pCur->aOverflow = aNew;
4403 }
4404 }
4405 if( rc==SQLITE_OK ){
4406 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004407 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004408 }
4409 }
danielk1977da107192007-05-04 08:32:13 +00004410
4411 /* If the overflow page-list cache has been allocated and the
4412 ** entry for the first required overflow page is valid, skip
4413 ** directly to it.
4414 */
drh3f387402014-09-24 01:23:00 +00004415 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4416 && pCur->aOverflow[offset/ovflSize]
4417 ){
danielk19772dec9702007-05-02 16:48:37 +00004418 iIdx = (offset/ovflSize);
4419 nextPage = pCur->aOverflow[iIdx];
4420 offset = (offset%ovflSize);
4421 }
danielk1977da107192007-05-04 08:32:13 +00004422
4423 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4424
danielk1977da107192007-05-04 08:32:13 +00004425 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004426 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004427 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4428 pCur->aOverflow[iIdx] = nextPage;
4429 }
danielk1977da107192007-05-04 08:32:13 +00004430
danielk1977d04417962007-05-02 13:16:30 +00004431 if( offset>=ovflSize ){
4432 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004433 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004434 ** data is not required. So first try to lookup the overflow
4435 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004436 ** function.
drha38c9512014-04-01 01:24:34 +00004437 **
4438 ** Note that the aOverflow[] array must be allocated because eOp!=2
4439 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004440 */
drha38c9512014-04-01 01:24:34 +00004441 assert( eOp!=2 );
4442 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004443 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004444 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004445 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004446 }else{
danielk1977da107192007-05-04 08:32:13 +00004447 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004448 }
danielk1977da107192007-05-04 08:32:13 +00004449 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004450 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004451 /* Need to read this page properly. It contains some of the
4452 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004453 */
danf4ba1092011-10-08 14:57:07 +00004454#ifdef SQLITE_DIRECT_OVERFLOW_READ
4455 sqlite3_file *fd;
4456#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004457 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004458 if( a + offset > ovflSize ){
4459 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004460 }
danf4ba1092011-10-08 14:57:07 +00004461
4462#ifdef SQLITE_DIRECT_OVERFLOW_READ
4463 /* If all the following are true:
4464 **
4465 ** 1) this is a read operation, and
4466 ** 2) data is required from the start of this overflow page, and
4467 ** 3) the database is file-backed, and
4468 ** 4) there is no open write-transaction, and
4469 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004470 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004471 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004472 **
4473 ** then data can be read directly from the database file into the
4474 ** output buffer, bypassing the page-cache altogether. This speeds
4475 ** up loading large records that span many overflow pages.
4476 */
dan5a500af2014-03-11 20:33:04 +00004477 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004478 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004479 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004480 && pBt->inTransaction==TRANS_READ /* (4) */
4481 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4482 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004483 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004484 ){
4485 u8 aSave[4];
4486 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004487 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004488 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004489 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004490 nextPage = get4byte(aWrite);
4491 memcpy(aWrite, aSave, 4);
4492 }else
4493#endif
4494
4495 {
4496 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004497 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004498 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004499 );
danf4ba1092011-10-08 14:57:07 +00004500 if( rc==SQLITE_OK ){
4501 aPayload = sqlite3PagerGetData(pDbPage);
4502 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004503 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004504 sqlite3PagerUnref(pDbPage);
4505 offset = 0;
4506 }
4507 }
4508 amt -= a;
4509 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004510 }
drh2af926b2001-05-15 00:39:25 +00004511 }
drh2af926b2001-05-15 00:39:25 +00004512 }
danielk1977cfe9a692004-06-16 12:00:29 +00004513
danielk1977da107192007-05-04 08:32:13 +00004514 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004515 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004516 }
danielk1977da107192007-05-04 08:32:13 +00004517 return rc;
drh2af926b2001-05-15 00:39:25 +00004518}
4519
drh72f82862001-05-24 21:06:34 +00004520/*
drh3aac2dd2004-04-26 14:10:20 +00004521** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004522** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004523** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004524**
drh5d1a8722009-07-22 18:07:40 +00004525** The caller must ensure that pCur is pointing to a valid row
4526** in the table.
4527**
drh3aac2dd2004-04-26 14:10:20 +00004528** Return SQLITE_OK on success or an error code if anything goes
4529** wrong. An error is returned if "offset+amt" is larger than
4530** the available payload.
drh72f82862001-05-24 21:06:34 +00004531*/
drha34b6762004-05-07 13:30:42 +00004532int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004533 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004534 assert( pCur->eState==CURSOR_VALID );
4535 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4536 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4537 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004538}
4539
4540/*
drh3aac2dd2004-04-26 14:10:20 +00004541** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004542** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004543** begins at "offset".
4544**
4545** Return SQLITE_OK on success or an error code if anything goes
4546** wrong. An error is returned if "offset+amt" is larger than
4547** the available payload.
drh72f82862001-05-24 21:06:34 +00004548*/
drh3aac2dd2004-04-26 14:10:20 +00004549int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004550 int rc;
4551
danielk19773588ceb2008-06-10 17:30:26 +00004552#ifndef SQLITE_OMIT_INCRBLOB
4553 if ( pCur->eState==CURSOR_INVALID ){
4554 return SQLITE_ABORT;
4555 }
4556#endif
4557
drh1fee73e2007-08-29 04:00:57 +00004558 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004559 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004560 if( rc==SQLITE_OK ){
4561 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004562 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4563 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004564 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004565 }
4566 return rc;
drh2af926b2001-05-15 00:39:25 +00004567}
4568
drh72f82862001-05-24 21:06:34 +00004569/*
drh0e1c19e2004-05-11 00:58:56 +00004570** Return a pointer to payload information from the entry that the
4571** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004572** the key if index btrees (pPage->intKey==0) and is the data for
4573** table btrees (pPage->intKey==1). The number of bytes of available
4574** key/data is written into *pAmt. If *pAmt==0, then the value
4575** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004576**
4577** This routine is an optimization. It is common for the entire key
4578** and data to fit on the local page and for there to be no overflow
4579** pages. When that is so, this routine can be used to access the
4580** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004581** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004582** the key/data and copy it into a preallocated buffer.
4583**
4584** The pointer returned by this routine looks directly into the cached
4585** page of the database. The data might change or move the next time
4586** any btree routine is called.
4587*/
drh2a8d2262013-12-09 20:43:22 +00004588static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004589 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004590 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004591){
drhf3392e32015-04-15 17:26:55 +00004592 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004593 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004594 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004595 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004596 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004597 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004598 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004599 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4600 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4601 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4602 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4603 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004604 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004605}
4606
4607
4608/*
drhe51c44f2004-05-30 20:46:09 +00004609** For the entry that cursor pCur is point to, return as
4610** many bytes of the key or data as are available on the local
4611** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004612**
4613** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004614** or be destroyed on the next call to any Btree routine,
4615** including calls from other threads against the same cache.
4616** Hence, a mutex on the BtShared should be held prior to calling
4617** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004618**
4619** These routines is used to get quick access to key and data
4620** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004621*/
drh501932c2013-11-21 21:59:53 +00004622const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004623 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004624}
drh501932c2013-11-21 21:59:53 +00004625const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004626 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004627}
4628
4629
4630/*
drh8178a752003-01-05 21:41:40 +00004631** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004632** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004633**
4634** This function returns SQLITE_CORRUPT if the page-header flags field of
4635** the new child page does not match the flags field of the parent (i.e.
4636** if an intkey page appears to be the parent of a non-intkey page, or
4637** vice-versa).
drh72f82862001-05-24 21:06:34 +00004638*/
drh3aac2dd2004-04-26 14:10:20 +00004639static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004640 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004641 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004642 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004643 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004644
drh1fee73e2007-08-29 04:00:57 +00004645 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004646 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004647 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004648 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004649 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4650 return SQLITE_CORRUPT_BKPT;
4651 }
drhb00fc3b2013-08-21 23:42:32 +00004652 rc = getAndInitPage(pBt, newPgno, &pNewPage,
drh036dbec2014-03-11 23:40:44 +00004653 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004654 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004655 pCur->apPage[i+1] = pNewPage;
4656 pCur->aiIdx[i+1] = 0;
4657 pCur->iPage++;
4658
drh271efa52004-05-30 19:19:05 +00004659 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004660 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk1977bd5969a2009-07-11 17:39:42 +00004661 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004662 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004663 }
drh72f82862001-05-24 21:06:34 +00004664 return SQLITE_OK;
4665}
4666
drhcbd33492015-03-25 13:06:54 +00004667#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004668/*
4669** Page pParent is an internal (non-leaf) tree page. This function
4670** asserts that page number iChild is the left-child if the iIdx'th
4671** cell in page pParent. Or, if iIdx is equal to the total number of
4672** cells in pParent, that page number iChild is the right-child of
4673** the page.
4674*/
4675static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004676 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4677 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004678 assert( iIdx<=pParent->nCell );
4679 if( iIdx==pParent->nCell ){
4680 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4681 }else{
4682 assert( get4byte(findCell(pParent, iIdx))==iChild );
4683 }
4684}
4685#else
4686# define assertParentIndex(x,y,z)
4687#endif
4688
drh72f82862001-05-24 21:06:34 +00004689/*
drh5e2f8b92001-05-28 00:41:15 +00004690** Move the cursor up to the parent page.
4691**
4692** pCur->idx is set to the cell index that contains the pointer
4693** to the page we are coming from. If we are coming from the
4694** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004695** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004696*/
danielk197730548662009-07-09 05:07:37 +00004697static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004698 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004699 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004700 assert( pCur->iPage>0 );
4701 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004702 assertParentIndex(
4703 pCur->apPage[pCur->iPage-1],
4704 pCur->aiIdx[pCur->iPage-1],
4705 pCur->apPage[pCur->iPage]->pgno
4706 );
dan6c2688c2012-01-12 15:05:03 +00004707 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004708
danielk197771d5d2c2008-09-29 11:49:47 +00004709 releasePage(pCur->apPage[pCur->iPage]);
4710 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004711 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004712 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh72f82862001-05-24 21:06:34 +00004713}
4714
4715/*
danielk19778f880a82009-07-13 09:41:45 +00004716** Move the cursor to point to the root page of its b-tree structure.
4717**
4718** If the table has a virtual root page, then the cursor is moved to point
4719** to the virtual root page instead of the actual root page. A table has a
4720** virtual root page when the actual root page contains no cells and a
4721** single child page. This can only happen with the table rooted at page 1.
4722**
4723** If the b-tree structure is empty, the cursor state is set to
4724** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4725** cell located on the root (or virtual root) page and the cursor state
4726** is set to CURSOR_VALID.
4727**
4728** If this function returns successfully, it may be assumed that the
4729** page-header flags indicate that the [virtual] root-page is the expected
4730** kind of b-tree page (i.e. if when opening the cursor the caller did not
4731** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4732** indicating a table b-tree, or if the caller did specify a KeyInfo
4733** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4734** b-tree).
drh72f82862001-05-24 21:06:34 +00004735*/
drh5e2f8b92001-05-28 00:41:15 +00004736static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004737 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004738 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004739
drh1fee73e2007-08-29 04:00:57 +00004740 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004741 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4742 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4743 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4744 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4745 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004746 assert( pCur->skipNext!=SQLITE_OK );
4747 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004748 }
danielk1977be51a652008-10-08 17:58:48 +00004749 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004750 }
danielk197771d5d2c2008-09-29 11:49:47 +00004751
4752 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004753 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004754 }else if( pCur->pgnoRoot==0 ){
4755 pCur->eState = CURSOR_INVALID;
4756 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004757 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004758 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh036dbec2014-03-11 23:40:44 +00004759 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004760 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004761 pCur->eState = CURSOR_INVALID;
4762 return rc;
4763 }
danielk1977172114a2009-07-07 15:47:12 +00004764 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004765 }
danielk197771d5d2c2008-09-29 11:49:47 +00004766 pRoot = pCur->apPage[0];
4767 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004768
4769 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4770 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4771 ** NULL, the caller expects a table b-tree. If this is not the case,
4772 ** return an SQLITE_CORRUPT error.
4773 **
4774 ** Earlier versions of SQLite assumed that this test could not fail
4775 ** if the root page was already loaded when this function was called (i.e.
4776 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4777 ** in such a way that page pRoot is linked into a second b-tree table
4778 ** (or the freelist). */
4779 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4780 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4781 return SQLITE_CORRUPT_BKPT;
4782 }
danielk19778f880a82009-07-13 09:41:45 +00004783
danielk197771d5d2c2008-09-29 11:49:47 +00004784 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004785 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004786 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004787
drh4e8fe3f2013-12-06 23:25:27 +00004788 if( pRoot->nCell>0 ){
4789 pCur->eState = CURSOR_VALID;
4790 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004791 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004792 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004793 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004794 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004795 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004796 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004797 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004798 }
4799 return rc;
drh72f82862001-05-24 21:06:34 +00004800}
drh2af926b2001-05-15 00:39:25 +00004801
drh5e2f8b92001-05-28 00:41:15 +00004802/*
4803** Move the cursor down to the left-most leaf entry beneath the
4804** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004805**
4806** The left-most leaf is the one with the smallest key - the first
4807** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004808*/
4809static int moveToLeftmost(BtCursor *pCur){
4810 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004811 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004812 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004813
drh1fee73e2007-08-29 04:00:57 +00004814 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004815 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004816 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4817 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4818 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004819 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004820 }
drhd677b3d2007-08-20 22:48:41 +00004821 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004822}
4823
drh2dcc9aa2002-12-04 13:40:25 +00004824/*
4825** Move the cursor down to the right-most leaf entry beneath the
4826** page to which it is currently pointing. Notice the difference
4827** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4828** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4829** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004830**
4831** The right-most entry is the one with the largest key - the last
4832** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004833*/
4834static int moveToRightmost(BtCursor *pCur){
4835 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004836 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004837 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004838
drh1fee73e2007-08-29 04:00:57 +00004839 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004840 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004841 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004842 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004843 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004844 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004845 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004846 }
drhee6438d2014-09-01 13:29:32 +00004847 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4848 assert( pCur->info.nSize==0 );
4849 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4850 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004851}
4852
drh5e00f6c2001-09-13 13:46:56 +00004853/* Move the cursor to the first entry in the table. Return SQLITE_OK
4854** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004855** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004856*/
drh3aac2dd2004-04-26 14:10:20 +00004857int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004858 int rc;
drhd677b3d2007-08-20 22:48:41 +00004859
drh1fee73e2007-08-29 04:00:57 +00004860 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004861 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004862 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004863 if( rc==SQLITE_OK ){
4864 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004865 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004866 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004867 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004868 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004869 *pRes = 0;
4870 rc = moveToLeftmost(pCur);
4871 }
drh5e00f6c2001-09-13 13:46:56 +00004872 }
drh5e00f6c2001-09-13 13:46:56 +00004873 return rc;
4874}
drh5e2f8b92001-05-28 00:41:15 +00004875
drh9562b552002-02-19 15:00:07 +00004876/* Move the cursor to the last entry in the table. Return SQLITE_OK
4877** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004878** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004879*/
drh3aac2dd2004-04-26 14:10:20 +00004880int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004881 int rc;
drhd677b3d2007-08-20 22:48:41 +00004882
drh1fee73e2007-08-29 04:00:57 +00004883 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004884 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004885
4886 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004887 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004888#ifdef SQLITE_DEBUG
4889 /* This block serves to assert() that the cursor really does point
4890 ** to the last entry in the b-tree. */
4891 int ii;
4892 for(ii=0; ii<pCur->iPage; ii++){
4893 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4894 }
4895 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4896 assert( pCur->apPage[pCur->iPage]->leaf );
4897#endif
4898 return SQLITE_OK;
4899 }
4900
drh9562b552002-02-19 15:00:07 +00004901 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004902 if( rc==SQLITE_OK ){
4903 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004904 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004905 *pRes = 1;
4906 }else{
4907 assert( pCur->eState==CURSOR_VALID );
4908 *pRes = 0;
4909 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004910 if( rc==SQLITE_OK ){
4911 pCur->curFlags |= BTCF_AtLast;
4912 }else{
4913 pCur->curFlags &= ~BTCF_AtLast;
4914 }
4915
drhd677b3d2007-08-20 22:48:41 +00004916 }
drh9562b552002-02-19 15:00:07 +00004917 }
drh9562b552002-02-19 15:00:07 +00004918 return rc;
4919}
4920
drhe14006d2008-03-25 17:23:32 +00004921/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004922** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004923**
drhe63d9992008-08-13 19:11:48 +00004924** For INTKEY tables, the intKey parameter is used. pIdxKey
4925** must be NULL. For index tables, pIdxKey is used and intKey
4926** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004927**
drh5e2f8b92001-05-28 00:41:15 +00004928** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004929** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004930** were present. The cursor might point to an entry that comes
4931** before or after the key.
4932**
drh64022502009-01-09 14:11:04 +00004933** An integer is written into *pRes which is the result of
4934** comparing the key with the entry to which the cursor is
4935** pointing. The meaning of the integer written into
4936** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004937**
4938** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004939** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004940** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004941**
4942** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004943** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004944**
4945** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004946** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004947**
drha059ad02001-04-17 20:09:11 +00004948*/
drhe63d9992008-08-13 19:11:48 +00004949int sqlite3BtreeMovetoUnpacked(
4950 BtCursor *pCur, /* The cursor to be moved */
4951 UnpackedRecord *pIdxKey, /* Unpacked index key */
4952 i64 intKey, /* The table key */
4953 int biasRight, /* If true, bias the search to the high end */
4954 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004955){
drh72f82862001-05-24 21:06:34 +00004956 int rc;
dan3b9330f2014-02-27 20:44:18 +00004957 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004958
drh1fee73e2007-08-29 04:00:57 +00004959 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004960 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004961 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004962 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004963
4964 /* If the cursor is already positioned at the point we are trying
4965 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00004966 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00004967 && pCur->apPage[0]->intKey
4968 ){
drhe63d9992008-08-13 19:11:48 +00004969 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004970 *pRes = 0;
4971 return SQLITE_OK;
4972 }
drh036dbec2014-03-11 23:40:44 +00004973 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004974 *pRes = -1;
4975 return SQLITE_OK;
4976 }
4977 }
4978
dan1fed5da2014-02-25 21:01:25 +00004979 if( pIdxKey ){
4980 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00004981 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00004982 assert( pIdxKey->default_rc==1
4983 || pIdxKey->default_rc==0
4984 || pIdxKey->default_rc==-1
4985 );
drh13a747e2014-03-03 21:46:55 +00004986 }else{
drhb6e8fd12014-03-06 01:56:33 +00004987 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004988 }
4989
drh5e2f8b92001-05-28 00:41:15 +00004990 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004991 if( rc ){
4992 return rc;
4993 }
dana205a482011-08-27 18:48:57 +00004994 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4995 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4996 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004997 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004998 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004999 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005000 return SQLITE_OK;
5001 }
danielk197771d5d2c2008-09-29 11:49:47 +00005002 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005003 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005004 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005005 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005006 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005007 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005008
5009 /* pPage->nCell must be greater than zero. If this is the root-page
5010 ** the cursor would have been INVALID above and this for(;;) loop
5011 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005012 ** would have already detected db corruption. Similarly, pPage must
5013 ** be the right kind (index or table) of b-tree page. Otherwise
5014 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005015 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005016 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005017 lwr = 0;
5018 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005019 assert( biasRight==0 || biasRight==1 );
5020 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005021 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005022 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005023 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005024 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005025 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005026 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005027 while( 0x80 <= *(pCell++) ){
5028 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5029 }
drhd172f862006-01-12 15:01:15 +00005030 }
drha2c20e42008-03-29 16:01:04 +00005031 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005032 if( nCellKey<intKey ){
5033 lwr = idx+1;
5034 if( lwr>upr ){ c = -1; break; }
5035 }else if( nCellKey>intKey ){
5036 upr = idx-1;
5037 if( lwr>upr ){ c = +1; break; }
5038 }else{
5039 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005040 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005041 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005042 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005043 if( !pPage->leaf ){
5044 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005045 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005046 }else{
5047 *pRes = 0;
5048 rc = SQLITE_OK;
5049 goto moveto_finish;
5050 }
drhd793f442013-11-25 14:10:15 +00005051 }
drhebf10b12013-11-25 17:38:26 +00005052 assert( lwr+upr>=0 );
5053 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005054 }
5055 }else{
5056 for(;;){
drhc6827502015-05-28 15:14:32 +00005057 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005058 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005059
drhb2eced52010-08-12 02:41:12 +00005060 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005061 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005062 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005063 ** varint. This information is used to attempt to avoid parsing
5064 ** the entire cell by checking for the cases where the record is
5065 ** stored entirely within the b-tree page by inspecting the first
5066 ** 2 bytes of the cell.
5067 */
drhec3e6b12013-11-25 02:38:55 +00005068 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005069 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005070 /* This branch runs if the record-size field of the cell is a
5071 ** single byte varint and the record fits entirely on the main
5072 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005073 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005074 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005075 }else if( !(pCell[1] & 0x80)
5076 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5077 ){
5078 /* The record-size field is a 2 byte varint and the record
5079 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005080 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005081 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005082 }else{
danielk197711c327a2009-05-04 19:01:26 +00005083 /* The record flows over onto one or more overflow pages. In
5084 ** this case the whole cell needs to be parsed, a buffer allocated
5085 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005086 ** buffer before VdbeRecordCompare() can be called.
