blob: e363e91f2a1609d431e3d2f1c5f14c66a04ca074 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drhe64ca7b2009-07-16 18:21:17 +000012** $Id: btree.c,v 1.691 2009/07/16 18:21:18 drh Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000015** See the header comment on "btreeInt.h" for additional information.
16** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000017*/
drha3152892007-05-05 11:48:52 +000018#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000019
drh8c42ca92001-06-22 19:15:00 +000020/*
drha3152892007-05-05 11:48:52 +000021** The header string that appears at the beginning of every
22** SQLite database.
drh556b2a22005-06-14 16:04:05 +000023*/
drh556b2a22005-06-14 16:04:05 +000024static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000025
drh8c42ca92001-06-22 19:15:00 +000026/*
drha3152892007-05-05 11:48:52 +000027** Set this global variable to 1 to enable tracing using the TRACE
28** macro.
drh615ae552005-01-16 23:21:00 +000029*/
drhe8f52c52008-07-12 14:52:20 +000030#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000031int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000032# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
33#else
34# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000035#endif
drh615ae552005-01-16 23:21:00 +000036
drh86f8c192007-08-22 00:39:19 +000037
38
drhe53831d2007-08-17 01:14:38 +000039#ifndef SQLITE_OMIT_SHARED_CACHE
40/*
danielk1977502b4e02008-09-02 14:07:24 +000041** A list of BtShared objects that are eligible for participation
42** in shared cache. This variable has file scope during normal builds,
43** but the test harness needs to access it so we make it global for
44** test builds.
drh7555d8e2009-03-20 13:15:30 +000045**
46** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000047*/
48#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000049BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#else
drh78f82d12008-09-02 00:52:52 +000051static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000052#endif
drhe53831d2007-08-17 01:14:38 +000053#endif /* SQLITE_OMIT_SHARED_CACHE */
54
55#ifndef SQLITE_OMIT_SHARED_CACHE
56/*
57** Enable or disable the shared pager and schema features.
58**
59** This routine has no effect on existing database connections.
60** The shared cache setting effects only future calls to
61** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
62*/
63int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000064 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000065 return SQLITE_OK;
66}
67#endif
68
drhd677b3d2007-08-20 22:48:41 +000069
danielk1977aef0bf62005-12-30 16:28:01 +000070
71#ifdef SQLITE_OMIT_SHARED_CACHE
72 /*
drhc25eabe2009-02-24 18:57:31 +000073 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
74 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000075 ** manipulate entries in the BtShared.pLock linked list used to store
76 ** shared-cache table level locks. If the library is compiled with the
77 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000078 ** of each BtShared structure and so this locking is not necessary.
79 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000080 */
drhc25eabe2009-02-24 18:57:31 +000081 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
82 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
83 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000084 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000085 #define hasSharedCacheTableLock(a,b,c,d) 1
86 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000087#endif
danielk1977aef0bf62005-12-30 16:28:01 +000088
drhe53831d2007-08-17 01:14:38 +000089#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000090
91#ifdef SQLITE_DEBUG
92/*
93** This function is only used as part of an assert() statement. It checks
94** that connection p holds the required locks to read or write to the
95** b-tree with root page iRoot. If so, true is returned. Otherwise, false.
96** For example, when writing to a table b-tree with root-page iRoot via
97** Btree connection pBtree:
98**
99** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
100**
101** When writing to an index b-tree that resides in a sharable database, the
102** caller should have first obtained a lock specifying the root page of
103** the corresponding table b-tree. This makes things a bit more complicated,
104** as this module treats each b-tree as a separate structure. To determine
105** the table b-tree corresponding to the index b-tree being written, this
106** function has to search through the database schema.
107**
108** Instead of a lock on the b-tree rooted at page iRoot, the caller may
109** hold a write-lock on the schema table (root page 1). This is also
110** acceptable.
111*/
112static int hasSharedCacheTableLock(
113 Btree *pBtree, /* Handle that must hold lock */
114 Pgno iRoot, /* Root page of b-tree */
115 int isIndex, /* True if iRoot is the root of an index b-tree */
116 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
117){
118 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
119 Pgno iTab = 0;
120 BtLock *pLock;
121
122 /* If this b-tree database is not shareable, or if the client is reading
123 ** and has the read-uncommitted flag set, then no lock is required.
124 ** In these cases return true immediately. If the client is reading
125 ** or writing an index b-tree, but the schema is not loaded, then return
126 ** true also. In this case the lock is required, but it is too difficult
127 ** to check if the client actually holds it. This doesn't happen very
128 ** often. */
129 if( (pBtree->sharable==0)
130 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
131 || (isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0 ))
132 ){
133 return 1;
134 }
135
136 /* Figure out the root-page that the lock should be held on. For table
137 ** b-trees, this is just the root page of the b-tree being read or
138 ** written. For index b-trees, it is the root page of the associated
139 ** table. */
140 if( isIndex ){
141 HashElem *p;
142 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
143 Index *pIdx = (Index *)sqliteHashData(p);
144 if( pIdx->tnum==iRoot ){
145 iTab = pIdx->pTable->tnum;
146 }
147 }
148 }else{
149 iTab = iRoot;
150 }
151
152 /* Search for the required lock. Either a write-lock on root-page iTab, a
153 ** write-lock on the schema table, or (if the client is reading) a
154 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
155 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
156 if( pLock->pBtree==pBtree
157 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
158 && pLock->eLock>=eLockType
159 ){
160 return 1;
161 }
162 }
163
164 /* Failed to find the required lock. */
165 return 0;
166}
167
168/*
169** This function is also used as part of assert() statements only. It
170** returns true if there exist one or more cursors open on the table
171** with root page iRoot that do not belong to either connection pBtree
172** or some other connection that has the read-uncommitted flag set.
173**
174** For example, before writing to page iRoot:
175**
176** assert( !hasReadConflicts(pBtree, iRoot) );
177*/
178static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
179 BtCursor *p;
180 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
181 if( p->pgnoRoot==iRoot
182 && p->pBtree!=pBtree
183 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
184 ){
185 return 1;
186 }
187 }
188 return 0;
189}
190#endif /* #ifdef SQLITE_DEBUG */
191
danielk1977da184232006-01-05 11:34:32 +0000192/*
danielk1977aef0bf62005-12-30 16:28:01 +0000193** Query to see if btree handle p may obtain a lock of type eLock
194** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000195** SQLITE_OK if the lock may be obtained (by calling
196** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000197*/
drhc25eabe2009-02-24 18:57:31 +0000198static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000199 BtShared *pBt = p->pBt;
200 BtLock *pIter;
201
drh1fee73e2007-08-29 04:00:57 +0000202 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000203 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
204 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000205 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000206
danielk19775b413d72009-04-01 09:41:54 +0000207 /* If requesting a write-lock, then the Btree must have an open write
208 ** transaction on this file. And, obviously, for this to be so there
209 ** must be an open write transaction on the file itself.
210 */
211 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
212 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
213
danielk1977da184232006-01-05 11:34:32 +0000214 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000215 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000216 return SQLITE_OK;
217 }
218
danielk1977641b0f42007-12-21 04:47:25 +0000219 /* If some other connection is holding an exclusive lock, the
220 ** requested lock may not be obtained.
221 */
danielk1977404ca072009-03-16 13:19:36 +0000222 if( pBt->pWriter!=p && pBt->isExclusive ){
223 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
224 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000225 }
226
danielk1977e0d9e6f2009-07-03 16:25:06 +0000227 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
228 /* The condition (pIter->eLock!=eLock) in the following if(...)
229 ** statement is a simplification of:
230 **
231 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
232 **
233 ** since we know that if eLock==WRITE_LOCK, then no other connection
234 ** may hold a WRITE_LOCK on any table in this file (since there can
235 ** only be a single writer).
236 */
237 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
238 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
239 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
240 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
241 if( eLock==WRITE_LOCK ){
242 assert( p==pBt->pWriter );
243 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000244 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000245 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000246 }
247 }
248 return SQLITE_OK;
249}
drhe53831d2007-08-17 01:14:38 +0000250#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000251
drhe53831d2007-08-17 01:14:38 +0000252#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000253/*
254** Add a lock on the table with root-page iTable to the shared-btree used
255** by Btree handle p. Parameter eLock must be either READ_LOCK or
256** WRITE_LOCK.
257**
danielk19779d104862009-07-09 08:27:14 +0000258** This function assumes the following:
259**
260** (a) The specified b-tree connection handle is connected to a sharable
261** b-tree database (one with the BtShared.sharable) flag set, and
262**
263** (b) No other b-tree connection handle holds a lock that conflicts
264** with the requested lock (i.e. querySharedCacheTableLock() has
265** already been called and returned SQLITE_OK).
266**
267** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
268** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000269*/
drhc25eabe2009-02-24 18:57:31 +0000270static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000271 BtShared *pBt = p->pBt;
272 BtLock *pLock = 0;
273 BtLock *pIter;
274
drh1fee73e2007-08-29 04:00:57 +0000275 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000276 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
277 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000278
danielk1977e0d9e6f2009-07-03 16:25:06 +0000279 /* A connection with the read-uncommitted flag set will never try to
280 ** obtain a read-lock using this function. The only read-lock obtained
281 ** by a connection in read-uncommitted mode is on the sqlite_master
282 ** table, and that lock is obtained in BtreeBeginTrans(). */
283 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
284
danielk19779d104862009-07-09 08:27:14 +0000285 /* This function should only be called on a sharable b-tree after it
286 ** has been determined that no other b-tree holds a conflicting lock. */
287 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000288 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000289
290 /* First search the list for an existing lock on this table. */
291 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
292 if( pIter->iTable==iTable && pIter->pBtree==p ){
293 pLock = pIter;
294 break;
295 }
296 }
297
298 /* If the above search did not find a BtLock struct associating Btree p
299 ** with table iTable, allocate one and link it into the list.
300 */
301 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000302 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000303 if( !pLock ){
304 return SQLITE_NOMEM;
305 }
306 pLock->iTable = iTable;
307 pLock->pBtree = p;
308 pLock->pNext = pBt->pLock;
309 pBt->pLock = pLock;
310 }
311
312 /* Set the BtLock.eLock variable to the maximum of the current lock
313 ** and the requested lock. This means if a write-lock was already held
314 ** and a read-lock requested, we don't incorrectly downgrade the lock.
315 */
316 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000317 if( eLock>pLock->eLock ){
318 pLock->eLock = eLock;
319 }
danielk1977aef0bf62005-12-30 16:28:01 +0000320
321 return SQLITE_OK;
322}
drhe53831d2007-08-17 01:14:38 +0000323#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000324
drhe53831d2007-08-17 01:14:38 +0000325#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000326/*
drhc25eabe2009-02-24 18:57:31 +0000327** Release all the table locks (locks obtained via calls to
328** the setSharedCacheTableLock() procedure) held by Btree handle p.
danielk1977fa542f12009-04-02 18:28:08 +0000329**
330** This function assumes that handle p has an open read or write
331** transaction. If it does not, then the BtShared.isPending variable
332** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000333*/
drhc25eabe2009-02-24 18:57:31 +0000334static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000335 BtShared *pBt = p->pBt;
336 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000337
drh1fee73e2007-08-29 04:00:57 +0000338 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000339 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000340 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000341
danielk1977aef0bf62005-12-30 16:28:01 +0000342 while( *ppIter ){
343 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000344 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000345 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( pLock->pBtree==p ){
347 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000348 assert( pLock->iTable!=1 || pLock==&p->lock );
349 if( pLock->iTable!=1 ){
350 sqlite3_free(pLock);
351 }
danielk1977aef0bf62005-12-30 16:28:01 +0000352 }else{
353 ppIter = &pLock->pNext;
354 }
355 }
danielk1977641b0f42007-12-21 04:47:25 +0000356
danielk1977404ca072009-03-16 13:19:36 +0000357 assert( pBt->isPending==0 || pBt->pWriter );
358 if( pBt->pWriter==p ){
359 pBt->pWriter = 0;
360 pBt->isExclusive = 0;
361 pBt->isPending = 0;
362 }else if( pBt->nTransaction==2 ){
363 /* This function is called when connection p is concluding its
364 ** transaction. If there currently exists a writer, and p is not
365 ** that writer, then the number of locks held by connections other
366 ** than the writer must be about to drop to zero. In this case
367 ** set the isPending flag to 0.
368 **
369 ** If there is not currently a writer, then BtShared.isPending must
370 ** be zero already. So this next line is harmless in that case.
371 */
372 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000373 }
danielk1977aef0bf62005-12-30 16:28:01 +0000374}
danielk197794b30732009-07-02 17:21:57 +0000375
danielk1977e0d9e6f2009-07-03 16:25:06 +0000376/*
377** This function changes all write-locks held by connection p to read-locks.
378*/
danielk197794b30732009-07-02 17:21:57 +0000379static void downgradeAllSharedCacheTableLocks(Btree *p){
380 BtShared *pBt = p->pBt;
381 if( pBt->pWriter==p ){
382 BtLock *pLock;
383 pBt->pWriter = 0;
384 pBt->isExclusive = 0;
385 pBt->isPending = 0;
386 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
387 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
388 pLock->eLock = READ_LOCK;
389 }
390 }
391}
392
danielk1977aef0bf62005-12-30 16:28:01 +0000393#endif /* SQLITE_OMIT_SHARED_CACHE */
394
drh980b1a72006-08-16 16:42:48 +0000395static void releasePage(MemPage *pPage); /* Forward reference */
396
drh1fee73e2007-08-29 04:00:57 +0000397/*
398** Verify that the cursor holds a mutex on the BtShared
399*/
400#ifndef NDEBUG
401static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000402 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000403}
404#endif
405
406
danielk197792d4d7a2007-05-04 12:05:56 +0000407#ifndef SQLITE_OMIT_INCRBLOB
408/*
409** Invalidate the overflow page-list cache for cursor pCur, if any.
410*/
411static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000412 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000413 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000414 pCur->aOverflow = 0;
415}
416
417/*
418** Invalidate the overflow page-list cache for all cursors opened
419** on the shared btree structure pBt.
420*/
421static void invalidateAllOverflowCache(BtShared *pBt){
422 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000423 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000424 for(p=pBt->pCursor; p; p=p->pNext){
425 invalidateOverflowCache(p);
426 }
427}
danielk197796d48e92009-06-29 06:00:37 +0000428
429/*
430** This function is called before modifying the contents of a table
431** b-tree to invalidate any incrblob cursors that are open on the
432** row or one of the rows being modified. Argument pgnoRoot is the
433** root-page of the table b-tree.
434**
435** If argument isClearTable is true, then the entire contents of the
436** table is about to be deleted. In this case invalidate all incrblob
437** cursors open on any row within the table with root-page pgnoRoot.
438**
439** Otherwise, if argument isClearTable is false, then the row with
440** rowid iRow is being replaced or deleted. In this case invalidate
441** only those incrblob cursors open on this specific row.
442*/
443static void invalidateIncrblobCursors(
444 Btree *pBtree, /* The database file to check */
445 Pgno pgnoRoot, /* Look for read cursors on this btree */
446 i64 iRow, /* The rowid that might be changing */
447 int isClearTable /* True if all rows are being deleted */
448){
449 BtCursor *p;
450 BtShared *pBt = pBtree->pBt;
451 assert( sqlite3BtreeHoldsMutex(pBtree) );
452 for(p=pBt->pCursor; p; p=p->pNext){
453 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
454 p->eState = CURSOR_INVALID;
455 }
456 }
457}
458
danielk197792d4d7a2007-05-04 12:05:56 +0000459#else
460 #define invalidateOverflowCache(x)
461 #define invalidateAllOverflowCache(x)
danielk197796d48e92009-06-29 06:00:37 +0000462 #define invalidateIncrblobCursors(w,x,y,z)
danielk197792d4d7a2007-05-04 12:05:56 +0000463#endif
464
drh980b1a72006-08-16 16:42:48 +0000465/*
danielk1977bea2a942009-01-20 17:06:27 +0000466** Set bit pgno of the BtShared.pHasContent bitvec. This is called
467** when a page that previously contained data becomes a free-list leaf
468** page.
469**
470** The BtShared.pHasContent bitvec exists to work around an obscure
471** bug caused by the interaction of two useful IO optimizations surrounding
472** free-list leaf pages:
473**
474** 1) When all data is deleted from a page and the page becomes
475** a free-list leaf page, the page is not written to the database
476** (as free-list leaf pages contain no meaningful data). Sometimes
477** such a page is not even journalled (as it will not be modified,
478** why bother journalling it?).
479**
480** 2) When a free-list leaf page is reused, its content is not read
481** from the database or written to the journal file (why should it
482** be, if it is not at all meaningful?).
483**
484** By themselves, these optimizations work fine and provide a handy
485** performance boost to bulk delete or insert operations. However, if
486** a page is moved to the free-list and then reused within the same
487** transaction, a problem comes up. If the page is not journalled when
488** it is moved to the free-list and it is also not journalled when it
489** is extracted from the free-list and reused, then the original data
490** may be lost. In the event of a rollback, it may not be possible
491** to restore the database to its original configuration.
492**
493** The solution is the BtShared.pHasContent bitvec. Whenever a page is
494** moved to become a free-list leaf page, the corresponding bit is
495** set in the bitvec. Whenever a leaf page is extracted from the free-list,
496** optimization 2 above is ommitted if the corresponding bit is already
497** set in BtShared.pHasContent. The contents of the bitvec are cleared
498** at the end of every transaction.
499*/
500static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
501 int rc = SQLITE_OK;
502 if( !pBt->pHasContent ){
drh4c301aa2009-07-15 17:25:45 +0000503 int nPage = 100;
504 sqlite3PagerPagecount(pBt->pPager, &nPage);
505 /* If sqlite3PagerPagecount() fails there is no harm because the
506 ** nPage variable is unchanged from its default value of 100 */
507 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
508 if( !pBt->pHasContent ){
509 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000510 }
511 }
512 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
513 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
514 }
515 return rc;
516}
517
518/*
519** Query the BtShared.pHasContent vector.
520**
521** This function is called when a free-list leaf page is removed from the
522** free-list for reuse. It returns false if it is safe to retrieve the
523** page from the pager layer with the 'no-content' flag set. True otherwise.
524*/
525static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
526 Bitvec *p = pBt->pHasContent;
527 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
528}
529
530/*
531** Clear (destroy) the BtShared.pHasContent bitvec. This should be
532** invoked at the conclusion of each write-transaction.
533*/
534static void btreeClearHasContent(BtShared *pBt){
535 sqlite3BitvecDestroy(pBt->pHasContent);
536 pBt->pHasContent = 0;
537}
538
539/*
drh980b1a72006-08-16 16:42:48 +0000540** Save the current cursor position in the variables BtCursor.nKey
541** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
542*/
543static int saveCursorPosition(BtCursor *pCur){
544 int rc;
545
546 assert( CURSOR_VALID==pCur->eState );
547 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000548 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000549
550 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drh4c301aa2009-07-15 17:25:45 +0000551 assert( rc==SQLITE_OK ); /* Cannot fail since pCur->eState==VALID */
drh980b1a72006-08-16 16:42:48 +0000552
553 /* If this is an intKey table, then the above call to BtreeKeySize()
554 ** stores the integer key in pCur->nKey. In this case this value is
555 ** all that is required. Otherwise, if pCur is not open on an intKey
556 ** table, then malloc space for and store the pCur->nKey bytes of key
557 ** data.
558 */
drh4c301aa2009-07-15 17:25:45 +0000559 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000560 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000561 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000562 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000563 if( rc==SQLITE_OK ){
564 pCur->pKey = pKey;
565 }else{
drh17435752007-08-16 04:30:38 +0000566 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000567 }
568 }else{
569 rc = SQLITE_NOMEM;
570 }
571 }
danielk197771d5d2c2008-09-29 11:49:47 +0000572 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000573
574 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000575 int i;
576 for(i=0; i<=pCur->iPage; i++){
577 releasePage(pCur->apPage[i]);
578 pCur->apPage[i] = 0;
579 }
580 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000581 pCur->eState = CURSOR_REQUIRESEEK;
582 }
583
danielk197792d4d7a2007-05-04 12:05:56 +0000584 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000585 return rc;
586}
587
588/*
589** Save the positions of all cursors except pExcept open on the table
590** with root-page iRoot. Usually, this is called just before cursor
591** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
592*/
593static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
594 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000595 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000596 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000597 for(p=pBt->pCursor; p; p=p->pNext){
598 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
599 p->eState==CURSOR_VALID ){
600 int rc = saveCursorPosition(p);
601 if( SQLITE_OK!=rc ){
602 return rc;
603 }
604 }
605 }
606 return SQLITE_OK;
607}
608
609/*
drhbf700f32007-03-31 02:36:44 +0000610** Clear the current cursor position.
611*/
danielk1977be51a652008-10-08 17:58:48 +0000612void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000613 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000614 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000615 pCur->pKey = 0;
616 pCur->eState = CURSOR_INVALID;
617}
618
619/*
danielk19773509a652009-07-06 18:56:13 +0000620** In this version of BtreeMoveto, pKey is a packed index record
621** such as is generated by the OP_MakeRecord opcode. Unpack the
622** record and then call BtreeMovetoUnpacked() to do the work.
623*/
624static int btreeMoveto(
625 BtCursor *pCur, /* Cursor open on the btree to be searched */
626 const void *pKey, /* Packed key if the btree is an index */
627 i64 nKey, /* Integer key for tables. Size of pKey for indices */
628 int bias, /* Bias search to the high end */
629 int *pRes /* Write search results here */
630){
631 int rc; /* Status code */
632 UnpackedRecord *pIdxKey; /* Unpacked index key */
633 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
634
635 if( pKey ){
636 assert( nKey==(i64)(int)nKey );
637 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
638 aSpace, sizeof(aSpace));
639 if( pIdxKey==0 ) return SQLITE_NOMEM;
640 }else{
641 pIdxKey = 0;
642 }
643 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
644 if( pKey ){
645 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
646 }
647 return rc;
648}
649
650/*
drh980b1a72006-08-16 16:42:48 +0000651** Restore the cursor to the position it was in (or as close to as possible)
652** when saveCursorPosition() was called. Note that this call deletes the
653** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000654** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000655** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000656*/
danielk197730548662009-07-09 05:07:37 +0000657static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000658 int rc;
drh1fee73e2007-08-29 04:00:57 +0000659 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000660 assert( pCur->eState>=CURSOR_REQUIRESEEK );
661 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000662 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000663 }
drh980b1a72006-08-16 16:42:48 +0000664 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000665 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000666 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000667 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000668 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000669 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000670 }
671 return rc;
672}
673
drha3460582008-07-11 21:02:53 +0000674#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000675 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000676 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000677 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000678
drha3460582008-07-11 21:02:53 +0000679/*
680** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000681** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000682** at is deleted out from under them.
683**
684** This routine returns an error code if something goes wrong. The
685** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
686*/
687int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
688 int rc;
689
690 rc = restoreCursorPosition(pCur);
691 if( rc ){
692 *pHasMoved = 1;
693 return rc;
694 }
drh4c301aa2009-07-15 17:25:45 +0000695 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000696 *pHasMoved = 1;
697 }else{
698 *pHasMoved = 0;
699 }
700 return SQLITE_OK;
701}
702
danielk1977599fcba2004-11-08 07:13:13 +0000703#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000704/*
drha3152892007-05-05 11:48:52 +0000705** Given a page number of a regular database page, return the page
706** number for the pointer-map page that contains the entry for the
707** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000708*/
danielk1977266664d2006-02-10 08:24:21 +0000709static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000710 int nPagesPerMapPage;
711 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000712 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000713 nPagesPerMapPage = (pBt->usableSize/5)+1;
714 iPtrMap = (pgno-2)/nPagesPerMapPage;
715 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000716 if( ret==PENDING_BYTE_PAGE(pBt) ){
717 ret++;
718 }
719 return ret;
720}
danielk1977a19df672004-11-03 11:37:07 +0000721
danielk1977afcdd022004-10-31 16:25:42 +0000722/*
danielk1977afcdd022004-10-31 16:25:42 +0000723** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000724**
725** This routine updates the pointer map entry for page number 'key'
726** so that it maps to type 'eType' and parent page number 'pgno'.
727** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000728*/
danielk1977aef0bf62005-12-30 16:28:01 +0000729static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000730 DbPage *pDbPage; /* The pointer map page */
731 u8 *pPtrmap; /* The pointer map data */
732 Pgno iPtrmap; /* The pointer map page number */
733 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000734 int rc;
735
drh1fee73e2007-08-29 04:00:57 +0000736 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000737 /* The master-journal page number must never be used as a pointer map page */
738 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
739
danielk1977ac11ee62005-01-15 12:45:51 +0000740 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000741 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000742 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000743 }
danielk1977266664d2006-02-10 08:24:21 +0000744 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000745 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000746 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000747 return rc;
748 }
danielk19778c666b12008-07-18 09:34:57 +0000749 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000750 if( offset<0 ){
drh4925a552009-07-07 11:39:58 +0000751 rc = SQLITE_CORRUPT_BKPT;
752 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000753 }
danielk19773b8a05f2007-03-19 17:44:26 +0000754 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000755
drh615ae552005-01-16 23:21:00 +0000756 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
757 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000758 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000759 if( rc==SQLITE_OK ){
760 pPtrmap[offset] = eType;
761 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000762 }
danielk1977afcdd022004-10-31 16:25:42 +0000763 }
764
drh4925a552009-07-07 11:39:58 +0000765ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000766 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000767 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000768}
769
770/*
771** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000772**
773** This routine retrieves the pointer map entry for page 'key', writing
774** the type and parent page number to *pEType and *pPgno respectively.
775** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000776*/
danielk1977aef0bf62005-12-30 16:28:01 +0000777static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000778 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000779 int iPtrmap; /* Pointer map page index */
780 u8 *pPtrmap; /* Pointer map page data */
781 int offset; /* Offset of entry in pointer map */
782 int rc;
783
drh1fee73e2007-08-29 04:00:57 +0000784 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000785
danielk1977266664d2006-02-10 08:24:21 +0000786 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000787 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000788 if( rc!=0 ){
789 return rc;
790 }
danielk19773b8a05f2007-03-19 17:44:26 +0000791 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000792
danielk19778c666b12008-07-18 09:34:57 +0000793 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000794 assert( pEType!=0 );
795 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000796 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000797
danielk19773b8a05f2007-03-19 17:44:26 +0000798 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000799 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000800 return SQLITE_OK;
801}
802
danielk197785d90ca2008-07-19 14:25:15 +0000803#else /* if defined SQLITE_OMIT_AUTOVACUUM */
804 #define ptrmapPut(w,x,y,z) SQLITE_OK
805 #define ptrmapGet(w,x,y,z) SQLITE_OK
danielk1977325ccfa2009-07-02 05:23:25 +0000806 #define ptrmapPutOvflPtr(x, y) SQLITE_OK
danielk197785d90ca2008-07-19 14:25:15 +0000807#endif
danielk1977afcdd022004-10-31 16:25:42 +0000808
drh0d316a42002-08-11 20:10:47 +0000809/*
drh271efa52004-05-30 19:19:05 +0000810** Given a btree page and a cell index (0 means the first cell on
811** the page, 1 means the second cell, and so forth) return a pointer
812** to the cell content.
813**
814** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000815*/
drh1688c862008-07-18 02:44:17 +0000816#define findCell(P,I) \
817 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000818
819/*
drh93a960a2008-07-10 00:32:42 +0000820** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000821** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000822*/
823static u8 *findOverflowCell(MemPage *pPage, int iCell){
824 int i;
drh1fee73e2007-08-29 04:00:57 +0000825 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000826 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000827 int k;
828 struct _OvflCell *pOvfl;
829 pOvfl = &pPage->aOvfl[i];
830 k = pOvfl->idx;
831 if( k<=iCell ){
832 if( k==iCell ){
833 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000834 }
835 iCell--;
836 }
837 }
danielk19771cc5ed82007-05-16 17:28:43 +0000838 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000839}
840
841/*
842** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000843** are two versions of this function. btreeParseCell() takes a
844** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000845** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000846**
847** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000848** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000849*/
danielk197730548662009-07-09 05:07:37 +0000850static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000851 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000852 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000853 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000854){
drhf49661a2008-12-10 16:45:50 +0000855 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000856 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000857
drh1fee73e2007-08-29 04:00:57 +0000858 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000859
drh43605152004-05-29 21:46:49 +0000860 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000861 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000862 n = pPage->childPtrSize;
863 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000864 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000865 if( pPage->hasData ){
866 n += getVarint32(&pCell[n], nPayload);
867 }else{
868 nPayload = 0;
869 }
drh1bd10f82008-12-10 21:19:56 +0000870 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000871 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000872 }else{
drh79df1f42008-07-18 00:57:33 +0000873 pInfo->nData = 0;
874 n += getVarint32(&pCell[n], nPayload);
875 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000876 }
drh72365832007-03-06 15:53:44 +0000877 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000878 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000879 testcase( nPayload==pPage->maxLocal );
880 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000881 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000882 /* This is the (easy) common case where the entire payload fits
883 ** on the local page. No overflow is required.
884 */
885 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000886 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000887 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000888 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000889 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000890 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000891 }
drh1bd10f82008-12-10 21:19:56 +0000892 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000893 }else{
drh271efa52004-05-30 19:19:05 +0000894 /* If the payload will not fit completely on the local page, we have
895 ** to decide how much to store locally and how much to spill onto
896 ** overflow pages. The strategy is to minimize the amount of unused
897 ** space on overflow pages while keeping the amount of local storage
898 ** in between minLocal and maxLocal.
899 **
900 ** Warning: changing the way overflow payload is distributed in any
901 ** way will result in an incompatible file format.
