blob: 07d4bcfd8376024b581b00b4dffb678f58932da1 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
danielk19778f880a82009-07-13 09:41:45 +000012** $Id: btree.c,v 1.684 2009/07/13 09:41:45 danielk1977 Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000015** See the header comment on "btreeInt.h" for additional information.
16** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000017*/
drha3152892007-05-05 11:48:52 +000018#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000019
drh8c42ca92001-06-22 19:15:00 +000020/*
drha3152892007-05-05 11:48:52 +000021** The header string that appears at the beginning of every
22** SQLite database.
drh556b2a22005-06-14 16:04:05 +000023*/
drh556b2a22005-06-14 16:04:05 +000024static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000025
drh8c42ca92001-06-22 19:15:00 +000026/*
drha3152892007-05-05 11:48:52 +000027** Set this global variable to 1 to enable tracing using the TRACE
28** macro.
drh615ae552005-01-16 23:21:00 +000029*/
drhe8f52c52008-07-12 14:52:20 +000030#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000031int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000032# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
33#else
34# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000035#endif
drh615ae552005-01-16 23:21:00 +000036
drh86f8c192007-08-22 00:39:19 +000037
38
drhe53831d2007-08-17 01:14:38 +000039#ifndef SQLITE_OMIT_SHARED_CACHE
40/*
danielk1977502b4e02008-09-02 14:07:24 +000041** A list of BtShared objects that are eligible for participation
42** in shared cache. This variable has file scope during normal builds,
43** but the test harness needs to access it so we make it global for
44** test builds.
drh7555d8e2009-03-20 13:15:30 +000045**
46** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000047*/
48#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000049BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#else
drh78f82d12008-09-02 00:52:52 +000051static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000052#endif
drhe53831d2007-08-17 01:14:38 +000053#endif /* SQLITE_OMIT_SHARED_CACHE */
54
55#ifndef SQLITE_OMIT_SHARED_CACHE
56/*
57** Enable or disable the shared pager and schema features.
58**
59** This routine has no effect on existing database connections.
60** The shared cache setting effects only future calls to
61** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
62*/
63int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000064 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000065 return SQLITE_OK;
66}
67#endif
68
drhd677b3d2007-08-20 22:48:41 +000069
danielk1977aef0bf62005-12-30 16:28:01 +000070
71#ifdef SQLITE_OMIT_SHARED_CACHE
72 /*
drhc25eabe2009-02-24 18:57:31 +000073 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
74 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000075 ** manipulate entries in the BtShared.pLock linked list used to store
76 ** shared-cache table level locks. If the library is compiled with the
77 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000078 ** of each BtShared structure and so this locking is not necessary.
79 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000080 */
drhc25eabe2009-02-24 18:57:31 +000081 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
82 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
83 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000084 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000085 #define hasSharedCacheTableLock(a,b,c,d) 1
86 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000087#endif
danielk1977aef0bf62005-12-30 16:28:01 +000088
drhe53831d2007-08-17 01:14:38 +000089#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000090
91#ifdef SQLITE_DEBUG
92/*
93** This function is only used as part of an assert() statement. It checks
94** that connection p holds the required locks to read or write to the
95** b-tree with root page iRoot. If so, true is returned. Otherwise, false.
96** For example, when writing to a table b-tree with root-page iRoot via
97** Btree connection pBtree:
98**
99** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
100**
101** When writing to an index b-tree that resides in a sharable database, the
102** caller should have first obtained a lock specifying the root page of
103** the corresponding table b-tree. This makes things a bit more complicated,
104** as this module treats each b-tree as a separate structure. To determine
105** the table b-tree corresponding to the index b-tree being written, this
106** function has to search through the database schema.
107**
108** Instead of a lock on the b-tree rooted at page iRoot, the caller may
109** hold a write-lock on the schema table (root page 1). This is also
110** acceptable.
111*/
112static int hasSharedCacheTableLock(
113 Btree *pBtree, /* Handle that must hold lock */
114 Pgno iRoot, /* Root page of b-tree */
115 int isIndex, /* True if iRoot is the root of an index b-tree */
116 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
117){
118 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
119 Pgno iTab = 0;
120 BtLock *pLock;
121
122 /* If this b-tree database is not shareable, or if the client is reading
123 ** and has the read-uncommitted flag set, then no lock is required.
124 ** In these cases return true immediately. If the client is reading
125 ** or writing an index b-tree, but the schema is not loaded, then return
126 ** true also. In this case the lock is required, but it is too difficult
127 ** to check if the client actually holds it. This doesn't happen very
128 ** often. */
129 if( (pBtree->sharable==0)
130 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
131 || (isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0 ))
132 ){
133 return 1;
134 }
135
136 /* Figure out the root-page that the lock should be held on. For table
137 ** b-trees, this is just the root page of the b-tree being read or
138 ** written. For index b-trees, it is the root page of the associated
139 ** table. */
140 if( isIndex ){
141 HashElem *p;
142 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
143 Index *pIdx = (Index *)sqliteHashData(p);
144 if( pIdx->tnum==iRoot ){
145 iTab = pIdx->pTable->tnum;
146 }
147 }
148 }else{
149 iTab = iRoot;
150 }
151
152 /* Search for the required lock. Either a write-lock on root-page iTab, a
153 ** write-lock on the schema table, or (if the client is reading) a
154 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
155 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
156 if( pLock->pBtree==pBtree
157 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
158 && pLock->eLock>=eLockType
159 ){
160 return 1;
161 }
162 }
163
164 /* Failed to find the required lock. */
165 return 0;
166}
167
168/*
169** This function is also used as part of assert() statements only. It
170** returns true if there exist one or more cursors open on the table
171** with root page iRoot that do not belong to either connection pBtree
172** or some other connection that has the read-uncommitted flag set.
173**
174** For example, before writing to page iRoot:
175**
176** assert( !hasReadConflicts(pBtree, iRoot) );
177*/
178static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
179 BtCursor *p;
180 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
181 if( p->pgnoRoot==iRoot
182 && p->pBtree!=pBtree
183 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
184 ){
185 return 1;
186 }
187 }
188 return 0;
189}
190#endif /* #ifdef SQLITE_DEBUG */
191
danielk1977da184232006-01-05 11:34:32 +0000192/*
danielk1977aef0bf62005-12-30 16:28:01 +0000193** Query to see if btree handle p may obtain a lock of type eLock
194** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000195** SQLITE_OK if the lock may be obtained (by calling
196** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000197*/
drhc25eabe2009-02-24 18:57:31 +0000198static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000199 BtShared *pBt = p->pBt;
200 BtLock *pIter;
201
drh1fee73e2007-08-29 04:00:57 +0000202 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000203 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
204 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000205 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000206
danielk19775b413d72009-04-01 09:41:54 +0000207 /* If requesting a write-lock, then the Btree must have an open write
208 ** transaction on this file. And, obviously, for this to be so there
209 ** must be an open write transaction on the file itself.
210 */
211 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
212 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
213
danielk1977da184232006-01-05 11:34:32 +0000214 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000215 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000216 return SQLITE_OK;
217 }
218
danielk1977641b0f42007-12-21 04:47:25 +0000219 /* If some other connection is holding an exclusive lock, the
220 ** requested lock may not be obtained.
221 */
danielk1977404ca072009-03-16 13:19:36 +0000222 if( pBt->pWriter!=p && pBt->isExclusive ){
223 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
224 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000225 }
226
danielk1977e0d9e6f2009-07-03 16:25:06 +0000227 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
228 /* The condition (pIter->eLock!=eLock) in the following if(...)
229 ** statement is a simplification of:
230 **
231 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
232 **
233 ** since we know that if eLock==WRITE_LOCK, then no other connection
234 ** may hold a WRITE_LOCK on any table in this file (since there can
235 ** only be a single writer).
236 */
237 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
238 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
239 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
240 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
241 if( eLock==WRITE_LOCK ){
242 assert( p==pBt->pWriter );
243 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000244 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000245 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000246 }
247 }
248 return SQLITE_OK;
249}
drhe53831d2007-08-17 01:14:38 +0000250#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000251
drhe53831d2007-08-17 01:14:38 +0000252#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000253/*
254** Add a lock on the table with root-page iTable to the shared-btree used
255** by Btree handle p. Parameter eLock must be either READ_LOCK or
256** WRITE_LOCK.
257**
danielk19779d104862009-07-09 08:27:14 +0000258** This function assumes the following:
259**
260** (a) The specified b-tree connection handle is connected to a sharable
261** b-tree database (one with the BtShared.sharable) flag set, and
262**
263** (b) No other b-tree connection handle holds a lock that conflicts
264** with the requested lock (i.e. querySharedCacheTableLock() has
265** already been called and returned SQLITE_OK).
266**
267** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
268** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000269*/
drhc25eabe2009-02-24 18:57:31 +0000270static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000271 BtShared *pBt = p->pBt;
272 BtLock *pLock = 0;
273 BtLock *pIter;
274
drh1fee73e2007-08-29 04:00:57 +0000275 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000276 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
277 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000278
danielk1977e0d9e6f2009-07-03 16:25:06 +0000279 /* A connection with the read-uncommitted flag set will never try to
280 ** obtain a read-lock using this function. The only read-lock obtained
281 ** by a connection in read-uncommitted mode is on the sqlite_master
282 ** table, and that lock is obtained in BtreeBeginTrans(). */
283 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
284
danielk19779d104862009-07-09 08:27:14 +0000285 /* This function should only be called on a sharable b-tree after it
286 ** has been determined that no other b-tree holds a conflicting lock. */
287 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000288 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000289
290 /* First search the list for an existing lock on this table. */
291 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
292 if( pIter->iTable==iTable && pIter->pBtree==p ){
293 pLock = pIter;
294 break;
295 }
296 }
297
298 /* If the above search did not find a BtLock struct associating Btree p
299 ** with table iTable, allocate one and link it into the list.
300 */
301 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000302 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000303 if( !pLock ){
304 return SQLITE_NOMEM;
305 }
306 pLock->iTable = iTable;
307 pLock->pBtree = p;
308 pLock->pNext = pBt->pLock;
309 pBt->pLock = pLock;
310 }
311
312 /* Set the BtLock.eLock variable to the maximum of the current lock
313 ** and the requested lock. This means if a write-lock was already held
314 ** and a read-lock requested, we don't incorrectly downgrade the lock.
315 */
316 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000317 if( eLock>pLock->eLock ){
318 pLock->eLock = eLock;
319 }
danielk1977aef0bf62005-12-30 16:28:01 +0000320
321 return SQLITE_OK;
322}
drhe53831d2007-08-17 01:14:38 +0000323#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000324
drhe53831d2007-08-17 01:14:38 +0000325#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000326/*
drhc25eabe2009-02-24 18:57:31 +0000327** Release all the table locks (locks obtained via calls to
328** the setSharedCacheTableLock() procedure) held by Btree handle p.
danielk1977fa542f12009-04-02 18:28:08 +0000329**
330** This function assumes that handle p has an open read or write
331** transaction. If it does not, then the BtShared.isPending variable
332** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000333*/
drhc25eabe2009-02-24 18:57:31 +0000334static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000335 BtShared *pBt = p->pBt;
336 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000337
drh1fee73e2007-08-29 04:00:57 +0000338 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000339 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000340 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000341
danielk1977aef0bf62005-12-30 16:28:01 +0000342 while( *ppIter ){
343 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000344 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000345 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( pLock->pBtree==p ){
347 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000348 assert( pLock->iTable!=1 || pLock==&p->lock );
349 if( pLock->iTable!=1 ){
350 sqlite3_free(pLock);
351 }
danielk1977aef0bf62005-12-30 16:28:01 +0000352 }else{
353 ppIter = &pLock->pNext;
354 }
355 }
danielk1977641b0f42007-12-21 04:47:25 +0000356
danielk1977404ca072009-03-16 13:19:36 +0000357 assert( pBt->isPending==0 || pBt->pWriter );
358 if( pBt->pWriter==p ){
359 pBt->pWriter = 0;
360 pBt->isExclusive = 0;
361 pBt->isPending = 0;
362 }else if( pBt->nTransaction==2 ){
363 /* This function is called when connection p is concluding its
364 ** transaction. If there currently exists a writer, and p is not
365 ** that writer, then the number of locks held by connections other
366 ** than the writer must be about to drop to zero. In this case
367 ** set the isPending flag to 0.
368 **
369 ** If there is not currently a writer, then BtShared.isPending must
370 ** be zero already. So this next line is harmless in that case.
371 */
372 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000373 }
danielk1977aef0bf62005-12-30 16:28:01 +0000374}
danielk197794b30732009-07-02 17:21:57 +0000375
danielk1977e0d9e6f2009-07-03 16:25:06 +0000376/*
377** This function changes all write-locks held by connection p to read-locks.
378*/
danielk197794b30732009-07-02 17:21:57 +0000379static void downgradeAllSharedCacheTableLocks(Btree *p){
380 BtShared *pBt = p->pBt;
381 if( pBt->pWriter==p ){
382 BtLock *pLock;
383 pBt->pWriter = 0;
384 pBt->isExclusive = 0;
385 pBt->isPending = 0;
386 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
387 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
388 pLock->eLock = READ_LOCK;
389 }
390 }
391}
392
danielk1977aef0bf62005-12-30 16:28:01 +0000393#endif /* SQLITE_OMIT_SHARED_CACHE */
394
drh980b1a72006-08-16 16:42:48 +0000395static void releasePage(MemPage *pPage); /* Forward reference */
396
drh1fee73e2007-08-29 04:00:57 +0000397/*
398** Verify that the cursor holds a mutex on the BtShared
399*/
400#ifndef NDEBUG
401static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000402 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000403}
404#endif
405
406
danielk197792d4d7a2007-05-04 12:05:56 +0000407#ifndef SQLITE_OMIT_INCRBLOB
408/*
409** Invalidate the overflow page-list cache for cursor pCur, if any.
410*/
411static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000412 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000413 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000414 pCur->aOverflow = 0;
415}
416
417/*
418** Invalidate the overflow page-list cache for all cursors opened
419** on the shared btree structure pBt.
420*/
421static void invalidateAllOverflowCache(BtShared *pBt){
422 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000423 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000424 for(p=pBt->pCursor; p; p=p->pNext){
425 invalidateOverflowCache(p);
426 }
427}
danielk197796d48e92009-06-29 06:00:37 +0000428
429/*
430** This function is called before modifying the contents of a table
431** b-tree to invalidate any incrblob cursors that are open on the
432** row or one of the rows being modified. Argument pgnoRoot is the
433** root-page of the table b-tree.
434**
435** If argument isClearTable is true, then the entire contents of the
436** table is about to be deleted. In this case invalidate all incrblob
437** cursors open on any row within the table with root-page pgnoRoot.
438**
439** Otherwise, if argument isClearTable is false, then the row with
440** rowid iRow is being replaced or deleted. In this case invalidate
441** only those incrblob cursors open on this specific row.
442*/
443static void invalidateIncrblobCursors(
444 Btree *pBtree, /* The database file to check */
445 Pgno pgnoRoot, /* Look for read cursors on this btree */
446 i64 iRow, /* The rowid that might be changing */
447 int isClearTable /* True if all rows are being deleted */
448){
449 BtCursor *p;
450 BtShared *pBt = pBtree->pBt;
451 assert( sqlite3BtreeHoldsMutex(pBtree) );
452 for(p=pBt->pCursor; p; p=p->pNext){
453 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
454 p->eState = CURSOR_INVALID;
455 }
456 }
457}
458
danielk197792d4d7a2007-05-04 12:05:56 +0000459#else
460 #define invalidateOverflowCache(x)
461 #define invalidateAllOverflowCache(x)
danielk197796d48e92009-06-29 06:00:37 +0000462 #define invalidateIncrblobCursors(w,x,y,z)
danielk197792d4d7a2007-05-04 12:05:56 +0000463#endif
464
drh980b1a72006-08-16 16:42:48 +0000465/*
danielk1977bea2a942009-01-20 17:06:27 +0000466** Set bit pgno of the BtShared.pHasContent bitvec. This is called
467** when a page that previously contained data becomes a free-list leaf
468** page.
469**
470** The BtShared.pHasContent bitvec exists to work around an obscure
471** bug caused by the interaction of two useful IO optimizations surrounding
472** free-list leaf pages:
473**
474** 1) When all data is deleted from a page and the page becomes
475** a free-list leaf page, the page is not written to the database
476** (as free-list leaf pages contain no meaningful data). Sometimes
477** such a page is not even journalled (as it will not be modified,
478** why bother journalling it?).
479**
480** 2) When a free-list leaf page is reused, its content is not read
481** from the database or written to the journal file (why should it
482** be, if it is not at all meaningful?).
483**
484** By themselves, these optimizations work fine and provide a handy
485** performance boost to bulk delete or insert operations. However, if
486** a page is moved to the free-list and then reused within the same
487** transaction, a problem comes up. If the page is not journalled when
488** it is moved to the free-list and it is also not journalled when it
489** is extracted from the free-list and reused, then the original data
490** may be lost. In the event of a rollback, it may not be possible
491** to restore the database to its original configuration.
492**
493** The solution is the BtShared.pHasContent bitvec. Whenever a page is
494** moved to become a free-list leaf page, the corresponding bit is
495** set in the bitvec. Whenever a leaf page is extracted from the free-list,
496** optimization 2 above is ommitted if the corresponding bit is already
497** set in BtShared.pHasContent. The contents of the bitvec are cleared
498** at the end of every transaction.
499*/
500static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
501 int rc = SQLITE_OK;
502 if( !pBt->pHasContent ){
503 int nPage;
504 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
505 if( rc==SQLITE_OK ){
506 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
507 if( !pBt->pHasContent ){
508 rc = SQLITE_NOMEM;
509 }
510 }
511 }
512 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
513 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
514 }
515 return rc;
516}
517
518/*
519** Query the BtShared.pHasContent vector.
520**
521** This function is called when a free-list leaf page is removed from the
522** free-list for reuse. It returns false if it is safe to retrieve the
523** page from the pager layer with the 'no-content' flag set. True otherwise.
524*/
525static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
526 Bitvec *p = pBt->pHasContent;
527 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
528}
529
530/*
531** Clear (destroy) the BtShared.pHasContent bitvec. This should be
532** invoked at the conclusion of each write-transaction.
533*/
534static void btreeClearHasContent(BtShared *pBt){
535 sqlite3BitvecDestroy(pBt->pHasContent);
536 pBt->pHasContent = 0;
537}
538
539/*
drh980b1a72006-08-16 16:42:48 +0000540** Save the current cursor position in the variables BtCursor.nKey
541** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
542*/
543static int saveCursorPosition(BtCursor *pCur){
544 int rc;
545
546 assert( CURSOR_VALID==pCur->eState );
547 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000548 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000549
550 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
551
552 /* If this is an intKey table, then the above call to BtreeKeySize()
553 ** stores the integer key in pCur->nKey. In this case this value is
554 ** all that is required. Otherwise, if pCur is not open on an intKey
555 ** table, then malloc space for and store the pCur->nKey bytes of key
556 ** data.
557 */
danielk197771d5d2c2008-09-29 11:49:47 +0000558 if( rc==SQLITE_OK && 0==pCur->apPage[0]->intKey){
drhf49661a2008-12-10 16:45:50 +0000559 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000560 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000561 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000562 if( rc==SQLITE_OK ){
563 pCur->pKey = pKey;
564 }else{
drh17435752007-08-16 04:30:38 +0000565 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000566 }
567 }else{
568 rc = SQLITE_NOMEM;
569 }
570 }
danielk197771d5d2c2008-09-29 11:49:47 +0000571 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000572
573 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000574 int i;
575 for(i=0; i<=pCur->iPage; i++){
576 releasePage(pCur->apPage[i]);
577 pCur->apPage[i] = 0;
578 }
579 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000580 pCur->eState = CURSOR_REQUIRESEEK;
581 }
582
danielk197792d4d7a2007-05-04 12:05:56 +0000583 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000584 return rc;
585}
586
587/*
588** Save the positions of all cursors except pExcept open on the table
589** with root-page iRoot. Usually, this is called just before cursor
590** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
591*/
592static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
593 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000594 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000595 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000596 for(p=pBt->pCursor; p; p=p->pNext){
597 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
598 p->eState==CURSOR_VALID ){
599 int rc = saveCursorPosition(p);
600 if( SQLITE_OK!=rc ){
601 return rc;
602 }
603 }
604 }
605 return SQLITE_OK;
606}
607
608/*
drhbf700f32007-03-31 02:36:44 +0000609** Clear the current cursor position.
610*/
danielk1977be51a652008-10-08 17:58:48 +0000611void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000612 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000613 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000614 pCur->pKey = 0;
615 pCur->eState = CURSOR_INVALID;
616}
617
618/*
danielk19773509a652009-07-06 18:56:13 +0000619** In this version of BtreeMoveto, pKey is a packed index record
620** such as is generated by the OP_MakeRecord opcode. Unpack the
621** record and then call BtreeMovetoUnpacked() to do the work.
622*/
623static int btreeMoveto(
624 BtCursor *pCur, /* Cursor open on the btree to be searched */
625 const void *pKey, /* Packed key if the btree is an index */
626 i64 nKey, /* Integer key for tables. Size of pKey for indices */
627 int bias, /* Bias search to the high end */
628 int *pRes /* Write search results here */
629){
630 int rc; /* Status code */
631 UnpackedRecord *pIdxKey; /* Unpacked index key */
632 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
633
634 if( pKey ){
635 assert( nKey==(i64)(int)nKey );
636 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
637 aSpace, sizeof(aSpace));
638 if( pIdxKey==0 ) return SQLITE_NOMEM;
639 }else{
640 pIdxKey = 0;
641 }
642 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
643 if( pKey ){
644 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
645 }
646 return rc;
647}
648
649/*
drh980b1a72006-08-16 16:42:48 +0000650** Restore the cursor to the position it was in (or as close to as possible)
651** when saveCursorPosition() was called. Note that this call deletes the
652** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000653** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000654** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000655*/
danielk197730548662009-07-09 05:07:37 +0000656static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000657 int rc;
drh1fee73e2007-08-29 04:00:57 +0000658 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000659 assert( pCur->eState>=CURSOR_REQUIRESEEK );
660 if( pCur->eState==CURSOR_FAULT ){
661 return pCur->skip;
662 }
drh980b1a72006-08-16 16:42:48 +0000663 pCur->eState = CURSOR_INVALID;
danielk19773509a652009-07-06 18:56:13 +0000664 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
drh980b1a72006-08-16 16:42:48 +0000665 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000666 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000667 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000668 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000669 }
670 return rc;
671}
672
drha3460582008-07-11 21:02:53 +0000673#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000674 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000675 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000676 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000677
drha3460582008-07-11 21:02:53 +0000678/*
679** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000680** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000681** at is deleted out from under them.
682**
683** This routine returns an error code if something goes wrong. The
684** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
685*/
686int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
687 int rc;
688
689 rc = restoreCursorPosition(pCur);
690 if( rc ){
691 *pHasMoved = 1;
692 return rc;
693 }
694 if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
695 *pHasMoved = 1;
696 }else{
697 *pHasMoved = 0;
698 }
699 return SQLITE_OK;
700}
701
danielk1977599fcba2004-11-08 07:13:13 +0000702#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000703/*
drha3152892007-05-05 11:48:52 +0000704** Given a page number of a regular database page, return the page
705** number for the pointer-map page that contains the entry for the
706** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000707*/
danielk1977266664d2006-02-10 08:24:21 +0000708static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000709 int nPagesPerMapPage;
710 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000711 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000712 nPagesPerMapPage = (pBt->usableSize/5)+1;
713 iPtrMap = (pgno-2)/nPagesPerMapPage;
714 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000715 if( ret==PENDING_BYTE_PAGE(pBt) ){
716 ret++;
717 }
718 return ret;
719}
danielk1977a19df672004-11-03 11:37:07 +0000720
danielk1977afcdd022004-10-31 16:25:42 +0000721/*
danielk1977afcdd022004-10-31 16:25:42 +0000722** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000723**
724** This routine updates the pointer map entry for page number 'key'
725** so that it maps to type 'eType' and parent page number 'pgno'.
726** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000727*/
danielk1977aef0bf62005-12-30 16:28:01 +0000728static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000729 DbPage *pDbPage; /* The pointer map page */
730 u8 *pPtrmap; /* The pointer map data */
731 Pgno iPtrmap; /* The pointer map page number */
732 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000733 int rc;
734
drh1fee73e2007-08-29 04:00:57 +0000735 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000736 /* The master-journal page number must never be used as a pointer map page */
737 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
738
danielk1977ac11ee62005-01-15 12:45:51 +0000739 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000740 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000741 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000742 }
danielk1977266664d2006-02-10 08:24:21 +0000743 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000744 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000745 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000746 return rc;
747 }
danielk19778c666b12008-07-18 09:34:57 +0000748 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000749 if( offset<0 ){
drh4925a552009-07-07 11:39:58 +0000750 rc = SQLITE_CORRUPT_BKPT;
751 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000752 }
danielk19773b8a05f2007-03-19 17:44:26 +0000753 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000754
drh615ae552005-01-16 23:21:00 +0000755 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
756 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000757 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000758 if( rc==SQLITE_OK ){
759 pPtrmap[offset] = eType;
760 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000761 }
danielk1977afcdd022004-10-31 16:25:42 +0000762 }
763
drh4925a552009-07-07 11:39:58 +0000764ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000765 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000766 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000767}
768
769/*
770** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000771**
772** This routine retrieves the pointer map entry for page 'key', writing
773** the type and parent page number to *pEType and *pPgno respectively.
774** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000775*/
danielk1977aef0bf62005-12-30 16:28:01 +0000776static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000777 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000778 int iPtrmap; /* Pointer map page index */
779 u8 *pPtrmap; /* Pointer map page data */
780 int offset; /* Offset of entry in pointer map */
781 int rc;
782
drh1fee73e2007-08-29 04:00:57 +0000783 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000784
danielk1977266664d2006-02-10 08:24:21 +0000785 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000786 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000787 if( rc!=0 ){
788 return rc;
789 }
danielk19773b8a05f2007-03-19 17:44:26 +0000790 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000791
danielk19778c666b12008-07-18 09:34:57 +0000792 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000793 assert( pEType!=0 );
794 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000795 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000796
danielk19773b8a05f2007-03-19 17:44:26 +0000797 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000798 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000799 return SQLITE_OK;
800}
801
danielk197785d90ca2008-07-19 14:25:15 +0000802#else /* if defined SQLITE_OMIT_AUTOVACUUM */
803 #define ptrmapPut(w,x,y,z) SQLITE_OK
804 #define ptrmapGet(w,x,y,z) SQLITE_OK
danielk1977325ccfa2009-07-02 05:23:25 +0000805 #define ptrmapPutOvflPtr(x, y) SQLITE_OK
danielk197785d90ca2008-07-19 14:25:15 +0000806#endif
danielk1977afcdd022004-10-31 16:25:42 +0000807
drh0d316a42002-08-11 20:10:47 +0000808/*
drh271efa52004-05-30 19:19:05 +0000809** Given a btree page and a cell index (0 means the first cell on
810** the page, 1 means the second cell, and so forth) return a pointer
811** to the cell content.
812**
813** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000814*/
drh1688c862008-07-18 02:44:17 +0000815#define findCell(P,I) \
816 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000817
818/*
drh93a960a2008-07-10 00:32:42 +0000819** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000820** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000821*/
822static u8 *findOverflowCell(MemPage *pPage, int iCell){
823 int i;
drh1fee73e2007-08-29 04:00:57 +0000824 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000825 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000826 int k;
827 struct _OvflCell *pOvfl;
828 pOvfl = &pPage->aOvfl[i];
829 k = pOvfl->idx;
830 if( k<=iCell ){
831 if( k==iCell ){
832 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000833 }
834 iCell--;
835 }
836 }
danielk19771cc5ed82007-05-16 17:28:43 +0000837 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000838}
839
840/*
841** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000842** are two versions of this function. btreeParseCell() takes a
843** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000844** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000845**
846** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000847** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000848*/
danielk197730548662009-07-09 05:07:37 +0000849static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000850 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000851 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000852 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000853){
drhf49661a2008-12-10 16:45:50 +0000854 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000855 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000856
drh1fee73e2007-08-29 04:00:57 +0000857 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000858
drh43605152004-05-29 21:46:49 +0000859 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000860 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000861 n = pPage->childPtrSize;
862 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000863 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000864 if( pPage->hasData ){
865 n += getVarint32(&pCell[n], nPayload);
866 }else{
867 nPayload = 0;
868 }
drh1bd10f82008-12-10 21:19:56 +0000869 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000870 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000871 }else{
drh79df1f42008-07-18 00:57:33 +0000872 pInfo->nData = 0;
873 n += getVarint32(&pCell[n], nPayload);
874 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000875 }
drh72365832007-03-06 15:53:44 +0000876 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000877 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000878 testcase( nPayload==pPage->maxLocal );
879 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000880 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000881 /* This is the (easy) common case where the entire payload fits
882 ** on the local page. No overflow is required.
883 */
884 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000885 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000886 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000887 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000888 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000889 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000890 }
drh1bd10f82008-12-10 21:19:56 +0000891 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000892 }else{
drh271efa52004-05-30 19:19:05 +0000893 /* If the payload will not fit completely on the local page, we have
894 ** to decide how much to store locally and how much to spill onto
895 ** overflow pages. The strategy is to minimize the amount of unused
896 ** space on overflow pages while keeping the amount of local storage
897 ** in between minLocal and maxLocal.
898 **
899 ** Warning: changing the way overflow payload is distributed in any
900 ** way will result in an incompatible file format.