5087 **
5088 ** If the record is corrupt, the xRecordCompare routine may read
5089 ** up to two varints past the end of the buffer. An extra 18
5090 ** bytes of padding is allocated at the end of the buffer in
5091 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005092 void *pCellKey;
5093 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005094 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005095 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005096 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5097 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5098 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5099 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005100 if( nCell<2 ){
5101 rc = SQLITE_CORRUPT_BKPT;
5102 goto moveto_finish;
5103 }
5104 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005105 if( pCellKey==0 ){
5106 rc = SQLITE_NOMEM;
5107 goto moveto_finish;
5108 }
drhd793f442013-11-25 14:10:15 +00005109 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005110 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005111 if( rc ){
5112 sqlite3_free(pCellKey);
5113 goto moveto_finish;
5114 }
drh75179de2014-09-16 14:37:35 +00005115 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005116 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005117 }
dan38fdead2014-04-01 10:19:02 +00005118 assert(
5119 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005120 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005121 );
drhbb933ef2013-11-25 15:01:38 +00005122 if( c<0 ){
5123 lwr = idx+1;
5124 }else if( c>0 ){
5125 upr = idx-1;
5126 }else{
5127 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005128 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005129 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005130 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005131 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005132 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005133 }
drhebf10b12013-11-25 17:38:26 +00005134 if( lwr>upr ) break;
5135 assert( lwr+upr>=0 );
5136 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005137 }
drh72f82862001-05-24 21:06:34 +00005138 }
drhb07028f2011-10-14 21:49:18 +00005139 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005140 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005141 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005142 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005143 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005144 *pRes = c;
5145 rc = SQLITE_OK;
5146 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005147 }
5148moveto_next_layer:
5149 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005150 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005151 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005152 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005153 }
drhf49661a2008-12-10 16:45:50 +00005154 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005155 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005156 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005157 }
drh1e968a02008-03-25 00:22:21 +00005158moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005159 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005160 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005161 return rc;
5162}
5163
drhd677b3d2007-08-20 22:48:41 +00005164
drh72f82862001-05-24 21:06:34 +00005165/*
drhc39e0002004-05-07 23:50:57 +00005166** Return TRUE if the cursor is not pointing at an entry of the table.
5167**
5168** TRUE will be returned after a call to sqlite3BtreeNext() moves
5169** past the last entry in the table or sqlite3BtreePrev() moves past
5170** the first entry. TRUE is also returned if the table is empty.
5171*/
5172int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005173 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5174 ** have been deleted? This API will need to change to return an error code
5175 ** as well as the boolean result value.
5176 */
5177 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005178}
5179
5180/*
drhbd03cae2001-06-02 02:40:57 +00005181** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005182** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005183** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005184** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005185**
drhee6438d2014-09-01 13:29:32 +00005186** The main entry point is sqlite3BtreeNext(). That routine is optimized
5187** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5188** to the next cell on the current page. The (slower) btreeNext() helper
5189** routine is called when it is necessary to move to a different page or
5190** to restore the cursor.
5191**
drhe39a7322014-02-03 14:04:11 +00005192** The calling function will set *pRes to 0 or 1. The initial *pRes value
5193** will be 1 if the cursor being stepped corresponds to an SQL index and
5194** if this routine could have been skipped if that SQL index had been
5195** a unique index. Otherwise the caller will have set *pRes to zero.
5196** Zero is the common case. The btree implementation is free to use the
5197** initial *pRes value as a hint to improve performance, but the current
5198** SQLite btree implementation does not. (Note that the comdb2 btree
5199** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005200*/
drhee6438d2014-09-01 13:29:32 +00005201static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005202 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005203 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005204 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005205
drh1fee73e2007-08-29 04:00:57 +00005206 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005207 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005208 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005209 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005210 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005211 rc = restoreCursorPosition(pCur);
5212 if( rc!=SQLITE_OK ){
5213 return rc;
5214 }
5215 if( CURSOR_INVALID==pCur->eState ){
5216 *pRes = 1;
5217 return SQLITE_OK;
5218 }
drh9b47ee32013-08-20 03:13:51 +00005219 if( pCur->skipNext ){
5220 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5221 pCur->eState = CURSOR_VALID;
5222 if( pCur->skipNext>0 ){
5223 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005224 return SQLITE_OK;
5225 }
drhf66f26a2013-08-19 20:04:10 +00005226 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005227 }
danielk1977da184232006-01-05 11:34:32 +00005228 }
danielk1977da184232006-01-05 11:34:32 +00005229
danielk197771d5d2c2008-09-29 11:49:47 +00005230 pPage = pCur->apPage[pCur->iPage];
5231 idx = ++pCur->aiIdx[pCur->iPage];
5232 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005233
5234 /* If the database file is corrupt, it is possible for the value of idx
5235 ** to be invalid here. This can only occur if a second cursor modifies
5236 ** the page while cursor pCur is holding a reference to it. Which can
5237 ** only happen if the database is corrupt in such a way as to link the
5238 ** page into more than one b-tree structure. */
5239 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005240
danielk197771d5d2c2008-09-29 11:49:47 +00005241 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005242 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005243 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005244 if( rc ) return rc;
5245 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005246 }
drh5e2f8b92001-05-28 00:41:15 +00005247 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005248 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005249 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005250 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005251 return SQLITE_OK;
5252 }
danielk197730548662009-07-09 05:07:37 +00005253 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005254 pPage = pCur->apPage[pCur->iPage];
5255 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005256 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005257 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005258 }else{
drhee6438d2014-09-01 13:29:32 +00005259 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005260 }
drh8178a752003-01-05 21:41:40 +00005261 }
drh3aac2dd2004-04-26 14:10:20 +00005262 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005263 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005264 }else{
5265 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005266 }
drh72f82862001-05-24 21:06:34 +00005267}
drhee6438d2014-09-01 13:29:32 +00005268int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5269 MemPage *pPage;
5270 assert( cursorHoldsMutex(pCur) );
5271 assert( pRes!=0 );
5272 assert( *pRes==0 || *pRes==1 );
5273 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5274 pCur->info.nSize = 0;
5275 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5276 *pRes = 0;
5277 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5278 pPage = pCur->apPage[pCur->iPage];
5279 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5280 pCur->aiIdx[pCur->iPage]--;
5281 return btreeNext(pCur, pRes);
5282 }
5283 if( pPage->leaf ){
5284 return SQLITE_OK;
5285 }else{
5286 return moveToLeftmost(pCur);
5287 }
5288}
drh72f82862001-05-24 21:06:34 +00005289
drh3b7511c2001-05-26 13:15:44 +00005290/*
drh2dcc9aa2002-12-04 13:40:25 +00005291** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005292** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005293** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005294** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005295**
drhee6438d2014-09-01 13:29:32 +00005296** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5297** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005298** to the previous cell on the current page. The (slower) btreePrevious()
5299** helper routine is called when it is necessary to move to a different page
5300** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005301**
drhe39a7322014-02-03 14:04:11 +00005302** The calling function will set *pRes to 0 or 1. The initial *pRes value
5303** will be 1 if the cursor being stepped corresponds to an SQL index and
5304** if this routine could have been skipped if that SQL index had been
5305** a unique index. Otherwise the caller will have set *pRes to zero.
5306** Zero is the common case. The btree implementation is free to use the
5307** initial *pRes value as a hint to improve performance, but the current
5308** SQLite btree implementation does not. (Note that the comdb2 btree
5309** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005310*/
drhee6438d2014-09-01 13:29:32 +00005311static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005312 int rc;
drh8178a752003-01-05 21:41:40 +00005313 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005314
drh1fee73e2007-08-29 04:00:57 +00005315 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005316 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005317 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005318 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005319 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5320 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005321 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005322 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005323 if( rc!=SQLITE_OK ){
5324 return rc;
drhf66f26a2013-08-19 20:04:10 +00005325 }
5326 if( CURSOR_INVALID==pCur->eState ){
5327 *pRes = 1;
5328 return SQLITE_OK;
5329 }
drh9b47ee32013-08-20 03:13:51 +00005330 if( pCur->skipNext ){
5331 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5332 pCur->eState = CURSOR_VALID;
5333 if( pCur->skipNext<0 ){
5334 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005335 return SQLITE_OK;
5336 }
drhf66f26a2013-08-19 20:04:10 +00005337 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005338 }
danielk1977da184232006-01-05 11:34:32 +00005339 }
danielk1977da184232006-01-05 11:34:32 +00005340
danielk197771d5d2c2008-09-29 11:49:47 +00005341 pPage = pCur->apPage[pCur->iPage];
5342 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005343 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005344 int idx = pCur->aiIdx[pCur->iPage];
5345 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005346 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005347 rc = moveToRightmost(pCur);
5348 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005349 while( pCur->aiIdx[pCur->iPage]==0 ){
5350 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005351 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005352 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005353 return SQLITE_OK;
5354 }
danielk197730548662009-07-09 05:07:37 +00005355 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005356 }
drhee6438d2014-09-01 13:29:32 +00005357 assert( pCur->info.nSize==0 );
5358 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005359
5360 pCur->aiIdx[pCur->iPage]--;
5361 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005362 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005363 rc = sqlite3BtreePrevious(pCur, pRes);
5364 }else{
5365 rc = SQLITE_OK;
5366 }
drh2dcc9aa2002-12-04 13:40:25 +00005367 }
drh2dcc9aa2002-12-04 13:40:25 +00005368 return rc;
5369}
drhee6438d2014-09-01 13:29:32 +00005370int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5371 assert( cursorHoldsMutex(pCur) );
5372 assert( pRes!=0 );
5373 assert( *pRes==0 || *pRes==1 );
5374 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5375 *pRes = 0;
5376 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5377 pCur->info.nSize = 0;
5378 if( pCur->eState!=CURSOR_VALID
5379 || pCur->aiIdx[pCur->iPage]==0
5380 || pCur->apPage[pCur->iPage]->leaf==0
5381 ){
5382 return btreePrevious(pCur, pRes);
5383 }
5384 pCur->aiIdx[pCur->iPage]--;
5385 return SQLITE_OK;
5386}
drh2dcc9aa2002-12-04 13:40:25 +00005387
5388/*
drh3b7511c2001-05-26 13:15:44 +00005389** Allocate a new page from the database file.
5390**
danielk19773b8a05f2007-03-19 17:44:26 +00005391** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005392** has already been called on the new page.) The new page has also
5393** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005394** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005395**
5396** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005397** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005398**
drh82e647d2013-03-02 03:25:55 +00005399** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005400** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005401** attempt to keep related pages close to each other in the database file,
5402** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005403**
drh82e647d2013-03-02 03:25:55 +00005404** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5405** anywhere on the free-list, then it is guaranteed to be returned. If
5406** eMode is BTALLOC_LT then the page returned will be less than or equal
5407** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5408** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005409*/
drh4f0c5872007-03-26 22:05:01 +00005410static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005411 BtShared *pBt, /* The btree */
5412 MemPage **ppPage, /* Store pointer to the allocated page here */
5413 Pgno *pPgno, /* Store the page number here */
5414 Pgno nearby, /* Search for a page near this one */
5415 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005416){
drh3aac2dd2004-04-26 14:10:20 +00005417 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005418 int rc;
drh35cd6432009-06-05 14:17:21 +00005419 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005420 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005421 MemPage *pTrunk = 0;
5422 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005423 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005424
drh1fee73e2007-08-29 04:00:57 +00005425 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005426 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005427 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005428 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005429 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5430 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005431 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005432 testcase( n==mxPage-1 );
5433 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005434 return SQLITE_CORRUPT_BKPT;
5435 }
drh3aac2dd2004-04-26 14:10:20 +00005436 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005437 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005438 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005439 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005440 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005441
drh82e647d2013-03-02 03:25:55 +00005442 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005443 ** shows that the page 'nearby' is somewhere on the free-list, then
5444 ** the entire-list will be searched for that page.
5445 */
5446#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005447 if( eMode==BTALLOC_EXACT ){
5448 if( nearby<=mxPage ){
5449 u8 eType;
5450 assert( nearby>0 );
5451 assert( pBt->autoVacuum );
5452 rc = ptrmapGet(pBt, nearby, &eType, 0);
5453 if( rc ) return rc;
5454 if( eType==PTRMAP_FREEPAGE ){
5455 searchList = 1;
5456 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005457 }
dan51f0b6d2013-02-22 20:16:34 +00005458 }else if( eMode==BTALLOC_LE ){
5459 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005460 }
5461#endif
5462
5463 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5464 ** first free-list trunk page. iPrevTrunk is initially 1.
5465 */
danielk19773b8a05f2007-03-19 17:44:26 +00005466 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005467 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005468 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005469
5470 /* The code within this loop is run only once if the 'searchList' variable
5471 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005472 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5473 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005474 */
5475 do {
5476 pPrevTrunk = pTrunk;
5477 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005478 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5479 ** is the page number of the next freelist trunk page in the list or
5480 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005481 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005482 }else{
drh113762a2014-11-19 16:36:25 +00005483 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5484 ** stores the page number of the first page of the freelist, or zero if
5485 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005486 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005487 }
drhdf35a082009-07-09 02:24:35 +00005488 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005489 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005490 rc = SQLITE_CORRUPT_BKPT;
5491 }else{
drh7e8c6f12015-05-28 03:28:27 +00005492 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005493 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005494 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005495 pTrunk = 0;
5496 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005497 }
drhb07028f2011-10-14 21:49:18 +00005498 assert( pTrunk!=0 );
5499 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005500 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5501 ** is the number of leaf page pointers to follow. */
5502 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005503 if( k==0 && !searchList ){
5504 /* The trunk has no leaves and the list is not being searched.
5505 ** So extract the trunk page itself and use it as the newly
5506 ** allocated page */
5507 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005508 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005509 if( rc ){
5510 goto end_allocate_page;
5511 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005512 *pPgno = iTrunk;
5513 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5514 *ppPage = pTrunk;
5515 pTrunk = 0;
5516 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005517 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005518 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005519 rc = SQLITE_CORRUPT_BKPT;
5520 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005521#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005522 }else if( searchList
5523 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5524 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005525 /* The list is being searched and this trunk page is the page
5526 ** to allocate, regardless of whether it has leaves.
5527 */
dan51f0b6d2013-02-22 20:16:34 +00005528 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005529 *ppPage = pTrunk;
5530 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005531 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005532 if( rc ){
5533 goto end_allocate_page;
5534 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005535 if( k==0 ){
5536 if( !pPrevTrunk ){
5537 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5538 }else{
danf48c3552010-08-23 15:41:24 +00005539 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5540 if( rc!=SQLITE_OK ){
5541 goto end_allocate_page;
5542 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005543 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5544 }
5545 }else{
5546 /* The trunk page is required by the caller but it contains
5547 ** pointers to free-list leaves. The first leaf becomes a trunk
5548 ** page in this case.
5549 */
5550 MemPage *pNewTrunk;
5551 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005552 if( iNewTrunk>mxPage ){
5553 rc = SQLITE_CORRUPT_BKPT;
5554 goto end_allocate_page;
5555 }
drhdf35a082009-07-09 02:24:35 +00005556 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005557 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005558 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005559 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005560 }
danielk19773b8a05f2007-03-19 17:44:26 +00005561 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005562 if( rc!=SQLITE_OK ){
5563 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005564 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005565 }
5566 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5567 put4byte(&pNewTrunk->aData[4], k-1);
5568 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005569 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005570 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005571 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005572 put4byte(&pPage1->aData[32], iNewTrunk);
5573 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005574 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005575 if( rc ){
5576 goto end_allocate_page;
5577 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005578 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5579 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005580 }
5581 pTrunk = 0;
5582 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5583#endif
danielk1977e5765212009-06-17 11:13:28 +00005584 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005585 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005586 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005587 Pgno iPage;
5588 unsigned char *aData = pTrunk->aData;
5589 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005590 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005591 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005592 if( eMode==BTALLOC_LE ){
5593 for(i=0; i<k; i++){
5594 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005595 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005596 closest = i;
5597 break;
5598 }
5599 }
5600 }else{
5601 int dist;
5602 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5603 for(i=1; i<k; i++){
5604 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5605 if( d2<dist ){
5606 closest = i;
5607 dist = d2;
5608 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005609 }
5610 }
5611 }else{
5612 closest = 0;
5613 }
5614
5615 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005616 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005617 if( iPage>mxPage ){
5618 rc = SQLITE_CORRUPT_BKPT;
5619 goto end_allocate_page;
5620 }
drhdf35a082009-07-09 02:24:35 +00005621 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005622 if( !searchList
5623 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5624 ){
danielk1977bea2a942009-01-20 17:06:27 +00005625 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005626 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005627 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5628 ": %d more free pages\n",
5629 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005630 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5631 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005632 if( closest<k-1 ){
5633 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5634 }
5635 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005636 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005637 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005638 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005639 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005640 if( rc!=SQLITE_OK ){
5641 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005642 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005643 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005644 }
5645 searchList = 0;
5646 }
drhee696e22004-08-30 16:52:17 +00005647 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005648 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005649 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005650 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005651 }else{
danbc1a3c62013-02-23 16:40:46 +00005652 /* There are no pages on the freelist, so append a new page to the
5653 ** database image.
5654 **
5655 ** Normally, new pages allocated by this block can be requested from the
5656 ** pager layer with the 'no-content' flag set. This prevents the pager
5657 ** from trying to read the pages content from disk. However, if the
5658 ** current transaction has already run one or more incremental-vacuum
5659 ** steps, then the page we are about to allocate may contain content
5660 ** that is required in the event of a rollback. In this case, do
5661 ** not set the no-content flag. This causes the pager to load and journal
5662 ** the current page content before overwriting it.
5663 **
5664 ** Note that the pager will not actually attempt to load or journal
5665 ** content for any page that really does lie past the end of the database
5666 ** file on disk. So the effects of disabling the no-content optimization
5667 ** here are confined to those pages that lie between the end of the
5668 ** database image and the end of the database file.
5669 */
drh3f387402014-09-24 01:23:00 +00005670 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005671
drhdd3cd972010-03-27 17:12:36 +00005672 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5673 if( rc ) return rc;
5674 pBt->nPage++;
5675 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005676
danielk1977afcdd022004-10-31 16:25:42 +00005677#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005678 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005679 /* If *pPgno refers to a pointer-map page, allocate two new pages
5680 ** at the end of the file instead of one. The first allocated page
5681 ** becomes a new pointer-map page, the second is used by the caller.
5682 */
danielk1977ac861692009-03-28 10:54:22 +00005683 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005684 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5685 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005686 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005687 if( rc==SQLITE_OK ){
5688 rc = sqlite3PagerWrite(pPg->pDbPage);
5689 releasePage(pPg);
5690 }
5691 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005692 pBt->nPage++;
5693 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005694 }
5695#endif
drhdd3cd972010-03-27 17:12:36 +00005696 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5697 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005698
danielk1977599fcba2004-11-08 07:13:13 +00005699 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005700 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005701 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005702 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005703 if( rc!=SQLITE_OK ){
5704 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005705 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005706 }
drh3a4c1412004-05-09 20:40:11 +00005707 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005708 }
danielk1977599fcba2004-11-08 07:13:13 +00005709
5710 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005711
5712end_allocate_page:
5713 releasePage(pTrunk);
5714 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005715 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5716 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005717 return rc;
5718}
5719
5720/*
danielk1977bea2a942009-01-20 17:06:27 +00005721** This function is used to add page iPage to the database file free-list.
5722** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005723**
danielk1977bea2a942009-01-20 17:06:27 +00005724** The value passed as the second argument to this function is optional.
5725** If the caller happens to have a pointer to the MemPage object
5726** corresponding to page iPage handy, it may pass it as the second value.
5727** Otherwise, it may pass NULL.
5728**
5729** If a pointer to a MemPage object is passed as the second argument,
5730** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005731*/
danielk1977bea2a942009-01-20 17:06:27 +00005732static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5733 MemPage *pTrunk = 0; /* Free-list trunk page */
5734 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5735 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5736 MemPage *pPage; /* Page being freed. May be NULL. */
5737 int rc; /* Return Code */
5738 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005739
danielk1977bea2a942009-01-20 17:06:27 +00005740 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005741 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005742 assert( !pMemPage || pMemPage->pgno==iPage );
5743
danfb0246b2015-05-26 12:18:17 +00005744 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005745 if( pMemPage ){
5746 pPage = pMemPage;
5747 sqlite3PagerRef(pPage->pDbPage);
5748 }else{
5749 pPage = btreePageLookup(pBt, iPage);
5750 }
drh3aac2dd2004-04-26 14:10:20 +00005751
drha34b6762004-05-07 13:30:42 +00005752 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005753 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005754 if( rc ) goto freepage_out;
5755 nFree = get4byte(&pPage1->aData[36]);
5756 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005757
drhc9166342012-01-05 23:32:06 +00005758 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005759 /* If the secure_delete option is enabled, then
5760 ** always fully overwrite deleted information with zeros.