902 */
903 int minLocal; /* Minimum amount of payload held locally */
904 int maxLocal; /* Maximum amount of payload held locally */
905 int surplus; /* Overflow payload available for local storage */
906
907 minLocal = pPage->minLocal;
908 maxLocal = pPage->maxLocal;
909 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000910 testcase( surplus==maxLocal );
911 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000912 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000913 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000914 }else{
drhf49661a2008-12-10 16:45:50 +0000915 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000916 }
drhf49661a2008-12-10 16:45:50 +0000917 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000918 pInfo->nSize = pInfo->iOverflow + 4;
919 }
drh3aac2dd2004-04-26 14:10:20 +0000920}
danielk19771cc5ed82007-05-16 17:28:43 +0000921#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000922 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
923static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000924 MemPage *pPage, /* Page containing the cell */
925 int iCell, /* The cell index. First cell is 0 */
926 CellInfo *pInfo /* Fill in this structure */
927){
danielk19771cc5ed82007-05-16 17:28:43 +0000928 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000929}
drh3aac2dd2004-04-26 14:10:20 +0000930
931/*
drh43605152004-05-29 21:46:49 +0000932** Compute the total number of bytes that a Cell needs in the cell
933** data area of the btree-page. The return number includes the cell
934** data header and the local payload, but not any overflow page or
935** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000936*/
danielk1977ae5558b2009-04-29 11:31:47 +0000937static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
938 u8 *pIter = &pCell[pPage->childPtrSize];
939 u32 nSize;
940
941#ifdef SQLITE_DEBUG
942 /* The value returned by this function should always be the same as
943 ** the (CellInfo.nSize) value found by doing a full parse of the
944 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
945 ** this function verifies that this invariant is not violated. */
946 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000947 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000948#endif
949
950 if( pPage->intKey ){
951 u8 *pEnd;
952 if( pPage->hasData ){
953 pIter += getVarint32(pIter, nSize);
954 }else{
955 nSize = 0;
956 }
957
958 /* pIter now points at the 64-bit integer key value, a variable length
959 ** integer. The following block moves pIter to point at the first byte
960 ** past the end of the key value. */
961 pEnd = &pIter[9];
962 while( (*pIter++)&0x80 && pIter<pEnd );
963 }else{
964 pIter += getVarint32(pIter, nSize);
965 }
966
drh0a45c272009-07-08 01:49:11 +0000967 testcase( nSize==pPage->maxLocal );
968 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000969 if( nSize>pPage->maxLocal ){
970 int minLocal = pPage->minLocal;
971 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000972 testcase( nSize==pPage->maxLocal );
973 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000974 if( nSize>pPage->maxLocal ){
975 nSize = minLocal;
976 }
977 nSize += 4;
978 }
shane75ac1de2009-06-09 18:58:52 +0000979 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +0000980
981 /* The minimum size of any cell is 4 bytes. */
982 if( nSize<4 ){
983 nSize = 4;
984 }
985
986 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +0000987 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +0000988}
danielk1977bc6ada42004-06-30 08:20:16 +0000989#ifndef NDEBUG
drha9121e42008-02-19 14:59:35 +0000990static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +0000991 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +0000992}
danielk1977bc6ada42004-06-30 08:20:16 +0000993#endif
drh3b7511c2001-05-26 13:15:44 +0000994
danielk197779a40da2005-01-16 08:00:01 +0000995#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000996/*
danielk197726836652005-01-17 01:33:13 +0000997** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +0000998** to an overflow page, insert an entry into the pointer-map
999** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001000*/
danielk197726836652005-01-17 01:33:13 +00001001static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
drhfa67c3c2008-07-11 02:21:40 +00001002 CellInfo info;
1003 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001004 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001005 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001006 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001007 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
1008 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +00001009 }
danielk197779a40da2005-01-16 08:00:01 +00001010 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +00001011}
danielk197779a40da2005-01-16 08:00:01 +00001012#endif
1013
danielk1977ac11ee62005-01-15 12:45:51 +00001014
drhda200cc2004-05-09 11:51:38 +00001015/*
drh72f82862001-05-24 21:06:34 +00001016** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001017** end of the page and all free space is collected into one
1018** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001019** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001020*/
shane0af3f892008-11-12 04:55:34 +00001021static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001022 int i; /* Loop counter */
1023 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001024 int hdr; /* Offset to the page header */
1025 int size; /* Size of a cell */
1026 int usableSize; /* Number of usable bytes on a page */
1027 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001028 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001029 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001030 unsigned char *data; /* The page data */
1031 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001032 int iCellFirst; /* First allowable cell index */
1033 int iCellLast; /* Last possible cell index */
1034
drh2af926b2001-05-15 00:39:25 +00001035
danielk19773b8a05f2007-03-19 17:44:26 +00001036 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001037 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001038 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001039 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001040 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001041 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001042 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001043 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001044 cellOffset = pPage->cellOffset;
1045 nCell = pPage->nCell;
1046 assert( nCell==get2byte(&data[hdr+3]) );
1047 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001048 cbrk = get2byte(&data[hdr+5]);
1049 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1050 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001051 iCellFirst = cellOffset + 2*nCell;
1052 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001053 for(i=0; i<nCell; i++){
1054 u8 *pAddr; /* The i-th cell pointer */
1055 pAddr = &data[cellOffset + i*2];
1056 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001057 testcase( pc==iCellFirst );
1058 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001059#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001060 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001061 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1062 */
1063 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001064 return SQLITE_CORRUPT_BKPT;
1065 }
drh17146622009-07-07 17:38:38 +00001066#endif
1067 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001068 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001069 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001070#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1071 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001072 return SQLITE_CORRUPT_BKPT;
1073 }
drh17146622009-07-07 17:38:38 +00001074#else
1075 if( cbrk<iCellFirst || pc+size>usableSize ){
1076 return SQLITE_CORRUPT_BKPT;
1077 }
1078#endif
drh7157e1d2009-07-09 13:25:32 +00001079 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001080 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001081 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001082 memcpy(&data[cbrk], &temp[pc], size);
1083 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001084 }
drh17146622009-07-07 17:38:38 +00001085 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001086 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001087 data[hdr+1] = 0;
1088 data[hdr+2] = 0;
1089 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001090 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001091 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001092 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001093 return SQLITE_CORRUPT_BKPT;
1094 }
shane0af3f892008-11-12 04:55:34 +00001095 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001096}
1097
drha059ad02001-04-17 20:09:11 +00001098/*
danielk19776011a752009-04-01 16:25:32 +00001099** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001100** as the first argument. Write into *pIdx the index into pPage->aData[]
1101** of the first byte of allocated space. Return either SQLITE_OK or
1102** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001103**
drh0a45c272009-07-08 01:49:11 +00001104** The caller guarantees that there is sufficient space to make the
1105** allocation. This routine might need to defragment in order to bring
1106** all the space together, however. This routine will avoid using
1107** the first two bytes past the cell pointer area since presumably this
1108** allocation is being made in order to insert a new cell, so we will
1109** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001110*/
drh0a45c272009-07-08 01:49:11 +00001111static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001112 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1113 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1114 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001115 int top; /* First byte of cell content area */
1116 int gap; /* First byte of gap between cell pointers and cell content */
1117 int rc; /* Integer return code */
drh43605152004-05-29 21:46:49 +00001118
danielk19773b8a05f2007-03-19 17:44:26 +00001119 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001120 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001121 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001122 assert( nByte>=0 ); /* Minimum cell size is 4 */
1123 assert( pPage->nFree>=nByte );
1124 assert( pPage->nOverflow==0 );
drh43605152004-05-29 21:46:49 +00001125
1126 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001127 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1128 gap = pPage->cellOffset + 2*pPage->nCell;
1129 top = get2byte(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001130 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001131 testcase( gap+2==top );
1132 testcase( gap+1==top );
1133 testcase( gap==top );
1134
danielk19776011a752009-04-01 16:25:32 +00001135 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001136 /* Always defragment highly fragmented pages */
1137 rc = defragmentPage(pPage);
1138 if( rc ) return rc;
1139 top = get2byte(&data[hdr+5]);
1140 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001141 /* Search the freelist looking for a free slot big enough to satisfy
1142 ** the request. The allocation is made from the first free slot in
1143 ** the list that is large enough to accomadate it.
1144 */
1145 int pc, addr;
1146 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
1147 int size = get2byte(&data[pc+2]); /* Size of free slot */
drh43605152004-05-29 21:46:49 +00001148 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001149 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001150 testcase( x==4 );
1151 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001152 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001153 /* Remove the slot from the free-list. Update the number of
1154 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001155 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001156 data[hdr+7] = (u8)(nFrag + x);
drh43605152004-05-29 21:46:49 +00001157 }else{
danielk1977fad91942009-04-29 17:49:59 +00001158 /* The slot remains on the free-list. Reduce its size to account
1159 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001160 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001161 }
drh0a45c272009-07-08 01:49:11 +00001162 *pIdx = pc + x;
1163 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001164 }
drh9e572e62004-04-23 23:43:10 +00001165 }
1166 }
drh43605152004-05-29 21:46:49 +00001167
drh0a45c272009-07-08 01:49:11 +00001168 /* Check to make sure there is enough space in the gap to satisfy
1169 ** the allocation. If not, defragment.
1170 */
1171 testcase( gap+2+nByte==top );
1172 if( gap+2+nByte>top ){
1173 rc = defragmentPage(pPage);
1174 if( rc ) return rc;
1175 top = get2byte(&data[hdr+5]);
1176 assert( gap+nByte<=top );
1177 }
1178
1179
drh43605152004-05-29 21:46:49 +00001180 /* Allocate memory from the gap in between the cell pointer array
1181 ** and the cell content area.
1182 */
drh0a45c272009-07-08 01:49:11 +00001183 top -= nByte;
drh43605152004-05-29 21:46:49 +00001184 put2byte(&data[hdr+5], top);
drh0a45c272009-07-08 01:49:11 +00001185 *pIdx = top;
1186 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001187}
1188
1189/*
drh9e572e62004-04-23 23:43:10 +00001190** Return a section of the pPage->aData to the freelist.
1191** The first byte of the new free block is pPage->aDisk[start]
1192** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001193**
1194** Most of the effort here is involved in coalesing adjacent
1195** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001196*/
shanedcc50b72008-11-13 18:29:50 +00001197static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001198 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001199 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001200 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001201
drh9e572e62004-04-23 23:43:10 +00001202 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001203 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001204 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
danielk1977bc6ada42004-06-30 08:20:16 +00001205 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001206 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001207 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001208
drhfcce93f2006-02-22 03:08:32 +00001209#ifdef SQLITE_SECURE_DELETE
1210 /* Overwrite deleted information with zeros when the SECURE_DELETE
1211 ** option is enabled at compile-time */
1212 memset(&data[start], 0, size);
1213#endif
1214
drh0a45c272009-07-08 01:49:11 +00001215 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001216 ** even though the freeblock list was checked by btreeInitPage(),
1217 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001218 ** freeblocks that overlapped cells. Nor does it detect when the
1219 ** cell content area exceeds the value in the page header. If these
1220 ** situations arise, then subsequent insert operations might corrupt
1221 ** the freelist. So we do need to check for corruption while scanning
1222 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001223 */
drh43605152004-05-29 21:46:49 +00001224 hdr = pPage->hdrOffset;
1225 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001226 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001227 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001228 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001229 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001230 return SQLITE_CORRUPT_BKPT;
1231 }
drh3aac2dd2004-04-26 14:10:20 +00001232 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001233 }
drh0a45c272009-07-08 01:49:11 +00001234 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001235 return SQLITE_CORRUPT_BKPT;
1236 }
drh3aac2dd2004-04-26 14:10:20 +00001237 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001238 put2byte(&data[addr], start);
1239 put2byte(&data[start], pbegin);
1240 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001241 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001242
1243 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001244 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001245 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001246 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001247 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001248 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001249 pnext = get2byte(&data[pbegin]);
1250 psize = get2byte(&data[pbegin+2]);
1251 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1252 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001253 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001254 return SQLITE_CORRUPT_BKPT;
1255 }
drh0a45c272009-07-08 01:49:11 +00001256 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001257 x = get2byte(&data[pnext]);
1258 put2byte(&data[pbegin], x);
1259 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1260 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001261 }else{
drh3aac2dd2004-04-26 14:10:20 +00001262 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001263 }
1264 }
drh7e3b0a02001-04-28 16:52:40 +00001265
drh43605152004-05-29 21:46:49 +00001266 /* If the cell content area begins with a freeblock, remove it. */
1267 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1268 int top;
1269 pbegin = get2byte(&data[hdr+1]);
1270 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001271 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1272 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001273 }
drhc5053fb2008-11-27 02:22:10 +00001274 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001275 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001276}
1277
1278/*
drh271efa52004-05-30 19:19:05 +00001279** Decode the flags byte (the first byte of the header) for a page
1280** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001281**
1282** Only the following combinations are supported. Anything different
1283** indicates a corrupt database files:
1284**
1285** PTF_ZERODATA
1286** PTF_ZERODATA | PTF_LEAF
1287** PTF_LEAFDATA | PTF_INTKEY
1288** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001289*/
drh44845222008-07-17 18:39:57 +00001290static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001291 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001292
1293 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001294 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001295 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001296 flagByte &= ~PTF_LEAF;
1297 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001298 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001299 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1300 pPage->intKey = 1;
1301 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001302 pPage->maxLocal = pBt->maxLeaf;
1303 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001304 }else if( flagByte==PTF_ZERODATA ){
1305 pPage->intKey = 0;
1306 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001307 pPage->maxLocal = pBt->maxLocal;
1308 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001309 }else{
1310 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001311 }
drh44845222008-07-17 18:39:57 +00001312 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001313}
1314
1315/*
drh7e3b0a02001-04-28 16:52:40 +00001316** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001317**
1318** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001319** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001320** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1321** guarantee that the page is well-formed. It only shows that
1322** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001323*/
danielk197730548662009-07-09 05:07:37 +00001324static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001325
danielk197771d5d2c2008-09-29 11:49:47 +00001326 assert( pPage->pBt!=0 );
1327 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001328 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001329 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1330 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001331
1332 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001333 u16 pc; /* Address of a freeblock within pPage->aData[] */
1334 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001335 u8 *data; /* Equal to pPage->aData */
1336 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001337 u16 usableSize; /* Amount of usable space on each page */
1338 u16 cellOffset; /* Offset from start of page to first cell pointer */
1339 u16 nFree; /* Number of unused bytes on the page */
1340 u16 top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001341 int iCellFirst; /* First allowable cell or freeblock offset */
1342 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001343
1344 pBt = pPage->pBt;
1345
danielk1977eaa06f62008-09-18 17:34:44 +00001346 hdr = pPage->hdrOffset;
1347 data = pPage->aData;
1348 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1349 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1350 pPage->maskPage = pBt->pageSize - 1;
1351 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001352 usableSize = pBt->usableSize;
1353 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1354 top = get2byte(&data[hdr+5]);
1355 pPage->nCell = get2byte(&data[hdr+3]);
1356 if( pPage->nCell>MX_CELL(pBt) ){
1357 /* To many cells for a single page. The page must be corrupt */
1358 return SQLITE_CORRUPT_BKPT;
1359 }
drhb908d762009-07-08 16:54:40 +00001360 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001361
1362 /* A malformed database page might cause use to read past the end
1363 ** of page when parsing a cell.
1364 **
1365 ** The following block of code checks early to see if a cell extends
1366 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1367 ** returned if it does.
1368 */
drh0a45c272009-07-08 01:49:11 +00001369 iCellFirst = cellOffset + 2*pPage->nCell;
1370 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001371#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001372 {
drh69e931e2009-06-03 21:04:35 +00001373 int i; /* Index into the cell pointer array */
1374 int sz; /* Size of a cell */
1375
drh69e931e2009-06-03 21:04:35 +00001376 if( !pPage->leaf ) iCellLast--;
1377 for(i=0; i<pPage->nCell; i++){
1378 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001379 testcase( pc==iCellFirst );
1380 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001381 if( pc<iCellFirst || pc>iCellLast ){
1382 return SQLITE_CORRUPT_BKPT;
1383 }
1384 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001385 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001386 if( pc+sz>usableSize ){
1387 return SQLITE_CORRUPT_BKPT;
1388 }
1389 }
drh0a45c272009-07-08 01:49:11 +00001390 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001391 }
1392#endif
1393
danielk1977eaa06f62008-09-18 17:34:44 +00001394 /* Compute the total free space on the page */
1395 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001396 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001397 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001398 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001399 if( pc<iCellFirst || pc>iCellLast ){
danielk1977eaa06f62008-09-18 17:34:44 +00001400 /* Free block is off the page */
1401 return SQLITE_CORRUPT_BKPT;
1402 }
1403 next = get2byte(&data[pc]);
1404 size = get2byte(&data[pc+2]);
1405 if( next>0 && next<=pc+size+3 ){
drh0a45c272009-07-08 01:49:11 +00001406 /* Free blocks must be in ascending order */
danielk1977eaa06f62008-09-18 17:34:44 +00001407 return SQLITE_CORRUPT_BKPT;
1408 }
shane85095702009-06-15 16:27:08 +00001409 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001410 pc = next;
1411 }
danielk197793c829c2009-06-03 17:26:17 +00001412
1413 /* At this point, nFree contains the sum of the offset to the start
1414 ** of the cell-content area plus the number of free bytes within
1415 ** the cell-content area. If this is greater than the usable-size
1416 ** of the page, then the page must be corrupted. This check also
1417 ** serves to verify that the offset to the start of the cell-content
1418 ** area, according to the page header, lies within the page.
1419 */
1420 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001421 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001422 }
drh0a45c272009-07-08 01:49:11 +00001423 pPage->nFree = nFree - iCellFirst;
danielk197771d5d2c2008-09-29 11:49:47 +00001424 pPage->isInit = 1;
1425 }
drh9e572e62004-04-23 23:43:10 +00001426 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001427}
1428
1429/*
drh8b2f49b2001-06-08 00:21:52 +00001430** Set up a raw page so that it looks like a database page holding
1431** no entries.
drhbd03cae2001-06-02 02:40:57 +00001432*/
drh9e572e62004-04-23 23:43:10 +00001433static void zeroPage(MemPage *pPage, int flags){
1434 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001435 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001436 u8 hdr = pPage->hdrOffset;
1437 u16 first;
drh9e572e62004-04-23 23:43:10 +00001438
danielk19773b8a05f2007-03-19 17:44:26 +00001439 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001440 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1441 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001442 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001443 assert( sqlite3_mutex_held(pBt->mutex) );
drh1af4a6e2008-07-18 03:32:51 +00001444 /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
drh1bd10f82008-12-10 21:19:56 +00001445 data[hdr] = (char)flags;
1446 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001447 memset(&data[hdr+1], 0, 4);
1448 data[hdr+7] = 0;
1449 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001450 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001451 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001452 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001453 pPage->cellOffset = first;
1454 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001455 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1456 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001457 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001458 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001459}
1460
drh897a8202008-09-18 01:08:15 +00001461
1462/*
1463** Convert a DbPage obtained from the pager into a MemPage used by
1464** the btree layer.
1465*/
1466static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1467 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1468 pPage->aData = sqlite3PagerGetData(pDbPage);
1469 pPage->pDbPage = pDbPage;
1470 pPage->pBt = pBt;
1471 pPage->pgno = pgno;
1472 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1473 return pPage;
1474}
1475
drhbd03cae2001-06-02 02:40:57 +00001476/*
drh3aac2dd2004-04-26 14:10:20 +00001477** Get a page from the pager. Initialize the MemPage.pBt and
1478** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001479**
1480** If the noContent flag is set, it means that we do not care about
1481** the content of the page at this time. So do not go to the disk
1482** to fetch the content. Just fill in the content with zeros for now.
1483** If in the future we call sqlite3PagerWrite() on this page, that
1484** means we have started to be concerned about content and the disk
1485** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001486*/
danielk197730548662009-07-09 05:07:37 +00001487static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001488 BtShared *pBt, /* The btree */
1489 Pgno pgno, /* Number of the page to fetch */
1490 MemPage **ppPage, /* Return the page in this parameter */
1491 int noContent /* Do not load page content if true */
1492){
drh3aac2dd2004-04-26 14:10:20 +00001493 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001494 DbPage *pDbPage;
1495
drh1fee73e2007-08-29 04:00:57 +00001496 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001497 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001498 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001499 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001500 return SQLITE_OK;
1501}
1502
1503/*
danielk1977bea2a942009-01-20 17:06:27 +00001504** Retrieve a page from the pager cache. If the requested page is not
1505** already in the pager cache return NULL. Initialize the MemPage.pBt and
1506** MemPage.aData elements if needed.
1507*/
1508static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1509 DbPage *pDbPage;
1510 assert( sqlite3_mutex_held(pBt->mutex) );
1511 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1512 if( pDbPage ){
1513 return btreePageFromDbPage(pDbPage, pgno, pBt);
1514 }
1515 return 0;
1516}
1517
1518/*
danielk197789d40042008-11-17 14:20:56 +00001519** Return the size of the database file in pages. If there is any kind of
1520** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001521*/
danielk197789d40042008-11-17 14:20:56 +00001522static Pgno pagerPagecount(BtShared *pBt){
1523 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001524 int rc;
danielk197789d40042008-11-17 14:20:56 +00001525 assert( pBt->pPage1 );
1526 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1527 assert( rc==SQLITE_OK || nPage==-1 );
1528 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001529}
1530
1531/*
drhde647132004-05-07 17:57:49 +00001532** Get a page from the pager and initialize it. This routine
1533** is just a convenience wrapper around separate calls to
danielk197730548662009-07-09 05:07:37 +00001534** btreeGetPage() and btreeInitPage().
drhde647132004-05-07 17:57:49 +00001535*/
1536static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001537 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001538 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001539 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001540){
1541 int rc;
drh897a8202008-09-18 01:08:15 +00001542 MemPage *pPage;
1543
drh1fee73e2007-08-29 04:00:57 +00001544 assert( sqlite3_mutex_held(pBt->mutex) );
drh897a8202008-09-18 01:08:15 +00001545 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001546 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001547 }
danielk19779f580ad2008-09-10 14:45:57 +00001548
drh897a8202008-09-18 01:08:15 +00001549 /* It is often the case that the page we want is already in cache.
1550 ** If so, get it directly. This saves us from having to call
1551 ** pagerPagecount() to make sure pgno is within limits, which results
1552 ** in a measureable performance improvements.
1553 */
danielk1977bea2a942009-01-20 17:06:27 +00001554 *ppPage = pPage = btreePageLookup(pBt, pgno);
1555 if( pPage ){
drh897a8202008-09-18 01:08:15 +00001556 /* Page is already in cache */
drh897a8202008-09-18 01:08:15 +00001557 rc = SQLITE_OK;
1558 }else{
1559 /* Page not in cache. Acquire it. */
drhf3aed592009-07-08 18:12:49 +00001560 testcase( pgno==pagerPagecount(pBt) );
danielk197789d40042008-11-17 14:20:56 +00001561 if( pgno>pagerPagecount(pBt) ){
drh897a8202008-09-18 01:08:15 +00001562 return SQLITE_CORRUPT_BKPT;
1563 }
danielk197730548662009-07-09 05:07:37 +00001564 rc = btreeGetPage(pBt, pgno, ppPage, 0);
drh897a8202008-09-18 01:08:15 +00001565 if( rc ) return rc;
1566 pPage = *ppPage;
1567 }
danielk197771d5d2c2008-09-29 11:49:47 +00001568 if( !pPage->isInit ){
danielk197730548662009-07-09 05:07:37 +00001569 rc = btreeInitPage(pPage);
drh897a8202008-09-18 01:08:15 +00001570 }
1571 if( rc!=SQLITE_OK ){
1572 releasePage(pPage);
1573 *ppPage = 0;
1574 }
drhde647132004-05-07 17:57:49 +00001575 return rc;
1576}
1577
1578/*
drh3aac2dd2004-04-26 14:10:20 +00001579** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001580** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001581*/
drh4b70f112004-05-02 21:12:19 +00001582static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001583 if( pPage ){
drh30df0092008-12-23 15:58:06 +00001584 assert( pPage->nOverflow==0 || sqlite3PagerPageRefcount(pPage->pDbPage)>1 );
drh3aac2dd2004-04-26 14:10:20 +00001585 assert( pPage->aData );
1586 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001587 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1588 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001589 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001590 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001591 }
1592}
1593
1594/*
drha6abd042004-06-09 17:37:22 +00001595** During a rollback, when the pager reloads information into the cache
1596** so that the cache is restored to its original state at the start of
1597** the transaction, for each page restored this routine is called.
1598**
1599** This routine needs to reset the extra data section at the end of the
1600** page to agree with the restored data.
1601*/
danielk1977eaa06f62008-09-18 17:34:44 +00001602static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001603 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001604 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001605 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001606 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001607 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001608 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001609 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001610 /* pPage might not be a btree page; it might be an overflow page
1611 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001612 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001613 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001614 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001615 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001616 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001617 }
drha6abd042004-06-09 17:37:22 +00001618 }
1619}
1620
1621/*
drhe5fe6902007-12-07 18:55:28 +00001622** Invoke the busy handler for a btree.
1623*/
danielk19771ceedd32008-11-19 10:22:33 +00001624static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001625 BtShared *pBt = (BtShared*)pArg;
1626 assert( pBt->db );
1627 assert( sqlite3_mutex_held(pBt->db->mutex) );
1628 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1629}
1630
1631/*
drhad3e0102004-09-03 23:32:18 +00001632** Open a database file.
1633**
drh382c0242001-10-06 16:33:02 +00001634** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001635** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001636** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001637** If zFilename is ":memory:" then an in-memory database is created
1638** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001639**
1640** If the database is already opened in the same database connection
1641** and we are in shared cache mode, then the open will fail with an
1642** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1643** objects in the same database connection since doing so will lead
1644** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001645*/
drh23e11ca2004-05-04 17:27:28 +00001646int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001647 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001648 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001649 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001650 int flags, /* Options */
1651 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001652){
drh7555d8e2009-03-20 13:15:30 +00001653 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1654 BtShared *pBt = 0; /* Shared part of btree structure */
1655 Btree *p; /* Handle to return */
1656 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1657 int rc = SQLITE_OK; /* Result code from this function */
1658 u8 nReserve; /* Byte of unused space on each page */
1659 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001660
1661 /* Set the variable isMemdb to true for an in-memory database, or
1662 ** false for a file-based database. This symbol is only required if
1663 ** either of the shared-data or autovacuum features are compiled
1664 ** into the library.
1665 */
1666#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1667 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001668 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001669 #else
drh980b1a72006-08-16 16:42:48 +00001670 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001671 #endif
1672#endif
1673
drhe5fe6902007-12-07 18:55:28 +00001674 assert( db!=0 );
1675 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001676
drhe5fe6902007-12-07 18:55:28 +00001677 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001678 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001679 if( !p ){
1680 return SQLITE_NOMEM;
1681 }
1682 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001683 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001684#ifndef SQLITE_OMIT_SHARED_CACHE
1685 p->lock.pBtree = p;
1686 p->lock.iTable = 1;
1687#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001688
drh198bf392006-01-06 21:52:49 +00001689#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001690 /*
1691 ** If this Btree is a candidate for shared cache, try to find an
1692 ** existing BtShared object that we can share with
1693 */
danielk197720c6cc22009-04-01 18:03:00 +00001694 if( isMemdb==0 && zFilename && zFilename[0] ){
danielk1977502b4e02008-09-02 14:07:24 +00001695 if( sqlite3GlobalConfig.sharedCacheEnabled ){
danielk1977adfb9b02007-09-17 07:02:56 +00001696 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001697 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001698 sqlite3_mutex *mutexShared;
1699 p->sharable = 1;
drh34004ce2008-07-11 16:15:17 +00001700 db->flags |= SQLITE_SharedCache;
drhff0587c2007-08-29 17:43:19 +00001701 if( !zFullPathname ){
1702 sqlite3_free(p);
1703 return SQLITE_NOMEM;
1704 }
danielk1977adfb9b02007-09-17 07:02:56 +00001705 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001706 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1707 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001708 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001709 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001710 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001711 assert( pBt->nRef>0 );
1712 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1713 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001714 int iDb;
1715 for(iDb=db->nDb-1; iDb>=0; iDb--){
1716 Btree *pExisting = db->aDb[iDb].pBt;
1717 if( pExisting && pExisting->pBt==pBt ){
1718 sqlite3_mutex_leave(mutexShared);
1719 sqlite3_mutex_leave(mutexOpen);
1720 sqlite3_free(zFullPathname);
1721 sqlite3_free(p);
1722 return SQLITE_CONSTRAINT;
1723 }
1724 }
drhff0587c2007-08-29 17:43:19 +00001725 p->pBt = pBt;
1726 pBt->nRef++;
1727 break;
1728 }
1729 }
1730 sqlite3_mutex_leave(mutexShared);
1731 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001732 }
drhff0587c2007-08-29 17:43:19 +00001733#ifdef SQLITE_DEBUG
1734 else{
1735 /* In debug mode, we mark all persistent databases as sharable
1736 ** even when they are not. This exercises the locking code and
1737 ** gives more opportunity for asserts(sqlite3_mutex_held())
1738 ** statements to find locking problems.
1739 */
1740 p->sharable = 1;
1741 }
1742#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001743 }
1744#endif
drha059ad02001-04-17 20:09:11 +00001745 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001746 /*
1747 ** The following asserts make sure that structures used by the btree are
1748 ** the right size. This is to guard against size changes that result
1749 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001750 */
drhe53831d2007-08-17 01:14:38 +00001751 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1752 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1753 assert( sizeof(u32)==4 );
1754 assert( sizeof(u16)==2 );
1755 assert( sizeof(Pgno)==4 );
1756
1757 pBt = sqlite3MallocZero( sizeof(*pBt) );
1758 if( pBt==0 ){
1759 rc = SQLITE_NOMEM;
1760 goto btree_open_out;
1761 }
danielk197771d5d2c2008-09-29 11:49:47 +00001762 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh33f4e022007-09-03 15:19:34 +00001763 EXTRA_SIZE, flags, vfsFlags);
drhe53831d2007-08-17 01:14:38 +00001764 if( rc==SQLITE_OK ){
1765 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1766 }
1767 if( rc!=SQLITE_OK ){
1768 goto btree_open_out;
1769 }
danielk19772a50ff02009-04-10 09:47:06 +00001770 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001771 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001772 p->pBt = pBt;
1773
drhe53831d2007-08-17 01:14:38 +00001774 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
1775 pBt->pCursor = 0;
1776 pBt->pPage1 = 0;
1777 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1778 pBt->pageSize = get2byte(&zDbHeader[16]);
1779 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1780 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001781 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001782#ifndef SQLITE_OMIT_AUTOVACUUM
1783 /* If the magic name ":memory:" will create an in-memory database, then
1784 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1785 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1786 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1787 ** regular file-name. In this case the auto-vacuum applies as per normal.
1788 */
1789 if( zFilename && !isMemdb ){
1790 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1791 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1792 }
1793#endif
1794 nReserve = 0;
1795 }else{
1796 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001797 pBt->pageSizeFixed = 1;
1798#ifndef SQLITE_OMIT_AUTOVACUUM
1799 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1800 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1801#endif
1802 }
drhfa9601a2009-06-18 17:22:39 +00001803 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001804 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001805 pBt->usableSize = pBt->pageSize - nReserve;
1806 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001807
1808#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1809 /* Add the new BtShared object to the linked list sharable BtShareds.
1810 */
1811 if( p->sharable ){
1812 sqlite3_mutex *mutexShared;
1813 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001814 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001815 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001816 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001817 if( pBt->mutex==0 ){
1818 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001819 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001820 goto btree_open_out;
1821 }
drhff0587c2007-08-29 17:43:19 +00001822 }
drhe53831d2007-08-17 01:14:38 +00001823 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001824 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1825 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001826 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001827 }
drheee46cf2004-11-06 00:02:48 +00001828#endif
drh90f5ecb2004-07-22 01:19:35 +00001829 }
danielk1977aef0bf62005-12-30 16:28:01 +00001830
drhcfed7bc2006-03-13 14:28:05 +00001831#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001832 /* If the new Btree uses a sharable pBtShared, then link the new
1833 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001834 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001835 */
drhe53831d2007-08-17 01:14:38 +00001836 if( p->sharable ){
1837 int i;
1838 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001839 for(i=0; i<db->nDb; i++){
1840 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001841 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1842 if( p->pBt<pSib->pBt ){
1843 p->pNext = pSib;
1844 p->pPrev = 0;
1845 pSib->pPrev = p;
1846 }else{
drhabddb0c2007-08-20 13:14:28 +00001847 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001848 pSib = pSib->pNext;
1849 }
1850 p->pNext = pSib->pNext;
1851 p->pPrev = pSib;
1852 if( p->pNext ){
1853 p->pNext->pPrev = p;
1854 }
1855 pSib->pNext = p;
1856 }
1857 break;
1858 }
1859 }
danielk1977aef0bf62005-12-30 16:28:01 +00001860 }
danielk1977aef0bf62005-12-30 16:28:01 +00001861#endif
1862 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001863
1864btree_open_out:
1865 if( rc!=SQLITE_OK ){
1866 if( pBt && pBt->pPager ){
1867 sqlite3PagerClose(pBt->pPager);
1868 }
drh17435752007-08-16 04:30:38 +00001869 sqlite3_free(pBt);
1870 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001871 *ppBtree = 0;
1872 }
drh7555d8e2009-03-20 13:15:30 +00001873 if( mutexOpen ){
1874 assert( sqlite3_mutex_held(mutexOpen) );
1875 sqlite3_mutex_leave(mutexOpen);
1876 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001877 return rc;
drha059ad02001-04-17 20:09:11 +00001878}
1879
1880/*
drhe53831d2007-08-17 01:14:38 +00001881** Decrement the BtShared.nRef counter. When it reaches zero,
1882** remove the BtShared structure from the sharing list. Return
1883** true if the BtShared.nRef counter reaches zero and return
1884** false if it is still positive.
1885*/
1886static int removeFromSharingList(BtShared *pBt){
1887#ifndef SQLITE_OMIT_SHARED_CACHE
1888 sqlite3_mutex *pMaster;
1889 BtShared *pList;
1890 int removed = 0;
1891
drhd677b3d2007-08-20 22:48:41 +00001892 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001893 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001894 sqlite3_mutex_enter(pMaster);
1895 pBt->nRef--;
1896 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001897 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1898 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001899 }else{
drh78f82d12008-09-02 00:52:52 +00001900 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001901 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001902 pList=pList->pNext;
1903 }
drh34004ce2008-07-11 16:15:17 +00001904 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001905 pList->pNext = pBt->pNext;
1906 }
1907 }
drh3285db22007-09-03 22:00:39 +00001908 if( SQLITE_THREADSAFE ){
1909 sqlite3_mutex_free(pBt->mutex);
1910 }
drhe53831d2007-08-17 01:14:38 +00001911 removed = 1;
1912 }
1913 sqlite3_mutex_leave(pMaster);
1914 return removed;
1915#else
1916 return 1;
1917#endif
1918}
1919
1920/*
drhf7141992008-06-19 00:16:08 +00001921** Make sure pBt->pTmpSpace points to an allocation of
1922** MX_CELL_SIZE(pBt) bytes.
1923*/
1924static void allocateTempSpace(BtShared *pBt){
1925 if( !pBt->pTmpSpace ){
1926 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1927 }
1928}
1929
1930/*
1931** Free the pBt->pTmpSpace allocation
1932*/
1933static void freeTempSpace(BtShared *pBt){
1934 sqlite3PageFree( pBt->pTmpSpace);
1935 pBt->pTmpSpace = 0;
1936}
1937
1938/*
drha059ad02001-04-17 20:09:11 +00001939** Close an open database and invalidate all cursors.