901 */
902 int minLocal; /* Minimum amount of payload held locally */
903 int maxLocal; /* Maximum amount of payload held locally */
904 int surplus; /* Overflow payload available for local storage */
905
906 minLocal = pPage->minLocal;
907 maxLocal = pPage->maxLocal;
908 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000909 testcase( surplus==maxLocal );
910 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000911 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000912 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000913 }else{
drhf49661a2008-12-10 16:45:50 +0000914 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000915 }
drhf49661a2008-12-10 16:45:50 +0000916 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000917 pInfo->nSize = pInfo->iOverflow + 4;
918 }
drh3aac2dd2004-04-26 14:10:20 +0000919}
danielk19771cc5ed82007-05-16 17:28:43 +0000920#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000921 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
922static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000923 MemPage *pPage, /* Page containing the cell */
924 int iCell, /* The cell index. First cell is 0 */
925 CellInfo *pInfo /* Fill in this structure */
926){
danielk19771cc5ed82007-05-16 17:28:43 +0000927 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000928}
drh3aac2dd2004-04-26 14:10:20 +0000929
930/*
drh43605152004-05-29 21:46:49 +0000931** Compute the total number of bytes that a Cell needs in the cell
932** data area of the btree-page. The return number includes the cell
933** data header and the local payload, but not any overflow page or
934** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000935*/
danielk1977ae5558b2009-04-29 11:31:47 +0000936static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
937 u8 *pIter = &pCell[pPage->childPtrSize];
938 u32 nSize;
939
940#ifdef SQLITE_DEBUG
941 /* The value returned by this function should always be the same as
942 ** the (CellInfo.nSize) value found by doing a full parse of the
943 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
944 ** this function verifies that this invariant is not violated. */
945 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000946 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000947#endif
948
949 if( pPage->intKey ){
950 u8 *pEnd;
951 if( pPage->hasData ){
952 pIter += getVarint32(pIter, nSize);
953 }else{
954 nSize = 0;
955 }
956
957 /* pIter now points at the 64-bit integer key value, a variable length
958 ** integer. The following block moves pIter to point at the first byte
959 ** past the end of the key value. */
960 pEnd = &pIter[9];
961 while( (*pIter++)&0x80 && pIter<pEnd );
962 }else{
963 pIter += getVarint32(pIter, nSize);
964 }
965
drh0a45c272009-07-08 01:49:11 +0000966 testcase( nSize==pPage->maxLocal );
967 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000968 if( nSize>pPage->maxLocal ){
969 int minLocal = pPage->minLocal;
970 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000971 testcase( nSize==pPage->maxLocal );
972 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000973 if( nSize>pPage->maxLocal ){
974 nSize = minLocal;
975 }
976 nSize += 4;
977 }
shane75ac1de2009-06-09 18:58:52 +0000978 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +0000979
980 /* The minimum size of any cell is 4 bytes. */
981 if( nSize<4 ){
982 nSize = 4;
983 }
984
985 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +0000986 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +0000987}
danielk1977bc6ada42004-06-30 08:20:16 +0000988#ifndef NDEBUG
drha9121e42008-02-19 14:59:35 +0000989static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +0000990 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +0000991}
danielk1977bc6ada42004-06-30 08:20:16 +0000992#endif
drh3b7511c2001-05-26 13:15:44 +0000993
danielk197779a40da2005-01-16 08:00:01 +0000994#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000995/*
danielk197726836652005-01-17 01:33:13 +0000996** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +0000997** to an overflow page, insert an entry into the pointer-map
998** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +0000999*/
danielk197726836652005-01-17 01:33:13 +00001000static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
drhfa67c3c2008-07-11 02:21:40 +00001001 CellInfo info;
1002 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001003 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001004 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001005 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001006 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
1007 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +00001008 }
danielk197779a40da2005-01-16 08:00:01 +00001009 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +00001010}
danielk197779a40da2005-01-16 08:00:01 +00001011#endif
1012
danielk1977ac11ee62005-01-15 12:45:51 +00001013
drhda200cc2004-05-09 11:51:38 +00001014/*
drh72f82862001-05-24 21:06:34 +00001015** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001016** end of the page and all free space is collected into one
1017** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001018** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001019*/
shane0af3f892008-11-12 04:55:34 +00001020static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001021 int i; /* Loop counter */
1022 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001023 int hdr; /* Offset to the page header */
1024 int size; /* Size of a cell */
1025 int usableSize; /* Number of usable bytes on a page */
1026 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001027 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001028 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001029 unsigned char *data; /* The page data */
1030 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001031 int iCellFirst; /* First allowable cell index */
1032 int iCellLast; /* Last possible cell index */
1033
drh2af926b2001-05-15 00:39:25 +00001034
danielk19773b8a05f2007-03-19 17:44:26 +00001035 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001036 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001037 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001038 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001039 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001040 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001041 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001042 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001043 cellOffset = pPage->cellOffset;
1044 nCell = pPage->nCell;
1045 assert( nCell==get2byte(&data[hdr+3]) );
1046 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001047 cbrk = get2byte(&data[hdr+5]);
1048 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1049 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001050 iCellFirst = cellOffset + 2*nCell;
1051 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001052 for(i=0; i<nCell; i++){
1053 u8 *pAddr; /* The i-th cell pointer */
1054 pAddr = &data[cellOffset + i*2];
1055 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001056 testcase( pc==iCellFirst );
1057 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001058#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001059 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001060 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1061 */
1062 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001063 return SQLITE_CORRUPT_BKPT;
1064 }
drh17146622009-07-07 17:38:38 +00001065#endif
1066 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001067 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001068 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001069#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1070 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001071 return SQLITE_CORRUPT_BKPT;
1072 }
drh17146622009-07-07 17:38:38 +00001073#else
1074 if( cbrk<iCellFirst || pc+size>usableSize ){
1075 return SQLITE_CORRUPT_BKPT;
1076 }
1077#endif
drh7157e1d2009-07-09 13:25:32 +00001078 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001079 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001080 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001081 memcpy(&data[cbrk], &temp[pc], size);
1082 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001083 }
drh17146622009-07-07 17:38:38 +00001084 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001085 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001086 data[hdr+1] = 0;
1087 data[hdr+2] = 0;
1088 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001089 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001090 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001091 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001092 return SQLITE_CORRUPT_BKPT;
1093 }
shane0af3f892008-11-12 04:55:34 +00001094 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001095}
1096
drha059ad02001-04-17 20:09:11 +00001097/*
danielk19776011a752009-04-01 16:25:32 +00001098** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001099** as the first argument. Write into *pIdx the index into pPage->aData[]
1100** of the first byte of allocated space. Return either SQLITE_OK or
1101** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001102**
drh0a45c272009-07-08 01:49:11 +00001103** The caller guarantees that there is sufficient space to make the
1104** allocation. This routine might need to defragment in order to bring
1105** all the space together, however. This routine will avoid using
1106** the first two bytes past the cell pointer area since presumably this
1107** allocation is being made in order to insert a new cell, so we will
1108** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001109*/
drh0a45c272009-07-08 01:49:11 +00001110static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001111 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1112 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1113 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001114 int top; /* First byte of cell content area */
1115 int gap; /* First byte of gap between cell pointers and cell content */
1116 int rc; /* Integer return code */
drh43605152004-05-29 21:46:49 +00001117
danielk19773b8a05f2007-03-19 17:44:26 +00001118 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001119 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001120 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001121 assert( nByte>=0 ); /* Minimum cell size is 4 */
1122 assert( pPage->nFree>=nByte );
1123 assert( pPage->nOverflow==0 );
drh43605152004-05-29 21:46:49 +00001124
1125 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001126 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1127 gap = pPage->cellOffset + 2*pPage->nCell;
1128 top = get2byte(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001129 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001130 testcase( gap+2==top );
1131 testcase( gap+1==top );
1132 testcase( gap==top );
1133
danielk19776011a752009-04-01 16:25:32 +00001134 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001135 /* Always defragment highly fragmented pages */
1136 rc = defragmentPage(pPage);
1137 if( rc ) return rc;
1138 top = get2byte(&data[hdr+5]);
1139 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001140 /* Search the freelist looking for a free slot big enough to satisfy
1141 ** the request. The allocation is made from the first free slot in
1142 ** the list that is large enough to accomadate it.
1143 */
1144 int pc, addr;
1145 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
1146 int size = get2byte(&data[pc+2]); /* Size of free slot */
drh43605152004-05-29 21:46:49 +00001147 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001148 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001149 testcase( x==4 );
1150 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001151 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001152 /* Remove the slot from the free-list. Update the number of
1153 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001154 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001155 data[hdr+7] = (u8)(nFrag + x);
drh43605152004-05-29 21:46:49 +00001156 }else{
danielk1977fad91942009-04-29 17:49:59 +00001157 /* The slot remains on the free-list. Reduce its size to account
1158 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001159 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001160 }
drh0a45c272009-07-08 01:49:11 +00001161 *pIdx = pc + x;
1162 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001163 }
drh9e572e62004-04-23 23:43:10 +00001164 }
1165 }
drh43605152004-05-29 21:46:49 +00001166
drh0a45c272009-07-08 01:49:11 +00001167 /* Check to make sure there is enough space in the gap to satisfy
1168 ** the allocation. If not, defragment.
1169 */
1170 testcase( gap+2+nByte==top );
1171 if( gap+2+nByte>top ){
1172 rc = defragmentPage(pPage);
1173 if( rc ) return rc;
1174 top = get2byte(&data[hdr+5]);
1175 assert( gap+nByte<=top );
1176 }
1177
1178
drh43605152004-05-29 21:46:49 +00001179 /* Allocate memory from the gap in between the cell pointer array
1180 ** and the cell content area.
1181 */
drh0a45c272009-07-08 01:49:11 +00001182 top -= nByte;
drh43605152004-05-29 21:46:49 +00001183 put2byte(&data[hdr+5], top);
drh0a45c272009-07-08 01:49:11 +00001184 *pIdx = top;
1185 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001186}
1187
1188/*
drh9e572e62004-04-23 23:43:10 +00001189** Return a section of the pPage->aData to the freelist.
1190** The first byte of the new free block is pPage->aDisk[start]
1191** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001192**
1193** Most of the effort here is involved in coalesing adjacent
1194** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001195*/
shanedcc50b72008-11-13 18:29:50 +00001196static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001197 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001198 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001199 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001200
drh9e572e62004-04-23 23:43:10 +00001201 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001202 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001203 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +00001204 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001205 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001206 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001207
drhfcce93f2006-02-22 03:08:32 +00001208#ifdef SQLITE_SECURE_DELETE
1209 /* Overwrite deleted information with zeros when the SECURE_DELETE
1210 ** option is enabled at compile-time */
1211 memset(&data[start], 0, size);
1212#endif
1213
drh0a45c272009-07-08 01:49:11 +00001214 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001215 ** even though the freeblock list was checked by btreeInitPage(),
1216 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001217 ** freeblocks that overlapped cells. Nor does it detect when the
1218 ** cell content area exceeds the value in the page header. If these
1219 ** situations arise, then subsequent insert operations might corrupt
1220 ** the freelist. So we do need to check for corruption while scanning
1221 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001222 */
drh43605152004-05-29 21:46:49 +00001223 hdr = pPage->hdrOffset;
1224 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001225 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001226 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001227 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001228 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001229 return SQLITE_CORRUPT_BKPT;
1230 }
drh3aac2dd2004-04-26 14:10:20 +00001231 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001232 }
drh0a45c272009-07-08 01:49:11 +00001233 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001234 return SQLITE_CORRUPT_BKPT;
1235 }
drh3aac2dd2004-04-26 14:10:20 +00001236 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001237 put2byte(&data[addr], start);
1238 put2byte(&data[start], pbegin);
1239 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001240 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001241
1242 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001243 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001244 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001245 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001246 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001247 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001248 pnext = get2byte(&data[pbegin]);
1249 psize = get2byte(&data[pbegin+2]);
1250 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1251 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001252 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001253 return SQLITE_CORRUPT_BKPT;
1254 }
drh0a45c272009-07-08 01:49:11 +00001255 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001256 x = get2byte(&data[pnext]);
1257 put2byte(&data[pbegin], x);
1258 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1259 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001260 }else{
drh3aac2dd2004-04-26 14:10:20 +00001261 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001262 }
1263 }
drh7e3b0a02001-04-28 16:52:40 +00001264
drh43605152004-05-29 21:46:49 +00001265 /* If the cell content area begins with a freeblock, remove it. */
1266 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1267 int top;
1268 pbegin = get2byte(&data[hdr+1]);
1269 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001270 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1271 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001272 }
drhc5053fb2008-11-27 02:22:10 +00001273 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001274 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001275}
1276
1277/*
drh271efa52004-05-30 19:19:05 +00001278** Decode the flags byte (the first byte of the header) for a page
1279** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001280**
1281** Only the following combinations are supported. Anything different
1282** indicates a corrupt database files:
1283**
1284** PTF_ZERODATA
1285** PTF_ZERODATA | PTF_LEAF
1286** PTF_LEAFDATA | PTF_INTKEY
1287** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001288*/
drh44845222008-07-17 18:39:57 +00001289static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001290 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001291
1292 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001293 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001294 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001295 flagByte &= ~PTF_LEAF;
1296 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001297 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001298 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1299 pPage->intKey = 1;
1300 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001301 pPage->maxLocal = pBt->maxLeaf;
1302 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001303 }else if( flagByte==PTF_ZERODATA ){
1304 pPage->intKey = 0;
1305 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001306 pPage->maxLocal = pBt->maxLocal;
1307 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001308 }else{
1309 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001310 }
drh44845222008-07-17 18:39:57 +00001311 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001312}
1313
1314/*
drh7e3b0a02001-04-28 16:52:40 +00001315** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001316**
1317** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001318** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001319** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1320** guarantee that the page is well-formed. It only shows that
1321** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001322*/
danielk197730548662009-07-09 05:07:37 +00001323static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001324
danielk197771d5d2c2008-09-29 11:49:47 +00001325 assert( pPage->pBt!=0 );
1326 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001327 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001328 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1329 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001330
1331 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001332 u16 pc; /* Address of a freeblock within pPage->aData[] */
1333 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001334 u8 *data; /* Equal to pPage->aData */
1335 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001336 u16 usableSize; /* Amount of usable space on each page */
1337 u16 cellOffset; /* Offset from start of page to first cell pointer */
1338 u16 nFree; /* Number of unused bytes on the page */
1339 u16 top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001340 int iCellFirst; /* First allowable cell or freeblock offset */
1341 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001342
1343 pBt = pPage->pBt;
1344
danielk1977eaa06f62008-09-18 17:34:44 +00001345 hdr = pPage->hdrOffset;
1346 data = pPage->aData;
1347 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1348 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1349 pPage->maskPage = pBt->pageSize - 1;
1350 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001351 usableSize = pBt->usableSize;
1352 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1353 top = get2byte(&data[hdr+5]);
1354 pPage->nCell = get2byte(&data[hdr+3]);
1355 if( pPage->nCell>MX_CELL(pBt) ){
1356 /* To many cells for a single page. The page must be corrupt */
1357 return SQLITE_CORRUPT_BKPT;
1358 }
drhb908d762009-07-08 16:54:40 +00001359 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001360
1361 /* A malformed database page might cause use to read past the end
1362 ** of page when parsing a cell.
1363 **
1364 ** The following block of code checks early to see if a cell extends
1365 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1366 ** returned if it does.
1367 */
drh0a45c272009-07-08 01:49:11 +00001368 iCellFirst = cellOffset + 2*pPage->nCell;
1369 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001370#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001371 {
drh69e931e2009-06-03 21:04:35 +00001372 int i; /* Index into the cell pointer array */
1373 int sz; /* Size of a cell */
1374
drh69e931e2009-06-03 21:04:35 +00001375 if( !pPage->leaf ) iCellLast--;
1376 for(i=0; i<pPage->nCell; i++){
1377 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001378 testcase( pc==iCellFirst );
1379 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001380 if( pc<iCellFirst || pc>iCellLast ){
1381 return SQLITE_CORRUPT_BKPT;
1382 }
1383 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001384 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001385 if( pc+sz>usableSize ){
1386 return SQLITE_CORRUPT_BKPT;
1387 }
1388 }
drh0a45c272009-07-08 01:49:11 +00001389 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001390 }
1391#endif
1392
danielk1977eaa06f62008-09-18 17:34:44 +00001393 /* Compute the total free space on the page */
1394 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001395 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001396 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001397 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001398 if( pc<iCellFirst || pc>iCellLast ){
danielk1977eaa06f62008-09-18 17:34:44 +00001399 /* Free block is off the page */
1400 return SQLITE_CORRUPT_BKPT;
1401 }
1402 next = get2byte(&data[pc]);
1403 size = get2byte(&data[pc+2]);
1404 if( next>0 && next<=pc+size+3 ){
drh0a45c272009-07-08 01:49:11 +00001405 /* Free blocks must be in ascending order */
danielk1977eaa06f62008-09-18 17:34:44 +00001406 return SQLITE_CORRUPT_BKPT;
1407 }
shane85095702009-06-15 16:27:08 +00001408 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001409 pc = next;
1410 }
danielk197793c829c2009-06-03 17:26:17 +00001411
1412 /* At this point, nFree contains the sum of the offset to the start
1413 ** of the cell-content area plus the number of free bytes within
1414 ** the cell-content area. If this is greater than the usable-size
1415 ** of the page, then the page must be corrupted. This check also
1416 ** serves to verify that the offset to the start of the cell-content
1417 ** area, according to the page header, lies within the page.
1418 */
1419 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001420 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001421 }
drh0a45c272009-07-08 01:49:11 +00001422 pPage->nFree = nFree - iCellFirst;
danielk197771d5d2c2008-09-29 11:49:47 +00001423 pPage->isInit = 1;
1424 }
drh9e572e62004-04-23 23:43:10 +00001425 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001426}
1427
1428/*
drh8b2f49b2001-06-08 00:21:52 +00001429** Set up a raw page so that it looks like a database page holding
1430** no entries.
drhbd03cae2001-06-02 02:40:57 +00001431*/
drh9e572e62004-04-23 23:43:10 +00001432static void zeroPage(MemPage *pPage, int flags){
1433 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001434 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001435 u8 hdr = pPage->hdrOffset;
1436 u16 first;
drh9e572e62004-04-23 23:43:10 +00001437
danielk19773b8a05f2007-03-19 17:44:26 +00001438 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001439 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1440 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001441 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001442 assert( sqlite3_mutex_held(pBt->mutex) );
drh1af4a6e2008-07-18 03:32:51 +00001443 /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
drh1bd10f82008-12-10 21:19:56 +00001444 data[hdr] = (char)flags;
1445 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001446 memset(&data[hdr+1], 0, 4);
1447 data[hdr+7] = 0;
1448 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001449 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001450 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001451 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001452 pPage->cellOffset = first;
1453 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001454 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1455 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001456 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001457 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001458}
1459
drh897a8202008-09-18 01:08:15 +00001460
1461/*
1462** Convert a DbPage obtained from the pager into a MemPage used by
1463** the btree layer.
1464*/
1465static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1466 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1467 pPage->aData = sqlite3PagerGetData(pDbPage);
1468 pPage->pDbPage = pDbPage;
1469 pPage->pBt = pBt;
1470 pPage->pgno = pgno;
1471 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1472 return pPage;
1473}
1474
drhbd03cae2001-06-02 02:40:57 +00001475/*
drh3aac2dd2004-04-26 14:10:20 +00001476** Get a page from the pager. Initialize the MemPage.pBt and
1477** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001478**
1479** If the noContent flag is set, it means that we do not care about
1480** the content of the page at this time. So do not go to the disk
1481** to fetch the content. Just fill in the content with zeros for now.
1482** If in the future we call sqlite3PagerWrite() on this page, that
1483** means we have started to be concerned about content and the disk
1484** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001485*/
danielk197730548662009-07-09 05:07:37 +00001486static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001487 BtShared *pBt, /* The btree */
1488 Pgno pgno, /* Number of the page to fetch */
1489 MemPage **ppPage, /* Return the page in this parameter */
1490 int noContent /* Do not load page content if true */
1491){
drh3aac2dd2004-04-26 14:10:20 +00001492 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001493 DbPage *pDbPage;
1494
drh1fee73e2007-08-29 04:00:57 +00001495 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001496 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001497 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001498 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001499 return SQLITE_OK;
1500}
1501
1502/*
danielk1977bea2a942009-01-20 17:06:27 +00001503** Retrieve a page from the pager cache. If the requested page is not
1504** already in the pager cache return NULL. Initialize the MemPage.pBt and
1505** MemPage.aData elements if needed.
1506*/
1507static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1508 DbPage *pDbPage;
1509 assert( sqlite3_mutex_held(pBt->mutex) );
1510 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1511 if( pDbPage ){
1512 return btreePageFromDbPage(pDbPage, pgno, pBt);
1513 }
1514 return 0;
1515}
1516
1517/*
danielk197789d40042008-11-17 14:20:56 +00001518** Return the size of the database file in pages. If there is any kind of
1519** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001520*/
danielk197789d40042008-11-17 14:20:56 +00001521static Pgno pagerPagecount(BtShared *pBt){
1522 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001523 int rc;
danielk197789d40042008-11-17 14:20:56 +00001524 assert( pBt->pPage1 );
1525 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1526 assert( rc==SQLITE_OK || nPage==-1 );
1527 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001528}
1529
1530/*
drhde647132004-05-07 17:57:49 +00001531** Get a page from the pager and initialize it. This routine
1532** is just a convenience wrapper around separate calls to
danielk197730548662009-07-09 05:07:37 +00001533** btreeGetPage() and btreeInitPage().
drhde647132004-05-07 17:57:49 +00001534*/
1535static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001536 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001537 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001538 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001539){
1540 int rc;
drh897a8202008-09-18 01:08:15 +00001541 MemPage *pPage;
1542
drh1fee73e2007-08-29 04:00:57 +00001543 assert( sqlite3_mutex_held(pBt->mutex) );
drh897a8202008-09-18 01:08:15 +00001544 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001545 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001546 }
danielk19779f580ad2008-09-10 14:45:57 +00001547
drh897a8202008-09-18 01:08:15 +00001548 /* It is often the case that the page we want is already in cache.
1549 ** If so, get it directly. This saves us from having to call
1550 ** pagerPagecount() to make sure pgno is within limits, which results
1551 ** in a measureable performance improvements.
1552 */
danielk1977bea2a942009-01-20 17:06:27 +00001553 *ppPage = pPage = btreePageLookup(pBt, pgno);
1554 if( pPage ){
drh897a8202008-09-18 01:08:15 +00001555 /* Page is already in cache */
drh897a8202008-09-18 01:08:15 +00001556 rc = SQLITE_OK;
1557 }else{
1558 /* Page not in cache. Acquire it. */
drhf3aed592009-07-08 18:12:49 +00001559 testcase( pgno==pagerPagecount(pBt) );
danielk197789d40042008-11-17 14:20:56 +00001560 if( pgno>pagerPagecount(pBt) ){
drh897a8202008-09-18 01:08:15 +00001561 return SQLITE_CORRUPT_BKPT;
1562 }
danielk197730548662009-07-09 05:07:37 +00001563 rc = btreeGetPage(pBt, pgno, ppPage, 0);
drh897a8202008-09-18 01:08:15 +00001564 if( rc ) return rc;
1565 pPage = *ppPage;
1566 }
danielk197771d5d2c2008-09-29 11:49:47 +00001567 if( !pPage->isInit ){
danielk197730548662009-07-09 05:07:37 +00001568 rc = btreeInitPage(pPage);
drh897a8202008-09-18 01:08:15 +00001569 }
1570 if( rc!=SQLITE_OK ){
1571 releasePage(pPage);
1572 *ppPage = 0;
1573 }
drhde647132004-05-07 17:57:49 +00001574 return rc;
1575}
1576
1577/*
drh3aac2dd2004-04-26 14:10:20 +00001578** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001579** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001580*/
drh4b70f112004-05-02 21:12:19 +00001581static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001582 if( pPage ){
drh30df0092008-12-23 15:58:06 +00001583 assert( pPage->nOverflow==0 || sqlite3PagerPageRefcount(pPage->pDbPage)>1 );
drh3aac2dd2004-04-26 14:10:20 +00001584 assert( pPage->aData );
1585 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001586 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1587 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001588 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001589 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001590 }
1591}
1592
1593/*
drha6abd042004-06-09 17:37:22 +00001594** During a rollback, when the pager reloads information into the cache
1595** so that the cache is restored to its original state at the start of
1596** the transaction, for each page restored this routine is called.
1597**
1598** This routine needs to reset the extra data section at the end of the
1599** page to agree with the restored data.
1600*/
danielk1977eaa06f62008-09-18 17:34:44 +00001601static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001602 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001603 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001604 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001605 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001606 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001607 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001608 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001609 /* pPage might not be a btree page; it might be an overflow page
1610 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001611 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001612 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001613 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001614 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001615 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001616 }
drha6abd042004-06-09 17:37:22 +00001617 }
1618}
1619
1620/*
drhe5fe6902007-12-07 18:55:28 +00001621** Invoke the busy handler for a btree.
1622*/
danielk19771ceedd32008-11-19 10:22:33 +00001623static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001624 BtShared *pBt = (BtShared*)pArg;
1625 assert( pBt->db );
1626 assert( sqlite3_mutex_held(pBt->db->mutex) );
1627 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1628}
1629
1630/*
drhad3e0102004-09-03 23:32:18 +00001631** Open a database file.
1632**
drh382c0242001-10-06 16:33:02 +00001633** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001634** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001635** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001636** If zFilename is ":memory:" then an in-memory database is created
1637** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001638**
1639** If the database is already opened in the same database connection
1640** and we are in shared cache mode, then the open will fail with an
1641** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1642** objects in the same database connection since doing so will lead
1643** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001644*/
drh23e11ca2004-05-04 17:27:28 +00001645int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001646 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001647 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001648 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001649 int flags, /* Options */
1650 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001651){
drh7555d8e2009-03-20 13:15:30 +00001652 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1653 BtShared *pBt = 0; /* Shared part of btree structure */
1654 Btree *p; /* Handle to return */
1655 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1656 int rc = SQLITE_OK; /* Result code from this function */
1657 u8 nReserve; /* Byte of unused space on each page */
1658 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001659
1660 /* Set the variable isMemdb to true for an in-memory database, or
1661 ** false for a file-based database. This symbol is only required if
1662 ** either of the shared-data or autovacuum features are compiled
1663 ** into the library.
1664 */
1665#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1666 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001667 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001668 #else
drh980b1a72006-08-16 16:42:48 +00001669 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001670 #endif
1671#endif
1672
drhe5fe6902007-12-07 18:55:28 +00001673 assert( db!=0 );
1674 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001675
drhe5fe6902007-12-07 18:55:28 +00001676 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001677 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001678 if( !p ){
1679 return SQLITE_NOMEM;
1680 }
1681 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001682 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001683#ifndef SQLITE_OMIT_SHARED_CACHE
1684 p->lock.pBtree = p;
1685 p->lock.iTable = 1;
1686#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001687
drh198bf392006-01-06 21:52:49 +00001688#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001689 /*
1690 ** If this Btree is a candidate for shared cache, try to find an
1691 ** existing BtShared object that we can share with
1692 */
danielk197720c6cc22009-04-01 18:03:00 +00001693 if( isMemdb==0 && zFilename && zFilename[0] ){
danielk1977502b4e02008-09-02 14:07:24 +00001694 if( sqlite3GlobalConfig.sharedCacheEnabled ){
danielk1977adfb9b02007-09-17 07:02:56 +00001695 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001696 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001697 sqlite3_mutex *mutexShared;
1698 p->sharable = 1;
drh34004ce2008-07-11 16:15:17 +00001699 db->flags |= SQLITE_SharedCache;
drhff0587c2007-08-29 17:43:19 +00001700 if( !zFullPathname ){
1701 sqlite3_free(p);
1702 return SQLITE_NOMEM;
1703 }
danielk1977adfb9b02007-09-17 07:02:56 +00001704 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001705 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1706 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001707 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001708 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001709 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001710 assert( pBt->nRef>0 );
1711 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1712 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001713 int iDb;
1714 for(iDb=db->nDb-1; iDb>=0; iDb--){
1715 Btree *pExisting = db->aDb[iDb].pBt;
1716 if( pExisting && pExisting->pBt==pBt ){
1717 sqlite3_mutex_leave(mutexShared);
1718 sqlite3_mutex_leave(mutexOpen);
1719 sqlite3_free(zFullPathname);
1720 sqlite3_free(p);
1721 return SQLITE_CONSTRAINT;
1722 }
1723 }
drhff0587c2007-08-29 17:43:19 +00001724 p->pBt = pBt;
1725 pBt->nRef++;
1726 break;
1727 }
1728 }
1729 sqlite3_mutex_leave(mutexShared);
1730 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001731 }
drhff0587c2007-08-29 17:43:19 +00001732#ifdef SQLITE_DEBUG
1733 else{
1734 /* In debug mode, we mark all persistent databases as sharable
1735 ** even when they are not. This exercises the locking code and
1736 ** gives more opportunity for asserts(sqlite3_mutex_held())
1737 ** statements to find locking problems.
1738 */
1739 p->sharable = 1;
1740 }
1741#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001742 }
1743#endif
drha059ad02001-04-17 20:09:11 +00001744 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001745 /*
1746 ** The following asserts make sure that structures used by the btree are
1747 ** the right size. This is to guard against size changes that result
1748 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001749 */
drhe53831d2007-08-17 01:14:38 +00001750 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1751 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1752 assert( sizeof(u32)==4 );
1753 assert( sizeof(u16)==2 );
1754 assert( sizeof(Pgno)==4 );
1755
1756 pBt = sqlite3MallocZero( sizeof(*pBt) );
1757 if( pBt==0 ){
1758 rc = SQLITE_NOMEM;
1759 goto btree_open_out;
1760 }
danielk197771d5d2c2008-09-29 11:49:47 +00001761 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh33f4e022007-09-03 15:19:34 +00001762 EXTRA_SIZE, flags, vfsFlags);
drhe53831d2007-08-17 01:14:38 +00001763 if( rc==SQLITE_OK ){
1764 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1765 }
1766 if( rc!=SQLITE_OK ){
1767 goto btree_open_out;
1768 }
danielk19772a50ff02009-04-10 09:47:06 +00001769 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001770 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001771 p->pBt = pBt;
1772
drhe53831d2007-08-17 01:14:38 +00001773 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
1774 pBt->pCursor = 0;
1775 pBt->pPage1 = 0;
1776 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1777 pBt->pageSize = get2byte(&zDbHeader[16]);
1778 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1779 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001780 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001781#ifndef SQLITE_OMIT_AUTOVACUUM
1782 /* If the magic name ":memory:" will create an in-memory database, then
1783 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1784 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1785 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1786 ** regular file-name. In this case the auto-vacuum applies as per normal.
1787 */
1788 if( zFilename && !isMemdb ){
1789 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1790 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1791 }
1792#endif
1793 nReserve = 0;
1794 }else{
1795 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001796 pBt->pageSizeFixed = 1;
1797#ifndef SQLITE_OMIT_AUTOVACUUM
1798 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1799 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1800#endif
1801 }
drhfa9601a2009-06-18 17:22:39 +00001802 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001803 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001804 pBt->usableSize = pBt->pageSize - nReserve;
1805 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001806
1807#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1808 /* Add the new BtShared object to the linked list sharable BtShareds.
1809 */
1810 if( p->sharable ){
1811 sqlite3_mutex *mutexShared;
1812 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001813 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001814 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001815 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001816 if( pBt->mutex==0 ){
1817 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001818 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001819 goto btree_open_out;
1820 }
drhff0587c2007-08-29 17:43:19 +00001821 }
drhe53831d2007-08-17 01:14:38 +00001822 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001823 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1824 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001825 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001826 }
drheee46cf2004-11-06 00:02:48 +00001827#endif
drh90f5ecb2004-07-22 01:19:35 +00001828 }
danielk1977aef0bf62005-12-30 16:28:01 +00001829
drhcfed7bc2006-03-13 14:28:05 +00001830#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001831 /* If the new Btree uses a sharable pBtShared, then link the new
1832 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001833 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001834 */
drhe53831d2007-08-17 01:14:38 +00001835 if( p->sharable ){
1836 int i;
1837 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001838 for(i=0; i<db->nDb; i++){
1839 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001840 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1841 if( p->pBt<pSib->pBt ){
1842 p->pNext = pSib;
1843 p->pPrev = 0;
1844 pSib->pPrev = p;
1845 }else{
drhabddb0c2007-08-20 13:14:28 +00001846 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001847 pSib = pSib->pNext;
1848 }
1849 p->pNext = pSib->pNext;
1850 p->pPrev = pSib;
1851 if( p->pNext ){
1852 p->pNext->pPrev = p;
1853 }
1854 pSib->pNext = p;
1855 }
1856 break;
1857 }
1858 }
danielk1977aef0bf62005-12-30 16:28:01 +00001859 }
danielk1977aef0bf62005-12-30 16:28:01 +00001860#endif
1861 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001862
1863btree_open_out:
1864 if( rc!=SQLITE_OK ){
1865 if( pBt && pBt->pPager ){
1866 sqlite3PagerClose(pBt->pPager);
1867 }
drh17435752007-08-16 04:30:38 +00001868 sqlite3_free(pBt);
1869 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001870 *ppBtree = 0;
1871 }
drh7555d8e2009-03-20 13:15:30 +00001872 if( mutexOpen ){
1873 assert( sqlite3_mutex_held(mutexOpen) );
1874 sqlite3_mutex_leave(mutexOpen);
1875 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001876 return rc;
drha059ad02001-04-17 20:09:11 +00001877}
1878
1879/*
drhe53831d2007-08-17 01:14:38 +00001880** Decrement the BtShared.nRef counter. When it reaches zero,
1881** remove the BtShared structure from the sharing list. Return
1882** true if the BtShared.nRef counter reaches zero and return
1883** false if it is still positive.
1884*/
1885static int removeFromSharingList(BtShared *pBt){
1886#ifndef SQLITE_OMIT_SHARED_CACHE
1887 sqlite3_mutex *pMaster;
1888 BtShared *pList;
1889 int removed = 0;
1890
drhd677b3d2007-08-20 22:48:41 +00001891 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001892 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001893 sqlite3_mutex_enter(pMaster);
1894 pBt->nRef--;
1895 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001896 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1897 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001898 }else{
drh78f82d12008-09-02 00:52:52 +00001899 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001900 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001901 pList=pList->pNext;
1902 }
drh34004ce2008-07-11 16:15:17 +00001903 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001904 pList->pNext = pBt->pNext;
1905 }
1906 }
drh3285db22007-09-03 22:00:39 +00001907 if( SQLITE_THREADSAFE ){
1908 sqlite3_mutex_free(pBt->mutex);
1909 }
drhe53831d2007-08-17 01:14:38 +00001910 removed = 1;
1911 }
1912 sqlite3_mutex_leave(pMaster);
1913 return removed;
1914#else
1915 return 1;
1916#endif
1917}
1918
1919/*
drhf7141992008-06-19 00:16:08 +00001920** Make sure pBt->pTmpSpace points to an allocation of
1921** MX_CELL_SIZE(pBt) bytes.
1922*/
1923static void allocateTempSpace(BtShared *pBt){
1924 if( !pBt->pTmpSpace ){
1925 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1926 }
1927}
1928
1929/*
1930** Free the pBt->pTmpSpace allocation
1931*/
1932static void freeTempSpace(BtShared *pBt){
1933 sqlite3PageFree( pBt->pTmpSpace);
1934 pBt->pTmpSpace = 0;
1935}
1936
1937/*
drha059ad02001-04-17 20:09:11 +00001938** Close an open database and invalidate all cursors.