5761 */
drhb00fc3b2013-08-21 23:42:32 +00005762 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005763 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005764 ){
5765 goto freepage_out;
5766 }
5767 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005768 }
drhfcce93f2006-02-22 03:08:32 +00005769
danielk1977687566d2004-11-02 12:56:41 +00005770 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005771 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005772 */
danielk197785d90ca2008-07-19 14:25:15 +00005773 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005774 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005775 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005776 }
danielk1977687566d2004-11-02 12:56:41 +00005777
danielk1977bea2a942009-01-20 17:06:27 +00005778 /* Now manipulate the actual database free-list structure. There are two
5779 ** possibilities. If the free-list is currently empty, or if the first
5780 ** trunk page in the free-list is full, then this page will become a
5781 ** new free-list trunk page. Otherwise, it will become a leaf of the
5782 ** first trunk page in the current free-list. This block tests if it
5783 ** is possible to add the page as a new free-list leaf.
5784 */
5785 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005786 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005787
5788 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005789 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005790 if( rc!=SQLITE_OK ){
5791 goto freepage_out;
5792 }
5793
5794 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005795 assert( pBt->usableSize>32 );
5796 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005797 rc = SQLITE_CORRUPT_BKPT;
5798 goto freepage_out;
5799 }
drheeb844a2009-08-08 18:01:07 +00005800 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005801 /* In this case there is room on the trunk page to insert the page
5802 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005803 **
5804 ** Note that the trunk page is not really full until it contains
5805 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5806 ** coded. But due to a coding error in versions of SQLite prior to
5807 ** 3.6.0, databases with freelist trunk pages holding more than
5808 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5809 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005810 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005811 ** for now. At some point in the future (once everyone has upgraded
5812 ** to 3.6.0 or later) we should consider fixing the conditional above
5813 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005814 **
5815 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5816 ** avoid using the last six entries in the freelist trunk page array in
5817 ** order that database files created by newer versions of SQLite can be
5818 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005819 */
danielk19773b8a05f2007-03-19 17:44:26 +00005820 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005821 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005822 put4byte(&pTrunk->aData[4], nLeaf+1);
5823 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005824 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005825 sqlite3PagerDontWrite(pPage->pDbPage);
5826 }
danielk1977bea2a942009-01-20 17:06:27 +00005827 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005828 }
drh3a4c1412004-05-09 20:40:11 +00005829 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005830 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005831 }
drh3b7511c2001-05-26 13:15:44 +00005832 }
danielk1977bea2a942009-01-20 17:06:27 +00005833
5834 /* If control flows to this point, then it was not possible to add the
5835 ** the page being freed as a leaf page of the first trunk in the free-list.
5836 ** Possibly because the free-list is empty, or possibly because the
5837 ** first trunk in the free-list is full. Either way, the page being freed
5838 ** will become the new first trunk page in the free-list.
5839 */
drhb00fc3b2013-08-21 23:42:32 +00005840 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005841 goto freepage_out;
5842 }
5843 rc = sqlite3PagerWrite(pPage->pDbPage);
5844 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005845 goto freepage_out;
5846 }
5847 put4byte(pPage->aData, iTrunk);
5848 put4byte(&pPage->aData[4], 0);
5849 put4byte(&pPage1->aData[32], iPage);
5850 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5851
5852freepage_out:
5853 if( pPage ){
5854 pPage->isInit = 0;
5855 }
5856 releasePage(pPage);
5857 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005858 return rc;
5859}
drhc314dc72009-07-21 11:52:34 +00005860static void freePage(MemPage *pPage, int *pRC){
5861 if( (*pRC)==SQLITE_OK ){
5862 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5863 }
danielk1977bea2a942009-01-20 17:06:27 +00005864}
drh3b7511c2001-05-26 13:15:44 +00005865
5866/*
drh9bfdc252014-09-24 02:05:41 +00005867** Free any overflow pages associated with the given Cell. Write the
5868** local Cell size (the number of bytes on the original page, omitting
5869** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005870*/
drh9bfdc252014-09-24 02:05:41 +00005871static int clearCell(
5872 MemPage *pPage, /* The page that contains the Cell */
5873 unsigned char *pCell, /* First byte of the Cell */
5874 u16 *pnSize /* Write the size of the Cell here */
5875){
danielk1977aef0bf62005-12-30 16:28:01 +00005876 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005877 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005878 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005879 int rc;
drh94440812007-03-06 11:42:19 +00005880 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005881 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005882
drh1fee73e2007-08-29 04:00:57 +00005883 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00005884 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005885 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005886 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005887 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005888 }
drhe42a9b42011-08-31 13:27:19 +00005889 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005890 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005891 }
drh6f11bef2004-05-13 01:12:56 +00005892 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005893 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005894 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005895 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00005896 assert( nOvfl>0 ||
5897 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
5898 );
drh72365832007-03-06 15:53:44 +00005899 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005900 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005901 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005902 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005903 /* 0 is not a legal page number and page 1 cannot be an
5904 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5905 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005906 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005907 }
danielk1977bea2a942009-01-20 17:06:27 +00005908 if( nOvfl ){
5909 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5910 if( rc ) return rc;
5911 }
dan887d4b22010-02-25 12:09:16 +00005912
shaneh1da207e2010-03-09 14:41:12 +00005913 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005914 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5915 ){
5916 /* There is no reason any cursor should have an outstanding reference
5917 ** to an overflow page belonging to a cell that is being deleted/updated.
5918 ** So if there exists more than one reference to this page, then it
5919 ** must not really be an overflow page and the database must be corrupt.
5920 ** It is helpful to detect this before calling freePage2(), as
5921 ** freePage2() may zero the page contents if secure-delete mode is
5922 ** enabled. If this 'overflow' page happens to be a page that the
5923 ** caller is iterating through or using in some other way, this
5924 ** can be problematic.
5925 */
5926 rc = SQLITE_CORRUPT_BKPT;
5927 }else{
5928 rc = freePage2(pBt, pOvfl, ovflPgno);
5929 }
5930
danielk1977bea2a942009-01-20 17:06:27 +00005931 if( pOvfl ){
5932 sqlite3PagerUnref(pOvfl->pDbPage);
5933 }
drh3b7511c2001-05-26 13:15:44 +00005934 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005935 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005936 }
drh5e2f8b92001-05-28 00:41:15 +00005937 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005938}
5939
5940/*
drh91025292004-05-03 19:49:32 +00005941** Create the byte sequence used to represent a cell on page pPage
5942** and write that byte sequence into pCell[]. Overflow pages are
5943** allocated and filled in as necessary. The calling procedure
5944** is responsible for making sure sufficient space has been allocated
5945** for pCell[].
5946**
5947** Note that pCell does not necessary need to point to the pPage->aData
5948** area. pCell might point to some temporary storage. The cell will
5949** be constructed in this temporary area then copied into pPage->aData
5950** later.
drh3b7511c2001-05-26 13:15:44 +00005951*/
5952static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005953 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005954 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005955 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005956 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005957 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005958 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005959){
drh3b7511c2001-05-26 13:15:44 +00005960 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005961 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005962 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005963 int spaceLeft;
5964 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005965 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005966 unsigned char *pPrior;
5967 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005968 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005969 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005970 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00005971
drh1fee73e2007-08-29 04:00:57 +00005972 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005973
drhc5053fb2008-11-27 02:22:10 +00005974 /* pPage is not necessarily writeable since pCell might be auxiliary
5975 ** buffer space that is separate from the pPage buffer area */
5976 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5977 || sqlite3PagerIswriteable(pPage->pDbPage) );
5978
drh91025292004-05-03 19:49:32 +00005979 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00005980 nHeader = pPage->childPtrSize;
5981 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00005982 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00005983 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00005984 }else{
drh6200c882014-09-23 22:36:25 +00005985 assert( nData==0 );
5986 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00005987 }
drh6f11bef2004-05-13 01:12:56 +00005988 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00005989
drh6200c882014-09-23 22:36:25 +00005990 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00005991 if( pPage->intKey ){
5992 pSrc = pData;
5993 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005994 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005995 }else{
danielk197731d31b82009-07-13 13:18:07 +00005996 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5997 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005998 }
drh6200c882014-09-23 22:36:25 +00005999 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006000 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00006001 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006002 }
drh6200c882014-09-23 22:36:25 +00006003 if( nPayload<=pPage->maxLocal ){
6004 n = nHeader + nPayload;
6005 testcase( n==3 );
6006 testcase( n==4 );
6007 if( n<4 ) n = 4;
6008 *pnSize = n;
6009 spaceLeft = nPayload;
6010 pPrior = pCell;
6011 }else{
6012 int mn = pPage->minLocal;
6013 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6014 testcase( n==pPage->maxLocal );
6015 testcase( n==pPage->maxLocal+1 );
6016 if( n > pPage->maxLocal ) n = mn;
6017 spaceLeft = n;
6018 *pnSize = n + nHeader + 4;
6019 pPrior = &pCell[nHeader+n];
6020 }
drh3aac2dd2004-04-26 14:10:20 +00006021 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006022
drh6200c882014-09-23 22:36:25 +00006023 /* At this point variables should be set as follows:
6024 **
6025 ** nPayload Total payload size in bytes
6026 ** pPayload Begin writing payload here
6027 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6028 ** that means content must spill into overflow pages.
6029 ** *pnSize Size of the local cell (not counting overflow pages)
6030 ** pPrior Where to write the pgno of the first overflow page
6031 **
6032 ** Use a call to btreeParseCellPtr() to verify that the values above
6033 ** were computed correctly.
6034 */
6035#if SQLITE_DEBUG
6036 {
6037 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006038 pPage->xParseCell(pPage, pCell, &info);
drh6200c882014-09-23 22:36:25 +00006039 assert( nHeader=(int)(info.pPayload - pCell) );
6040 assert( info.nKey==nKey );
6041 assert( *pnSize == info.nSize );
6042 assert( spaceLeft == info.nLocal );
6043 assert( pPrior == &pCell[info.iOverflow] );
6044 }
6045#endif
6046
6047 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006048 while( nPayload>0 ){
6049 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006050#ifndef SQLITE_OMIT_AUTOVACUUM
6051 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006052 if( pBt->autoVacuum ){
6053 do{
6054 pgnoOvfl++;
6055 } while(
6056 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6057 );
danielk1977b39f70b2007-05-17 18:28:11 +00006058 }
danielk1977afcdd022004-10-31 16:25:42 +00006059#endif
drhf49661a2008-12-10 16:45:50 +00006060 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006061#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006062 /* If the database supports auto-vacuum, and the second or subsequent
6063 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006064 ** for that page now.
6065 **
6066 ** If this is the first overflow page, then write a partial entry
6067 ** to the pointer-map. If we write nothing to this pointer-map slot,
6068 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006069 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006070 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006071 */
danielk19774ef24492007-05-23 09:52:41 +00006072 if( pBt->autoVacuum && rc==SQLITE_OK ){
6073 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006074 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006075 if( rc ){
6076 releasePage(pOvfl);
6077 }
danielk1977afcdd022004-10-31 16:25:42 +00006078 }
6079#endif
drh3b7511c2001-05-26 13:15:44 +00006080 if( rc ){
drh9b171272004-05-08 02:03:22 +00006081 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006082 return rc;
6083 }
drhc5053fb2008-11-27 02:22:10 +00006084
6085 /* If pToRelease is not zero than pPrior points into the data area
6086 ** of pToRelease. Make sure pToRelease is still writeable. */
6087 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6088
6089 /* If pPrior is part of the data area of pPage, then make sure pPage
6090 ** is still writeable */
6091 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6092 || sqlite3PagerIswriteable(pPage->pDbPage) );
6093
drh3aac2dd2004-04-26 14:10:20 +00006094 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006095 releasePage(pToRelease);
6096 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006097 pPrior = pOvfl->aData;
6098 put4byte(pPrior, 0);
6099 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006100 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006101 }
6102 n = nPayload;
6103 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006104
6105 /* If pToRelease is not zero than pPayload points into the data area
6106 ** of pToRelease. Make sure pToRelease is still writeable. */
6107 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6108
6109 /* If pPayload is part of the data area of pPage, then make sure pPage
6110 ** is still writeable */
6111 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6112 || sqlite3PagerIswriteable(pPage->pDbPage) );
6113
drhb026e052007-05-02 01:34:31 +00006114 if( nSrc>0 ){
6115 if( n>nSrc ) n = nSrc;
6116 assert( pSrc );
6117 memcpy(pPayload, pSrc, n);
6118 }else{
6119 memset(pPayload, 0, n);
6120 }
drh3b7511c2001-05-26 13:15:44 +00006121 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006122 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006123 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006124 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006125 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00006126 if( nSrc==0 ){
6127 nSrc = nData;
6128 pSrc = pData;
6129 }
drhdd793422001-06-28 01:54:48 +00006130 }
drh9b171272004-05-08 02:03:22 +00006131 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006132 return SQLITE_OK;
6133}
6134
drh14acc042001-06-10 19:56:58 +00006135/*
6136** Remove the i-th cell from pPage. This routine effects pPage only.
6137** The cell content is not freed or deallocated. It is assumed that
6138** the cell content has been copied someplace else. This routine just
6139** removes the reference to the cell from pPage.
6140**
6141** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006142*/
drh98add2e2009-07-20 17:11:49 +00006143static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006144 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006145 u8 *data; /* pPage->aData */
6146 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006147 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006148 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006149
drh98add2e2009-07-20 17:11:49 +00006150 if( *pRC ) return;
6151
drh8c42ca92001-06-22 19:15:00 +00006152 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006153 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006154 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006155 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006156 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006157 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006158 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006159 hdr = pPage->hdrOffset;
6160 testcase( pc==get2byte(&data[hdr+5]) );
6161 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006162 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006163 *pRC = SQLITE_CORRUPT_BKPT;
6164 return;
shane0af3f892008-11-12 04:55:34 +00006165 }
shanedcc50b72008-11-13 18:29:50 +00006166 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006167 if( rc ){
6168 *pRC = rc;
6169 return;
shanedcc50b72008-11-13 18:29:50 +00006170 }
drh14acc042001-06-10 19:56:58 +00006171 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006172 if( pPage->nCell==0 ){
6173 memset(&data[hdr+1], 0, 4);
6174 data[hdr+7] = 0;
6175 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6176 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6177 - pPage->childPtrSize - 8;
6178 }else{
6179 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6180 put2byte(&data[hdr+3], pPage->nCell);
6181 pPage->nFree += 2;
6182 }
drh14acc042001-06-10 19:56:58 +00006183}
6184
6185/*
6186** Insert a new cell on pPage at cell index "i". pCell points to the
6187** content of the cell.
6188**
6189** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006190** will not fit, then make a copy of the cell content into pTemp if
6191** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006192** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006193** in pTemp or the original pCell) and also record its index.
6194** Allocating a new entry in pPage->aCell[] implies that
6195** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006196*/
drh98add2e2009-07-20 17:11:49 +00006197static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006198 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006199 int i, /* New cell becomes the i-th cell of the page */
6200 u8 *pCell, /* Content of the new cell */
6201 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006202 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006203 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6204 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006205){
drh383d30f2010-02-26 13:07:37 +00006206 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006207 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006208 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006209 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006210
drh98add2e2009-07-20 17:11:49 +00006211 if( *pRC ) return;
6212
drh43605152004-05-29 21:46:49 +00006213 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006214 assert( MX_CELL(pPage->pBt)<=10921 );
6215 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006216 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6217 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006218 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006219 /* The cell should normally be sized correctly. However, when moving a
6220 ** malformed cell from a leaf page to an interior page, if the cell size
6221 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6222 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6223 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006224 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006225 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006226 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006227 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006228 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006229 }
danielk19774dbaa892009-06-16 16:50:22 +00006230 if( iChild ){
6231 put4byte(pCell, iChild);
6232 }
drh43605152004-05-29 21:46:49 +00006233 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006234 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6235 pPage->apOvfl[j] = pCell;
6236 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006237
6238 /* When multiple overflows occur, they are always sequential and in
6239 ** sorted order. This invariants arise because multiple overflows can
6240 ** only occur when inserting divider cells into the parent page during
6241 ** balancing, and the dividers are adjacent and sorted.
6242 */
6243 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6244 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006245 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006246 int rc = sqlite3PagerWrite(pPage->pDbPage);
6247 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006248 *pRC = rc;
6249 return;
danielk19776e465eb2007-08-21 13:11:00 +00006250 }
6251 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006252 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006253 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006254 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006255 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006256 /* The allocateSpace() routine guarantees the following properties
6257 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006258 assert( idx >= 0 );
6259 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006260 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006261 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006262 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006263 if( iChild ){
6264 put4byte(&data[idx], iChild);
6265 }
drh2c8fb922015-06-25 19:53:48 +00006266 pIns = pPage->aCellIdx + i*2;
6267 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6268 put2byte(pIns, idx);
6269 pPage->nCell++;
6270 /* increment the cell count */
6271 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6272 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006273#ifndef SQLITE_OMIT_AUTOVACUUM
6274 if( pPage->pBt->autoVacuum ){
6275 /* The cell may contain a pointer to an overflow page. If so, write
6276 ** the entry for the overflow page into the pointer map.
6277 */
drh98add2e2009-07-20 17:11:49 +00006278 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006279 }
6280#endif
drh14acc042001-06-10 19:56:58 +00006281 }
6282}
6283
6284/*
drh1ffd2472015-06-23 02:37:30 +00006285** A CellArray object contains a cache of pointers and sizes for a
6286** consecutive sequence of cells that might be held multiple pages.
6287*/
6288typedef struct CellArray CellArray;
6289struct CellArray {
6290 int nCell; /* Number of cells in apCell[] */
6291 MemPage *pRef; /* Reference page */
6292 u8 **apCell; /* All cells begin balanced */
6293 u16 *szCell; /* Local size of all cells in apCell[] */
6294};
6295
6296/*
6297** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6298** computed.
6299*/
6300static void populateCellCache(CellArray *p, int idx, int N){
6301 assert( idx>=0 && idx+N<=p->nCell );
6302 while( N>0 ){
6303 assert( p->apCell[idx]!=0 );
6304 if( p->szCell[idx]==0 ){
6305 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6306 }else{
6307 assert( CORRUPT_DB ||
6308 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6309 }
6310 idx++;
6311 N--;
6312 }
6313}
6314
6315/*
6316** Return the size of the Nth element of the cell array
6317*/
6318static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6319 assert( N>=0 && N<p->nCell );
6320 assert( p->szCell[N]==0 );
6321 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6322 return p->szCell[N];
6323}
6324static u16 cachedCellSize(CellArray *p, int N){
6325 assert( N>=0 && N<p->nCell );
6326 if( p->szCell[N] ) return p->szCell[N];
6327 return computeCellSize(p, N);
6328}
6329
6330/*
dan8e9ba0c2014-10-14 17:27:04 +00006331** Array apCell[] contains pointers to nCell b-tree page cells. The
6332** szCell[] array contains the size in bytes of each cell. This function
6333** replaces the current contents of page pPg with the contents of the cell
6334** array.
6335**
6336** Some of the cells in apCell[] may currently be stored in pPg. This
6337** function works around problems caused by this by making a copy of any
6338** such cells before overwriting the page data.
6339**
6340** The MemPage.nFree field is invalidated by this function. It is the
6341** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006342*/
drh658873b2015-06-22 20:02:04 +00006343static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006344 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006345 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006346 u8 **apCell, /* Array of cells */
6347 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006348){
6349 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6350 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6351 const int usableSize = pPg->pBt->usableSize;
6352 u8 * const pEnd = &aData[usableSize];
6353 int i;
6354 u8 *pCellptr = pPg->aCellIdx;
6355 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6356 u8 *pData;
6357
6358 i = get2byte(&aData[hdr+5]);
6359 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006360
dan8e9ba0c2014-10-14 17:27:04 +00006361 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006362 for(i=0; i<nCell; i++){
6363 u8 *pCell = apCell[i];
6364 if( pCell>aData && pCell<pEnd ){
6365 pCell = &pTmp[pCell - aData];
6366 }
6367 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006368 put2byte(pCellptr, (pData - aData));
6369 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006370 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6371 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006372 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006373 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006374 }
6375
dand7b545b2014-10-13 18:03:27 +00006376 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006377 pPg->nCell = nCell;
6378 pPg->nOverflow = 0;
6379
6380 put2byte(&aData[hdr+1], 0);
6381 put2byte(&aData[hdr+3], pPg->nCell);
6382 put2byte(&aData[hdr+5], pData - aData);
6383 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006384 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006385}
6386
dan8e9ba0c2014-10-14 17:27:04 +00006387/*
6388** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6389** contains the size in bytes of each such cell. This function attempts to
6390** add the cells stored in the array to page pPg. If it cannot (because
6391** the page needs to be defragmented before the cells will fit), non-zero
6392** is returned. Otherwise, if the cells are added successfully, zero is
6393** returned.
6394**
6395** Argument pCellptr points to the first entry in the cell-pointer array
6396** (part of page pPg) to populate. After cell apCell[0] is written to the
6397** page body, a 16-bit offset is written to pCellptr. And so on, for each
6398** cell in the array. It is the responsibility of the caller to ensure
6399** that it is safe to overwrite this part of the cell-pointer array.
6400**
6401** When this function is called, *ppData points to the start of the
6402** content area on page pPg. If the size of the content area is extended,
6403** *ppData is updated to point to the new start of the content area
6404** before returning.
6405**
6406** Finally, argument pBegin points to the byte immediately following the
6407** end of the space required by this page for the cell-pointer area (for
6408** all cells - not just those inserted by the current call). If the content
6409** area must be extended to before this point in order to accomodate all
6410** cells in apCell[], then the cells do not fit and non-zero is returned.