1940*/
danielk1977aef0bf62005-12-30 16:28:01 +00001941int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001942 BtShared *pBt = p->pBt;
1943 BtCursor *pCur;
1944
danielk1977aef0bf62005-12-30 16:28:01 +00001945 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001946 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001947 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001948 pCur = pBt->pCursor;
1949 while( pCur ){
1950 BtCursor *pTmp = pCur;
1951 pCur = pCur->pNext;
1952 if( pTmp->pBtree==p ){
1953 sqlite3BtreeCloseCursor(pTmp);
1954 }
drha059ad02001-04-17 20:09:11 +00001955 }
danielk1977aef0bf62005-12-30 16:28:01 +00001956
danielk19778d34dfd2006-01-24 16:37:57 +00001957 /* Rollback any active transaction and free the handle structure.
1958 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1959 ** this handle.
1960 */
danielk1977b597f742006-01-15 11:39:18 +00001961 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001962 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001963
danielk1977aef0bf62005-12-30 16:28:01 +00001964 /* If there are still other outstanding references to the shared-btree
1965 ** structure, return now. The remainder of this procedure cleans
1966 ** up the shared-btree.
1967 */
drhe53831d2007-08-17 01:14:38 +00001968 assert( p->wantToLock==0 && p->locked==0 );
1969 if( !p->sharable || removeFromSharingList(pBt) ){
1970 /* The pBt is no longer on the sharing list, so we can access
1971 ** it without having to hold the mutex.
1972 **
1973 ** Clean out and delete the BtShared object.
1974 */
1975 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001976 sqlite3PagerClose(pBt->pPager);
1977 if( pBt->xFreeSchema && pBt->pSchema ){
1978 pBt->xFreeSchema(pBt->pSchema);
1979 }
1980 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00001981 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00001982 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001983 }
1984
drhe53831d2007-08-17 01:14:38 +00001985#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00001986 assert( p->wantToLock==0 );
1987 assert( p->locked==0 );
1988 if( p->pPrev ) p->pPrev->pNext = p->pNext;
1989 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00001990#endif
1991
drhe53831d2007-08-17 01:14:38 +00001992 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00001993 return SQLITE_OK;
1994}
1995
1996/*
drhda47d772002-12-02 04:25:19 +00001997** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001998**
1999** The maximum number of cache pages is set to the absolute
2000** value of mxPage. If mxPage is negative, the pager will
2001** operate asynchronously - it will not stop to do fsync()s
2002** to insure data is written to the disk surface before
2003** continuing. Transactions still work if synchronous is off,
2004** and the database cannot be corrupted if this program
2005** crashes. But if the operating system crashes or there is
2006** an abrupt power failure when synchronous is off, the database
2007** could be left in an inconsistent and unrecoverable state.
2008** Synchronous is on by default so database corruption is not
2009** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002010*/
danielk1977aef0bf62005-12-30 16:28:01 +00002011int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2012 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002013 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002014 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002015 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002016 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002017 return SQLITE_OK;
2018}
2019
2020/*
drh973b6e32003-02-12 14:09:42 +00002021** Change the way data is synced to disk in order to increase or decrease
2022** how well the database resists damage due to OS crashes and power
2023** failures. Level 1 is the same as asynchronous (no syncs() occur and
2024** there is a high probability of damage) Level 2 is the default. There
2025** is a very low but non-zero probability of damage. Level 3 reduces the
2026** probability of damage to near zero but with a write performance reduction.
2027*/
danielk197793758c82005-01-21 08:13:14 +00002028#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002029int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002030 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002031 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002032 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002033 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002034 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002035 return SQLITE_OK;
2036}
danielk197793758c82005-01-21 08:13:14 +00002037#endif
drh973b6e32003-02-12 14:09:42 +00002038
drh2c8997b2005-08-27 16:36:48 +00002039/*
2040** Return TRUE if the given btree is set to safety level 1. In other
2041** words, return TRUE if no sync() occurs on the disk files.
2042*/
danielk1977aef0bf62005-12-30 16:28:01 +00002043int sqlite3BtreeSyncDisabled(Btree *p){
2044 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002045 int rc;
drhe5fe6902007-12-07 18:55:28 +00002046 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002047 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002048 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002049 rc = sqlite3PagerNosync(pBt->pPager);
2050 sqlite3BtreeLeave(p);
2051 return rc;
drh2c8997b2005-08-27 16:36:48 +00002052}
2053
danielk1977576ec6b2005-01-21 11:55:25 +00002054#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002055/*
drh90f5ecb2004-07-22 01:19:35 +00002056** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002057** Or, if the page size has already been fixed, return SQLITE_READONLY
2058** without changing anything.
drh06f50212004-11-02 14:24:33 +00002059**
2060** The page size must be a power of 2 between 512 and 65536. If the page
2061** size supplied does not meet this constraint then the page size is not
2062** changed.
2063**
2064** Page sizes are constrained to be a power of two so that the region
2065** of the database file used for locking (beginning at PENDING_BYTE,
2066** the first byte past the 1GB boundary, 0x40000000) needs to occur
2067** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002068**
2069** If parameter nReserve is less than zero, then the number of reserved
2070** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002071**
2072** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2073** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002074*/
drhce4869f2009-04-02 20:16:58 +00002075int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002076 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002077 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002078 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002079 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002080 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002081 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002082 return SQLITE_READONLY;
2083 }
2084 if( nReserve<0 ){
2085 nReserve = pBt->pageSize - pBt->usableSize;
2086 }
drhf49661a2008-12-10 16:45:50 +00002087 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002088 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2089 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002090 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002091 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00002092 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002093 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002094 }
drhfa9601a2009-06-18 17:22:39 +00002095 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002096 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002097 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002098 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002099 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002100}
2101
2102/*
2103** Return the currently defined page size
2104*/
danielk1977aef0bf62005-12-30 16:28:01 +00002105int sqlite3BtreeGetPageSize(Btree *p){
2106 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002107}
drh7f751222009-03-17 22:33:00 +00002108
2109/*
2110** Return the number of bytes of space at the end of every page that
2111** are intentually left unused. This is the "reserved" space that is
2112** sometimes used by extensions.
2113*/
danielk1977aef0bf62005-12-30 16:28:01 +00002114int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002115 int n;
2116 sqlite3BtreeEnter(p);
2117 n = p->pBt->pageSize - p->pBt->usableSize;
2118 sqlite3BtreeLeave(p);
2119 return n;
drh2011d5f2004-07-22 02:40:37 +00002120}
drhf8e632b2007-05-08 14:51:36 +00002121
2122/*
2123** Set the maximum page count for a database if mxPage is positive.
2124** No changes are made if mxPage is 0 or negative.
2125** Regardless of the value of mxPage, return the maximum page count.
2126*/
2127int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002128 int n;
2129 sqlite3BtreeEnter(p);
2130 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2131 sqlite3BtreeLeave(p);
2132 return n;
drhf8e632b2007-05-08 14:51:36 +00002133}
danielk1977576ec6b2005-01-21 11:55:25 +00002134#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002135
2136/*
danielk1977951af802004-11-05 15:45:09 +00002137** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2138** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2139** is disabled. The default value for the auto-vacuum property is
2140** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2141*/
danielk1977aef0bf62005-12-30 16:28:01 +00002142int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002143#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002144 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002145#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002146 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002147 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002148 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002149
2150 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002151 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002152 rc = SQLITE_READONLY;
2153 }else{
drh076d4662009-02-18 20:31:18 +00002154 pBt->autoVacuum = av ?1:0;
2155 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002156 }
drhd677b3d2007-08-20 22:48:41 +00002157 sqlite3BtreeLeave(p);
2158 return rc;
danielk1977951af802004-11-05 15:45:09 +00002159#endif
2160}
2161
2162/*
2163** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2164** enabled 1 is returned. Otherwise 0.
2165*/
danielk1977aef0bf62005-12-30 16:28:01 +00002166int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002167#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002168 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002169#else
drhd677b3d2007-08-20 22:48:41 +00002170 int rc;
2171 sqlite3BtreeEnter(p);
2172 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002173 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2174 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2175 BTREE_AUTOVACUUM_INCR
2176 );
drhd677b3d2007-08-20 22:48:41 +00002177 sqlite3BtreeLeave(p);
2178 return rc;
danielk1977951af802004-11-05 15:45:09 +00002179#endif
2180}
2181
2182
2183/*
drha34b6762004-05-07 13:30:42 +00002184** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002185** also acquire a readlock on that file.
2186**
2187** SQLITE_OK is returned on success. If the file is not a
2188** well-formed database file, then SQLITE_CORRUPT is returned.
2189** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002190** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002191*/
danielk1977aef0bf62005-12-30 16:28:01 +00002192static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00002193 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002194 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00002195 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002196
drh1fee73e2007-08-29 04:00:57 +00002197 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002198 assert( pBt->pPage1==0 );
danielk197730548662009-07-09 05:07:37 +00002199 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002200 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002201
2202 /* Do some checking to help insure the file we opened really is
2203 ** a valid database file.
2204 */
danielk1977ad0132d2008-06-07 08:58:22 +00002205 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2206 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00002207 goto page1_init_failed;
2208 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002209 int pageSize;
2210 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002211 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002212 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002213 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002214 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002215 }
drh309169a2007-04-24 17:27:51 +00002216 if( page1[18]>1 ){
2217 pBt->readOnly = 1;
2218 }
2219 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00002220 goto page1_init_failed;
2221 }
drhe5ae5732008-06-15 02:51:47 +00002222
2223 /* The maximum embedded fraction must be exactly 25%. And the minimum
2224 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2225 ** The original design allowed these amounts to vary, but as of
2226 ** version 3.6.0, we require them to be fixed.
2227 */
2228 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2229 goto page1_init_failed;
2230 }
drh07d183d2005-05-01 22:52:42 +00002231 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002232 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2233 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2234 ){
drh07d183d2005-05-01 22:52:42 +00002235 goto page1_init_failed;
2236 }
2237 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002238 usableSize = pageSize - page1[20];
2239 if( pageSize!=pBt->pageSize ){
2240 /* After reading the first page of the database assuming a page size
2241 ** of BtShared.pageSize, we have discovered that the page-size is
2242 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2243 ** zero and return SQLITE_OK. The caller will call this function
2244 ** again with the correct page-size.
2245 */
2246 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002247 pBt->usableSize = (u16)usableSize;
2248 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002249 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002250 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2251 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002252 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002253 }
drhb33e1b92009-06-18 11:29:20 +00002254 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002255 goto page1_init_failed;
2256 }
drh1bd10f82008-12-10 21:19:56 +00002257 pBt->pageSize = (u16)pageSize;
2258 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002259#ifndef SQLITE_OMIT_AUTOVACUUM
2260 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002261 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002262#endif
drh306dc212001-05-21 13:45:10 +00002263 }
drhb6f41482004-05-14 01:58:11 +00002264
2265 /* maxLocal is the maximum amount of payload to store locally for
2266 ** a cell. Make sure it is small enough so that at least minFanout
2267 ** cells can will fit on one page. We assume a 10-byte page header.
2268 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002269 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002270 ** 4-byte child pointer
2271 ** 9-byte nKey value
2272 ** 4-byte nData value
2273 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002274 ** So a cell consists of a 2-byte poiner, a header which is as much as
2275 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2276 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002277 */
drhe5ae5732008-06-15 02:51:47 +00002278 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2279 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002280 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002281 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002282 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002283 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002284 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002285
drh72f82862001-05-24 21:06:34 +00002286page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002287 releasePage(pPage1);
2288 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002289 return rc;
drh306dc212001-05-21 13:45:10 +00002290}
2291
2292/*
drhb8ca3072001-12-05 00:21:20 +00002293** If there are no outstanding cursors and we are not in the middle
2294** of a transaction but there is a read lock on the database, then
2295** this routine unrefs the first page of the database file which
2296** has the effect of releasing the read lock.
2297**
drhb8ca3072001-12-05 00:21:20 +00002298** If there is a transaction in progress, this routine is a no-op.
2299*/
danielk1977aef0bf62005-12-30 16:28:01 +00002300static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002301 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002302 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2303 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002304 assert( pBt->pPage1->aData );
2305 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2306 assert( pBt->pPage1->aData );
2307 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002308 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002309 }
2310}
2311
2312/*
drh9e572e62004-04-23 23:43:10 +00002313** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00002314** file.
drh8b2f49b2001-06-08 00:21:52 +00002315*/
danielk1977aef0bf62005-12-30 16:28:01 +00002316static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002317 MemPage *pP1;
2318 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002319 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002320 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002321
drh1fee73e2007-08-29 04:00:57 +00002322 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002323 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2324 if( rc!=SQLITE_OK || nPage>0 ){
2325 return rc;
2326 }
drh3aac2dd2004-04-26 14:10:20 +00002327 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002328 assert( pP1!=0 );
2329 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002330 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002331 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002332 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2333 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002334 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002335 data[18] = 1;
2336 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002337 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2338 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002339 data[21] = 64;
2340 data[22] = 32;
2341 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002342 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002343 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002344 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002345#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002346 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002347 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002348 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002349 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002350#endif
drh8b2f49b2001-06-08 00:21:52 +00002351 return SQLITE_OK;
2352}
2353
2354/*
danielk1977ee5741e2004-05-31 10:01:34 +00002355** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002356** is started if the second argument is nonzero, otherwise a read-
2357** transaction. If the second argument is 2 or more and exclusive
2358** transaction is started, meaning that no other process is allowed
2359** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002360** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002361** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002362**
danielk1977ee5741e2004-05-31 10:01:34 +00002363** A write-transaction must be started before attempting any
2364** changes to the database. None of the following routines
2365** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002366**
drh23e11ca2004-05-04 17:27:28 +00002367** sqlite3BtreeCreateTable()
2368** sqlite3BtreeCreateIndex()
2369** sqlite3BtreeClearTable()
2370** sqlite3BtreeDropTable()
2371** sqlite3BtreeInsert()
2372** sqlite3BtreeDelete()
2373** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002374**
drhb8ef32c2005-03-14 02:01:49 +00002375** If an initial attempt to acquire the lock fails because of lock contention
2376** and the database was previously unlocked, then invoke the busy handler
2377** if there is one. But if there was previously a read-lock, do not
2378** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2379** returned when there is already a read-lock in order to avoid a deadlock.
2380**
2381** Suppose there are two processes A and B. A has a read lock and B has
2382** a reserved lock. B tries to promote to exclusive but is blocked because
2383** of A's read lock. A tries to promote to reserved but is blocked by B.
2384** One or the other of the two processes must give way or there can be
2385** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2386** when A already has a read lock, we encourage A to give up and let B
2387** proceed.
drha059ad02001-04-17 20:09:11 +00002388*/
danielk1977aef0bf62005-12-30 16:28:01 +00002389int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002390 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002391 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002392 int rc = SQLITE_OK;
2393
drhd677b3d2007-08-20 22:48:41 +00002394 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002395 btreeIntegrity(p);
2396
danielk1977ee5741e2004-05-31 10:01:34 +00002397 /* If the btree is already in a write-transaction, or it
2398 ** is already in a read-transaction and a read-transaction
2399 ** is requested, this is a no-op.
2400 */
danielk1977aef0bf62005-12-30 16:28:01 +00002401 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002402 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002403 }
drhb8ef32c2005-03-14 02:01:49 +00002404
2405 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002406 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002407 rc = SQLITE_READONLY;
2408 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002409 }
2410
danielk1977404ca072009-03-16 13:19:36 +00002411#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002412 /* If another database handle has already opened a write transaction
2413 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002414 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002415 */
danielk1977404ca072009-03-16 13:19:36 +00002416 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2417 pBlock = pBt->pWriter->db;
2418 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002419 BtLock *pIter;
2420 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2421 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002422 pBlock = pIter->pBtree->db;
2423 break;
danielk1977641b0f42007-12-21 04:47:25 +00002424 }
2425 }
2426 }
danielk1977404ca072009-03-16 13:19:36 +00002427 if( pBlock ){
2428 sqlite3ConnectionBlocked(p->db, pBlock);
2429 rc = SQLITE_LOCKED_SHAREDCACHE;
2430 goto trans_begun;
2431 }
danielk1977641b0f42007-12-21 04:47:25 +00002432#endif
2433
danielk1977602b4662009-07-02 07:47:33 +00002434 /* Any read-only or read-write transaction implies a read-lock on
2435 ** page 1. So if some other shared-cache client already has a write-lock
2436 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002437 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2438 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002439
drhb8ef32c2005-03-14 02:01:49 +00002440 do {
danielk1977295dc102009-04-01 19:07:03 +00002441 /* Call lockBtree() until either pBt->pPage1 is populated or
2442 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2443 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2444 ** reading page 1 it discovers that the page-size of the database
2445 ** file is not pBt->pageSize. In this case lockBtree() will update
2446 ** pBt->pageSize to the page-size of the file on disk.
2447 */
2448 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002449
drhb8ef32c2005-03-14 02:01:49 +00002450 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002451 if( pBt->readOnly ){
2452 rc = SQLITE_READONLY;
2453 }else{
danielk1977d8293352009-04-30 09:10:37 +00002454 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002455 if( rc==SQLITE_OK ){
2456 rc = newDatabase(pBt);
2457 }
drhb8ef32c2005-03-14 02:01:49 +00002458 }
2459 }
2460
danielk1977bd434552009-03-18 10:33:00 +00002461 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002462 unlockBtreeIfUnused(pBt);
2463 }
danielk1977aef0bf62005-12-30 16:28:01 +00002464 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002465 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002466
2467 if( rc==SQLITE_OK ){
2468 if( p->inTrans==TRANS_NONE ){
2469 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002470#ifndef SQLITE_OMIT_SHARED_CACHE
2471 if( p->sharable ){
2472 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2473 p->lock.eLock = READ_LOCK;
2474 p->lock.pNext = pBt->pLock;
2475 pBt->pLock = &p->lock;
2476 }
2477#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002478 }
2479 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2480 if( p->inTrans>pBt->inTransaction ){
2481 pBt->inTransaction = p->inTrans;
2482 }
danielk1977641b0f42007-12-21 04:47:25 +00002483#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002484 if( wrflag ){
2485 assert( !pBt->pWriter );
2486 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002487 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002488 }
2489#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002490 }
2491
drhd677b3d2007-08-20 22:48:41 +00002492
2493trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002494 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002495 /* This call makes sure that the pager has the correct number of
2496 ** open savepoints. If the second parameter is greater than 0 and
2497 ** the sub-journal is not already open, then it will be opened here.
2498 */
danielk1977fd7f0452008-12-17 17:30:26 +00002499 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2500 }
danielk197712dd5492008-12-18 15:45:07 +00002501
danielk1977aef0bf62005-12-30 16:28:01 +00002502 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002503 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002504 return rc;
drha059ad02001-04-17 20:09:11 +00002505}
2506
danielk1977687566d2004-11-02 12:56:41 +00002507#ifndef SQLITE_OMIT_AUTOVACUUM
2508
2509/*
2510** Set the pointer-map entries for all children of page pPage. Also, if
2511** pPage contains cells that point to overflow pages, set the pointer
2512** map entries for the overflow pages as well.
2513*/
2514static int setChildPtrmaps(MemPage *pPage){
2515 int i; /* Counter variable */
2516 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002517 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002518 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002519 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002520 Pgno pgno = pPage->pgno;
2521
drh1fee73e2007-08-29 04:00:57 +00002522 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002523 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002524 if( rc!=SQLITE_OK ){
2525 goto set_child_ptrmaps_out;
2526 }
danielk1977687566d2004-11-02 12:56:41 +00002527 nCell = pPage->nCell;
2528
2529 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002530 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002531
danielk197726836652005-01-17 01:33:13 +00002532 rc = ptrmapPutOvflPtr(pPage, pCell);
2533 if( rc!=SQLITE_OK ){
2534 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002535 }
danielk197726836652005-01-17 01:33:13 +00002536
danielk1977687566d2004-11-02 12:56:41 +00002537 if( !pPage->leaf ){
2538 Pgno childPgno = get4byte(pCell);
2539 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
danielk197700a696d2008-09-29 16:41:31 +00002540 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002541 }
2542 }
2543
2544 if( !pPage->leaf ){
2545 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2546 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2547 }
2548
2549set_child_ptrmaps_out:
2550 pPage->isInit = isInitOrig;
2551 return rc;
2552}
2553
2554/*
drhf3aed592009-07-08 18:12:49 +00002555** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2556** that it points to iTo. Parameter eType describes the type of pointer to
2557** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002558**
2559** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2560** page of pPage.
2561**
2562** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2563** page pointed to by one of the cells on pPage.
2564**
2565** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2566** overflow page in the list.
2567*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002568static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002569 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002570 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002571 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002572 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002573 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002574 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002575 }
danielk1977f78fc082004-11-02 14:40:32 +00002576 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002577 }else{
drhf49661a2008-12-10 16:45:50 +00002578 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002579 int i;
2580 int nCell;
2581
danielk197730548662009-07-09 05:07:37 +00002582 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002583 nCell = pPage->nCell;
2584
danielk1977687566d2004-11-02 12:56:41 +00002585 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002586 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002587 if( eType==PTRMAP_OVERFLOW1 ){
2588 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002589 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002590 if( info.iOverflow ){
2591 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2592 put4byte(&pCell[info.iOverflow], iTo);
2593 break;
2594 }
2595 }
2596 }else{
2597 if( get4byte(pCell)==iFrom ){
2598 put4byte(pCell, iTo);
2599 break;
2600 }
2601 }
2602 }
2603
2604 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002605 if( eType!=PTRMAP_BTREE ||
2606 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002607 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002608 }
danielk1977687566d2004-11-02 12:56:41 +00002609 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2610 }
2611
2612 pPage->isInit = isInitOrig;
2613 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002614 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002615}
2616
danielk1977003ba062004-11-04 02:57:33 +00002617
danielk19777701e812005-01-10 12:59:51 +00002618/*
2619** Move the open database page pDbPage to location iFreePage in the
2620** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002621**
2622** The isCommit flag indicates that there is no need to remember that
2623** the journal needs to be sync()ed before database page pDbPage->pgno
2624** can be written to. The caller has already promised not to write to that
2625** page.
danielk19777701e812005-01-10 12:59:51 +00002626*/
danielk1977003ba062004-11-04 02:57:33 +00002627static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002628 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002629 MemPage *pDbPage, /* Open page to move */
2630 u8 eType, /* Pointer map 'type' entry for pDbPage */
2631 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002632 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002633 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002634){
2635 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2636 Pgno iDbPage = pDbPage->pgno;
2637 Pager *pPager = pBt->pPager;
2638 int rc;
2639
danielk1977a0bf2652004-11-04 14:30:04 +00002640 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2641 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002642 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002643 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002644
drh85b623f2007-12-13 21:54:09 +00002645 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002646 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2647 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002648 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002649 if( rc!=SQLITE_OK ){
2650 return rc;
2651 }
2652 pDbPage->pgno = iFreePage;
2653
2654 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2655 ** that point to overflow pages. The pointer map entries for all these
2656 ** pages need to be changed.
2657 **
2658 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2659 ** pointer to a subsequent overflow page. If this is the case, then
2660 ** the pointer map needs to be updated for the subsequent overflow page.
2661 */
danielk1977a0bf2652004-11-04 14:30:04 +00002662 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002663 rc = setChildPtrmaps(pDbPage);
2664 if( rc!=SQLITE_OK ){
2665 return rc;
2666 }
2667 }else{
2668 Pgno nextOvfl = get4byte(pDbPage->aData);
2669 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002670 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2671 if( rc!=SQLITE_OK ){
2672 return rc;
2673 }
2674 }
2675 }
2676
2677 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2678 ** that it points at iFreePage. Also fix the pointer map entry for
2679 ** iPtrPage.
2680 */
danielk1977a0bf2652004-11-04 14:30:04 +00002681 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002682 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002683 if( rc!=SQLITE_OK ){
2684 return rc;
2685 }
danielk19773b8a05f2007-03-19 17:44:26 +00002686 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002687 if( rc!=SQLITE_OK ){
2688 releasePage(pPtrPage);
2689 return rc;
2690 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002691 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002692 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002693 if( rc==SQLITE_OK ){
2694 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2695 }
danielk1977003ba062004-11-04 02:57:33 +00002696 }
danielk1977003ba062004-11-04 02:57:33 +00002697 return rc;
2698}
2699
danielk1977dddbcdc2007-04-26 14:42:34 +00002700/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002701static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002702
2703/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002704** Perform a single step of an incremental-vacuum. If successful,
2705** return SQLITE_OK. If there is no work to do (and therefore no
2706** point in calling this function again), return SQLITE_DONE.
2707**
2708** More specificly, this function attempts to re-organize the
2709** database so that the last page of the file currently in use
2710** is no longer in use.
2711**
2712** If the nFin parameter is non-zero, the implementation assumes
2713** that the caller will keep calling incrVacuumStep() until
2714** it returns SQLITE_DONE or an error, and that nFin is the
2715** number of pages the database file will contain after this
2716** process is complete.
2717*/
danielk19773460d192008-12-27 15:23:13 +00002718static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002719 Pgno nFreeList; /* Number of pages still on the free-list */
2720
drh1fee73e2007-08-29 04:00:57 +00002721 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002722 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002723
2724 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2725 int rc;
2726 u8 eType;
2727 Pgno iPtrPage;
2728
2729 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002730 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002731 return SQLITE_DONE;
2732 }
2733
2734 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2735 if( rc!=SQLITE_OK ){
2736 return rc;
2737 }
2738 if( eType==PTRMAP_ROOTPAGE ){
2739 return SQLITE_CORRUPT_BKPT;
2740 }
2741
2742 if( eType==PTRMAP_FREEPAGE ){
2743 if( nFin==0 ){
2744 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002745 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002746 ** truncated to zero after this function returns, so it doesn't
2747 ** matter if it still contains some garbage entries.
2748 */
2749 Pgno iFreePg;
2750 MemPage *pFreePg;
2751 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2752 if( rc!=SQLITE_OK ){
2753 return rc;
2754 }
2755 assert( iFreePg==iLastPg );
2756 releasePage(pFreePg);
2757 }
2758 } else {
2759 Pgno iFreePg; /* Index of free page to move pLastPg to */
2760 MemPage *pLastPg;
2761
danielk197730548662009-07-09 05:07:37 +00002762 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002763 if( rc!=SQLITE_OK ){
2764 return rc;
2765 }
2766
danielk1977b4626a32007-04-28 15:47:43 +00002767 /* If nFin is zero, this loop runs exactly once and page pLastPg
2768 ** is swapped with the first free page pulled off the free list.
2769 **
2770 ** On the other hand, if nFin is greater than zero, then keep
2771 ** looping until a free-page located within the first nFin pages
2772 ** of the file is found.
2773 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002774 do {
2775 MemPage *pFreePg;
2776 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2777 if( rc!=SQLITE_OK ){
2778 releasePage(pLastPg);
2779 return rc;
2780 }
2781 releasePage(pFreePg);
2782 }while( nFin!=0 && iFreePg>nFin );
2783 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002784
2785 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002786 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002787 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002788 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002789 releasePage(pLastPg);
2790 if( rc!=SQLITE_OK ){
2791 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002792 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002793 }
2794 }
2795
danielk19773460d192008-12-27 15:23:13 +00002796 if( nFin==0 ){
2797 iLastPg--;
2798 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002799 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2800 MemPage *pPg;
danielk197730548662009-07-09 05:07:37 +00002801 int rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002802 if( rc!=SQLITE_OK ){
2803 return rc;
2804 }
2805 rc = sqlite3PagerWrite(pPg->pDbPage);
2806 releasePage(pPg);
2807 if( rc!=SQLITE_OK ){
2808 return rc;
2809 }
2810 }
danielk19773460d192008-12-27 15:23:13 +00002811 iLastPg--;
2812 }
2813 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002814 }
2815 return SQLITE_OK;
2816}
2817
2818/*
2819** A write-transaction must be opened before calling this function.
2820** It performs a single unit of work towards an incremental vacuum.
2821**
2822** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002823** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002824** SQLITE_OK is returned. Otherwise an SQLite error code.
2825*/
2826int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002827 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002828 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002829
2830 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002831 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2832 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002833 rc = SQLITE_DONE;
2834 }else{
2835 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002836 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002837 }
drhd677b3d2007-08-20 22:48:41 +00002838 sqlite3BtreeLeave(p);
2839 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002840}
2841
2842/*
danielk19773b8a05f2007-03-19 17:44:26 +00002843** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002844** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002845**
2846** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2847** the database file should be truncated to during the commit process.
2848** i.e. the database has been reorganized so that only the first *pnTrunc
2849** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002850*/
danielk19773460d192008-12-27 15:23:13 +00002851static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002852 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002853 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002854 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002855
drh1fee73e2007-08-29 04:00:57 +00002856 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002857 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002858 assert(pBt->autoVacuum);
2859 if( !pBt->incrVacuum ){
drh41d628c2009-07-11 17:04:08 +00002860 Pgno nFin; /* Number of pages to be freed */
2861 Pgno nFree; /* Number of pages no the freelist */
2862 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
2863 Pgno iFree; /* The next page to be freed */
2864 int nEntry; /* Number of entries on one ptrmap page */
2865 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00002866
drh41d628c2009-07-11 17:04:08 +00002867 nOrig = pagerPagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00002868 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2869 /* It is not possible to create a database for which the final page
2870 ** is either a pointer-map page or the pending-byte page. If one
2871 ** is encountered, this indicates corruption.
2872 */
danielk19773460d192008-12-27 15:23:13 +00002873 return SQLITE_CORRUPT_BKPT;
2874 }
danielk1977ef165ce2009-04-06 17:50:03 +00002875
danielk19773460d192008-12-27 15:23:13 +00002876 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00002877 nEntry = pBt->usableSize/5;
2878 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00002879 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002880 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002881 nFin--;
2882 }
2883 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2884 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002885 }
drhc5e47ac2009-06-04 00:11:56 +00002886 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002887
danielk19773460d192008-12-27 15:23:13 +00002888 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2889 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002890 }
danielk19773460d192008-12-27 15:23:13 +00002891 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002892 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002893 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2894 put4byte(&pBt->pPage1->aData[32], 0);
2895 put4byte(&pBt->pPage1->aData[36], 0);
2896 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002897 }
2898 if( rc!=SQLITE_OK ){
2899 sqlite3PagerRollback(pPager);
2900 }
danielk1977687566d2004-11-02 12:56:41 +00002901 }
2902
danielk19773b8a05f2007-03-19 17:44:26 +00002903 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002904 return rc;
2905}
danielk1977dddbcdc2007-04-26 14:42:34 +00002906
danielk1977a50d9aa2009-06-08 14:49:45 +00002907#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2908# define setChildPtrmaps(x) SQLITE_OK
2909#endif
danielk1977687566d2004-11-02 12:56:41 +00002910
2911/*
drh80e35f42007-03-30 14:06:34 +00002912** This routine does the first phase of a two-phase commit. This routine
2913** causes a rollback journal to be created (if it does not already exist)
2914** and populated with enough information so that if a power loss occurs
2915** the database can be restored to its original state by playing back
2916** the journal. Then the contents of the journal are flushed out to
2917** the disk. After the journal is safely on oxide, the changes to the
2918** database are written into the database file and flushed to oxide.
2919** At the end of this call, the rollback journal still exists on the
2920** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002921** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002922** commit process.
2923**
2924** This call is a no-op if no write-transaction is currently active on pBt.
2925**
2926** Otherwise, sync the database file for the btree pBt. zMaster points to
2927** the name of a master journal file that should be written into the
2928** individual journal file, or is NULL, indicating no master journal file
2929** (single database transaction).
2930**
2931** When this is called, the master journal should already have been
2932** created, populated with this journal pointer and synced to disk.
2933**
2934** Once this is routine has returned, the only thing required to commit
2935** the write-transaction for this database file is to delete the journal.
2936*/
2937int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2938 int rc = SQLITE_OK;
2939 if( p->inTrans==TRANS_WRITE ){
2940 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002941 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002942#ifndef SQLITE_OMIT_AUTOVACUUM
2943 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002944 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002945 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002946 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002947 return rc;
2948 }
2949 }
2950#endif
drh49b9d332009-01-02 18:10:42 +00002951 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00002952 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002953 }
2954 return rc;
2955}
2956
2957/*
danielk197794b30732009-07-02 17:21:57 +00002958** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
2959** at the conclusion of a transaction.