1939*/
danielk1977aef0bf62005-12-30 16:28:01 +00001940int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001941 BtShared *pBt = p->pBt;
1942 BtCursor *pCur;
1943
danielk1977aef0bf62005-12-30 16:28:01 +00001944 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001945 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001946 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001947 pCur = pBt->pCursor;
1948 while( pCur ){
1949 BtCursor *pTmp = pCur;
1950 pCur = pCur->pNext;
1951 if( pTmp->pBtree==p ){
1952 sqlite3BtreeCloseCursor(pTmp);
1953 }
drha059ad02001-04-17 20:09:11 +00001954 }
danielk1977aef0bf62005-12-30 16:28:01 +00001955
danielk19778d34dfd2006-01-24 16:37:57 +00001956 /* Rollback any active transaction and free the handle structure.
1957 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1958 ** this handle.
1959 */
danielk1977b597f742006-01-15 11:39:18 +00001960 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001961 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001962
danielk1977aef0bf62005-12-30 16:28:01 +00001963 /* If there are still other outstanding references to the shared-btree
1964 ** structure, return now. The remainder of this procedure cleans
1965 ** up the shared-btree.
1966 */
drhe53831d2007-08-17 01:14:38 +00001967 assert( p->wantToLock==0 && p->locked==0 );
1968 if( !p->sharable || removeFromSharingList(pBt) ){
1969 /* The pBt is no longer on the sharing list, so we can access
1970 ** it without having to hold the mutex.
1971 **
1972 ** Clean out and delete the BtShared object.
1973 */
1974 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001975 sqlite3PagerClose(pBt->pPager);
1976 if( pBt->xFreeSchema && pBt->pSchema ){
1977 pBt->xFreeSchema(pBt->pSchema);
1978 }
1979 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00001980 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00001981 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001982 }
1983
drhe53831d2007-08-17 01:14:38 +00001984#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00001985 assert( p->wantToLock==0 );
1986 assert( p->locked==0 );
1987 if( p->pPrev ) p->pPrev->pNext = p->pNext;
1988 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00001989#endif
1990
drhe53831d2007-08-17 01:14:38 +00001991 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00001992 return SQLITE_OK;
1993}
1994
1995/*
drhda47d772002-12-02 04:25:19 +00001996** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001997**
1998** The maximum number of cache pages is set to the absolute
1999** value of mxPage. If mxPage is negative, the pager will
2000** operate asynchronously - it will not stop to do fsync()s
2001** to insure data is written to the disk surface before
2002** continuing. Transactions still work if synchronous is off,
2003** and the database cannot be corrupted if this program
2004** crashes. But if the operating system crashes or there is
2005** an abrupt power failure when synchronous is off, the database
2006** could be left in an inconsistent and unrecoverable state.
2007** Synchronous is on by default so database corruption is not
2008** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002009*/
danielk1977aef0bf62005-12-30 16:28:01 +00002010int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2011 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002012 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002013 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002014 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002015 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002016 return SQLITE_OK;
2017}
2018
2019/*
drh973b6e32003-02-12 14:09:42 +00002020** Change the way data is synced to disk in order to increase or decrease
2021** how well the database resists damage due to OS crashes and power
2022** failures. Level 1 is the same as asynchronous (no syncs() occur and
2023** there is a high probability of damage) Level 2 is the default. There
2024** is a very low but non-zero probability of damage. Level 3 reduces the
2025** probability of damage to near zero but with a write performance reduction.
2026*/
danielk197793758c82005-01-21 08:13:14 +00002027#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002028int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002029 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002030 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002031 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002032 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002033 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002034 return SQLITE_OK;
2035}
danielk197793758c82005-01-21 08:13:14 +00002036#endif
drh973b6e32003-02-12 14:09:42 +00002037
drh2c8997b2005-08-27 16:36:48 +00002038/*
2039** Return TRUE if the given btree is set to safety level 1. In other
2040** words, return TRUE if no sync() occurs on the disk files.
2041*/
danielk1977aef0bf62005-12-30 16:28:01 +00002042int sqlite3BtreeSyncDisabled(Btree *p){
2043 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002044 int rc;
drhe5fe6902007-12-07 18:55:28 +00002045 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002046 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002047 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002048 rc = sqlite3PagerNosync(pBt->pPager);
2049 sqlite3BtreeLeave(p);
2050 return rc;
drh2c8997b2005-08-27 16:36:48 +00002051}
2052
danielk1977576ec6b2005-01-21 11:55:25 +00002053#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002054/*
drh90f5ecb2004-07-22 01:19:35 +00002055** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002056** Or, if the page size has already been fixed, return SQLITE_READONLY
2057** without changing anything.
drh06f50212004-11-02 14:24:33 +00002058**
2059** The page size must be a power of 2 between 512 and 65536. If the page
2060** size supplied does not meet this constraint then the page size is not
2061** changed.
2062**
2063** Page sizes are constrained to be a power of two so that the region
2064** of the database file used for locking (beginning at PENDING_BYTE,
2065** the first byte past the 1GB boundary, 0x40000000) needs to occur
2066** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002067**
2068** If parameter nReserve is less than zero, then the number of reserved
2069** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002070**
2071** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2072** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002073*/
drhce4869f2009-04-02 20:16:58 +00002074int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002075 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002076 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002077 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002078 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002079 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002080 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002081 return SQLITE_READONLY;
2082 }
2083 if( nReserve<0 ){
2084 nReserve = pBt->pageSize - pBt->usableSize;
2085 }
drhf49661a2008-12-10 16:45:50 +00002086 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002087 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2088 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002089 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002090 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00002091 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002092 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002093 }
drhfa9601a2009-06-18 17:22:39 +00002094 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002095 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002096 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002097 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002098 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002099}
2100
2101/*
2102** Return the currently defined page size
2103*/
danielk1977aef0bf62005-12-30 16:28:01 +00002104int sqlite3BtreeGetPageSize(Btree *p){
2105 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002106}
drh7f751222009-03-17 22:33:00 +00002107
2108/*
2109** Return the number of bytes of space at the end of every page that
2110** are intentually left unused. This is the "reserved" space that is
2111** sometimes used by extensions.
2112*/
danielk1977aef0bf62005-12-30 16:28:01 +00002113int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002114 int n;
2115 sqlite3BtreeEnter(p);
2116 n = p->pBt->pageSize - p->pBt->usableSize;
2117 sqlite3BtreeLeave(p);
2118 return n;
drh2011d5f2004-07-22 02:40:37 +00002119}
drhf8e632b2007-05-08 14:51:36 +00002120
2121/*
2122** Set the maximum page count for a database if mxPage is positive.
2123** No changes are made if mxPage is 0 or negative.
2124** Regardless of the value of mxPage, return the maximum page count.
2125*/
2126int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002127 int n;
2128 sqlite3BtreeEnter(p);
2129 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2130 sqlite3BtreeLeave(p);
2131 return n;
drhf8e632b2007-05-08 14:51:36 +00002132}
danielk1977576ec6b2005-01-21 11:55:25 +00002133#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002134
2135/*
danielk1977951af802004-11-05 15:45:09 +00002136** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2137** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2138** is disabled. The default value for the auto-vacuum property is
2139** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2140*/
danielk1977aef0bf62005-12-30 16:28:01 +00002141int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002142#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002143 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002144#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002145 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002146 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002147 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002148
2149 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002150 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002151 rc = SQLITE_READONLY;
2152 }else{
drh076d4662009-02-18 20:31:18 +00002153 pBt->autoVacuum = av ?1:0;
2154 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002155 }
drhd677b3d2007-08-20 22:48:41 +00002156 sqlite3BtreeLeave(p);
2157 return rc;
danielk1977951af802004-11-05 15:45:09 +00002158#endif
2159}
2160
2161/*
2162** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2163** enabled 1 is returned. Otherwise 0.
2164*/
danielk1977aef0bf62005-12-30 16:28:01 +00002165int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002166#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002167 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002168#else
drhd677b3d2007-08-20 22:48:41 +00002169 int rc;
2170 sqlite3BtreeEnter(p);
2171 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002172 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2173 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2174 BTREE_AUTOVACUUM_INCR
2175 );
drhd677b3d2007-08-20 22:48:41 +00002176 sqlite3BtreeLeave(p);
2177 return rc;
danielk1977951af802004-11-05 15:45:09 +00002178#endif
2179}
2180
2181
2182/*
drha34b6762004-05-07 13:30:42 +00002183** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002184** also acquire a readlock on that file.
2185**
2186** SQLITE_OK is returned on success. If the file is not a
2187** well-formed database file, then SQLITE_CORRUPT is returned.
2188** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002189** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002190*/
danielk1977aef0bf62005-12-30 16:28:01 +00002191static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00002192 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002193 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00002194 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002195
drh1fee73e2007-08-29 04:00:57 +00002196 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002197 assert( pBt->pPage1==0 );
danielk197730548662009-07-09 05:07:37 +00002198 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002199 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002200
2201 /* Do some checking to help insure the file we opened really is
2202 ** a valid database file.
2203 */
danielk1977ad0132d2008-06-07 08:58:22 +00002204 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2205 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00002206 goto page1_init_failed;
2207 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002208 int pageSize;
2209 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002210 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002211 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002212 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002213 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002214 }
drh309169a2007-04-24 17:27:51 +00002215 if( page1[18]>1 ){
2216 pBt->readOnly = 1;
2217 }
2218 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00002219 goto page1_init_failed;
2220 }
drhe5ae5732008-06-15 02:51:47 +00002221
2222 /* The maximum embedded fraction must be exactly 25%. And the minimum
2223 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2224 ** The original design allowed these amounts to vary, but as of
2225 ** version 3.6.0, we require them to be fixed.
2226 */
2227 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2228 goto page1_init_failed;
2229 }
drh07d183d2005-05-01 22:52:42 +00002230 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002231 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2232 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2233 ){
drh07d183d2005-05-01 22:52:42 +00002234 goto page1_init_failed;
2235 }
2236 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002237 usableSize = pageSize - page1[20];
2238 if( pageSize!=pBt->pageSize ){
2239 /* After reading the first page of the database assuming a page size
2240 ** of BtShared.pageSize, we have discovered that the page-size is
2241 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2242 ** zero and return SQLITE_OK. The caller will call this function
2243 ** again with the correct page-size.
2244 */
2245 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002246 pBt->usableSize = (u16)usableSize;
2247 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002248 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002249 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2250 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002251 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002252 }
drhb33e1b92009-06-18 11:29:20 +00002253 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002254 goto page1_init_failed;
2255 }
drh1bd10f82008-12-10 21:19:56 +00002256 pBt->pageSize = (u16)pageSize;
2257 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002258#ifndef SQLITE_OMIT_AUTOVACUUM
2259 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002260 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002261#endif
drh306dc212001-05-21 13:45:10 +00002262 }
drhb6f41482004-05-14 01:58:11 +00002263
2264 /* maxLocal is the maximum amount of payload to store locally for
2265 ** a cell. Make sure it is small enough so that at least minFanout
2266 ** cells can will fit on one page. We assume a 10-byte page header.
2267 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002268 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002269 ** 4-byte child pointer
2270 ** 9-byte nKey value
2271 ** 4-byte nData value
2272 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002273 ** So a cell consists of a 2-byte poiner, a header which is as much as
2274 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2275 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002276 */
drhe5ae5732008-06-15 02:51:47 +00002277 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2278 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002279 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002280 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002281 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002282 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002283 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002284
drh72f82862001-05-24 21:06:34 +00002285page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002286 releasePage(pPage1);
2287 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002288 return rc;
drh306dc212001-05-21 13:45:10 +00002289}
2290
2291/*
drhb8ca3072001-12-05 00:21:20 +00002292** If there are no outstanding cursors and we are not in the middle
2293** of a transaction but there is a read lock on the database, then
2294** this routine unrefs the first page of the database file which
2295** has the effect of releasing the read lock.
2296**
drhb8ca3072001-12-05 00:21:20 +00002297** If there is a transaction in progress, this routine is a no-op.
2298*/
danielk1977aef0bf62005-12-30 16:28:01 +00002299static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002300 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002301 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2302 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002303 assert( pBt->pPage1->aData );
2304 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2305 assert( pBt->pPage1->aData );
2306 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002307 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002308 }
2309}
2310
2311/*
drh9e572e62004-04-23 23:43:10 +00002312** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00002313** file.
drh8b2f49b2001-06-08 00:21:52 +00002314*/
danielk1977aef0bf62005-12-30 16:28:01 +00002315static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002316 MemPage *pP1;
2317 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002318 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002319 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002320
drh1fee73e2007-08-29 04:00:57 +00002321 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002322 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2323 if( rc!=SQLITE_OK || nPage>0 ){
2324 return rc;
2325 }
drh3aac2dd2004-04-26 14:10:20 +00002326 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002327 assert( pP1!=0 );
2328 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002329 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002330 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002331 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2332 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002333 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002334 data[18] = 1;
2335 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002336 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2337 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002338 data[21] = 64;
2339 data[22] = 32;
2340 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002341 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002342 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002343 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002344#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002345 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002346 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002347 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002348 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002349#endif
drh8b2f49b2001-06-08 00:21:52 +00002350 return SQLITE_OK;
2351}
2352
2353/*
danielk1977ee5741e2004-05-31 10:01:34 +00002354** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002355** is started if the second argument is nonzero, otherwise a read-
2356** transaction. If the second argument is 2 or more and exclusive
2357** transaction is started, meaning that no other process is allowed
2358** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002359** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002360** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002361**
danielk1977ee5741e2004-05-31 10:01:34 +00002362** A write-transaction must be started before attempting any
2363** changes to the database. None of the following routines
2364** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002365**
drh23e11ca2004-05-04 17:27:28 +00002366** sqlite3BtreeCreateTable()
2367** sqlite3BtreeCreateIndex()
2368** sqlite3BtreeClearTable()
2369** sqlite3BtreeDropTable()
2370** sqlite3BtreeInsert()
2371** sqlite3BtreeDelete()
2372** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002373**
drhb8ef32c2005-03-14 02:01:49 +00002374** If an initial attempt to acquire the lock fails because of lock contention
2375** and the database was previously unlocked, then invoke the busy handler
2376** if there is one. But if there was previously a read-lock, do not
2377** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2378** returned when there is already a read-lock in order to avoid a deadlock.
2379**
2380** Suppose there are two processes A and B. A has a read lock and B has
2381** a reserved lock. B tries to promote to exclusive but is blocked because
2382** of A's read lock. A tries to promote to reserved but is blocked by B.
2383** One or the other of the two processes must give way or there can be
2384** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2385** when A already has a read lock, we encourage A to give up and let B
2386** proceed.
drha059ad02001-04-17 20:09:11 +00002387*/
danielk1977aef0bf62005-12-30 16:28:01 +00002388int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002389 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002390 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002391 int rc = SQLITE_OK;
2392
drhd677b3d2007-08-20 22:48:41 +00002393 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002394 btreeIntegrity(p);
2395
danielk1977ee5741e2004-05-31 10:01:34 +00002396 /* If the btree is already in a write-transaction, or it
2397 ** is already in a read-transaction and a read-transaction
2398 ** is requested, this is a no-op.
2399 */
danielk1977aef0bf62005-12-30 16:28:01 +00002400 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002401 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002402 }
drhb8ef32c2005-03-14 02:01:49 +00002403
2404 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002405 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002406 rc = SQLITE_READONLY;
2407 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002408 }
2409
danielk1977404ca072009-03-16 13:19:36 +00002410#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002411 /* If another database handle has already opened a write transaction
2412 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002413 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002414 */
danielk1977404ca072009-03-16 13:19:36 +00002415 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2416 pBlock = pBt->pWriter->db;
2417 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002418 BtLock *pIter;
2419 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2420 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002421 pBlock = pIter->pBtree->db;
2422 break;
danielk1977641b0f42007-12-21 04:47:25 +00002423 }
2424 }
2425 }
danielk1977404ca072009-03-16 13:19:36 +00002426 if( pBlock ){
2427 sqlite3ConnectionBlocked(p->db, pBlock);
2428 rc = SQLITE_LOCKED_SHAREDCACHE;
2429 goto trans_begun;
2430 }
danielk1977641b0f42007-12-21 04:47:25 +00002431#endif
2432
danielk1977602b4662009-07-02 07:47:33 +00002433 /* Any read-only or read-write transaction implies a read-lock on
2434 ** page 1. So if some other shared-cache client already has a write-lock
2435 ** on page 1, the transaction cannot be opened. */
2436 if( SQLITE_OK!=(rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK)) ){
2437 goto trans_begun;
2438 }
2439
drhb8ef32c2005-03-14 02:01:49 +00002440 do {
danielk1977295dc102009-04-01 19:07:03 +00002441 /* Call lockBtree() until either pBt->pPage1 is populated or
2442 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2443 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2444 ** reading page 1 it discovers that the page-size of the database
2445 ** file is not pBt->pageSize. In this case lockBtree() will update
2446 ** pBt->pageSize to the page-size of the file on disk.
2447 */
2448 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002449
drhb8ef32c2005-03-14 02:01:49 +00002450 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002451 if( pBt->readOnly ){
2452 rc = SQLITE_READONLY;
2453 }else{
danielk1977d8293352009-04-30 09:10:37 +00002454 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002455 if( rc==SQLITE_OK ){
2456 rc = newDatabase(pBt);
2457 }
drhb8ef32c2005-03-14 02:01:49 +00002458 }
2459 }
2460
danielk1977bd434552009-03-18 10:33:00 +00002461 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002462 unlockBtreeIfUnused(pBt);
2463 }
danielk1977aef0bf62005-12-30 16:28:01 +00002464 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002465 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002466
2467 if( rc==SQLITE_OK ){
2468 if( p->inTrans==TRANS_NONE ){
2469 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002470#ifndef SQLITE_OMIT_SHARED_CACHE
2471 if( p->sharable ){
2472 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2473 p->lock.eLock = READ_LOCK;
2474 p->lock.pNext = pBt->pLock;
2475 pBt->pLock = &p->lock;
2476 }
2477#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002478 }
2479 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2480 if( p->inTrans>pBt->inTransaction ){
2481 pBt->inTransaction = p->inTrans;
2482 }
danielk1977641b0f42007-12-21 04:47:25 +00002483#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002484 if( wrflag ){
2485 assert( !pBt->pWriter );
2486 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002487 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002488 }
2489#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002490 }
2491
drhd677b3d2007-08-20 22:48:41 +00002492
2493trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002494 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002495 /* This call makes sure that the pager has the correct number of
2496 ** open savepoints. If the second parameter is greater than 0 and
2497 ** the sub-journal is not already open, then it will be opened here.
2498 */
danielk1977fd7f0452008-12-17 17:30:26 +00002499 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2500 }
danielk197712dd5492008-12-18 15:45:07 +00002501
danielk1977aef0bf62005-12-30 16:28:01 +00002502 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002503 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002504 return rc;
drha059ad02001-04-17 20:09:11 +00002505}
2506
danielk1977687566d2004-11-02 12:56:41 +00002507#ifndef SQLITE_OMIT_AUTOVACUUM
2508
2509/*
2510** Set the pointer-map entries for all children of page pPage. Also, if
2511** pPage contains cells that point to overflow pages, set the pointer
2512** map entries for the overflow pages as well.
2513*/
2514static int setChildPtrmaps(MemPage *pPage){
2515 int i; /* Counter variable */
2516 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002517 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002518 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002519 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002520 Pgno pgno = pPage->pgno;
2521
drh1fee73e2007-08-29 04:00:57 +00002522 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002523 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002524 if( rc!=SQLITE_OK ){
2525 goto set_child_ptrmaps_out;
2526 }
danielk1977687566d2004-11-02 12:56:41 +00002527 nCell = pPage->nCell;
2528
2529 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002530 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002531
danielk197726836652005-01-17 01:33:13 +00002532 rc = ptrmapPutOvflPtr(pPage, pCell);
2533 if( rc!=SQLITE_OK ){
2534 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002535 }
danielk197726836652005-01-17 01:33:13 +00002536
danielk1977687566d2004-11-02 12:56:41 +00002537 if( !pPage->leaf ){
2538 Pgno childPgno = get4byte(pCell);
2539 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
danielk197700a696d2008-09-29 16:41:31 +00002540 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002541 }
2542 }
2543
2544 if( !pPage->leaf ){
2545 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2546 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2547 }
2548
2549set_child_ptrmaps_out:
2550 pPage->isInit = isInitOrig;
2551 return rc;
2552}
2553
2554/*
drhf3aed592009-07-08 18:12:49 +00002555** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2556** that it points to iTo. Parameter eType describes the type of pointer to
2557** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002558**
2559** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2560** page of pPage.
2561**
2562** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2563** page pointed to by one of the cells on pPage.
2564**
2565** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2566** overflow page in the list.
2567*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002568static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002569 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002570 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002571 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002572 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002573 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002574 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002575 }
danielk1977f78fc082004-11-02 14:40:32 +00002576 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002577 }else{
drhf49661a2008-12-10 16:45:50 +00002578 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002579 int i;
2580 int nCell;
2581
danielk197730548662009-07-09 05:07:37 +00002582 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002583 nCell = pPage->nCell;
2584
danielk1977687566d2004-11-02 12:56:41 +00002585 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002586 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002587 if( eType==PTRMAP_OVERFLOW1 ){
2588 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002589 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002590 if( info.iOverflow ){
2591 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2592 put4byte(&pCell[info.iOverflow], iTo);
2593 break;
2594 }
2595 }
2596 }else{
2597 if( get4byte(pCell)==iFrom ){
2598 put4byte(pCell, iTo);
2599 break;
2600 }
2601 }
2602 }
2603
2604 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002605 if( eType!=PTRMAP_BTREE ||
2606 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002607 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002608 }
danielk1977687566d2004-11-02 12:56:41 +00002609 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2610 }
2611
2612 pPage->isInit = isInitOrig;
2613 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002614 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002615}
2616
danielk1977003ba062004-11-04 02:57:33 +00002617
danielk19777701e812005-01-10 12:59:51 +00002618/*
2619** Move the open database page pDbPage to location iFreePage in the
2620** database. The pDbPage reference remains valid.
2621*/
danielk1977003ba062004-11-04 02:57:33 +00002622static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002623 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002624 MemPage *pDbPage, /* Open page to move */
2625 u8 eType, /* Pointer map 'type' entry for pDbPage */
2626 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002627 Pgno iFreePage, /* The location to move pDbPage to */
2628 int isCommit
danielk1977003ba062004-11-04 02:57:33 +00002629){
2630 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2631 Pgno iDbPage = pDbPage->pgno;
2632 Pager *pPager = pBt->pPager;
2633 int rc;
2634
danielk1977a0bf2652004-11-04 14:30:04 +00002635 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2636 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002637 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002638 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002639
drh85b623f2007-12-13 21:54:09 +00002640 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002641 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2642 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002643 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002644 if( rc!=SQLITE_OK ){
2645 return rc;
2646 }
2647 pDbPage->pgno = iFreePage;
2648
2649 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2650 ** that point to overflow pages. The pointer map entries for all these
2651 ** pages need to be changed.
2652 **
2653 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2654 ** pointer to a subsequent overflow page. If this is the case, then
2655 ** the pointer map needs to be updated for the subsequent overflow page.
2656 */
danielk1977a0bf2652004-11-04 14:30:04 +00002657 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002658 rc = setChildPtrmaps(pDbPage);
2659 if( rc!=SQLITE_OK ){
2660 return rc;
2661 }
2662 }else{
2663 Pgno nextOvfl = get4byte(pDbPage->aData);
2664 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002665 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2666 if( rc!=SQLITE_OK ){
2667 return rc;
2668 }
2669 }
2670 }
2671
2672 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2673 ** that it points at iFreePage. Also fix the pointer map entry for
2674 ** iPtrPage.
2675 */
danielk1977a0bf2652004-11-04 14:30:04 +00002676 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002677 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002678 if( rc!=SQLITE_OK ){
2679 return rc;
2680 }
danielk19773b8a05f2007-03-19 17:44:26 +00002681 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002682 if( rc!=SQLITE_OK ){
2683 releasePage(pPtrPage);
2684 return rc;
2685 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002686 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002687 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002688 if( rc==SQLITE_OK ){
2689 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2690 }
danielk1977003ba062004-11-04 02:57:33 +00002691 }
danielk1977003ba062004-11-04 02:57:33 +00002692 return rc;
2693}
2694
danielk1977dddbcdc2007-04-26 14:42:34 +00002695/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002696static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002697
2698/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002699** Perform a single step of an incremental-vacuum. If successful,
2700** return SQLITE_OK. If there is no work to do (and therefore no
2701** point in calling this function again), return SQLITE_DONE.
2702**
2703** More specificly, this function attempts to re-organize the
2704** database so that the last page of the file currently in use
2705** is no longer in use.
2706**
2707** If the nFin parameter is non-zero, the implementation assumes
2708** that the caller will keep calling incrVacuumStep() until
2709** it returns SQLITE_DONE or an error, and that nFin is the
2710** number of pages the database file will contain after this
2711** process is complete.
2712*/
danielk19773460d192008-12-27 15:23:13 +00002713static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002714 Pgno nFreeList; /* Number of pages still on the free-list */
2715
drh1fee73e2007-08-29 04:00:57 +00002716 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002717 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002718
2719 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2720 int rc;
2721 u8 eType;
2722 Pgno iPtrPage;
2723
2724 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002725 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002726 return SQLITE_DONE;
2727 }
2728
2729 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2730 if( rc!=SQLITE_OK ){
2731 return rc;
2732 }
2733 if( eType==PTRMAP_ROOTPAGE ){
2734 return SQLITE_CORRUPT_BKPT;
2735 }
2736
2737 if( eType==PTRMAP_FREEPAGE ){
2738 if( nFin==0 ){
2739 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002740 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002741 ** truncated to zero after this function returns, so it doesn't
2742 ** matter if it still contains some garbage entries.
2743 */
2744 Pgno iFreePg;
2745 MemPage *pFreePg;
2746 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2747 if( rc!=SQLITE_OK ){
2748 return rc;
2749 }
2750 assert( iFreePg==iLastPg );
2751 releasePage(pFreePg);
2752 }
2753 } else {
2754 Pgno iFreePg; /* Index of free page to move pLastPg to */
2755 MemPage *pLastPg;
2756
danielk197730548662009-07-09 05:07:37 +00002757 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002758 if( rc!=SQLITE_OK ){
2759 return rc;
2760 }
2761
danielk1977b4626a32007-04-28 15:47:43 +00002762 /* If nFin is zero, this loop runs exactly once and page pLastPg
2763 ** is swapped with the first free page pulled off the free list.
2764 **
2765 ** On the other hand, if nFin is greater than zero, then keep
2766 ** looping until a free-page located within the first nFin pages
2767 ** of the file is found.
2768 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002769 do {
2770 MemPage *pFreePg;
2771 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2772 if( rc!=SQLITE_OK ){
2773 releasePage(pLastPg);
2774 return rc;
2775 }
2776 releasePage(pFreePg);
2777 }while( nFin!=0 && iFreePg>nFin );
2778 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002779
2780 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002781 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002782 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002783 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002784 releasePage(pLastPg);
2785 if( rc!=SQLITE_OK ){
2786 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002787 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002788 }
2789 }
2790
danielk19773460d192008-12-27 15:23:13 +00002791 if( nFin==0 ){
2792 iLastPg--;
2793 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002794 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2795 MemPage *pPg;
danielk197730548662009-07-09 05:07:37 +00002796 int rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002797 if( rc!=SQLITE_OK ){
2798 return rc;
2799 }
2800 rc = sqlite3PagerWrite(pPg->pDbPage);
2801 releasePage(pPg);
2802 if( rc!=SQLITE_OK ){
2803 return rc;
2804 }
2805 }
danielk19773460d192008-12-27 15:23:13 +00002806 iLastPg--;
2807 }
2808 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002809 }
2810 return SQLITE_OK;
2811}
2812
2813/*
2814** A write-transaction must be opened before calling this function.
2815** It performs a single unit of work towards an incremental vacuum.
2816**
2817** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002818** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002819** SQLITE_OK is returned. Otherwise an SQLite error code.
2820*/
2821int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002822 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002823 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002824
2825 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002826 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2827 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002828 rc = SQLITE_DONE;
2829 }else{
2830 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002831 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002832 }
drhd677b3d2007-08-20 22:48:41 +00002833 sqlite3BtreeLeave(p);
2834 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002835}
2836
2837/*
danielk19773b8a05f2007-03-19 17:44:26 +00002838** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002839** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002840**
2841** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2842** the database file should be truncated to during the commit process.
2843** i.e. the database has been reorganized so that only the first *pnTrunc
2844** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002845*/
danielk19773460d192008-12-27 15:23:13 +00002846static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002847 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002848 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002849 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002850
drh1fee73e2007-08-29 04:00:57 +00002851 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002852 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002853 assert(pBt->autoVacuum);
2854 if( !pBt->incrVacuum ){
drh41d628c2009-07-11 17:04:08 +00002855 Pgno nFin; /* Number of pages to be freed */
2856 Pgno nFree; /* Number of pages no the freelist */
2857 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
2858 Pgno iFree; /* The next page to be freed */
2859 int nEntry; /* Number of entries on one ptrmap page */
2860 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00002861
drh41d628c2009-07-11 17:04:08 +00002862 nOrig = pagerPagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00002863 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2864 /* It is not possible to create a database for which the final page
2865 ** is either a pointer-map page or the pending-byte page. If one
2866 ** is encountered, this indicates corruption.
2867 */
danielk19773460d192008-12-27 15:23:13 +00002868 return SQLITE_CORRUPT_BKPT;
2869 }
danielk1977ef165ce2009-04-06 17:50:03 +00002870
danielk19773460d192008-12-27 15:23:13 +00002871 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00002872 nEntry = pBt->usableSize/5;
2873 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00002874 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002875 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002876 nFin--;
2877 }
2878 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2879 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002880 }
drhc5e47ac2009-06-04 00:11:56 +00002881 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002882
danielk19773460d192008-12-27 15:23:13 +00002883 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2884 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002885 }
danielk19773460d192008-12-27 15:23:13 +00002886 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002887 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002888 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2889 put4byte(&pBt->pPage1->aData[32], 0);
2890 put4byte(&pBt->pPage1->aData[36], 0);
2891 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002892 }
2893 if( rc!=SQLITE_OK ){
2894 sqlite3PagerRollback(pPager);
2895 }
danielk1977687566d2004-11-02 12:56:41 +00002896 }
2897
danielk19773b8a05f2007-03-19 17:44:26 +00002898 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002899 return rc;
2900}
danielk1977dddbcdc2007-04-26 14:42:34 +00002901
danielk1977a50d9aa2009-06-08 14:49:45 +00002902#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2903# define setChildPtrmaps(x) SQLITE_OK
2904#endif
danielk1977687566d2004-11-02 12:56:41 +00002905
2906/*
drh80e35f42007-03-30 14:06:34 +00002907** This routine does the first phase of a two-phase commit. This routine
2908** causes a rollback journal to be created (if it does not already exist)
2909** and populated with enough information so that if a power loss occurs
2910** the database can be restored to its original state by playing back
2911** the journal. Then the contents of the journal are flushed out to
2912** the disk. After the journal is safely on oxide, the changes to the
2913** database are written into the database file and flushed to oxide.
2914** At the end of this call, the rollback journal still exists on the
2915** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002916** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002917** commit process.
2918**
2919** This call is a no-op if no write-transaction is currently active on pBt.
2920**
2921** Otherwise, sync the database file for the btree pBt. zMaster points to
2922** the name of a master journal file that should be written into the
2923** individual journal file, or is NULL, indicating no master journal file
2924** (single database transaction).
2925**
2926** When this is called, the master journal should already have been
2927** created, populated with this journal pointer and synced to disk.
2928**
2929** Once this is routine has returned, the only thing required to commit
2930** the write-transaction for this database file is to delete the journal.
2931*/
2932int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2933 int rc = SQLITE_OK;
2934 if( p->inTrans==TRANS_WRITE ){
2935 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002936 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002937#ifndef SQLITE_OMIT_AUTOVACUUM
2938 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002939 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002940 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002941 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002942 return rc;
2943 }
2944 }
2945#endif
drh49b9d332009-01-02 18:10:42 +00002946 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00002947 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002948 }
2949 return rc;
2950}
2951
2952/*
danielk197794b30732009-07-02 17:21:57 +00002953** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
2954** at the conclusion of a transaction.