6411*/
dand7b545b2014-10-13 18:03:27 +00006412static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006413 MemPage *pPg, /* Page to add cells to */
6414 u8 *pBegin, /* End of cell-pointer array */
6415 u8 **ppData, /* IN/OUT: Page content -area pointer */
6416 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006417 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006418 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006419 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006420){
6421 int i;
6422 u8 *aData = pPg->aData;
6423 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006424 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006425 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006426 for(i=iFirst; i<iEnd; i++){
6427 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006428 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006429 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006430 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
dand7b545b2014-10-13 18:03:27 +00006431 pData -= sz;
6432 if( pData<pBegin ) return 1;
6433 pSlot = pData;
6434 }
drhf7838932015-06-23 15:36:34 +00006435 memcpy(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006436 put2byte(pCellptr, (pSlot - aData));
6437 pCellptr += 2;
6438 }
6439 *ppData = pData;
6440 return 0;
6441}
6442
dan8e9ba0c2014-10-14 17:27:04 +00006443/*
6444** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6445** contains the size in bytes of each such cell. This function adds the
6446** space associated with each cell in the array that is currently stored
6447** within the body of pPg to the pPg free-list. The cell-pointers and other
6448** fields of the page are not updated.
6449**
6450** This function returns the total number of cells added to the free-list.
6451*/
dand7b545b2014-10-13 18:03:27 +00006452static int pageFreeArray(
6453 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006454 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006455 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006456 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006457){
6458 u8 * const aData = pPg->aData;
6459 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006460 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006461 int nRet = 0;
6462 int i;
drhf7838932015-06-23 15:36:34 +00006463 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006464 u8 *pFree = 0;
6465 int szFree = 0;
6466
drhf7838932015-06-23 15:36:34 +00006467 for(i=iFirst; i<iEnd; i++){
6468 u8 *pCell = pCArray->apCell[i];
dan89ca0b32014-10-25 20:36:28 +00006469 if( pCell>=pStart && pCell<pEnd ){
drhf7838932015-06-23 15:36:34 +00006470 int sz;
6471 /* No need to use cachedCellSize() here. The sizes of all cells that
6472 ** are to be freed have already been computing while deciding which
6473 ** cells need freeing */
6474 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006475 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006476 if( pFree ){
6477 assert( pFree>aData && (pFree - aData)<65536 );
6478 freeSpace(pPg, (u16)(pFree - aData), szFree);
6479 }
dand7b545b2014-10-13 18:03:27 +00006480 pFree = pCell;
6481 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006482 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006483 }else{
6484 pFree = pCell;
6485 szFree += sz;
6486 }
6487 nRet++;
6488 }
6489 }
drhfefa0942014-11-05 21:21:08 +00006490 if( pFree ){
6491 assert( pFree>aData && (pFree - aData)<65536 );
6492 freeSpace(pPg, (u16)(pFree - aData), szFree);
6493 }
dand7b545b2014-10-13 18:03:27 +00006494 return nRet;
6495}
6496
dand7b545b2014-10-13 18:03:27 +00006497/*
drh5ab63772014-11-27 03:46:04 +00006498** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6499** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6500** with apCell[iOld]. After balancing, this page should hold nNew cells
6501** starting at apCell[iNew].
6502**
6503** This routine makes the necessary adjustments to pPg so that it contains
6504** the correct cells after being balanced.
6505**
dand7b545b2014-10-13 18:03:27 +00006506** The pPg->nFree field is invalid when this function returns. It is the
6507** responsibility of the caller to set it correctly.
6508*/
drh658873b2015-06-22 20:02:04 +00006509static int editPage(
dan09c68402014-10-11 20:00:24 +00006510 MemPage *pPg, /* Edit this page */
6511 int iOld, /* Index of first cell currently on page */
6512 int iNew, /* Index of new first cell on page */
6513 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006514 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006515){
dand7b545b2014-10-13 18:03:27 +00006516 u8 * const aData = pPg->aData;
6517 const int hdr = pPg->hdrOffset;
6518 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6519 int nCell = pPg->nCell; /* Cells stored on pPg */
6520 u8 *pData;
6521 u8 *pCellptr;
6522 int i;
6523 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6524 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006525
6526#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006527 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6528 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006529#endif
6530
dand7b545b2014-10-13 18:03:27 +00006531 /* Remove cells from the start and end of the page */
6532 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006533 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006534 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6535 nCell -= nShift;
6536 }
6537 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006538 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006539 }
dan09c68402014-10-11 20:00:24 +00006540
drh5ab63772014-11-27 03:46:04 +00006541 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006542 if( pData<pBegin ) goto editpage_fail;
6543
6544 /* Add cells to the start of the page */
6545 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006546 int nAdd = MIN(nNew,iOld-iNew);
6547 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006548 pCellptr = pPg->aCellIdx;
6549 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6550 if( pageInsertArray(
6551 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006552 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006553 ) ) goto editpage_fail;
6554 nCell += nAdd;
6555 }
6556
6557 /* Add any overflow cells */
6558 for(i=0; i<pPg->nOverflow; i++){
6559 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6560 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006561 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006562 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6563 nCell++;
6564 if( pageInsertArray(
6565 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006566 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006567 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006568 }
dand7b545b2014-10-13 18:03:27 +00006569 }
dan09c68402014-10-11 20:00:24 +00006570
dand7b545b2014-10-13 18:03:27 +00006571 /* Append cells to the end of the page */
6572 pCellptr = &pPg->aCellIdx[nCell*2];
6573 if( pageInsertArray(
6574 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006575 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006576 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006577
dand7b545b2014-10-13 18:03:27 +00006578 pPg->nCell = nNew;
6579 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006580
dand7b545b2014-10-13 18:03:27 +00006581 put2byte(&aData[hdr+3], pPg->nCell);
6582 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006583
6584#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006585 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006586 u8 *pCell = pCArray->apCell[i+iNew];
dand7b545b2014-10-13 18:03:27 +00006587 int iOff = get2byte(&pPg->aCellIdx[i*2]);
6588 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6589 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006590 }
drh1ffd2472015-06-23 02:37:30 +00006591 assert( 0==memcmp(pCell, &aData[iOff],
6592 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006593 }
dan09c68402014-10-11 20:00:24 +00006594#endif
6595
drh658873b2015-06-22 20:02:04 +00006596 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006597 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006598 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006599 populateCellCache(pCArray, iNew, nNew);
6600 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
dan09c68402014-10-11 20:00:24 +00006601}
6602
drh14acc042001-06-10 19:56:58 +00006603/*
drhc3b70572003-01-04 19:44:07 +00006604** The following parameters determine how many adjacent pages get involved
6605** in a balancing operation. NN is the number of neighbors on either side
6606** of the page that participate in the balancing operation. NB is the
6607** total number of pages that participate, including the target page and
6608** NN neighbors on either side.
6609**
6610** The minimum value of NN is 1 (of course). Increasing NN above 1
6611** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6612** in exchange for a larger degradation in INSERT and UPDATE performance.
6613** The value of NN appears to give the best results overall.
6614*/
6615#define NN 1 /* Number of neighbors on either side of pPage */
6616#define NB (NN*2+1) /* Total pages involved in the balance */
6617
danielk1977ac245ec2005-01-14 13:50:11 +00006618
drh615ae552005-01-16 23:21:00 +00006619#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006620/*
6621** This version of balance() handles the common special case where
6622** a new entry is being inserted on the extreme right-end of the
6623** tree, in other words, when the new entry will become the largest
6624** entry in the tree.
6625**
drhc314dc72009-07-21 11:52:34 +00006626** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006627** a new page to the right-hand side and put the one new entry in
6628** that page. This leaves the right side of the tree somewhat
6629** unbalanced. But odds are that we will be inserting new entries
6630** at the end soon afterwards so the nearly empty page will quickly
6631** fill up. On average.
6632**
6633** pPage is the leaf page which is the right-most page in the tree.
6634** pParent is its parent. pPage must have a single overflow entry
6635** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006636**
6637** The pSpace buffer is used to store a temporary copy of the divider
6638** cell that will be inserted into pParent. Such a cell consists of a 4
6639** byte page number followed by a variable length integer. In other
6640** words, at most 13 bytes. Hence the pSpace buffer must be at
6641** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006642*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006643static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6644 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006645 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006646 int rc; /* Return Code */
6647 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006648
drh1fee73e2007-08-29 04:00:57 +00006649 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006650 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006651 assert( pPage->nOverflow==1 );
6652
drh5d433ce2010-08-14 16:02:52 +00006653 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006654 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006655
danielk1977a50d9aa2009-06-08 14:49:45 +00006656 /* Allocate a new page. This page will become the right-sibling of
6657 ** pPage. Make the parent page writable, so that the new divider cell
6658 ** may be inserted. If both these operations are successful, proceed.
6659 */
drh4f0c5872007-03-26 22:05:01 +00006660 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006661
danielk1977eaa06f62008-09-18 17:34:44 +00006662 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006663
6664 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006665 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006666 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006667 u8 *pStop;
6668
drhc5053fb2008-11-27 02:22:10 +00006669 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006670 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6671 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006672 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006673 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006674 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006675
6676 /* If this is an auto-vacuum database, update the pointer map
6677 ** with entries for the new page, and any pointer from the
6678 ** cell on the page to an overflow page. If either of these
6679 ** operations fails, the return code is set, but the contents
6680 ** of the parent page are still manipulated by thh code below.
6681 ** That is Ok, at this point the parent page is guaranteed to
6682 ** be marked as dirty. Returning an error code will cause a
6683 ** rollback, undoing any changes made to the parent page.
6684 */
6685 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006686 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6687 if( szCell>pNew->minLocal ){
6688 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006689 }
6690 }
danielk1977eaa06f62008-09-18 17:34:44 +00006691
danielk19776f235cc2009-06-04 14:46:08 +00006692 /* Create a divider cell to insert into pParent. The divider cell
6693 ** consists of a 4-byte page number (the page number of pPage) and
6694 ** a variable length key value (which must be the same value as the
6695 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006696 **
danielk19776f235cc2009-06-04 14:46:08 +00006697 ** To find the largest key value on pPage, first find the right-most
6698 ** cell on pPage. The first two fields of this cell are the
6699 ** record-length (a variable length integer at most 32-bits in size)
6700 ** and the key value (a variable length integer, may have any value).
6701 ** The first of the while(...) loops below skips over the record-length
6702 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006703 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006704 */
danielk1977eaa06f62008-09-18 17:34:44 +00006705 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006706 pStop = &pCell[9];
6707 while( (*(pCell++)&0x80) && pCell<pStop );
6708 pStop = &pCell[9];
6709 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6710
danielk19774dbaa892009-06-16 16:50:22 +00006711 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006712 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6713 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006714
6715 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006716 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6717
danielk1977e08a3c42008-09-18 18:17:03 +00006718 /* Release the reference to the new page. */
6719 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006720 }
6721
danielk1977eaa06f62008-09-18 17:34:44 +00006722 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006723}
drh615ae552005-01-16 23:21:00 +00006724#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006725
dane6593d82014-10-24 16:40:49 +00006726#if 0
drhc3b70572003-01-04 19:44:07 +00006727/*
danielk19774dbaa892009-06-16 16:50:22 +00006728** This function does not contribute anything to the operation of SQLite.
6729** it is sometimes activated temporarily while debugging code responsible
6730** for setting pointer-map entries.
6731*/
6732static int ptrmapCheckPages(MemPage **apPage, int nPage){
6733 int i, j;
6734 for(i=0; i<nPage; i++){
6735 Pgno n;
6736 u8 e;
6737 MemPage *pPage = apPage[i];
6738 BtShared *pBt = pPage->pBt;
6739 assert( pPage->isInit );
6740
6741 for(j=0; j<pPage->nCell; j++){
6742 CellInfo info;
6743 u8 *z;
6744
6745 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006746 pPage->xParseCell(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006747 if( info.iOverflow ){
6748 Pgno ovfl = get4byte(&z[info.iOverflow]);
6749 ptrmapGet(pBt, ovfl, &e, &n);
6750 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6751 }
6752 if( !pPage->leaf ){
6753 Pgno child = get4byte(z);
6754 ptrmapGet(pBt, child, &e, &n);
6755 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6756 }
6757 }
6758 if( !pPage->leaf ){
6759 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6760 ptrmapGet(pBt, child, &e, &n);
6761 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6762 }
6763 }
6764 return 1;
6765}
6766#endif
6767
danielk1977cd581a72009-06-23 15:43:39 +00006768/*
6769** This function is used to copy the contents of the b-tree node stored
6770** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6771** the pointer-map entries for each child page are updated so that the
6772** parent page stored in the pointer map is page pTo. If pFrom contained
6773** any cells with overflow page pointers, then the corresponding pointer
6774** map entries are also updated so that the parent page is page pTo.
6775**
6776** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006777** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006778**
danielk197730548662009-07-09 05:07:37 +00006779** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006780**
6781** The performance of this function is not critical. It is only used by
6782** the balance_shallower() and balance_deeper() procedures, neither of
6783** which are called often under normal circumstances.
6784*/
drhc314dc72009-07-21 11:52:34 +00006785static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6786 if( (*pRC)==SQLITE_OK ){
6787 BtShared * const pBt = pFrom->pBt;
6788 u8 * const aFrom = pFrom->aData;
6789 u8 * const aTo = pTo->aData;
6790 int const iFromHdr = pFrom->hdrOffset;
6791 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006792 int rc;
drhc314dc72009-07-21 11:52:34 +00006793 int iData;
6794
6795
6796 assert( pFrom->isInit );
6797 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006798 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006799
6800 /* Copy the b-tree node content from page pFrom to page pTo. */
6801 iData = get2byte(&aFrom[iFromHdr+5]);
6802 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6803 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6804
6805 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006806 ** match the new data. The initialization of pTo can actually fail under
6807 ** fairly obscure circumstances, even though it is a copy of initialized
6808 ** page pFrom.
6809 */
drhc314dc72009-07-21 11:52:34 +00006810 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006811 rc = btreeInitPage(pTo);
6812 if( rc!=SQLITE_OK ){
6813 *pRC = rc;
6814 return;
6815 }
drhc314dc72009-07-21 11:52:34 +00006816
6817 /* If this is an auto-vacuum database, update the pointer-map entries
6818 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6819 */
6820 if( ISAUTOVACUUM ){
6821 *pRC = setChildPtrmaps(pTo);
6822 }
danielk1977cd581a72009-06-23 15:43:39 +00006823 }
danielk1977cd581a72009-06-23 15:43:39 +00006824}
6825
6826/*
danielk19774dbaa892009-06-16 16:50:22 +00006827** This routine redistributes cells on the iParentIdx'th child of pParent
6828** (hereafter "the page") and up to 2 siblings so that all pages have about the
6829** same amount of free space. Usually a single sibling on either side of the
6830** page are used in the balancing, though both siblings might come from one
6831** side if the page is the first or last child of its parent. If the page
6832** has fewer than 2 siblings (something which can only happen if the page
6833** is a root page or a child of a root page) then all available siblings
6834** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006835**
danielk19774dbaa892009-06-16 16:50:22 +00006836** The number of siblings of the page might be increased or decreased by
6837** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006838**
danielk19774dbaa892009-06-16 16:50:22 +00006839** Note that when this routine is called, some of the cells on the page
6840** might not actually be stored in MemPage.aData[]. This can happen
6841** if the page is overfull. This routine ensures that all cells allocated
6842** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006843**
danielk19774dbaa892009-06-16 16:50:22 +00006844** In the course of balancing the page and its siblings, cells may be
6845** inserted into or removed from the parent page (pParent). Doing so
6846** may cause the parent page to become overfull or underfull. If this
6847** happens, it is the responsibility of the caller to invoke the correct
6848** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006849**
drh5e00f6c2001-09-13 13:46:56 +00006850** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006851** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006852** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006853**
6854** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006855** buffer big enough to hold one page. If while inserting cells into the parent
6856** page (pParent) the parent page becomes overfull, this buffer is
6857** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006858** a maximum of four divider cells into the parent page, and the maximum
6859** size of a cell stored within an internal node is always less than 1/4
6860** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6861** enough for all overflow cells.
6862**
6863** If aOvflSpace is set to a null pointer, this function returns
6864** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006865*/
mistachkine7c54162012-10-02 22:54:27 +00006866#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6867#pragma optimize("", off)
6868#endif
danielk19774dbaa892009-06-16 16:50:22 +00006869static int balance_nonroot(
6870 MemPage *pParent, /* Parent page of siblings being balanced */
6871 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006872 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006873 int isRoot, /* True if pParent is a root-page */
6874 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006875){
drh16a9b832007-05-05 18:39:25 +00006876 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006877 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006878 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006879 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006880 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006881 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006882 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006883 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006884 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006885 int usableSpace; /* Bytes in pPage beyond the header */
6886 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00006887 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006888 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006889 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006890 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00006891 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006892 u8 *pRight; /* Location in parent of right-sibling pointer */
6893 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00006894 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
6895 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00006896 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00006897 u8 *aSpace1; /* Space for copies of dividers cells */
6898 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00006899 u8 abDone[NB+2]; /* True after i'th new page is populated */
6900 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00006901 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00006902 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00006903 CellArray b; /* Parsed information on cells being balanced */
dan33ea4862014-10-09 19:35:37 +00006904
6905 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00006906 b.nCell = 0;
6907 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00006908 pBt = pParent->pBt;
6909 assert( sqlite3_mutex_held(pBt->mutex) );
6910 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006911
danielk1977e5765212009-06-17 11:13:28 +00006912#if 0
drh43605152004-05-29 21:46:49 +00006913 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006914#endif
drh2e38c322004-09-03 18:38:44 +00006915
danielk19774dbaa892009-06-16 16:50:22 +00006916 /* At this point pParent may have at most one overflow cell. And if
6917 ** this overflow cell is present, it must be the cell with
6918 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006919 ** is called (indirectly) from sqlite3BtreeDelete().
6920 */
danielk19774dbaa892009-06-16 16:50:22 +00006921 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006922 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006923
danielk197711a8a862009-06-17 11:49:52 +00006924 if( !aOvflSpace ){
6925 return SQLITE_NOMEM;
6926 }
6927
danielk1977a50d9aa2009-06-08 14:49:45 +00006928 /* Find the sibling pages to balance. Also locate the cells in pParent
6929 ** that divide the siblings. An attempt is made to find NN siblings on
6930 ** either side of pPage. More siblings are taken from one side, however,
6931 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006932 ** has NB or fewer children then all children of pParent are taken.
6933 **
6934 ** This loop also drops the divider cells from the parent page. This
6935 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006936 ** overflow cells in the parent page, since if any existed they will
6937 ** have already been removed.
6938 */
danielk19774dbaa892009-06-16 16:50:22 +00006939 i = pParent->nOverflow + pParent->nCell;
6940 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006941 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006942 }else{
dan7d6885a2012-08-08 14:04:56 +00006943 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006944 if( iParentIdx==0 ){
6945 nxDiv = 0;
6946 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006947 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006948 }else{
danielk19774dbaa892009-06-16 16:50:22 +00006949 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006950 }
dan7d6885a2012-08-08 14:04:56 +00006951 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006952 }
dan7d6885a2012-08-08 14:04:56 +00006953 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006954 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6955 pRight = &pParent->aData[pParent->hdrOffset+8];
6956 }else{
6957 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6958 }
6959 pgno = get4byte(pRight);
6960 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006961 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006962 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006963 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006964 goto balance_cleanup;
6965 }
danielk1977634f2982005-03-28 08:44:07 +00006966 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006967 if( (i--)==0 ) break;
6968
drh2cbd78b2012-02-02 19:37:18 +00006969 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6970 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006971 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00006972 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00006973 pParent->nOverflow = 0;
6974 }else{
6975 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6976 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00006977 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00006978
6979 /* Drop the cell from the parent page. apDiv[i] still points to
6980 ** the cell within the parent, even though it has been dropped.
6981 ** This is safe because dropping a cell only overwrites the first
6982 ** four bytes of it, and this function does not need the first
6983 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006984 ** later on.
6985 **
drh8a575d92011-10-12 17:00:28 +00006986 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006987 ** the dropCell() routine will overwrite the entire cell with zeroes.
6988 ** In this case, temporarily copy the cell into the aOvflSpace[]
6989 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6990 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006991 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006992 int iOff;
6993
6994 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006995 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006996 rc = SQLITE_CORRUPT_BKPT;
6997 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6998 goto balance_cleanup;
6999 }else{
7000 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7001 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7002 }
drh5b47efa2010-02-12 18:18:39 +00007003 }
drh98add2e2009-07-20 17:11:49 +00007004 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007005 }
drh8b2f49b2001-06-08 00:21:52 +00007006 }
7007
drha9121e42008-02-19 14:59:35 +00007008 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007009 ** alignment */
drha9121e42008-02-19 14:59:35 +00007010 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007011
drh8b2f49b2001-06-08 00:21:52 +00007012 /*
danielk1977634f2982005-03-28 08:44:07 +00007013 ** Allocate space for memory structures
7014 */
drhfacf0302008-06-17 15:12:00 +00007015 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007016 nMaxCells*sizeof(u8*) /* b.apCell */
7017 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007018 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007019
drhcbd55b02014-11-04 14:22:27 +00007020 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7021 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007022 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007023 b.apCell = sqlite3ScratchMalloc( szScratch );
7024 if( b.apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00007025 rc = SQLITE_NOMEM;
7026 goto balance_cleanup;
7027 }
drh1ffd2472015-06-23 02:37:30 +00007028 b.szCell = (u16*)&b.apCell[nMaxCells];
7029 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007030 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007031
7032 /*
7033 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007034 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007035 ** into space obtained from aSpace1[]. The divider cells have already
7036 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007037 **
7038 ** If the siblings are on leaf pages, then the child pointers of the
7039 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007040 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007041 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007042 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007043 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007044 **
7045 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7046 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007047 */
drh1ffd2472015-06-23 02:37:30 +00007048 b.pRef = apOld[0];
7049 leafCorrection = b.pRef->leaf*4;
7050 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007051 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007052 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007053 int limit = pOld->nCell;
7054 u8 *aData = pOld->aData;
7055 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007056 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007057 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007058
drh73d340a2015-05-28 11:23:11 +00007059 /* Verify that all sibling pages are of the same "type" (table-leaf,
7060 ** table-interior, index-leaf, or index-interior).