2960*/
2961static void btreeEndTransaction(Btree *p){
2962 BtShared *pBt = p->pBt;
2963 BtCursor *pCsr;
2964 assert( sqlite3BtreeHoldsMutex(p) );
2965
2966 /* Search for a cursor held open by this b-tree connection. If one exists,
2967 ** then the transaction will be downgraded to a read-only transaction
2968 ** instead of actually concluded. A subsequent call to CommitPhaseTwo()
2969 ** or Rollback() will finish the transaction and unlock the database. */
2970 for(pCsr=pBt->pCursor; pCsr && pCsr->pBtree!=p; pCsr=pCsr->pNext);
2971 assert( pCsr==0 || p->inTrans>TRANS_NONE );
2972
2973 btreeClearHasContent(pBt);
2974 if( pCsr ){
2975 downgradeAllSharedCacheTableLocks(p);
2976 p->inTrans = TRANS_READ;
2977 }else{
2978 /* If the handle had any kind of transaction open, decrement the
2979 ** transaction count of the shared btree. If the transaction count
2980 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
2981 ** call below will unlock the pager. */
2982 if( p->inTrans!=TRANS_NONE ){
2983 clearAllSharedCacheTableLocks(p);
2984 pBt->nTransaction--;
2985 if( 0==pBt->nTransaction ){
2986 pBt->inTransaction = TRANS_NONE;
2987 }
2988 }
2989
2990 /* Set the current transaction state to TRANS_NONE and unlock the
2991 ** pager if this call closed the only read or write transaction. */
2992 p->inTrans = TRANS_NONE;
2993 unlockBtreeIfUnused(pBt);
2994 }
2995
2996 btreeIntegrity(p);
2997}
2998
2999/*
drh2aa679f2001-06-25 02:11:07 +00003000** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003001**
drh6e345992007-03-30 11:12:08 +00003002** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003003** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3004** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3005** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003006** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003007** routine has to do is delete or truncate or zero the header in the
3008** the rollback journal (which causes the transaction to commit) and
3009** drop locks.
drh6e345992007-03-30 11:12:08 +00003010**
drh5e00f6c2001-09-13 13:46:56 +00003011** This will release the write lock on the database file. If there
3012** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003013*/
drh80e35f42007-03-30 14:06:34 +00003014int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003015 BtShared *pBt = p->pBt;
3016
drhd677b3d2007-08-20 22:48:41 +00003017 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003018 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003019
3020 /* If the handle has a write-transaction open, commit the shared-btrees
3021 ** transaction and set the shared state to TRANS_READ.
3022 */
3023 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003024 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003025 assert( pBt->inTransaction==TRANS_WRITE );
3026 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003027 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003028 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003029 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003030 return rc;
3031 }
danielk1977aef0bf62005-12-30 16:28:01 +00003032 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003033 }
danielk1977aef0bf62005-12-30 16:28:01 +00003034
danielk197794b30732009-07-02 17:21:57 +00003035 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003036 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003037 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003038}
3039
drh80e35f42007-03-30 14:06:34 +00003040/*
3041** Do both phases of a commit.
3042*/
3043int sqlite3BtreeCommit(Btree *p){
3044 int rc;
drhd677b3d2007-08-20 22:48:41 +00003045 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003046 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3047 if( rc==SQLITE_OK ){
3048 rc = sqlite3BtreeCommitPhaseTwo(p);
3049 }
drhd677b3d2007-08-20 22:48:41 +00003050 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003051 return rc;
3052}
3053
danielk1977fbcd5852004-06-15 02:44:18 +00003054#ifndef NDEBUG
3055/*
3056** Return the number of write-cursors open on this handle. This is for use
3057** in assert() expressions, so it is only compiled if NDEBUG is not
3058** defined.
drhfb982642007-08-30 01:19:59 +00003059**
3060** For the purposes of this routine, a write-cursor is any cursor that
3061** is capable of writing to the databse. That means the cursor was
3062** originally opened for writing and the cursor has not be disabled
3063** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003064*/
danielk1977aef0bf62005-12-30 16:28:01 +00003065static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003066 BtCursor *pCur;
3067 int r = 0;
3068 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003069 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003070 }
3071 return r;
3072}
3073#endif
3074
drhc39e0002004-05-07 23:50:57 +00003075/*
drhfb982642007-08-30 01:19:59 +00003076** This routine sets the state to CURSOR_FAULT and the error
3077** code to errCode for every cursor on BtShared that pBtree
3078** references.
3079**
3080** Every cursor is tripped, including cursors that belong
3081** to other database connections that happen to be sharing
3082** the cache with pBtree.
3083**
3084** This routine gets called when a rollback occurs.
3085** All cursors using the same cache must be tripped
3086** to prevent them from trying to use the btree after
3087** the rollback. The rollback may have deleted tables
3088** or moved root pages, so it is not sufficient to
3089** save the state of the cursor. The cursor must be
3090** invalidated.
3091*/
3092void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3093 BtCursor *p;
3094 sqlite3BtreeEnter(pBtree);
3095 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003096 int i;
danielk1977be51a652008-10-08 17:58:48 +00003097 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003098 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003099 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003100 for(i=0; i<=p->iPage; i++){
3101 releasePage(p->apPage[i]);
3102 p->apPage[i] = 0;
3103 }
drhfb982642007-08-30 01:19:59 +00003104 }
3105 sqlite3BtreeLeave(pBtree);
3106}
3107
3108/*
drhecdc7532001-09-23 02:35:53 +00003109** Rollback the transaction in progress. All cursors will be
3110** invalided by this operation. Any attempt to use a cursor
3111** that was open at the beginning of this operation will result
3112** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003113**
3114** This will release the write lock on the database file. If there
3115** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003116*/
danielk1977aef0bf62005-12-30 16:28:01 +00003117int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003118 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003119 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003120 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003121
drhd677b3d2007-08-20 22:48:41 +00003122 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003123 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003124#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003125 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003126 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003127 ** trying to save cursor positions. If this is an automatic rollback (as
3128 ** the result of a constraint, malloc() failure or IO error) then
3129 ** the cache may be internally inconsistent (not contain valid trees) so
3130 ** we cannot simply return the error to the caller. Instead, abort
3131 ** all queries that may be using any of the cursors that failed to save.
3132 */
drhfb982642007-08-30 01:19:59 +00003133 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003134 }
danielk19778d34dfd2006-01-24 16:37:57 +00003135#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003136 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003137
3138 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003139 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003140
danielk19778d34dfd2006-01-24 16:37:57 +00003141 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003142 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003143 if( rc2!=SQLITE_OK ){
3144 rc = rc2;
3145 }
3146
drh24cd67e2004-05-10 16:18:47 +00003147 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003148 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003149 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003150 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00003151 releasePage(pPage1);
3152 }
danielk1977fbcd5852004-06-15 02:44:18 +00003153 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003154 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003155 }
danielk1977aef0bf62005-12-30 16:28:01 +00003156
danielk197794b30732009-07-02 17:21:57 +00003157 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003158 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003159 return rc;
3160}
3161
3162/*
danielk1977bd434552009-03-18 10:33:00 +00003163** Start a statement subtransaction. The subtransaction can can be rolled
3164** back independently of the main transaction. You must start a transaction
3165** before starting a subtransaction. The subtransaction is ended automatically
3166** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003167**
3168** Statement subtransactions are used around individual SQL statements
3169** that are contained within a BEGIN...COMMIT block. If a constraint
3170** error occurs within the statement, the effect of that one statement
3171** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003172**
3173** A statement sub-transaction is implemented as an anonymous savepoint. The
3174** value passed as the second parameter is the total number of savepoints,
3175** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3176** are no active savepoints and no other statement-transactions open,
3177** iStatement is 1. This anonymous savepoint can be released or rolled back
3178** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003179*/
danielk1977bd434552009-03-18 10:33:00 +00003180int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003181 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003182 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003183 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003184 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003185 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003186 assert( iStatement>0 );
3187 assert( iStatement>p->db->nSavepoint );
3188 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00003189 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00003190 }else{
3191 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003192 /* At the pager level, a statement transaction is a savepoint with
3193 ** an index greater than all savepoints created explicitly using
3194 ** SQL statements. It is illegal to open, release or rollback any
3195 ** such savepoints while the statement transaction savepoint is active.
3196 */
danielk1977bd434552009-03-18 10:33:00 +00003197 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00003198 }
drhd677b3d2007-08-20 22:48:41 +00003199 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003200 return rc;
3201}
3202
3203/*
danielk1977fd7f0452008-12-17 17:30:26 +00003204** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3205** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003206** savepoint identified by parameter iSavepoint, depending on the value
3207** of op.
3208**
3209** Normally, iSavepoint is greater than or equal to zero. However, if op is
3210** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3211** contents of the entire transaction are rolled back. This is different
3212** from a normal transaction rollback, as no locks are released and the
3213** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003214*/
3215int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3216 int rc = SQLITE_OK;
3217 if( p && p->inTrans==TRANS_WRITE ){
3218 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003219 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3220 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3221 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003222 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003223 if( rc==SQLITE_OK ){
3224 rc = newDatabase(pBt);
3225 }
danielk1977fd7f0452008-12-17 17:30:26 +00003226 sqlite3BtreeLeave(p);
3227 }
3228 return rc;
3229}
3230
3231/*
drh8b2f49b2001-06-08 00:21:52 +00003232** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003233** iTable. If a read-only cursor is requested, it is assumed that
3234** the caller already has at least a read-only transaction open
3235** on the database already. If a write-cursor is requested, then
3236** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003237**
3238** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003239** If wrFlag==1, then the cursor can be used for reading or for
3240** writing if other conditions for writing are also met. These
3241** are the conditions that must be met in order for writing to
3242** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003243**
drhf74b8d92002-09-01 23:20:45 +00003244** 1: The cursor must have been opened with wrFlag==1
3245**
drhfe5d71d2007-03-19 11:54:10 +00003246** 2: Other database connections that share the same pager cache
3247** but which are not in the READ_UNCOMMITTED state may not have
3248** cursors open with wrFlag==0 on the same table. Otherwise
3249** the changes made by this write cursor would be visible to
3250** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003251**
3252** 3: The database must be writable (not on read-only media)
3253**
3254** 4: There must be an active transaction.
3255**
drh6446c4d2001-12-15 14:22:18 +00003256** No checking is done to make sure that page iTable really is the
3257** root page of a b-tree. If it is not, then the cursor acquired
3258** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003259**
3260** It is assumed that the sqlite3BtreeCursorSize() bytes of memory
3261** pointed to by pCur have been zeroed by the caller.
drha059ad02001-04-17 20:09:11 +00003262*/
drhd677b3d2007-08-20 22:48:41 +00003263static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003264 Btree *p, /* The btree */
3265 int iTable, /* Root page of table to open */
3266 int wrFlag, /* 1 to write. 0 read-only */
3267 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3268 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003269){
danielk19773e8add92009-07-04 17:16:00 +00003270 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003271
drh1fee73e2007-08-29 04:00:57 +00003272 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003273 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003274
danielk1977602b4662009-07-02 07:47:33 +00003275 /* The following assert statements verify that if this is a sharable
3276 ** b-tree database, the connection is holding the required table locks,
3277 ** and that no other connection has any open cursor that conflicts with
3278 ** this lock. */
3279 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003280 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3281
danielk19773e8add92009-07-04 17:16:00 +00003282 /* Assert that the caller has opened the required transaction. */
3283 assert( p->inTrans>TRANS_NONE );
3284 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3285 assert( pBt->pPage1 && pBt->pPage1->aData );
3286
danielk197796d48e92009-06-29 06:00:37 +00003287 if( NEVER(wrFlag && pBt->readOnly) ){
3288 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003289 }
danielk19773e8add92009-07-04 17:16:00 +00003290 if( iTable==1 && pagerPagecount(pBt)==0 ){
3291 return SQLITE_EMPTY;
3292 }
danielk1977aef0bf62005-12-30 16:28:01 +00003293
danielk1977aef0bf62005-12-30 16:28:01 +00003294 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003295 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003296 pCur->pgnoRoot = (Pgno)iTable;
3297 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003298 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003299 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003300 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003301 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003302 pCur->pNext = pBt->pCursor;
3303 if( pCur->pNext ){
3304 pCur->pNext->pPrev = pCur;
3305 }
3306 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003307 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003308 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003309 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003310}
drhd677b3d2007-08-20 22:48:41 +00003311int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003312 Btree *p, /* The btree */
3313 int iTable, /* Root page of table to open */
3314 int wrFlag, /* 1 to write. 0 read-only */
3315 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3316 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003317){
3318 int rc;
3319 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003320 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003321 sqlite3BtreeLeave(p);
3322 return rc;
3323}
drh7f751222009-03-17 22:33:00 +00003324
3325/*
3326** Return the size of a BtCursor object in bytes.
3327**
3328** This interfaces is needed so that users of cursors can preallocate
3329** sufficient storage to hold a cursor. The BtCursor object is opaque
3330** to users so they cannot do the sizeof() themselves - they must call
3331** this routine.
3332*/
3333int sqlite3BtreeCursorSize(void){
danielk1977cd3e8f72008-03-25 09:47:35 +00003334 return sizeof(BtCursor);
3335}
3336
drh7f751222009-03-17 22:33:00 +00003337/*
3338** Set the cached rowid value of every cursor in the same database file
3339** as pCur and having the same root page number as pCur. The value is
3340** set to iRowid.
3341**
3342** Only positive rowid values are considered valid for this cache.
3343** The cache is initialized to zero, indicating an invalid cache.
3344** A btree will work fine with zero or negative rowids. We just cannot
3345** cache zero or negative rowids, which means tables that use zero or
3346** negative rowids might run a little slower. But in practice, zero
3347** or negative rowids are very uncommon so this should not be a problem.
3348*/
3349void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3350 BtCursor *p;
3351 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3352 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3353 }
3354 assert( pCur->cachedRowid==iRowid );
3355}
drhd677b3d2007-08-20 22:48:41 +00003356
drh7f751222009-03-17 22:33:00 +00003357/*
3358** Return the cached rowid for the given cursor. A negative or zero
3359** return value indicates that the rowid cache is invalid and should be
3360** ignored. If the rowid cache has never before been set, then a
3361** zero is returned.
3362*/
3363sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3364 return pCur->cachedRowid;
3365}
drha059ad02001-04-17 20:09:11 +00003366
3367/*
drh5e00f6c2001-09-13 13:46:56 +00003368** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003369** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003370*/
drh3aac2dd2004-04-26 14:10:20 +00003371int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003372 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003373 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003374 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003375 BtShared *pBt = pCur->pBt;
3376 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003377 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003378 if( pCur->pPrev ){
3379 pCur->pPrev->pNext = pCur->pNext;
3380 }else{
3381 pBt->pCursor = pCur->pNext;
3382 }
3383 if( pCur->pNext ){
3384 pCur->pNext->pPrev = pCur->pPrev;
3385 }
danielk197771d5d2c2008-09-29 11:49:47 +00003386 for(i=0; i<=pCur->iPage; i++){
3387 releasePage(pCur->apPage[i]);
3388 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003389 unlockBtreeIfUnused(pBt);
3390 invalidateOverflowCache(pCur);
3391 /* sqlite3_free(pCur); */
3392 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003393 }
drh8c42ca92001-06-22 19:15:00 +00003394 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003395}
3396
drh5e2f8b92001-05-28 00:41:15 +00003397/*
drh86057612007-06-26 01:04:48 +00003398** Make sure the BtCursor* given in the argument has a valid
3399** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003400** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003401**
3402** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003403** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003404**
3405** 2007-06-25: There is a bug in some versions of MSVC that cause the
3406** compiler to crash when getCellInfo() is implemented as a macro.
3407** But there is a measureable speed advantage to using the macro on gcc
3408** (when less compiler optimizations like -Os or -O0 are used and the
3409** compiler is not doing agressive inlining.) So we use a real function
3410** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003411*/
drh9188b382004-05-14 21:12:22 +00003412#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003413 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003414 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003415 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003416 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003417 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003418 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003419 }
danielk19771cc5ed82007-05-16 17:28:43 +00003420#else
3421 #define assertCellInfo(x)
3422#endif
drh86057612007-06-26 01:04:48 +00003423#ifdef _MSC_VER
3424 /* Use a real function in MSVC to work around bugs in that compiler. */
3425 static void getCellInfo(BtCursor *pCur){
3426 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003427 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003428 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003429 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003430 }else{
3431 assertCellInfo(pCur);
3432 }
3433 }
3434#else /* if not _MSC_VER */
3435 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003436#define getCellInfo(pCur) \
3437 if( pCur->info.nSize==0 ){ \
3438 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003439 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003440 pCur->validNKey = 1; \
3441 }else{ \
3442 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003443 }
3444#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003445
3446/*
drh3aac2dd2004-04-26 14:10:20 +00003447** Set *pSize to the size of the buffer needed to hold the value of
3448** the key for the current entry. If the cursor is not pointing
3449** to a valid entry, *pSize is set to 0.
3450**
drh4b70f112004-05-02 21:12:19 +00003451** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003452** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00003453*/
drh4a1c3802004-05-12 15:15:47 +00003454int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003455 int rc;
3456
drh1fee73e2007-08-29 04:00:57 +00003457 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003458 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003459 if( rc==SQLITE_OK ){
3460 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3461 if( pCur->eState==CURSOR_INVALID ){
3462 *pSize = 0;
3463 }else{
drh86057612007-06-26 01:04:48 +00003464 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003465 *pSize = pCur->info.nKey;
3466 }
drh72f82862001-05-24 21:06:34 +00003467 }
danielk1977da184232006-01-05 11:34:32 +00003468 return rc;
drha059ad02001-04-17 20:09:11 +00003469}
drh2af926b2001-05-15 00:39:25 +00003470
drh72f82862001-05-24 21:06:34 +00003471/*
drh0e1c19e2004-05-11 00:58:56 +00003472** Set *pSize to the number of bytes of data in the entry the
3473** cursor currently points to. Always return SQLITE_OK.
3474** Failure is not possible. If the cursor is not currently
3475** pointing to an entry (which can happen, for example, if
3476** the database is empty) then *pSize is set to 0.
3477*/
3478int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003479 int rc;
3480
drh1fee73e2007-08-29 04:00:57 +00003481 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003482 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003483 if( rc==SQLITE_OK ){
3484 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3485 if( pCur->eState==CURSOR_INVALID ){
3486 /* Not pointing at a valid entry - set *pSize to 0. */
3487 *pSize = 0;
3488 }else{
drh86057612007-06-26 01:04:48 +00003489 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003490 *pSize = pCur->info.nData;
3491 }
drh0e1c19e2004-05-11 00:58:56 +00003492 }
danielk1977da184232006-01-05 11:34:32 +00003493 return rc;
drh0e1c19e2004-05-11 00:58:56 +00003494}
3495
3496/*
danielk1977d04417962007-05-02 13:16:30 +00003497** Given the page number of an overflow page in the database (parameter
3498** ovfl), this function finds the page number of the next page in the
3499** linked list of overflow pages. If possible, it uses the auto-vacuum
3500** pointer-map data instead of reading the content of page ovfl to do so.
3501**
3502** If an error occurs an SQLite error code is returned. Otherwise:
3503**
danielk1977bea2a942009-01-20 17:06:27 +00003504** The page number of the next overflow page in the linked list is
3505** written to *pPgnoNext. If page ovfl is the last page in its linked
3506** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003507**
danielk1977bea2a942009-01-20 17:06:27 +00003508** If ppPage is not NULL, and a reference to the MemPage object corresponding
3509** to page number pOvfl was obtained, then *ppPage is set to point to that
3510** reference. It is the responsibility of the caller to call releasePage()
3511** on *ppPage to free the reference. In no reference was obtained (because
3512** the pointer-map was used to obtain the value for *pPgnoNext), then
3513** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003514*/
3515static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003516 BtShared *pBt, /* The database file */
3517 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003518 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003519 Pgno *pPgnoNext /* OUT: Next overflow page number */
3520){
3521 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003522 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003523 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003524
drh1fee73e2007-08-29 04:00:57 +00003525 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003526 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003527
3528#ifndef SQLITE_OMIT_AUTOVACUUM
3529 /* Try to find the next page in the overflow list using the
3530 ** autovacuum pointer-map pages. Guess that the next page in
3531 ** the overflow list is page number (ovfl+1). If that guess turns
3532 ** out to be wrong, fall back to loading the data of page
3533 ** number ovfl to determine the next page number.
3534 */
3535 if( pBt->autoVacuum ){
3536 Pgno pgno;
3537 Pgno iGuess = ovfl+1;
3538 u8 eType;
3539
3540 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3541 iGuess++;
3542 }
3543
danielk197789d40042008-11-17 14:20:56 +00003544 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003545 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003546 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003547 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003548 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003549 }
3550 }
3551 }
3552#endif
3553
danielk1977d8a3f3d2009-07-11 11:45:23 +00003554 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003555 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003556 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003557 assert( rc==SQLITE_OK || pPage==0 );
3558 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003559 next = get4byte(pPage->aData);
3560 }
danielk1977443c0592009-01-16 15:21:05 +00003561 }
danielk197745d68822009-01-16 16:23:38 +00003562
danielk1977bea2a942009-01-20 17:06:27 +00003563 *pPgnoNext = next;
3564 if( ppPage ){
3565 *ppPage = pPage;
3566 }else{
3567 releasePage(pPage);
3568 }
3569 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003570}
3571
danielk1977da107192007-05-04 08:32:13 +00003572/*
3573** Copy data from a buffer to a page, or from a page to a buffer.
3574**
3575** pPayload is a pointer to data stored on database page pDbPage.
3576** If argument eOp is false, then nByte bytes of data are copied
3577** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3578** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3579** of data are copied from the buffer pBuf to pPayload.
3580**
3581** SQLITE_OK is returned on success, otherwise an error code.
3582*/
3583static int copyPayload(
3584 void *pPayload, /* Pointer to page data */
3585 void *pBuf, /* Pointer to buffer */
3586 int nByte, /* Number of bytes to copy */
3587 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3588 DbPage *pDbPage /* Page containing pPayload */
3589){
3590 if( eOp ){
3591 /* Copy data from buffer to page (a write operation) */
3592 int rc = sqlite3PagerWrite(pDbPage);
3593 if( rc!=SQLITE_OK ){
3594 return rc;
3595 }
3596 memcpy(pPayload, pBuf, nByte);
3597 }else{
3598 /* Copy data from page to buffer (a read operation) */
3599 memcpy(pBuf, pPayload, nByte);
3600 }
3601 return SQLITE_OK;
3602}
danielk1977d04417962007-05-02 13:16:30 +00003603
3604/*
danielk19779f8d6402007-05-02 17:48:45 +00003605** This function is used to read or overwrite payload information
3606** for the entry that the pCur cursor is pointing to. If the eOp
3607** parameter is 0, this is a read operation (data copied into
3608** buffer pBuf). If it is non-zero, a write (data copied from
3609** buffer pBuf).
3610**
3611** A total of "amt" bytes are read or written beginning at "offset".
3612** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003613**
drh3bcdfd22009-07-12 02:32:21 +00003614** The content being read or written might appear on the main page
3615** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003616**
danielk1977dcbb5d32007-05-04 18:36:44 +00003617** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003618** cursor entry uses one or more overflow pages, this function
3619** allocates space for and lazily popluates the overflow page-list
3620** cache array (BtCursor.aOverflow). Subsequent calls use this
3621** cache to make seeking to the supplied offset more efficient.
3622**
3623** Once an overflow page-list cache has been allocated, it may be
3624** invalidated if some other cursor writes to the same table, or if
3625** the cursor is moved to a different row. Additionally, in auto-vacuum
3626** mode, the following events may invalidate an overflow page-list cache.
3627**
3628** * An incremental vacuum,
3629** * A commit in auto_vacuum="full" mode,
3630** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003631*/
danielk19779f8d6402007-05-02 17:48:45 +00003632static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003633 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003634 u32 offset, /* Begin reading this far into payload */
3635 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003636 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003637 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003638){
3639 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003640 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003641 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003642 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003643 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003644 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003645
danielk1977da107192007-05-04 08:32:13 +00003646 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003647 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003648 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003649 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003650
drh86057612007-06-26 01:04:48 +00003651 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003652 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003653 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003654
drh3bcdfd22009-07-12 02:32:21 +00003655 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003656 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3657 ){
danielk1977da107192007-05-04 08:32:13 +00003658 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003659 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003660 }
danielk1977da107192007-05-04 08:32:13 +00003661
3662 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003663 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003664 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003665 if( a+offset>pCur->info.nLocal ){
3666 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003667 }
danielk1977da107192007-05-04 08:32:13 +00003668 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003669 offset = 0;
drha34b6762004-05-07 13:30:42 +00003670 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003671 amt -= a;
drhdd793422001-06-28 01:54:48 +00003672 }else{
drhfa1a98a2004-05-14 19:08:17 +00003673 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003674 }
danielk1977da107192007-05-04 08:32:13 +00003675
3676 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003677 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003678 Pgno nextPage;
3679
drhfa1a98a2004-05-14 19:08:17 +00003680 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003681
danielk19772dec9702007-05-02 16:48:37 +00003682#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003683 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003684 ** has not been allocated, allocate it now. The array is sized at
3685 ** one entry for each overflow page in the overflow chain. The
3686 ** page number of the first overflow page is stored in aOverflow[0],
3687 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3688 ** (the cache is lazily populated).
3689 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003690 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003691 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003692 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003693 /* nOvfl is always positive. If it were zero, fetchPayload would have
3694 ** been used instead of this routine. */
3695 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003696 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003697 }
3698 }
danielk1977da107192007-05-04 08:32:13 +00003699
3700 /* If the overflow page-list cache has been allocated and the
3701 ** entry for the first required overflow page is valid, skip
3702 ** directly to it.
3703 */
danielk19772dec9702007-05-02 16:48:37 +00003704 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3705 iIdx = (offset/ovflSize);
3706 nextPage = pCur->aOverflow[iIdx];
3707 offset = (offset%ovflSize);
3708 }
3709#endif
danielk1977da107192007-05-04 08:32:13 +00003710
3711 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3712
3713#ifndef SQLITE_OMIT_INCRBLOB
3714 /* If required, populate the overflow page-list cache. */
3715 if( pCur->aOverflow ){
3716 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3717 pCur->aOverflow[iIdx] = nextPage;
3718 }
3719#endif
3720
danielk1977d04417962007-05-02 13:16:30 +00003721 if( offset>=ovflSize ){
3722 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003723 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003724 ** data is not required. So first try to lookup the overflow
3725 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003726 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003727 */
danielk19772dec9702007-05-02 16:48:37 +00003728#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003729 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3730 nextPage = pCur->aOverflow[iIdx+1];
3731 } else
danielk19772dec9702007-05-02 16:48:37 +00003732#endif
danielk1977da107192007-05-04 08:32:13 +00003733 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003734 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003735 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003736 /* Need to read this page properly. It contains some of the
3737 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003738 */
3739 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003740 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003741 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003742 if( rc==SQLITE_OK ){
3743 aPayload = sqlite3PagerGetData(pDbPage);
3744 nextPage = get4byte(aPayload);
3745 if( a + offset > ovflSize ){
3746 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003747 }
danielk1977da107192007-05-04 08:32:13 +00003748 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3749 sqlite3PagerUnref(pDbPage);
3750 offset = 0;
3751 amt -= a;
3752 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003753 }
danielk1977cfe9a692004-06-16 12:00:29 +00003754 }
drh2af926b2001-05-15 00:39:25 +00003755 }
drh2af926b2001-05-15 00:39:25 +00003756 }
danielk1977cfe9a692004-06-16 12:00:29 +00003757
danielk1977da107192007-05-04 08:32:13 +00003758 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003759 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003760 }
danielk1977da107192007-05-04 08:32:13 +00003761 return rc;
drh2af926b2001-05-15 00:39:25 +00003762}
3763
drh72f82862001-05-24 21:06:34 +00003764/*
drh3aac2dd2004-04-26 14:10:20 +00003765** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003766** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003767** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003768**
drh3aac2dd2004-04-26 14:10:20 +00003769** Return SQLITE_OK on success or an error code if anything goes
3770** wrong. An error is returned if "offset+amt" is larger than
3771** the available payload.
drh72f82862001-05-24 21:06:34 +00003772*/
drha34b6762004-05-07 13:30:42 +00003773int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003774 int rc;
3775
drh1fee73e2007-08-29 04:00:57 +00003776 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003777 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003778 if( rc==SQLITE_OK ){
3779 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003780 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3781 if( pCur->apPage[0]->intKey ){
danielk1977da184232006-01-05 11:34:32 +00003782 return SQLITE_CORRUPT_BKPT;
3783 }
danielk197771d5d2c2008-09-29 11:49:47 +00003784 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003785 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh6575a222005-03-10 17:06:34 +00003786 }
danielk1977da184232006-01-05 11:34:32 +00003787 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003788}
3789
3790/*
drh3aac2dd2004-04-26 14:10:20 +00003791** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003792** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003793** begins at "offset".
3794**
3795** Return SQLITE_OK on success or an error code if anything goes
3796** wrong. An error is returned if "offset+amt" is larger than
3797** the available payload.
drh72f82862001-05-24 21:06:34 +00003798*/
drh3aac2dd2004-04-26 14:10:20 +00003799int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003800 int rc;
3801
danielk19773588ceb2008-06-10 17:30:26 +00003802#ifndef SQLITE_OMIT_INCRBLOB
3803 if ( pCur->eState==CURSOR_INVALID ){
3804 return SQLITE_ABORT;
3805 }
3806#endif
3807
drh1fee73e2007-08-29 04:00:57 +00003808 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003809 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003810 if( rc==SQLITE_OK ){
3811 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003812 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3813 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003814 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00003815 }
3816 return rc;
drh2af926b2001-05-15 00:39:25 +00003817}
3818
drh72f82862001-05-24 21:06:34 +00003819/*
drh0e1c19e2004-05-11 00:58:56 +00003820** Return a pointer to payload information from the entry that the
3821** pCur cursor is pointing to. The pointer is to the beginning of
3822** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003823** skipKey==1. The number of bytes of available key/data is written
3824** into *pAmt. If *pAmt==0, then the value returned will not be
3825** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003826**
3827** This routine is an optimization. It is common for the entire key
3828** and data to fit on the local page and for there to be no overflow
3829** pages. When that is so, this routine can be used to access the
3830** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003831** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003832** the key/data and copy it into a preallocated buffer.
3833**
3834** The pointer returned by this routine looks directly into the cached
3835** page of the database. The data might change or move the next time
3836** any btree routine is called.
3837*/
3838static const unsigned char *fetchPayload(
3839 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003840 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003841 int skipKey /* read beginning at data if this is true */
3842){
3843 unsigned char *aPayload;
3844 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003845 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003846 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003847
danielk197771d5d2c2008-09-29 11:49:47 +00003848 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003849 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003850 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003851 pPage = pCur->apPage[pCur->iPage];
3852 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh86057612007-06-26 01:04:48 +00003853 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003854 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003855 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003856 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003857 nKey = 0;
3858 }else{
drhf49661a2008-12-10 16:45:50 +00003859 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003860 }
drh0e1c19e2004-05-11 00:58:56 +00003861 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003862 aPayload += nKey;
3863 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003864 }else{
drhfa1a98a2004-05-14 19:08:17 +00003865 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003866 if( nLocal>nKey ){
3867 nLocal = nKey;
3868 }
drh0e1c19e2004-05-11 00:58:56 +00003869 }
drhe51c44f2004-05-30 20:46:09 +00003870 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003871 return aPayload;
3872}
3873
3874
3875/*
drhe51c44f2004-05-30 20:46:09 +00003876** For the entry that cursor pCur is point to, return as
3877** many bytes of the key or data as are available on the local
3878** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003879**
3880** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003881** or be destroyed on the next call to any Btree routine,
3882** including calls from other threads against the same cache.
3883** Hence, a mutex on the BtShared should be held prior to calling
3884** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003885**
3886** These routines is used to get quick access to key and data
3887** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003888*/
drhe51c44f2004-05-30 20:46:09 +00003889const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003890 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003891 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003892 if( pCur->eState==CURSOR_VALID ){
3893 return (const void*)fetchPayload(pCur, pAmt, 0);
3894 }
3895 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003896}
drhe51c44f2004-05-30 20:46:09 +00003897const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003898 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003899 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003900 if( pCur->eState==CURSOR_VALID ){
3901 return (const void*)fetchPayload(pCur, pAmt, 1);
3902 }
3903 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003904}
3905
3906
3907/*
drh8178a752003-01-05 21:41:40 +00003908** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003909** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00003910**
3911** This function returns SQLITE_CORRUPT if the page-header flags field of
3912** the new child page does not match the flags field of the parent (i.e.