2955*/
2956static void btreeEndTransaction(Btree *p){
2957 BtShared *pBt = p->pBt;
2958 BtCursor *pCsr;
2959 assert( sqlite3BtreeHoldsMutex(p) );
2960
2961 /* Search for a cursor held open by this b-tree connection. If one exists,
2962 ** then the transaction will be downgraded to a read-only transaction
2963 ** instead of actually concluded. A subsequent call to CommitPhaseTwo()
2964 ** or Rollback() will finish the transaction and unlock the database. */
2965 for(pCsr=pBt->pCursor; pCsr && pCsr->pBtree!=p; pCsr=pCsr->pNext);
2966 assert( pCsr==0 || p->inTrans>TRANS_NONE );
2967
2968 btreeClearHasContent(pBt);
2969 if( pCsr ){
2970 downgradeAllSharedCacheTableLocks(p);
2971 p->inTrans = TRANS_READ;
2972 }else{
2973 /* If the handle had any kind of transaction open, decrement the
2974 ** transaction count of the shared btree. If the transaction count
2975 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
2976 ** call below will unlock the pager. */
2977 if( p->inTrans!=TRANS_NONE ){
2978 clearAllSharedCacheTableLocks(p);
2979 pBt->nTransaction--;
2980 if( 0==pBt->nTransaction ){
2981 pBt->inTransaction = TRANS_NONE;
2982 }
2983 }
2984
2985 /* Set the current transaction state to TRANS_NONE and unlock the
2986 ** pager if this call closed the only read or write transaction. */
2987 p->inTrans = TRANS_NONE;
2988 unlockBtreeIfUnused(pBt);
2989 }
2990
2991 btreeIntegrity(p);
2992}
2993
2994/*
drh2aa679f2001-06-25 02:11:07 +00002995** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002996**
drh6e345992007-03-30 11:12:08 +00002997** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00002998** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
2999** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3000** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003001** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003002** routine has to do is delete or truncate or zero the header in the
3003** the rollback journal (which causes the transaction to commit) and
3004** drop locks.
drh6e345992007-03-30 11:12:08 +00003005**
drh5e00f6c2001-09-13 13:46:56 +00003006** This will release the write lock on the database file. If there
3007** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003008*/
drh80e35f42007-03-30 14:06:34 +00003009int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003010 BtShared *pBt = p->pBt;
3011
drhd677b3d2007-08-20 22:48:41 +00003012 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003013 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003014
3015 /* If the handle has a write-transaction open, commit the shared-btrees
3016 ** transaction and set the shared state to TRANS_READ.
3017 */
3018 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003019 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003020 assert( pBt->inTransaction==TRANS_WRITE );
3021 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003022 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003023 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003024 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003025 return rc;
3026 }
danielk1977aef0bf62005-12-30 16:28:01 +00003027 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003028 }
danielk1977aef0bf62005-12-30 16:28:01 +00003029
danielk197794b30732009-07-02 17:21:57 +00003030 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003031 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003032 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003033}
3034
drh80e35f42007-03-30 14:06:34 +00003035/*
3036** Do both phases of a commit.
3037*/
3038int sqlite3BtreeCommit(Btree *p){
3039 int rc;
drhd677b3d2007-08-20 22:48:41 +00003040 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003041 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3042 if( rc==SQLITE_OK ){
3043 rc = sqlite3BtreeCommitPhaseTwo(p);
3044 }
drhd677b3d2007-08-20 22:48:41 +00003045 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003046 return rc;
3047}
3048
danielk1977fbcd5852004-06-15 02:44:18 +00003049#ifndef NDEBUG
3050/*
3051** Return the number of write-cursors open on this handle. This is for use
3052** in assert() expressions, so it is only compiled if NDEBUG is not
3053** defined.
drhfb982642007-08-30 01:19:59 +00003054**
3055** For the purposes of this routine, a write-cursor is any cursor that
3056** is capable of writing to the databse. That means the cursor was
3057** originally opened for writing and the cursor has not be disabled
3058** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003059*/
danielk1977aef0bf62005-12-30 16:28:01 +00003060static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003061 BtCursor *pCur;
3062 int r = 0;
3063 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003064 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003065 }
3066 return r;
3067}
3068#endif
3069
drhc39e0002004-05-07 23:50:57 +00003070/*
drhfb982642007-08-30 01:19:59 +00003071** This routine sets the state to CURSOR_FAULT and the error
3072** code to errCode for every cursor on BtShared that pBtree
3073** references.
3074**
3075** Every cursor is tripped, including cursors that belong
3076** to other database connections that happen to be sharing
3077** the cache with pBtree.
3078**
3079** This routine gets called when a rollback occurs.
3080** All cursors using the same cache must be tripped
3081** to prevent them from trying to use the btree after
3082** the rollback. The rollback may have deleted tables
3083** or moved root pages, so it is not sufficient to
3084** save the state of the cursor. The cursor must be
3085** invalidated.
3086*/
3087void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3088 BtCursor *p;
3089 sqlite3BtreeEnter(pBtree);
3090 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003091 int i;
danielk1977be51a652008-10-08 17:58:48 +00003092 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003093 p->eState = CURSOR_FAULT;
3094 p->skip = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003095 for(i=0; i<=p->iPage; i++){
3096 releasePage(p->apPage[i]);
3097 p->apPage[i] = 0;
3098 }
drhfb982642007-08-30 01:19:59 +00003099 }
3100 sqlite3BtreeLeave(pBtree);
3101}
3102
3103/*
drhecdc7532001-09-23 02:35:53 +00003104** Rollback the transaction in progress. All cursors will be
3105** invalided by this operation. Any attempt to use a cursor
3106** that was open at the beginning of this operation will result
3107** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003108**
3109** This will release the write lock on the database file. If there
3110** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003111*/
danielk1977aef0bf62005-12-30 16:28:01 +00003112int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003113 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003114 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003115 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003116
drhd677b3d2007-08-20 22:48:41 +00003117 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003118 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003119#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003120 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003121 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003122 ** trying to save cursor positions. If this is an automatic rollback (as
3123 ** the result of a constraint, malloc() failure or IO error) then
3124 ** the cache may be internally inconsistent (not contain valid trees) so
3125 ** we cannot simply return the error to the caller. Instead, abort
3126 ** all queries that may be using any of the cursors that failed to save.
3127 */
drhfb982642007-08-30 01:19:59 +00003128 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003129 }
danielk19778d34dfd2006-01-24 16:37:57 +00003130#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003131 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003132
3133 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003134 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003135
danielk19778d34dfd2006-01-24 16:37:57 +00003136 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003137 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003138 if( rc2!=SQLITE_OK ){
3139 rc = rc2;
3140 }
3141
drh24cd67e2004-05-10 16:18:47 +00003142 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003143 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003144 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003145 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00003146 releasePage(pPage1);
3147 }
danielk1977fbcd5852004-06-15 02:44:18 +00003148 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003149 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003150 }
danielk1977aef0bf62005-12-30 16:28:01 +00003151
danielk197794b30732009-07-02 17:21:57 +00003152 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003153 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003154 return rc;
3155}
3156
3157/*
danielk1977bd434552009-03-18 10:33:00 +00003158** Start a statement subtransaction. The subtransaction can can be rolled
3159** back independently of the main transaction. You must start a transaction
3160** before starting a subtransaction. The subtransaction is ended automatically
3161** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003162**
3163** Statement subtransactions are used around individual SQL statements
3164** that are contained within a BEGIN...COMMIT block. If a constraint
3165** error occurs within the statement, the effect of that one statement
3166** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003167**
3168** A statement sub-transaction is implemented as an anonymous savepoint. The
3169** value passed as the second parameter is the total number of savepoints,
3170** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3171** are no active savepoints and no other statement-transactions open,
3172** iStatement is 1. This anonymous savepoint can be released or rolled back
3173** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003174*/
danielk1977bd434552009-03-18 10:33:00 +00003175int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003176 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003177 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003178 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003179 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003180 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003181 assert( iStatement>0 );
3182 assert( iStatement>p->db->nSavepoint );
3183 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00003184 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00003185 }else{
3186 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003187 /* At the pager level, a statement transaction is a savepoint with
3188 ** an index greater than all savepoints created explicitly using
3189 ** SQL statements. It is illegal to open, release or rollback any
3190 ** such savepoints while the statement transaction savepoint is active.
3191 */
danielk1977bd434552009-03-18 10:33:00 +00003192 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00003193 }
drhd677b3d2007-08-20 22:48:41 +00003194 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003195 return rc;
3196}
3197
3198/*
danielk1977fd7f0452008-12-17 17:30:26 +00003199** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3200** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003201** savepoint identified by parameter iSavepoint, depending on the value
3202** of op.
3203**
3204** Normally, iSavepoint is greater than or equal to zero. However, if op is
3205** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3206** contents of the entire transaction are rolled back. This is different
3207** from a normal transaction rollback, as no locks are released and the
3208** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003209*/
3210int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3211 int rc = SQLITE_OK;
3212 if( p && p->inTrans==TRANS_WRITE ){
3213 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003214 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3215 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3216 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003217 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003218 if( rc==SQLITE_OK ){
3219 rc = newDatabase(pBt);
3220 }
danielk1977fd7f0452008-12-17 17:30:26 +00003221 sqlite3BtreeLeave(p);
3222 }
3223 return rc;
3224}
3225
3226/*
drh8b2f49b2001-06-08 00:21:52 +00003227** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003228** iTable. If a read-only cursor is requested, it is assumed that
3229** the caller already has at least a read-only transaction open
3230** on the database already. If a write-cursor is requested, then
3231** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003232**
3233** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003234** If wrFlag==1, then the cursor can be used for reading or for
3235** writing if other conditions for writing are also met. These
3236** are the conditions that must be met in order for writing to
3237** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003238**
drhf74b8d92002-09-01 23:20:45 +00003239** 1: The cursor must have been opened with wrFlag==1
3240**
drhfe5d71d2007-03-19 11:54:10 +00003241** 2: Other database connections that share the same pager cache
3242** but which are not in the READ_UNCOMMITTED state may not have
3243** cursors open with wrFlag==0 on the same table. Otherwise
3244** the changes made by this write cursor would be visible to
3245** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003246**
3247** 3: The database must be writable (not on read-only media)
3248**
3249** 4: There must be an active transaction.
3250**
drh6446c4d2001-12-15 14:22:18 +00003251** No checking is done to make sure that page iTable really is the
3252** root page of a b-tree. If it is not, then the cursor acquired
3253** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003254**
3255** It is assumed that the sqlite3BtreeCursorSize() bytes of memory
3256** pointed to by pCur have been zeroed by the caller.
drha059ad02001-04-17 20:09:11 +00003257*/
drhd677b3d2007-08-20 22:48:41 +00003258static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003259 Btree *p, /* The btree */
3260 int iTable, /* Root page of table to open */
3261 int wrFlag, /* 1 to write. 0 read-only */
3262 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3263 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003264){
danielk19773e8add92009-07-04 17:16:00 +00003265 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003266
drh1fee73e2007-08-29 04:00:57 +00003267 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003268 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003269
danielk1977602b4662009-07-02 07:47:33 +00003270 /* The following assert statements verify that if this is a sharable
3271 ** b-tree database, the connection is holding the required table locks,
3272 ** and that no other connection has any open cursor that conflicts with
3273 ** this lock. */
3274 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003275 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3276
danielk19773e8add92009-07-04 17:16:00 +00003277 /* Assert that the caller has opened the required transaction. */
3278 assert( p->inTrans>TRANS_NONE );
3279 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3280 assert( pBt->pPage1 && pBt->pPage1->aData );
3281
danielk197796d48e92009-06-29 06:00:37 +00003282 if( NEVER(wrFlag && pBt->readOnly) ){
3283 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003284 }
danielk19773e8add92009-07-04 17:16:00 +00003285 if( iTable==1 && pagerPagecount(pBt)==0 ){
3286 return SQLITE_EMPTY;
3287 }
danielk1977aef0bf62005-12-30 16:28:01 +00003288
danielk1977aef0bf62005-12-30 16:28:01 +00003289 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003290 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003291 pCur->pgnoRoot = (Pgno)iTable;
3292 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003293 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003294 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003295 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003296 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003297 pCur->pNext = pBt->pCursor;
3298 if( pCur->pNext ){
3299 pCur->pNext->pPrev = pCur;
3300 }
3301 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003302 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003303 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003304 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003305}
drhd677b3d2007-08-20 22:48:41 +00003306int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003307 Btree *p, /* The btree */
3308 int iTable, /* Root page of table to open */
3309 int wrFlag, /* 1 to write. 0 read-only */
3310 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3311 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003312){
3313 int rc;
3314 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003315 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003316 sqlite3BtreeLeave(p);
3317 return rc;
3318}
drh7f751222009-03-17 22:33:00 +00003319
3320/*
3321** Return the size of a BtCursor object in bytes.
3322**
3323** This interfaces is needed so that users of cursors can preallocate
3324** sufficient storage to hold a cursor. The BtCursor object is opaque
3325** to users so they cannot do the sizeof() themselves - they must call
3326** this routine.
3327*/
3328int sqlite3BtreeCursorSize(void){
danielk1977cd3e8f72008-03-25 09:47:35 +00003329 return sizeof(BtCursor);
3330}
3331
drh7f751222009-03-17 22:33:00 +00003332/*
3333** Set the cached rowid value of every cursor in the same database file
3334** as pCur and having the same root page number as pCur. The value is
3335** set to iRowid.
3336**
3337** Only positive rowid values are considered valid for this cache.
3338** The cache is initialized to zero, indicating an invalid cache.
3339** A btree will work fine with zero or negative rowids. We just cannot
3340** cache zero or negative rowids, which means tables that use zero or
3341** negative rowids might run a little slower. But in practice, zero
3342** or negative rowids are very uncommon so this should not be a problem.
3343*/
3344void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3345 BtCursor *p;
3346 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3347 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3348 }
3349 assert( pCur->cachedRowid==iRowid );
3350}
drhd677b3d2007-08-20 22:48:41 +00003351
drh7f751222009-03-17 22:33:00 +00003352/*
3353** Return the cached rowid for the given cursor. A negative or zero
3354** return value indicates that the rowid cache is invalid and should be
3355** ignored. If the rowid cache has never before been set, then a
3356** zero is returned.
3357*/
3358sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3359 return pCur->cachedRowid;
3360}
drha059ad02001-04-17 20:09:11 +00003361
3362/*
drh5e00f6c2001-09-13 13:46:56 +00003363** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003364** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003365*/
drh3aac2dd2004-04-26 14:10:20 +00003366int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003367 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003368 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003369 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003370 BtShared *pBt = pCur->pBt;
3371 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003372 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003373 if( pCur->pPrev ){
3374 pCur->pPrev->pNext = pCur->pNext;
3375 }else{
3376 pBt->pCursor = pCur->pNext;
3377 }
3378 if( pCur->pNext ){
3379 pCur->pNext->pPrev = pCur->pPrev;
3380 }
danielk197771d5d2c2008-09-29 11:49:47 +00003381 for(i=0; i<=pCur->iPage; i++){
3382 releasePage(pCur->apPage[i]);
3383 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003384 unlockBtreeIfUnused(pBt);
3385 invalidateOverflowCache(pCur);
3386 /* sqlite3_free(pCur); */
3387 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003388 }
drh8c42ca92001-06-22 19:15:00 +00003389 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003390}
3391
drh5e2f8b92001-05-28 00:41:15 +00003392/*
drh86057612007-06-26 01:04:48 +00003393** Make sure the BtCursor* given in the argument has a valid
3394** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003395** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003396**
3397** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003398** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003399**
3400** 2007-06-25: There is a bug in some versions of MSVC that cause the
3401** compiler to crash when getCellInfo() is implemented as a macro.
3402** But there is a measureable speed advantage to using the macro on gcc
3403** (when less compiler optimizations like -Os or -O0 are used and the
3404** compiler is not doing agressive inlining.) So we use a real function
3405** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003406*/
drh9188b382004-05-14 21:12:22 +00003407#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003408 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003409 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003410 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003411 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003412 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003413 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003414 }
danielk19771cc5ed82007-05-16 17:28:43 +00003415#else
3416 #define assertCellInfo(x)
3417#endif
drh86057612007-06-26 01:04:48 +00003418#ifdef _MSC_VER
3419 /* Use a real function in MSVC to work around bugs in that compiler. */
3420 static void getCellInfo(BtCursor *pCur){
3421 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003422 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003423 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003424 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003425 }else{
3426 assertCellInfo(pCur);
3427 }
3428 }
3429#else /* if not _MSC_VER */
3430 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003431#define getCellInfo(pCur) \
3432 if( pCur->info.nSize==0 ){ \
3433 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003434 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003435 pCur->validNKey = 1; \
3436 }else{ \
3437 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003438 }
3439#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003440
3441/*
drh3aac2dd2004-04-26 14:10:20 +00003442** Set *pSize to the size of the buffer needed to hold the value of
3443** the key for the current entry. If the cursor is not pointing
3444** to a valid entry, *pSize is set to 0.
3445**
drh4b70f112004-05-02 21:12:19 +00003446** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003447** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00003448*/
drh4a1c3802004-05-12 15:15:47 +00003449int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003450 int rc;
3451
drh1fee73e2007-08-29 04:00:57 +00003452 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003453 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003454 if( rc==SQLITE_OK ){
3455 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3456 if( pCur->eState==CURSOR_INVALID ){
3457 *pSize = 0;
3458 }else{
drh86057612007-06-26 01:04:48 +00003459 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003460 *pSize = pCur->info.nKey;
3461 }
drh72f82862001-05-24 21:06:34 +00003462 }
danielk1977da184232006-01-05 11:34:32 +00003463 return rc;
drha059ad02001-04-17 20:09:11 +00003464}
drh2af926b2001-05-15 00:39:25 +00003465
drh72f82862001-05-24 21:06:34 +00003466/*
drh0e1c19e2004-05-11 00:58:56 +00003467** Set *pSize to the number of bytes of data in the entry the
3468** cursor currently points to. Always return SQLITE_OK.
3469** Failure is not possible. If the cursor is not currently
3470** pointing to an entry (which can happen, for example, if
3471** the database is empty) then *pSize is set to 0.
3472*/
3473int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003474 int rc;
3475
drh1fee73e2007-08-29 04:00:57 +00003476 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003477 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003478 if( rc==SQLITE_OK ){
3479 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3480 if( pCur->eState==CURSOR_INVALID ){
3481 /* Not pointing at a valid entry - set *pSize to 0. */
3482 *pSize = 0;
3483 }else{
drh86057612007-06-26 01:04:48 +00003484 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003485 *pSize = pCur->info.nData;
3486 }
drh0e1c19e2004-05-11 00:58:56 +00003487 }
danielk1977da184232006-01-05 11:34:32 +00003488 return rc;
drh0e1c19e2004-05-11 00:58:56 +00003489}
3490
3491/*
danielk1977d04417962007-05-02 13:16:30 +00003492** Given the page number of an overflow page in the database (parameter
3493** ovfl), this function finds the page number of the next page in the
3494** linked list of overflow pages. If possible, it uses the auto-vacuum
3495** pointer-map data instead of reading the content of page ovfl to do so.
3496**
3497** If an error occurs an SQLite error code is returned. Otherwise:
3498**
danielk1977bea2a942009-01-20 17:06:27 +00003499** The page number of the next overflow page in the linked list is
3500** written to *pPgnoNext. If page ovfl is the last page in its linked
3501** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003502**
danielk1977bea2a942009-01-20 17:06:27 +00003503** If ppPage is not NULL, and a reference to the MemPage object corresponding
3504** to page number pOvfl was obtained, then *ppPage is set to point to that
3505** reference. It is the responsibility of the caller to call releasePage()
3506** on *ppPage to free the reference. In no reference was obtained (because
3507** the pointer-map was used to obtain the value for *pPgnoNext), then
3508** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003509*/
3510static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003511 BtShared *pBt, /* The database file */
3512 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003513 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003514 Pgno *pPgnoNext /* OUT: Next overflow page number */
3515){
3516 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003517 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003518 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003519
drh1fee73e2007-08-29 04:00:57 +00003520 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003521 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003522
3523#ifndef SQLITE_OMIT_AUTOVACUUM
3524 /* Try to find the next page in the overflow list using the
3525 ** autovacuum pointer-map pages. Guess that the next page in
3526 ** the overflow list is page number (ovfl+1). If that guess turns
3527 ** out to be wrong, fall back to loading the data of page
3528 ** number ovfl to determine the next page number.
3529 */
3530 if( pBt->autoVacuum ){
3531 Pgno pgno;
3532 Pgno iGuess = ovfl+1;
3533 u8 eType;
3534
3535 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3536 iGuess++;
3537 }
3538
danielk197789d40042008-11-17 14:20:56 +00003539 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003540 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003541 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003542 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003543 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003544 }
3545 }
3546 }
3547#endif
3548
danielk1977d8a3f3d2009-07-11 11:45:23 +00003549 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003550 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003551 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003552 assert( rc==SQLITE_OK || pPage==0 );
3553 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003554 next = get4byte(pPage->aData);
3555 }
danielk1977443c0592009-01-16 15:21:05 +00003556 }
danielk197745d68822009-01-16 16:23:38 +00003557
danielk1977bea2a942009-01-20 17:06:27 +00003558 *pPgnoNext = next;
3559 if( ppPage ){
3560 *ppPage = pPage;
3561 }else{
3562 releasePage(pPage);
3563 }
3564 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003565}
3566
danielk1977da107192007-05-04 08:32:13 +00003567/*
3568** Copy data from a buffer to a page, or from a page to a buffer.
3569**
3570** pPayload is a pointer to data stored on database page pDbPage.
3571** If argument eOp is false, then nByte bytes of data are copied
3572** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3573** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3574** of data are copied from the buffer pBuf to pPayload.
3575**
3576** SQLITE_OK is returned on success, otherwise an error code.
3577*/
3578static int copyPayload(
3579 void *pPayload, /* Pointer to page data */
3580 void *pBuf, /* Pointer to buffer */
3581 int nByte, /* Number of bytes to copy */
3582 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3583 DbPage *pDbPage /* Page containing pPayload */
3584){
3585 if( eOp ){
3586 /* Copy data from buffer to page (a write operation) */
3587 int rc = sqlite3PagerWrite(pDbPage);
3588 if( rc!=SQLITE_OK ){
3589 return rc;
3590 }
3591 memcpy(pPayload, pBuf, nByte);
3592 }else{
3593 /* Copy data from page to buffer (a read operation) */
3594 memcpy(pBuf, pPayload, nByte);
3595 }
3596 return SQLITE_OK;
3597}
danielk1977d04417962007-05-02 13:16:30 +00003598
3599/*
danielk19779f8d6402007-05-02 17:48:45 +00003600** This function is used to read or overwrite payload information
3601** for the entry that the pCur cursor is pointing to. If the eOp
3602** parameter is 0, this is a read operation (data copied into
3603** buffer pBuf). If it is non-zero, a write (data copied from
3604** buffer pBuf).
3605**
3606** A total of "amt" bytes are read or written beginning at "offset".
3607** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003608**
drh3bcdfd22009-07-12 02:32:21 +00003609** The content being read or written might appear on the main page
3610** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003611**
danielk1977dcbb5d32007-05-04 18:36:44 +00003612** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003613** cursor entry uses one or more overflow pages, this function
3614** allocates space for and lazily popluates the overflow page-list
3615** cache array (BtCursor.aOverflow). Subsequent calls use this
3616** cache to make seeking to the supplied offset more efficient.
3617**
3618** Once an overflow page-list cache has been allocated, it may be
3619** invalidated if some other cursor writes to the same table, or if
3620** the cursor is moved to a different row. Additionally, in auto-vacuum
3621** mode, the following events may invalidate an overflow page-list cache.
3622**
3623** * An incremental vacuum,
3624** * A commit in auto_vacuum="full" mode,
3625** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003626*/
danielk19779f8d6402007-05-02 17:48:45 +00003627static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003628 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003629 u32 offset, /* Begin reading this far into payload */
3630 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003631 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003632 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003633){
3634 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003635 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003636 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003637 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003638 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003639 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003640
danielk1977da107192007-05-04 08:32:13 +00003641 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003642 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003643 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003644 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003645
drh86057612007-06-26 01:04:48 +00003646 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003647 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003648 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003649
drh3bcdfd22009-07-12 02:32:21 +00003650 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003651 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3652 ){
danielk1977da107192007-05-04 08:32:13 +00003653 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003654 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003655 }
danielk1977da107192007-05-04 08:32:13 +00003656
3657 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003658 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003659 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003660 if( a+offset>pCur->info.nLocal ){
3661 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003662 }
danielk1977da107192007-05-04 08:32:13 +00003663 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003664 offset = 0;
drha34b6762004-05-07 13:30:42 +00003665 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003666 amt -= a;
drhdd793422001-06-28 01:54:48 +00003667 }else{
drhfa1a98a2004-05-14 19:08:17 +00003668 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003669 }
danielk1977da107192007-05-04 08:32:13 +00003670
3671 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003672 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003673 Pgno nextPage;
3674
drhfa1a98a2004-05-14 19:08:17 +00003675 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003676
danielk19772dec9702007-05-02 16:48:37 +00003677#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003678 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003679 ** has not been allocated, allocate it now. The array is sized at
3680 ** one entry for each overflow page in the overflow chain. The
3681 ** page number of the first overflow page is stored in aOverflow[0],
3682 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3683 ** (the cache is lazily populated).
3684 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003685 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003686 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003687 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003688 /* nOvfl is always positive. If it were zero, fetchPayload would have
3689 ** been used instead of this routine. */
3690 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003691 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003692 }
3693 }
danielk1977da107192007-05-04 08:32:13 +00003694
3695 /* If the overflow page-list cache has been allocated and the
3696 ** entry for the first required overflow page is valid, skip
3697 ** directly to it.
3698 */
danielk19772dec9702007-05-02 16:48:37 +00003699 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3700 iIdx = (offset/ovflSize);
3701 nextPage = pCur->aOverflow[iIdx];
3702 offset = (offset%ovflSize);
3703 }
3704#endif
danielk1977da107192007-05-04 08:32:13 +00003705
3706 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3707
3708#ifndef SQLITE_OMIT_INCRBLOB
3709 /* If required, populate the overflow page-list cache. */
3710 if( pCur->aOverflow ){
3711 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3712 pCur->aOverflow[iIdx] = nextPage;
3713 }
3714#endif
3715
danielk1977d04417962007-05-02 13:16:30 +00003716 if( offset>=ovflSize ){
3717 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003718 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003719 ** data is not required. So first try to lookup the overflow
3720 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003721 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003722 */
danielk19772dec9702007-05-02 16:48:37 +00003723#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003724 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3725 nextPage = pCur->aOverflow[iIdx+1];
3726 } else
danielk19772dec9702007-05-02 16:48:37 +00003727#endif
danielk1977da107192007-05-04 08:32:13 +00003728 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003729 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003730 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003731 /* Need to read this page properly. It contains some of the
3732 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003733 */
3734 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003735 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003736 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003737 if( rc==SQLITE_OK ){
3738 aPayload = sqlite3PagerGetData(pDbPage);
3739 nextPage = get4byte(aPayload);
3740 if( a + offset > ovflSize ){
3741 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003742 }
danielk1977da107192007-05-04 08:32:13 +00003743 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3744 sqlite3PagerUnref(pDbPage);
3745 offset = 0;
3746 amt -= a;
3747 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003748 }
danielk1977cfe9a692004-06-16 12:00:29 +00003749 }
drh2af926b2001-05-15 00:39:25 +00003750 }
drh2af926b2001-05-15 00:39:25 +00003751 }
danielk1977cfe9a692004-06-16 12:00:29 +00003752
danielk1977da107192007-05-04 08:32:13 +00003753 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003754 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003755 }
danielk1977da107192007-05-04 08:32:13 +00003756 return rc;
drh2af926b2001-05-15 00:39:25 +00003757}
3758
drh72f82862001-05-24 21:06:34 +00003759/*
drh3aac2dd2004-04-26 14:10:20 +00003760** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003761** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003762** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003763**
drh3aac2dd2004-04-26 14:10:20 +00003764** Return SQLITE_OK on success or an error code if anything goes
3765** wrong. An error is returned if "offset+amt" is larger than
3766** the available payload.
drh72f82862001-05-24 21:06:34 +00003767*/
drha34b6762004-05-07 13:30:42 +00003768int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003769 int rc;
3770
drh1fee73e2007-08-29 04:00:57 +00003771 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003772 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003773 if( rc==SQLITE_OK ){
3774 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003775 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3776 if( pCur->apPage[0]->intKey ){
danielk1977da184232006-01-05 11:34:32 +00003777 return SQLITE_CORRUPT_BKPT;
3778 }
danielk197771d5d2c2008-09-29 11:49:47 +00003779 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003780 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh6575a222005-03-10 17:06:34 +00003781 }
danielk1977da184232006-01-05 11:34:32 +00003782 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003783}
3784
3785/*
drh3aac2dd2004-04-26 14:10:20 +00003786** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003787** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003788** begins at "offset".
3789**
3790** Return SQLITE_OK on success or an error code if anything goes
3791** wrong. An error is returned if "offset+amt" is larger than
3792** the available payload.
drh72f82862001-05-24 21:06:34 +00003793*/
drh3aac2dd2004-04-26 14:10:20 +00003794int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003795 int rc;
3796
danielk19773588ceb2008-06-10 17:30:26 +00003797#ifndef SQLITE_OMIT_INCRBLOB
3798 if ( pCur->eState==CURSOR_INVALID ){
3799 return SQLITE_ABORT;
3800 }
3801#endif
3802
drh1fee73e2007-08-29 04:00:57 +00003803 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003804 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003805 if( rc==SQLITE_OK ){
3806 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003807 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3808 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003809 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00003810 }
3811 return rc;
drh2af926b2001-05-15 00:39:25 +00003812}
3813
drh72f82862001-05-24 21:06:34 +00003814/*
drh0e1c19e2004-05-11 00:58:56 +00003815** Return a pointer to payload information from the entry that the
3816** pCur cursor is pointing to. The pointer is to the beginning of
3817** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003818** skipKey==1. The number of bytes of available key/data is written
3819** into *pAmt. If *pAmt==0, then the value returned will not be
3820** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003821**
3822** This routine is an optimization. It is common for the entire key
3823** and data to fit on the local page and for there to be no overflow
3824** pages. When that is so, this routine can be used to access the
3825** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003826** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003827** the key/data and copy it into a preallocated buffer.
3828**
3829** The pointer returned by this routine looks directly into the cached
3830** page of the database. The data might change or move the next time
3831** any btree routine is called.
3832*/
3833static const unsigned char *fetchPayload(
3834 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003835 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003836 int skipKey /* read beginning at data if this is true */
3837){
3838 unsigned char *aPayload;
3839 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003840 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003841 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003842
danielk197771d5d2c2008-09-29 11:49:47 +00003843 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003844 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003845 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003846 pPage = pCur->apPage[pCur->iPage];
3847 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh86057612007-06-26 01:04:48 +00003848 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003849 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003850 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003851 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003852 nKey = 0;
3853 }else{
drhf49661a2008-12-10 16:45:50 +00003854 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003855 }
drh0e1c19e2004-05-11 00:58:56 +00003856 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003857 aPayload += nKey;
3858 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003859 }else{
drhfa1a98a2004-05-14 19:08:17 +00003860 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003861 if( nLocal>nKey ){
3862 nLocal = nKey;
3863 }
drh0e1c19e2004-05-11 00:58:56 +00003864 }
drhe51c44f2004-05-30 20:46:09 +00003865 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003866 return aPayload;
3867}
3868
3869
3870/*
drhe51c44f2004-05-30 20:46:09 +00003871** For the entry that cursor pCur is point to, return as
3872** many bytes of the key or data as are available on the local
3873** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003874**
3875** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003876** or be destroyed on the next call to any Btree routine,
3877** including calls from other threads against the same cache.
3878** Hence, a mutex on the BtShared should be held prior to calling
3879** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003880**
3881** These routines is used to get quick access to key and data
3882** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003883*/
drhe51c44f2004-05-30 20:46:09 +00003884const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003885 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003886 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003887 if( pCur->eState==CURSOR_VALID ){
3888 return (const void*)fetchPayload(pCur, pAmt, 0);
3889 }
3890 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003891}
drhe51c44f2004-05-30 20:46:09 +00003892const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003893 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003894 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003895 if( pCur->eState==CURSOR_VALID ){
3896 return (const void*)fetchPayload(pCur, pAmt, 1);
3897 }
3898 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003899}
3900
3901
3902/*
drh8178a752003-01-05 21:41:40 +00003903** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003904** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003905*/
drh3aac2dd2004-04-26 14:10:20 +00003906static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003907 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003908 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003909 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003910 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003911
drh1fee73e2007-08-29 04:00:57 +00003912 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003913 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003914 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3915 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3916 return SQLITE_CORRUPT_BKPT;
3917 }
3918 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003919 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003920 pCur->apPage[i+1] = pNewPage;
3921 pCur->aiIdx[i+1] = 0;
3922 pCur->iPage++;
3923
drh271efa52004-05-30 19:19:05 +00003924 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003925 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00003926 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00003927 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003928 }
drh72f82862001-05-24 21:06:34 +00003929 return SQLITE_OK;
3930}
3931
danielk1977bf93c562008-09-29 15:53:25 +00003932#ifndef NDEBUG
3933/*
3934** Page pParent is an internal (non-leaf) tree page. This function
3935** asserts that page number iChild is the left-child if the iIdx'th
3936** cell in page pParent. Or, if iIdx is equal to the total number of
3937** cells in pParent, that page number iChild is the right-child of
3938** the page.