7061 */
7062 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7063 rc = SQLITE_CORRUPT_BKPT;
7064 goto balance_cleanup;
7065 }
7066
drhfe647dc2015-06-23 18:24:25 +00007067 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7068 ** constains overflow cells, include them in the b.apCell[] array
7069 ** in the correct spot.
7070 **
7071 ** Note that when there are multiple overflow cells, it is always the
7072 ** case that they are sequential and adjacent. This invariant arises
7073 ** because multiple overflows can only occurs when inserting divider
7074 ** cells into a parent on a prior balance, and divider cells are always
7075 ** adjacent and are inserted in order. There is an assert() tagged
7076 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7077 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007078 **
7079 ** This must be done in advance. Once the balance starts, the cell
7080 ** offset section of the btree page will be overwritten and we will no
7081 ** long be able to find the cells if a pointer to each cell is not saved
7082 ** first.
7083 */
drh1ffd2472015-06-23 02:37:30 +00007084 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
drh68f2a572011-06-03 17:50:49 +00007085 if( pOld->nOverflow>0 ){
drh4edfdd32015-06-23 14:49:42 +00007086 memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
drhfe647dc2015-06-23 18:24:25 +00007087 limit = pOld->aiOvfl[0];
7088 for(j=0; j<limit; j++){
7089 b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
7090 piCell += 2;
7091 b.nCell++;
7092 }
7093 for(k=0; k<pOld->nOverflow; k++){
7094 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007095 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007096 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007097 }
drh1ffd2472015-06-23 02:37:30 +00007098 }
drhfe647dc2015-06-23 18:24:25 +00007099 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7100 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007101 assert( b.nCell<nMaxCells );
drh4f4bf772015-06-23 17:09:53 +00007102 b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
7103 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007104 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007105 }
7106
drh1ffd2472015-06-23 02:37:30 +00007107 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007108 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007109 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007110 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007111 assert( b.nCell<nMaxCells );
7112 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007113 pTemp = &aSpace1[iSpace1];
7114 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007115 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007116 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007117 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007118 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007119 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007120 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007121 if( !pOld->leaf ){
7122 assert( leafCorrection==0 );
7123 assert( pOld->hdrOffset==0 );
7124 /* The right pointer of the child page pOld becomes the left
7125 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007126 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007127 }else{
7128 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007129 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007130 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7131 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007132 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7133 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007134 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007135 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007136 }
7137 }
drh1ffd2472015-06-23 02:37:30 +00007138 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007139 }
drh8b2f49b2001-06-08 00:21:52 +00007140 }
7141
7142 /*
drh1ffd2472015-06-23 02:37:30 +00007143 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007144 ** Store this number in "k". Also compute szNew[] which is the total
7145 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007146 ** in b.apCell[] of the cell that divides page i from page i+1.
7147 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007148 **
drh96f5b762004-05-16 16:24:36 +00007149 ** Values computed by this block:
7150 **
7151 ** k: The total number of sibling pages
7152 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007153 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007154 ** the right of the i-th sibling page.
7155 ** usableSpace: Number of bytes of space available on each sibling.
7156 **
drh8b2f49b2001-06-08 00:21:52 +00007157 */
drh43605152004-05-29 21:46:49 +00007158 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007159 for(i=0; i<nOld; i++){
7160 MemPage *p = apOld[i];
7161 szNew[i] = usableSpace - p->nFree;
7162 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7163 for(j=0; j<p->nOverflow; j++){
7164 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7165 }
7166 cntNew[i] = cntOld[i];
7167 }
7168 k = nOld;
7169 for(i=0; i<k; i++){
7170 int sz;
7171 while( szNew[i]>usableSpace ){
7172 if( i+1>=k ){
7173 k = i+2;
7174 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7175 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007176 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007177 }
drh1ffd2472015-06-23 02:37:30 +00007178 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007179 szNew[i] -= sz;
7180 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007181 if( cntNew[i]<b.nCell ){
7182 sz = 2 + cachedCellSize(&b, cntNew[i]);
7183 }else{
7184 sz = 0;
7185 }
drh658873b2015-06-22 20:02:04 +00007186 }
7187 szNew[i+1] += sz;
7188 cntNew[i]--;
7189 }
drh1ffd2472015-06-23 02:37:30 +00007190 while( cntNew[i]<b.nCell ){
7191 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007192 if( szNew[i]+sz>usableSpace ) break;
7193 szNew[i] += sz;
7194 cntNew[i]++;
7195 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007196 if( cntNew[i]<b.nCell ){
7197 sz = 2 + cachedCellSize(&b, cntNew[i]);
7198 }else{
7199 sz = 0;
7200 }
drh658873b2015-06-22 20:02:04 +00007201 }
7202 szNew[i+1] -= sz;
7203 }
drh1ffd2472015-06-23 02:37:30 +00007204 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007205 k = i+1;
drh672073a2015-06-24 12:07:40 +00007206 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007207 rc = SQLITE_CORRUPT_BKPT;
7208 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007209 }
7210 }
drh96f5b762004-05-16 16:24:36 +00007211
7212 /*
7213 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007214 ** on the left side (siblings with smaller keys). The left siblings are
7215 ** always nearly full, while the right-most sibling might be nearly empty.
7216 ** The next block of code attempts to adjust the packing of siblings to
7217 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007218 **
7219 ** This adjustment is more than an optimization. The packing above might
7220 ** be so out of balance as to be illegal. For example, the right-most
7221 ** sibling might be completely empty. This adjustment is not optional.
7222 */
drh6019e162001-07-02 17:51:45 +00007223 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007224 int szRight = szNew[i]; /* Size of sibling on the right */
7225 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7226 int r; /* Index of right-most cell in left sibling */
7227 int d; /* Index of first cell to the left of right sibling */
7228
drh008d64c2015-06-23 16:00:24 +00007229 r = cntNew[i-1] - 1;
7230 d = r + 1 - leafData;
7231 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007232 do{
drh1ffd2472015-06-23 02:37:30 +00007233 assert( d<nMaxCells );
7234 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007235 (void)cachedCellSize(&b, r);
7236 if( szRight!=0
7237 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7238 break;
7239 }
7240 szRight += b.szCell[d] + 2;
7241 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007242 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007243 r--;
7244 d--;
drh672073a2015-06-24 12:07:40 +00007245 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007246 szNew[i] = szRight;
7247 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007248 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7249 rc = SQLITE_CORRUPT_BKPT;
7250 goto balance_cleanup;
7251 }
drh6019e162001-07-02 17:51:45 +00007252 }
drh09d0deb2005-08-02 17:13:09 +00007253
drh2a0df922014-10-30 23:14:56 +00007254 /* Sanity check: For a non-corrupt database file one of the follwing
7255 ** must be true:
7256 ** (1) We found one or more cells (cntNew[0])>0), or
7257 ** (2) pPage is a virtual root page. A virtual root page is when
7258 ** the real root page is page 1 and we are the only child of
7259 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007260 */
drh2a0df922014-10-30 23:14:56 +00007261 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007262 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7263 apOld[0]->pgno, apOld[0]->nCell,
7264 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7265 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007266 ));
7267
drh8b2f49b2001-06-08 00:21:52 +00007268 /*
drh6b308672002-07-08 02:16:37 +00007269 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007270 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007271 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007272 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007273 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007274 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007275 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007276 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007277 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007278 nNew++;
danielk197728129562005-01-11 10:25:06 +00007279 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007280 }else{
drh7aa8f852006-03-28 00:24:44 +00007281 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007282 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007283 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007284 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007285 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007286 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007287 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007288
7289 /* Set the pointer-map entry for the new sibling page. */
7290 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007291 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007292 if( rc!=SQLITE_OK ){
7293 goto balance_cleanup;
7294 }
7295 }
drh6b308672002-07-08 02:16:37 +00007296 }
drh8b2f49b2001-06-08 00:21:52 +00007297 }
7298
7299 /*
dan33ea4862014-10-09 19:35:37 +00007300 ** Reassign page numbers so that the new pages are in ascending order.
7301 ** This helps to keep entries in the disk file in order so that a scan
7302 ** of the table is closer to a linear scan through the file. That in turn
7303 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007304 **
dan33ea4862014-10-09 19:35:37 +00007305 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7306 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007307 **
dan33ea4862014-10-09 19:35:37 +00007308 ** When NB==3, this one optimization makes the database about 25% faster
7309 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007310 */
dan33ea4862014-10-09 19:35:37 +00007311 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007312 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007313 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007314 for(j=0; j<i; j++){
7315 if( aPgno[j]==aPgno[i] ){
7316 /* This branch is taken if the set of sibling pages somehow contains
7317 ** duplicate entries. This can happen if the database is corrupt.
7318 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007319 ** we do the detection here in order to avoid populating the pager
7320 ** cache with two separate objects associated with the same
7321 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007322 assert( CORRUPT_DB );
7323 rc = SQLITE_CORRUPT_BKPT;
7324 goto balance_cleanup;
7325 }
7326 }
dan33ea4862014-10-09 19:35:37 +00007327 }
7328 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007329 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007330 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007331 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007332 }
drh00fe08a2014-10-31 00:05:23 +00007333 pgno = aPgOrder[iBest];
7334 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007335 if( iBest!=i ){
7336 if( iBest>i ){
7337 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7338 }
7339 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7340 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007341 }
7342 }
dan33ea4862014-10-09 19:35:37 +00007343
7344 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7345 "%d(%d nc=%d) %d(%d nc=%d)\n",
7346 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007347 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007348 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007349 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007350 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007351 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007352 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7353 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7354 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7355 ));
danielk19774dbaa892009-06-16 16:50:22 +00007356
7357 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7358 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007359
dan33ea4862014-10-09 19:35:37 +00007360 /* If the sibling pages are not leaves, ensure that the right-child pointer
7361 ** of the right-most new sibling page is set to the value that was
7362 ** originally in the same field of the right-most old sibling page. */
7363 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7364 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7365 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7366 }
danielk1977ac11ee62005-01-15 12:45:51 +00007367
dan33ea4862014-10-09 19:35:37 +00007368 /* Make any required updates to pointer map entries associated with
7369 ** cells stored on sibling pages following the balance operation. Pointer
7370 ** map entries associated with divider cells are set by the insertCell()
7371 ** routine. The associated pointer map entries are:
7372 **
7373 ** a) if the cell contains a reference to an overflow chain, the
7374 ** entry associated with the first page in the overflow chain, and
7375 **
7376 ** b) if the sibling pages are not leaves, the child page associated
7377 ** with the cell.
7378 **
7379 ** If the sibling pages are not leaves, then the pointer map entry
7380 ** associated with the right-child of each sibling may also need to be
7381 ** updated. This happens below, after the sibling pages have been
7382 ** populated, not here.
7383 */
7384 if( ISAUTOVACUUM ){
7385 MemPage *pNew = apNew[0];
7386 u8 *aOld = pNew->aData;
7387 int cntOldNext = pNew->nCell + pNew->nOverflow;
7388 int usableSize = pBt->usableSize;
7389 int iNew = 0;
7390 int iOld = 0;
danielk1977634f2982005-03-28 08:44:07 +00007391
drh1ffd2472015-06-23 02:37:30 +00007392 for(i=0; i<b.nCell; i++){
7393 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007394 if( i==cntOldNext ){
7395 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7396 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7397 aOld = pOld->aData;
7398 }
7399 if( i==cntNew[iNew] ){
7400 pNew = apNew[++iNew];
7401 if( !leafData ) continue;
7402 }
7403
7404 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007405 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007406 ** or else the divider cell to the left of sibling page iOld. So,
7407 ** if sibling page iOld had the same page number as pNew, and if
7408 ** pCell really was a part of sibling page iOld (not a divider or
7409 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007410 if( iOld>=nNew
7411 || pNew->pgno!=aPgno[iOld]
7412 || pCell<aOld
7413 || pCell>=&aOld[usableSize]
7414 ){
dan33ea4862014-10-09 19:35:37 +00007415 if( !leafCorrection ){
7416 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7417 }
drh1ffd2472015-06-23 02:37:30 +00007418 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007419 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00007420 }
drhea82b372015-06-23 21:35:28 +00007421 if( rc ) goto balance_cleanup;
drh4b70f112004-05-02 21:12:19 +00007422 }
drh14acc042001-06-10 19:56:58 +00007423 }
7424 }
dan33ea4862014-10-09 19:35:37 +00007425
7426 /* Insert new divider cells into pParent. */
7427 for(i=0; i<nNew-1; i++){
7428 u8 *pCell;
7429 u8 *pTemp;
7430 int sz;
7431 MemPage *pNew = apNew[i];
7432 j = cntNew[i];
7433
7434 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007435 assert( b.apCell[j]!=0 );
7436 pCell = b.apCell[j];
7437 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007438 pTemp = &aOvflSpace[iOvflSpace];
7439 if( !pNew->leaf ){
7440 memcpy(&pNew->aData[8], pCell, 4);
7441 }else if( leafData ){
7442 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007443 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007444 ** cell consists of the integer key for the right-most cell of
7445 ** the sibling-page assembled above only.
7446 */
7447 CellInfo info;
7448 j--;
drh1ffd2472015-06-23 02:37:30 +00007449 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007450 pCell = pTemp;
7451 sz = 4 + putVarint(&pCell[4], info.nKey);
7452 pTemp = 0;
7453 }else{
7454 pCell -= 4;
7455 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7456 ** previously stored on a leaf node, and its reported size was 4
7457 ** bytes, then it may actually be smaller than this
7458 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7459 ** any cell). But it is important to pass the correct size to
7460 ** insertCell(), so reparse the cell now.
7461 **
7462 ** Note that this can never happen in an SQLite data file, as all
7463 ** cells are at least 4 bytes. It only happens in b-trees used
7464 ** to evaluate "IN (SELECT ...)" and similar clauses.
7465 */
drh1ffd2472015-06-23 02:37:30 +00007466 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007467 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007468 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007469 }
7470 }
7471 iOvflSpace += sz;
7472 assert( sz<=pBt->maxLocal+23 );
7473 assert( iOvflSpace <= (int)pBt->pageSize );
7474 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7475 if( rc!=SQLITE_OK ) goto balance_cleanup;
7476 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7477 }
7478
7479 /* Now update the actual sibling pages. The order in which they are updated
7480 ** is important, as this code needs to avoid disrupting any page from which
7481 ** cells may still to be read. In practice, this means:
7482 **
drhd836d422014-10-31 14:26:36 +00007483 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7484 ** then it is not safe to update page apNew[iPg] until after
7485 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007486 **
drhd836d422014-10-31 14:26:36 +00007487 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7488 ** then it is not safe to update page apNew[iPg] until after
7489 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007490 **
7491 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007492 **
7493 ** The iPg value in the following loop starts at nNew-1 goes down
7494 ** to 0, then back up to nNew-1 again, thus making two passes over
7495 ** the pages. On the initial downward pass, only condition (1) above
7496 ** needs to be tested because (2) will always be true from the previous
7497 ** step. On the upward pass, both conditions are always true, so the
7498 ** upwards pass simply processes pages that were missed on the downward
7499 ** pass.
dan33ea4862014-10-09 19:35:37 +00007500 */
drhbec021b2014-10-31 12:22:00 +00007501 for(i=1-nNew; i<nNew; i++){
7502 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007503 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007504 if( abDone[iPg] ) continue; /* Skip pages already processed */
7505 if( i>=0 /* On the upwards pass, or... */
7506 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007507 ){
dan09c68402014-10-11 20:00:24 +00007508 int iNew;
7509 int iOld;
7510 int nNewCell;
7511
drhd836d422014-10-31 14:26:36 +00007512 /* Verify condition (1): If cells are moving left, update iPg
7513 ** only after iPg-1 has already been updated. */
7514 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7515
7516 /* Verify condition (2): If cells are moving right, update iPg
7517 ** only after iPg+1 has already been updated. */
7518 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7519
dan09c68402014-10-11 20:00:24 +00007520 if( iPg==0 ){
7521 iNew = iOld = 0;
7522 nNewCell = cntNew[0];
7523 }else{
drh1ffd2472015-06-23 02:37:30 +00007524 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007525 iNew = cntNew[iPg-1] + !leafData;
7526 nNewCell = cntNew[iPg] - iNew;
7527 }
7528
drh1ffd2472015-06-23 02:37:30 +00007529 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007530 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007531 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007532 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007533 assert( apNew[iPg]->nOverflow==0 );
7534 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007535 }
7536 }
drhd836d422014-10-31 14:26:36 +00007537
7538 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007539 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7540
drh7aa8f852006-03-28 00:24:44 +00007541 assert( nOld>0 );
7542 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007543
danielk197713bd99f2009-06-24 05:40:34 +00007544 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7545 /* The root page of the b-tree now contains no cells. The only sibling
7546 ** page is the right-child of the parent. Copy the contents of the
7547 ** child page into the parent, decreasing the overall height of the
7548 ** b-tree structure by one. This is described as the "balance-shallower"
7549 ** sub-algorithm in some documentation.
7550 **
7551 ** If this is an auto-vacuum database, the call to copyNodeContent()
7552 ** sets all pointer-map entries corresponding to database image pages
7553 ** for which the pointer is stored within the content being copied.
7554 **
drh768f2902014-10-31 02:51:41 +00007555 ** It is critical that the child page be defragmented before being
7556 ** copied into the parent, because if the parent is page 1 then it will
7557 ** by smaller than the child due to the database header, and so all the
7558 ** free space needs to be up front.
7559 */
danielk197713bd99f2009-06-24 05:40:34 +00007560 assert( nNew==1 );
dan89ca0b32014-10-25 20:36:28 +00007561 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007562 testcase( rc!=SQLITE_OK );
7563 assert( apNew[0]->nFree ==
7564 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7565 || rc!=SQLITE_OK
7566 );
7567 copyNodeContent(apNew[0], pParent, &rc);
7568 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007569 }else if( ISAUTOVACUUM && !leafCorrection ){
7570 /* Fix the pointer map entries associated with the right-child of each
7571 ** sibling page. All other pointer map entries have already been taken
7572 ** care of. */
7573 for(i=0; i<nNew; i++){
7574 u32 key = get4byte(&apNew[i]->aData[8]);
7575 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007576 }
dan33ea4862014-10-09 19:35:37 +00007577 }
danielk19774dbaa892009-06-16 16:50:22 +00007578
dan33ea4862014-10-09 19:35:37 +00007579 assert( pParent->isInit );
7580 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007581 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007582
dan33ea4862014-10-09 19:35:37 +00007583 /* Free any old pages that were not reused as new pages.
7584 */
7585 for(i=nNew; i<nOld; i++){
7586 freePage(apOld[i], &rc);
7587 }
7588
dane6593d82014-10-24 16:40:49 +00007589#if 0
dan33ea4862014-10-09 19:35:37 +00007590 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007591 /* The ptrmapCheckPages() contains assert() statements that verify that
7592 ** all pointer map pages are set correctly. This is helpful while
7593 ** debugging. This is usually disabled because a corrupt database may
7594 ** cause an assert() statement to fail. */
7595 ptrmapCheckPages(apNew, nNew);
7596 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007597 }
dan33ea4862014-10-09 19:35:37 +00007598#endif
danielk1977cd581a72009-06-23 15:43:39 +00007599
drh8b2f49b2001-06-08 00:21:52 +00007600 /*
drh14acc042001-06-10 19:56:58 +00007601 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007602 */
drh14acc042001-06-10 19:56:58 +00007603balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007604 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007605 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007606 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007607 }
drh14acc042001-06-10 19:56:58 +00007608 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007609 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007610 }
danielk1977eaa06f62008-09-18 17:34:44 +00007611
drh8b2f49b2001-06-08 00:21:52 +00007612 return rc;
7613}
mistachkine7c54162012-10-02 22:54:27 +00007614#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
7615#pragma optimize("", on)
7616#endif
drh8b2f49b2001-06-08 00:21:52 +00007617
drh43605152004-05-29 21:46:49 +00007618
7619/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007620** This function is called when the root page of a b-tree structure is
7621** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007622**
danielk1977a50d9aa2009-06-08 14:49:45 +00007623** A new child page is allocated and the contents of the current root
7624** page, including overflow cells, are copied into the child. The root
7625** page is then overwritten to make it an empty page with the right-child
7626** pointer pointing to the new page.
7627**
7628** Before returning, all pointer-map entries corresponding to pages
7629** that the new child-page now contains pointers to are updated. The
7630** entry corresponding to the new right-child pointer of the root
7631** page is also updated.