3913** if an intkey page appears to be the parent of a non-intkey page, or
3914** vice-versa).
drh72f82862001-05-24 21:06:34 +00003915*/
drh3aac2dd2004-04-26 14:10:20 +00003916static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003917 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003918 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003919 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003920 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003921
drh1fee73e2007-08-29 04:00:57 +00003922 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003923 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003924 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3925 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3926 return SQLITE_CORRUPT_BKPT;
3927 }
3928 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003929 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003930 pCur->apPage[i+1] = pNewPage;
3931 pCur->aiIdx[i+1] = 0;
3932 pCur->iPage++;
3933
drh271efa52004-05-30 19:19:05 +00003934 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003935 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00003936 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00003937 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003938 }
drh72f82862001-05-24 21:06:34 +00003939 return SQLITE_OK;
3940}
3941
danielk1977bf93c562008-09-29 15:53:25 +00003942#ifndef NDEBUG
3943/*
3944** Page pParent is an internal (non-leaf) tree page. This function
3945** asserts that page number iChild is the left-child if the iIdx'th
3946** cell in page pParent. Or, if iIdx is equal to the total number of
3947** cells in pParent, that page number iChild is the right-child of
3948** the page.
3949*/
3950static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
3951 assert( iIdx<=pParent->nCell );
3952 if( iIdx==pParent->nCell ){
3953 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
3954 }else{
3955 assert( get4byte(findCell(pParent, iIdx))==iChild );
3956 }
3957}
3958#else
3959# define assertParentIndex(x,y,z)
3960#endif
3961
drh72f82862001-05-24 21:06:34 +00003962/*
drh5e2f8b92001-05-28 00:41:15 +00003963** Move the cursor up to the parent page.
3964**
3965** pCur->idx is set to the cell index that contains the pointer
3966** to the page we are coming from. If we are coming from the
3967** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003968** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003969*/
danielk197730548662009-07-09 05:07:37 +00003970static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00003971 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003972 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003973 assert( pCur->iPage>0 );
3974 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00003975 assertParentIndex(
3976 pCur->apPage[pCur->iPage-1],
3977 pCur->aiIdx[pCur->iPage-1],
3978 pCur->apPage[pCur->iPage]->pgno
3979 );
danielk197771d5d2c2008-09-29 11:49:47 +00003980 releasePage(pCur->apPage[pCur->iPage]);
3981 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00003982 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003983 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00003984}
3985
3986/*
danielk19778f880a82009-07-13 09:41:45 +00003987** Move the cursor to point to the root page of its b-tree structure.
3988**
3989** If the table has a virtual root page, then the cursor is moved to point
3990** to the virtual root page instead of the actual root page. A table has a
3991** virtual root page when the actual root page contains no cells and a
3992** single child page. This can only happen with the table rooted at page 1.
3993**
3994** If the b-tree structure is empty, the cursor state is set to
3995** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
3996** cell located on the root (or virtual root) page and the cursor state
3997** is set to CURSOR_VALID.
3998**
3999** If this function returns successfully, it may be assumed that the
4000** page-header flags indicate that the [virtual] root-page is the expected
4001** kind of b-tree page (i.e. if when opening the cursor the caller did not
4002** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4003** indicating a table b-tree, or if the caller did specify a KeyInfo
4004** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4005** b-tree).
drh72f82862001-05-24 21:06:34 +00004006*/
drh5e2f8b92001-05-28 00:41:15 +00004007static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004008 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004009 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004010 Btree *p = pCur->pBtree;
4011 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004012
drh1fee73e2007-08-29 04:00:57 +00004013 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004014 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4015 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4016 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4017 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4018 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004019 assert( pCur->skipNext!=SQLITE_OK );
4020 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004021 }
danielk1977be51a652008-10-08 17:58:48 +00004022 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004023 }
danielk197771d5d2c2008-09-29 11:49:47 +00004024
4025 if( pCur->iPage>=0 ){
4026 int i;
4027 for(i=1; i<=pCur->iPage; i++){
4028 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004029 }
danielk1977172114a2009-07-07 15:47:12 +00004030 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004031 }else{
drh4c301aa2009-07-15 17:25:45 +00004032 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4033 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004034 pCur->eState = CURSOR_INVALID;
4035 return rc;
4036 }
danielk1977172114a2009-07-07 15:47:12 +00004037 pCur->iPage = 0;
4038
4039 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4040 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4041 ** NULL, the caller expects a table b-tree. If this is not the case,
4042 ** return an SQLITE_CORRUPT error. */
4043 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4044 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4045 return SQLITE_CORRUPT_BKPT;
4046 }
drhc39e0002004-05-07 23:50:57 +00004047 }
danielk197771d5d2c2008-09-29 11:49:47 +00004048
danielk19778f880a82009-07-13 09:41:45 +00004049 /* Assert that the root page is of the correct type. This must be the
4050 ** case as the call to this function that loaded the root-page (either
4051 ** this call or a previous invocation) would have detected corruption
4052 ** if the assumption were not true, and it is not possible for the flags
4053 ** byte to have been modified while this cursor is holding a reference
4054 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004055 pRoot = pCur->apPage[0];
4056 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004057 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4058
danielk197771d5d2c2008-09-29 11:49:47 +00004059 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004060 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004061 pCur->atLast = 0;
4062 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004063
drh8856d6a2004-04-29 14:42:46 +00004064 if( pRoot->nCell==0 && !pRoot->leaf ){
4065 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004066 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004067 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004068 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004069 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004070 }else{
4071 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004072 }
4073 return rc;
drh72f82862001-05-24 21:06:34 +00004074}
drh2af926b2001-05-15 00:39:25 +00004075
drh5e2f8b92001-05-28 00:41:15 +00004076/*
4077** Move the cursor down to the left-most leaf entry beneath the
4078** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004079**
4080** The left-most leaf is the one with the smallest key - the first
4081** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004082*/
4083static int moveToLeftmost(BtCursor *pCur){
4084 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004085 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004086 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004087
drh1fee73e2007-08-29 04:00:57 +00004088 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004089 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004090 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4091 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4092 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004093 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004094 }
drhd677b3d2007-08-20 22:48:41 +00004095 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004096}
4097
drh2dcc9aa2002-12-04 13:40:25 +00004098/*
4099** Move the cursor down to the right-most leaf entry beneath the
4100** page to which it is currently pointing. Notice the difference
4101** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4102** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4103** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004104**
4105** The right-most entry is the one with the largest key - the last
4106** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004107*/
4108static int moveToRightmost(BtCursor *pCur){
4109 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004110 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004111 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004112
drh1fee73e2007-08-29 04:00:57 +00004113 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004114 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004115 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004116 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004117 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004118 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004119 }
drhd677b3d2007-08-20 22:48:41 +00004120 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004121 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004122 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004123 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004124 }
danielk1977518002e2008-09-05 05:02:46 +00004125 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004126}
4127
drh5e00f6c2001-09-13 13:46:56 +00004128/* Move the cursor to the first entry in the table. Return SQLITE_OK
4129** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004130** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004131*/
drh3aac2dd2004-04-26 14:10:20 +00004132int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004133 int rc;
drhd677b3d2007-08-20 22:48:41 +00004134
drh1fee73e2007-08-29 04:00:57 +00004135 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004136 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004137 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004138 if( rc==SQLITE_OK ){
4139 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004140 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004141 *pRes = 1;
4142 rc = SQLITE_OK;
4143 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004144 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004145 *pRes = 0;
4146 rc = moveToLeftmost(pCur);
4147 }
drh5e00f6c2001-09-13 13:46:56 +00004148 }
drh5e00f6c2001-09-13 13:46:56 +00004149 return rc;
4150}
drh5e2f8b92001-05-28 00:41:15 +00004151
drh9562b552002-02-19 15:00:07 +00004152/* Move the cursor to the last entry in the table. Return SQLITE_OK
4153** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004154** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004155*/
drh3aac2dd2004-04-26 14:10:20 +00004156int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004157 int rc;
drhd677b3d2007-08-20 22:48:41 +00004158
drh1fee73e2007-08-29 04:00:57 +00004159 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004160 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004161
4162 /* If the cursor already points to the last entry, this is a no-op. */
4163 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4164#ifdef SQLITE_DEBUG
4165 /* This block serves to assert() that the cursor really does point
4166 ** to the last entry in the b-tree. */
4167 int ii;
4168 for(ii=0; ii<pCur->iPage; ii++){
4169 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4170 }
4171 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4172 assert( pCur->apPage[pCur->iPage]->leaf );
4173#endif
4174 return SQLITE_OK;
4175 }
4176
drh9562b552002-02-19 15:00:07 +00004177 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004178 if( rc==SQLITE_OK ){
4179 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004180 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004181 *pRes = 1;
4182 }else{
4183 assert( pCur->eState==CURSOR_VALID );
4184 *pRes = 0;
4185 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004186 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004187 }
drh9562b552002-02-19 15:00:07 +00004188 }
drh9562b552002-02-19 15:00:07 +00004189 return rc;
4190}
4191
drhe14006d2008-03-25 17:23:32 +00004192/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004193** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004194**
drhe63d9992008-08-13 19:11:48 +00004195** For INTKEY tables, the intKey parameter is used. pIdxKey
4196** must be NULL. For index tables, pIdxKey is used and intKey
4197** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004198**
drh5e2f8b92001-05-28 00:41:15 +00004199** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004200** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004201** were present. The cursor might point to an entry that comes
4202** before or after the key.
4203**
drh64022502009-01-09 14:11:04 +00004204** An integer is written into *pRes which is the result of
4205** comparing the key with the entry to which the cursor is
4206** pointing. The meaning of the integer written into
4207** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004208**
4209** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004210** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004211** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004212**
4213** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004214** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004215**
4216** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004217** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004218**
drha059ad02001-04-17 20:09:11 +00004219*/
drhe63d9992008-08-13 19:11:48 +00004220int sqlite3BtreeMovetoUnpacked(
4221 BtCursor *pCur, /* The cursor to be moved */
4222 UnpackedRecord *pIdxKey, /* Unpacked index key */
4223 i64 intKey, /* The table key */
4224 int biasRight, /* If true, bias the search to the high end */
4225 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004226){
drh72f82862001-05-24 21:06:34 +00004227 int rc;
drhd677b3d2007-08-20 22:48:41 +00004228
drh1fee73e2007-08-29 04:00:57 +00004229 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004230 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004231 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004232 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004233
4234 /* If the cursor is already positioned at the point we are trying
4235 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004236 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4237 && pCur->apPage[0]->intKey
4238 ){
drhe63d9992008-08-13 19:11:48 +00004239 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004240 *pRes = 0;
4241 return SQLITE_OK;
4242 }
drhe63d9992008-08-13 19:11:48 +00004243 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004244 *pRes = -1;
4245 return SQLITE_OK;
4246 }
4247 }
4248
drh5e2f8b92001-05-28 00:41:15 +00004249 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004250 if( rc ){
4251 return rc;
4252 }
danielk197771d5d2c2008-09-29 11:49:47 +00004253 assert( pCur->apPage[pCur->iPage] );
4254 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004255 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004256 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004257 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004258 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004259 return SQLITE_OK;
4260 }
danielk197771d5d2c2008-09-29 11:49:47 +00004261 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004262 for(;;){
drh72f82862001-05-24 21:06:34 +00004263 int lwr, upr;
4264 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004265 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004266 int c;
4267
4268 /* pPage->nCell must be greater than zero. If this is the root-page
4269 ** the cursor would have been INVALID above and this for(;;) loop
4270 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004271 ** would have already detected db corruption. Similarly, pPage must
4272 ** be the right kind (index or table) of b-tree page. Otherwise
4273 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004274 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004275 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004276 lwr = 0;
4277 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004278 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004279 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004280 }else{
drhf49661a2008-12-10 16:45:50 +00004281 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004282 }
drh64022502009-01-09 14:11:04 +00004283 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004284 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4285 u8 *pCell; /* Pointer to current cell in pPage */
4286
drh366fda62006-01-13 02:35:09 +00004287 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004288 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004289 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004290 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004291 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004292 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004293 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004294 }
drha2c20e42008-03-29 16:01:04 +00004295 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004296 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004297 c = 0;
drhe63d9992008-08-13 19:11:48 +00004298 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004299 c = -1;
4300 }else{
drhe63d9992008-08-13 19:11:48 +00004301 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004302 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004303 }
danielk197711c327a2009-05-04 19:01:26 +00004304 pCur->validNKey = 1;
4305 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004306 }else{
danielk197711c327a2009-05-04 19:01:26 +00004307 /* The maximum supported page-size is 32768 bytes. This means that
4308 ** the maximum number of record bytes stored on an index B-Tree
4309 ** page is at most 8198 bytes, which may be stored as a 2-byte
4310 ** varint. This information is used to attempt to avoid parsing
4311 ** the entire cell by checking for the cases where the record is
4312 ** stored entirely within the b-tree page by inspecting the first
4313 ** 2 bytes of the cell.
4314 */
4315 int nCell = pCell[0];
4316 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4317 /* This branch runs if the record-size field of the cell is a
4318 ** single byte varint and the record fits entirely on the main
4319 ** b-tree page. */
4320 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4321 }else if( !(pCell[1] & 0x80)
4322 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4323 ){
4324 /* The record-size field is a 2 byte varint and the record
4325 ** fits entirely on the main b-tree page. */
4326 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004327 }else{
danielk197711c327a2009-05-04 19:01:26 +00004328 /* The record flows over onto one or more overflow pages. In
4329 ** this case the whole cell needs to be parsed, a buffer allocated
4330 ** and accessPayload() used to retrieve the record into the
4331 ** buffer before VdbeRecordCompare() can be called. */
4332 void *pCellKey;
4333 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004334 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004335 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004336 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004337 if( pCellKey==0 ){
4338 rc = SQLITE_NOMEM;
4339 goto moveto_finish;
4340 }
drhfb192682009-07-11 18:26:28 +00004341 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
danielk197711c327a2009-05-04 19:01:26 +00004342 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004343 sqlite3_free(pCellKey);
drh1e968a02008-03-25 00:22:21 +00004344 if( rc ) goto moveto_finish;
drhe51c44f2004-05-30 20:46:09 +00004345 }
drh3aac2dd2004-04-26 14:10:20 +00004346 }
drh72f82862001-05-24 21:06:34 +00004347 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004348 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004349 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004350 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004351 break;
4352 }else{
drh64022502009-01-09 14:11:04 +00004353 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004354 rc = SQLITE_OK;
4355 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004356 }
drh72f82862001-05-24 21:06:34 +00004357 }
4358 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004359 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004360 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004361 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004362 }
drhf1d68b32007-03-29 04:43:26 +00004363 if( lwr>upr ){
4364 break;
4365 }
drhf49661a2008-12-10 16:45:50 +00004366 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004367 }
4368 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004369 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004370 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004371 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004372 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004373 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004374 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004375 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004376 }
4377 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004378 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004379 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004380 rc = SQLITE_OK;
4381 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004382 }
drhf49661a2008-12-10 16:45:50 +00004383 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004384 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004385 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004386 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004387 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004388 }
drh1e968a02008-03-25 00:22:21 +00004389moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004390 return rc;
4391}
4392
drhd677b3d2007-08-20 22:48:41 +00004393
drh72f82862001-05-24 21:06:34 +00004394/*
drhc39e0002004-05-07 23:50:57 +00004395** Return TRUE if the cursor is not pointing at an entry of the table.
4396**
4397** TRUE will be returned after a call to sqlite3BtreeNext() moves
4398** past the last entry in the table or sqlite3BtreePrev() moves past
4399** the first entry. TRUE is also returned if the table is empty.
4400*/
4401int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004402 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4403 ** have been deleted? This API will need to change to return an error code
4404 ** as well as the boolean result value.
4405 */
4406 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004407}
4408
4409/*
drhbd03cae2001-06-02 02:40:57 +00004410** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004411** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004412** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004413** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004414*/
drhd094db12008-04-03 21:46:57 +00004415int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004416 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004417 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004418 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004419
drh1fee73e2007-08-29 04:00:57 +00004420 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004421 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004422 if( rc!=SQLITE_OK ){
4423 return rc;
4424 }
drh8c4d3a62007-04-06 01:03:32 +00004425 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004426 if( CURSOR_INVALID==pCur->eState ){
4427 *pRes = 1;
4428 return SQLITE_OK;
4429 }
drh4c301aa2009-07-15 17:25:45 +00004430 if( pCur->skipNext>0 ){
4431 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004432 *pRes = 0;
4433 return SQLITE_OK;
4434 }
drh4c301aa2009-07-15 17:25:45 +00004435 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004436
danielk197771d5d2c2008-09-29 11:49:47 +00004437 pPage = pCur->apPage[pCur->iPage];
4438 idx = ++pCur->aiIdx[pCur->iPage];
4439 assert( pPage->isInit );
4440 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004441
drh271efa52004-05-30 19:19:05 +00004442 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004443 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004444 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004445 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004446 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004447 if( rc ) return rc;
4448 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004449 *pRes = 0;
4450 return rc;
drh72f82862001-05-24 21:06:34 +00004451 }
drh5e2f8b92001-05-28 00:41:15 +00004452 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004453 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004454 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004455 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004456 return SQLITE_OK;
4457 }
danielk197730548662009-07-09 05:07:37 +00004458 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004459 pPage = pCur->apPage[pCur->iPage];
4460 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004461 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004462 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004463 rc = sqlite3BtreeNext(pCur, pRes);
4464 }else{
4465 rc = SQLITE_OK;
4466 }
4467 return rc;
drh8178a752003-01-05 21:41:40 +00004468 }
4469 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004470 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004471 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004472 }
drh5e2f8b92001-05-28 00:41:15 +00004473 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004474 return rc;
drh72f82862001-05-24 21:06:34 +00004475}
drhd677b3d2007-08-20 22:48:41 +00004476
drh72f82862001-05-24 21:06:34 +00004477
drh3b7511c2001-05-26 13:15:44 +00004478/*
drh2dcc9aa2002-12-04 13:40:25 +00004479** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004480** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004481** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004482** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004483*/
drhd094db12008-04-03 21:46:57 +00004484int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004485 int rc;
drh8178a752003-01-05 21:41:40 +00004486 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004487
drh1fee73e2007-08-29 04:00:57 +00004488 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004489 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004490 if( rc!=SQLITE_OK ){
4491 return rc;
4492 }
drha2c20e42008-03-29 16:01:04 +00004493 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004494 if( CURSOR_INVALID==pCur->eState ){
4495 *pRes = 1;
4496 return SQLITE_OK;
4497 }
drh4c301aa2009-07-15 17:25:45 +00004498 if( pCur->skipNext<0 ){
4499 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004500 *pRes = 0;
4501 return SQLITE_OK;
4502 }
drh4c301aa2009-07-15 17:25:45 +00004503 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004504
danielk197771d5d2c2008-09-29 11:49:47 +00004505 pPage = pCur->apPage[pCur->iPage];
4506 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004507 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004508 int idx = pCur->aiIdx[pCur->iPage];
4509 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004510 if( rc ){
4511 return rc;
4512 }
drh2dcc9aa2002-12-04 13:40:25 +00004513 rc = moveToRightmost(pCur);
4514 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004515 while( pCur->aiIdx[pCur->iPage]==0 ){
4516 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004517 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004518 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004519 return SQLITE_OK;
4520 }
danielk197730548662009-07-09 05:07:37 +00004521 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004522 }
drh271efa52004-05-30 19:19:05 +00004523 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004524 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004525
4526 pCur->aiIdx[pCur->iPage]--;
4527 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004528 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004529 rc = sqlite3BtreePrevious(pCur, pRes);
4530 }else{
4531 rc = SQLITE_OK;
4532 }
drh2dcc9aa2002-12-04 13:40:25 +00004533 }
drh8178a752003-01-05 21:41:40 +00004534 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004535 return rc;
4536}
4537
4538/*
drh3b7511c2001-05-26 13:15:44 +00004539** Allocate a new page from the database file.
4540**
danielk19773b8a05f2007-03-19 17:44:26 +00004541** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004542** has already been called on the new page.) The new page has also
4543** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004544** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004545**
4546** SQLITE_OK is returned on success. Any other return value indicates
4547** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004548** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004549**
drh199e3cf2002-07-18 11:01:47 +00004550** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4551** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004552** attempt to keep related pages close to each other in the database file,
4553** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004554**
4555** If the "exact" parameter is not 0, and the page-number nearby exists
4556** anywhere on the free-list, then it is guarenteed to be returned. This
4557** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004558*/
drh4f0c5872007-03-26 22:05:01 +00004559static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004560 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004561 MemPage **ppPage,
4562 Pgno *pPgno,
4563 Pgno nearby,
4564 u8 exact
4565){
drh3aac2dd2004-04-26 14:10:20 +00004566 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004567 int rc;
drh35cd6432009-06-05 14:17:21 +00004568 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004569 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004570 MemPage *pTrunk = 0;
4571 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004572 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004573
drh1fee73e2007-08-29 04:00:57 +00004574 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004575 pPage1 = pBt->pPage1;
drh1662b5a2009-06-04 19:06:09 +00004576 mxPage = pagerPagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004577 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004578 testcase( n==mxPage-1 );
4579 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004580 return SQLITE_CORRUPT_BKPT;
4581 }
drh3aac2dd2004-04-26 14:10:20 +00004582 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004583 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004584 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004585 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4586
4587 /* If the 'exact' parameter was true and a query of the pointer-map
4588 ** shows that the page 'nearby' is somewhere on the free-list, then
4589 ** the entire-list will be searched for that page.
4590 */
4591#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004592 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004593 u8 eType;
4594 assert( nearby>0 );
4595 assert( pBt->autoVacuum );
4596 rc = ptrmapGet(pBt, nearby, &eType, 0);
4597 if( rc ) return rc;
4598 if( eType==PTRMAP_FREEPAGE ){
4599 searchList = 1;
4600 }
4601 *pPgno = nearby;
4602 }
4603#endif
4604
4605 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4606 ** first free-list trunk page. iPrevTrunk is initially 1.
4607 */
danielk19773b8a05f2007-03-19 17:44:26 +00004608 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004609 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004610 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004611
4612 /* The code within this loop is run only once if the 'searchList' variable
4613 ** is not true. Otherwise, it runs once for each trunk-page on the
4614 ** free-list until the page 'nearby' is located.
4615 */
4616 do {
4617 pPrevTrunk = pTrunk;
4618 if( pPrevTrunk ){
4619 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004620 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004621 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004622 }
drhdf35a082009-07-09 02:24:35 +00004623 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004624 if( iTrunk>mxPage ){
4625 rc = SQLITE_CORRUPT_BKPT;
4626 }else{
danielk197730548662009-07-09 05:07:37 +00004627 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004628 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004629 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004630 pTrunk = 0;
4631 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004632 }
4633
4634 k = get4byte(&pTrunk->aData[4]);
4635 if( k==0 && !searchList ){
4636 /* The trunk has no leaves and the list is not being searched.
4637 ** So extract the trunk page itself and use it as the newly
4638 ** allocated page */
4639 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004640 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004641 if( rc ){
4642 goto end_allocate_page;
4643 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004644 *pPgno = iTrunk;
4645 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4646 *ppPage = pTrunk;
4647 pTrunk = 0;
4648 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004649 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004650 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004651 rc = SQLITE_CORRUPT_BKPT;
4652 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004653#ifndef SQLITE_OMIT_AUTOVACUUM
4654 }else if( searchList && nearby==iTrunk ){
4655 /* The list is being searched and this trunk page is the page
4656 ** to allocate, regardless of whether it has leaves.
4657 */
4658 assert( *pPgno==iTrunk );
4659 *ppPage = pTrunk;
4660 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004661 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004662 if( rc ){
4663 goto end_allocate_page;
4664 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004665 if( k==0 ){
4666 if( !pPrevTrunk ){
4667 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4668 }else{
4669 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4670 }
4671 }else{
4672 /* The trunk page is required by the caller but it contains
4673 ** pointers to free-list leaves. The first leaf becomes a trunk
4674 ** page in this case.
4675 */
4676 MemPage *pNewTrunk;
4677 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004678 if( iNewTrunk>mxPage ){
4679 rc = SQLITE_CORRUPT_BKPT;
4680 goto end_allocate_page;
4681 }
drhdf35a082009-07-09 02:24:35 +00004682 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004683 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004684 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004685 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004686 }
danielk19773b8a05f2007-03-19 17:44:26 +00004687 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004688 if( rc!=SQLITE_OK ){
4689 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004690 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004691 }
4692 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4693 put4byte(&pNewTrunk->aData[4], k-1);
4694 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004695 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004696 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004697 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004698 put4byte(&pPage1->aData[32], iNewTrunk);
4699 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004700 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004701 if( rc ){
4702 goto end_allocate_page;
4703 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004704 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4705 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004706 }
4707 pTrunk = 0;
4708 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4709#endif
danielk1977e5765212009-06-17 11:13:28 +00004710 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004711 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004712 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004713 Pgno iPage;
4714 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004715 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004716 if( rc ){
4717 goto end_allocate_page;
4718 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004719 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004720 u32 i;
4721 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004722 closest = 0;
4723 dist = get4byte(&aData[8]) - nearby;
4724 if( dist<0 ) dist = -dist;
4725 for(i=1; i<k; i++){
4726 int d2 = get4byte(&aData[8+i*4]) - nearby;
4727 if( d2<0 ) d2 = -d2;
4728 if( d2<dist ){
4729 closest = i;
4730 dist = d2;
4731 }
4732 }
4733 }else{
4734 closest = 0;
4735 }
4736
4737 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004738 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004739 if( iPage>mxPage ){
4740 rc = SQLITE_CORRUPT_BKPT;
4741 goto end_allocate_page;
4742 }
drhdf35a082009-07-09 02:24:35 +00004743 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004744 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004745 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004746 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004747 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4748 ": %d more free pages\n",
4749 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4750 if( closest<k-1 ){
4751 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4752 }
4753 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004754 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004755 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004756 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004757 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004758 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004759 if( rc!=SQLITE_OK ){
4760 releasePage(*ppPage);
4761 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004762 }
4763 searchList = 0;
4764 }
drhee696e22004-08-30 16:52:17 +00004765 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004766 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004767 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004768 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004769 }else{
drh3aac2dd2004-04-26 14:10:20 +00004770 /* There are no pages on the freelist, so create a new page at the
4771 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004772 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004773 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004774
danielk1977bea2a942009-01-20 17:06:27 +00004775 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4776 (*pPgno)++;
4777 }
4778
danielk1977afcdd022004-10-31 16:25:42 +00004779#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004780 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004781 /* If *pPgno refers to a pointer-map page, allocate two new pages
4782 ** at the end of the file instead of one. The first allocated page
4783 ** becomes a new pointer-map page, the second is used by the caller.
4784 */
danielk1977ac861692009-03-28 10:54:22 +00004785 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004786 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004787 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk197730548662009-07-09 05:07:37 +00004788 rc = btreeGetPage(pBt, *pPgno, &pPg, 0);
danielk1977ac861692009-03-28 10:54:22 +00004789 if( rc==SQLITE_OK ){
4790 rc = sqlite3PagerWrite(pPg->pDbPage);
4791 releasePage(pPg);
4792 }
4793 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004794 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004795 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004796 }
4797#endif
4798
danielk1977599fcba2004-11-08 07:13:13 +00004799 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk197730548662009-07-09 05:07:37 +00004800 rc = btreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004801 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004802 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004803 if( rc!=SQLITE_OK ){
4804 releasePage(*ppPage);
4805 }
drh3a4c1412004-05-09 20:40:11 +00004806 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004807 }
danielk1977599fcba2004-11-08 07:13:13 +00004808
4809 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004810
4811end_allocate_page:
4812 releasePage(pTrunk);
4813 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004814 if( rc==SQLITE_OK ){
4815 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4816 releasePage(*ppPage);
4817 return SQLITE_CORRUPT_BKPT;
4818 }
4819 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004820 }else{
4821 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004822 }
drh3b7511c2001-05-26 13:15:44 +00004823 return rc;
4824}
4825
4826/*
danielk1977bea2a942009-01-20 17:06:27 +00004827** This function is used to add page iPage to the database file free-list.
4828** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004829**
danielk1977bea2a942009-01-20 17:06:27 +00004830** The value passed as the second argument to this function is optional.
4831** If the caller happens to have a pointer to the MemPage object
4832** corresponding to page iPage handy, it may pass it as the second value.
4833** Otherwise, it may pass NULL.
4834**
4835** If a pointer to a MemPage object is passed as the second argument,
4836** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004837*/
danielk1977bea2a942009-01-20 17:06:27 +00004838static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4839 MemPage *pTrunk = 0; /* Free-list trunk page */
4840 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4841 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4842 MemPage *pPage; /* Page being freed. May be NULL. */
4843 int rc; /* Return Code */
4844 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004845
danielk1977bea2a942009-01-20 17:06:27 +00004846 assert( sqlite3_mutex_held(pBt->mutex) );
4847 assert( iPage>1 );
4848 assert( !pMemPage || pMemPage->pgno==iPage );
4849
4850 if( pMemPage ){
4851 pPage = pMemPage;
4852 sqlite3PagerRef(pPage->pDbPage);
4853 }else{
4854 pPage = btreePageLookup(pBt, iPage);
4855 }
drh3aac2dd2004-04-26 14:10:20 +00004856
drha34b6762004-05-07 13:30:42 +00004857 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004858 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004859 if( rc ) goto freepage_out;
4860 nFree = get4byte(&pPage1->aData[36]);
4861 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004862
drhfcce93f2006-02-22 03:08:32 +00004863#ifdef SQLITE_SECURE_DELETE
4864 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4865 ** always fully overwrite deleted information with zeros.
4866 */
danielk197730548662009-07-09 05:07:37 +00004867 if( (!pPage && (rc = btreeGetPage(pBt, iPage, &pPage, 0)))
danielk1977bea2a942009-01-20 17:06:27 +00004868 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4869 ){
4870 goto freepage_out;
4871 }
drhfcce93f2006-02-22 03:08:32 +00004872 memset(pPage->aData, 0, pPage->pBt->pageSize);
4873#endif
4874
danielk1977687566d2004-11-02 12:56:41 +00004875 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004876 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004877 */
danielk197785d90ca2008-07-19 14:25:15 +00004878 if( ISAUTOVACUUM ){
danielk1977bea2a942009-01-20 17:06:27 +00004879 rc = ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0);
4880 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004881 }
danielk1977687566d2004-11-02 12:56:41 +00004882
danielk1977bea2a942009-01-20 17:06:27 +00004883 /* Now manipulate the actual database free-list structure. There are two
4884 ** possibilities. If the free-list is currently empty, or if the first
4885 ** trunk page in the free-list is full, then this page will become a
4886 ** new free-list trunk page. Otherwise, it will become a leaf of the
4887 ** first trunk page in the current free-list. This block tests if it
4888 ** is possible to add the page as a new free-list leaf.
4889 */
4890 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00004891 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00004892
4893 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00004894 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00004895 if( rc!=SQLITE_OK ){
4896 goto freepage_out;
4897 }
4898
4899 nLeaf = get4byte(&pTrunk->aData[4]);
drhc046e3e2009-07-15 11:26:44 +00004900 if( nLeaf > pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00004901 rc = SQLITE_CORRUPT_BKPT;
4902 goto freepage_out;
4903 }
4904 if( nLeaf<pBt->usableSize/4 - 8 ){
4905 /* In this case there is room on the trunk page to insert the page
4906 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004907 **
4908 ** Note that the trunk page is not really full until it contains
4909 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4910 ** coded. But due to a coding error in versions of SQLite prior to
4911 ** 3.6.0, databases with freelist trunk pages holding more than
4912 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4913 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00004914 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00004915 ** for now. At some point in the future (once everyone has upgraded
4916 ** to 3.6.0 or later) we should consider fixing the conditional above
4917 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4918 */
danielk19773b8a05f2007-03-19 17:44:26 +00004919 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004920 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004921 put4byte(&pTrunk->aData[4], nLeaf+1);
4922 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhfcce93f2006-02-22 03:08:32 +00004923#ifndef SQLITE_SECURE_DELETE
danielk1977bea2a942009-01-20 17:06:27 +00004924 if( pPage ){
4925 sqlite3PagerDontWrite(pPage->pDbPage);
4926 }
drhfcce93f2006-02-22 03:08:32 +00004927#endif
danielk1977bea2a942009-01-20 17:06:27 +00004928 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004929 }
drh3a4c1412004-05-09 20:40:11 +00004930 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004931 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004932 }
drh3b7511c2001-05-26 13:15:44 +00004933 }
danielk1977bea2a942009-01-20 17:06:27 +00004934
4935 /* If control flows to this point, then it was not possible to add the
4936 ** the page being freed as a leaf page of the first trunk in the free-list.
4937 ** Possibly because the free-list is empty, or possibly because the
4938 ** first trunk in the free-list is full. Either way, the page being freed
4939 ** will become the new first trunk page in the free-list.
4940 */
drhc046e3e2009-07-15 11:26:44 +00004941 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
4942 goto freepage_out;
4943 }
4944 rc = sqlite3PagerWrite(pPage->pDbPage);
4945 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004946 goto freepage_out;
4947 }
4948 put4byte(pPage->aData, iTrunk);
4949 put4byte(&pPage->aData[4], 0);
4950 put4byte(&pPage1->aData[32], iPage);
4951 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
4952
4953freepage_out:
4954 if( pPage ){
4955 pPage->isInit = 0;
4956 }
4957 releasePage(pPage);
4958 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004959 return rc;
4960}
danielk1977bea2a942009-01-20 17:06:27 +00004961static int freePage(MemPage *pPage){
4962 return freePage2(pPage->pBt, pPage, pPage->pgno);
4963}
drh3b7511c2001-05-26 13:15:44 +00004964
4965/*
drh3aac2dd2004-04-26 14:10:20 +00004966** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00004967*/
drh3aac2dd2004-04-26 14:10:20 +00004968static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00004969 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00004970 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00004971 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00004972 int rc;
drh94440812007-03-06 11:42:19 +00004973 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00004974 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00004975
drh1fee73e2007-08-29 04:00:57 +00004976 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00004977 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004978 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00004979 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00004980 }
drh6f11bef2004-05-13 01:12:56 +00004981 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00004982 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00004983 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00004984 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
4985 assert( ovflPgno==0 || nOvfl>0 );
4986 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00004987 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004988 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00004989 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
4990 /* 0 is not a legal page number and page 1 cannot be an
4991 ** overflow page. Therefore if ovflPgno<2 or past the end of the
4992 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00004993 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00004994 }
danielk1977bea2a942009-01-20 17:06:27 +00004995 if( nOvfl ){
4996 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
4997 if( rc ) return rc;
4998 }
4999 rc = freePage2(pBt, pOvfl, ovflPgno);
5000 if( pOvfl ){
5001 sqlite3PagerUnref(pOvfl->pDbPage);
5002 }
drh3b7511c2001-05-26 13:15:44 +00005003 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005004 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005005 }
drh5e2f8b92001-05-28 00:41:15 +00005006 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005007}
5008
5009/*
drh91025292004-05-03 19:49:32 +00005010** Create the byte sequence used to represent a cell on page pPage
5011** and write that byte sequence into pCell[]. Overflow pages are
5012** allocated and filled in as necessary. The calling procedure
5013** is responsible for making sure sufficient space has been allocated
5014** for pCell[].
5015**
5016** Note that pCell does not necessary need to point to the pPage->aData
5017** area. pCell might point to some temporary storage. The cell will
5018** be constructed in this temporary area then copied into pPage->aData
5019** later.
drh3b7511c2001-05-26 13:15:44 +00005020*/
5021static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005022 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005023 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005024 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005025 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005026 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005027 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005028){
drh3b7511c2001-05-26 13:15:44 +00005029 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005030 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005031 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005032 int spaceLeft;
5033 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005034 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005035 unsigned char *pPrior;
5036 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005037 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005038 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005039 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005040 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005041
drh1fee73e2007-08-29 04:00:57 +00005042 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005043
drhc5053fb2008-11-27 02:22:10 +00005044 /* pPage is not necessarily writeable since pCell might be auxiliary
5045 ** buffer space that is separate from the pPage buffer area */
5046 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5047 || sqlite3PagerIswriteable(pPage->pDbPage) );
5048
drh91025292004-05-03 19:49:32 +00005049 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005050 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005051 if( !pPage->leaf ){
5052 nHeader += 4;
5053 }
drh8b18dd42004-05-12 19:18:15 +00005054 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005055 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005056 }else{
drhb026e052007-05-02 01:34:31 +00005057 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005058 }
drh6f11bef2004-05-13 01:12:56 +00005059 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005060 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005061 assert( info.nHeader==nHeader );
5062 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005063 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005064
5065 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005066 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005067 if( pPage->intKey ){
5068 pSrc = pData;
5069 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005070 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005071 }else{
danielk197731d31b82009-07-13 13:18:07 +00005072 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5073 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005074 }
drhf49661a2008-12-10 16:45:50 +00005075 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005076 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005077 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005078 }
drh6f11bef2004-05-13 01:12:56 +00005079 *pnSize = info.nSize;
5080 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005081 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005082 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005083
drh3b7511c2001-05-26 13:15:44 +00005084 while( nPayload>0 ){
5085 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005086#ifndef SQLITE_OMIT_AUTOVACUUM
5087 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005088 if( pBt->autoVacuum ){
5089 do{
5090 pgnoOvfl++;
5091 } while(
5092 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5093 );
danielk1977b39f70b2007-05-17 18:28:11 +00005094 }
danielk1977afcdd022004-10-31 16:25:42 +00005095#endif
drhf49661a2008-12-10 16:45:50 +00005096 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005097#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005098 /* If the database supports auto-vacuum, and the second or subsequent
5099 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005100 ** for that page now.
5101 **
5102 ** If this is the first overflow page, then write a partial entry
5103 ** to the pointer-map. If we write nothing to this pointer-map slot,
5104 ** then the optimistic overflow chain processing in clearCell()
5105 ** may misinterpret the uninitialised values and delete the
5106 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005107 */
danielk19774ef24492007-05-23 09:52:41 +00005108 if( pBt->autoVacuum && rc==SQLITE_OK ){
5109 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
5110 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
danielk197789a4be82007-05-23 13:34:32 +00005111 if( rc ){
5112 releasePage(pOvfl);
5113 }
danielk1977afcdd022004-10-31 16:25:42 +00005114 }
5115#endif
drh3b7511c2001-05-26 13:15:44 +00005116 if( rc ){
drh9b171272004-05-08 02:03:22 +00005117 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005118 return rc;
5119 }
drhc5053fb2008-11-27 02:22:10 +00005120
5121 /* If pToRelease is not zero than pPrior points into the data area
5122 ** of pToRelease. Make sure pToRelease is still writeable. */
5123 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5124
5125 /* If pPrior is part of the data area of pPage, then make sure pPage
5126 ** is still writeable */
5127 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5128 || sqlite3PagerIswriteable(pPage->pDbPage) );
5129
drh3aac2dd2004-04-26 14:10:20 +00005130 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005131 releasePage(pToRelease);
5132 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005133 pPrior = pOvfl->aData;
5134 put4byte(pPrior, 0);
5135 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005136 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005137 }
5138 n = nPayload;
5139 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005140
5141 /* If pToRelease is not zero than pPayload points into the data area
5142 ** of pToRelease. Make sure pToRelease is still writeable. */
5143 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5144
5145 /* If pPayload is part of the data area of pPage, then make sure pPage
5146 ** is still writeable */
5147 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5148 || sqlite3PagerIswriteable(pPage->pDbPage) );
5149
drhb026e052007-05-02 01:34:31 +00005150 if( nSrc>0 ){
5151 if( n>nSrc ) n = nSrc;
5152 assert( pSrc );
5153 memcpy(pPayload, pSrc, n);
5154 }else{
5155 memset(pPayload, 0, n);
5156 }
drh3b7511c2001-05-26 13:15:44 +00005157 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005158 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005159 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005160 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005161 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005162 if( nSrc==0 ){
5163 nSrc = nData;
5164 pSrc = pData;
5165 }
drhdd793422001-06-28 01:54:48 +00005166 }
drh9b171272004-05-08 02:03:22 +00005167 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005168 return SQLITE_OK;
5169}
5170
drh14acc042001-06-10 19:56:58 +00005171/*
5172** Remove the i-th cell from pPage. This routine effects pPage only.
5173** The cell content is not freed or deallocated. It is assumed that
5174** the cell content has been copied someplace else. This routine just
5175** removes the reference to the cell from pPage.
5176**
5177** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005178*/
shane0af3f892008-11-12 04:55:34 +00005179static int dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00005180 int i; /* Loop counter */
5181 int pc; /* Offset to cell content of cell being deleted */
5182 u8 *data; /* pPage->aData */
5183 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005184 int rc; /* The return code */
drh43605152004-05-29 21:46:49 +00005185
drh8c42ca92001-06-22 19:15:00 +00005186 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005187 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005188 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005189 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005190 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005191 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005192 pc = get2byte(ptr);
drh4c301aa2009-07-15 17:25:45 +00005193 if( (pc<pPage->hdrOffset+6+pPage->childPtrSize)
drhc5053fb2008-11-27 02:22:10 +00005194 || (pc+sz>pPage->pBt->usableSize) ){
shane0af3f892008-11-12 04:55:34 +00005195 return SQLITE_CORRUPT_BKPT;
5196 }
shanedcc50b72008-11-13 18:29:50 +00005197 rc = freeSpace(pPage, pc, sz);
5198 if( rc!=SQLITE_OK ){
5199 return rc;
5200 }
drh43605152004-05-29 21:46:49 +00005201 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5202 ptr[0] = ptr[2];
5203 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005204 }
5205 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00005206 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
5207 pPage->nFree += 2;
shane0af3f892008-11-12 04:55:34 +00005208 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005209}
5210
5211/*
5212** Insert a new cell on pPage at cell index "i". pCell points to the
5213** content of the cell.
5214**
5215** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005216** will not fit, then make a copy of the cell content into pTemp if
5217** pTemp is not null. Regardless of pTemp, allocate a new entry
5218** in pPage->aOvfl[] and make it point to the cell content (either
5219** in pTemp or the original pCell) and also record its index.
5220** Allocating a new entry in pPage->aCell[] implies that
5221** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005222**
5223** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5224** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005225** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005226** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005227*/
danielk1977e80463b2004-11-03 03:01:16 +00005228static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00005229 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005230 int i, /* New cell becomes the i-th cell of the page */
5231 u8 *pCell, /* Content of the new cell */
5232 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005233 u8 *pTemp, /* Temp storage space for pCell, if needed */
danielk19774dbaa892009-06-16 16:50:22 +00005234 Pgno iChild /* If non-zero, replace first 4 bytes with this value */
drh24cd67e2004-05-10 16:18:47 +00005235){
drh43605152004-05-29 21:46:49 +00005236 int idx; /* Where to write new cell content in data[] */
5237 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005238 int end; /* First byte past the last cell pointer in data[] */
5239 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005240 int cellOffset; /* Address of first cell pointer in data[] */
5241 u8 *data; /* The content of the whole page */
5242 u8 *ptr; /* Used for moving information around in data[] */
5243
danielk19774dbaa892009-06-16 16:50:22 +00005244 int nSkip = (iChild ? 4 : 0);
5245
drh43605152004-05-29 21:46:49 +00005246 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005247 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5248 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh43605152004-05-29 21:46:49 +00005249 assert( sz==cellSizePtr(pPage, pCell) );
drh1fee73e2007-08-29 04:00:57 +00005250 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00005251 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005252 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005253 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005254 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005255 }
danielk19774dbaa892009-06-16 16:50:22 +00005256 if( iChild ){
5257 put4byte(pCell, iChild);
5258 }
drh43605152004-05-29 21:46:49 +00005259 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005260 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005261 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005262 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005263 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005264 int rc = sqlite3PagerWrite(pPage->pDbPage);
5265 if( rc!=SQLITE_OK ){
5266 return rc;
5267 }
5268 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005269 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005270 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005271 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005272 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005273 rc = allocateSpace(pPage, sz, &idx);
5274 if( rc ) return rc;
5275 assert( idx>=end+2 );
5276 if( idx+sz > pPage->pBt->usableSize ){
shane34ac18d2008-11-11 22:18:20 +00005277 return SQLITE_CORRUPT_BKPT;
shane0af3f892008-11-12 04:55:34 +00005278 }
drh43605152004-05-29 21:46:49 +00005279 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005280 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005281 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005282 if( iChild ){
5283 put4byte(&data[idx], iChild);
5284 }
drh0a45c272009-07-08 01:49:11 +00005285 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005286 ptr[0] = ptr[-2];
5287 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005288 }
drh43605152004-05-29 21:46:49 +00005289 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005290 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005291#ifndef SQLITE_OMIT_AUTOVACUUM
5292 if( pPage->pBt->autoVacuum ){
5293 /* The cell may contain a pointer to an overflow page. If so, write
5294 ** the entry for the overflow page into the pointer map.
5295 */
danielk197746aa38f2009-06-25 16:11:05 +00005296 return ptrmapPutOvflPtr(pPage, pCell);
danielk1977a19df672004-11-03 11:37:07 +00005297 }
5298#endif
drh14acc042001-06-10 19:56:58 +00005299 }
danielk1977e80463b2004-11-03 03:01:16 +00005300
danielk1977e80463b2004-11-03 03:01:16 +00005301 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005302}
5303
5304/*
drhfa1a98a2004-05-14 19:08:17 +00005305** Add a list of cells to a page. The page should be initially empty.
5306** The cells are guaranteed to fit on the page.
5307*/
5308static void assemblePage(
5309 MemPage *pPage, /* The page to be assemblied */
5310 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005311 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005312 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005313){
5314 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005315 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005316 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005317 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5318 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5319 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005320
drh43605152004-05-29 21:46:49 +00005321 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005322 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005323 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005324 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005325
5326 /* Check that the page has just been zeroed by zeroPage() */
5327 assert( pPage->nCell==0 );
5328 assert( get2byte(&data[hdr+5])==nUsable );
5329
5330 pCellptr = &data[pPage->cellOffset + nCell*2];
5331 cellbody = nUsable;
5332 for(i=nCell-1; i>=0; i--){
5333 pCellptr -= 2;
5334 cellbody -= aSize[i];
5335 put2byte(pCellptr, cellbody);
5336 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005337 }
danielk1977fad91942009-04-29 17:49:59 +00005338 put2byte(&data[hdr+3], nCell);
5339 put2byte(&data[hdr+5], cellbody);
5340 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005341 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005342}
5343
drh14acc042001-06-10 19:56:58 +00005344/*
drhc3b70572003-01-04 19:44:07 +00005345** The following parameters determine how many adjacent pages get involved
5346** in a balancing operation. NN is the number of neighbors on either side
5347** of the page that participate in the balancing operation. NB is the
5348** total number of pages that participate, including the target page and
5349** NN neighbors on either side.
5350**
5351** The minimum value of NN is 1 (of course). Increasing NN above 1
5352** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5353** in exchange for a larger degradation in INSERT and UPDATE performance.
5354** The value of NN appears to give the best results overall.
5355*/
5356#define NN 1 /* Number of neighbors on either side of pPage */
5357#define NB (NN*2+1) /* Total pages involved in the balance */
5358
danielk1977ac245ec2005-01-14 13:50:11 +00005359
drh615ae552005-01-16 23:21:00 +00005360#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005361/*
5362** This version of balance() handles the common special case where
5363** a new entry is being inserted on the extreme right-end of the
5364** tree, in other words, when the new entry will become the largest
5365** entry in the tree.
5366**
5367** Instead of trying balance the 3 right-most leaf pages, just add
5368** a new page to the right-hand side and put the one new entry in
5369** that page. This leaves the right side of the tree somewhat
5370** unbalanced. But odds are that we will be inserting new entries
5371** at the end soon afterwards so the nearly empty page will quickly
5372** fill up. On average.
5373**
5374** pPage is the leaf page which is the right-most page in the tree.
5375** pParent is its parent. pPage must have a single overflow entry
5376** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005377**
5378** The pSpace buffer is used to store a temporary copy of the divider
5379** cell that will be inserted into pParent. Such a cell consists of a 4
5380** byte page number followed by a variable length integer. In other
5381** words, at most 13 bytes. Hence the pSpace buffer must be at
5382** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005383*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005384static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5385 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005386 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005387 int rc; /* Return Code */
5388 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005389
drh1fee73e2007-08-29 04:00:57 +00005390 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005391 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005392 assert( pPage->nOverflow==1 );
5393
drhd46b6c22009-06-04 17:02:51 +00005394 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005395
danielk1977a50d9aa2009-06-08 14:49:45 +00005396 /* Allocate a new page. This page will become the right-sibling of
5397 ** pPage. Make the parent page writable, so that the new divider cell
5398 ** may be inserted. If both these operations are successful, proceed.
5399 */
drh4f0c5872007-03-26 22:05:01 +00005400 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005401
danielk1977eaa06f62008-09-18 17:34:44 +00005402 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005403
5404 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005405 u8 *pCell = pPage->aOvfl[0].pCell;
5406 u16 szCell = cellSizePtr(pPage, pCell);
5407 u8 *pStop;
5408
drhc5053fb2008-11-27 02:22:10 +00005409 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005410 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5411 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005412 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005413
5414 /* If this is an auto-vacuum database, update the pointer map
5415 ** with entries for the new page, and any pointer from the
5416 ** cell on the page to an overflow page. If either of these
5417 ** operations fails, the return code is set, but the contents
5418 ** of the parent page are still manipulated by thh code below.
5419 ** That is Ok, at this point the parent page is guaranteed to
5420 ** be marked as dirty. Returning an error code will cause a
5421 ** rollback, undoing any changes made to the parent page.
5422 */
5423 if( ISAUTOVACUUM ){
5424 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
5425 if( szCell>pNew->minLocal && rc==SQLITE_OK ){
5426 rc = ptrmapPutOvflPtr(pNew, pCell);
5427 }
5428 }
danielk1977eaa06f62008-09-18 17:34:44 +00005429
danielk19776f235cc2009-06-04 14:46:08 +00005430 /* Create a divider cell to insert into pParent. The divider cell
5431 ** consists of a 4-byte page number (the page number of pPage) and
5432 ** a variable length key value (which must be the same value as the
5433 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005434 **
danielk19776f235cc2009-06-04 14:46:08 +00005435 ** To find the largest key value on pPage, first find the right-most
5436 ** cell on pPage. The first two fields of this cell are the
5437 ** record-length (a variable length integer at most 32-bits in size)
5438 ** and the key value (a variable length integer, may have any value).
5439 ** The first of the while(...) loops below skips over the record-length
5440 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005441 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005442 */
danielk1977eaa06f62008-09-18 17:34:44 +00005443 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005444 pStop = &pCell[9];
5445 while( (*(pCell++)&0x80) && pCell<pStop );
5446 pStop = &pCell[9];
5447 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5448
danielk19774dbaa892009-06-16 16:50:22 +00005449 /* Insert the new divider cell into pParent. */
5450 insertCell(pParent,pParent->nCell,pSpace,(int)(pOut-pSpace),0,pPage->pgno);
danielk19776f235cc2009-06-04 14:46:08 +00005451
5452 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005453 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5454
danielk1977e08a3c42008-09-18 18:17:03 +00005455 /* Release the reference to the new page. */
5456 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005457 }
5458
danielk1977eaa06f62008-09-18 17:34:44 +00005459 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005460}
drh615ae552005-01-16 23:21:00 +00005461#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005462
danielk19774dbaa892009-06-16 16:50:22 +00005463#if 0
drhc3b70572003-01-04 19:44:07 +00005464/*
danielk19774dbaa892009-06-16 16:50:22 +00005465** This function does not contribute anything to the operation of SQLite.
5466** it is sometimes activated temporarily while debugging code responsible
5467** for setting pointer-map entries.
5468*/
5469static int ptrmapCheckPages(MemPage **apPage, int nPage){
5470 int i, j;
5471 for(i=0; i<nPage; i++){
5472 Pgno n;
5473 u8 e;
5474 MemPage *pPage = apPage[i];
5475 BtShared *pBt = pPage->pBt;
5476 assert( pPage->isInit );
5477
5478 for(j=0; j<pPage->nCell; j++){
5479 CellInfo info;
5480 u8 *z;
5481
5482 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005483 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005484 if( info.iOverflow ){
5485 Pgno ovfl = get4byte(&z[info.iOverflow]);
5486 ptrmapGet(pBt, ovfl, &e, &n);
5487 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5488 }
5489 if( !pPage->leaf ){
5490 Pgno child = get4byte(z);
5491 ptrmapGet(pBt, child, &e, &n);
5492 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5493 }
5494 }
5495 if( !pPage->leaf ){
5496 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5497 ptrmapGet(pBt, child, &e, &n);
5498 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5499 }
5500 }
5501 return 1;
5502}
5503#endif
5504
danielk1977cd581a72009-06-23 15:43:39 +00005505/*
5506** This function is used to copy the contents of the b-tree node stored
5507** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5508** the pointer-map entries for each child page are updated so that the
5509** parent page stored in the pointer map is page pTo. If pFrom contained
5510** any cells with overflow page pointers, then the corresponding pointer
5511** map entries are also updated so that the parent page is page pTo.
5512**
5513** If pFrom is currently carrying any overflow cells (entries in the
5514** MemPage.aOvfl[] array), they are not copied to pTo.
5515**
danielk197730548662009-07-09 05:07:37 +00005516** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005517**
5518** The performance of this function is not critical. It is only used by
5519** the balance_shallower() and balance_deeper() procedures, neither of
5520** which are called often under normal circumstances.
5521*/
5522static int copyNodeContent(MemPage *pFrom, MemPage *pTo){
5523 BtShared * const pBt = pFrom->pBt;
5524 u8 * const aFrom = pFrom->aData;
5525 u8 * const aTo = pTo->aData;
5526 int const iFromHdr = pFrom->hdrOffset;
5527 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
5528 int rc = SQLITE_OK;
5529 int iData;
5530
5531 assert( pFrom->isInit );
5532 assert( pFrom->nFree>=iToHdr );
5533 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5534
5535 /* Copy the b-tree node content from page pFrom to page pTo. */
5536 iData = get2byte(&aFrom[iFromHdr+5]);
5537 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5538 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5539
5540 /* Reinitialize page pTo so that the contents of the MemPage structure
5541 ** match the new data. The initialization of pTo "cannot" fail, as the
5542 ** data copied from pFrom is known to be valid. */
5543 pTo->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00005544 TESTONLY(rc = ) btreeInitPage(pTo);
danielk1977cd581a72009-06-23 15:43:39 +00005545 assert( rc==SQLITE_OK );
5546
5547 /* If this is an auto-vacuum database, update the pointer-map entries
5548 ** for any b-tree or overflow pages that pTo now contains the pointers to. */
5549 if( ISAUTOVACUUM ){
5550 rc = setChildPtrmaps(pTo);
5551 }
5552 return rc;
5553}
5554
5555/*
danielk19774dbaa892009-06-16 16:50:22 +00005556** This routine redistributes cells on the iParentIdx'th child of pParent
5557** (hereafter "the page") and up to 2 siblings so that all pages have about the
5558** same amount of free space. Usually a single sibling on either side of the
5559** page are used in the balancing, though both siblings might come from one
5560** side if the page is the first or last child of its parent. If the page
5561** has fewer than 2 siblings (something which can only happen if the page
5562** is a root page or a child of a root page) then all available siblings
5563** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005564**
danielk19774dbaa892009-06-16 16:50:22 +00005565** The number of siblings of the page might be increased or decreased by
5566** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005567**
danielk19774dbaa892009-06-16 16:50:22 +00005568** Note that when this routine is called, some of the cells on the page
5569** might not actually be stored in MemPage.aData[]. This can happen
5570** if the page is overfull. This routine ensures that all cells allocated
5571** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005572**
danielk19774dbaa892009-06-16 16:50:22 +00005573** In the course of balancing the page and its siblings, cells may be
5574** inserted into or removed from the parent page (pParent). Doing so
5575** may cause the parent page to become overfull or underfull. If this
5576** happens, it is the responsibility of the caller to invoke the correct
5577** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005578**
drh5e00f6c2001-09-13 13:46:56 +00005579** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005580** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005581** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005582**
5583** The third argument to this function, aOvflSpace, is a pointer to a
5584** buffer page-size bytes in size. If, in inserting cells into the parent
5585** page (pParent), the parent page becomes overfull, this buffer is
5586** used to store the parents overflow cells. Because this function inserts
5587** a maximum of four divider cells into the parent page, and the maximum
5588** size of a cell stored within an internal node is always less than 1/4
5589** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5590** enough for all overflow cells.
5591**
5592** If aOvflSpace is set to a null pointer, this function returns
5593** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005594*/
danielk19774dbaa892009-06-16 16:50:22 +00005595static int balance_nonroot(
5596 MemPage *pParent, /* Parent page of siblings being balanced */
5597 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005598 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5599 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005600){
drh16a9b832007-05-05 18:39:25 +00005601 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005602 int nCell = 0; /* Number of cells in apCell[] */
5603 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005604 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005605 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005606 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005607 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005608 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005609 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005610 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005611 int usableSpace; /* Bytes in pPage beyond the header */
5612 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005613 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005614 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005615 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005616 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005617 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005618 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005619 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005620 u8 *pRight; /* Location in parent of right-sibling pointer */
5621 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005622 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5623 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005624 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005625 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005626 u8 *aSpace1; /* Space for copies of dividers cells */
5627 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005628
danielk1977a50d9aa2009-06-08 14:49:45 +00005629 pBt = pParent->pBt;
5630 assert( sqlite3_mutex_held(pBt->mutex) );
5631 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005632
danielk1977e5765212009-06-17 11:13:28 +00005633#if 0
drh43605152004-05-29 21:46:49 +00005634 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005635#endif
drh2e38c322004-09-03 18:38:44 +00005636
danielk19774dbaa892009-06-16 16:50:22 +00005637 /* At this point pParent may have at most one overflow cell. And if
5638 ** this overflow cell is present, it must be the cell with
5639 ** index iParentIdx. This scenario comes about when this function
5640 ** is called (indirectly) from sqlite3BtreeDelete(). */
5641 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5642 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5643
danielk197711a8a862009-06-17 11:49:52 +00005644 if( !aOvflSpace ){
5645 return SQLITE_NOMEM;
5646 }
5647
danielk1977a50d9aa2009-06-08 14:49:45 +00005648 /* Find the sibling pages to balance. Also locate the cells in pParent
5649 ** that divide the siblings. An attempt is made to find NN siblings on
5650 ** either side of pPage. More siblings are taken from one side, however,
5651 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005652 ** has NB or fewer children then all children of pParent are taken.
5653 **
5654 ** This loop also drops the divider cells from the parent page. This
5655 ** way, the remainder of the function does not have to deal with any
5656 ** overflow cells in the parent page, as if one existed it has already
5657 ** been removed. */
5658 i = pParent->nOverflow + pParent->nCell;
5659 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005660 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005661 nOld = i+1;
5662 }else{
5663 nOld = 3;
5664 if( iParentIdx==0 ){
5665 nxDiv = 0;
5666 }else if( iParentIdx==i ){
5667 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005668 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005669 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005670 }
danielk19774dbaa892009-06-16 16:50:22 +00005671 i = 2;
5672 }
5673 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5674 pRight = &pParent->aData[pParent->hdrOffset+8];
5675 }else{
5676 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5677 }
5678 pgno = get4byte(pRight);
5679 while( 1 ){
5680 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5681 if( rc ){
5682 memset(apOld, 0, i*sizeof(MemPage*));
5683 goto balance_cleanup;
5684 }
danielk1977634f2982005-03-28 08:44:07 +00005685 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005686 if( (i--)==0 ) break;
5687
5688 if( pParent->nOverflow && i+nxDiv==pParent->aOvfl[0].idx ){
5689 apDiv[i] = pParent->aOvfl[0].pCell;
5690 pgno = get4byte(apDiv[i]);
5691 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5692 pParent->nOverflow = 0;
5693 }else{
5694 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5695 pgno = get4byte(apDiv[i]);
5696 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5697
5698 /* Drop the cell from the parent page. apDiv[i] still points to
5699 ** the cell within the parent, even though it has been dropped.
5700 ** This is safe because dropping a cell only overwrites the first
5701 ** four bytes of it, and this function does not need the first
5702 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005703 ** later on.
5704 **
5705 ** Unless SQLite is compiled in secure-delete mode. In this case,
5706 ** the dropCell() routine will overwrite the entire cell with zeroes.
5707 ** In this case, temporarily copy the cell into the aOvflSpace[]
5708 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5709 ** is allocated. */
5710#ifdef SQLITE_SECURE_DELETE
5711 memcpy(&aOvflSpace[apDiv[i]-pParent->aData], apDiv[i], szNew[i]);
5712 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5713#endif
danielk19774dbaa892009-06-16 16:50:22 +00005714 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i]);
5715 }
drh8b2f49b2001-06-08 00:21:52 +00005716 }
5717
drha9121e42008-02-19 14:59:35 +00005718 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005719 ** alignment */
drha9121e42008-02-19 14:59:35 +00005720 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005721
drh8b2f49b2001-06-08 00:21:52 +00005722 /*
danielk1977634f2982005-03-28 08:44:07 +00005723 ** Allocate space for memory structures
5724 */
danielk19774dbaa892009-06-16 16:50:22 +00005725 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005726 szScratch =
drha9121e42008-02-19 14:59:35 +00005727 nMaxCells*sizeof(u8*) /* apCell */
5728 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005729 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005730 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005731 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005732 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005733 rc = SQLITE_NOMEM;
5734 goto balance_cleanup;
5735 }
drha9121e42008-02-19 14:59:35 +00005736 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005737 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005738 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005739
5740 /*
5741 ** Load pointers to all cells on sibling pages and the divider cells
5742 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005743 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005744 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005745 **
5746 ** If the siblings are on leaf pages, then the child pointers of the
5747 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005748 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005749 ** child pointers. If siblings are not leaves, then all cell in
5750 ** apCell[] include child pointers. Either way, all cells in apCell[]
5751 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005752 **
5753 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5754 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005755 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005756 leafCorrection = apOld[0]->leaf*4;
5757 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005758 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005759 int limit;
5760
5761 /* Before doing anything else, take a copy of the i'th original sibling
5762 ** The rest of this function will use data from the copies rather
5763 ** that the original pages since the original pages will be in the
5764 ** process of being overwritten. */
5765 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5766 memcpy(pOld, apOld[i], sizeof(MemPage));
5767 pOld->aData = (void*)&pOld[1];
5768 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5769
5770 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005771 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005772 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005773 apCell[nCell] = findOverflowCell(pOld, j);
5774 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005775 nCell++;
5776 }
5777 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005778 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005779 u8 *pTemp;
5780 assert( nCell<nMaxCells );
5781 szCell[nCell] = sz;
5782 pTemp = &aSpace1[iSpace1];
5783 iSpace1 += sz;
5784 assert( sz<=pBt->pageSize/4 );
5785 assert( iSpace1<=pBt->pageSize );
5786 memcpy(pTemp, apDiv[i], sz);
5787 apCell[nCell] = pTemp+leafCorrection;
5788 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005789 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005790 if( !pOld->leaf ){
5791 assert( leafCorrection==0 );
5792 assert( pOld->hdrOffset==0 );
5793 /* The right pointer of the child page pOld becomes the left
5794 ** pointer of the divider cell */
5795 memcpy(apCell[nCell], &pOld->aData[8], 4);
5796 }else{
5797 assert( leafCorrection==4 );
5798 if( szCell[nCell]<4 ){
5799 /* Do not allow any cells smaller than 4 bytes. */
5800 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005801 }
5802 }
drh14acc042001-06-10 19:56:58 +00005803 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005804 }
drh8b2f49b2001-06-08 00:21:52 +00005805 }
5806
5807 /*
drh6019e162001-07-02 17:51:45 +00005808 ** Figure out the number of pages needed to hold all nCell cells.
5809 ** Store this number in "k". Also compute szNew[] which is the total
5810 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005811 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005812 ** cntNew[k] should equal nCell.
5813 **
drh96f5b762004-05-16 16:24:36 +00005814 ** Values computed by this block:
5815 **
5816 ** k: The total number of sibling pages
5817 ** szNew[i]: Spaced used on the i-th sibling page.
5818 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5819 ** the right of the i-th sibling page.
5820 ** usableSpace: Number of bytes of space available on each sibling.
5821 **
drh8b2f49b2001-06-08 00:21:52 +00005822 */
drh43605152004-05-29 21:46:49 +00005823 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005824 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005825 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005826 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005827 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005828 szNew[k] = subtotal - szCell[i];
5829 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005830 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005831 subtotal = 0;
5832 k++;
drheac74422009-06-14 12:47:11 +00005833 if( k>NB+1 ){ rc = SQLITE_CORRUPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00005834 }
5835 }
5836 szNew[k] = subtotal;
5837 cntNew[k] = nCell;
5838 k++;
drh96f5b762004-05-16 16:24:36 +00005839
5840 /*
5841 ** The packing computed by the previous block is biased toward the siblings
5842 ** on the left side. The left siblings are always nearly full, while the
5843 ** right-most sibling might be nearly empty. This block of code attempts
5844 ** to adjust the packing of siblings to get a better balance.