3939*/
3940static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
3941 assert( iIdx<=pParent->nCell );
3942 if( iIdx==pParent->nCell ){
3943 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
3944 }else{
3945 assert( get4byte(findCell(pParent, iIdx))==iChild );
3946 }
3947}
3948#else
3949# define assertParentIndex(x,y,z)
3950#endif
3951
drh72f82862001-05-24 21:06:34 +00003952/*
drh5e2f8b92001-05-28 00:41:15 +00003953** Move the cursor up to the parent page.
3954**
3955** pCur->idx is set to the cell index that contains the pointer
3956** to the page we are coming from. If we are coming from the
3957** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003958** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003959*/
danielk197730548662009-07-09 05:07:37 +00003960static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00003961 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003962 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003963 assert( pCur->iPage>0 );
3964 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00003965 assertParentIndex(
3966 pCur->apPage[pCur->iPage-1],
3967 pCur->aiIdx[pCur->iPage-1],
3968 pCur->apPage[pCur->iPage]->pgno
3969 );
danielk197771d5d2c2008-09-29 11:49:47 +00003970 releasePage(pCur->apPage[pCur->iPage]);
3971 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00003972 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003973 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00003974}
3975
3976/*
danielk19778f880a82009-07-13 09:41:45 +00003977** Move the cursor to point to the root page of its b-tree structure.
3978**
3979** If the table has a virtual root page, then the cursor is moved to point
3980** to the virtual root page instead of the actual root page. A table has a
3981** virtual root page when the actual root page contains no cells and a
3982** single child page. This can only happen with the table rooted at page 1.
3983**
3984** If the b-tree structure is empty, the cursor state is set to
3985** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
3986** cell located on the root (or virtual root) page and the cursor state
3987** is set to CURSOR_VALID.
3988**
3989** If this function returns successfully, it may be assumed that the
3990** page-header flags indicate that the [virtual] root-page is the expected
3991** kind of b-tree page (i.e. if when opening the cursor the caller did not
3992** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
3993** indicating a table b-tree, or if the caller did specify a KeyInfo
3994** structure the flags byte is set to 0x02 or 0x0A, indicating an index
3995** b-tree).
drh72f82862001-05-24 21:06:34 +00003996*/
drh5e2f8b92001-05-28 00:41:15 +00003997static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00003998 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00003999 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004000 Btree *p = pCur->pBtree;
4001 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004002
drh1fee73e2007-08-29 04:00:57 +00004003 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004004 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4005 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4006 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4007 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4008 if( pCur->eState==CURSOR_FAULT ){
danielk19778f880a82009-07-13 09:41:45 +00004009 assert( pCur->skip!=SQLITE_OK );
drhfb982642007-08-30 01:19:59 +00004010 return pCur->skip;
4011 }
danielk1977be51a652008-10-08 17:58:48 +00004012 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004013 }
danielk197771d5d2c2008-09-29 11:49:47 +00004014
4015 if( pCur->iPage>=0 ){
4016 int i;
4017 for(i=1; i<=pCur->iPage; i++){
4018 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004019 }
danielk1977172114a2009-07-07 15:47:12 +00004020 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004021 }else{
4022 if(
danielk197771d5d2c2008-09-29 11:49:47 +00004023 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]))
drh777e4c42006-01-13 04:31:58 +00004024 ){
4025 pCur->eState = CURSOR_INVALID;
4026 return rc;
4027 }
danielk1977172114a2009-07-07 15:47:12 +00004028 pCur->iPage = 0;
4029
4030 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4031 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4032 ** NULL, the caller expects a table b-tree. If this is not the case,
4033 ** return an SQLITE_CORRUPT error. */
4034 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4035 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4036 return SQLITE_CORRUPT_BKPT;
4037 }
drhc39e0002004-05-07 23:50:57 +00004038 }
danielk197771d5d2c2008-09-29 11:49:47 +00004039
danielk19778f880a82009-07-13 09:41:45 +00004040 /* Assert that the root page is of the correct type. This must be the
4041 ** case as the call to this function that loaded the root-page (either
4042 ** this call or a previous invocation) would have detected corruption
4043 ** if the assumption were not true, and it is not possible for the flags
4044 ** byte to have been modified while this cursor is holding a reference
4045 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004046 pRoot = pCur->apPage[0];
4047 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004048 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4049
danielk197771d5d2c2008-09-29 11:49:47 +00004050 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004051 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004052 pCur->atLast = 0;
4053 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004054
drh8856d6a2004-04-29 14:42:46 +00004055 if( pRoot->nCell==0 && !pRoot->leaf ){
4056 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004057 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004058 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004059 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004060 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004061 }else{
4062 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004063 }
4064 return rc;
drh72f82862001-05-24 21:06:34 +00004065}
drh2af926b2001-05-15 00:39:25 +00004066
drh5e2f8b92001-05-28 00:41:15 +00004067/*
4068** Move the cursor down to the left-most leaf entry beneath the
4069** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004070**
4071** The left-most leaf is the one with the smallest key - the first
4072** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004073*/
4074static int moveToLeftmost(BtCursor *pCur){
4075 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004076 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004077 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004078
drh1fee73e2007-08-29 04:00:57 +00004079 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004080 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004081 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4082 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4083 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004084 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004085 }
drhd677b3d2007-08-20 22:48:41 +00004086 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004087}
4088
drh2dcc9aa2002-12-04 13:40:25 +00004089/*
4090** Move the cursor down to the right-most leaf entry beneath the
4091** page to which it is currently pointing. Notice the difference
4092** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4093** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4094** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004095**
4096** The right-most entry is the one with the largest key - the last
4097** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004098*/
4099static int moveToRightmost(BtCursor *pCur){
4100 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004101 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004102 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004103
drh1fee73e2007-08-29 04:00:57 +00004104 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004105 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004106 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004107 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004108 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004109 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004110 }
drhd677b3d2007-08-20 22:48:41 +00004111 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004112 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004113 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004114 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004115 }
danielk1977518002e2008-09-05 05:02:46 +00004116 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004117}
4118
drh5e00f6c2001-09-13 13:46:56 +00004119/* Move the cursor to the first entry in the table. Return SQLITE_OK
4120** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004121** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004122*/
drh3aac2dd2004-04-26 14:10:20 +00004123int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004124 int rc;
drhd677b3d2007-08-20 22:48:41 +00004125
drh1fee73e2007-08-29 04:00:57 +00004126 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004127 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004128 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004129 if( rc==SQLITE_OK ){
4130 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004131 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004132 *pRes = 1;
4133 rc = SQLITE_OK;
4134 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004135 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004136 *pRes = 0;
4137 rc = moveToLeftmost(pCur);
4138 }
drh5e00f6c2001-09-13 13:46:56 +00004139 }
drh5e00f6c2001-09-13 13:46:56 +00004140 return rc;
4141}
drh5e2f8b92001-05-28 00:41:15 +00004142
drh9562b552002-02-19 15:00:07 +00004143/* Move the cursor to the last entry in the table. Return SQLITE_OK
4144** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004145** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004146*/
drh3aac2dd2004-04-26 14:10:20 +00004147int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004148 int rc;
drhd677b3d2007-08-20 22:48:41 +00004149
drh1fee73e2007-08-29 04:00:57 +00004150 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004151 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004152
4153 /* If the cursor already points to the last entry, this is a no-op. */
4154 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4155#ifdef SQLITE_DEBUG
4156 /* This block serves to assert() that the cursor really does point
4157 ** to the last entry in the b-tree. */
4158 int ii;
4159 for(ii=0; ii<pCur->iPage; ii++){
4160 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4161 }
4162 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4163 assert( pCur->apPage[pCur->iPage]->leaf );
4164#endif
4165 return SQLITE_OK;
4166 }
4167
drh9562b552002-02-19 15:00:07 +00004168 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004169 if( rc==SQLITE_OK ){
4170 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004171 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004172 *pRes = 1;
4173 }else{
4174 assert( pCur->eState==CURSOR_VALID );
4175 *pRes = 0;
4176 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004177 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004178 }
drh9562b552002-02-19 15:00:07 +00004179 }
drh9562b552002-02-19 15:00:07 +00004180 return rc;
4181}
4182
drhe14006d2008-03-25 17:23:32 +00004183/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004184** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004185**
drhe63d9992008-08-13 19:11:48 +00004186** For INTKEY tables, the intKey parameter is used. pIdxKey
4187** must be NULL. For index tables, pIdxKey is used and intKey
4188** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004189**
drh5e2f8b92001-05-28 00:41:15 +00004190** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004191** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004192** were present. The cursor might point to an entry that comes
4193** before or after the key.
4194**
drh64022502009-01-09 14:11:04 +00004195** An integer is written into *pRes which is the result of
4196** comparing the key with the entry to which the cursor is
4197** pointing. The meaning of the integer written into
4198** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004199**
4200** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004201** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004202** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004203**
4204** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004205** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004206**
4207** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004208** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004209**
drha059ad02001-04-17 20:09:11 +00004210*/
drhe63d9992008-08-13 19:11:48 +00004211int sqlite3BtreeMovetoUnpacked(
4212 BtCursor *pCur, /* The cursor to be moved */
4213 UnpackedRecord *pIdxKey, /* Unpacked index key */
4214 i64 intKey, /* The table key */
4215 int biasRight, /* If true, bias the search to the high end */
4216 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004217){
drh72f82862001-05-24 21:06:34 +00004218 int rc;
drhd677b3d2007-08-20 22:48:41 +00004219
drh1fee73e2007-08-29 04:00:57 +00004220 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004221 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004222 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004223 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004224
4225 /* If the cursor is already positioned at the point we are trying
4226 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004227 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4228 && pCur->apPage[0]->intKey
4229 ){
drhe63d9992008-08-13 19:11:48 +00004230 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004231 *pRes = 0;
4232 return SQLITE_OK;
4233 }
drhe63d9992008-08-13 19:11:48 +00004234 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004235 *pRes = -1;
4236 return SQLITE_OK;
4237 }
4238 }
4239
drh5e2f8b92001-05-28 00:41:15 +00004240 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004241 if( rc ){
4242 return rc;
4243 }
danielk197771d5d2c2008-09-29 11:49:47 +00004244 assert( pCur->apPage[pCur->iPage] );
4245 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004246 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004247 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004248 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004249 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004250 return SQLITE_OK;
4251 }
danielk197771d5d2c2008-09-29 11:49:47 +00004252 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004253 for(;;){
drh72f82862001-05-24 21:06:34 +00004254 int lwr, upr;
4255 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004256 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004257 int c;
4258
4259 /* pPage->nCell must be greater than zero. If this is the root-page
4260 ** the cursor would have been INVALID above and this for(;;) loop
4261 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004262 ** would have already detected db corruption. Similarly, pPage must
4263 ** be the right kind (index or table) of b-tree page. Otherwise
4264 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004265 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004266 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004267 lwr = 0;
4268 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004269 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004270 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004271 }else{
drhf49661a2008-12-10 16:45:50 +00004272 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004273 }
drh64022502009-01-09 14:11:04 +00004274 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004275 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4276 u8 *pCell; /* Pointer to current cell in pPage */
4277
drh366fda62006-01-13 02:35:09 +00004278 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004279 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004280 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004281 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004282 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004283 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004284 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004285 }
drha2c20e42008-03-29 16:01:04 +00004286 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004287 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004288 c = 0;
drhe63d9992008-08-13 19:11:48 +00004289 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004290 c = -1;
4291 }else{
drhe63d9992008-08-13 19:11:48 +00004292 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004293 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004294 }
danielk197711c327a2009-05-04 19:01:26 +00004295 pCur->validNKey = 1;
4296 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004297 }else{
danielk197711c327a2009-05-04 19:01:26 +00004298 /* The maximum supported page-size is 32768 bytes. This means that
4299 ** the maximum number of record bytes stored on an index B-Tree
4300 ** page is at most 8198 bytes, which may be stored as a 2-byte
4301 ** varint. This information is used to attempt to avoid parsing
4302 ** the entire cell by checking for the cases where the record is
4303 ** stored entirely within the b-tree page by inspecting the first
4304 ** 2 bytes of the cell.
4305 */
4306 int nCell = pCell[0];
4307 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4308 /* This branch runs if the record-size field of the cell is a
4309 ** single byte varint and the record fits entirely on the main
4310 ** b-tree page. */
4311 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4312 }else if( !(pCell[1] & 0x80)
4313 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4314 ){
4315 /* The record-size field is a 2 byte varint and the record
4316 ** fits entirely on the main b-tree page. */
4317 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004318 }else{
danielk197711c327a2009-05-04 19:01:26 +00004319 /* The record flows over onto one or more overflow pages. In
4320 ** this case the whole cell needs to be parsed, a buffer allocated
4321 ** and accessPayload() used to retrieve the record into the
4322 ** buffer before VdbeRecordCompare() can be called. */
4323 void *pCellKey;
4324 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004325 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004326 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004327 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004328 if( pCellKey==0 ){
4329 rc = SQLITE_NOMEM;
4330 goto moveto_finish;
4331 }
drhfb192682009-07-11 18:26:28 +00004332 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
danielk197711c327a2009-05-04 19:01:26 +00004333 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004334 sqlite3_free(pCellKey);
drh1e968a02008-03-25 00:22:21 +00004335 if( rc ) goto moveto_finish;
drhe51c44f2004-05-30 20:46:09 +00004336 }
drh3aac2dd2004-04-26 14:10:20 +00004337 }
drh72f82862001-05-24 21:06:34 +00004338 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004339 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004340 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004341 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004342 break;
4343 }else{
drh64022502009-01-09 14:11:04 +00004344 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004345 rc = SQLITE_OK;
4346 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004347 }
drh72f82862001-05-24 21:06:34 +00004348 }
4349 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004350 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004351 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004352 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004353 }
drhf1d68b32007-03-29 04:43:26 +00004354 if( lwr>upr ){
4355 break;
4356 }
drhf49661a2008-12-10 16:45:50 +00004357 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004358 }
4359 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004360 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004361 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004362 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004363 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004364 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004365 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004366 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004367 }
4368 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004369 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004370 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004371 rc = SQLITE_OK;
4372 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004373 }
drhf49661a2008-12-10 16:45:50 +00004374 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004375 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004376 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004377 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004378 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004379 }
drh1e968a02008-03-25 00:22:21 +00004380moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004381 return rc;
4382}
4383
drhd677b3d2007-08-20 22:48:41 +00004384
drh72f82862001-05-24 21:06:34 +00004385/*
drhc39e0002004-05-07 23:50:57 +00004386** Return TRUE if the cursor is not pointing at an entry of the table.
4387**
4388** TRUE will be returned after a call to sqlite3BtreeNext() moves
4389** past the last entry in the table or sqlite3BtreePrev() moves past
4390** the first entry. TRUE is also returned if the table is empty.
4391*/
4392int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004393 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4394 ** have been deleted? This API will need to change to return an error code
4395 ** as well as the boolean result value.
4396 */
4397 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004398}
4399
4400/*
drhbd03cae2001-06-02 02:40:57 +00004401** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004402** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004403** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004404** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004405*/
drhd094db12008-04-03 21:46:57 +00004406int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004407 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004408 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004409 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004410
drh1fee73e2007-08-29 04:00:57 +00004411 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004412 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004413 if( rc!=SQLITE_OK ){
4414 return rc;
4415 }
drh8c4d3a62007-04-06 01:03:32 +00004416 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004417 if( CURSOR_INVALID==pCur->eState ){
4418 *pRes = 1;
4419 return SQLITE_OK;
4420 }
danielk1977da184232006-01-05 11:34:32 +00004421 if( pCur->skip>0 ){
4422 pCur->skip = 0;
4423 *pRes = 0;
4424 return SQLITE_OK;
4425 }
4426 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004427
danielk197771d5d2c2008-09-29 11:49:47 +00004428 pPage = pCur->apPage[pCur->iPage];
4429 idx = ++pCur->aiIdx[pCur->iPage];
4430 assert( pPage->isInit );
4431 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004432
drh271efa52004-05-30 19:19:05 +00004433 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004434 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004435 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004436 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004437 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004438 if( rc ) return rc;
4439 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004440 *pRes = 0;
4441 return rc;
drh72f82862001-05-24 21:06:34 +00004442 }
drh5e2f8b92001-05-28 00:41:15 +00004443 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004444 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004445 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004446 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004447 return SQLITE_OK;
4448 }
danielk197730548662009-07-09 05:07:37 +00004449 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004450 pPage = pCur->apPage[pCur->iPage];
4451 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004452 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004453 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004454 rc = sqlite3BtreeNext(pCur, pRes);
4455 }else{
4456 rc = SQLITE_OK;
4457 }
4458 return rc;
drh8178a752003-01-05 21:41:40 +00004459 }
4460 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004461 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004462 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004463 }
drh5e2f8b92001-05-28 00:41:15 +00004464 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004465 return rc;
drh72f82862001-05-24 21:06:34 +00004466}
drhd677b3d2007-08-20 22:48:41 +00004467
drh72f82862001-05-24 21:06:34 +00004468
drh3b7511c2001-05-26 13:15:44 +00004469/*
drh2dcc9aa2002-12-04 13:40:25 +00004470** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004471** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004472** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004473** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004474*/
drhd094db12008-04-03 21:46:57 +00004475int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004476 int rc;
drh8178a752003-01-05 21:41:40 +00004477 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004478
drh1fee73e2007-08-29 04:00:57 +00004479 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004480 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004481 if( rc!=SQLITE_OK ){
4482 return rc;
4483 }
drha2c20e42008-03-29 16:01:04 +00004484 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004485 if( CURSOR_INVALID==pCur->eState ){
4486 *pRes = 1;
4487 return SQLITE_OK;
4488 }
danielk1977da184232006-01-05 11:34:32 +00004489 if( pCur->skip<0 ){
4490 pCur->skip = 0;
4491 *pRes = 0;
4492 return SQLITE_OK;
4493 }
4494 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004495
danielk197771d5d2c2008-09-29 11:49:47 +00004496 pPage = pCur->apPage[pCur->iPage];
4497 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004498 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004499 int idx = pCur->aiIdx[pCur->iPage];
4500 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004501 if( rc ){
4502 return rc;
4503 }
drh2dcc9aa2002-12-04 13:40:25 +00004504 rc = moveToRightmost(pCur);
4505 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004506 while( pCur->aiIdx[pCur->iPage]==0 ){
4507 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004508 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004509 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004510 return SQLITE_OK;
4511 }
danielk197730548662009-07-09 05:07:37 +00004512 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004513 }
drh271efa52004-05-30 19:19:05 +00004514 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004515 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004516
4517 pCur->aiIdx[pCur->iPage]--;
4518 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004519 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004520 rc = sqlite3BtreePrevious(pCur, pRes);
4521 }else{
4522 rc = SQLITE_OK;
4523 }
drh2dcc9aa2002-12-04 13:40:25 +00004524 }
drh8178a752003-01-05 21:41:40 +00004525 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004526 return rc;
4527}
4528
4529/*
drh3b7511c2001-05-26 13:15:44 +00004530** Allocate a new page from the database file.
4531**
danielk19773b8a05f2007-03-19 17:44:26 +00004532** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004533** has already been called on the new page.) The new page has also
4534** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004535** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004536**
4537** SQLITE_OK is returned on success. Any other return value indicates
4538** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004539** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004540**
drh199e3cf2002-07-18 11:01:47 +00004541** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4542** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004543** attempt to keep related pages close to each other in the database file,
4544** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004545**
4546** If the "exact" parameter is not 0, and the page-number nearby exists
4547** anywhere on the free-list, then it is guarenteed to be returned. This
4548** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004549*/
drh4f0c5872007-03-26 22:05:01 +00004550static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004551 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004552 MemPage **ppPage,
4553 Pgno *pPgno,
4554 Pgno nearby,
4555 u8 exact
4556){
drh3aac2dd2004-04-26 14:10:20 +00004557 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004558 int rc;
drh35cd6432009-06-05 14:17:21 +00004559 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004560 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004561 MemPage *pTrunk = 0;
4562 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004563 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004564
drh1fee73e2007-08-29 04:00:57 +00004565 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004566 pPage1 = pBt->pPage1;
drh1662b5a2009-06-04 19:06:09 +00004567 mxPage = pagerPagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004568 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004569 testcase( n==mxPage-1 );
4570 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004571 return SQLITE_CORRUPT_BKPT;
4572 }
drh3aac2dd2004-04-26 14:10:20 +00004573 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004574 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004575 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004576 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4577
4578 /* If the 'exact' parameter was true and a query of the pointer-map
4579 ** shows that the page 'nearby' is somewhere on the free-list, then
4580 ** the entire-list will be searched for that page.
4581 */
4582#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004583 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004584 u8 eType;
4585 assert( nearby>0 );
4586 assert( pBt->autoVacuum );
4587 rc = ptrmapGet(pBt, nearby, &eType, 0);
4588 if( rc ) return rc;
4589 if( eType==PTRMAP_FREEPAGE ){
4590 searchList = 1;
4591 }
4592 *pPgno = nearby;
4593 }
4594#endif
4595
4596 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4597 ** first free-list trunk page. iPrevTrunk is initially 1.
4598 */
danielk19773b8a05f2007-03-19 17:44:26 +00004599 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004600 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004601 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004602
4603 /* The code within this loop is run only once if the 'searchList' variable
4604 ** is not true. Otherwise, it runs once for each trunk-page on the
4605 ** free-list until the page 'nearby' is located.
4606 */
4607 do {
4608 pPrevTrunk = pTrunk;
4609 if( pPrevTrunk ){
4610 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004611 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004612 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004613 }
drhdf35a082009-07-09 02:24:35 +00004614 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004615 if( iTrunk>mxPage ){
4616 rc = SQLITE_CORRUPT_BKPT;
4617 }else{
danielk197730548662009-07-09 05:07:37 +00004618 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004619 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004620 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004621 pTrunk = 0;
4622 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004623 }
4624
4625 k = get4byte(&pTrunk->aData[4]);
drhdf35a082009-07-09 02:24:35 +00004626 testcase( k==(u32)(pBt->usableSize/4 - 2) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004627 if( k==0 && !searchList ){
4628 /* The trunk has no leaves and the list is not being searched.
4629 ** So extract the trunk page itself and use it as the newly
4630 ** allocated page */
4631 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004632 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004633 if( rc ){
4634 goto end_allocate_page;
4635 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004636 *pPgno = iTrunk;
4637 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4638 *ppPage = pTrunk;
4639 pTrunk = 0;
4640 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004641 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004642 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004643 rc = SQLITE_CORRUPT_BKPT;
4644 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004645#ifndef SQLITE_OMIT_AUTOVACUUM
4646 }else if( searchList && nearby==iTrunk ){
4647 /* The list is being searched and this trunk page is the page
4648 ** to allocate, regardless of whether it has leaves.
4649 */
4650 assert( *pPgno==iTrunk );
4651 *ppPage = pTrunk;
4652 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004653 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004654 if( rc ){
4655 goto end_allocate_page;
4656 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004657 if( k==0 ){
4658 if( !pPrevTrunk ){
4659 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4660 }else{
4661 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4662 }
4663 }else{
4664 /* The trunk page is required by the caller but it contains
4665 ** pointers to free-list leaves. The first leaf becomes a trunk
4666 ** page in this case.
4667 */
4668 MemPage *pNewTrunk;
4669 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004670 if( iNewTrunk>mxPage ){
4671 rc = SQLITE_CORRUPT_BKPT;
4672 goto end_allocate_page;
4673 }
drhdf35a082009-07-09 02:24:35 +00004674 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004675 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004676 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004677 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004678 }
danielk19773b8a05f2007-03-19 17:44:26 +00004679 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004680 if( rc!=SQLITE_OK ){
4681 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004682 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004683 }
4684 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4685 put4byte(&pNewTrunk->aData[4], k-1);
4686 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004687 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004688 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004689 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004690 put4byte(&pPage1->aData[32], iNewTrunk);
4691 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004692 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004693 if( rc ){
4694 goto end_allocate_page;
4695 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004696 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4697 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004698 }
4699 pTrunk = 0;
4700 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4701#endif
danielk1977e5765212009-06-17 11:13:28 +00004702 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004703 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004704 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004705 Pgno iPage;
4706 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004707 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004708 if( rc ){
4709 goto end_allocate_page;
4710 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004711 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004712 u32 i;
4713 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004714 closest = 0;
4715 dist = get4byte(&aData[8]) - nearby;
4716 if( dist<0 ) dist = -dist;
4717 for(i=1; i<k; i++){
4718 int d2 = get4byte(&aData[8+i*4]) - nearby;
4719 if( d2<0 ) d2 = -d2;
4720 if( d2<dist ){
4721 closest = i;
4722 dist = d2;
4723 }
4724 }
4725 }else{
4726 closest = 0;
4727 }
4728
4729 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004730 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004731 if( iPage>mxPage ){
4732 rc = SQLITE_CORRUPT_BKPT;
4733 goto end_allocate_page;
4734 }
drhdf35a082009-07-09 02:24:35 +00004735 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004736 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004737 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004738 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004739 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4740 ": %d more free pages\n",
4741 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4742 if( closest<k-1 ){
4743 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4744 }
4745 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004746 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004747 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004748 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004749 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004750 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004751 if( rc!=SQLITE_OK ){
4752 releasePage(*ppPage);
4753 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004754 }
4755 searchList = 0;
4756 }
drhee696e22004-08-30 16:52:17 +00004757 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004758 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004759 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004760 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004761 }else{
drh3aac2dd2004-04-26 14:10:20 +00004762 /* There are no pages on the freelist, so create a new page at the
4763 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004764 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004765 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004766
danielk1977bea2a942009-01-20 17:06:27 +00004767 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4768 (*pPgno)++;
4769 }
4770
danielk1977afcdd022004-10-31 16:25:42 +00004771#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004772 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004773 /* If *pPgno refers to a pointer-map page, allocate two new pages
4774 ** at the end of the file instead of one. The first allocated page
4775 ** becomes a new pointer-map page, the second is used by the caller.
4776 */
danielk1977ac861692009-03-28 10:54:22 +00004777 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004778 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004779 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk197730548662009-07-09 05:07:37 +00004780 rc = btreeGetPage(pBt, *pPgno, &pPg, 0);
danielk1977ac861692009-03-28 10:54:22 +00004781 if( rc==SQLITE_OK ){
4782 rc = sqlite3PagerWrite(pPg->pDbPage);
4783 releasePage(pPg);
4784 }
4785 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004786 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004787 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004788 }
4789#endif
4790
danielk1977599fcba2004-11-08 07:13:13 +00004791 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk197730548662009-07-09 05:07:37 +00004792 rc = btreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004793 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004794 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004795 if( rc!=SQLITE_OK ){
4796 releasePage(*ppPage);
4797 }
drh3a4c1412004-05-09 20:40:11 +00004798 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004799 }
danielk1977599fcba2004-11-08 07:13:13 +00004800
4801 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004802
4803end_allocate_page:
4804 releasePage(pTrunk);
4805 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004806 if( rc==SQLITE_OK ){
4807 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4808 releasePage(*ppPage);
4809 return SQLITE_CORRUPT_BKPT;
4810 }
4811 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004812 }else{
4813 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004814 }
drh3b7511c2001-05-26 13:15:44 +00004815 return rc;
4816}
4817
4818/*
danielk1977bea2a942009-01-20 17:06:27 +00004819** This function is used to add page iPage to the database file free-list.
4820** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004821**
danielk1977bea2a942009-01-20 17:06:27 +00004822** The value passed as the second argument to this function is optional.
4823** If the caller happens to have a pointer to the MemPage object
4824** corresponding to page iPage handy, it may pass it as the second value.
4825** Otherwise, it may pass NULL.
4826**
4827** If a pointer to a MemPage object is passed as the second argument,
4828** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004829*/
danielk1977bea2a942009-01-20 17:06:27 +00004830static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4831 MemPage *pTrunk = 0; /* Free-list trunk page */
4832 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4833 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4834 MemPage *pPage; /* Page being freed. May be NULL. */
4835 int rc; /* Return Code */
4836 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004837
danielk1977bea2a942009-01-20 17:06:27 +00004838 assert( sqlite3_mutex_held(pBt->mutex) );
4839 assert( iPage>1 );
4840 assert( !pMemPage || pMemPage->pgno==iPage );
4841
4842 if( pMemPage ){
4843 pPage = pMemPage;
4844 sqlite3PagerRef(pPage->pDbPage);
4845 }else{
4846 pPage = btreePageLookup(pBt, iPage);
4847 }
drh3aac2dd2004-04-26 14:10:20 +00004848
drha34b6762004-05-07 13:30:42 +00004849 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004850 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004851 if( rc ) goto freepage_out;
4852 nFree = get4byte(&pPage1->aData[36]);
4853 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004854
drhfcce93f2006-02-22 03:08:32 +00004855#ifdef SQLITE_SECURE_DELETE
4856 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4857 ** always fully overwrite deleted information with zeros.
4858 */
danielk197730548662009-07-09 05:07:37 +00004859 if( (!pPage && (rc = btreeGetPage(pBt, iPage, &pPage, 0)))
danielk1977bea2a942009-01-20 17:06:27 +00004860 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4861 ){
4862 goto freepage_out;
4863 }
drhfcce93f2006-02-22 03:08:32 +00004864 memset(pPage->aData, 0, pPage->pBt->pageSize);
4865#endif
4866
danielk1977687566d2004-11-02 12:56:41 +00004867 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004868 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004869 */
danielk197785d90ca2008-07-19 14:25:15 +00004870 if( ISAUTOVACUUM ){
danielk1977bea2a942009-01-20 17:06:27 +00004871 rc = ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0);
4872 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004873 }
danielk1977687566d2004-11-02 12:56:41 +00004874
danielk1977bea2a942009-01-20 17:06:27 +00004875 /* Now manipulate the actual database free-list structure. There are two
4876 ** possibilities. If the free-list is currently empty, or if the first
4877 ** trunk page in the free-list is full, then this page will become a
4878 ** new free-list trunk page. Otherwise, it will become a leaf of the
4879 ** first trunk page in the current free-list. This block tests if it
4880 ** is possible to add the page as a new free-list leaf.
4881 */
4882 if( nFree!=0 ){
4883 int nLeaf; /* Initial number of leaf cells on trunk page */
4884
4885 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00004886 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00004887 if( rc!=SQLITE_OK ){
4888 goto freepage_out;
4889 }
4890
4891 nLeaf = get4byte(&pTrunk->aData[4]);
4892 if( nLeaf<0 ){
4893 rc = SQLITE_CORRUPT_BKPT;
4894 goto freepage_out;
4895 }
4896 if( nLeaf<pBt->usableSize/4 - 8 ){
4897 /* In this case there is room on the trunk page to insert the page
4898 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004899 **
4900 ** Note that the trunk page is not really full until it contains
4901 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4902 ** coded. But due to a coding error in versions of SQLite prior to
4903 ** 3.6.0, databases with freelist trunk pages holding more than
4904 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4905 ** to maintain backwards compatibility with older versions of SQLite,
4906 ** we will contain to restrict the number of entries to usableSize/4 - 8
4907 ** for now. At some point in the future (once everyone has upgraded
4908 ** to 3.6.0 or later) we should consider fixing the conditional above
4909 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4910 */
danielk19773b8a05f2007-03-19 17:44:26 +00004911 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004912 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004913 put4byte(&pTrunk->aData[4], nLeaf+1);
4914 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhfcce93f2006-02-22 03:08:32 +00004915#ifndef SQLITE_SECURE_DELETE
danielk1977bea2a942009-01-20 17:06:27 +00004916 if( pPage ){
4917 sqlite3PagerDontWrite(pPage->pDbPage);
4918 }
drhfcce93f2006-02-22 03:08:32 +00004919#endif
danielk1977bea2a942009-01-20 17:06:27 +00004920 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004921 }
drh3a4c1412004-05-09 20:40:11 +00004922 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004923 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004924 }
drh3b7511c2001-05-26 13:15:44 +00004925 }
danielk1977bea2a942009-01-20 17:06:27 +00004926
4927 /* If control flows to this point, then it was not possible to add the
4928 ** the page being freed as a leaf page of the first trunk in the free-list.
4929 ** Possibly because the free-list is empty, or possibly because the
4930 ** first trunk in the free-list is full. Either way, the page being freed
4931 ** will become the new first trunk page in the free-list.