7632**
7633** If successful, *ppChild is set to contain a reference to the child
7634** page and SQLITE_OK is returned. In this case the caller is required
7635** to call releasePage() on *ppChild exactly once. If an error occurs,
7636** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007637*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007638static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7639 int rc; /* Return value from subprocedures */
7640 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007641 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007642 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007643
danielk1977a50d9aa2009-06-08 14:49:45 +00007644 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007645 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007646
danielk1977a50d9aa2009-06-08 14:49:45 +00007647 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7648 ** page that will become the new right-child of pPage. Copy the contents
7649 ** of the node stored on pRoot into the new child page.
7650 */
drh98add2e2009-07-20 17:11:49 +00007651 rc = sqlite3PagerWrite(pRoot->pDbPage);
7652 if( rc==SQLITE_OK ){
7653 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007654 copyNodeContent(pRoot, pChild, &rc);
7655 if( ISAUTOVACUUM ){
7656 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007657 }
7658 }
7659 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007660 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007661 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007662 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007663 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007664 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7665 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7666 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007667
danielk1977a50d9aa2009-06-08 14:49:45 +00007668 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7669
7670 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007671 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7672 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7673 memcpy(pChild->apOvfl, pRoot->apOvfl,
7674 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007675 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007676
7677 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7678 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7679 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7680
7681 *ppChild = pChild;
7682 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007683}
7684
7685/*
danielk197771d5d2c2008-09-29 11:49:47 +00007686** The page that pCur currently points to has just been modified in
7687** some way. This function figures out if this modification means the
7688** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007689** routine. Balancing routines are:
7690**
7691** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007692** balance_deeper()
7693** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007694*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007695static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007696 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007697 const int nMin = pCur->pBt->usableSize * 2 / 3;
7698 u8 aBalanceQuickSpace[13];
7699 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007700
shane75ac1de2009-06-09 18:58:52 +00007701 TESTONLY( int balance_quick_called = 0 );
7702 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007703
7704 do {
7705 int iPage = pCur->iPage;
7706 MemPage *pPage = pCur->apPage[iPage];
7707
7708 if( iPage==0 ){
7709 if( pPage->nOverflow ){
7710 /* The root page of the b-tree is overfull. In this case call the
7711 ** balance_deeper() function to create a new child for the root-page
7712 ** and copy the current contents of the root-page to it. The
7713 ** next iteration of the do-loop will balance the child page.
7714 */
7715 assert( (balance_deeper_called++)==0 );
7716 rc = balance_deeper(pPage, &pCur->apPage[1]);
7717 if( rc==SQLITE_OK ){
7718 pCur->iPage = 1;
7719 pCur->aiIdx[0] = 0;
7720 pCur->aiIdx[1] = 0;
7721 assert( pCur->apPage[1]->nOverflow );
7722 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007723 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007724 break;
7725 }
7726 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7727 break;
7728 }else{
7729 MemPage * const pParent = pCur->apPage[iPage-1];
7730 int const iIdx = pCur->aiIdx[iPage-1];
7731
7732 rc = sqlite3PagerWrite(pParent->pDbPage);
7733 if( rc==SQLITE_OK ){
7734#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007735 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007736 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007737 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007738 && pParent->pgno!=1
7739 && pParent->nCell==iIdx
7740 ){
7741 /* Call balance_quick() to create a new sibling of pPage on which
7742 ** to store the overflow cell. balance_quick() inserts a new cell
7743 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007744 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007745 ** use either balance_nonroot() or balance_deeper(). Until this
7746 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7747 ** buffer.
7748 **
7749 ** The purpose of the following assert() is to check that only a
7750 ** single call to balance_quick() is made for each call to this
7751 ** function. If this were not verified, a subtle bug involving reuse
7752 ** of the aBalanceQuickSpace[] might sneak in.
7753 */
7754 assert( (balance_quick_called++)==0 );
7755 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7756 }else
7757#endif
7758 {
7759 /* In this case, call balance_nonroot() to redistribute cells
7760 ** between pPage and up to 2 of its sibling pages. This involves
7761 ** modifying the contents of pParent, which may cause pParent to
7762 ** become overfull or underfull. The next iteration of the do-loop
7763 ** will balance the parent page to correct this.
7764 **
7765 ** If the parent page becomes overfull, the overflow cell or cells
7766 ** are stored in the pSpace buffer allocated immediately below.
7767 ** A subsequent iteration of the do-loop will deal with this by
7768 ** calling balance_nonroot() (balance_deeper() may be called first,
7769 ** but it doesn't deal with overflow cells - just moves them to a
7770 ** different page). Once this subsequent call to balance_nonroot()
7771 ** has completed, it is safe to release the pSpace buffer used by
7772 ** the previous call, as the overflow cell data will have been
7773 ** copied either into the body of a database page or into the new
7774 ** pSpace buffer passed to the latter call to balance_nonroot().
7775 */
7776 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007777 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7778 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007779 if( pFree ){
7780 /* If pFree is not NULL, it points to the pSpace buffer used
7781 ** by a previous call to balance_nonroot(). Its contents are
7782 ** now stored either on real database pages or within the
7783 ** new pSpace buffer, so it may be safely freed here. */
7784 sqlite3PageFree(pFree);
7785 }
7786
danielk19774dbaa892009-06-16 16:50:22 +00007787 /* The pSpace buffer will be freed after the next call to
7788 ** balance_nonroot(), or just before this function returns, whichever
7789 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007790 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007791 }
7792 }
7793
7794 pPage->nOverflow = 0;
7795
7796 /* The next iteration of the do-loop balances the parent page. */
7797 releasePage(pPage);
7798 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007799 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007800 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007801 }while( rc==SQLITE_OK );
7802
7803 if( pFree ){
7804 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007805 }
7806 return rc;
7807}
7808
drhf74b8d92002-09-01 23:20:45 +00007809
7810/*
drh3b7511c2001-05-26 13:15:44 +00007811** Insert a new record into the BTree. The key is given by (pKey,nKey)
7812** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007813** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007814** is left pointing at a random location.
7815**
7816** For an INTKEY table, only the nKey value of the key is used. pKey is
7817** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007818**
7819** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007820** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007821** been performed. seekResult is the search result returned (a negative
7822** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007823** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007824** (pKey, nKey)).
7825**
drh3e9ca092009-09-08 01:14:48 +00007826** If the seekResult parameter is non-zero, then the caller guarantees that
7827** cursor pCur is pointing at the existing copy of a row that is to be
7828** overwritten. If the seekResult parameter is 0, then cursor pCur may
7829** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007830** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007831*/
drh3aac2dd2004-04-26 14:10:20 +00007832int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007833 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007834 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007835 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007836 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007837 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007838 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007839){
drh3b7511c2001-05-26 13:15:44 +00007840 int rc;
drh3e9ca092009-09-08 01:14:48 +00007841 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007842 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007843 int idx;
drh3b7511c2001-05-26 13:15:44 +00007844 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007845 Btree *p = pCur->pBtree;
7846 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007847 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007848 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007849
drh98add2e2009-07-20 17:11:49 +00007850 if( pCur->eState==CURSOR_FAULT ){
7851 assert( pCur->skipNext!=SQLITE_OK );
7852 return pCur->skipNext;
7853 }
7854
drh1fee73e2007-08-29 04:00:57 +00007855 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007856 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7857 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007858 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007859 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7860
danielk197731d31b82009-07-13 13:18:07 +00007861 /* Assert that the caller has been consistent. If this cursor was opened
7862 ** expecting an index b-tree, then the caller should be inserting blob
7863 ** keys with no associated data. If the cursor was opened expecting an
7864 ** intkey table, the caller should be inserting integer keys with a
7865 ** blob of associated data. */
7866 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7867
danielk19779c3acf32009-05-02 07:36:49 +00007868 /* Save the positions of any other cursors open on this table.
7869 **
danielk19773509a652009-07-06 18:56:13 +00007870 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007871 ** example, when inserting data into a table with auto-generated integer
7872 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7873 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007874 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007875 ** that the cursor is already where it needs to be and returns without
7876 ** doing any work. To avoid thwarting these optimizations, it is important
7877 ** not to clear the cursor here.
7878 */
drh4c301aa2009-07-15 17:25:45 +00007879 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7880 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007881
drhd60f4f42012-03-23 14:23:52 +00007882 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00007883 /* If this is an insert into a table b-tree, invalidate any incrblob
7884 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007885 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007886
7887 /* If the cursor is currently on the last row and we are appending a
7888 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7889 ** call */
drh3f387402014-09-24 01:23:00 +00007890 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7891 && pCur->info.nKey==nKey-1 ){
drhe0670b62014-02-12 21:31:12 +00007892 loc = -1;
7893 }
drhd60f4f42012-03-23 14:23:52 +00007894 }
7895
drh4c301aa2009-07-15 17:25:45 +00007896 if( !loc ){
7897 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7898 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007899 }
danielk1977b980d2212009-06-22 18:03:51 +00007900 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007901
danielk197771d5d2c2008-09-29 11:49:47 +00007902 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007903 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007904 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007905
drh3a4c1412004-05-09 20:40:11 +00007906 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7907 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7908 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007909 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007910 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007911 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00007912 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007913 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00007914 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007915 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007916 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007917 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007918 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007919 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007920 rc = sqlite3PagerWrite(pPage->pDbPage);
7921 if( rc ){
7922 goto end_insert;
7923 }
danielk197771d5d2c2008-09-29 11:49:47 +00007924 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007925 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007926 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007927 }
drh9bfdc252014-09-24 02:05:41 +00007928 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00007929 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007930 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007931 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007932 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007933 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007934 }else{
drh4b70f112004-05-02 21:12:19 +00007935 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007936 }
drh98add2e2009-07-20 17:11:49 +00007937 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007938 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007939
mistachkin48864df2013-03-21 21:20:32 +00007940 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007941 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007942 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007943 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007944 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007945 ** Previous versions of SQLite called moveToRoot() to move the cursor
7946 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007947 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7948 ** set the cursor state to "invalid". This makes common insert operations
7949 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007950 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007951 ** There is a subtle but important optimization here too. When inserting
7952 ** multiple records into an intkey b-tree using a single cursor (as can
7953 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7954 ** is advantageous to leave the cursor pointing to the last entry in
7955 ** the b-tree if possible. If the cursor is left pointing to the last
7956 ** entry in the table, and the next row inserted has an integer key
7957 ** larger than the largest existing key, it is possible to insert the
7958 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007959 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007960 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007961 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00007962 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00007963 rc = balance(pCur);
7964
7965 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007966 ** fails. Internal data structure corruption will result otherwise.
7967 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7968 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007969 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007970 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007971 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007972 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007973
drh2e38c322004-09-03 18:38:44 +00007974end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007975 return rc;
7976}
7977
7978/*
drh4b70f112004-05-02 21:12:19 +00007979** Delete the entry that the cursor is pointing to. The cursor
peter.d.reid60ec9142014-09-06 16:39:46 +00007980** is left pointing at an arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007981*/
drh3aac2dd2004-04-26 14:10:20 +00007982int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007983 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007984 BtShared *pBt = p->pBt;
7985 int rc; /* Return code */
7986 MemPage *pPage; /* Page to delete cell from */
7987 unsigned char *pCell; /* Pointer to cell to delete */
7988 int iCellIdx; /* Index of cell to delete */
7989 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00007990 u16 szCell; /* Size of the cell being deleted */
drh8b2f49b2001-06-08 00:21:52 +00007991
drh1fee73e2007-08-29 04:00:57 +00007992 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007993 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007994 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00007995 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00007996 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7997 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7998
danielk19774dbaa892009-06-16 16:50:22 +00007999 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
8000 || NEVER(pCur->eState!=CURSOR_VALID)
8001 ){
8002 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00008003 }
danielk1977da184232006-01-05 11:34:32 +00008004
danielk19774dbaa892009-06-16 16:50:22 +00008005 iCellDepth = pCur->iPage;
8006 iCellIdx = pCur->aiIdx[iCellDepth];
8007 pPage = pCur->apPage[iCellDepth];
8008 pCell = findCell(pPage, iCellIdx);
8009
8010 /* If the page containing the entry to delete is not a leaf page, move
8011 ** the cursor to the largest entry in the tree that is smaller than
8012 ** the entry being deleted. This cell will replace the cell being deleted
8013 ** from the internal node. The 'previous' entry is used for this instead
8014 ** of the 'next' entry, as the previous entry is always a part of the
8015 ** sub-tree headed by the child page of the cell being deleted. This makes
8016 ** balancing the tree following the delete operation easier. */
8017 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008018 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008019 rc = sqlite3BtreePrevious(pCur, &notUsed);
8020 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008021 }
8022
8023 /* Save the positions of any other cursors open on this table before
8024 ** making any modifications. Make the page containing the entry to be
8025 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00008026 ** entry and finally remove the cell itself from within the page.
8027 */
8028 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8029 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008030
8031 /* If this is a delete operation to remove a row from a table b-tree,
8032 ** invalidate any incrblob cursors open on the row being deleted. */
8033 if( pCur->pKeyInfo==0 ){
8034 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8035 }
8036
drha4ec1d42009-07-11 13:13:11 +00008037 rc = sqlite3PagerWrite(pPage->pDbPage);
8038 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008039 rc = clearCell(pPage, pCell, &szCell);
8040 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008041 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008042
danielk19774dbaa892009-06-16 16:50:22 +00008043 /* If the cell deleted was not located on a leaf page, then the cursor
8044 ** is currently pointing to the largest entry in the sub-tree headed
8045 ** by the child-page of the cell that was just deleted from an internal
8046 ** node. The cell from the leaf node needs to be moved to the internal
8047 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008048 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008049 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8050 int nCell;
8051 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8052 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008053
danielk19774dbaa892009-06-16 16:50:22 +00008054 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008055 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008056 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008057 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008058 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008059 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008060 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00008061 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8062 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008063 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008064 }
danielk19774dbaa892009-06-16 16:50:22 +00008065
8066 /* Balance the tree. If the entry deleted was located on a leaf page,
8067 ** then the cursor still points to that page. In this case the first
8068 ** call to balance() repairs the tree, and the if(...) condition is
8069 ** never true.
8070 **
8071 ** Otherwise, if the entry deleted was on an internal node page, then
8072 ** pCur is pointing to the leaf page from which a cell was removed to
8073 ** replace the cell deleted from the internal node. This is slightly
8074 ** tricky as the leaf node may be underfull, and the internal node may
8075 ** be either under or overfull. In this case run the balancing algorithm
8076 ** on the leaf node first. If the balance proceeds far enough up the
8077 ** tree that we can be sure that any problem in the internal node has
8078 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8079 ** walk the cursor up the tree to the internal node and balance it as
8080 ** well. */
8081 rc = balance(pCur);
8082 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8083 while( pCur->iPage>iCellDepth ){
8084 releasePage(pCur->apPage[pCur->iPage--]);
8085 }
8086 rc = balance(pCur);
8087 }
8088
danielk19776b456a22005-03-21 04:04:02 +00008089 if( rc==SQLITE_OK ){
8090 moveToRoot(pCur);
8091 }
drh5e2f8b92001-05-28 00:41:15 +00008092 return rc;
drh3b7511c2001-05-26 13:15:44 +00008093}
drh8b2f49b2001-06-08 00:21:52 +00008094
8095/*
drhc6b52df2002-01-04 03:09:29 +00008096** Create a new BTree table. Write into *piTable the page
8097** number for the root page of the new table.
8098**
drhab01f612004-05-22 02:55:23 +00008099** The type of type is determined by the flags parameter. Only the
8100** following values of flags are currently in use. Other values for
8101** flags might not work:
8102**
8103** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8104** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008105*/
drhd4187c72010-08-30 22:15:45 +00008106static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008107 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008108 MemPage *pRoot;
8109 Pgno pgnoRoot;
8110 int rc;
drhd4187c72010-08-30 22:15:45 +00008111 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008112
drh1fee73e2007-08-29 04:00:57 +00008113 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008114 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008115 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008116
danielk1977003ba062004-11-04 02:57:33 +00008117#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008118 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008119 if( rc ){
8120 return rc;
8121 }
danielk1977003ba062004-11-04 02:57:33 +00008122#else
danielk1977687566d2004-11-02 12:56:41 +00008123 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008124 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8125 MemPage *pPageMove; /* The page to move to. */
8126
danielk197720713f32007-05-03 11:43:33 +00008127 /* Creating a new table may probably require moving an existing database
8128 ** to make room for the new tables root page. In case this page turns
8129 ** out to be an overflow page, delete all overflow page-map caches
8130 ** held by open cursors.
8131 */
danielk197792d4d7a2007-05-04 12:05:56 +00008132 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008133
danielk1977003ba062004-11-04 02:57:33 +00008134 /* Read the value of meta[3] from the database to determine where the
8135 ** root page of the new table should go. meta[3] is the largest root-page
8136 ** created so far, so the new root-page is (meta[3]+1).
8137 */
danielk1977602b4662009-07-02 07:47:33 +00008138 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008139 pgnoRoot++;
8140
danielk1977599fcba2004-11-08 07:13:13 +00008141 /* The new root-page may not be allocated on a pointer-map page, or the
8142 ** PENDING_BYTE page.
8143 */
drh72190432008-01-31 14:54:43 +00008144 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008145 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008146 pgnoRoot++;
8147 }
drh499e15b2015-05-22 12:37:37 +00008148 assert( pgnoRoot>=3 || CORRUPT_DB );
8149 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008150
8151 /* Allocate a page. The page that currently resides at pgnoRoot will
8152 ** be moved to the allocated page (unless the allocated page happens
8153 ** to reside at pgnoRoot).
8154 */
dan51f0b6d2013-02-22 20:16:34 +00008155 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008156 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008157 return rc;
8158 }
danielk1977003ba062004-11-04 02:57:33 +00008159
8160 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008161 /* pgnoRoot is the page that will be used for the root-page of
8162 ** the new table (assuming an error did not occur). But we were
8163 ** allocated pgnoMove. If required (i.e. if it was not allocated
8164 ** by extending the file), the current page at position pgnoMove
8165 ** is already journaled.
8166 */
drheeb844a2009-08-08 18:01:07 +00008167 u8 eType = 0;
8168 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008169
danf7679ad2013-04-03 11:38:36 +00008170 /* Save the positions of any open cursors. This is required in
8171 ** case they are holding a reference to an xFetch reference
8172 ** corresponding to page pgnoRoot. */
8173 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008174 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008175 if( rc!=SQLITE_OK ){
8176 return rc;
8177 }
danielk1977f35843b2007-04-07 15:03:17 +00008178
8179 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008180 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008181 if( rc!=SQLITE_OK ){
8182 return rc;
8183 }
8184 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008185 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8186 rc = SQLITE_CORRUPT_BKPT;
8187 }
8188 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008189 releasePage(pRoot);
8190 return rc;
8191 }
drhccae6022005-02-26 17:31:26 +00008192 assert( eType!=PTRMAP_ROOTPAGE );
8193 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008194 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008195 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008196
8197 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008198 if( rc!=SQLITE_OK ){
8199 return rc;
8200 }
drhb00fc3b2013-08-21 23:42:32 +00008201 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008202 if( rc!=SQLITE_OK ){
8203 return rc;
8204 }
danielk19773b8a05f2007-03-19 17:44:26 +00008205 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008206 if( rc!=SQLITE_OK ){
8207 releasePage(pRoot);
8208 return rc;
8209 }
8210 }else{
8211 pRoot = pPageMove;
8212 }
8213
danielk197742741be2005-01-08 12:42:39 +00008214 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008215 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008216 if( rc ){
8217 releasePage(pRoot);
8218 return rc;
8219 }
drhbf592832010-03-30 15:51:12 +00008220
8221 /* When the new root page was allocated, page 1 was made writable in
8222 ** order either to increase the database filesize, or to decrement the
8223 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8224 */
8225 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008226 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008227 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008228 releasePage(pRoot);
8229 return rc;
8230 }
danielk197742741be2005-01-08 12:42:39 +00008231
danielk1977003ba062004-11-04 02:57:33 +00008232 }else{
drh4f0c5872007-03-26 22:05:01 +00008233 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008234 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008235 }
8236#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008237 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008238 if( createTabFlags & BTREE_INTKEY ){
8239 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8240 }else{
8241 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8242 }
8243 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008244 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008245 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008246 *piTable = (int)pgnoRoot;
8247 return SQLITE_OK;
8248}
drhd677b3d2007-08-20 22:48:41 +00008249int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8250 int rc;
8251 sqlite3BtreeEnter(p);
8252 rc = btreeCreateTable(p, piTable, flags);
8253 sqlite3BtreeLeave(p);
8254 return rc;
8255}
drh8b2f49b2001-06-08 00:21:52 +00008256
8257/*
8258** Erase the given database page and all its children. Return
8259** the page to the freelist.