5845 **
5846 ** This adjustment is more than an optimization. The packing above might
5847 ** be so out of balance as to be illegal. For example, the right-most
5848 ** sibling might be completely empty. This adjustment is not optional.
5849 */
drh6019e162001-07-02 17:51:45 +00005850 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005851 int szRight = szNew[i]; /* Size of sibling on the right */
5852 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5853 int r; /* Index of right-most cell in left sibling */
5854 int d; /* Index of first cell to the left of right sibling */
5855
5856 r = cntNew[i-1] - 1;
5857 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005858 assert( d<nMaxCells );
5859 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005860 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5861 szRight += szCell[d] + 2;
5862 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005863 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005864 r = cntNew[i-1] - 1;
5865 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005866 }
drh96f5b762004-05-16 16:24:36 +00005867 szNew[i] = szRight;
5868 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005869 }
drh09d0deb2005-08-02 17:13:09 +00005870
danielk19776f235cc2009-06-04 14:46:08 +00005871 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00005872 ** a virtual root page. A virtual root page is when the real root
5873 ** page is page 1 and we are the only child of that page.
5874 */
5875 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005876
danielk1977e5765212009-06-17 11:13:28 +00005877 TRACE(("BALANCE: old: %d %d %d ",
5878 apOld[0]->pgno,
5879 nOld>=2 ? apOld[1]->pgno : 0,
5880 nOld>=3 ? apOld[2]->pgno : 0
5881 ));
5882
drh8b2f49b2001-06-08 00:21:52 +00005883 /*
drh6b308672002-07-08 02:16:37 +00005884 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005885 */
drheac74422009-06-14 12:47:11 +00005886 if( apOld[0]->pgno<=1 ){
5887 rc = SQLITE_CORRUPT;
5888 goto balance_cleanup;
5889 }
danielk1977a50d9aa2009-06-08 14:49:45 +00005890 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00005891 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005892 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005893 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005894 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005895 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005896 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005897 nNew++;
danielk197728129562005-01-11 10:25:06 +00005898 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005899 }else{
drh7aa8f852006-03-28 00:24:44 +00005900 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00005901 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00005902 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005903 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005904 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00005905
5906 /* Set the pointer-map entry for the new sibling page. */
5907 if( ISAUTOVACUUM ){
5908 rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
5909 if( rc!=SQLITE_OK ){
5910 goto balance_cleanup;
5911 }
5912 }
drh6b308672002-07-08 02:16:37 +00005913 }
drh8b2f49b2001-06-08 00:21:52 +00005914 }
5915
danielk1977299b1872004-11-22 10:02:10 +00005916 /* Free any old pages that were not reused as new pages.
5917 */
5918 while( i<nOld ){
5919 rc = freePage(apOld[i]);
5920 if( rc ) goto balance_cleanup;
5921 releasePage(apOld[i]);
5922 apOld[i] = 0;
5923 i++;
5924 }
5925
drh8b2f49b2001-06-08 00:21:52 +00005926 /*
drhf9ffac92002-03-02 19:00:31 +00005927 ** Put the new pages in accending order. This helps to
5928 ** keep entries in the disk file in order so that a scan
5929 ** of the table is a linear scan through the file. That
5930 ** in turn helps the operating system to deliver pages
5931 ** from the disk more rapidly.
5932 **
5933 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005934 ** n is never more than NB (a small constant), that should
5935 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005936 **
drhc3b70572003-01-04 19:44:07 +00005937 ** When NB==3, this one optimization makes the database
5938 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00005939 */
5940 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005941 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005942 int minI = i;
5943 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00005944 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00005945 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00005946 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005947 }
5948 }
5949 if( minI>i ){
5950 int t;
5951 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00005952 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005953 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00005954 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00005955 apNew[minI] = pT;
5956 }
5957 }
danielk1977e5765212009-06-17 11:13:28 +00005958 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00005959 apNew[0]->pgno, szNew[0],
5960 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
5961 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
5962 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
5963 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
5964
5965 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
5966 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00005967
drhf9ffac92002-03-02 19:00:31 +00005968 /*
drh14acc042001-06-10 19:56:58 +00005969 ** Evenly distribute the data in apCell[] across the new pages.
5970 ** Insert divider cells into pParent as necessary.
5971 */
5972 j = 0;
5973 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00005974 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00005975 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00005976 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00005977 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00005978 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00005979 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00005980 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00005981
danielk1977ac11ee62005-01-15 12:45:51 +00005982 j = cntNew[i];
5983
5984 /* If the sibling page assembled above was not the right-most sibling,
5985 ** insert a divider cell into the parent page.
5986 */
danielk19771c3d2bf2009-06-23 16:40:17 +00005987 assert( i<nNew-1 || j==nCell );
5988 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00005989 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00005990 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00005991 int sz;
danielk1977634f2982005-03-28 08:44:07 +00005992
5993 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00005994 pCell = apCell[j];
5995 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00005996 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00005997 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00005998 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00005999 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006000 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006001 ** then there is no divider cell in apCell[]. Instead, the divider
6002 ** cell consists of the integer key for the right-most cell of
6003 ** the sibling-page assembled above only.
6004 */
drh6f11bef2004-05-13 01:12:56 +00006005 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006006 j--;
danielk197730548662009-07-09 05:07:37 +00006007 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006008 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006009 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006010 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006011 }else{
6012 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006013 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006014 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006015 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006016 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006017 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006018 ** insertCell(), so reparse the cell now.
6019 **
6020 ** Note that this can never happen in an SQLite data file, as all
6021 ** cells are at least 4 bytes. It only happens in b-trees used
6022 ** to evaluate "IN (SELECT ...)" and similar clauses.
6023 */
6024 if( szCell[j]==4 ){
6025 assert(leafCorrection==4);
6026 sz = cellSizePtr(pParent, pCell);
6027 }
drh4b70f112004-05-02 21:12:19 +00006028 }
danielk19776067a9b2009-06-09 09:41:00 +00006029 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00006030 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006031 assert( iOvflSpace<=pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006032 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno);
danielk1977e80463b2004-11-03 03:01:16 +00006033 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006034 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006035
drh14acc042001-06-10 19:56:58 +00006036 j++;
6037 nxDiv++;
6038 }
6039 }
drh6019e162001-07-02 17:51:45 +00006040 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006041 assert( nOld>0 );
6042 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006043 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006044 u8 *zChild = &apCopy[nOld-1]->aData[8];
6045 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006046 }
6047
danielk197713bd99f2009-06-24 05:40:34 +00006048 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6049 /* The root page of the b-tree now contains no cells. The only sibling
6050 ** page is the right-child of the parent. Copy the contents of the
6051 ** child page into the parent, decreasing the overall height of the
6052 ** b-tree structure by one. This is described as the "balance-shallower"
6053 ** sub-algorithm in some documentation.
6054 **
6055 ** If this is an auto-vacuum database, the call to copyNodeContent()
6056 ** sets all pointer-map entries corresponding to database image pages
6057 ** for which the pointer is stored within the content being copied.
6058 **
6059 ** The second assert below verifies that the child page is defragmented
6060 ** (it must be, as it was just reconstructed using assemblePage()). This
6061 ** is important if the parent page happens to be page 1 of the database
6062 ** image. */
6063 assert( nNew==1 );
6064 assert( apNew[0]->nFree ==
6065 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6066 );
6067 if( SQLITE_OK==(rc = copyNodeContent(apNew[0], pParent)) ){
6068 rc = freePage(apNew[0]);
6069 }
6070 }else if( ISAUTOVACUUM ){
6071 /* Fix the pointer-map entries for all the cells that were shifted around.
6072 ** There are several different types of pointer-map entries that need to
6073 ** be dealt with by this routine. Some of these have been set already, but
6074 ** many have not. The following is a summary:
6075 **
6076 ** 1) The entries associated with new sibling pages that were not
6077 ** siblings when this function was called. These have already
6078 ** been set. We don't need to worry about old siblings that were
6079 ** moved to the free-list - the freePage() code has taken care
6080 ** of those.
6081 **
6082 ** 2) The pointer-map entries associated with the first overflow
6083 ** page in any overflow chains used by new divider cells. These
6084 ** have also already been taken care of by the insertCell() code.
6085 **
6086 ** 3) If the sibling pages are not leaves, then the child pages of
6087 ** cells stored on the sibling pages may need to be updated.
6088 **
6089 ** 4) If the sibling pages are not internal intkey nodes, then any
6090 ** overflow pages used by these cells may need to be updated
6091 ** (internal intkey nodes never contain pointers to overflow pages).
6092 **
6093 ** 5) If the sibling pages are not leaves, then the pointer-map
6094 ** entries for the right-child pages of each sibling may need
6095 ** to be updated.
6096 **
6097 ** Cases 1 and 2 are dealt with above by other code. The next
6098 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6099 ** setting a pointer map entry is a relatively expensive operation, this
6100 ** code only sets pointer map entries for child or overflow pages that have
6101 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006102 MemPage *pNew = apNew[0];
6103 MemPage *pOld = apCopy[0];
6104 int nOverflow = pOld->nOverflow;
6105 int iNextOld = pOld->nCell + nOverflow;
6106 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6107 j = 0; /* Current 'old' sibling page */
6108 k = 0; /* Current 'new' sibling page */
6109 for(i=0; i<nCell && rc==SQLITE_OK; i++){
6110 int isDivider = 0;
6111 while( i==iNextOld ){
6112 /* Cell i is the cell immediately following the last cell on old
6113 ** sibling page j. If the siblings are not leaf pages of an
6114 ** intkey b-tree, then cell i was a divider cell. */
6115 pOld = apCopy[++j];
6116 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6117 if( pOld->nOverflow ){
6118 nOverflow = pOld->nOverflow;
6119 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6120 }
6121 isDivider = !leafData;
6122 }
6123
6124 assert(nOverflow>0 || iOverflow<i );
6125 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6126 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6127 if( i==iOverflow ){
6128 isDivider = 1;
6129 if( (--nOverflow)>0 ){
6130 iOverflow++;
6131 }
6132 }
6133
6134 if( i==cntNew[k] ){
6135 /* Cell i is the cell immediately following the last cell on new
6136 ** sibling page k. If the siblings are not leaf pages of an
6137 ** intkey b-tree, then cell i is a divider cell. */
6138 pNew = apNew[++k];
6139 if( !leafData ) continue;
6140 }
6141 assert( rc==SQLITE_OK );
6142 assert( j<nOld );
6143 assert( k<nNew );
6144
6145 /* If the cell was originally divider cell (and is not now) or
6146 ** an overflow cell, or if the cell was located on a different sibling
6147 ** page before the balancing, then the pointer map entries associated
6148 ** with any child or overflow pages need to be updated. */
6149 if( isDivider || pOld->pgno!=pNew->pgno ){
6150 if( !leafCorrection ){
6151 rc = ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno);
6152 }
6153 if( szCell[i]>pNew->minLocal && rc==SQLITE_OK ){
6154 rc = ptrmapPutOvflPtr(pNew, apCell[i]);
6155 }
6156 }
6157 }
6158
6159 if( !leafCorrection ){
6160 for(i=0; rc==SQLITE_OK && i<nNew; i++){
6161 rc = ptrmapPut(
6162 pBt, get4byte(&apNew[i]->aData[8]), PTRMAP_BTREE, apNew[i]->pgno);
6163 }
6164 }
6165
6166#if 0
6167 /* The ptrmapCheckPages() contains assert() statements that verify that
6168 ** all pointer map pages are set correctly. This is helpful while
6169 ** debugging. This is usually disabled because a corrupt database may
6170 ** cause an assert() statement to fail. */
6171 ptrmapCheckPages(apNew, nNew);
6172 ptrmapCheckPages(&pParent, 1);
6173#endif
6174 }
6175
danielk197771d5d2c2008-09-29 11:49:47 +00006176 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006177 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6178 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006179
drh8b2f49b2001-06-08 00:21:52 +00006180 /*
drh14acc042001-06-10 19:56:58 +00006181 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006182 */
drh14acc042001-06-10 19:56:58 +00006183balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006184 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006185 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006186 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006187 }
drh14acc042001-06-10 19:56:58 +00006188 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006189 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006190 }
danielk1977eaa06f62008-09-18 17:34:44 +00006191
drh8b2f49b2001-06-08 00:21:52 +00006192 return rc;
6193}
6194
drh43605152004-05-29 21:46:49 +00006195
6196/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006197** This function is called when the root page of a b-tree structure is
6198** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006199**
danielk1977a50d9aa2009-06-08 14:49:45 +00006200** A new child page is allocated and the contents of the current root
6201** page, including overflow cells, are copied into the child. The root
6202** page is then overwritten to make it an empty page with the right-child
6203** pointer pointing to the new page.
6204**
6205** Before returning, all pointer-map entries corresponding to pages
6206** that the new child-page now contains pointers to are updated. The
6207** entry corresponding to the new right-child pointer of the root
6208** page is also updated.
6209**
6210** If successful, *ppChild is set to contain a reference to the child
6211** page and SQLITE_OK is returned. In this case the caller is required
6212** to call releasePage() on *ppChild exactly once. If an error occurs,
6213** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006214*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006215static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6216 int rc; /* Return value from subprocedures */
6217 MemPage *pChild = 0; /* Pointer to a new child page */
6218 Pgno pgnoChild; /* Page number of the new child page */
6219 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006220
danielk1977a50d9aa2009-06-08 14:49:45 +00006221 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006222 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006223
danielk1977a50d9aa2009-06-08 14:49:45 +00006224 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6225 ** page that will become the new right-child of pPage. Copy the contents
6226 ** of the node stored on pRoot into the new child page.
6227 */
6228 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pRoot->pDbPage))
6229 || SQLITE_OK!=(rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0))
6230 || SQLITE_OK!=(rc = copyNodeContent(pRoot, pChild))
6231 || (ISAUTOVACUUM &&
6232 SQLITE_OK!=(rc = ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno)))
6233 ){
6234 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006235 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006236 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006237 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006238 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6239 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6240 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006241
danielk1977a50d9aa2009-06-08 14:49:45 +00006242 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6243
6244 /* Copy the overflow cells from pRoot to pChild */
6245 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6246 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006247
6248 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6249 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6250 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6251
6252 *ppChild = pChild;
6253 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006254}
6255
6256/*
danielk197771d5d2c2008-09-29 11:49:47 +00006257** The page that pCur currently points to has just been modified in
6258** some way. This function figures out if this modification means the
6259** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006260** routine. Balancing routines are:
6261**
6262** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006263** balance_deeper()
6264** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006265*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006266static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006267 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006268 const int nMin = pCur->pBt->usableSize * 2 / 3;
6269 u8 aBalanceQuickSpace[13];
6270 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006271
shane75ac1de2009-06-09 18:58:52 +00006272 TESTONLY( int balance_quick_called = 0 );
6273 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006274
6275 do {
6276 int iPage = pCur->iPage;
6277 MemPage *pPage = pCur->apPage[iPage];
6278
6279 if( iPage==0 ){
6280 if( pPage->nOverflow ){
6281 /* The root page of the b-tree is overfull. In this case call the
6282 ** balance_deeper() function to create a new child for the root-page
6283 ** and copy the current contents of the root-page to it. The
6284 ** next iteration of the do-loop will balance the child page.
6285 */
6286 assert( (balance_deeper_called++)==0 );
6287 rc = balance_deeper(pPage, &pCur->apPage[1]);
6288 if( rc==SQLITE_OK ){
6289 pCur->iPage = 1;
6290 pCur->aiIdx[0] = 0;
6291 pCur->aiIdx[1] = 0;
6292 assert( pCur->apPage[1]->nOverflow );
6293 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006294 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006295 break;
6296 }
6297 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6298 break;
6299 }else{
6300 MemPage * const pParent = pCur->apPage[iPage-1];
6301 int const iIdx = pCur->aiIdx[iPage-1];
6302
6303 rc = sqlite3PagerWrite(pParent->pDbPage);
6304 if( rc==SQLITE_OK ){
6305#ifndef SQLITE_OMIT_QUICKBALANCE
6306 if( pPage->hasData
6307 && pPage->nOverflow==1
6308 && pPage->aOvfl[0].idx==pPage->nCell
6309 && pParent->pgno!=1
6310 && pParent->nCell==iIdx
6311 ){
6312 /* Call balance_quick() to create a new sibling of pPage on which
6313 ** to store the overflow cell. balance_quick() inserts a new cell
6314 ** into pParent, which may cause pParent overflow. If this
6315 ** happens, the next interation of the do-loop will balance pParent
6316 ** use either balance_nonroot() or balance_deeper(). Until this
6317 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6318 ** buffer.
6319 **
6320 ** The purpose of the following assert() is to check that only a
6321 ** single call to balance_quick() is made for each call to this
6322 ** function. If this were not verified, a subtle bug involving reuse
6323 ** of the aBalanceQuickSpace[] might sneak in.
6324 */
6325 assert( (balance_quick_called++)==0 );
6326 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6327 }else
6328#endif
6329 {
6330 /* In this case, call balance_nonroot() to redistribute cells
6331 ** between pPage and up to 2 of its sibling pages. This involves
6332 ** modifying the contents of pParent, which may cause pParent to
6333 ** become overfull or underfull. The next iteration of the do-loop
6334 ** will balance the parent page to correct this.
6335 **
6336 ** If the parent page becomes overfull, the overflow cell or cells
6337 ** are stored in the pSpace buffer allocated immediately below.
6338 ** A subsequent iteration of the do-loop will deal with this by
6339 ** calling balance_nonroot() (balance_deeper() may be called first,
6340 ** but it doesn't deal with overflow cells - just moves them to a
6341 ** different page). Once this subsequent call to balance_nonroot()
6342 ** has completed, it is safe to release the pSpace buffer used by
6343 ** the previous call, as the overflow cell data will have been
6344 ** copied either into the body of a database page or into the new
6345 ** pSpace buffer passed to the latter call to balance_nonroot().
6346 */
6347 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006348 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006349 if( pFree ){
6350 /* If pFree is not NULL, it points to the pSpace buffer used
6351 ** by a previous call to balance_nonroot(). Its contents are
6352 ** now stored either on real database pages or within the
6353 ** new pSpace buffer, so it may be safely freed here. */
6354 sqlite3PageFree(pFree);
6355 }
6356
danielk19774dbaa892009-06-16 16:50:22 +00006357 /* The pSpace buffer will be freed after the next call to
6358 ** balance_nonroot(), or just before this function returns, whichever
6359 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006360 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006361 }
6362 }
6363
6364 pPage->nOverflow = 0;
6365
6366 /* The next iteration of the do-loop balances the parent page. */
6367 releasePage(pPage);
6368 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006369 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006370 }while( rc==SQLITE_OK );
6371
6372 if( pFree ){
6373 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006374 }
6375 return rc;
6376}
6377
drhf74b8d92002-09-01 23:20:45 +00006378
6379/*
drh3b7511c2001-05-26 13:15:44 +00006380** Insert a new record into the BTree. The key is given by (pKey,nKey)
6381** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006382** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006383** is left pointing at a random location.
6384**
6385** For an INTKEY table, only the nKey value of the key is used. pKey is
6386** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006387**
6388** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006389** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006390** been performed. seekResult is the search result returned (a negative
6391** number if pCur points at an entry that is smaller than (pKey, nKey), or
6392** a positive value if pCur points at an etry that is larger than
6393** (pKey, nKey)).
6394**
6395** If the seekResult parameter is 0, then cursor pCur may point to any
6396** entry or to no entry at all. In this case this function has to seek
6397** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006398*/
drh3aac2dd2004-04-26 14:10:20 +00006399int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006400 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006401 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006402 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006403 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006404 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006405 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006406){
drh3b7511c2001-05-26 13:15:44 +00006407 int rc;
danielk1977de630352009-05-04 11:42:29 +00006408 int loc = seekResult;
drh14acc042001-06-10 19:56:58 +00006409 int szNew;
danielk197771d5d2c2008-09-29 11:49:47 +00006410 int idx;
drh3b7511c2001-05-26 13:15:44 +00006411 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006412 Btree *p = pCur->pBtree;
6413 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006414 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006415 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006416
drh1fee73e2007-08-29 04:00:57 +00006417 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006418 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006419 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6420
danielk197731d31b82009-07-13 13:18:07 +00006421 /* Assert that the caller has been consistent. If this cursor was opened
6422 ** expecting an index b-tree, then the caller should be inserting blob
6423 ** keys with no associated data. If the cursor was opened expecting an
6424 ** intkey table, the caller should be inserting integer keys with a
6425 ** blob of associated data. */
6426 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6427
danielk197796d48e92009-06-29 06:00:37 +00006428 /* If this is an insert into a table b-tree, invalidate any incrblob
6429 ** cursors open on the row being replaced (assuming this is a replace
6430 ** operation - if it is not, the following is a no-op). */
6431 if( pCur->pKeyInfo==0 ){
6432 invalidateIncrblobCursors(p, pCur->pgnoRoot, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006433 }
danielk197796d48e92009-06-29 06:00:37 +00006434
drhfb982642007-08-30 01:19:59 +00006435 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00006436 assert( pCur->skipNext!=SQLITE_OK );
6437 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00006438 }
danielk1977da184232006-01-05 11:34:32 +00006439
danielk19779c3acf32009-05-02 07:36:49 +00006440 /* Save the positions of any other cursors open on this table.
6441 **
danielk19773509a652009-07-06 18:56:13 +00006442 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006443 ** example, when inserting data into a table with auto-generated integer
6444 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6445 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006446 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006447 ** that the cursor is already where it needs to be and returns without
6448 ** doing any work. To avoid thwarting these optimizations, it is important
6449 ** not to clear the cursor here.
6450 */
drh4c301aa2009-07-15 17:25:45 +00006451 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6452 if( rc ) return rc;
6453 if( !loc ){
6454 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6455 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006456 }
danielk1977b980d2212009-06-22 18:03:51 +00006457 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006458
danielk197771d5d2c2008-09-29 11:49:47 +00006459 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006460 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006461 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006462
drh3a4c1412004-05-09 20:40:11 +00006463 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6464 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6465 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006466 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006467 allocateTempSpace(pBt);
6468 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006469 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006470 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006471 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006472 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006473 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006474 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006475 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006476 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006477 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006478 rc = sqlite3PagerWrite(pPage->pDbPage);
6479 if( rc ){
6480 goto end_insert;
6481 }
danielk197771d5d2c2008-09-29 11:49:47 +00006482 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006483 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006484 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006485 }
drh43605152004-05-29 21:46:49 +00006486 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006487 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00006488 if( rc ) goto end_insert;
shane0af3f892008-11-12 04:55:34 +00006489 rc = dropCell(pPage, idx, szOld);
6490 if( rc!=SQLITE_OK ) {
6491 goto end_insert;
6492 }
drh7c717f72001-06-24 20:39:41 +00006493 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006494 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006495 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006496 }else{
drh4b70f112004-05-02 21:12:19 +00006497 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006498 }
danielk197771d5d2c2008-09-29 11:49:47 +00006499 rc = insertCell(pPage, idx, newCell, szNew, 0, 0);
danielk19773f632d52009-05-02 10:03:09 +00006500 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006501
danielk1977a50d9aa2009-06-08 14:49:45 +00006502 /* If no error has occured and pPage has an overflow cell, call balance()
6503 ** to redistribute the cells within the tree. Since balance() may move
6504 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6505 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006506 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006507 ** Previous versions of SQLite called moveToRoot() to move the cursor
6508 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006509 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6510 ** set the cursor state to "invalid". This makes common insert operations
6511 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006512 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006513 ** There is a subtle but important optimization here too. When inserting
6514 ** multiple records into an intkey b-tree using a single cursor (as can
6515 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6516 ** is advantageous to leave the cursor pointing to the last entry in
6517 ** the b-tree if possible. If the cursor is left pointing to the last
6518 ** entry in the table, and the next row inserted has an integer key
6519 ** larger than the largest existing key, it is possible to insert the
6520 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006521 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006522 pCur->info.nSize = 0;
6523 pCur->validNKey = 0;
6524 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006525 rc = balance(pCur);
6526
6527 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006528 ** fails. Internal data structure corruption will result otherwise.
6529 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6530 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006531 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006532 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006533 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006534 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006535
drh2e38c322004-09-03 18:38:44 +00006536end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006537 return rc;
6538}
6539
6540/*
drh4b70f112004-05-02 21:12:19 +00006541** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006542** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006543*/
drh3aac2dd2004-04-26 14:10:20 +00006544int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006545 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006546 BtShared *pBt = p->pBt;
6547 int rc; /* Return code */
6548 MemPage *pPage; /* Page to delete cell from */
6549 unsigned char *pCell; /* Pointer to cell to delete */
6550 int iCellIdx; /* Index of cell to delete */
6551 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006552
drh1fee73e2007-08-29 04:00:57 +00006553 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006554 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006555 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006556 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006557 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6558 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6559
danielk19774dbaa892009-06-16 16:50:22 +00006560 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6561 || NEVER(pCur->eState!=CURSOR_VALID)
6562 ){
6563 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006564 }
danielk1977da184232006-01-05 11:34:32 +00006565
danielk197796d48e92009-06-29 06:00:37 +00006566 /* If this is a delete operation to remove a row from a table b-tree,
6567 ** invalidate any incrblob cursors open on the row being deleted. */
6568 if( pCur->pKeyInfo==0 ){
6569 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006570 }
6571
6572 iCellDepth = pCur->iPage;
6573 iCellIdx = pCur->aiIdx[iCellDepth];
6574 pPage = pCur->apPage[iCellDepth];
6575 pCell = findCell(pPage, iCellIdx);
6576
6577 /* If the page containing the entry to delete is not a leaf page, move
6578 ** the cursor to the largest entry in the tree that is smaller than
6579 ** the entry being deleted. This cell will replace the cell being deleted
6580 ** from the internal node. The 'previous' entry is used for this instead
6581 ** of the 'next' entry, as the previous entry is always a part of the
6582 ** sub-tree headed by the child page of the cell being deleted. This makes
6583 ** balancing the tree following the delete operation easier. */
6584 if( !pPage->leaf ){
6585 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006586 rc = sqlite3BtreePrevious(pCur, &notUsed);
6587 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006588 }
6589
6590 /* Save the positions of any other cursors open on this table before
6591 ** making any modifications. Make the page containing the entry to be
6592 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006593 ** entry and finally remove the cell itself from within the page.
6594 */
6595 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6596 if( rc ) return rc;
6597 rc = sqlite3PagerWrite(pPage->pDbPage);
6598 if( rc ) return rc;
6599 rc = clearCell(pPage, pCell);
6600 if( rc ) return rc;
6601 rc = dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell));
6602 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006603
danielk19774dbaa892009-06-16 16:50:22 +00006604 /* If the cell deleted was not located on a leaf page, then the cursor
6605 ** is currently pointing to the largest entry in the sub-tree headed
6606 ** by the child-page of the cell that was just deleted from an internal
6607 ** node. The cell from the leaf node needs to be moved to the internal
6608 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006609 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006610 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6611 int nCell;
6612 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6613 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006614
danielk19774dbaa892009-06-16 16:50:22 +00006615 pCell = findCell(pLeaf, pLeaf->nCell-1);
6616 nCell = cellSizePtr(pLeaf, pCell);
6617 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006618
danielk19774dbaa892009-06-16 16:50:22 +00006619 allocateTempSpace(pBt);
6620 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006621
drha4ec1d42009-07-11 13:13:11 +00006622 rc = sqlite3PagerWrite(pLeaf->pDbPage);
6623 if( rc ) return rc;
6624 rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n);
6625 if( rc ) return rc;
6626 rc = dropCell(pLeaf, pLeaf->nCell-1, nCell);
6627 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006628 }
danielk19774dbaa892009-06-16 16:50:22 +00006629
6630 /* Balance the tree. If the entry deleted was located on a leaf page,
6631 ** then the cursor still points to that page. In this case the first
6632 ** call to balance() repairs the tree, and the if(...) condition is
6633 ** never true.
6634 **
6635 ** Otherwise, if the entry deleted was on an internal node page, then
6636 ** pCur is pointing to the leaf page from which a cell was removed to
6637 ** replace the cell deleted from the internal node. This is slightly
6638 ** tricky as the leaf node may be underfull, and the internal node may
6639 ** be either under or overfull. In this case run the balancing algorithm
6640 ** on the leaf node first. If the balance proceeds far enough up the
6641 ** tree that we can be sure that any problem in the internal node has
6642 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6643 ** walk the cursor up the tree to the internal node and balance it as
6644 ** well. */
6645 rc = balance(pCur);
6646 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6647 while( pCur->iPage>iCellDepth ){
6648 releasePage(pCur->apPage[pCur->iPage--]);
6649 }
6650 rc = balance(pCur);
6651 }
6652
danielk19776b456a22005-03-21 04:04:02 +00006653 if( rc==SQLITE_OK ){
6654 moveToRoot(pCur);
6655 }
drh5e2f8b92001-05-28 00:41:15 +00006656 return rc;
drh3b7511c2001-05-26 13:15:44 +00006657}
drh8b2f49b2001-06-08 00:21:52 +00006658
6659/*
drhc6b52df2002-01-04 03:09:29 +00006660** Create a new BTree table. Write into *piTable the page
6661** number for the root page of the new table.
6662**
drhab01f612004-05-22 02:55:23 +00006663** The type of type is determined by the flags parameter. Only the
6664** following values of flags are currently in use. Other values for
6665** flags might not work:
6666**
6667** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6668** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006669*/
drhd677b3d2007-08-20 22:48:41 +00006670static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006671 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006672 MemPage *pRoot;
6673 Pgno pgnoRoot;
6674 int rc;
drhd677b3d2007-08-20 22:48:41 +00006675
drh1fee73e2007-08-29 04:00:57 +00006676 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006677 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006678 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006679
danielk1977003ba062004-11-04 02:57:33 +00006680#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006681 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006682 if( rc ){
6683 return rc;
6684 }
danielk1977003ba062004-11-04 02:57:33 +00006685#else
danielk1977687566d2004-11-02 12:56:41 +00006686 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006687 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6688 MemPage *pPageMove; /* The page to move to. */
6689
danielk197720713f32007-05-03 11:43:33 +00006690 /* Creating a new table may probably require moving an existing database
6691 ** to make room for the new tables root page. In case this page turns
6692 ** out to be an overflow page, delete all overflow page-map caches
6693 ** held by open cursors.
6694 */
danielk197792d4d7a2007-05-04 12:05:56 +00006695 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006696
danielk1977003ba062004-11-04 02:57:33 +00006697 /* Read the value of meta[3] from the database to determine where the
6698 ** root page of the new table should go. meta[3] is the largest root-page
6699 ** created so far, so the new root-page is (meta[3]+1).
6700 */
danielk1977602b4662009-07-02 07:47:33 +00006701 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006702 pgnoRoot++;
6703
danielk1977599fcba2004-11-08 07:13:13 +00006704 /* The new root-page may not be allocated on a pointer-map page, or the
6705 ** PENDING_BYTE page.
6706 */
drh72190432008-01-31 14:54:43 +00006707 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006708 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006709 pgnoRoot++;
6710 }
6711 assert( pgnoRoot>=3 );
6712
6713 /* Allocate a page. The page that currently resides at pgnoRoot will
6714 ** be moved to the allocated page (unless the allocated page happens
6715 ** to reside at pgnoRoot).
6716 */
drh4f0c5872007-03-26 22:05:01 +00006717 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006718 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006719 return rc;
6720 }
danielk1977003ba062004-11-04 02:57:33 +00006721
6722 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006723 /* pgnoRoot is the page that will be used for the root-page of
6724 ** the new table (assuming an error did not occur). But we were
6725 ** allocated pgnoMove. If required (i.e. if it was not allocated
6726 ** by extending the file), the current page at position pgnoMove
6727 ** is already journaled.
6728 */
danielk1977003ba062004-11-04 02:57:33 +00006729 u8 eType;
6730 Pgno iPtrPage;
6731
6732 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006733
6734 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006735 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006736 if( rc!=SQLITE_OK ){
6737 return rc;
6738 }
6739 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006740 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6741 rc = SQLITE_CORRUPT_BKPT;
6742 }
6743 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006744 releasePage(pRoot);
6745 return rc;
6746 }
drhccae6022005-02-26 17:31:26 +00006747 assert( eType!=PTRMAP_ROOTPAGE );
6748 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006749 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006750 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006751
6752 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006753 if( rc!=SQLITE_OK ){
6754 return rc;
6755 }
danielk197730548662009-07-09 05:07:37 +00006756 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006757 if( rc!=SQLITE_OK ){
6758 return rc;
6759 }
danielk19773b8a05f2007-03-19 17:44:26 +00006760 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006761 if( rc!=SQLITE_OK ){
6762 releasePage(pRoot);
6763 return rc;
6764 }
6765 }else{
6766 pRoot = pPageMove;
6767 }
6768
danielk197742741be2005-01-08 12:42:39 +00006769 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00006770 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
6771 if( rc ){
6772 releasePage(pRoot);
6773 return rc;
6774 }
danielk1977aef0bf62005-12-30 16:28:01 +00006775 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006776 if( rc ){
6777 releasePage(pRoot);
6778 return rc;
6779 }
danielk197742741be2005-01-08 12:42:39 +00006780
danielk1977003ba062004-11-04 02:57:33 +00006781 }else{
drh4f0c5872007-03-26 22:05:01 +00006782 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006783 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006784 }
6785#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006786 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006787 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006788 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006789 *piTable = (int)pgnoRoot;
6790 return SQLITE_OK;
6791}
drhd677b3d2007-08-20 22:48:41 +00006792int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6793 int rc;
6794 sqlite3BtreeEnter(p);
6795 rc = btreeCreateTable(p, piTable, flags);
6796 sqlite3BtreeLeave(p);
6797 return rc;
6798}
drh8b2f49b2001-06-08 00:21:52 +00006799
6800/*
6801** Erase the given database page and all its children. Return
6802** the page to the freelist.
6803*/
drh4b70f112004-05-02 21:12:19 +00006804static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006805 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00006806 Pgno pgno, /* Page number to clear */
danielk1977c7af4842008-10-27 13:59:33 +00006807 int freePageFlag, /* Deallocate page if true */
6808 int *pnChange
drh4b70f112004-05-02 21:12:19 +00006809){
danielk19776b456a22005-03-21 04:04:02 +00006810 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006811 int rc;
drh4b70f112004-05-02 21:12:19 +00006812 unsigned char *pCell;
6813 int i;
drh8b2f49b2001-06-08 00:21:52 +00006814
drh1fee73e2007-08-29 04:00:57 +00006815 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006816 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006817 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006818 }
6819
danielk197771d5d2c2008-09-29 11:49:47 +00006820 rc = getAndInitPage(pBt, pgno, &pPage);
danielk19776b456a22005-03-21 04:04:02 +00006821 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00006822 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006823 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006824 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006825 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006826 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006827 }
drh4b70f112004-05-02 21:12:19 +00006828 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006829 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006830 }
drha34b6762004-05-07 13:30:42 +00006831 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006832 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006833 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006834 }else if( pnChange ){
6835 assert( pPage->intKey );
6836 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006837 }
6838 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00006839 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00006840 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006841 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006842 }
danielk19776b456a22005-03-21 04:04:02 +00006843
6844cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006845 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006846 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006847}
6848
6849/*
drhab01f612004-05-22 02:55:23 +00006850** Delete all information from a single table in the database. iTable is
6851** the page number of the root of the table. After this routine returns,
6852** the root page is empty, but still exists.
6853**
6854** This routine will fail with SQLITE_LOCKED if there are any open
6855** read cursors on the table. Open write cursors are moved to the
6856** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006857**
6858** If pnChange is not NULL, then table iTable must be an intkey table. The
6859** integer value pointed to by pnChange is incremented by the number of
6860** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006861*/
danielk1977c7af4842008-10-27 13:59:33 +00006862int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006863 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006864 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006865 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006866 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00006867
6868 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
6869 ** is the root of a table b-tree - if it is not, the following call is
6870 ** a no-op). */
6871 invalidateIncrblobCursors(p, iTable, 0, 1);
6872
drhc046e3e2009-07-15 11:26:44 +00006873 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
6874 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00006875 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006876 }
drhd677b3d2007-08-20 22:48:41 +00006877 sqlite3BtreeLeave(p);
6878 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006879}
6880
6881/*
6882** Erase all information in a table and add the root of the table to
6883** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006884** page 1) is never added to the freelist.
6885**
6886** This routine will fail with SQLITE_LOCKED if there are any open
6887** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006888**
6889** If AUTOVACUUM is enabled and the page at iTable is not the last
6890** root page in the database file, then the last root page
6891** in the database file is moved into the slot formerly occupied by
6892** iTable and that last slot formerly occupied by the last root page
6893** is added to the freelist instead of iTable. In this say, all
6894** root pages are kept at the beginning of the database file, which
6895** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6896** page number that used to be the last root page in the file before
6897** the move. If no page gets moved, *piMoved is set to 0.
6898** The last root page is recorded in meta[3] and the value of
6899** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006900*/
danielk197789d40042008-11-17 14:20:56 +00006901static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006902 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006903 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006904 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006905
drh1fee73e2007-08-29 04:00:57 +00006906 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006907 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006908
danielk1977e6efa742004-11-10 11:55:10 +00006909 /* It is illegal to drop a table if any cursors are open on the
6910 ** database. This is because in auto-vacuum mode the backend may
6911 ** need to move another root-page to fill a gap left by the deleted
6912 ** root page. If an open cursor was using this page a problem would
6913 ** occur.
drhc046e3e2009-07-15 11:26:44 +00006914 **
6915 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00006916 */
drhc046e3e2009-07-15 11:26:44 +00006917 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00006918 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
6919 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00006920 }
danielk1977a0bf2652004-11-04 14:30:04 +00006921
danielk197730548662009-07-09 05:07:37 +00006922 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006923 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00006924 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00006925 if( rc ){
6926 releasePage(pPage);
6927 return rc;
6928 }
danielk1977a0bf2652004-11-04 14:30:04 +00006929
drh205f48e2004-11-05 00:43:11 +00006930 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006931
drh4b70f112004-05-02 21:12:19 +00006932 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006933#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00006934 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00006935 releasePage(pPage);
6936#else
6937 if( pBt->autoVacuum ){
6938 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00006939 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006940
6941 if( iTable==maxRootPgno ){
6942 /* If the table being dropped is the table with the largest root-page
6943 ** number in the database, put the root page on the free list.
6944 */
6945 rc = freePage(pPage);
6946 releasePage(pPage);
6947 if( rc!=SQLITE_OK ){
6948 return rc;
6949 }
6950 }else{
6951 /* The table being dropped does not have the largest root-page
6952 ** number in the database. So move the page that does into the
6953 ** gap left by the deleted root-page.
6954 */
6955 MemPage *pMove;
6956 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00006957 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006958 if( rc!=SQLITE_OK ){
6959 return rc;
6960 }
danielk19774c999992008-07-16 18:17:55 +00006961 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006962 releasePage(pMove);
6963 if( rc!=SQLITE_OK ){
6964 return rc;
6965 }
danielk197730548662009-07-09 05:07:37 +00006966 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006967 if( rc!=SQLITE_OK ){
6968 return rc;
6969 }
6970 rc = freePage(pMove);
6971 releasePage(pMove);
6972 if( rc!=SQLITE_OK ){
6973 return rc;
6974 }
6975 *piMoved = maxRootPgno;
6976 }
6977
danielk1977599fcba2004-11-08 07:13:13 +00006978 /* Set the new 'max-root-page' value in the database header. This
6979 ** is the old value less one, less one more if that happens to
6980 ** be a root-page number, less one again if that is the
6981 ** PENDING_BYTE_PAGE.
6982 */
danielk197787a6e732004-11-05 12:58:25 +00006983 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00006984 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
6985 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00006986 maxRootPgno--;
6987 }
danielk1977599fcba2004-11-08 07:13:13 +00006988 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
6989
danielk1977aef0bf62005-12-30 16:28:01 +00006990 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006991 }else{
6992 rc = freePage(pPage);
6993 releasePage(pPage);
6994 }
6995#endif
drh2aa679f2001-06-25 02:11:07 +00006996 }else{
drhc046e3e2009-07-15 11:26:44 +00006997 /* If sqlite3BtreeDropTable was called on page 1.
6998 ** This really never should happen except in a corrupt
6999 ** database.
7000 */
drha34b6762004-05-07 13:30:42 +00007001 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007002 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007003 }
drh8b2f49b2001-06-08 00:21:52 +00007004 return rc;
7005}
drhd677b3d2007-08-20 22:48:41 +00007006int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7007 int rc;
7008 sqlite3BtreeEnter(p);
7009 rc = btreeDropTable(p, iTable, piMoved);
7010 sqlite3BtreeLeave(p);
7011 return rc;
7012}
drh8b2f49b2001-06-08 00:21:52 +00007013
drh001bbcb2003-03-19 03:14:00 +00007014
drh8b2f49b2001-06-08 00:21:52 +00007015/*
danielk1977602b4662009-07-02 07:47:33 +00007016** This function may only be called if the b-tree connection already
7017** has a read or write transaction open on the database.
7018**
drh23e11ca2004-05-04 17:27:28 +00007019** Read the meta-information out of a database file. Meta[0]
7020** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007021** through meta[15] are available for use by higher layers. Meta[0]
7022** is read-only, the others are read/write.
7023**
7024** The schema layer numbers meta values differently. At the schema
7025** layer (and the SetCookie and ReadCookie opcodes) the number of
7026** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007027*/
danielk1977602b4662009-07-02 07:47:33 +00007028void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007029 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007030
drhd677b3d2007-08-20 22:48:41 +00007031 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007032 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007033 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007034 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007035 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007036
danielk1977602b4662009-07-02 07:47:33 +00007037 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007038
danielk1977602b4662009-07-02 07:47:33 +00007039 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7040 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007041#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007042 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007043#endif
drhae157872004-08-14 19:20:09 +00007044
drhd677b3d2007-08-20 22:48:41 +00007045 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007046}
7047
7048/*
drh23e11ca2004-05-04 17:27:28 +00007049** Write meta-information back into the database. Meta[0] is
7050** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007051*/
danielk1977aef0bf62005-12-30 16:28:01 +00007052int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7053 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007054 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007055 int rc;
drh23e11ca2004-05-04 17:27:28 +00007056 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007057 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007058 assert( p->inTrans==TRANS_WRITE );
7059 assert( pBt->pPage1!=0 );
7060 pP1 = pBt->pPage1->aData;
7061 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7062 if( rc==SQLITE_OK ){
7063 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007064#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007065 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007066 assert( pBt->autoVacuum || iMeta==0 );
7067 assert( iMeta==0 || iMeta==1 );
7068 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007069 }
drh64022502009-01-09 14:11:04 +00007070#endif
drh5df72a52002-06-06 23:16:05 +00007071 }
drhd677b3d2007-08-20 22:48:41 +00007072 sqlite3BtreeLeave(p);
7073 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007074}
drh8c42ca92001-06-22 19:15:00 +00007075
danielk1977a5533162009-02-24 10:01:51 +00007076#ifndef SQLITE_OMIT_BTREECOUNT
7077/*
7078** The first argument, pCur, is a cursor opened on some b-tree. Count the
7079** number of entries in the b-tree and write the result to *pnEntry.
7080**
7081** SQLITE_OK is returned if the operation is successfully executed.
7082** Otherwise, if an error is encountered (i.e. an IO error or database
7083** corruption) an SQLite error code is returned.
7084*/
7085int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7086 i64 nEntry = 0; /* Value to return in *pnEntry */
7087 int rc; /* Return code */
7088 rc = moveToRoot(pCur);
7089
7090 /* Unless an error occurs, the following loop runs one iteration for each
7091 ** page in the B-Tree structure (not including overflow pages).
7092 */
7093 while( rc==SQLITE_OK ){
7094 int iIdx; /* Index of child node in parent */
7095 MemPage *pPage; /* Current page of the b-tree */
7096
7097 /* If this is a leaf page or the tree is not an int-key tree, then
7098 ** this page contains countable entries. Increment the entry counter
7099 ** accordingly.
7100 */
7101 pPage = pCur->apPage[pCur->iPage];
7102 if( pPage->leaf || !pPage->intKey ){
7103 nEntry += pPage->nCell;
7104 }
7105
7106 /* pPage is a leaf node. This loop navigates the cursor so that it
7107 ** points to the first interior cell that it points to the parent of
7108 ** the next page in the tree that has not yet been visited. The
7109 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7110 ** of the page, or to the number of cells in the page if the next page
7111 ** to visit is the right-child of its parent.
7112 **
7113 ** If all pages in the tree have been visited, return SQLITE_OK to the
7114 ** caller.
7115 */
7116 if( pPage->leaf ){
7117 do {
7118 if( pCur->iPage==0 ){
7119 /* All pages of the b-tree have been visited. Return successfully. */
7120 *pnEntry = nEntry;
7121 return SQLITE_OK;
7122 }
danielk197730548662009-07-09 05:07:37 +00007123 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007124 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7125
7126 pCur->aiIdx[pCur->iPage]++;
7127 pPage = pCur->apPage[pCur->iPage];
7128 }
7129
7130 /* Descend to the child node of the cell that the cursor currently
7131 ** points at. This is the right-child if (iIdx==pPage->nCell).
7132 */
7133 iIdx = pCur->aiIdx[pCur->iPage];
7134 if( iIdx==pPage->nCell ){
7135 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7136 }else{
7137 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7138 }
7139 }
7140
shanebe217792009-03-05 04:20:31 +00007141 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007142 return rc;
7143}
7144#endif
drhdd793422001-06-28 01:54:48 +00007145
drhdd793422001-06-28 01:54:48 +00007146/*
drh5eddca62001-06-30 21:53:53 +00007147** Return the pager associated with a BTree. This routine is used for
7148** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007149*/
danielk1977aef0bf62005-12-30 16:28:01 +00007150Pager *sqlite3BtreePager(Btree *p){
7151 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007152}
drh5eddca62001-06-30 21:53:53 +00007153
drhb7f91642004-10-31 02:22:47 +00007154#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007155/*
7156** Append a message to the error message string.
7157*/
drh2e38c322004-09-03 18:38:44 +00007158static void checkAppendMsg(
7159 IntegrityCk *pCheck,
7160 char *zMsg1,
7161 const char *zFormat,
7162 ...
7163){
7164 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007165 if( !pCheck->mxErr ) return;
7166 pCheck->mxErr--;
7167 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007168 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007169 if( pCheck->errMsg.nChar ){
7170 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007171 }
drhf089aa42008-07-08 19:34:06 +00007172 if( zMsg1 ){
7173 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7174 }
7175 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7176 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007177 if( pCheck->errMsg.mallocFailed ){
7178 pCheck->mallocFailed = 1;
7179 }
drh5eddca62001-06-30 21:53:53 +00007180}
drhb7f91642004-10-31 02:22:47 +00007181#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007182
drhb7f91642004-10-31 02:22:47 +00007183#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007184/*
7185** Add 1 to the reference count for page iPage. If this is the second
7186** reference to the page, add an error message to pCheck->zErrMsg.
7187** Return 1 if there are 2 ore more references to the page and 0 if
7188** if this is the first reference to the page.
7189**
7190** Also check that the page number is in bounds.
7191*/
danielk197789d40042008-11-17 14:20:56 +00007192static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007193 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007194 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007195 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007196 return 1;
7197 }
7198 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007199 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007200 return 1;
7201 }
7202 return (pCheck->anRef[iPage]++)>1;
7203}
7204
danielk1977afcdd022004-10-31 16:25:42 +00007205#ifndef SQLITE_OMIT_AUTOVACUUM
7206/*
7207** Check that the entry in the pointer-map for page iChild maps to
7208** page iParent, pointer type ptrType. If not, append an error message
7209** to pCheck.
7210*/
7211static void checkPtrmap(
7212 IntegrityCk *pCheck, /* Integrity check context */
7213 Pgno iChild, /* Child page number */
7214 u8 eType, /* Expected pointer map type */
7215 Pgno iParent, /* Expected pointer map parent page number */
7216 char *zContext /* Context description (used for error msg) */
7217){
7218 int rc;
7219 u8 ePtrmapType;
7220 Pgno iPtrmapParent;
7221
7222 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7223 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007224 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007225 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7226 return;
7227 }
7228
7229 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7230 checkAppendMsg(pCheck, zContext,
7231 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7232 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7233 }
7234}
7235#endif
7236
drh5eddca62001-06-30 21:53:53 +00007237/*
7238** Check the integrity of the freelist or of an overflow page list.
7239** Verify that the number of pages on the list is N.
7240*/
drh30e58752002-03-02 20:41:57 +00007241static void checkList(
7242 IntegrityCk *pCheck, /* Integrity checking context */
7243 int isFreeList, /* True for a freelist. False for overflow page list */
7244 int iPage, /* Page number for first page in the list */
7245 int N, /* Expected number of pages in the list */
7246 char *zContext /* Context for error messages */
7247){
7248 int i;
drh3a4c1412004-05-09 20:40:11 +00007249 int expected = N;
7250 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007251 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007252 DbPage *pOvflPage;
7253 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007254 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007255 checkAppendMsg(pCheck, zContext,
7256 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007257 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007258 break;
7259 }
7260 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007261 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007262 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007263 break;
7264 }
danielk19773b8a05f2007-03-19 17:44:26 +00007265 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007266 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007267 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007268#ifndef SQLITE_OMIT_AUTOVACUUM
7269 if( pCheck->pBt->autoVacuum ){
7270 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7271 }
7272#endif
drh45b1fac2008-07-04 17:52:42 +00007273 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007274 checkAppendMsg(pCheck, zContext,
7275 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007276 N--;
7277 }else{
7278 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007279 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007280#ifndef SQLITE_OMIT_AUTOVACUUM
7281 if( pCheck->pBt->autoVacuum ){
7282 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7283 }
7284#endif
7285 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007286 }
7287 N -= n;
drh30e58752002-03-02 20:41:57 +00007288 }
drh30e58752002-03-02 20:41:57 +00007289 }
danielk1977afcdd022004-10-31 16:25:42 +00007290#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007291 else{
7292 /* If this database supports auto-vacuum and iPage is not the last
7293 ** page in this overflow list, check that the pointer-map entry for
7294 ** the following page matches iPage.
7295 */
7296 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007297 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007298 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7299 }
danielk1977afcdd022004-10-31 16:25:42 +00007300 }
7301#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007302 iPage = get4byte(pOvflData);
7303 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007304 }
7305}
drhb7f91642004-10-31 02:22:47 +00007306#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007307
drhb7f91642004-10-31 02:22:47 +00007308#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007309/*
7310** Do various sanity checks on a single page of a tree. Return
7311** the tree depth. Root pages return 0. Parents of root pages
7312** return 1, and so forth.
7313**
7314** These checks are done:
7315**
7316** 1. Make sure that cells and freeblocks do not overlap
7317** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007318** NO 2. Make sure cell keys are in order.
7319** NO 3. Make sure no key is less than or equal to zLowerBound.
7320** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007321** 5. Check the integrity of overflow pages.
7322** 6. Recursively call checkTreePage on all children.
7323** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007324** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007325** the root of the tree.
7326*/
7327static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007328 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007329 int iPage, /* Page number of the page to check */
drh74161702006-02-24 02:53:49 +00007330 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00007331){
7332 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007333 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007334 int hdr, cellStart;
7335 int nCell;
drhda200cc2004-05-09 11:51:38 +00007336 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007337 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007338 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007339 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007340 char *hit = 0;
drh5eddca62001-06-30 21:53:53 +00007341
drh5bb3eb92007-05-04 13:15:55 +00007342 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007343
drh5eddca62001-06-30 21:53:53 +00007344 /* Check that the page exists
7345 */
drhd9cb6ac2005-10-20 07:28:17 +00007346 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007347 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007348 if( iPage==0 ) return 0;
7349 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007350 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007351 checkAppendMsg(pCheck, zContext,
7352 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007353 return 0;
7354 }
danielk197793caf5a2009-07-11 06:55:33 +00007355
7356 /* Clear MemPage.isInit to make sure the corruption detection code in
7357 ** btreeInitPage() is executed. */
7358 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007359 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007360 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007361 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007362 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007363 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007364 return 0;
7365 }
7366
7367 /* Check out all the cells.
7368 */
7369 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007370 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007371 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007372 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007373 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007374
7375 /* Check payload overflow pages
7376 */
drh5bb3eb92007-05-04 13:15:55 +00007377 sqlite3_snprintf(sizeof(zContext), zContext,
7378 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007379 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007380 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007381 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007382 if( !pPage->intKey ) sz += (int)info.nKey;
drh72365832007-03-06 15:53:44 +00007383 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007384 if( (sz>info.nLocal)
7385 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7386 ){
drhb6f41482004-05-14 01:58:11 +00007387 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007388 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7389#ifndef SQLITE_OMIT_AUTOVACUUM
7390 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007391 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007392 }
7393#endif
7394 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007395 }
7396
7397 /* Check sanity of left child page.
7398 */
drhda200cc2004-05-09 11:51:38 +00007399 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007400 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007401#ifndef SQLITE_OMIT_AUTOVACUUM
7402 if( pBt->autoVacuum ){
7403 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7404 }
7405#endif
danielk197762c14b32008-11-19 09:05:26 +00007406 d2 = checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007407 if( i>0 && d2!=depth ){
7408 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7409 }
7410 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007411 }
drh5eddca62001-06-30 21:53:53 +00007412 }
drhda200cc2004-05-09 11:51:38 +00007413 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007414 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007415 sqlite3_snprintf(sizeof(zContext), zContext,
7416 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007417#ifndef SQLITE_OMIT_AUTOVACUUM
7418 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007419 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00007420 }
7421#endif
danielk197762c14b32008-11-19 09:05:26 +00007422 checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007423 }
drh5eddca62001-06-30 21:53:53 +00007424
7425 /* Check for complete coverage of the page
7426 */
drhda200cc2004-05-09 11:51:38 +00007427 data = pPage->aData;
7428 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007429 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007430 if( hit==0 ){
7431 pCheck->mallocFailed = 1;
7432 }else{
shane5780ebd2008-11-11 17:36:30 +00007433 u16 contentOffset = get2byte(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007434 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007435 memset(hit+contentOffset, 0, usableSize-contentOffset);
7436 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007437 nCell = get2byte(&data[hdr+3]);
7438 cellStart = hdr + 12 - 4*pPage->leaf;
7439 for(i=0; i<nCell; i++){
7440 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007441 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007442 int j;
drh8c2bbb62009-07-10 02:52:20 +00007443 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007444 size = cellSizePtr(pPage, &data[pc]);
7445 }
drhd7c7ecd2009-07-14 17:48:06 +00007446 if( (pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007447 checkAppendMsg(pCheck, 0,
7448 "Corruption detected in cell %d on page %d",i,iPage,0);
7449 }else{
7450 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7451 }
drh2e38c322004-09-03 18:38:44 +00007452 }
drh8c2bbb62009-07-10 02:52:20 +00007453 i = get2byte(&data[hdr+1]);
7454 while( i>0 ){
7455 int size, j;
7456 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7457 size = get2byte(&data[i+2]);
7458 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7459 for(j=i+size-1; j>=i; j--) hit[j]++;
7460 j = get2byte(&data[i]);
7461 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7462 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7463 i = j;
drh2e38c322004-09-03 18:38:44 +00007464 }
7465 for(i=cnt=0; i<usableSize; i++){
7466 if( hit[i]==0 ){
7467 cnt++;
7468 }else if( hit[i]>1 ){
7469 checkAppendMsg(pCheck, 0,
7470 "Multiple uses for byte %d of page %d", i, iPage);
7471 break;
7472 }
7473 }
7474 if( cnt!=data[hdr+7] ){
7475 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007476 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007477 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007478 }
7479 }
drh8c2bbb62009-07-10 02:52:20 +00007480 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007481 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007482 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007483}
drhb7f91642004-10-31 02:22:47 +00007484#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007485
drhb7f91642004-10-31 02:22:47 +00007486#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007487/*
7488** This routine does a complete check of the given BTree file. aRoot[] is
7489** an array of pages numbers were each page number is the root page of
7490** a table. nRoot is the number of entries in aRoot.
7491**
danielk19773509a652009-07-06 18:56:13 +00007492** A read-only or read-write transaction must be opened before calling
7493** this function.
7494**
drhc890fec2008-08-01 20:10:08 +00007495** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007496** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007497** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007498** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007499*/
drh1dcdbc02007-01-27 02:24:54 +00007500char *sqlite3BtreeIntegrityCheck(
7501 Btree *p, /* The btree to be checked */
7502 int *aRoot, /* An array of root pages numbers for individual trees */
7503 int nRoot, /* Number of entries in aRoot[] */
7504 int mxErr, /* Stop reporting errors after this many */
7505 int *pnErr /* Write number of errors seen to this variable */
7506){
danielk197789d40042008-11-17 14:20:56 +00007507 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007508 int nRef;
drhaaab5722002-02-19 13:39:21 +00007509 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007510 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007511 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007512
drhd677b3d2007-08-20 22:48:41 +00007513 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007514 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007515 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007516 sCheck.pBt = pBt;
7517 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007518 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007519 sCheck.mxErr = mxErr;
7520 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007521 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007522 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007523 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007524 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007525 return 0;
7526 }
drhe5ae5732008-06-15 02:51:47 +00007527 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007528 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007529 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007530 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007531 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007532 }
drhda200cc2004-05-09 11:51:38 +00007533 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007534 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007535 if( i<=sCheck.nPage ){
7536 sCheck.anRef[i] = 1;
7537 }
drhf089aa42008-07-08 19:34:06 +00007538 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007539
7540 /* Check the integrity of the freelist
7541 */
drha34b6762004-05-07 13:30:42 +00007542 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7543 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007544
7545 /* Check all the tables.
7546 */
danielk197789d40042008-11-17 14:20:56 +00007547 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007548 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007549#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007550 if( pBt->autoVacuum && aRoot[i]>1 ){
7551 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7552 }
7553#endif
danielk197762c14b32008-11-19 09:05:26 +00007554 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00007555 }
7556
7557 /* Make sure every page in the file is referenced
7558 */
drh1dcdbc02007-01-27 02:24:54 +00007559 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007560#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007561 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007562 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007563 }
danielk1977afcdd022004-10-31 16:25:42 +00007564#else
7565 /* If the database supports auto-vacuum, make sure no tables contain
7566 ** references to pointer-map pages.
7567 */
7568 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007569 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007570 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7571 }
7572 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007573 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007574 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7575 }
7576#endif
drh5eddca62001-06-30 21:53:53 +00007577 }
7578
drh64022502009-01-09 14:11:04 +00007579 /* Make sure this analysis did not leave any unref() pages.
7580 ** This is an internal consistency check; an integrity check
7581 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007582 */
drh64022502009-01-09 14:11:04 +00007583 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007584 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007585 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007586 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007587 );
drh5eddca62001-06-30 21:53:53 +00007588 }
7589
7590 /* Clean up and report errors.
7591 */
drhd677b3d2007-08-20 22:48:41 +00007592 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007593 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007594 if( sCheck.mallocFailed ){
7595 sqlite3StrAccumReset(&sCheck.errMsg);
7596 *pnErr = sCheck.nErr+1;
7597 return 0;
7598 }
drh1dcdbc02007-01-27 02:24:54 +00007599 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007600 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7601 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007602}
drhb7f91642004-10-31 02:22:47 +00007603#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007604
drh73509ee2003-04-06 20:44:45 +00007605/*
7606** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007607**
7608** The pager filename is invariant as long as the pager is
7609** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007610*/
danielk1977aef0bf62005-12-30 16:28:01 +00007611const char *sqlite3BtreeGetFilename(Btree *p){
7612 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007613 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007614}
7615
7616/*
danielk19775865e3d2004-06-14 06:03:57 +00007617** Return the pathname of the journal file for this database. The return
7618** value of this routine is the same regardless of whether the journal file
7619** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007620**
7621** The pager journal filename is invariant as long as the pager is
7622** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007623*/
danielk1977aef0bf62005-12-30 16:28:01 +00007624const char *sqlite3BtreeGetJournalname(Btree *p){
7625 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007626 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007627}
7628
danielk19771d850a72004-05-31 08:26:49 +00007629/*
7630** Return non-zero if a transaction is active.
7631*/
danielk1977aef0bf62005-12-30 16:28:01 +00007632int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007633 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007634 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007635}
7636
7637/*
danielk19772372c2b2006-06-27 16:34:56 +00007638** Return non-zero if a read (or write) transaction is active.
7639*/
7640int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007641 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007642 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007643 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007644}
7645
danielk197704103022009-02-03 16:51:24 +00007646int sqlite3BtreeIsInBackup(Btree *p){
7647 assert( p );
7648 assert( sqlite3_mutex_held(p->db->mutex) );
7649 return p->nBackup!=0;
7650}
7651
danielk19772372c2b2006-06-27 16:34:56 +00007652/*
danielk1977da184232006-01-05 11:34:32 +00007653** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007654** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007655** purposes (for example, to store a high-level schema associated with
7656** the shared-btree). The btree layer manages reference counting issues.
7657**
7658** The first time this is called on a shared-btree, nBytes bytes of memory
7659** are allocated, zeroed, and returned to the caller. For each subsequent
7660** call the nBytes parameter is ignored and a pointer to the same blob
7661** of memory returned.
7662**
danielk1977171bfed2008-06-23 09:50:50 +00007663** If the nBytes parameter is 0 and the blob of memory has not yet been
7664** allocated, a null pointer is returned. If the blob has already been
7665** allocated, it is returned as normal.
7666**
danielk1977da184232006-01-05 11:34:32 +00007667** Just before the shared-btree is closed, the function passed as the
7668** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007669** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007670** on the memory, the btree layer does that.
7671*/
7672void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7673 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007674 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007675 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007676 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007677 pBt->xFreeSchema = xFree;
7678 }
drh27641702007-08-22 02:56:42 +00007679 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007680 return pBt->pSchema;
7681}
7682
danielk1977c87d34d2006-01-06 13:00:28 +00007683/*
danielk1977404ca072009-03-16 13:19:36 +00007684** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7685** btree as the argument handle holds an exclusive lock on the
7686** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007687*/
7688int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007689 int rc;
drhe5fe6902007-12-07 18:55:28 +00007690 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007691 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007692 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7693 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007694 sqlite3BtreeLeave(p);
7695 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007696}
7697
drha154dcd2006-03-22 22:10:07 +00007698
7699#ifndef SQLITE_OMIT_SHARED_CACHE
7700/*
7701** Obtain a lock on the table whose root page is iTab. The
7702** lock is a write lock if isWritelock is true or a read lock
7703** if it is false.
7704*/
danielk1977c00da102006-01-07 13:21:04 +00007705int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007706 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00007707 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00007708 if( p->sharable ){
7709 u8 lockType = READ_LOCK + isWriteLock;
7710 assert( READ_LOCK+1==WRITE_LOCK );
7711 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00007712
drh6a9ad3d2008-04-02 16:29:30 +00007713 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007714 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007715 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007716 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007717 }
7718 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007719 }
7720 return rc;
7721}
drha154dcd2006-03-22 22:10:07 +00007722#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007723
danielk1977b4e9af92007-05-01 17:49:49 +00007724#ifndef SQLITE_OMIT_INCRBLOB
7725/*
7726** Argument pCsr must be a cursor opened for writing on an
7727** INTKEY table currently pointing at a valid table entry.
7728** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00007729**
7730** Only the data content may only be modified, it is not possible to
7731** change the length of the data stored. If this function is called with
7732** parameters that attempt to write past the end of the existing data,
7733** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00007734*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007735int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00007736 int rc;
drh1fee73e2007-08-29 04:00:57 +00007737 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007738 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00007739 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00007740
danielk1977c9000e62009-07-08 13:55:28 +00007741 rc = restoreCursorPosition(pCsr);
7742 if( rc!=SQLITE_OK ){
7743 return rc;
7744 }
danielk19773588ceb2008-06-10 17:30:26 +00007745 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7746 if( pCsr->eState!=CURSOR_VALID ){
7747 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007748 }
7749
danielk1977c9000e62009-07-08 13:55:28 +00007750 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007751 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00007752 ** (b) there is a read/write transaction open,
7753 ** (c) the connection holds a write-lock on the table (if required),
7754 ** (d) there are no conflicting read-locks, and
7755 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007756 */
danielk19774f029602009-07-08 18:45:37 +00007757 if( !pCsr->wrFlag ){
7758 return SQLITE_READONLY;
7759 }
danielk197796d48e92009-06-29 06:00:37 +00007760 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
7761 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
7762 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00007763 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00007764
drhfb192682009-07-11 18:26:28 +00007765 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007766}
danielk19772dec9702007-05-02 16:48:37 +00007767
7768/*
7769** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007770** overflow list for the current row. This is used by cursors opened
7771** for incremental blob IO only.
7772**
7773** This function sets a flag only. The actual page location cache
7774** (stored in BtCursor.aOverflow[]) is allocated and used by function
7775** accessPayload() (the worker function for sqlite3BtreeData() and
7776** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007777*/
7778void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007779 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007780 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007781 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007782 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007783 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007784}
danielk1977b4e9af92007-05-01 17:49:49 +00007785#endif