4932 */
danielk197730548662009-07-09 05:07:37 +00004933 if( ((!pPage) && (0 != (rc = btreeGetPage(pBt, iPage, &pPage, 0))))
shane63207ab2009-02-04 01:49:30 +00004934 || (0 != (rc = sqlite3PagerWrite(pPage->pDbPage)))
danielk1977bea2a942009-01-20 17:06:27 +00004935 ){
4936 goto freepage_out;
4937 }
4938 put4byte(pPage->aData, iTrunk);
4939 put4byte(&pPage->aData[4], 0);
4940 put4byte(&pPage1->aData[32], iPage);
4941 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
4942
4943freepage_out:
4944 if( pPage ){
4945 pPage->isInit = 0;
4946 }
4947 releasePage(pPage);
4948 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004949 return rc;
4950}
danielk1977bea2a942009-01-20 17:06:27 +00004951static int freePage(MemPage *pPage){
4952 return freePage2(pPage->pBt, pPage, pPage->pgno);
4953}
drh3b7511c2001-05-26 13:15:44 +00004954
4955/*
drh3aac2dd2004-04-26 14:10:20 +00004956** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00004957*/
drh3aac2dd2004-04-26 14:10:20 +00004958static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00004959 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00004960 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00004961 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00004962 int rc;
drh94440812007-03-06 11:42:19 +00004963 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00004964 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00004965
drh1fee73e2007-08-29 04:00:57 +00004966 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00004967 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004968 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00004969 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00004970 }
drh6f11bef2004-05-13 01:12:56 +00004971 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00004972 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00004973 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00004974 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
4975 assert( ovflPgno==0 || nOvfl>0 );
4976 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00004977 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004978 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00004979 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
4980 /* 0 is not a legal page number and page 1 cannot be an
4981 ** overflow page. Therefore if ovflPgno<2 or past the end of the
4982 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00004983 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00004984 }
danielk1977bea2a942009-01-20 17:06:27 +00004985 if( nOvfl ){
4986 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
4987 if( rc ) return rc;
4988 }
4989 rc = freePage2(pBt, pOvfl, ovflPgno);
4990 if( pOvfl ){
4991 sqlite3PagerUnref(pOvfl->pDbPage);
4992 }
drh3b7511c2001-05-26 13:15:44 +00004993 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00004994 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00004995 }
drh5e2f8b92001-05-28 00:41:15 +00004996 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00004997}
4998
4999/*
drh91025292004-05-03 19:49:32 +00005000** Create the byte sequence used to represent a cell on page pPage
5001** and write that byte sequence into pCell[]. Overflow pages are
5002** allocated and filled in as necessary. The calling procedure
5003** is responsible for making sure sufficient space has been allocated
5004** for pCell[].
5005**
5006** Note that pCell does not necessary need to point to the pPage->aData
5007** area. pCell might point to some temporary storage. The cell will
5008** be constructed in this temporary area then copied into pPage->aData
5009** later.
drh3b7511c2001-05-26 13:15:44 +00005010*/
5011static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005012 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005013 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005014 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005015 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005016 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005017 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005018){
drh3b7511c2001-05-26 13:15:44 +00005019 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005020 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005021 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005022 int spaceLeft;
5023 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005024 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005025 unsigned char *pPrior;
5026 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005027 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005028 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005029 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005030 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005031
drh1fee73e2007-08-29 04:00:57 +00005032 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005033
drhc5053fb2008-11-27 02:22:10 +00005034 /* pPage is not necessarily writeable since pCell might be auxiliary
5035 ** buffer space that is separate from the pPage buffer area */
5036 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5037 || sqlite3PagerIswriteable(pPage->pDbPage) );
5038
drh91025292004-05-03 19:49:32 +00005039 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005040 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005041 if( !pPage->leaf ){
5042 nHeader += 4;
5043 }
drh8b18dd42004-05-12 19:18:15 +00005044 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005045 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005046 }else{
drhb026e052007-05-02 01:34:31 +00005047 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005048 }
drh6f11bef2004-05-13 01:12:56 +00005049 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005050 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005051 assert( info.nHeader==nHeader );
5052 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005053 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005054
5055 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005056 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005057 if( pPage->intKey ){
5058 pSrc = pData;
5059 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005060 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005061 }else{
drh20abac22009-01-28 20:21:17 +00005062 if( nKey>0x7fffffff || pKey==0 ){
5063 return SQLITE_CORRUPT;
5064 }
drhf49661a2008-12-10 16:45:50 +00005065 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005066 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005067 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005068 }
drh6f11bef2004-05-13 01:12:56 +00005069 *pnSize = info.nSize;
5070 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005071 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005072 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005073
drh3b7511c2001-05-26 13:15:44 +00005074 while( nPayload>0 ){
5075 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005076#ifndef SQLITE_OMIT_AUTOVACUUM
5077 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005078 if( pBt->autoVacuum ){
5079 do{
5080 pgnoOvfl++;
5081 } while(
5082 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5083 );
danielk1977b39f70b2007-05-17 18:28:11 +00005084 }
danielk1977afcdd022004-10-31 16:25:42 +00005085#endif
drhf49661a2008-12-10 16:45:50 +00005086 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005087#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005088 /* If the database supports auto-vacuum, and the second or subsequent
5089 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005090 ** for that page now.
5091 **
5092 ** If this is the first overflow page, then write a partial entry
5093 ** to the pointer-map. If we write nothing to this pointer-map slot,
5094 ** then the optimistic overflow chain processing in clearCell()
5095 ** may misinterpret the uninitialised values and delete the
5096 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005097 */
danielk19774ef24492007-05-23 09:52:41 +00005098 if( pBt->autoVacuum && rc==SQLITE_OK ){
5099 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
5100 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
danielk197789a4be82007-05-23 13:34:32 +00005101 if( rc ){
5102 releasePage(pOvfl);
5103 }
danielk1977afcdd022004-10-31 16:25:42 +00005104 }
5105#endif
drh3b7511c2001-05-26 13:15:44 +00005106 if( rc ){
drh9b171272004-05-08 02:03:22 +00005107 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005108 return rc;
5109 }
drhc5053fb2008-11-27 02:22:10 +00005110
5111 /* If pToRelease is not zero than pPrior points into the data area
5112 ** of pToRelease. Make sure pToRelease is still writeable. */
5113 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5114
5115 /* If pPrior is part of the data area of pPage, then make sure pPage
5116 ** is still writeable */
5117 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5118 || sqlite3PagerIswriteable(pPage->pDbPage) );
5119
drh3aac2dd2004-04-26 14:10:20 +00005120 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005121 releasePage(pToRelease);
5122 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005123 pPrior = pOvfl->aData;
5124 put4byte(pPrior, 0);
5125 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005126 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005127 }
5128 n = nPayload;
5129 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005130
5131 /* If pToRelease is not zero than pPayload points into the data area
5132 ** of pToRelease. Make sure pToRelease is still writeable. */
5133 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5134
5135 /* If pPayload is part of the data area of pPage, then make sure pPage
5136 ** is still writeable */
5137 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5138 || sqlite3PagerIswriteable(pPage->pDbPage) );
5139
drhb026e052007-05-02 01:34:31 +00005140 if( nSrc>0 ){
5141 if( n>nSrc ) n = nSrc;
5142 assert( pSrc );
5143 memcpy(pPayload, pSrc, n);
5144 }else{
5145 memset(pPayload, 0, n);
5146 }
drh3b7511c2001-05-26 13:15:44 +00005147 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005148 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005149 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005150 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005151 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005152 if( nSrc==0 ){
5153 nSrc = nData;
5154 pSrc = pData;
5155 }
drhdd793422001-06-28 01:54:48 +00005156 }
drh9b171272004-05-08 02:03:22 +00005157 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005158 return SQLITE_OK;
5159}
5160
drh14acc042001-06-10 19:56:58 +00005161/*
5162** Remove the i-th cell from pPage. This routine effects pPage only.
5163** The cell content is not freed or deallocated. It is assumed that
5164** the cell content has been copied someplace else. This routine just
5165** removes the reference to the cell from pPage.
5166**
5167** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005168*/
shane0af3f892008-11-12 04:55:34 +00005169static int dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00005170 int i; /* Loop counter */
5171 int pc; /* Offset to cell content of cell being deleted */
5172 u8 *data; /* pPage->aData */
5173 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005174 int rc; /* The return code */
drh43605152004-05-29 21:46:49 +00005175
drh8c42ca92001-06-22 19:15:00 +00005176 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005177 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005178 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005179 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005180 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005181 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005182 pc = get2byte(ptr);
drhc5053fb2008-11-27 02:22:10 +00005183 if( (pc<pPage->hdrOffset+6+(pPage->leaf?0:4))
5184 || (pc+sz>pPage->pBt->usableSize) ){
shane0af3f892008-11-12 04:55:34 +00005185 return SQLITE_CORRUPT_BKPT;
5186 }
shanedcc50b72008-11-13 18:29:50 +00005187 rc = freeSpace(pPage, pc, sz);
5188 if( rc!=SQLITE_OK ){
5189 return rc;
5190 }
drh43605152004-05-29 21:46:49 +00005191 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5192 ptr[0] = ptr[2];
5193 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005194 }
5195 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00005196 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
5197 pPage->nFree += 2;
shane0af3f892008-11-12 04:55:34 +00005198 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005199}
5200
5201/*
5202** Insert a new cell on pPage at cell index "i". pCell points to the
5203** content of the cell.
5204**
5205** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005206** will not fit, then make a copy of the cell content into pTemp if
5207** pTemp is not null. Regardless of pTemp, allocate a new entry
5208** in pPage->aOvfl[] and make it point to the cell content (either
5209** in pTemp or the original pCell) and also record its index.
5210** Allocating a new entry in pPage->aCell[] implies that
5211** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005212**
5213** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5214** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005215** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005216** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005217*/
danielk1977e80463b2004-11-03 03:01:16 +00005218static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00005219 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005220 int i, /* New cell becomes the i-th cell of the page */
5221 u8 *pCell, /* Content of the new cell */
5222 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005223 u8 *pTemp, /* Temp storage space for pCell, if needed */
danielk19774dbaa892009-06-16 16:50:22 +00005224 Pgno iChild /* If non-zero, replace first 4 bytes with this value */
drh24cd67e2004-05-10 16:18:47 +00005225){
drh43605152004-05-29 21:46:49 +00005226 int idx; /* Where to write new cell content in data[] */
5227 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005228 int end; /* First byte past the last cell pointer in data[] */
5229 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005230 int cellOffset; /* Address of first cell pointer in data[] */
5231 u8 *data; /* The content of the whole page */
5232 u8 *ptr; /* Used for moving information around in data[] */
5233
danielk19774dbaa892009-06-16 16:50:22 +00005234 int nSkip = (iChild ? 4 : 0);
5235
drh43605152004-05-29 21:46:49 +00005236 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005237 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5238 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh43605152004-05-29 21:46:49 +00005239 assert( sz==cellSizePtr(pPage, pCell) );
drh1fee73e2007-08-29 04:00:57 +00005240 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00005241 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005242 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005243 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005244 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005245 }
danielk19774dbaa892009-06-16 16:50:22 +00005246 if( iChild ){
5247 put4byte(pCell, iChild);
5248 }
drh43605152004-05-29 21:46:49 +00005249 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005250 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005251 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005252 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005253 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005254 int rc = sqlite3PagerWrite(pPage->pDbPage);
5255 if( rc!=SQLITE_OK ){
5256 return rc;
5257 }
5258 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005259 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005260 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005261 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005262 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005263 rc = allocateSpace(pPage, sz, &idx);
5264 if( rc ) return rc;
5265 assert( idx>=end+2 );
5266 if( idx+sz > pPage->pBt->usableSize ){
shane34ac18d2008-11-11 22:18:20 +00005267 return SQLITE_CORRUPT_BKPT;
shane0af3f892008-11-12 04:55:34 +00005268 }
drh43605152004-05-29 21:46:49 +00005269 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005270 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005271 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005272 if( iChild ){
5273 put4byte(&data[idx], iChild);
5274 }
drh0a45c272009-07-08 01:49:11 +00005275 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005276 ptr[0] = ptr[-2];
5277 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005278 }
drh43605152004-05-29 21:46:49 +00005279 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005280 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005281#ifndef SQLITE_OMIT_AUTOVACUUM
5282 if( pPage->pBt->autoVacuum ){
5283 /* The cell may contain a pointer to an overflow page. If so, write
5284 ** the entry for the overflow page into the pointer map.
5285 */
danielk197746aa38f2009-06-25 16:11:05 +00005286 return ptrmapPutOvflPtr(pPage, pCell);
danielk1977a19df672004-11-03 11:37:07 +00005287 }
5288#endif
drh14acc042001-06-10 19:56:58 +00005289 }
danielk1977e80463b2004-11-03 03:01:16 +00005290
danielk1977e80463b2004-11-03 03:01:16 +00005291 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005292}
5293
5294/*
drhfa1a98a2004-05-14 19:08:17 +00005295** Add a list of cells to a page. The page should be initially empty.
5296** The cells are guaranteed to fit on the page.
5297*/
5298static void assemblePage(
5299 MemPage *pPage, /* The page to be assemblied */
5300 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005301 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005302 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005303){
5304 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005305 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005306 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005307 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5308 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5309 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005310
drh43605152004-05-29 21:46:49 +00005311 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005312 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005313 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005314 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005315
5316 /* Check that the page has just been zeroed by zeroPage() */
5317 assert( pPage->nCell==0 );
5318 assert( get2byte(&data[hdr+5])==nUsable );
5319
5320 pCellptr = &data[pPage->cellOffset + nCell*2];
5321 cellbody = nUsable;
5322 for(i=nCell-1; i>=0; i--){
5323 pCellptr -= 2;
5324 cellbody -= aSize[i];
5325 put2byte(pCellptr, cellbody);
5326 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005327 }
danielk1977fad91942009-04-29 17:49:59 +00005328 put2byte(&data[hdr+3], nCell);
5329 put2byte(&data[hdr+5], cellbody);
5330 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005331 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005332}
5333
drh14acc042001-06-10 19:56:58 +00005334/*
drhc3b70572003-01-04 19:44:07 +00005335** The following parameters determine how many adjacent pages get involved
5336** in a balancing operation. NN is the number of neighbors on either side
5337** of the page that participate in the balancing operation. NB is the
5338** total number of pages that participate, including the target page and
5339** NN neighbors on either side.
5340**
5341** The minimum value of NN is 1 (of course). Increasing NN above 1
5342** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5343** in exchange for a larger degradation in INSERT and UPDATE performance.
5344** The value of NN appears to give the best results overall.
5345*/
5346#define NN 1 /* Number of neighbors on either side of pPage */
5347#define NB (NN*2+1) /* Total pages involved in the balance */
5348
danielk1977ac245ec2005-01-14 13:50:11 +00005349
drh615ae552005-01-16 23:21:00 +00005350#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005351/*
5352** This version of balance() handles the common special case where
5353** a new entry is being inserted on the extreme right-end of the
5354** tree, in other words, when the new entry will become the largest
5355** entry in the tree.
5356**
5357** Instead of trying balance the 3 right-most leaf pages, just add
5358** a new page to the right-hand side and put the one new entry in
5359** that page. This leaves the right side of the tree somewhat
5360** unbalanced. But odds are that we will be inserting new entries
5361** at the end soon afterwards so the nearly empty page will quickly
5362** fill up. On average.
5363**
5364** pPage is the leaf page which is the right-most page in the tree.
5365** pParent is its parent. pPage must have a single overflow entry
5366** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005367**
5368** The pSpace buffer is used to store a temporary copy of the divider
5369** cell that will be inserted into pParent. Such a cell consists of a 4
5370** byte page number followed by a variable length integer. In other
5371** words, at most 13 bytes. Hence the pSpace buffer must be at
5372** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005373*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005374static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5375 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005376 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005377 int rc; /* Return Code */
5378 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005379
drh1fee73e2007-08-29 04:00:57 +00005380 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005381 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005382 assert( pPage->nOverflow==1 );
5383
drhd46b6c22009-06-04 17:02:51 +00005384 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005385
danielk1977a50d9aa2009-06-08 14:49:45 +00005386 /* Allocate a new page. This page will become the right-sibling of
5387 ** pPage. Make the parent page writable, so that the new divider cell
5388 ** may be inserted. If both these operations are successful, proceed.
5389 */
drh4f0c5872007-03-26 22:05:01 +00005390 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005391
danielk1977eaa06f62008-09-18 17:34:44 +00005392 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005393
5394 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005395 u8 *pCell = pPage->aOvfl[0].pCell;
5396 u16 szCell = cellSizePtr(pPage, pCell);
5397 u8 *pStop;
5398
drhc5053fb2008-11-27 02:22:10 +00005399 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005400 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5401 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005402 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005403
5404 /* If this is an auto-vacuum database, update the pointer map
5405 ** with entries for the new page, and any pointer from the
5406 ** cell on the page to an overflow page. If either of these
5407 ** operations fails, the return code is set, but the contents
5408 ** of the parent page are still manipulated by thh code below.
5409 ** That is Ok, at this point the parent page is guaranteed to
5410 ** be marked as dirty. Returning an error code will cause a
5411 ** rollback, undoing any changes made to the parent page.
5412 */
5413 if( ISAUTOVACUUM ){
5414 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
5415 if( szCell>pNew->minLocal && rc==SQLITE_OK ){
5416 rc = ptrmapPutOvflPtr(pNew, pCell);
5417 }
5418 }
danielk1977eaa06f62008-09-18 17:34:44 +00005419
danielk19776f235cc2009-06-04 14:46:08 +00005420 /* Create a divider cell to insert into pParent. The divider cell
5421 ** consists of a 4-byte page number (the page number of pPage) and
5422 ** a variable length key value (which must be the same value as the
5423 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005424 **
danielk19776f235cc2009-06-04 14:46:08 +00005425 ** To find the largest key value on pPage, first find the right-most
5426 ** cell on pPage. The first two fields of this cell are the
5427 ** record-length (a variable length integer at most 32-bits in size)
5428 ** and the key value (a variable length integer, may have any value).
5429 ** The first of the while(...) loops below skips over the record-length
5430 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005431 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005432 */
danielk1977eaa06f62008-09-18 17:34:44 +00005433 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005434 pStop = &pCell[9];
5435 while( (*(pCell++)&0x80) && pCell<pStop );
5436 pStop = &pCell[9];
5437 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5438
danielk19774dbaa892009-06-16 16:50:22 +00005439 /* Insert the new divider cell into pParent. */
5440 insertCell(pParent,pParent->nCell,pSpace,(int)(pOut-pSpace),0,pPage->pgno);
danielk19776f235cc2009-06-04 14:46:08 +00005441
5442 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005443 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5444
danielk1977e08a3c42008-09-18 18:17:03 +00005445 /* Release the reference to the new page. */
5446 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005447 }
5448
danielk1977eaa06f62008-09-18 17:34:44 +00005449 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005450}
drh615ae552005-01-16 23:21:00 +00005451#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005452
danielk19774dbaa892009-06-16 16:50:22 +00005453#if 0
drhc3b70572003-01-04 19:44:07 +00005454/*
danielk19774dbaa892009-06-16 16:50:22 +00005455** This function does not contribute anything to the operation of SQLite.
5456** it is sometimes activated temporarily while debugging code responsible
5457** for setting pointer-map entries.
5458*/
5459static int ptrmapCheckPages(MemPage **apPage, int nPage){
5460 int i, j;
5461 for(i=0; i<nPage; i++){
5462 Pgno n;
5463 u8 e;
5464 MemPage *pPage = apPage[i];
5465 BtShared *pBt = pPage->pBt;
5466 assert( pPage->isInit );
5467
5468 for(j=0; j<pPage->nCell; j++){
5469 CellInfo info;
5470 u8 *z;
5471
5472 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005473 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005474 if( info.iOverflow ){
5475 Pgno ovfl = get4byte(&z[info.iOverflow]);
5476 ptrmapGet(pBt, ovfl, &e, &n);
5477 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5478 }
5479 if( !pPage->leaf ){
5480 Pgno child = get4byte(z);
5481 ptrmapGet(pBt, child, &e, &n);
5482 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5483 }
5484 }
5485 if( !pPage->leaf ){
5486 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5487 ptrmapGet(pBt, child, &e, &n);
5488 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5489 }
5490 }
5491 return 1;
5492}
5493#endif
5494
danielk1977cd581a72009-06-23 15:43:39 +00005495/*
5496** This function is used to copy the contents of the b-tree node stored
5497** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5498** the pointer-map entries for each child page are updated so that the
5499** parent page stored in the pointer map is page pTo. If pFrom contained
5500** any cells with overflow page pointers, then the corresponding pointer
5501** map entries are also updated so that the parent page is page pTo.
5502**
5503** If pFrom is currently carrying any overflow cells (entries in the
5504** MemPage.aOvfl[] array), they are not copied to pTo.
5505**
danielk197730548662009-07-09 05:07:37 +00005506** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005507**
5508** The performance of this function is not critical. It is only used by
5509** the balance_shallower() and balance_deeper() procedures, neither of
5510** which are called often under normal circumstances.
5511*/
5512static int copyNodeContent(MemPage *pFrom, MemPage *pTo){
5513 BtShared * const pBt = pFrom->pBt;
5514 u8 * const aFrom = pFrom->aData;
5515 u8 * const aTo = pTo->aData;
5516 int const iFromHdr = pFrom->hdrOffset;
5517 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
5518 int rc = SQLITE_OK;
5519 int iData;
5520
5521 assert( pFrom->isInit );
5522 assert( pFrom->nFree>=iToHdr );
5523 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5524
5525 /* Copy the b-tree node content from page pFrom to page pTo. */
5526 iData = get2byte(&aFrom[iFromHdr+5]);
5527 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5528 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5529
5530 /* Reinitialize page pTo so that the contents of the MemPage structure
5531 ** match the new data. The initialization of pTo "cannot" fail, as the
5532 ** data copied from pFrom is known to be valid. */
5533 pTo->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00005534 TESTONLY(rc = ) btreeInitPage(pTo);
danielk1977cd581a72009-06-23 15:43:39 +00005535 assert( rc==SQLITE_OK );
5536
5537 /* If this is an auto-vacuum database, update the pointer-map entries
5538 ** for any b-tree or overflow pages that pTo now contains the pointers to. */
5539 if( ISAUTOVACUUM ){
5540 rc = setChildPtrmaps(pTo);
5541 }
5542 return rc;
5543}
5544
5545/*
danielk19774dbaa892009-06-16 16:50:22 +00005546** This routine redistributes cells on the iParentIdx'th child of pParent
5547** (hereafter "the page") and up to 2 siblings so that all pages have about the
5548** same amount of free space. Usually a single sibling on either side of the
5549** page are used in the balancing, though both siblings might come from one
5550** side if the page is the first or last child of its parent. If the page
5551** has fewer than 2 siblings (something which can only happen if the page
5552** is a root page or a child of a root page) then all available siblings
5553** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005554**
danielk19774dbaa892009-06-16 16:50:22 +00005555** The number of siblings of the page might be increased or decreased by
5556** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005557**
danielk19774dbaa892009-06-16 16:50:22 +00005558** Note that when this routine is called, some of the cells on the page
5559** might not actually be stored in MemPage.aData[]. This can happen
5560** if the page is overfull. This routine ensures that all cells allocated
5561** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005562**
danielk19774dbaa892009-06-16 16:50:22 +00005563** In the course of balancing the page and its siblings, cells may be
5564** inserted into or removed from the parent page (pParent). Doing so
5565** may cause the parent page to become overfull or underfull. If this
5566** happens, it is the responsibility of the caller to invoke the correct
5567** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005568**
drh5e00f6c2001-09-13 13:46:56 +00005569** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005570** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005571** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005572**
5573** The third argument to this function, aOvflSpace, is a pointer to a
5574** buffer page-size bytes in size. If, in inserting cells into the parent
5575** page (pParent), the parent page becomes overfull, this buffer is
5576** used to store the parents overflow cells. Because this function inserts
5577** a maximum of four divider cells into the parent page, and the maximum
5578** size of a cell stored within an internal node is always less than 1/4
5579** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5580** enough for all overflow cells.
5581**
5582** If aOvflSpace is set to a null pointer, this function returns
5583** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005584*/
danielk19774dbaa892009-06-16 16:50:22 +00005585static int balance_nonroot(
5586 MemPage *pParent, /* Parent page of siblings being balanced */
5587 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005588 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5589 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005590){
drh16a9b832007-05-05 18:39:25 +00005591 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005592 int nCell = 0; /* Number of cells in apCell[] */
5593 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005594 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005595 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005596 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005597 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005598 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005599 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005600 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005601 int usableSpace; /* Bytes in pPage beyond the header */
5602 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005603 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005604 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005605 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005606 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005607 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005608 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005609 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005610 u8 *pRight; /* Location in parent of right-sibling pointer */
5611 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005612 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5613 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005614 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005615 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005616 u8 *aSpace1; /* Space for copies of dividers cells */
5617 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005618
danielk1977a50d9aa2009-06-08 14:49:45 +00005619 pBt = pParent->pBt;
5620 assert( sqlite3_mutex_held(pBt->mutex) );
5621 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005622
danielk1977e5765212009-06-17 11:13:28 +00005623#if 0
drh43605152004-05-29 21:46:49 +00005624 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005625#endif
drh2e38c322004-09-03 18:38:44 +00005626
danielk19774dbaa892009-06-16 16:50:22 +00005627 /* At this point pParent may have at most one overflow cell. And if
5628 ** this overflow cell is present, it must be the cell with
5629 ** index iParentIdx. This scenario comes about when this function
5630 ** is called (indirectly) from sqlite3BtreeDelete(). */
5631 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5632 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5633
danielk197711a8a862009-06-17 11:49:52 +00005634 if( !aOvflSpace ){
5635 return SQLITE_NOMEM;
5636 }
5637
danielk1977a50d9aa2009-06-08 14:49:45 +00005638 /* Find the sibling pages to balance. Also locate the cells in pParent
5639 ** that divide the siblings. An attempt is made to find NN siblings on
5640 ** either side of pPage. More siblings are taken from one side, however,
5641 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005642 ** has NB or fewer children then all children of pParent are taken.
5643 **
5644 ** This loop also drops the divider cells from the parent page. This
5645 ** way, the remainder of the function does not have to deal with any
5646 ** overflow cells in the parent page, as if one existed it has already
5647 ** been removed. */
5648 i = pParent->nOverflow + pParent->nCell;
5649 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005650 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005651 nOld = i+1;
5652 }else{
5653 nOld = 3;
5654 if( iParentIdx==0 ){
5655 nxDiv = 0;
5656 }else if( iParentIdx==i ){
5657 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005658 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005659 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005660 }
danielk19774dbaa892009-06-16 16:50:22 +00005661 i = 2;
5662 }
5663 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5664 pRight = &pParent->aData[pParent->hdrOffset+8];
5665 }else{
5666 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5667 }
5668 pgno = get4byte(pRight);
5669 while( 1 ){
5670 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5671 if( rc ){
5672 memset(apOld, 0, i*sizeof(MemPage*));
5673 goto balance_cleanup;
5674 }
danielk1977634f2982005-03-28 08:44:07 +00005675 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005676 if( (i--)==0 ) break;
5677
5678 if( pParent->nOverflow && i+nxDiv==pParent->aOvfl[0].idx ){
5679 apDiv[i] = pParent->aOvfl[0].pCell;
5680 pgno = get4byte(apDiv[i]);
5681 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5682 pParent->nOverflow = 0;
5683 }else{
5684 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5685 pgno = get4byte(apDiv[i]);
5686 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5687
5688 /* Drop the cell from the parent page. apDiv[i] still points to
5689 ** the cell within the parent, even though it has been dropped.
5690 ** This is safe because dropping a cell only overwrites the first
5691 ** four bytes of it, and this function does not need the first
5692 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005693 ** later on.
5694 **
5695 ** Unless SQLite is compiled in secure-delete mode. In this case,
5696 ** the dropCell() routine will overwrite the entire cell with zeroes.
5697 ** In this case, temporarily copy the cell into the aOvflSpace[]
5698 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5699 ** is allocated. */
5700#ifdef SQLITE_SECURE_DELETE
5701 memcpy(&aOvflSpace[apDiv[i]-pParent->aData], apDiv[i], szNew[i]);
5702 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5703#endif
danielk19774dbaa892009-06-16 16:50:22 +00005704 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i]);
5705 }
drh8b2f49b2001-06-08 00:21:52 +00005706 }
5707
drha9121e42008-02-19 14:59:35 +00005708 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005709 ** alignment */
drha9121e42008-02-19 14:59:35 +00005710 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005711
drh8b2f49b2001-06-08 00:21:52 +00005712 /*
danielk1977634f2982005-03-28 08:44:07 +00005713 ** Allocate space for memory structures
5714 */
danielk19774dbaa892009-06-16 16:50:22 +00005715 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005716 szScratch =
drha9121e42008-02-19 14:59:35 +00005717 nMaxCells*sizeof(u8*) /* apCell */
5718 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005719 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005720 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005721 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005722 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005723 rc = SQLITE_NOMEM;
5724 goto balance_cleanup;
5725 }
drha9121e42008-02-19 14:59:35 +00005726 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005727 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005728 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005729
5730 /*
5731 ** Load pointers to all cells on sibling pages and the divider cells
5732 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005733 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005734 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005735 **
5736 ** If the siblings are on leaf pages, then the child pointers of the
5737 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005738 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005739 ** child pointers. If siblings are not leaves, then all cell in
5740 ** apCell[] include child pointers. Either way, all cells in apCell[]
5741 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005742 **
5743 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5744 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005745 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005746 leafCorrection = apOld[0]->leaf*4;
5747 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005748 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005749 int limit;
5750
5751 /* Before doing anything else, take a copy of the i'th original sibling
5752 ** The rest of this function will use data from the copies rather
5753 ** that the original pages since the original pages will be in the
5754 ** process of being overwritten. */
5755 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5756 memcpy(pOld, apOld[i], sizeof(MemPage));
5757 pOld->aData = (void*)&pOld[1];
5758 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5759
5760 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005761 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005762 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005763 apCell[nCell] = findOverflowCell(pOld, j);
5764 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005765 nCell++;
5766 }
5767 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005768 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005769 u8 *pTemp;
5770 assert( nCell<nMaxCells );
5771 szCell[nCell] = sz;
5772 pTemp = &aSpace1[iSpace1];
5773 iSpace1 += sz;
5774 assert( sz<=pBt->pageSize/4 );
5775 assert( iSpace1<=pBt->pageSize );
5776 memcpy(pTemp, apDiv[i], sz);
5777 apCell[nCell] = pTemp+leafCorrection;
5778 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005779 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005780 if( !pOld->leaf ){
5781 assert( leafCorrection==0 );
5782 assert( pOld->hdrOffset==0 );
5783 /* The right pointer of the child page pOld becomes the left
5784 ** pointer of the divider cell */
5785 memcpy(apCell[nCell], &pOld->aData[8], 4);
5786 }else{
5787 assert( leafCorrection==4 );
5788 if( szCell[nCell]<4 ){
5789 /* Do not allow any cells smaller than 4 bytes. */
5790 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005791 }
5792 }
drh14acc042001-06-10 19:56:58 +00005793 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005794 }
drh8b2f49b2001-06-08 00:21:52 +00005795 }
5796
5797 /*
drh6019e162001-07-02 17:51:45 +00005798 ** Figure out the number of pages needed to hold all nCell cells.
5799 ** Store this number in "k". Also compute szNew[] which is the total
5800 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005801 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005802 ** cntNew[k] should equal nCell.
5803 **
drh96f5b762004-05-16 16:24:36 +00005804 ** Values computed by this block:
5805 **
5806 ** k: The total number of sibling pages
5807 ** szNew[i]: Spaced used on the i-th sibling page.
5808 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5809 ** the right of the i-th sibling page.
5810 ** usableSpace: Number of bytes of space available on each sibling.
5811 **
drh8b2f49b2001-06-08 00:21:52 +00005812 */
drh43605152004-05-29 21:46:49 +00005813 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005814 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005815 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005816 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005817 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005818 szNew[k] = subtotal - szCell[i];
5819 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005820 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005821 subtotal = 0;
5822 k++;
drheac74422009-06-14 12:47:11 +00005823 if( k>NB+1 ){ rc = SQLITE_CORRUPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00005824 }
5825 }
5826 szNew[k] = subtotal;
5827 cntNew[k] = nCell;
5828 k++;
drh96f5b762004-05-16 16:24:36 +00005829
5830 /*
5831 ** The packing computed by the previous block is biased toward the siblings
5832 ** on the left side. The left siblings are always nearly full, while the
5833 ** right-most sibling might be nearly empty. This block of code attempts
5834 ** to adjust the packing of siblings to get a better balance.
5835 **
5836 ** This adjustment is more than an optimization. The packing above might
5837 ** be so out of balance as to be illegal. For example, the right-most
5838 ** sibling might be completely empty. This adjustment is not optional.
5839 */
drh6019e162001-07-02 17:51:45 +00005840 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005841 int szRight = szNew[i]; /* Size of sibling on the right */
5842 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5843 int r; /* Index of right-most cell in left sibling */
5844 int d; /* Index of first cell to the left of right sibling */
5845
5846 r = cntNew[i-1] - 1;
5847 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005848 assert( d<nMaxCells );
5849 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005850 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5851 szRight += szCell[d] + 2;
5852 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005853 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005854 r = cntNew[i-1] - 1;
5855 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005856 }
drh96f5b762004-05-16 16:24:36 +00005857 szNew[i] = szRight;
5858 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005859 }
drh09d0deb2005-08-02 17:13:09 +00005860
danielk19776f235cc2009-06-04 14:46:08 +00005861 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00005862 ** a virtual root page. A virtual root page is when the real root
5863 ** page is page 1 and we are the only child of that page.
5864 */
5865 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005866
danielk1977e5765212009-06-17 11:13:28 +00005867 TRACE(("BALANCE: old: %d %d %d ",
5868 apOld[0]->pgno,
5869 nOld>=2 ? apOld[1]->pgno : 0,
5870 nOld>=3 ? apOld[2]->pgno : 0
5871 ));
5872
drh8b2f49b2001-06-08 00:21:52 +00005873 /*
drh6b308672002-07-08 02:16:37 +00005874 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005875 */
drheac74422009-06-14 12:47:11 +00005876 if( apOld[0]->pgno<=1 ){
5877 rc = SQLITE_CORRUPT;
5878 goto balance_cleanup;
5879 }
danielk1977a50d9aa2009-06-08 14:49:45 +00005880 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00005881 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005882 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005883 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005884 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005885 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005886 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005887 nNew++;
danielk197728129562005-01-11 10:25:06 +00005888 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005889 }else{
drh7aa8f852006-03-28 00:24:44 +00005890 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00005891 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00005892 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005893 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005894 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00005895
5896 /* Set the pointer-map entry for the new sibling page. */
5897 if( ISAUTOVACUUM ){
5898 rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
5899 if( rc!=SQLITE_OK ){
5900 goto balance_cleanup;
5901 }
5902 }
drh6b308672002-07-08 02:16:37 +00005903 }
drh8b2f49b2001-06-08 00:21:52 +00005904 }
5905
danielk1977299b1872004-11-22 10:02:10 +00005906 /* Free any old pages that were not reused as new pages.
5907 */
5908 while( i<nOld ){
5909 rc = freePage(apOld[i]);
5910 if( rc ) goto balance_cleanup;
5911 releasePage(apOld[i]);
5912 apOld[i] = 0;
5913 i++;
5914 }
5915
drh8b2f49b2001-06-08 00:21:52 +00005916 /*
drhf9ffac92002-03-02 19:00:31 +00005917 ** Put the new pages in accending order. This helps to
5918 ** keep entries in the disk file in order so that a scan
5919 ** of the table is a linear scan through the file. That
5920 ** in turn helps the operating system to deliver pages
5921 ** from the disk more rapidly.
5922 **
5923 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005924 ** n is never more than NB (a small constant), that should
5925 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005926 **
drhc3b70572003-01-04 19:44:07 +00005927 ** When NB==3, this one optimization makes the database
5928 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00005929 */
5930 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005931 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005932 int minI = i;
5933 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00005934 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00005935 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00005936 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005937 }
5938 }
5939 if( minI>i ){
5940 int t;
5941 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00005942 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005943 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00005944 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00005945 apNew[minI] = pT;
5946 }
5947 }
danielk1977e5765212009-06-17 11:13:28 +00005948 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00005949 apNew[0]->pgno, szNew[0],
5950 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
5951 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
5952 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
5953 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
5954
5955 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
5956 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00005957
drhf9ffac92002-03-02 19:00:31 +00005958 /*
drh14acc042001-06-10 19:56:58 +00005959 ** Evenly distribute the data in apCell[] across the new pages.
5960 ** Insert divider cells into pParent as necessary.
5961 */
5962 j = 0;
5963 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00005964 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00005965 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00005966 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00005967 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00005968 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00005969 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00005970 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00005971
danielk1977ac11ee62005-01-15 12:45:51 +00005972 j = cntNew[i];
5973
5974 /* If the sibling page assembled above was not the right-most sibling,
5975 ** insert a divider cell into the parent page.
5976 */
danielk19771c3d2bf2009-06-23 16:40:17 +00005977 assert( i<nNew-1 || j==nCell );
5978 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00005979 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00005980 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00005981 int sz;
danielk1977634f2982005-03-28 08:44:07 +00005982
5983 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00005984 pCell = apCell[j];
5985 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00005986 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00005987 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00005988 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00005989 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00005990 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00005991 ** then there is no divider cell in apCell[]. Instead, the divider
5992 ** cell consists of the integer key for the right-most cell of
5993 ** the sibling-page assembled above only.
5994 */
drh6f11bef2004-05-13 01:12:56 +00005995 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00005996 j--;
danielk197730548662009-07-09 05:07:37 +00005997 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00005998 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00005999 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006000 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006001 }else{
6002 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006003 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006004 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006005 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006006 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006007 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006008 ** insertCell(), so reparse the cell now.
6009 **
6010 ** Note that this can never happen in an SQLite data file, as all
6011 ** cells are at least 4 bytes. It only happens in b-trees used
6012 ** to evaluate "IN (SELECT ...)" and similar clauses.
6013 */
6014 if( szCell[j]==4 ){
6015 assert(leafCorrection==4);
6016 sz = cellSizePtr(pParent, pCell);
6017 }
drh4b70f112004-05-02 21:12:19 +00006018 }
danielk19776067a9b2009-06-09 09:41:00 +00006019 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00006020 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006021 assert( iOvflSpace<=pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006022 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno);
danielk1977e80463b2004-11-03 03:01:16 +00006023 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006024 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006025
drh14acc042001-06-10 19:56:58 +00006026 j++;
6027 nxDiv++;
6028 }
6029 }
drh6019e162001-07-02 17:51:45 +00006030 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006031 assert( nOld>0 );
6032 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006033 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006034 u8 *zChild = &apCopy[nOld-1]->aData[8];
6035 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006036 }
6037
danielk197713bd99f2009-06-24 05:40:34 +00006038 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6039 /* The root page of the b-tree now contains no cells. The only sibling
6040 ** page is the right-child of the parent. Copy the contents of the
6041 ** child page into the parent, decreasing the overall height of the
6042 ** b-tree structure by one. This is described as the "balance-shallower"
6043 ** sub-algorithm in some documentation.
6044 **
6045 ** If this is an auto-vacuum database, the call to copyNodeContent()
6046 ** sets all pointer-map entries corresponding to database image pages
6047 ** for which the pointer is stored within the content being copied.
6048 **
6049 ** The second assert below verifies that the child page is defragmented
6050 ** (it must be, as it was just reconstructed using assemblePage()). This
6051 ** is important if the parent page happens to be page 1 of the database
6052 ** image. */
6053 assert( nNew==1 );
6054 assert( apNew[0]->nFree ==
6055 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6056 );
6057 if( SQLITE_OK==(rc = copyNodeContent(apNew[0], pParent)) ){
6058 rc = freePage(apNew[0]);
6059 }
6060 }else if( ISAUTOVACUUM ){
6061 /* Fix the pointer-map entries for all the cells that were shifted around.
6062 ** There are several different types of pointer-map entries that need to
6063 ** be dealt with by this routine. Some of these have been set already, but
6064 ** many have not. The following is a summary:
6065 **
6066 ** 1) The entries associated with new sibling pages that were not
6067 ** siblings when this function was called. These have already
6068 ** been set. We don't need to worry about old siblings that were
6069 ** moved to the free-list - the freePage() code has taken care
6070 ** of those.
6071 **
6072 ** 2) The pointer-map entries associated with the first overflow
6073 ** page in any overflow chains used by new divider cells. These
6074 ** have also already been taken care of by the insertCell() code.
6075 **
6076 ** 3) If the sibling pages are not leaves, then the child pages of
6077 ** cells stored on the sibling pages may need to be updated.
6078 **
6079 ** 4) If the sibling pages are not internal intkey nodes, then any
6080 ** overflow pages used by these cells may need to be updated
6081 ** (internal intkey nodes never contain pointers to overflow pages).
6082 **
6083 ** 5) If the sibling pages are not leaves, then the pointer-map
6084 ** entries for the right-child pages of each sibling may need
6085 ** to be updated.
6086 **
6087 ** Cases 1 and 2 are dealt with above by other code. The next
6088 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6089 ** setting a pointer map entry is a relatively expensive operation, this
6090 ** code only sets pointer map entries for child or overflow pages that have
6091 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006092 MemPage *pNew = apNew[0];
6093 MemPage *pOld = apCopy[0];
6094 int nOverflow = pOld->nOverflow;
6095 int iNextOld = pOld->nCell + nOverflow;
6096 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6097 j = 0; /* Current 'old' sibling page */
6098 k = 0; /* Current 'new' sibling page */
6099 for(i=0; i<nCell && rc==SQLITE_OK; i++){
6100 int isDivider = 0;
6101 while( i==iNextOld ){
6102 /* Cell i is the cell immediately following the last cell on old
6103 ** sibling page j. If the siblings are not leaf pages of an
6104 ** intkey b-tree, then cell i was a divider cell. */
6105 pOld = apCopy[++j];
6106 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6107 if( pOld->nOverflow ){
6108 nOverflow = pOld->nOverflow;
6109 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6110 }
6111 isDivider = !leafData;
6112 }
6113
6114 assert(nOverflow>0 || iOverflow<i );
6115 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6116 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6117 if( i==iOverflow ){
6118 isDivider = 1;
6119 if( (--nOverflow)>0 ){
6120 iOverflow++;
6121 }
6122 }
6123
6124 if( i==cntNew[k] ){
6125 /* Cell i is the cell immediately following the last cell on new
6126 ** sibling page k. If the siblings are not leaf pages of an
6127 ** intkey b-tree, then cell i is a divider cell. */
6128 pNew = apNew[++k];
6129 if( !leafData ) continue;
6130 }
6131 assert( rc==SQLITE_OK );
6132 assert( j<nOld );
6133 assert( k<nNew );
6134
6135 /* If the cell was originally divider cell (and is not now) or
6136 ** an overflow cell, or if the cell was located on a different sibling
6137 ** page before the balancing, then the pointer map entries associated
6138 ** with any child or overflow pages need to be updated. */
6139 if( isDivider || pOld->pgno!=pNew->pgno ){
6140 if( !leafCorrection ){
6141 rc = ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno);
6142 }
6143 if( szCell[i]>pNew->minLocal && rc==SQLITE_OK ){
6144 rc = ptrmapPutOvflPtr(pNew, apCell[i]);
6145 }
6146 }
6147 }
6148
6149 if( !leafCorrection ){
6150 for(i=0; rc==SQLITE_OK && i<nNew; i++){
6151 rc = ptrmapPut(
6152 pBt, get4byte(&apNew[i]->aData[8]), PTRMAP_BTREE, apNew[i]->pgno);
6153 }
6154 }
6155
6156#if 0
6157 /* The ptrmapCheckPages() contains assert() statements that verify that
6158 ** all pointer map pages are set correctly. This is helpful while
6159 ** debugging. This is usually disabled because a corrupt database may
6160 ** cause an assert() statement to fail. */
6161 ptrmapCheckPages(apNew, nNew);
6162 ptrmapCheckPages(&pParent, 1);
6163#endif
6164 }
6165
danielk197771d5d2c2008-09-29 11:49:47 +00006166 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006167 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6168 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006169
drh8b2f49b2001-06-08 00:21:52 +00006170 /*
drh14acc042001-06-10 19:56:58 +00006171 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006172 */
drh14acc042001-06-10 19:56:58 +00006173balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006174 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006175 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006176 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006177 }
drh14acc042001-06-10 19:56:58 +00006178 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006179 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006180 }
danielk1977eaa06f62008-09-18 17:34:44 +00006181
drh8b2f49b2001-06-08 00:21:52 +00006182 return rc;
6183}
6184
drh43605152004-05-29 21:46:49 +00006185
6186/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006187** This function is called when the root page of a b-tree structure is
6188** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006189**
danielk1977a50d9aa2009-06-08 14:49:45 +00006190** A new child page is allocated and the contents of the current root
6191** page, including overflow cells, are copied into the child. The root
6192** page is then overwritten to make it an empty page with the right-child
6193** pointer pointing to the new page.
6194**
6195** Before returning, all pointer-map entries corresponding to pages
6196** that the new child-page now contains pointers to are updated. The
6197** entry corresponding to the new right-child pointer of the root
6198** page is also updated.
6199**
6200** If successful, *ppChild is set to contain a reference to the child
6201** page and SQLITE_OK is returned. In this case the caller is required
6202** to call releasePage() on *ppChild exactly once. If an error occurs,
6203** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006204*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006205static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6206 int rc; /* Return value from subprocedures */
6207 MemPage *pChild = 0; /* Pointer to a new child page */
6208 Pgno pgnoChild; /* Page number of the new child page */
6209 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006210
danielk1977a50d9aa2009-06-08 14:49:45 +00006211 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006212 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006213
danielk1977a50d9aa2009-06-08 14:49:45 +00006214 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6215 ** page that will become the new right-child of pPage. Copy the contents
6216 ** of the node stored on pRoot into the new child page.
6217 */
6218 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pRoot->pDbPage))
6219 || SQLITE_OK!=(rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0))
6220 || SQLITE_OK!=(rc = copyNodeContent(pRoot, pChild))
6221 || (ISAUTOVACUUM &&
6222 SQLITE_OK!=(rc = ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno)))
6223 ){
6224 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006225 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006226 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006227 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006228 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6229 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6230 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006231
danielk1977a50d9aa2009-06-08 14:49:45 +00006232 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6233
6234 /* Copy the overflow cells from pRoot to pChild */
6235 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6236 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006237
6238 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6239 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6240 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6241
6242 *ppChild = pChild;
6243 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006244}
6245
6246/*
danielk197771d5d2c2008-09-29 11:49:47 +00006247** The page that pCur currently points to has just been modified in
6248** some way. This function figures out if this modification means the
6249** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006250** routine. Balancing routines are:
6251**
6252** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006253** balance_deeper()
6254** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006255*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006256static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006257 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006258 const int nMin = pCur->pBt->usableSize * 2 / 3;
6259 u8 aBalanceQuickSpace[13];
6260 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006261
shane75ac1de2009-06-09 18:58:52 +00006262 TESTONLY( int balance_quick_called = 0 );
6263 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006264
6265 do {
6266 int iPage = pCur->iPage;
6267 MemPage *pPage = pCur->apPage[iPage];
6268
6269 if( iPage==0 ){
6270 if( pPage->nOverflow ){
6271 /* The root page of the b-tree is overfull. In this case call the
6272 ** balance_deeper() function to create a new child for the root-page
6273 ** and copy the current contents of the root-page to it. The
6274 ** next iteration of the do-loop will balance the child page.
6275 */
6276 assert( (balance_deeper_called++)==0 );
6277 rc = balance_deeper(pPage, &pCur->apPage[1]);
6278 if( rc==SQLITE_OK ){
6279 pCur->iPage = 1;
6280 pCur->aiIdx[0] = 0;
6281 pCur->aiIdx[1] = 0;
6282 assert( pCur->apPage[1]->nOverflow );
6283 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006284 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006285 break;
6286 }
6287 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6288 break;
6289 }else{
6290 MemPage * const pParent = pCur->apPage[iPage-1];
6291 int const iIdx = pCur->aiIdx[iPage-1];
6292
6293 rc = sqlite3PagerWrite(pParent->pDbPage);
6294 if( rc==SQLITE_OK ){
6295#ifndef SQLITE_OMIT_QUICKBALANCE
6296 if( pPage->hasData
6297 && pPage->nOverflow==1
6298 && pPage->aOvfl[0].idx==pPage->nCell
6299 && pParent->pgno!=1
6300 && pParent->nCell==iIdx
6301 ){
6302 /* Call balance_quick() to create a new sibling of pPage on which
6303 ** to store the overflow cell. balance_quick() inserts a new cell
6304 ** into pParent, which may cause pParent overflow. If this
6305 ** happens, the next interation of the do-loop will balance pParent
6306 ** use either balance_nonroot() or balance_deeper(). Until this
6307 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6308 ** buffer.
6309 **
6310 ** The purpose of the following assert() is to check that only a
6311 ** single call to balance_quick() is made for each call to this
6312 ** function. If this were not verified, a subtle bug involving reuse
6313 ** of the aBalanceQuickSpace[] might sneak in.
6314 */
6315 assert( (balance_quick_called++)==0 );
6316 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6317 }else
6318#endif
6319 {
6320 /* In this case, call balance_nonroot() to redistribute cells
6321 ** between pPage and up to 2 of its sibling pages. This involves
6322 ** modifying the contents of pParent, which may cause pParent to
6323 ** become overfull or underfull. The next iteration of the do-loop
6324 ** will balance the parent page to correct this.
6325 **
6326 ** If the parent page becomes overfull, the overflow cell or cells
6327 ** are stored in the pSpace buffer allocated immediately below.
6328 ** A subsequent iteration of the do-loop will deal with this by
6329 ** calling balance_nonroot() (balance_deeper() may be called first,
6330 ** but it doesn't deal with overflow cells - just moves them to a
6331 ** different page). Once this subsequent call to balance_nonroot()
6332 ** has completed, it is safe to release the pSpace buffer used by
6333 ** the previous call, as the overflow cell data will have been
6334 ** copied either into the body of a database page or into the new
6335 ** pSpace buffer passed to the latter call to balance_nonroot().
6336 */
6337 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006338 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006339 if( pFree ){
6340 /* If pFree is not NULL, it points to the pSpace buffer used
6341 ** by a previous call to balance_nonroot(). Its contents are
6342 ** now stored either on real database pages or within the
6343 ** new pSpace buffer, so it may be safely freed here. */
6344 sqlite3PageFree(pFree);
6345 }
6346
danielk19774dbaa892009-06-16 16:50:22 +00006347 /* The pSpace buffer will be freed after the next call to
6348 ** balance_nonroot(), or just before this function returns, whichever
6349 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006350 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006351 }
6352 }
6353
6354 pPage->nOverflow = 0;
6355
6356 /* The next iteration of the do-loop balances the parent page. */
6357 releasePage(pPage);
6358 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006359 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006360 }while( rc==SQLITE_OK );
6361
6362 if( pFree ){
6363 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006364 }
6365 return rc;
6366}
6367
drhf74b8d92002-09-01 23:20:45 +00006368
6369/*
drh3b7511c2001-05-26 13:15:44 +00006370** Insert a new record into the BTree. The key is given by (pKey,nKey)
6371** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006372** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006373** is left pointing at a random location.
6374**
6375** For an INTKEY table, only the nKey value of the key is used. pKey is
6376** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006377**
6378** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006379** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006380** been performed. seekResult is the search result returned (a negative
6381** number if pCur points at an entry that is smaller than (pKey, nKey), or
6382** a positive value if pCur points at an etry that is larger than
6383** (pKey, nKey)).
6384**
6385** If the seekResult parameter is 0, then cursor pCur may point to any
6386** entry or to no entry at all. In this case this function has to seek
6387** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006388*/
drh3aac2dd2004-04-26 14:10:20 +00006389int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006390 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006391 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006392 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006393 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006394 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006395 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006396){
drh3b7511c2001-05-26 13:15:44 +00006397 int rc;
danielk1977de630352009-05-04 11:42:29 +00006398 int loc = seekResult;
drh14acc042001-06-10 19:56:58 +00006399 int szNew;
danielk197771d5d2c2008-09-29 11:49:47 +00006400 int idx;
drh3b7511c2001-05-26 13:15:44 +00006401 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006402 Btree *p = pCur->pBtree;
6403 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006404 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006405 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006406
drh1fee73e2007-08-29 04:00:57 +00006407 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006408 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006409 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006410 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006411 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6412
6413 /* If this is an insert into a table b-tree, invalidate any incrblob
6414 ** cursors open on the row being replaced (assuming this is a replace
6415 ** operation - if it is not, the following is a no-op). */
6416 if( pCur->pKeyInfo==0 ){
6417 invalidateIncrblobCursors(p, pCur->pgnoRoot, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006418 }
danielk197796d48e92009-06-29 06:00:37 +00006419
drhfb982642007-08-30 01:19:59 +00006420 if( pCur->eState==CURSOR_FAULT ){
6421 return pCur->skip;
6422 }
danielk1977da184232006-01-05 11:34:32 +00006423
danielk19779c3acf32009-05-02 07:36:49 +00006424 /* Save the positions of any other cursors open on this table.
6425 **
danielk19773509a652009-07-06 18:56:13 +00006426 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006427 ** example, when inserting data into a table with auto-generated integer
6428 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6429 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006430 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006431 ** that the cursor is already where it needs to be and returns without
6432 ** doing any work. To avoid thwarting these optimizations, it is important
6433 ** not to clear the cursor here.
6434 */
danielk1977de630352009-05-04 11:42:29 +00006435 if(
6436 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || (!loc &&
danielk19773509a652009-07-06 18:56:13 +00006437 SQLITE_OK!=(rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc))
danielk1977de630352009-05-04 11:42:29 +00006438 )){
danielk1977da184232006-01-05 11:34:32 +00006439 return rc;
6440 }
danielk1977b980d2212009-06-22 18:03:51 +00006441 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006442
danielk197771d5d2c2008-09-29 11:49:47 +00006443 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006444 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006445 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006446
drh3a4c1412004-05-09 20:40:11 +00006447 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6448 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6449 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006450 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006451 allocateTempSpace(pBt);
6452 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006453 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006454 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006455 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006456 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006457 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006458 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006459 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006460 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006461 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006462 rc = sqlite3PagerWrite(pPage->pDbPage);
6463 if( rc ){
6464 goto end_insert;
6465 }
danielk197771d5d2c2008-09-29 11:49:47 +00006466 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006467 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006468 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006469 }
drh43605152004-05-29 21:46:49 +00006470 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006471 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00006472 if( rc ) goto end_insert;
shane0af3f892008-11-12 04:55:34 +00006473 rc = dropCell(pPage, idx, szOld);
6474 if( rc!=SQLITE_OK ) {
6475 goto end_insert;
6476 }
drh7c717f72001-06-24 20:39:41 +00006477 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006478 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006479 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006480 }else{
drh4b70f112004-05-02 21:12:19 +00006481 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006482 }
danielk197771d5d2c2008-09-29 11:49:47 +00006483 rc = insertCell(pPage, idx, newCell, szNew, 0, 0);
danielk19773f632d52009-05-02 10:03:09 +00006484 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006485
danielk1977a50d9aa2009-06-08 14:49:45 +00006486 /* If no error has occured and pPage has an overflow cell, call balance()
6487 ** to redistribute the cells within the tree. Since balance() may move
6488 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6489 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006490 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006491 ** Previous versions of SQLite called moveToRoot() to move the cursor
6492 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006493 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6494 ** set the cursor state to "invalid". This makes common insert operations
6495 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006496 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006497 ** There is a subtle but important optimization here too. When inserting
6498 ** multiple records into an intkey b-tree using a single cursor (as can
6499 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6500 ** is advantageous to leave the cursor pointing to the last entry in
6501 ** the b-tree if possible. If the cursor is left pointing to the last
6502 ** entry in the table, and the next row inserted has an integer key
6503 ** larger than the largest existing key, it is possible to insert the
6504 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006505 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006506 pCur->info.nSize = 0;
6507 pCur->validNKey = 0;
6508 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006509 rc = balance(pCur);
6510
6511 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006512 ** fails. Internal data structure corruption will result otherwise.
6513 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6514 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006515 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006516 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006517 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006518 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006519
drh2e38c322004-09-03 18:38:44 +00006520end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006521 return rc;
6522}
6523
6524/*
drh4b70f112004-05-02 21:12:19 +00006525** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006526** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006527*/
drh3aac2dd2004-04-26 14:10:20 +00006528int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006529 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006530 BtShared *pBt = p->pBt;
6531 int rc; /* Return code */
6532 MemPage *pPage; /* Page to delete cell from */
6533 unsigned char *pCell; /* Pointer to cell to delete */
6534 int iCellIdx; /* Index of cell to delete */
6535 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006536
drh1fee73e2007-08-29 04:00:57 +00006537 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006538 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006539 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006540 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006541 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6542 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6543
danielk19774dbaa892009-06-16 16:50:22 +00006544 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6545 || NEVER(pCur->eState!=CURSOR_VALID)
6546 ){
6547 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006548 }
danielk1977da184232006-01-05 11:34:32 +00006549
danielk197796d48e92009-06-29 06:00:37 +00006550 /* If this is a delete operation to remove a row from a table b-tree,
6551 ** invalidate any incrblob cursors open on the row being deleted. */
6552 if( pCur->pKeyInfo==0 ){
6553 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006554 }
6555
6556 iCellDepth = pCur->iPage;
6557 iCellIdx = pCur->aiIdx[iCellDepth];
6558 pPage = pCur->apPage[iCellDepth];
6559 pCell = findCell(pPage, iCellIdx);
6560
6561 /* If the page containing the entry to delete is not a leaf page, move
6562 ** the cursor to the largest entry in the tree that is smaller than
6563 ** the entry being deleted. This cell will replace the cell being deleted
6564 ** from the internal node. The 'previous' entry is used for this instead
6565 ** of the 'next' entry, as the previous entry is always a part of the
6566 ** sub-tree headed by the child page of the cell being deleted. This makes
6567 ** balancing the tree following the delete operation easier. */
6568 if( !pPage->leaf ){
6569 int notUsed;
6570 if( SQLITE_OK!=(rc = sqlite3BtreePrevious(pCur, &notUsed)) ){
6571 return rc;
6572 }
6573 }
6574
6575 /* Save the positions of any other cursors open on this table before
6576 ** making any modifications. Make the page containing the entry to be
6577 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006578 ** entry and finally remove the cell itself from within the page.
6579 */
6580 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6581 if( rc ) return rc;
6582 rc = sqlite3PagerWrite(pPage->pDbPage);
6583 if( rc ) return rc;
6584 rc = clearCell(pPage, pCell);
6585 if( rc ) return rc;
6586 rc = dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell));
6587 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006588
danielk19774dbaa892009-06-16 16:50:22 +00006589 /* If the cell deleted was not located on a leaf page, then the cursor
6590 ** is currently pointing to the largest entry in the sub-tree headed
6591 ** by the child-page of the cell that was just deleted from an internal
6592 ** node. The cell from the leaf node needs to be moved to the internal
6593 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006594 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006595 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6596 int nCell;
6597 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6598 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006599
danielk19774dbaa892009-06-16 16:50:22 +00006600 pCell = findCell(pLeaf, pLeaf->nCell-1);
6601 nCell = cellSizePtr(pLeaf, pCell);
6602 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006603
danielk19774dbaa892009-06-16 16:50:22 +00006604 allocateTempSpace(pBt);
6605 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006606
drha4ec1d42009-07-11 13:13:11 +00006607 rc = sqlite3PagerWrite(pLeaf->pDbPage);
6608 if( rc ) return rc;
6609 rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n);
6610 if( rc ) return rc;
6611 rc = dropCell(pLeaf, pLeaf->nCell-1, nCell);
6612 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006613 }
danielk19774dbaa892009-06-16 16:50:22 +00006614
6615 /* Balance the tree. If the entry deleted was located on a leaf page,
6616 ** then the cursor still points to that page. In this case the first
6617 ** call to balance() repairs the tree, and the if(...) condition is
6618 ** never true.
6619 **
6620 ** Otherwise, if the entry deleted was on an internal node page, then
6621 ** pCur is pointing to the leaf page from which a cell was removed to
6622 ** replace the cell deleted from the internal node. This is slightly
6623 ** tricky as the leaf node may be underfull, and the internal node may
6624 ** be either under or overfull. In this case run the balancing algorithm
6625 ** on the leaf node first. If the balance proceeds far enough up the
6626 ** tree that we can be sure that any problem in the internal node has
6627 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6628 ** walk the cursor up the tree to the internal node and balance it as
6629 ** well. */
6630 rc = balance(pCur);
6631 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6632 while( pCur->iPage>iCellDepth ){
6633 releasePage(pCur->apPage[pCur->iPage--]);
6634 }
6635 rc = balance(pCur);
6636 }
6637
danielk19776b456a22005-03-21 04:04:02 +00006638 if( rc==SQLITE_OK ){
6639 moveToRoot(pCur);
6640 }
drh5e2f8b92001-05-28 00:41:15 +00006641 return rc;
drh3b7511c2001-05-26 13:15:44 +00006642}
drh8b2f49b2001-06-08 00:21:52 +00006643
6644/*
drhc6b52df2002-01-04 03:09:29 +00006645** Create a new BTree table. Write into *piTable the page
6646** number for the root page of the new table.
6647**
drhab01f612004-05-22 02:55:23 +00006648** The type of type is determined by the flags parameter. Only the
6649** following values of flags are currently in use. Other values for
6650** flags might not work:
6651**
6652** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6653** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006654*/
drhd677b3d2007-08-20 22:48:41 +00006655static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006656 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006657 MemPage *pRoot;
6658 Pgno pgnoRoot;
6659 int rc;
drhd677b3d2007-08-20 22:48:41 +00006660
drh1fee73e2007-08-29 04:00:57 +00006661 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006662 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006663 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006664
danielk1977003ba062004-11-04 02:57:33 +00006665#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006666 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006667 if( rc ){
6668 return rc;
6669 }
danielk1977003ba062004-11-04 02:57:33 +00006670#else
danielk1977687566d2004-11-02 12:56:41 +00006671 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006672 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6673 MemPage *pPageMove; /* The page to move to. */
6674
danielk197720713f32007-05-03 11:43:33 +00006675 /* Creating a new table may probably require moving an existing database
6676 ** to make room for the new tables root page. In case this page turns
6677 ** out to be an overflow page, delete all overflow page-map caches
6678 ** held by open cursors.
6679 */
danielk197792d4d7a2007-05-04 12:05:56 +00006680 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006681
danielk1977003ba062004-11-04 02:57:33 +00006682 /* Read the value of meta[3] from the database to determine where the
6683 ** root page of the new table should go. meta[3] is the largest root-page
6684 ** created so far, so the new root-page is (meta[3]+1).
6685 */
danielk1977602b4662009-07-02 07:47:33 +00006686 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006687 pgnoRoot++;
6688
danielk1977599fcba2004-11-08 07:13:13 +00006689 /* The new root-page may not be allocated on a pointer-map page, or the
6690 ** PENDING_BYTE page.
6691 */
drh72190432008-01-31 14:54:43 +00006692 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006693 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006694 pgnoRoot++;
6695 }
6696 assert( pgnoRoot>=3 );
6697
6698 /* Allocate a page. The page that currently resides at pgnoRoot will
6699 ** be moved to the allocated page (unless the allocated page happens
6700 ** to reside at pgnoRoot).
6701 */
drh4f0c5872007-03-26 22:05:01 +00006702 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006703 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006704 return rc;
6705 }
danielk1977003ba062004-11-04 02:57:33 +00006706
6707 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006708 /* pgnoRoot is the page that will be used for the root-page of
6709 ** the new table (assuming an error did not occur). But we were
6710 ** allocated pgnoMove. If required (i.e. if it was not allocated
6711 ** by extending the file), the current page at position pgnoMove
6712 ** is already journaled.
6713 */
danielk1977003ba062004-11-04 02:57:33 +00006714 u8 eType;
6715 Pgno iPtrPage;
6716
6717 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006718
6719 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006720 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006721 if( rc!=SQLITE_OK ){
6722 return rc;
6723 }
6724 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006725 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6726 rc = SQLITE_CORRUPT_BKPT;
6727 }
6728 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006729 releasePage(pRoot);
6730 return rc;
6731 }
drhccae6022005-02-26 17:31:26 +00006732 assert( eType!=PTRMAP_ROOTPAGE );
6733 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006734 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006735 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006736
6737 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006738 if( rc!=SQLITE_OK ){
6739 return rc;
6740 }
danielk197730548662009-07-09 05:07:37 +00006741 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006742 if( rc!=SQLITE_OK ){
6743 return rc;
6744 }
danielk19773b8a05f2007-03-19 17:44:26 +00006745 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006746 if( rc!=SQLITE_OK ){
6747 releasePage(pRoot);
6748 return rc;
6749 }
6750 }else{
6751 pRoot = pPageMove;
6752 }
6753
danielk197742741be2005-01-08 12:42:39 +00006754 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00006755 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
6756 if( rc ){
6757 releasePage(pRoot);
6758 return rc;
6759 }
danielk1977aef0bf62005-12-30 16:28:01 +00006760 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006761 if( rc ){
6762 releasePage(pRoot);
6763 return rc;
6764 }
danielk197742741be2005-01-08 12:42:39 +00006765
danielk1977003ba062004-11-04 02:57:33 +00006766 }else{
drh4f0c5872007-03-26 22:05:01 +00006767 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006768 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006769 }
6770#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006771 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006772 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006773 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006774 *piTable = (int)pgnoRoot;
6775 return SQLITE_OK;
6776}
drhd677b3d2007-08-20 22:48:41 +00006777int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6778 int rc;
6779 sqlite3BtreeEnter(p);
6780 rc = btreeCreateTable(p, piTable, flags);
6781 sqlite3BtreeLeave(p);
6782 return rc;
6783}
drh8b2f49b2001-06-08 00:21:52 +00006784
6785/*
6786** Erase the given database page and all its children. Return
6787** the page to the freelist.
6788*/
drh4b70f112004-05-02 21:12:19 +00006789static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006790 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00006791 Pgno pgno, /* Page number to clear */
danielk1977c7af4842008-10-27 13:59:33 +00006792 int freePageFlag, /* Deallocate page if true */
6793 int *pnChange
drh4b70f112004-05-02 21:12:19 +00006794){
danielk19776b456a22005-03-21 04:04:02 +00006795 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006796 int rc;
drh4b70f112004-05-02 21:12:19 +00006797 unsigned char *pCell;
6798 int i;
drh8b2f49b2001-06-08 00:21:52 +00006799
drh1fee73e2007-08-29 04:00:57 +00006800 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006801 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006802 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006803 }
6804
danielk197771d5d2c2008-09-29 11:49:47 +00006805 rc = getAndInitPage(pBt, pgno, &pPage);
danielk19776b456a22005-03-21 04:04:02 +00006806 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00006807 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006808 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006809 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006810 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006811 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006812 }
drh4b70f112004-05-02 21:12:19 +00006813 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006814 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006815 }
drha34b6762004-05-07 13:30:42 +00006816 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006817 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006818 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006819 }else if( pnChange ){
6820 assert( pPage->intKey );
6821 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006822 }
6823 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00006824 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00006825 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006826 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006827 }
danielk19776b456a22005-03-21 04:04:02 +00006828
6829cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006830 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006831 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006832}
6833
6834/*
drhab01f612004-05-22 02:55:23 +00006835** Delete all information from a single table in the database. iTable is
6836** the page number of the root of the table. After this routine returns,
6837** the root page is empty, but still exists.
6838**
6839** This routine will fail with SQLITE_LOCKED if there are any open
6840** read cursors on the table. Open write cursors are moved to the
6841** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006842**
6843** If pnChange is not NULL, then table iTable must be an intkey table. The
6844** integer value pointed to by pnChange is incremented by the number of
6845** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006846*/
danielk1977c7af4842008-10-27 13:59:33 +00006847int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006848 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006849 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006850 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006851 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00006852
6853 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
6854 ** is the root of a table b-tree - if it is not, the following call is
6855 ** a no-op). */
6856 invalidateIncrblobCursors(p, iTable, 0, 1);
6857
6858 if( SQLITE_OK==(rc = saveAllCursors(pBt, (Pgno)iTable, 0)) ){
danielk197762c14b32008-11-19 09:05:26 +00006859 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006860 }
drhd677b3d2007-08-20 22:48:41 +00006861 sqlite3BtreeLeave(p);
6862 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006863}
6864
6865/*
6866** Erase all information in a table and add the root of the table to
6867** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006868** page 1) is never added to the freelist.
6869**
6870** This routine will fail with SQLITE_LOCKED if there are any open
6871** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006872**
6873** If AUTOVACUUM is enabled and the page at iTable is not the last
6874** root page in the database file, then the last root page
6875** in the database file is moved into the slot formerly occupied by
6876** iTable and that last slot formerly occupied by the last root page
6877** is added to the freelist instead of iTable. In this say, all
6878** root pages are kept at the beginning of the database file, which
6879** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6880** page number that used to be the last root page in the file before
6881** the move. If no page gets moved, *piMoved is set to 0.
6882** The last root page is recorded in meta[3] and the value of
6883** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006884*/
danielk197789d40042008-11-17 14:20:56 +00006885static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006886 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006887 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006888 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006889
drh1fee73e2007-08-29 04:00:57 +00006890 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006891 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006892
danielk1977e6efa742004-11-10 11:55:10 +00006893 /* It is illegal to drop a table if any cursors are open on the
6894 ** database. This is because in auto-vacuum mode the backend may
6895 ** need to move another root-page to fill a gap left by the deleted
6896 ** root page. If an open cursor was using this page a problem would
6897 ** occur.
6898 */
6899 if( pBt->pCursor ){
danielk1977404ca072009-03-16 13:19:36 +00006900 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
6901 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00006902 }
danielk1977a0bf2652004-11-04 14:30:04 +00006903
danielk197730548662009-07-09 05:07:37 +00006904 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006905 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00006906 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00006907 if( rc ){
6908 releasePage(pPage);
6909 return rc;
6910 }
danielk1977a0bf2652004-11-04 14:30:04 +00006911
drh205f48e2004-11-05 00:43:11 +00006912 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006913
drh4b70f112004-05-02 21:12:19 +00006914 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006915#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00006916 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00006917 releasePage(pPage);
6918#else
6919 if( pBt->autoVacuum ){
6920 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00006921 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006922
6923 if( iTable==maxRootPgno ){
6924 /* If the table being dropped is the table with the largest root-page
6925 ** number in the database, put the root page on the free list.
6926 */
6927 rc = freePage(pPage);
6928 releasePage(pPage);
6929 if( rc!=SQLITE_OK ){
6930 return rc;
6931 }
6932 }else{
6933 /* The table being dropped does not have the largest root-page
6934 ** number in the database. So move the page that does into the
6935 ** gap left by the deleted root-page.
6936 */
6937 MemPage *pMove;
6938 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00006939 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006940 if( rc!=SQLITE_OK ){
6941 return rc;
6942 }
danielk19774c999992008-07-16 18:17:55 +00006943 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006944 releasePage(pMove);
6945 if( rc!=SQLITE_OK ){
6946 return rc;
6947 }
danielk197730548662009-07-09 05:07:37 +00006948 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006949 if( rc!=SQLITE_OK ){
6950 return rc;
6951 }
6952 rc = freePage(pMove);
6953 releasePage(pMove);
6954 if( rc!=SQLITE_OK ){
6955 return rc;
6956 }
6957 *piMoved = maxRootPgno;
6958 }
6959
danielk1977599fcba2004-11-08 07:13:13 +00006960 /* Set the new 'max-root-page' value in the database header. This
6961 ** is the old value less one, less one more if that happens to
6962 ** be a root-page number, less one again if that is the
6963 ** PENDING_BYTE_PAGE.
6964 */
danielk197787a6e732004-11-05 12:58:25 +00006965 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00006966 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
6967 maxRootPgno--;
6968 }
danielk1977266664d2006-02-10 08:24:21 +00006969 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00006970 maxRootPgno--;
6971 }
danielk1977599fcba2004-11-08 07:13:13 +00006972 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
6973
danielk1977aef0bf62005-12-30 16:28:01 +00006974 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006975 }else{
6976 rc = freePage(pPage);
6977 releasePage(pPage);
6978 }
6979#endif
drh2aa679f2001-06-25 02:11:07 +00006980 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00006981 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00006982 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00006983 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00006984 }
drh8b2f49b2001-06-08 00:21:52 +00006985 return rc;
6986}
drhd677b3d2007-08-20 22:48:41 +00006987int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
6988 int rc;
6989 sqlite3BtreeEnter(p);
6990 rc = btreeDropTable(p, iTable, piMoved);
6991 sqlite3BtreeLeave(p);
6992 return rc;
6993}
drh8b2f49b2001-06-08 00:21:52 +00006994
drh001bbcb2003-03-19 03:14:00 +00006995
drh8b2f49b2001-06-08 00:21:52 +00006996/*
danielk1977602b4662009-07-02 07:47:33 +00006997** This function may only be called if the b-tree connection already
6998** has a read or write transaction open on the database.
6999**
drh23e11ca2004-05-04 17:27:28 +00007000** Read the meta-information out of a database file. Meta[0]
7001** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007002** through meta[15] are available for use by higher layers. Meta[0]
7003** is read-only, the others are read/write.
7004**
7005** The schema layer numbers meta values differently. At the schema
7006** layer (and the SetCookie and ReadCookie opcodes) the number of
7007** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007008*/
danielk1977602b4662009-07-02 07:47:33 +00007009void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007010 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007011
drhd677b3d2007-08-20 22:48:41 +00007012 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007013 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007014 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007015 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007016 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007017
danielk1977602b4662009-07-02 07:47:33 +00007018 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007019
danielk1977602b4662009-07-02 07:47:33 +00007020 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7021 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007022#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007023 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007024#endif
drhae157872004-08-14 19:20:09 +00007025
drhd677b3d2007-08-20 22:48:41 +00007026 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007027}
7028
7029/*
drh23e11ca2004-05-04 17:27:28 +00007030** Write meta-information back into the database. Meta[0] is
7031** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007032*/
danielk1977aef0bf62005-12-30 16:28:01 +00007033int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7034 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007035 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007036 int rc;
drh23e11ca2004-05-04 17:27:28 +00007037 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007038 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007039 assert( p->inTrans==TRANS_WRITE );
7040 assert( pBt->pPage1!=0 );
7041 pP1 = pBt->pPage1->aData;
7042 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7043 if( rc==SQLITE_OK ){
7044 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007045#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007046 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007047 assert( pBt->autoVacuum || iMeta==0 );
7048 assert( iMeta==0 || iMeta==1 );
7049 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007050 }
drh64022502009-01-09 14:11:04 +00007051#endif
drh5df72a52002-06-06 23:16:05 +00007052 }
drhd677b3d2007-08-20 22:48:41 +00007053 sqlite3BtreeLeave(p);
7054 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007055}
drh8c42ca92001-06-22 19:15:00 +00007056
danielk1977a5533162009-02-24 10:01:51 +00007057#ifndef SQLITE_OMIT_BTREECOUNT
7058/*
7059** The first argument, pCur, is a cursor opened on some b-tree. Count the
7060** number of entries in the b-tree and write the result to *pnEntry.
7061**
7062** SQLITE_OK is returned if the operation is successfully executed.
7063** Otherwise, if an error is encountered (i.e. an IO error or database
7064** corruption) an SQLite error code is returned.
7065*/
7066int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7067 i64 nEntry = 0; /* Value to return in *pnEntry */
7068 int rc; /* Return code */
7069 rc = moveToRoot(pCur);
7070
7071 /* Unless an error occurs, the following loop runs one iteration for each
7072 ** page in the B-Tree structure (not including overflow pages).
7073 */
7074 while( rc==SQLITE_OK ){
7075 int iIdx; /* Index of child node in parent */
7076 MemPage *pPage; /* Current page of the b-tree */
7077
7078 /* If this is a leaf page or the tree is not an int-key tree, then
7079 ** this page contains countable entries. Increment the entry counter
7080 ** accordingly.
7081 */
7082 pPage = pCur->apPage[pCur->iPage];
7083 if( pPage->leaf || !pPage->intKey ){
7084 nEntry += pPage->nCell;
7085 }
7086
7087 /* pPage is a leaf node. This loop navigates the cursor so that it
7088 ** points to the first interior cell that it points to the parent of
7089 ** the next page in the tree that has not yet been visited. The
7090 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7091 ** of the page, or to the number of cells in the page if the next page
7092 ** to visit is the right-child of its parent.
7093 **
7094 ** If all pages in the tree have been visited, return SQLITE_OK to the
7095 ** caller.
7096 */
7097 if( pPage->leaf ){
7098 do {
7099 if( pCur->iPage==0 ){
7100 /* All pages of the b-tree have been visited. Return successfully. */
7101 *pnEntry = nEntry;
7102 return SQLITE_OK;
7103 }
danielk197730548662009-07-09 05:07:37 +00007104 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007105 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7106
7107 pCur->aiIdx[pCur->iPage]++;
7108 pPage = pCur->apPage[pCur->iPage];
7109 }
7110
7111 /* Descend to the child node of the cell that the cursor currently
7112 ** points at. This is the right-child if (iIdx==pPage->nCell).
7113 */
7114 iIdx = pCur->aiIdx[pCur->iPage];
7115 if( iIdx==pPage->nCell ){
7116 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7117 }else{
7118 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7119 }
7120 }
7121
shanebe217792009-03-05 04:20:31 +00007122 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007123 return rc;
7124}
7125#endif
drhdd793422001-06-28 01:54:48 +00007126
drhdd793422001-06-28 01:54:48 +00007127/*
drh5eddca62001-06-30 21:53:53 +00007128** Return the pager associated with a BTree. This routine is used for
7129** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007130*/
danielk1977aef0bf62005-12-30 16:28:01 +00007131Pager *sqlite3BtreePager(Btree *p){
7132 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007133}
drh5eddca62001-06-30 21:53:53 +00007134
drhb7f91642004-10-31 02:22:47 +00007135#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007136/*
7137** Append a message to the error message string.
7138*/
drh2e38c322004-09-03 18:38:44 +00007139static void checkAppendMsg(
7140 IntegrityCk *pCheck,
7141 char *zMsg1,
7142 const char *zFormat,
7143 ...
7144){
7145 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007146 if( !pCheck->mxErr ) return;
7147 pCheck->mxErr--;
7148 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007149 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007150 if( pCheck->errMsg.nChar ){
7151 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007152 }
drhf089aa42008-07-08 19:34:06 +00007153 if( zMsg1 ){
7154 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7155 }
7156 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7157 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007158 if( pCheck->errMsg.mallocFailed ){
7159 pCheck->mallocFailed = 1;
7160 }
drh5eddca62001-06-30 21:53:53 +00007161}
drhb7f91642004-10-31 02:22:47 +00007162#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007163
drhb7f91642004-10-31 02:22:47 +00007164#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007165/*
7166** Add 1 to the reference count for page iPage. If this is the second
7167** reference to the page, add an error message to pCheck->zErrMsg.
7168** Return 1 if there are 2 ore more references to the page and 0 if
7169** if this is the first reference to the page.
7170**
7171** Also check that the page number is in bounds.
7172*/
danielk197789d40042008-11-17 14:20:56 +00007173static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007174 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007175 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007176 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007177 return 1;
7178 }
7179 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007180 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007181 return 1;
7182 }
7183 return (pCheck->anRef[iPage]++)>1;
7184}
7185
danielk1977afcdd022004-10-31 16:25:42 +00007186#ifndef SQLITE_OMIT_AUTOVACUUM
7187/*
7188** Check that the entry in the pointer-map for page iChild maps to
7189** page iParent, pointer type ptrType. If not, append an error message
7190** to pCheck.
7191*/
7192static void checkPtrmap(
7193 IntegrityCk *pCheck, /* Integrity check context */
7194 Pgno iChild, /* Child page number */
7195 u8 eType, /* Expected pointer map type */
7196 Pgno iParent, /* Expected pointer map parent page number */
7197 char *zContext /* Context description (used for error msg) */
7198){
7199 int rc;
7200 u8 ePtrmapType;
7201 Pgno iPtrmapParent;
7202
7203 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7204 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007205 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007206 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7207 return;
7208 }
7209
7210 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7211 checkAppendMsg(pCheck, zContext,
7212 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7213 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7214 }
7215}
7216#endif
7217
drh5eddca62001-06-30 21:53:53 +00007218/*
7219** Check the integrity of the freelist or of an overflow page list.
7220** Verify that the number of pages on the list is N.
7221*/
drh30e58752002-03-02 20:41:57 +00007222static void checkList(
7223 IntegrityCk *pCheck, /* Integrity checking context */
7224 int isFreeList, /* True for a freelist. False for overflow page list */
7225 int iPage, /* Page number for first page in the list */
7226 int N, /* Expected number of pages in the list */
7227 char *zContext /* Context for error messages */
7228){
7229 int i;
drh3a4c1412004-05-09 20:40:11 +00007230 int expected = N;
7231 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007232 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007233 DbPage *pOvflPage;
7234 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007235 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007236 checkAppendMsg(pCheck, zContext,
7237 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007238 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007239 break;
7240 }
7241 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007242 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007243 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007244 break;
7245 }
danielk19773b8a05f2007-03-19 17:44:26 +00007246 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007247 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007248 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007249#ifndef SQLITE_OMIT_AUTOVACUUM
7250 if( pCheck->pBt->autoVacuum ){
7251 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7252 }
7253#endif
drh45b1fac2008-07-04 17:52:42 +00007254 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007255 checkAppendMsg(pCheck, zContext,
7256 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007257 N--;
7258 }else{
7259 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007260 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007261#ifndef SQLITE_OMIT_AUTOVACUUM
7262 if( pCheck->pBt->autoVacuum ){
7263 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7264 }
7265#endif
7266 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007267 }
7268 N -= n;
drh30e58752002-03-02 20:41:57 +00007269 }
drh30e58752002-03-02 20:41:57 +00007270 }
danielk1977afcdd022004-10-31 16:25:42 +00007271#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007272 else{
7273 /* If this database supports auto-vacuum and iPage is not the last
7274 ** page in this overflow list, check that the pointer-map entry for
7275 ** the following page matches iPage.
7276 */
7277 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007278 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007279 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7280 }
danielk1977afcdd022004-10-31 16:25:42 +00007281 }
7282#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007283 iPage = get4byte(pOvflData);
7284 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007285 }
7286}
drhb7f91642004-10-31 02:22:47 +00007287#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007288
drhb7f91642004-10-31 02:22:47 +00007289#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007290/*
7291** Do various sanity checks on a single page of a tree. Return
7292** the tree depth. Root pages return 0. Parents of root pages
7293** return 1, and so forth.
7294**
7295** These checks are done:
7296**
7297** 1. Make sure that cells and freeblocks do not overlap
7298** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007299** NO 2. Make sure cell keys are in order.
7300** NO 3. Make sure no key is less than or equal to zLowerBound.
7301** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007302** 5. Check the integrity of overflow pages.
7303** 6. Recursively call checkTreePage on all children.
7304** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007305** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007306** the root of the tree.
7307*/
7308static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007309 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007310 int iPage, /* Page number of the page to check */
drh74161702006-02-24 02:53:49 +00007311 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00007312){
7313 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007314 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007315 int hdr, cellStart;
7316 int nCell;
drhda200cc2004-05-09 11:51:38 +00007317 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007318 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007319 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007320 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007321 char *hit = 0;
drh5eddca62001-06-30 21:53:53 +00007322
drh5bb3eb92007-05-04 13:15:55 +00007323 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007324
drh5eddca62001-06-30 21:53:53 +00007325 /* Check that the page exists
7326 */
drhd9cb6ac2005-10-20 07:28:17 +00007327 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007328 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007329 if( iPage==0 ) return 0;
7330 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007331 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drhb56cd552009-05-01 13:16:54 +00007332 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh2e38c322004-09-03 18:38:44 +00007333 checkAppendMsg(pCheck, zContext,
7334 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007335 return 0;
7336 }
danielk197793caf5a2009-07-11 06:55:33 +00007337
7338 /* Clear MemPage.isInit to make sure the corruption detection code in
7339 ** btreeInitPage() is executed. */
7340 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007341 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007342 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007343 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007344 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007345 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007346 return 0;
7347 }
7348
7349 /* Check out all the cells.
7350 */
7351 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007352 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007353 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007354 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007355 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007356
7357 /* Check payload overflow pages
7358 */
drh5bb3eb92007-05-04 13:15:55 +00007359 sqlite3_snprintf(sizeof(zContext), zContext,
7360 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007361 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007362 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007363 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007364 if( !pPage->intKey ) sz += (int)info.nKey;
drh72365832007-03-06 15:53:44 +00007365 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007366 if( (sz>info.nLocal)
7367 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7368 ){
drhb6f41482004-05-14 01:58:11 +00007369 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007370 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7371#ifndef SQLITE_OMIT_AUTOVACUUM
7372 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007373 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007374 }
7375#endif
7376 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007377 }
7378
7379 /* Check sanity of left child page.
7380 */
drhda200cc2004-05-09 11:51:38 +00007381 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007382 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007383#ifndef SQLITE_OMIT_AUTOVACUUM
7384 if( pBt->autoVacuum ){
7385 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7386 }
7387#endif
danielk197762c14b32008-11-19 09:05:26 +00007388 d2 = checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007389 if( i>0 && d2!=depth ){
7390 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7391 }
7392 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007393 }
drh5eddca62001-06-30 21:53:53 +00007394 }
drhda200cc2004-05-09 11:51:38 +00007395 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007396 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007397 sqlite3_snprintf(sizeof(zContext), zContext,
7398 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007399#ifndef SQLITE_OMIT_AUTOVACUUM
7400 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007401 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00007402 }
7403#endif
danielk197762c14b32008-11-19 09:05:26 +00007404 checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007405 }
drh5eddca62001-06-30 21:53:53 +00007406
7407 /* Check for complete coverage of the page
7408 */
drhda200cc2004-05-09 11:51:38 +00007409 data = pPage->aData;
7410 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007411 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007412 if( hit==0 ){
7413 pCheck->mallocFailed = 1;
7414 }else{
shane5780ebd2008-11-11 17:36:30 +00007415 u16 contentOffset = get2byte(&data[hdr+5]);
7416 if (contentOffset > usableSize) {
7417 checkAppendMsg(pCheck, 0,
7418 "Corruption detected in header on page %d",iPage,0);
shane0af3f892008-11-12 04:55:34 +00007419 goto check_page_abort;
shane5780ebd2008-11-11 17:36:30 +00007420 }
7421 memset(hit+contentOffset, 0, usableSize-contentOffset);
7422 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007423 nCell = get2byte(&data[hdr+3]);
7424 cellStart = hdr + 12 - 4*pPage->leaf;
7425 for(i=0; i<nCell; i++){
7426 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007427 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007428 int j;
drh8c2bbb62009-07-10 02:52:20 +00007429 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007430 size = cellSizePtr(pPage, &data[pc]);
7431 }
danielk19777701e812005-01-10 12:59:51 +00007432 if( (pc+size-1)>=usableSize || pc<0 ){
7433 checkAppendMsg(pCheck, 0,
7434 "Corruption detected in cell %d on page %d",i,iPage,0);
7435 }else{
7436 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7437 }
drh2e38c322004-09-03 18:38:44 +00007438 }
drh8c2bbb62009-07-10 02:52:20 +00007439 i = get2byte(&data[hdr+1]);
7440 while( i>0 ){
7441 int size, j;
7442 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7443 size = get2byte(&data[i+2]);
7444 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7445 for(j=i+size-1; j>=i; j--) hit[j]++;
7446 j = get2byte(&data[i]);
7447 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7448 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7449 i = j;
drh2e38c322004-09-03 18:38:44 +00007450 }
7451 for(i=cnt=0; i<usableSize; i++){
7452 if( hit[i]==0 ){
7453 cnt++;
7454 }else if( hit[i]>1 ){
7455 checkAppendMsg(pCheck, 0,
7456 "Multiple uses for byte %d of page %d", i, iPage);
7457 break;
7458 }
7459 }
7460 if( cnt!=data[hdr+7] ){
7461 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007462 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007463 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007464 }
7465 }
shane0af3f892008-11-12 04:55:34 +00007466check_page_abort:
drh8c2bbb62009-07-10 02:52:20 +00007467 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007468 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007469 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007470}
drhb7f91642004-10-31 02:22:47 +00007471#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007472
drhb7f91642004-10-31 02:22:47 +00007473#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007474/*
7475** This routine does a complete check of the given BTree file. aRoot[] is
7476** an array of pages numbers were each page number is the root page of
7477** a table. nRoot is the number of entries in aRoot.
7478**
danielk19773509a652009-07-06 18:56:13 +00007479** A read-only or read-write transaction must be opened before calling
7480** this function.
7481**
drhc890fec2008-08-01 20:10:08 +00007482** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007483** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007484** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007485** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007486*/
drh1dcdbc02007-01-27 02:24:54 +00007487char *sqlite3BtreeIntegrityCheck(
7488 Btree *p, /* The btree to be checked */
7489 int *aRoot, /* An array of root pages numbers for individual trees */
7490 int nRoot, /* Number of entries in aRoot[] */
7491 int mxErr, /* Stop reporting errors after this many */
7492 int *pnErr /* Write number of errors seen to this variable */
7493){
danielk197789d40042008-11-17 14:20:56 +00007494 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007495 int nRef;
drhaaab5722002-02-19 13:39:21 +00007496 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007497 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007498 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007499
drhd677b3d2007-08-20 22:48:41 +00007500 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007501 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007502 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007503 sCheck.pBt = pBt;
7504 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007505 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007506 sCheck.mxErr = mxErr;
7507 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007508 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007509 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007510 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007511 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007512 return 0;
7513 }
drhe5ae5732008-06-15 02:51:47 +00007514 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007515 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007516 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007517 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007518 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007519 }
drhda200cc2004-05-09 11:51:38 +00007520 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007521 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007522 if( i<=sCheck.nPage ){
7523 sCheck.anRef[i] = 1;
7524 }
drhf089aa42008-07-08 19:34:06 +00007525 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007526
7527 /* Check the integrity of the freelist
7528 */
drha34b6762004-05-07 13:30:42 +00007529 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7530 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007531
7532 /* Check all the tables.
7533 */
danielk197789d40042008-11-17 14:20:56 +00007534 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007535 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007536#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007537 if( pBt->autoVacuum && aRoot[i]>1 ){
7538 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7539 }
7540#endif
danielk197762c14b32008-11-19 09:05:26 +00007541 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00007542 }
7543
7544 /* Make sure every page in the file is referenced
7545 */
drh1dcdbc02007-01-27 02:24:54 +00007546 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007547#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007548 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007549 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007550 }
danielk1977afcdd022004-10-31 16:25:42 +00007551#else
7552 /* If the database supports auto-vacuum, make sure no tables contain
7553 ** references to pointer-map pages.
7554 */
7555 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007556 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007557 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7558 }
7559 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007560 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007561 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7562 }
7563#endif
drh5eddca62001-06-30 21:53:53 +00007564 }
7565
drh64022502009-01-09 14:11:04 +00007566 /* Make sure this analysis did not leave any unref() pages.
7567 ** This is an internal consistency check; an integrity check
7568 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007569 */
drh64022502009-01-09 14:11:04 +00007570 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007571 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007572 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007573 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007574 );
drh5eddca62001-06-30 21:53:53 +00007575 }
7576
7577 /* Clean up and report errors.
7578 */
drhd677b3d2007-08-20 22:48:41 +00007579 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007580 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007581 if( sCheck.mallocFailed ){
7582 sqlite3StrAccumReset(&sCheck.errMsg);
7583 *pnErr = sCheck.nErr+1;
7584 return 0;
7585 }
drh1dcdbc02007-01-27 02:24:54 +00007586 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007587 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7588 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007589}
drhb7f91642004-10-31 02:22:47 +00007590#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007591
drh73509ee2003-04-06 20:44:45 +00007592/*
7593** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007594**
7595** The pager filename is invariant as long as the pager is
7596** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007597*/
danielk1977aef0bf62005-12-30 16:28:01 +00007598const char *sqlite3BtreeGetFilename(Btree *p){
7599 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007600 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007601}
7602
7603/*
danielk19775865e3d2004-06-14 06:03:57 +00007604** Return the pathname of the journal file for this database. The return
7605** value of this routine is the same regardless of whether the journal file
7606** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007607**
7608** The pager journal filename is invariant as long as the pager is
7609** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007610*/
danielk1977aef0bf62005-12-30 16:28:01 +00007611const char *sqlite3BtreeGetJournalname(Btree *p){
7612 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007613 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007614}
7615
danielk19771d850a72004-05-31 08:26:49 +00007616/*
7617** Return non-zero if a transaction is active.
7618*/
danielk1977aef0bf62005-12-30 16:28:01 +00007619int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007620 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007621 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007622}
7623
7624/*
danielk19772372c2b2006-06-27 16:34:56 +00007625** Return non-zero if a read (or write) transaction is active.
7626*/
7627int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007628 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007629 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007630 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007631}
7632
danielk197704103022009-02-03 16:51:24 +00007633int sqlite3BtreeIsInBackup(Btree *p){
7634 assert( p );
7635 assert( sqlite3_mutex_held(p->db->mutex) );
7636 return p->nBackup!=0;
7637}
7638
danielk19772372c2b2006-06-27 16:34:56 +00007639/*
danielk1977da184232006-01-05 11:34:32 +00007640** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007641** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007642** purposes (for example, to store a high-level schema associated with
7643** the shared-btree). The btree layer manages reference counting issues.
7644**
7645** The first time this is called on a shared-btree, nBytes bytes of memory
7646** are allocated, zeroed, and returned to the caller. For each subsequent
7647** call the nBytes parameter is ignored and a pointer to the same blob
7648** of memory returned.
7649**
danielk1977171bfed2008-06-23 09:50:50 +00007650** If the nBytes parameter is 0 and the blob of memory has not yet been
7651** allocated, a null pointer is returned. If the blob has already been
7652** allocated, it is returned as normal.
7653**
danielk1977da184232006-01-05 11:34:32 +00007654** Just before the shared-btree is closed, the function passed as the
7655** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007656** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007657** on the memory, the btree layer does that.
7658*/
7659void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7660 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007661 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007662 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007663 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007664 pBt->xFreeSchema = xFree;
7665 }
drh27641702007-08-22 02:56:42 +00007666 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007667 return pBt->pSchema;
7668}
7669
danielk1977c87d34d2006-01-06 13:00:28 +00007670/*
danielk1977404ca072009-03-16 13:19:36 +00007671** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7672** btree as the argument handle holds an exclusive lock on the
7673** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007674*/
7675int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007676 int rc;
drhe5fe6902007-12-07 18:55:28 +00007677 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007678 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007679 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7680 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007681 sqlite3BtreeLeave(p);
7682 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007683}
7684
drha154dcd2006-03-22 22:10:07 +00007685
7686#ifndef SQLITE_OMIT_SHARED_CACHE
7687/*
7688** Obtain a lock on the table whose root page is iTab. The
7689** lock is a write lock if isWritelock is true or a read lock
7690** if it is false.
7691*/
danielk1977c00da102006-01-07 13:21:04 +00007692int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007693 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00007694 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00007695 if( p->sharable ){
7696 u8 lockType = READ_LOCK + isWriteLock;
7697 assert( READ_LOCK+1==WRITE_LOCK );
7698 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00007699
drh6a9ad3d2008-04-02 16:29:30 +00007700 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007701 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007702 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007703 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007704 }
7705 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007706 }
7707 return rc;
7708}
drha154dcd2006-03-22 22:10:07 +00007709#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007710
danielk1977b4e9af92007-05-01 17:49:49 +00007711#ifndef SQLITE_OMIT_INCRBLOB
7712/*
7713** Argument pCsr must be a cursor opened for writing on an
7714** INTKEY table currently pointing at a valid table entry.
7715** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00007716**
7717** Only the data content may only be modified, it is not possible to
7718** change the length of the data stored. If this function is called with
7719** parameters that attempt to write past the end of the existing data,
7720** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00007721*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007722int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00007723 int rc;
drh1fee73e2007-08-29 04:00:57 +00007724 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007725 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00007726 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00007727
danielk1977c9000e62009-07-08 13:55:28 +00007728 rc = restoreCursorPosition(pCsr);
7729 if( rc!=SQLITE_OK ){
7730 return rc;
7731 }
danielk19773588ceb2008-06-10 17:30:26 +00007732 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7733 if( pCsr->eState!=CURSOR_VALID ){
7734 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007735 }
7736
danielk1977c9000e62009-07-08 13:55:28 +00007737 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007738 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00007739 ** (b) there is a read/write transaction open,
7740 ** (c) the connection holds a write-lock on the table (if required),
7741 ** (d) there are no conflicting read-locks, and
7742 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007743 */
danielk19774f029602009-07-08 18:45:37 +00007744 if( !pCsr->wrFlag ){
7745 return SQLITE_READONLY;
7746 }
danielk197796d48e92009-06-29 06:00:37 +00007747 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
7748 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
7749 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00007750 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00007751
drhfb192682009-07-11 18:26:28 +00007752 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007753}
danielk19772dec9702007-05-02 16:48:37 +00007754
7755/*
7756** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007757** overflow list for the current row. This is used by cursors opened
7758** for incremental blob IO only.
7759**
7760** This function sets a flag only. The actual page location cache
7761** (stored in BtCursor.aOverflow[]) is allocated and used by function
7762** accessPayload() (the worker function for sqlite3BtreeData() and
7763** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007764*/
7765void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007766 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007767 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007768 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007769 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007770 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007771}
danielk1977b4e9af92007-05-01 17:49:49 +00007772#endif