8260*/
drh4b70f112004-05-02 21:12:19 +00008261static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008262 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008263 Pgno pgno, /* Page number to clear */
8264 int freePageFlag, /* Deallocate page if true */
8265 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008266){
danielk1977146ba992009-07-22 14:08:13 +00008267 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008268 int rc;
drh4b70f112004-05-02 21:12:19 +00008269 unsigned char *pCell;
8270 int i;
dan8ce71842014-01-14 20:14:09 +00008271 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008272 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008273
drh1fee73e2007-08-29 04:00:57 +00008274 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008275 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008276 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008277 }
dan11dcd112013-03-15 18:29:18 +00008278 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00008279 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008280 if( pPage->bBusy ){
8281 rc = SQLITE_CORRUPT_BKPT;
8282 goto cleardatabasepage_out;
8283 }
8284 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008285 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008286 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008287 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +00008288 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008289 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008290 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008291 }
drh9bfdc252014-09-24 02:05:41 +00008292 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008293 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008294 }
drhccf46d02015-04-01 13:21:33 +00008295 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008296 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008297 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008298 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008299 assert( pPage->intKey || CORRUPT_DB );
8300 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008301 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008302 }
8303 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008304 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008305 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008306 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008307 }
danielk19776b456a22005-03-21 04:04:02 +00008308
8309cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008310 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008311 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008312 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008313}
8314
8315/*
drhab01f612004-05-22 02:55:23 +00008316** Delete all information from a single table in the database. iTable is
8317** the page number of the root of the table. After this routine returns,
8318** the root page is empty, but still exists.
8319**
8320** This routine will fail with SQLITE_LOCKED if there are any open
8321** read cursors on the table. Open write cursors are moved to the
8322** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008323**
8324** If pnChange is not NULL, then table iTable must be an intkey table. The
8325** integer value pointed to by pnChange is incremented by the number of
8326** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008327*/
danielk1977c7af4842008-10-27 13:59:33 +00008328int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008329 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008330 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008331 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008332 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008333
drhc046e3e2009-07-15 11:26:44 +00008334 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008335
drhc046e3e2009-07-15 11:26:44 +00008336 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008337 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8338 ** is the root of a table b-tree - if it is not, the following call is
8339 ** a no-op). */
8340 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008341 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008342 }
drhd677b3d2007-08-20 22:48:41 +00008343 sqlite3BtreeLeave(p);
8344 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008345}
8346
8347/*
drh079a3072014-03-19 14:10:55 +00008348** Delete all information from the single table that pCur is open on.
8349**
8350** This routine only work for pCur on an ephemeral table.
8351*/
8352int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8353 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8354}
8355
8356/*
drh8b2f49b2001-06-08 00:21:52 +00008357** Erase all information in a table and add the root of the table to
8358** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008359** page 1) is never added to the freelist.
8360**
8361** This routine will fail with SQLITE_LOCKED if there are any open
8362** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008363**
8364** If AUTOVACUUM is enabled and the page at iTable is not the last
8365** root page in the database file, then the last root page
8366** in the database file is moved into the slot formerly occupied by
8367** iTable and that last slot formerly occupied by the last root page
8368** is added to the freelist instead of iTable. In this say, all
8369** root pages are kept at the beginning of the database file, which
8370** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8371** page number that used to be the last root page in the file before
8372** the move. If no page gets moved, *piMoved is set to 0.
8373** The last root page is recorded in meta[3] and the value of
8374** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008375*/
danielk197789d40042008-11-17 14:20:56 +00008376static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008377 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008378 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008379 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008380
drh1fee73e2007-08-29 04:00:57 +00008381 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008382 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008383
danielk1977e6efa742004-11-10 11:55:10 +00008384 /* It is illegal to drop a table if any cursors are open on the
8385 ** database. This is because in auto-vacuum mode the backend may
8386 ** need to move another root-page to fill a gap left by the deleted
8387 ** root page. If an open cursor was using this page a problem would
8388 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008389 **
8390 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008391 */
drhc046e3e2009-07-15 11:26:44 +00008392 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008393 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8394 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008395 }
danielk1977a0bf2652004-11-04 14:30:04 +00008396
drhb00fc3b2013-08-21 23:42:32 +00008397 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008398 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008399 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008400 if( rc ){
8401 releasePage(pPage);
8402 return rc;
8403 }
danielk1977a0bf2652004-11-04 14:30:04 +00008404
drh205f48e2004-11-05 00:43:11 +00008405 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008406
drh4b70f112004-05-02 21:12:19 +00008407 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008408#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008409 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008410 releasePage(pPage);
8411#else
8412 if( pBt->autoVacuum ){
8413 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008414 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008415
8416 if( iTable==maxRootPgno ){
8417 /* If the table being dropped is the table with the largest root-page
8418 ** number in the database, put the root page on the free list.
8419 */
drhc314dc72009-07-21 11:52:34 +00008420 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008421 releasePage(pPage);
8422 if( rc!=SQLITE_OK ){
8423 return rc;
8424 }
8425 }else{
8426 /* The table being dropped does not have the largest root-page
8427 ** number in the database. So move the page that does into the
8428 ** gap left by the deleted root-page.
8429 */
8430 MemPage *pMove;
8431 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008432 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008433 if( rc!=SQLITE_OK ){
8434 return rc;
8435 }
danielk19774c999992008-07-16 18:17:55 +00008436 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008437 releasePage(pMove);
8438 if( rc!=SQLITE_OK ){
8439 return rc;
8440 }
drhfe3313f2009-07-21 19:02:20 +00008441 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008442 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008443 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008444 releasePage(pMove);
8445 if( rc!=SQLITE_OK ){
8446 return rc;
8447 }
8448 *piMoved = maxRootPgno;
8449 }
8450
danielk1977599fcba2004-11-08 07:13:13 +00008451 /* Set the new 'max-root-page' value in the database header. This
8452 ** is the old value less one, less one more if that happens to
8453 ** be a root-page number, less one again if that is the
8454 ** PENDING_BYTE_PAGE.
8455 */
danielk197787a6e732004-11-05 12:58:25 +00008456 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008457 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8458 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008459 maxRootPgno--;
8460 }
danielk1977599fcba2004-11-08 07:13:13 +00008461 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8462
danielk1977aef0bf62005-12-30 16:28:01 +00008463 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008464 }else{
drhc314dc72009-07-21 11:52:34 +00008465 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008466 releasePage(pPage);
8467 }
8468#endif
drh2aa679f2001-06-25 02:11:07 +00008469 }else{
drhc046e3e2009-07-15 11:26:44 +00008470 /* If sqlite3BtreeDropTable was called on page 1.
8471 ** This really never should happen except in a corrupt
8472 ** database.
8473 */
drha34b6762004-05-07 13:30:42 +00008474 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008475 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008476 }
drh8b2f49b2001-06-08 00:21:52 +00008477 return rc;
8478}
drhd677b3d2007-08-20 22:48:41 +00008479int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8480 int rc;
8481 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008482 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008483 sqlite3BtreeLeave(p);
8484 return rc;
8485}
drh8b2f49b2001-06-08 00:21:52 +00008486
drh001bbcb2003-03-19 03:14:00 +00008487
drh8b2f49b2001-06-08 00:21:52 +00008488/*
danielk1977602b4662009-07-02 07:47:33 +00008489** This function may only be called if the b-tree connection already
8490** has a read or write transaction open on the database.
8491**
drh23e11ca2004-05-04 17:27:28 +00008492** Read the meta-information out of a database file. Meta[0]
8493** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008494** through meta[15] are available for use by higher layers. Meta[0]
8495** is read-only, the others are read/write.
8496**
8497** The schema layer numbers meta values differently. At the schema
8498** layer (and the SetCookie and ReadCookie opcodes) the number of
8499** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008500**
8501** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8502** of reading the value out of the header, it instead loads the "DataVersion"
8503** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8504** database file. It is a number computed by the pager. But its access
8505** pattern is the same as header meta values, and so it is convenient to
8506** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008507*/
danielk1977602b4662009-07-02 07:47:33 +00008508void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008509 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008510
drhd677b3d2007-08-20 22:48:41 +00008511 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008512 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008513 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008514 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008515 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008516
drh91618562014-12-19 19:28:02 +00008517 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008518 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008519 }else{
8520 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8521 }
drhae157872004-08-14 19:20:09 +00008522
danielk1977602b4662009-07-02 07:47:33 +00008523 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8524 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008525#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008526 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8527 pBt->btsFlags |= BTS_READ_ONLY;
8528 }
danielk1977003ba062004-11-04 02:57:33 +00008529#endif
drhae157872004-08-14 19:20:09 +00008530
drhd677b3d2007-08-20 22:48:41 +00008531 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008532}
8533
8534/*
drh23e11ca2004-05-04 17:27:28 +00008535** Write meta-information back into the database. Meta[0] is
8536** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008537*/
danielk1977aef0bf62005-12-30 16:28:01 +00008538int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8539 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008540 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008541 int rc;
drh23e11ca2004-05-04 17:27:28 +00008542 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008543 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008544 assert( p->inTrans==TRANS_WRITE );
8545 assert( pBt->pPage1!=0 );
8546 pP1 = pBt->pPage1->aData;
8547 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8548 if( rc==SQLITE_OK ){
8549 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008550#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008551 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008552 assert( pBt->autoVacuum || iMeta==0 );
8553 assert( iMeta==0 || iMeta==1 );
8554 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008555 }
drh64022502009-01-09 14:11:04 +00008556#endif
drh5df72a52002-06-06 23:16:05 +00008557 }
drhd677b3d2007-08-20 22:48:41 +00008558 sqlite3BtreeLeave(p);
8559 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008560}
drh8c42ca92001-06-22 19:15:00 +00008561
danielk1977a5533162009-02-24 10:01:51 +00008562#ifndef SQLITE_OMIT_BTREECOUNT
8563/*
8564** The first argument, pCur, is a cursor opened on some b-tree. Count the
8565** number of entries in the b-tree and write the result to *pnEntry.
8566**
8567** SQLITE_OK is returned if the operation is successfully executed.
8568** Otherwise, if an error is encountered (i.e. an IO error or database
8569** corruption) an SQLite error code is returned.
8570*/
8571int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8572 i64 nEntry = 0; /* Value to return in *pnEntry */
8573 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008574
8575 if( pCur->pgnoRoot==0 ){
8576 *pnEntry = 0;
8577 return SQLITE_OK;
8578 }
danielk1977a5533162009-02-24 10:01:51 +00008579 rc = moveToRoot(pCur);
8580
8581 /* Unless an error occurs, the following loop runs one iteration for each
8582 ** page in the B-Tree structure (not including overflow pages).
8583 */
8584 while( rc==SQLITE_OK ){
8585 int iIdx; /* Index of child node in parent */
8586 MemPage *pPage; /* Current page of the b-tree */
8587
8588 /* If this is a leaf page or the tree is not an int-key tree, then
8589 ** this page contains countable entries. Increment the entry counter
8590 ** accordingly.
8591 */
8592 pPage = pCur->apPage[pCur->iPage];
8593 if( pPage->leaf || !pPage->intKey ){
8594 nEntry += pPage->nCell;
8595 }
8596
8597 /* pPage is a leaf node. This loop navigates the cursor so that it
8598 ** points to the first interior cell that it points to the parent of
8599 ** the next page in the tree that has not yet been visited. The
8600 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8601 ** of the page, or to the number of cells in the page if the next page
8602 ** to visit is the right-child of its parent.
8603 **
8604 ** If all pages in the tree have been visited, return SQLITE_OK to the
8605 ** caller.
8606 */
8607 if( pPage->leaf ){
8608 do {
8609 if( pCur->iPage==0 ){
8610 /* All pages of the b-tree have been visited. Return successfully. */
8611 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008612 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008613 }
danielk197730548662009-07-09 05:07:37 +00008614 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008615 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8616
8617 pCur->aiIdx[pCur->iPage]++;
8618 pPage = pCur->apPage[pCur->iPage];
8619 }
8620
8621 /* Descend to the child node of the cell that the cursor currently
8622 ** points at. This is the right-child if (iIdx==pPage->nCell).
8623 */
8624 iIdx = pCur->aiIdx[pCur->iPage];
8625 if( iIdx==pPage->nCell ){
8626 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8627 }else{
8628 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8629 }
8630 }
8631
shanebe217792009-03-05 04:20:31 +00008632 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008633 return rc;
8634}
8635#endif
drhdd793422001-06-28 01:54:48 +00008636
drhdd793422001-06-28 01:54:48 +00008637/*
drh5eddca62001-06-30 21:53:53 +00008638** Return the pager associated with a BTree. This routine is used for
8639** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008640*/
danielk1977aef0bf62005-12-30 16:28:01 +00008641Pager *sqlite3BtreePager(Btree *p){
8642 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008643}
drh5eddca62001-06-30 21:53:53 +00008644
drhb7f91642004-10-31 02:22:47 +00008645#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008646/*
8647** Append a message to the error message string.
8648*/
drh2e38c322004-09-03 18:38:44 +00008649static void checkAppendMsg(
8650 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008651 const char *zFormat,
8652 ...
8653){
8654 va_list ap;
drh867db832014-09-26 02:41:05 +00008655 char zBuf[200];
drh1dcdbc02007-01-27 02:24:54 +00008656 if( !pCheck->mxErr ) return;
8657 pCheck->mxErr--;
8658 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008659 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008660 if( pCheck->errMsg.nChar ){
8661 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008662 }
drh867db832014-09-26 02:41:05 +00008663 if( pCheck->zPfx ){
8664 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
8665 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
drhf089aa42008-07-08 19:34:06 +00008666 }
8667 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8668 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008669 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008670 pCheck->mallocFailed = 1;
8671 }
drh5eddca62001-06-30 21:53:53 +00008672}
drhb7f91642004-10-31 02:22:47 +00008673#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008674
drhb7f91642004-10-31 02:22:47 +00008675#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008676
8677/*
8678** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8679** corresponds to page iPg is already set.
8680*/
8681static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8682 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8683 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8684}
8685
8686/*
8687** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8688*/
8689static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8690 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8691 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8692}
8693
8694
drh5eddca62001-06-30 21:53:53 +00008695/*
8696** Add 1 to the reference count for page iPage. If this is the second
8697** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008698** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008699** if this is the first reference to the page.
8700**
8701** Also check that the page number is in bounds.
8702*/
drh867db832014-09-26 02:41:05 +00008703static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008704 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008705 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008706 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008707 return 1;
8708 }
dan1235bb12012-04-03 17:43:28 +00008709 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008710 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008711 return 1;
8712 }
dan1235bb12012-04-03 17:43:28 +00008713 setPageReferenced(pCheck, iPage);
8714 return 0;
drh5eddca62001-06-30 21:53:53 +00008715}
8716
danielk1977afcdd022004-10-31 16:25:42 +00008717#ifndef SQLITE_OMIT_AUTOVACUUM
8718/*
8719** Check that the entry in the pointer-map for page iChild maps to
8720** page iParent, pointer type ptrType. If not, append an error message
8721** to pCheck.
8722*/
8723static void checkPtrmap(
8724 IntegrityCk *pCheck, /* Integrity check context */
8725 Pgno iChild, /* Child page number */
8726 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008727 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008728){
8729 int rc;
8730 u8 ePtrmapType;
8731 Pgno iPtrmapParent;
8732
8733 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8734 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008735 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008736 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008737 return;
8738 }
8739
8740 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008741 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008742 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8743 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8744 }
8745}
8746#endif
8747
drh5eddca62001-06-30 21:53:53 +00008748/*
8749** Check the integrity of the freelist or of an overflow page list.
8750** Verify that the number of pages on the list is N.
8751*/
drh30e58752002-03-02 20:41:57 +00008752static void checkList(
8753 IntegrityCk *pCheck, /* Integrity checking context */
8754 int isFreeList, /* True for a freelist. False for overflow page list */
8755 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008756 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008757){
8758 int i;
drh3a4c1412004-05-09 20:40:11 +00008759 int expected = N;
8760 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008761 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008762 DbPage *pOvflPage;
8763 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008764 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008765 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008766 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008767 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008768 break;
8769 }
drh867db832014-09-26 02:41:05 +00008770 if( checkRef(pCheck, iPage) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00008771 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh867db832014-09-26 02:41:05 +00008772 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008773 break;
8774 }
danielk19773b8a05f2007-03-19 17:44:26 +00008775 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008776 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008777 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008778#ifndef SQLITE_OMIT_AUTOVACUUM
8779 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008780 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008781 }
8782#endif
drh43b18e12010-08-17 19:40:08 +00008783 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008784 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008785 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008786 N--;
8787 }else{
8788 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008789 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008790#ifndef SQLITE_OMIT_AUTOVACUUM
8791 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008792 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008793 }
8794#endif
drh867db832014-09-26 02:41:05 +00008795 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008796 }
8797 N -= n;
drh30e58752002-03-02 20:41:57 +00008798 }
drh30e58752002-03-02 20:41:57 +00008799 }
danielk1977afcdd022004-10-31 16:25:42 +00008800#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008801 else{
8802 /* If this database supports auto-vacuum and iPage is not the last
8803 ** page in this overflow list, check that the pointer-map entry for
8804 ** the following page matches iPage.
8805 */
8806 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008807 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008808 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008809 }
danielk1977afcdd022004-10-31 16:25:42 +00008810 }
8811#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008812 iPage = get4byte(pOvflData);
8813 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00008814 }
8815}
drhb7f91642004-10-31 02:22:47 +00008816#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008817
drh67731a92015-04-16 11:56:03 +00008818/*
8819** An implementation of a min-heap.
8820**
8821** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008822** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008823** and aHeap[N*2+1].
8824**
8825** The heap property is this: Every node is less than or equal to both
8826** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008827** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008828**
8829** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8830** the heap, preserving the heap property. The btreeHeapPull() routine
8831** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00008832** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00008833** property.
8834**
8835** This heap is used for cell overlap and coverage testing. Each u32
8836** entry represents the span of a cell or freeblock on a btree page.
8837** The upper 16 bits are the index of the first byte of a range and the
8838** lower 16 bits are the index of the last byte of that range.
8839*/
8840static void btreeHeapInsert(u32 *aHeap, u32 x){
8841 u32 j, i = ++aHeap[0];
8842 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00008843 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00008844 x = aHeap[j];
8845 aHeap[j] = aHeap[i];
8846 aHeap[i] = x;
8847 i = j;
8848 }
8849}
8850static int btreeHeapPull(u32 *aHeap, u32 *pOut){
8851 u32 j, i, x;
8852 if( (x = aHeap[0])==0 ) return 0;
8853 *pOut = aHeap[1];
8854 aHeap[1] = aHeap[x];
8855 aHeap[x] = 0xffffffff;
8856 aHeap[0]--;
8857 i = 1;
8858 while( (j = i*2)<=aHeap[0] ){
8859 if( aHeap[j]>aHeap[j+1] ) j++;
8860 if( aHeap[i]<aHeap[j] ) break;
8861 x = aHeap[i];
8862 aHeap[i] = aHeap[j];
8863 aHeap[j] = x;
8864 i = j;
8865 }
8866 return 1;
8867}
8868
drhb7f91642004-10-31 02:22:47 +00008869#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008870/*
8871** Do various sanity checks on a single page of a tree. Return
8872** the tree depth. Root pages return 0. Parents of root pages
8873** return 1, and so forth.
8874**
8875** These checks are done:
8876**
8877** 1. Make sure that cells and freeblocks do not overlap
8878** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00008879** NO 2. Make sure cell keys are in order.
8880** NO 3. Make sure no key is less than or equal to zLowerBound.
8881** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00008882** 5. Check the integrity of overflow pages.
8883** 6. Recursively call checkTreePage on all children.
8884** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00008885** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00008886** the root of the tree.
8887*/
8888static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00008889 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00008890 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00008891 i64 *pnParentMinKey,
8892 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00008893){
8894 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00008895 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00008896 int hdr, cellStart;
8897 int nCell;
drhda200cc2004-05-09 11:51:38 +00008898 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00008899 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00008900 int usableSize;
drh67731a92015-04-16 11:56:03 +00008901 u32 *heap = 0;
drha33b6832015-04-16 21:57:37 +00008902 u32 x, prev = 0;
shaneh195475d2010-02-19 04:28:08 +00008903 i64 nMinKey = 0;
8904 i64 nMaxKey = 0;
drh867db832014-09-26 02:41:05 +00008905 const char *saved_zPfx = pCheck->zPfx;
8906 int saved_v1 = pCheck->v1;
8907 int saved_v2 = pCheck->v2;
danielk1977ef73ee92004-11-06 12:26:07 +00008908
drh5eddca62001-06-30 21:53:53 +00008909 /* Check that the page exists
8910 */
drhd9cb6ac2005-10-20 07:28:17 +00008911 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00008912 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00008913 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00008914 if( checkRef(pCheck, iPage) ) return 0;
8915 pCheck->zPfx = "Page %d: ";
8916 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00008917 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00008918 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008919 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00008920 depth = -1;
8921 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008922 }
danielk197793caf5a2009-07-11 06:55:33 +00008923
8924 /* Clear MemPage.isInit to make sure the corruption detection code in
8925 ** btreeInitPage() is executed. */
8926 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00008927 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00008928 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00008929 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00008930 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00008931 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008932 depth = -1;
8933 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008934 }
8935
8936 /* Check out all the cells.
8937 */
8938 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00008939 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00008940 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00008941 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00008942 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00008943
8944 /* Check payload overflow pages
8945 */
drh867db832014-09-26 02:41:05 +00008946 pCheck->zPfx = "On tree page %d cell %d: ";
8947 pCheck->v1 = iPage;
8948 pCheck->v2 = i;
danielk19771cc5ed82007-05-16 17:28:43 +00008949 pCell = findCell(pPage,i);
drh5fa60512015-06-19 17:19:34 +00008950 pPage->xParseCell(pPage, pCell, &info);
drhab1cc582014-09-23 21:25:19 +00008951 sz = info.nPayload;
shaneh195475d2010-02-19 04:28:08 +00008952 /* For intKey pages, check that the keys are in order.
8953 */
drhab1cc582014-09-23 21:25:19 +00008954 if( pPage->intKey ){
8955 if( i==0 ){
8956 nMinKey = nMaxKey = info.nKey;
8957 }else if( info.nKey <= nMaxKey ){
drh867db832014-09-26 02:41:05 +00008958 checkAppendMsg(pCheck,
drhab1cc582014-09-23 21:25:19 +00008959 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
shaneh195475d2010-02-19 04:28:08 +00008960 }
8961 nMaxKey = info.nKey;
8962 }
danielk19775be31f52009-03-30 13:53:43 +00008963 if( (sz>info.nLocal)
8964 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8965 ){
drhb6f41482004-05-14 01:58:11 +00008966 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008967 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8968#ifndef SQLITE_OMIT_AUTOVACUUM
8969 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008970 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008971 }
8972#endif
drh867db832014-09-26 02:41:05 +00008973 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00008974 }
8975
8976 /* Check sanity of left child page.
8977 */
drhda200cc2004-05-09 11:51:38 +00008978 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008979 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008980#ifndef SQLITE_OMIT_AUTOVACUUM
8981 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008982 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008983 }
8984#endif
drh867db832014-09-26 02:41:05 +00008985 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008986 if( i>0 && d2!=depth ){
drh867db832014-09-26 02:41:05 +00008987 checkAppendMsg(pCheck, "Child page depth differs");
drhda200cc2004-05-09 11:51:38 +00008988 }
8989 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008990 }
drh5eddca62001-06-30 21:53:53 +00008991 }
shaneh195475d2010-02-19 04:28:08 +00008992
drhda200cc2004-05-09 11:51:38 +00008993 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008994 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh867db832014-09-26 02:41:05 +00008995 pCheck->zPfx = "On page %d at right child: ";
8996 pCheck->v1 = iPage;
danielk1977afcdd022004-10-31 16:25:42 +00008997#ifndef SQLITE_OMIT_AUTOVACUUM
8998 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008999 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009000 }
9001#endif
drh867db832014-09-26 02:41:05 +00009002 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00009003 }
drh5eddca62001-06-30 21:53:53 +00009004
shaneh195475d2010-02-19 04:28:08 +00009005 /* For intKey leaf pages, check that the min/max keys are in order
9006 ** with any left/parent/right pages.
9007 */
drh867db832014-09-26 02:41:05 +00009008 pCheck->zPfx = "Page %d: ";
9009 pCheck->v1 = iPage;
shaneh195475d2010-02-19 04:28:08 +00009010 if( pPage->leaf && pPage->intKey ){
9011 /* if we are a left child page */
9012 if( pnParentMinKey ){
9013 /* if we are the left most child page */
9014 if( !pnParentMaxKey ){
9015 if( nMaxKey > *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00009016 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009017 "Rowid %lld out of order (max larger than parent min of %lld)",
9018 nMaxKey, *pnParentMinKey);
9019 }
9020 }else{
9021 if( nMinKey <= *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00009022 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009023 "Rowid %lld out of order (min less than parent min of %lld)",
9024 nMinKey, *pnParentMinKey);
9025 }
9026 if( nMaxKey > *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00009027 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009028 "Rowid %lld out of order (max larger than parent max of %lld)",
9029 nMaxKey, *pnParentMaxKey);
9030 }
9031 *pnParentMinKey = nMaxKey;
9032 }
9033 /* else if we're a right child page */
9034 } else if( pnParentMaxKey ){
9035 if( nMinKey <= *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00009036 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009037 "Rowid %lld out of order (min less than parent max of %lld)",
9038 nMinKey, *pnParentMaxKey);
9039 }
9040 }
9041 }
9042
drh5eddca62001-06-30 21:53:53 +00009043 /* Check for complete coverage of the page
9044 */
drhda200cc2004-05-09 11:51:38 +00009045 data = pPage->aData;
9046 hdr = pPage->hdrOffset;
drh67731a92015-04-16 11:56:03 +00009047 heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
drh867db832014-09-26 02:41:05 +00009048 pCheck->zPfx = 0;
drh67731a92015-04-16 11:56:03 +00009049 if( heap==0 ){
drhc890fec2008-08-01 20:10:08 +00009050 pCheck->mallocFailed = 1;
9051 }else{
drh5d433ce2010-08-14 16:02:52 +00009052 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00009053 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
drh67731a92015-04-16 11:56:03 +00009054 heap[0] = 0;
9055 btreeHeapInsert(heap, contentOffset-1);
drhfdab0262014-11-20 15:30:50 +00009056 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9057 ** number of cells on the page. */
drh2e38c322004-09-03 18:38:44 +00009058 nCell = get2byte(&data[hdr+3]);
drhfdab0262014-11-20 15:30:50 +00009059 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9060 ** immediately follows the b-tree page header. */
drh2e38c322004-09-03 18:38:44 +00009061 cellStart = hdr + 12 - 4*pPage->leaf;
drhfdab0262014-11-20 15:30:50 +00009062 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9063 ** integer offsets to the cell contents. */
drh2e38c322004-09-03 18:38:44 +00009064 for(i=0; i<nCell; i++){
9065 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00009066 u32 size = 65536;
drh8c2bbb62009-07-10 02:52:20 +00009067 if( pc<=usableSize-4 ){
drh25ada072015-06-19 15:07:14 +00009068 size = pPage->xCellSize(pPage, &data[pc]);
danielk1977daca5432008-08-25 11:57:16 +00009069 }
drh43b18e12010-08-17 19:40:08 +00009070 if( (int)(pc+size-1)>=usableSize ){
drh867db832014-09-26 02:41:05 +00009071 pCheck->zPfx = 0;
9072 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009073 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00009074 }else{
drh67731a92015-04-16 11:56:03 +00009075 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009076 }
drh2e38c322004-09-03 18:38:44 +00009077 }
drhfdab0262014-11-20 15:30:50 +00009078 /* EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9079 ** is the offset of the first freeblock, or zero if there are no
9080 ** freeblocks on the page. */
drh8c2bbb62009-07-10 02:52:20 +00009081 i = get2byte(&data[hdr+1]);
9082 while( i>0 ){
9083 int size, j;
9084 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
9085 size = get2byte(&data[i+2]);
9086 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
drh67731a92015-04-16 11:56:03 +00009087 btreeHeapInsert(heap, (i<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009088 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9089 ** big-endian integer which is the offset in the b-tree page of the next
9090 ** freeblock in the chain, or zero if the freeblock is the last on the
9091 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009092 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009093 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9094 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009095 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
9096 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
9097 i = j;
drh2e38c322004-09-03 18:38:44 +00009098 }
drh67731a92015-04-16 11:56:03 +00009099 cnt = 0;
9100 assert( heap[0]>0 );
9101 assert( (heap[1]>>16)==0 );
9102 btreeHeapPull(heap,&prev);
9103 while( btreeHeapPull(heap,&x) ){
9104 if( (prev&0xffff)+1>(x>>16) ){
drh867db832014-09-26 02:41:05 +00009105 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009106 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009107 break;
drh67731a92015-04-16 11:56:03 +00009108 }else{
9109 cnt += (x>>16) - (prev&0xffff) - 1;
9110 prev = x;
drh2e38c322004-09-03 18:38:44 +00009111 }
9112 }
drh67731a92015-04-16 11:56:03 +00009113 cnt += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009114 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9115 ** is stored in the fifth field of the b-tree page header.
9116 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9117 ** number of fragmented free bytes within the cell content area.
9118 */
drha33b6832015-04-16 21:57:37 +00009119 if( heap[0]==0 && cnt!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009120 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009121 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00009122 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009123 }
9124 }
drh67731a92015-04-16 11:56:03 +00009125 sqlite3PageFree(heap);
drh4b70f112004-05-02 21:12:19 +00009126 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009127
9128end_of_check:
9129 pCheck->zPfx = saved_zPfx;
9130 pCheck->v1 = saved_v1;
9131 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009132 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009133}
drhb7f91642004-10-31 02:22:47 +00009134#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009135
drhb7f91642004-10-31 02:22:47 +00009136#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009137/*
9138** This routine does a complete check of the given BTree file. aRoot[] is
9139** an array of pages numbers were each page number is the root page of
9140** a table. nRoot is the number of entries in aRoot.
9141**
danielk19773509a652009-07-06 18:56:13 +00009142** A read-only or read-write transaction must be opened before calling
9143** this function.
9144**
drhc890fec2008-08-01 20:10:08 +00009145** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009146** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009147** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009148** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009149*/
drh1dcdbc02007-01-27 02:24:54 +00009150char *sqlite3BtreeIntegrityCheck(
9151 Btree *p, /* The btree to be checked */
9152 int *aRoot, /* An array of root pages numbers for individual trees */
9153 int nRoot, /* Number of entries in aRoot[] */
9154 int mxErr, /* Stop reporting errors after this many */
9155 int *pnErr /* Write number of errors seen to this variable */
9156){
danielk197789d40042008-11-17 14:20:56 +00009157 Pgno i;
drh5eddca62001-06-30 21:53:53 +00009158 int nRef;
drhaaab5722002-02-19 13:39:21 +00009159 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009160 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00009161 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00009162
drhd677b3d2007-08-20 22:48:41 +00009163 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009164 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00009165 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00009166 sCheck.pBt = pBt;
9167 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009168 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009169 sCheck.mxErr = mxErr;
9170 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009171 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009172 sCheck.zPfx = 0;
9173 sCheck.v1 = 0;
9174 sCheck.v2 = 0;
drh1dcdbc02007-01-27 02:24:54 +00009175 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00009176 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00009177 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00009178 return 0;
9179 }
dan1235bb12012-04-03 17:43:28 +00009180
9181 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9182 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00009183 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00009184 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00009185 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00009186 }
drh42cac6d2004-11-20 20:31:11 +00009187 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009188 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drhc0490572015-05-02 11:45:53 +00009189 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5eddca62001-06-30 21:53:53 +00009190
9191 /* Check the integrity of the freelist
9192 */
drh867db832014-09-26 02:41:05 +00009193 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009194 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009195 get4byte(&pBt->pPage1->aData[36]));
9196 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009197
9198 /* Check all the tables.
9199 */
danielk197789d40042008-11-17 14:20:56 +00009200 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00009201 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009202#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009203 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009204 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009205 }
9206#endif
drh867db832014-09-26 02:41:05 +00009207 sCheck.zPfx = "List of tree roots: ";
9208 checkTreePage(&sCheck, aRoot[i], NULL, NULL);
9209 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009210 }
9211
9212 /* Make sure every page in the file is referenced
9213 */
drh1dcdbc02007-01-27 02:24:54 +00009214 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009215#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009216 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009217 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009218 }
danielk1977afcdd022004-10-31 16:25:42 +00009219#else
9220 /* If the database supports auto-vacuum, make sure no tables contain
9221 ** references to pointer-map pages.
9222 */
dan1235bb12012-04-03 17:43:28 +00009223 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009224 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009225 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009226 }
dan1235bb12012-04-03 17:43:28 +00009227 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009228 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009229 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009230 }
9231#endif
drh5eddca62001-06-30 21:53:53 +00009232 }
9233
drh64022502009-01-09 14:11:04 +00009234 /* Make sure this analysis did not leave any unref() pages.
9235 ** This is an internal consistency check; an integrity check
9236 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00009237 */
drh64022502009-01-09 14:11:04 +00009238 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh867db832014-09-26 02:41:05 +00009239 checkAppendMsg(&sCheck,
drh5eddca62001-06-30 21:53:53 +00009240 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00009241 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00009242 );
drh5eddca62001-06-30 21:53:53 +00009243 }
9244
9245 /* Clean up and report errors.
9246 */
drhd677b3d2007-08-20 22:48:41 +00009247 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00009248 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009249 if( sCheck.mallocFailed ){
9250 sqlite3StrAccumReset(&sCheck.errMsg);
9251 *pnErr = sCheck.nErr+1;
9252 return 0;
9253 }
drh1dcdbc02007-01-27 02:24:54 +00009254 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009255 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
9256 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009257}
drhb7f91642004-10-31 02:22:47 +00009258#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009259
drh73509ee2003-04-06 20:44:45 +00009260/*
drhd4e0bb02012-05-27 01:19:04 +00009261** Return the full pathname of the underlying database file. Return
9262** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009263**
9264** The pager filename is invariant as long as the pager is
9265** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009266*/
danielk1977aef0bf62005-12-30 16:28:01 +00009267const char *sqlite3BtreeGetFilename(Btree *p){
9268 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009269 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009270}
9271
9272/*
danielk19775865e3d2004-06-14 06:03:57 +00009273** Return the pathname of the journal file for this database. The return
9274** value of this routine is the same regardless of whether the journal file
9275** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009276**
9277** The pager journal filename is invariant as long as the pager is
9278** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009279*/
danielk1977aef0bf62005-12-30 16:28:01 +00009280const char *sqlite3BtreeGetJournalname(Btree *p){
9281 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009282 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009283}
9284
danielk19771d850a72004-05-31 08:26:49 +00009285/*
9286** Return non-zero if a transaction is active.
9287*/
danielk1977aef0bf62005-12-30 16:28:01 +00009288int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009289 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009290 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009291}
9292
dana550f2d2010-08-02 10:47:05 +00009293#ifndef SQLITE_OMIT_WAL
9294/*
9295** Run a checkpoint on the Btree passed as the first argument.
9296**
9297** Return SQLITE_LOCKED if this or any other connection has an open
9298** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009299**
dancdc1f042010-11-18 12:11:05 +00009300** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009301*/
dancdc1f042010-11-18 12:11:05 +00009302int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009303 int rc = SQLITE_OK;
9304 if( p ){
9305 BtShared *pBt = p->pBt;
9306 sqlite3BtreeEnter(p);
9307 if( pBt->inTransaction!=TRANS_NONE ){
9308 rc = SQLITE_LOCKED;
9309 }else{
dancdc1f042010-11-18 12:11:05 +00009310 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009311 }
9312 sqlite3BtreeLeave(p);
9313 }
9314 return rc;
9315}
9316#endif
9317
danielk19771d850a72004-05-31 08:26:49 +00009318/*
danielk19772372c2b2006-06-27 16:34:56 +00009319** Return non-zero if a read (or write) transaction is active.
9320*/
9321int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009322 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009323 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009324 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009325}
9326
danielk197704103022009-02-03 16:51:24 +00009327int sqlite3BtreeIsInBackup(Btree *p){
9328 assert( p );
9329 assert( sqlite3_mutex_held(p->db->mutex) );
9330 return p->nBackup!=0;
9331}
9332
danielk19772372c2b2006-06-27 16:34:56 +00009333/*
danielk1977da184232006-01-05 11:34:32 +00009334** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009335** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009336** purposes (for example, to store a high-level schema associated with
9337** the shared-btree). The btree layer manages reference counting issues.
9338**
9339** The first time this is called on a shared-btree, nBytes bytes of memory
9340** are allocated, zeroed, and returned to the caller. For each subsequent
9341** call the nBytes parameter is ignored and a pointer to the same blob
9342** of memory returned.
9343**
danielk1977171bfed2008-06-23 09:50:50 +00009344** If the nBytes parameter is 0 and the blob of memory has not yet been
9345** allocated, a null pointer is returned. If the blob has already been
9346** allocated, it is returned as normal.
9347**
danielk1977da184232006-01-05 11:34:32 +00009348** Just before the shared-btree is closed, the function passed as the
9349** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009350** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009351** on the memory, the btree layer does that.
9352*/
9353void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9354 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009355 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009356 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009357 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009358 pBt->xFreeSchema = xFree;
9359 }
drh27641702007-08-22 02:56:42 +00009360 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009361 return pBt->pSchema;
9362}
9363
danielk1977c87d34d2006-01-06 13:00:28 +00009364/*
danielk1977404ca072009-03-16 13:19:36 +00009365** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9366** btree as the argument handle holds an exclusive lock on the
9367** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009368*/
9369int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009370 int rc;
drhe5fe6902007-12-07 18:55:28 +00009371 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009372 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009373 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9374 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009375 sqlite3BtreeLeave(p);
9376 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009377}
9378
drha154dcd2006-03-22 22:10:07 +00009379
9380#ifndef SQLITE_OMIT_SHARED_CACHE
9381/*
9382** Obtain a lock on the table whose root page is iTab. The
9383** lock is a write lock if isWritelock is true or a read lock
9384** if it is false.
9385*/
danielk1977c00da102006-01-07 13:21:04 +00009386int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009387 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009388 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009389 if( p->sharable ){
9390 u8 lockType = READ_LOCK + isWriteLock;
9391 assert( READ_LOCK+1==WRITE_LOCK );
9392 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009393
drh6a9ad3d2008-04-02 16:29:30 +00009394 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009395 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009396 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009397 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009398 }
9399 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009400 }
9401 return rc;
9402}
drha154dcd2006-03-22 22:10:07 +00009403#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009404
danielk1977b4e9af92007-05-01 17:49:49 +00009405#ifndef SQLITE_OMIT_INCRBLOB
9406/*
9407** Argument pCsr must be a cursor opened for writing on an
9408** INTKEY table currently pointing at a valid table entry.
9409** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009410**
9411** Only the data content may only be modified, it is not possible to
9412** change the length of the data stored. If this function is called with
9413** parameters that attempt to write past the end of the existing data,
9414** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009415*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009416int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009417 int rc;
drh1fee73e2007-08-29 04:00:57 +00009418 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009419 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009420 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009421
danielk1977c9000e62009-07-08 13:55:28 +00009422 rc = restoreCursorPosition(pCsr);
9423 if( rc!=SQLITE_OK ){
9424 return rc;
9425 }
danielk19773588ceb2008-06-10 17:30:26 +00009426 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9427 if( pCsr->eState!=CURSOR_VALID ){
9428 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009429 }
9430
dan227a1c42013-04-03 11:17:39 +00009431 /* Save the positions of all other cursors open on this table. This is
9432 ** required in case any of them are holding references to an xFetch
9433 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009434 **
drh3f387402014-09-24 01:23:00 +00009435 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009436 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9437 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009438 */
drh370c9f42013-04-03 20:04:04 +00009439 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9440 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009441
danielk1977c9000e62009-07-08 13:55:28 +00009442 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009443 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009444 ** (b) there is a read/write transaction open,
9445 ** (c) the connection holds a write-lock on the table (if required),
9446 ** (d) there are no conflicting read-locks, and
9447 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009448 */
drh036dbec2014-03-11 23:40:44 +00009449 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009450 return SQLITE_READONLY;
9451 }
drhc9166342012-01-05 23:32:06 +00009452 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9453 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009454 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9455 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009456 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009457
drhfb192682009-07-11 18:26:28 +00009458 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009459}
danielk19772dec9702007-05-02 16:48:37 +00009460
9461/*
dan5a500af2014-03-11 20:33:04 +00009462** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009463*/
dan5a500af2014-03-11 20:33:04 +00009464void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009465 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009466 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009467}
danielk1977b4e9af92007-05-01 17:49:49 +00009468#endif
dane04dc882010-04-20 18:53:15 +00009469
9470/*
9471** Set both the "read version" (single byte at byte offset 18) and
9472** "write version" (single byte at byte offset 19) fields in the database
9473** header to iVersion.
9474*/
9475int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9476 BtShared *pBt = pBtree->pBt;
9477 int rc; /* Return code */
9478
dane04dc882010-04-20 18:53:15 +00009479 assert( iVersion==1 || iVersion==2 );
9480
danb9780022010-04-21 18:37:57 +00009481 /* If setting the version fields to 1, do not automatically open the
9482 ** WAL connection, even if the version fields are currently set to 2.
9483 */
drhc9166342012-01-05 23:32:06 +00009484 pBt->btsFlags &= ~BTS_NO_WAL;
9485 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009486
9487 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009488 if( rc==SQLITE_OK ){
9489 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009490 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009491 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009492 if( rc==SQLITE_OK ){
9493 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9494 if( rc==SQLITE_OK ){
9495 aData[18] = (u8)iVersion;
9496 aData[19] = (u8)iVersion;
9497 }
9498 }
9499 }
dane04dc882010-04-20 18:53:15 +00009500 }
9501
drhc9166342012-01-05 23:32:06 +00009502 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009503 return rc;
9504}
dan428c2182012-08-06 18:50:11 +00009505
9506/*
drhe0997b32015-03-20 14:57:50 +00009507** set the mask of hint flags for cursor pCsr.
dan428c2182012-08-06 18:50:11 +00009508*/
9509void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
drhe0997b32015-03-20 14:57:50 +00009510 assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 );
dan428c2182012-08-06 18:50:11 +00009511 pCsr->hints = mask;
9512}
drh781597f2014-05-21 08:21:07 +00009513
drhe0997b32015-03-20 14:57:50 +00009514#ifdef SQLITE_DEBUG
9515/*
9516** Return true if the cursor has a hint specified. This routine is
9517** only used from within assert() statements
9518*/
9519int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9520 return (pCsr->hints & mask)!=0;
9521}
9522#endif
9523
drh781597f2014-05-21 08:21:07 +00009524/*
9525** Return true if the given Btree is read-only.
9526*/
9527int sqlite3BtreeIsReadonly(Btree *p){
9528 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9529}
drhdef68892014-11-04 12:11:23 +00009530
9531/*
9532** Return the size of the header added to each page by this module.
9533*/
drh37c057b2014-12-30 00:57:29 +00009534int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }