blob: acc4aaadd2230fe93fdfe0b8341afa120ce36865 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drhc47fd8e2009-04-30 13:30:32 +000012** $Id: btree.c,v 1.602 2009/04/30 13:30:33 drh Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000015** See the header comment on "btreeInt.h" for additional information.
16** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000017*/
drha3152892007-05-05 11:48:52 +000018#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000019
drh8c42ca92001-06-22 19:15:00 +000020/*
drha3152892007-05-05 11:48:52 +000021** The header string that appears at the beginning of every
22** SQLite database.
drh556b2a22005-06-14 16:04:05 +000023*/
drh556b2a22005-06-14 16:04:05 +000024static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000025
drh8c42ca92001-06-22 19:15:00 +000026/*
drha3152892007-05-05 11:48:52 +000027** Set this global variable to 1 to enable tracing using the TRACE
28** macro.
drh615ae552005-01-16 23:21:00 +000029*/
drhe8f52c52008-07-12 14:52:20 +000030#if 0
mlcreech3a00f902008-03-04 17:45:01 +000031int sqlite3BtreeTrace=0; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000032# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
33#else
34# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000035#endif
drh615ae552005-01-16 23:21:00 +000036
drh86f8c192007-08-22 00:39:19 +000037
38
drhe53831d2007-08-17 01:14:38 +000039#ifndef SQLITE_OMIT_SHARED_CACHE
40/*
danielk1977502b4e02008-09-02 14:07:24 +000041** A list of BtShared objects that are eligible for participation
42** in shared cache. This variable has file scope during normal builds,
43** but the test harness needs to access it so we make it global for
44** test builds.
drh7555d8e2009-03-20 13:15:30 +000045**
46** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000047*/
48#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000049BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#else
drh78f82d12008-09-02 00:52:52 +000051static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000052#endif
drhe53831d2007-08-17 01:14:38 +000053#endif /* SQLITE_OMIT_SHARED_CACHE */
54
55#ifndef SQLITE_OMIT_SHARED_CACHE
56/*
57** Enable or disable the shared pager and schema features.
58**
59** This routine has no effect on existing database connections.
60** The shared cache setting effects only future calls to
61** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
62*/
63int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000064 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000065 return SQLITE_OK;
66}
67#endif
68
drhd677b3d2007-08-20 22:48:41 +000069
drh615ae552005-01-16 23:21:00 +000070/*
drh66cbd152004-09-01 16:12:25 +000071** Forward declaration
72*/
drh11b57d62009-02-24 19:21:41 +000073static int checkForReadConflicts(Btree*, Pgno, BtCursor*, i64);
drh66cbd152004-09-01 16:12:25 +000074
danielk1977aef0bf62005-12-30 16:28:01 +000075
76#ifdef SQLITE_OMIT_SHARED_CACHE
77 /*
drhc25eabe2009-02-24 18:57:31 +000078 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
79 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000080 ** manipulate entries in the BtShared.pLock linked list used to store
81 ** shared-cache table level locks. If the library is compiled with the
82 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000083 ** of each BtShared structure and so this locking is not necessary.
84 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000085 */
drhc25eabe2009-02-24 18:57:31 +000086 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
87 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
88 #define clearAllSharedCacheTableLocks(a)
drhe53831d2007-08-17 01:14:38 +000089#endif
danielk1977aef0bf62005-12-30 16:28:01 +000090
drhe53831d2007-08-17 01:14:38 +000091#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977da184232006-01-05 11:34:32 +000092/*
danielk1977aef0bf62005-12-30 16:28:01 +000093** Query to see if btree handle p may obtain a lock of type eLock
94** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +000095** SQLITE_OK if the lock may be obtained (by calling
96** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +000097*/
drhc25eabe2009-02-24 18:57:31 +000098static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +000099 BtShared *pBt = p->pBt;
100 BtLock *pIter;
101
drh1fee73e2007-08-29 04:00:57 +0000102 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000103 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
104 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000105
danielk19775b413d72009-04-01 09:41:54 +0000106 /* If requesting a write-lock, then the Btree must have an open write
107 ** transaction on this file. And, obviously, for this to be so there
108 ** must be an open write transaction on the file itself.
109 */
110 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
111 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
112
danielk1977da184232006-01-05 11:34:32 +0000113 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000114 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000115 return SQLITE_OK;
116 }
117
danielk1977641b0f42007-12-21 04:47:25 +0000118 /* If some other connection is holding an exclusive lock, the
119 ** requested lock may not be obtained.
120 */
danielk1977404ca072009-03-16 13:19:36 +0000121 if( pBt->pWriter!=p && pBt->isExclusive ){
122 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
123 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000124 }
125
drhc25eabe2009-02-24 18:57:31 +0000126 /* This (along with setSharedCacheTableLock()) is where
127 ** the ReadUncommitted flag is dealt with.
128 ** If the caller is querying for a read-lock on any table
drhc74d0b1d2009-02-24 16:18:05 +0000129 ** other than the sqlite_master table (table 1) and if the ReadUncommitted
130 ** flag is set, then the lock granted even if there are write-locks
danielk1977da184232006-01-05 11:34:32 +0000131 ** on the table. If a write-lock is requested, the ReadUncommitted flag
132 ** is not considered.
133 **
drhc25eabe2009-02-24 18:57:31 +0000134 ** In function setSharedCacheTableLock(), if a read-lock is demanded and the
danielk1977da184232006-01-05 11:34:32 +0000135 ** ReadUncommitted flag is set, no entry is added to the locks list
136 ** (BtShared.pLock).
137 **
drhc74d0b1d2009-02-24 16:18:05 +0000138 ** To summarize: If the ReadUncommitted flag is set, then read cursors
139 ** on non-schema tables do not create or respect table locks. The locking
140 ** procedure for a write-cursor does not change.
danielk1977da184232006-01-05 11:34:32 +0000141 */
142 if(
drhe5fe6902007-12-07 18:55:28 +0000143 0==(p->db->flags&SQLITE_ReadUncommitted) ||
danielk1977da184232006-01-05 11:34:32 +0000144 eLock==WRITE_LOCK ||
drh47ded162006-01-06 01:42:58 +0000145 iTab==MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000146 ){
147 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
danielk19775b413d72009-04-01 09:41:54 +0000148 /* The condition (pIter->eLock!=eLock) in the following if(...)
149 ** statement is a simplification of:
150 **
151 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
152 **
153 ** since we know that if eLock==WRITE_LOCK, then no other connection
154 ** may hold a WRITE_LOCK on any table in this file (since there can
155 ** only be a single writer).
156 */
157 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
158 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
159 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
danielk1977404ca072009-03-16 13:19:36 +0000160 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
161 if( eLock==WRITE_LOCK ){
162 assert( p==pBt->pWriter );
163 pBt->isPending = 1;
164 }
165 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977da184232006-01-05 11:34:32 +0000166 }
danielk1977aef0bf62005-12-30 16:28:01 +0000167 }
168 }
169 return SQLITE_OK;
170}
drhe53831d2007-08-17 01:14:38 +0000171#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000172
drhe53831d2007-08-17 01:14:38 +0000173#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000174/*
175** Add a lock on the table with root-page iTable to the shared-btree used
176** by Btree handle p. Parameter eLock must be either READ_LOCK or
177** WRITE_LOCK.
178**
179** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
180** SQLITE_NOMEM may also be returned.
181*/
drhc25eabe2009-02-24 18:57:31 +0000182static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000183 BtShared *pBt = p->pBt;
184 BtLock *pLock = 0;
185 BtLock *pIter;
186
drh1fee73e2007-08-29 04:00:57 +0000187 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000188 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
189 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000190
danielk1977da184232006-01-05 11:34:32 +0000191 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000192 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000193 return SQLITE_OK;
194 }
195
drhc25eabe2009-02-24 18:57:31 +0000196 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000197
drhc74d0b1d2009-02-24 16:18:05 +0000198 /* If the read-uncommitted flag is set and a read-lock is requested on
199 ** a non-schema table, then the lock is always granted. Return early
200 ** without adding an entry to the BtShared.pLock list. See
drhc25eabe2009-02-24 18:57:31 +0000201 ** comment in function querySharedCacheTableLock() for more info
202 ** on handling the ReadUncommitted flag.
danielk1977da184232006-01-05 11:34:32 +0000203 */
204 if(
drhe5fe6902007-12-07 18:55:28 +0000205 (p->db->flags&SQLITE_ReadUncommitted) &&
danielk1977da184232006-01-05 11:34:32 +0000206 (eLock==READ_LOCK) &&
drh47ded162006-01-06 01:42:58 +0000207 iTable!=MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000208 ){
209 return SQLITE_OK;
210 }
211
danielk1977aef0bf62005-12-30 16:28:01 +0000212 /* First search the list for an existing lock on this table. */
213 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
214 if( pIter->iTable==iTable && pIter->pBtree==p ){
215 pLock = pIter;
216 break;
217 }
218 }
219
220 /* If the above search did not find a BtLock struct associating Btree p
221 ** with table iTable, allocate one and link it into the list.
222 */
223 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000224 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000225 if( !pLock ){
226 return SQLITE_NOMEM;
227 }
228 pLock->iTable = iTable;
229 pLock->pBtree = p;
230 pLock->pNext = pBt->pLock;
231 pBt->pLock = pLock;
232 }
233
234 /* Set the BtLock.eLock variable to the maximum of the current lock
235 ** and the requested lock. This means if a write-lock was already held
236 ** and a read-lock requested, we don't incorrectly downgrade the lock.
237 */
238 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000239 if( eLock>pLock->eLock ){
240 pLock->eLock = eLock;
241 }
danielk1977aef0bf62005-12-30 16:28:01 +0000242
243 return SQLITE_OK;
244}
drhe53831d2007-08-17 01:14:38 +0000245#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000246
drhe53831d2007-08-17 01:14:38 +0000247#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000248/*
drhc25eabe2009-02-24 18:57:31 +0000249** Release all the table locks (locks obtained via calls to
250** the setSharedCacheTableLock() procedure) held by Btree handle p.
danielk1977fa542f12009-04-02 18:28:08 +0000251**
252** This function assumes that handle p has an open read or write
253** transaction. If it does not, then the BtShared.isPending variable
254** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000255*/
drhc25eabe2009-02-24 18:57:31 +0000256static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000257 BtShared *pBt = p->pBt;
258 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000259
drh1fee73e2007-08-29 04:00:57 +0000260 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000261 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000262 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000263
danielk1977aef0bf62005-12-30 16:28:01 +0000264 while( *ppIter ){
265 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000266 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000267 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000268 if( pLock->pBtree==p ){
269 *ppIter = pLock->pNext;
drh17435752007-08-16 04:30:38 +0000270 sqlite3_free(pLock);
danielk1977aef0bf62005-12-30 16:28:01 +0000271 }else{
272 ppIter = &pLock->pNext;
273 }
274 }
danielk1977641b0f42007-12-21 04:47:25 +0000275
danielk1977404ca072009-03-16 13:19:36 +0000276 assert( pBt->isPending==0 || pBt->pWriter );
277 if( pBt->pWriter==p ){
278 pBt->pWriter = 0;
279 pBt->isExclusive = 0;
280 pBt->isPending = 0;
281 }else if( pBt->nTransaction==2 ){
282 /* This function is called when connection p is concluding its
283 ** transaction. If there currently exists a writer, and p is not
284 ** that writer, then the number of locks held by connections other
285 ** than the writer must be about to drop to zero. In this case
286 ** set the isPending flag to 0.
287 **
288 ** If there is not currently a writer, then BtShared.isPending must
289 ** be zero already. So this next line is harmless in that case.
290 */
291 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000292 }
danielk1977aef0bf62005-12-30 16:28:01 +0000293}
294#endif /* SQLITE_OMIT_SHARED_CACHE */
295
drh980b1a72006-08-16 16:42:48 +0000296static void releasePage(MemPage *pPage); /* Forward reference */
297
drh1fee73e2007-08-29 04:00:57 +0000298/*
299** Verify that the cursor holds a mutex on the BtShared
300*/
301#ifndef NDEBUG
302static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000303 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000304}
305#endif
306
307
danielk197792d4d7a2007-05-04 12:05:56 +0000308#ifndef SQLITE_OMIT_INCRBLOB
309/*
310** Invalidate the overflow page-list cache for cursor pCur, if any.
311*/
312static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000313 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000314 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000315 pCur->aOverflow = 0;
316}
317
318/*
319** Invalidate the overflow page-list cache for all cursors opened
320** on the shared btree structure pBt.
321*/
322static void invalidateAllOverflowCache(BtShared *pBt){
323 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000325 for(p=pBt->pCursor; p; p=p->pNext){
326 invalidateOverflowCache(p);
327 }
328}
329#else
330 #define invalidateOverflowCache(x)
331 #define invalidateAllOverflowCache(x)
332#endif
333
drh980b1a72006-08-16 16:42:48 +0000334/*
danielk1977bea2a942009-01-20 17:06:27 +0000335** Set bit pgno of the BtShared.pHasContent bitvec. This is called
336** when a page that previously contained data becomes a free-list leaf
337** page.
338**
339** The BtShared.pHasContent bitvec exists to work around an obscure
340** bug caused by the interaction of two useful IO optimizations surrounding
341** free-list leaf pages:
342**
343** 1) When all data is deleted from a page and the page becomes
344** a free-list leaf page, the page is not written to the database
345** (as free-list leaf pages contain no meaningful data). Sometimes
346** such a page is not even journalled (as it will not be modified,
347** why bother journalling it?).
348**
349** 2) When a free-list leaf page is reused, its content is not read
350** from the database or written to the journal file (why should it
351** be, if it is not at all meaningful?).
352**
353** By themselves, these optimizations work fine and provide a handy
354** performance boost to bulk delete or insert operations. However, if
355** a page is moved to the free-list and then reused within the same
356** transaction, a problem comes up. If the page is not journalled when
357** it is moved to the free-list and it is also not journalled when it
358** is extracted from the free-list and reused, then the original data
359** may be lost. In the event of a rollback, it may not be possible
360** to restore the database to its original configuration.
361**
362** The solution is the BtShared.pHasContent bitvec. Whenever a page is
363** moved to become a free-list leaf page, the corresponding bit is
364** set in the bitvec. Whenever a leaf page is extracted from the free-list,
365** optimization 2 above is ommitted if the corresponding bit is already
366** set in BtShared.pHasContent. The contents of the bitvec are cleared
367** at the end of every transaction.
368*/
369static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
370 int rc = SQLITE_OK;
371 if( !pBt->pHasContent ){
372 int nPage;
373 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
374 if( rc==SQLITE_OK ){
375 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
376 if( !pBt->pHasContent ){
377 rc = SQLITE_NOMEM;
378 }
379 }
380 }
381 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
382 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
383 }
384 return rc;
385}
386
387/*
388** Query the BtShared.pHasContent vector.
389**
390** This function is called when a free-list leaf page is removed from the
391** free-list for reuse. It returns false if it is safe to retrieve the
392** page from the pager layer with the 'no-content' flag set. True otherwise.
393*/
394static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
395 Bitvec *p = pBt->pHasContent;
396 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
397}
398
399/*
400** Clear (destroy) the BtShared.pHasContent bitvec. This should be
401** invoked at the conclusion of each write-transaction.
402*/
403static void btreeClearHasContent(BtShared *pBt){
404 sqlite3BitvecDestroy(pBt->pHasContent);
405 pBt->pHasContent = 0;
406}
407
408/*
drh980b1a72006-08-16 16:42:48 +0000409** Save the current cursor position in the variables BtCursor.nKey
410** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
411*/
412static int saveCursorPosition(BtCursor *pCur){
413 int rc;
414
415 assert( CURSOR_VALID==pCur->eState );
416 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000417 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000418
419 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
420
421 /* If this is an intKey table, then the above call to BtreeKeySize()
422 ** stores the integer key in pCur->nKey. In this case this value is
423 ** all that is required. Otherwise, if pCur is not open on an intKey
424 ** table, then malloc space for and store the pCur->nKey bytes of key
425 ** data.
426 */
danielk197771d5d2c2008-09-29 11:49:47 +0000427 if( rc==SQLITE_OK && 0==pCur->apPage[0]->intKey){
drhf49661a2008-12-10 16:45:50 +0000428 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000429 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000430 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000431 if( rc==SQLITE_OK ){
432 pCur->pKey = pKey;
433 }else{
drh17435752007-08-16 04:30:38 +0000434 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000435 }
436 }else{
437 rc = SQLITE_NOMEM;
438 }
439 }
danielk197771d5d2c2008-09-29 11:49:47 +0000440 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000441
442 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000443 int i;
444 for(i=0; i<=pCur->iPage; i++){
445 releasePage(pCur->apPage[i]);
446 pCur->apPage[i] = 0;
447 }
448 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000449 pCur->eState = CURSOR_REQUIRESEEK;
450 }
451
danielk197792d4d7a2007-05-04 12:05:56 +0000452 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000453 return rc;
454}
455
456/*
457** Save the positions of all cursors except pExcept open on the table
458** with root-page iRoot. Usually, this is called just before cursor
459** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
460*/
461static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
462 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000463 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000464 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000465 for(p=pBt->pCursor; p; p=p->pNext){
466 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
467 p->eState==CURSOR_VALID ){
468 int rc = saveCursorPosition(p);
469 if( SQLITE_OK!=rc ){
470 return rc;
471 }
472 }
473 }
474 return SQLITE_OK;
475}
476
477/*
drhbf700f32007-03-31 02:36:44 +0000478** Clear the current cursor position.
479*/
danielk1977be51a652008-10-08 17:58:48 +0000480void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000481 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000482 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000483 pCur->pKey = 0;
484 pCur->eState = CURSOR_INVALID;
485}
486
487/*
drh980b1a72006-08-16 16:42:48 +0000488** Restore the cursor to the position it was in (or as close to as possible)
489** when saveCursorPosition() was called. Note that this call deletes the
490** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000491** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000492** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000493*/
drha3460582008-07-11 21:02:53 +0000494int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000495 int rc;
drh1fee73e2007-08-29 04:00:57 +0000496 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000497 assert( pCur->eState>=CURSOR_REQUIRESEEK );
498 if( pCur->eState==CURSOR_FAULT ){
499 return pCur->skip;
500 }
drh980b1a72006-08-16 16:42:48 +0000501 pCur->eState = CURSOR_INVALID;
drhe63d9992008-08-13 19:11:48 +0000502 rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
drh980b1a72006-08-16 16:42:48 +0000503 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000504 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000505 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000506 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000507 }
508 return rc;
509}
510
drha3460582008-07-11 21:02:53 +0000511#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000512 (p->eState>=CURSOR_REQUIRESEEK ? \
drha3460582008-07-11 21:02:53 +0000513 sqlite3BtreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000514 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000515
drha3460582008-07-11 21:02:53 +0000516/*
517** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000518** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000519** at is deleted out from under them.
520**
521** This routine returns an error code if something goes wrong. The
522** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
523*/
524int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
525 int rc;
526
527 rc = restoreCursorPosition(pCur);
528 if( rc ){
529 *pHasMoved = 1;
530 return rc;
531 }
532 if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
533 *pHasMoved = 1;
534 }else{
535 *pHasMoved = 0;
536 }
537 return SQLITE_OK;
538}
539
danielk1977599fcba2004-11-08 07:13:13 +0000540#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000541/*
drha3152892007-05-05 11:48:52 +0000542** Given a page number of a regular database page, return the page
543** number for the pointer-map page that contains the entry for the
544** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000545*/
danielk1977266664d2006-02-10 08:24:21 +0000546static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000547 int nPagesPerMapPage;
548 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000549 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000550 nPagesPerMapPage = (pBt->usableSize/5)+1;
551 iPtrMap = (pgno-2)/nPagesPerMapPage;
552 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000553 if( ret==PENDING_BYTE_PAGE(pBt) ){
554 ret++;
555 }
556 return ret;
557}
danielk1977a19df672004-11-03 11:37:07 +0000558
danielk1977afcdd022004-10-31 16:25:42 +0000559/*
danielk1977afcdd022004-10-31 16:25:42 +0000560** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000561**
562** This routine updates the pointer map entry for page number 'key'
563** so that it maps to type 'eType' and parent page number 'pgno'.
564** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000565*/
danielk1977aef0bf62005-12-30 16:28:01 +0000566static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000567 DbPage *pDbPage; /* The pointer map page */
568 u8 *pPtrmap; /* The pointer map data */
569 Pgno iPtrmap; /* The pointer map page number */
570 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000571 int rc;
572
drh1fee73e2007-08-29 04:00:57 +0000573 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000574 /* The master-journal page number must never be used as a pointer map page */
575 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
576
danielk1977ac11ee62005-01-15 12:45:51 +0000577 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000578 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000579 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000580 }
danielk1977266664d2006-02-10 08:24:21 +0000581 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000582 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000583 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000584 return rc;
585 }
danielk19778c666b12008-07-18 09:34:57 +0000586 offset = PTRMAP_PTROFFSET(iPtrmap, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000587 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000588
drh615ae552005-01-16 23:21:00 +0000589 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
590 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000591 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000592 if( rc==SQLITE_OK ){
593 pPtrmap[offset] = eType;
594 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000595 }
danielk1977afcdd022004-10-31 16:25:42 +0000596 }
597
danielk19773b8a05f2007-03-19 17:44:26 +0000598 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000599 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000600}
601
602/*
603** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000604**
605** This routine retrieves the pointer map entry for page 'key', writing
606** the type and parent page number to *pEType and *pPgno respectively.
607** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000608*/
danielk1977aef0bf62005-12-30 16:28:01 +0000609static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000610 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000611 int iPtrmap; /* Pointer map page index */
612 u8 *pPtrmap; /* Pointer map page data */
613 int offset; /* Offset of entry in pointer map */
614 int rc;
615
drh1fee73e2007-08-29 04:00:57 +0000616 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000617
danielk1977266664d2006-02-10 08:24:21 +0000618 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000619 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000620 if( rc!=0 ){
621 return rc;
622 }
danielk19773b8a05f2007-03-19 17:44:26 +0000623 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000624
danielk19778c666b12008-07-18 09:34:57 +0000625 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000626 assert( pEType!=0 );
627 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000628 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000629
danielk19773b8a05f2007-03-19 17:44:26 +0000630 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000631 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000632 return SQLITE_OK;
633}
634
danielk197785d90ca2008-07-19 14:25:15 +0000635#else /* if defined SQLITE_OMIT_AUTOVACUUM */
636 #define ptrmapPut(w,x,y,z) SQLITE_OK
637 #define ptrmapGet(w,x,y,z) SQLITE_OK
638 #define ptrmapPutOvfl(y,z) SQLITE_OK
639#endif
danielk1977afcdd022004-10-31 16:25:42 +0000640
drh0d316a42002-08-11 20:10:47 +0000641/*
drh271efa52004-05-30 19:19:05 +0000642** Given a btree page and a cell index (0 means the first cell on
643** the page, 1 means the second cell, and so forth) return a pointer
644** to the cell content.
645**
646** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000647*/
drh1688c862008-07-18 02:44:17 +0000648#define findCell(P,I) \
649 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000650
651/*
drh93a960a2008-07-10 00:32:42 +0000652** This a more complex version of findCell() that works for
drh43605152004-05-29 21:46:49 +0000653** pages that do contain overflow cells. See insert
654*/
655static u8 *findOverflowCell(MemPage *pPage, int iCell){
656 int i;
drh1fee73e2007-08-29 04:00:57 +0000657 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000658 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000659 int k;
660 struct _OvflCell *pOvfl;
661 pOvfl = &pPage->aOvfl[i];
662 k = pOvfl->idx;
663 if( k<=iCell ){
664 if( k==iCell ){
665 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000666 }
667 iCell--;
668 }
669 }
danielk19771cc5ed82007-05-16 17:28:43 +0000670 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000671}
672
673/*
674** Parse a cell content block and fill in the CellInfo structure. There
drh16a9b832007-05-05 18:39:25 +0000675** are two versions of this function. sqlite3BtreeParseCell() takes a
676** cell index as the second argument and sqlite3BtreeParseCellPtr()
677** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000678**
679** Within this file, the parseCell() macro can be called instead of
680** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000681*/
drh16a9b832007-05-05 18:39:25 +0000682void sqlite3BtreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000683 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000684 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000685 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000686){
drhf49661a2008-12-10 16:45:50 +0000687 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000688 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000689
drh1fee73e2007-08-29 04:00:57 +0000690 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000691
drh43605152004-05-29 21:46:49 +0000692 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000693 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000694 n = pPage->childPtrSize;
695 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000696 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000697 if( pPage->hasData ){
698 n += getVarint32(&pCell[n], nPayload);
699 }else{
700 nPayload = 0;
701 }
drh1bd10f82008-12-10 21:19:56 +0000702 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000703 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000704 }else{
drh79df1f42008-07-18 00:57:33 +0000705 pInfo->nData = 0;
706 n += getVarint32(&pCell[n], nPayload);
707 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000708 }
drh72365832007-03-06 15:53:44 +0000709 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000710 pInfo->nHeader = n;
drh79df1f42008-07-18 00:57:33 +0000711 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000712 /* This is the (easy) common case where the entire payload fits
713 ** on the local page. No overflow is required.
714 */
715 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000716 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000717 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000718 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000719 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000720 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000721 }
drh1bd10f82008-12-10 21:19:56 +0000722 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000723 }else{
drh271efa52004-05-30 19:19:05 +0000724 /* If the payload will not fit completely on the local page, we have
725 ** to decide how much to store locally and how much to spill onto
726 ** overflow pages. The strategy is to minimize the amount of unused
727 ** space on overflow pages while keeping the amount of local storage
728 ** in between minLocal and maxLocal.
729 **
730 ** Warning: changing the way overflow payload is distributed in any
731 ** way will result in an incompatible file format.
732 */
733 int minLocal; /* Minimum amount of payload held locally */
734 int maxLocal; /* Maximum amount of payload held locally */
735 int surplus; /* Overflow payload available for local storage */
736
737 minLocal = pPage->minLocal;
738 maxLocal = pPage->maxLocal;
739 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000740 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000741 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000742 }else{
drhf49661a2008-12-10 16:45:50 +0000743 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000744 }
drhf49661a2008-12-10 16:45:50 +0000745 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000746 pInfo->nSize = pInfo->iOverflow + 4;
747 }
drh3aac2dd2004-04-26 14:10:20 +0000748}
danielk19771cc5ed82007-05-16 17:28:43 +0000749#define parseCell(pPage, iCell, pInfo) \
750 sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
drh16a9b832007-05-05 18:39:25 +0000751void sqlite3BtreeParseCell(
drh43605152004-05-29 21:46:49 +0000752 MemPage *pPage, /* Page containing the cell */
753 int iCell, /* The cell index. First cell is 0 */
754 CellInfo *pInfo /* Fill in this structure */
755){
danielk19771cc5ed82007-05-16 17:28:43 +0000756 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000757}
drh3aac2dd2004-04-26 14:10:20 +0000758
759/*
drh43605152004-05-29 21:46:49 +0000760** Compute the total number of bytes that a Cell needs in the cell
761** data area of the btree-page. The return number includes the cell
762** data header and the local payload, but not any overflow page or
763** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000764*/
danielk1977ae5558b2009-04-29 11:31:47 +0000765static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
766 u8 *pIter = &pCell[pPage->childPtrSize];
767 u32 nSize;
768
769#ifdef SQLITE_DEBUG
770 /* The value returned by this function should always be the same as
771 ** the (CellInfo.nSize) value found by doing a full parse of the
772 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
773 ** this function verifies that this invariant is not violated. */
774 CellInfo debuginfo;
775 sqlite3BtreeParseCellPtr(pPage, pCell, &debuginfo);
776#endif
777
778 if( pPage->intKey ){
779 u8 *pEnd;
780 if( pPage->hasData ){
781 pIter += getVarint32(pIter, nSize);
782 }else{
783 nSize = 0;
784 }
785
786 /* pIter now points at the 64-bit integer key value, a variable length
787 ** integer. The following block moves pIter to point at the first byte
788 ** past the end of the key value. */
789 pEnd = &pIter[9];
790 while( (*pIter++)&0x80 && pIter<pEnd );
791 }else{
792 pIter += getVarint32(pIter, nSize);
793 }
794
795 if( nSize>pPage->maxLocal ){
796 int minLocal = pPage->minLocal;
797 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
798 if( nSize>pPage->maxLocal ){
799 nSize = minLocal;
800 }
801 nSize += 4;
802 }
803 nSize += (pIter - pCell);
804
805 /* The minimum size of any cell is 4 bytes. */
806 if( nSize<4 ){
807 nSize = 4;
808 }
809
810 assert( nSize==debuginfo.nSize );
811 return nSize;
812}
danielk1977bc6ada42004-06-30 08:20:16 +0000813#ifndef NDEBUG
drha9121e42008-02-19 14:59:35 +0000814static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +0000815 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +0000816}
danielk1977bc6ada42004-06-30 08:20:16 +0000817#endif
drh3b7511c2001-05-26 13:15:44 +0000818
danielk197779a40da2005-01-16 08:00:01 +0000819#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000820/*
danielk197726836652005-01-17 01:33:13 +0000821** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +0000822** to an overflow page, insert an entry into the pointer-map
823** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +0000824*/
danielk197726836652005-01-17 01:33:13 +0000825static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
drhfa67c3c2008-07-11 02:21:40 +0000826 CellInfo info;
827 assert( pCell!=0 );
828 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
829 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
830 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
831 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
832 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +0000833 }
danielk197779a40da2005-01-16 08:00:01 +0000834 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +0000835}
danielk197726836652005-01-17 01:33:13 +0000836/*
837** If the cell with index iCell on page pPage contains a pointer
838** to an overflow page, insert an entry into the pointer-map
839** for the overflow page.
840*/
841static int ptrmapPutOvfl(MemPage *pPage, int iCell){
842 u8 *pCell;
drh1fee73e2007-08-29 04:00:57 +0000843 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197726836652005-01-17 01:33:13 +0000844 pCell = findOverflowCell(pPage, iCell);
845 return ptrmapPutOvflPtr(pPage, pCell);
846}
danielk197779a40da2005-01-16 08:00:01 +0000847#endif
848
danielk1977ac11ee62005-01-15 12:45:51 +0000849
drhda200cc2004-05-09 11:51:38 +0000850/*
drh72f82862001-05-24 21:06:34 +0000851** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +0000852** end of the page and all free space is collected into one
853** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +0000854** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +0000855*/
shane0af3f892008-11-12 04:55:34 +0000856static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +0000857 int i; /* Loop counter */
858 int pc; /* Address of a i-th cell */
859 int addr; /* Offset of first byte after cell pointer array */
860 int hdr; /* Offset to the page header */
861 int size; /* Size of a cell */
862 int usableSize; /* Number of usable bytes on a page */
863 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +0000864 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +0000865 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +0000866 unsigned char *data; /* The page data */
867 unsigned char *temp; /* Temp area for cell content */
drh2af926b2001-05-15 00:39:25 +0000868
danielk19773b8a05f2007-03-19 17:44:26 +0000869 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000870 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +0000871 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +0000872 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +0000873 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +0000874 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +0000875 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +0000876 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000877 cellOffset = pPage->cellOffset;
878 nCell = pPage->nCell;
879 assert( nCell==get2byte(&data[hdr+3]) );
880 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +0000881 cbrk = get2byte(&data[hdr+5]);
882 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
883 cbrk = usableSize;
drh43605152004-05-29 21:46:49 +0000884 for(i=0; i<nCell; i++){
885 u8 *pAddr; /* The i-th cell pointer */
886 pAddr = &data[cellOffset + i*2];
887 pc = get2byte(pAddr);
shanedcc50b72008-11-13 18:29:50 +0000888 if( pc>=usableSize ){
shane0af3f892008-11-12 04:55:34 +0000889 return SQLITE_CORRUPT_BKPT;
890 }
drh43605152004-05-29 21:46:49 +0000891 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +0000892 cbrk -= size;
danielk19770d065412008-11-12 18:21:36 +0000893 if( cbrk<cellOffset+2*nCell || pc+size>usableSize ){
shane0af3f892008-11-12 04:55:34 +0000894 return SQLITE_CORRUPT_BKPT;
895 }
danielk19770d065412008-11-12 18:21:36 +0000896 assert( cbrk+size<=usableSize && cbrk>=0 );
drh281b21d2008-08-22 12:57:08 +0000897 memcpy(&data[cbrk], &temp[pc], size);
898 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +0000899 }
drh281b21d2008-08-22 12:57:08 +0000900 assert( cbrk>=cellOffset+2*nCell );
901 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +0000902 data[hdr+1] = 0;
903 data[hdr+2] = 0;
904 data[hdr+7] = 0;
905 addr = cellOffset+2*nCell;
drh281b21d2008-08-22 12:57:08 +0000906 memset(&data[addr], 0, cbrk-addr);
drhc5053fb2008-11-27 02:22:10 +0000907 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977360e6342008-11-12 08:49:51 +0000908 if( cbrk-addr!=pPage->nFree ){
909 return SQLITE_CORRUPT_BKPT;
910 }
shane0af3f892008-11-12 04:55:34 +0000911 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +0000912}
913
drha059ad02001-04-17 20:09:11 +0000914/*
danielk19776011a752009-04-01 16:25:32 +0000915** Allocate nByte bytes of space from within the B-Tree page passed
916** as the first argument. Return the index into pPage->aData[] of the
917** first byte of allocated space.
drhbd03cae2001-06-02 02:40:57 +0000918**
danielk19776011a752009-04-01 16:25:32 +0000919** The caller guarantees that the space between the end of the cell-offset
920** array and the start of the cell-content area is at least nByte bytes
921** in size. So this routine can never fail.
drh2af926b2001-05-15 00:39:25 +0000922**
danielk19776011a752009-04-01 16:25:32 +0000923** If there are already 60 or more bytes of fragments within the page,
924** the page is defragmented before returning. If this were not done there
925** is a chance that the number of fragmented bytes could eventually
926** overflow the single-byte field of the page-header in which this value
927** is stored.
drh7e3b0a02001-04-28 16:52:40 +0000928*/
drh9e572e62004-04-23 23:43:10 +0000929static int allocateSpace(MemPage *pPage, int nByte){
danielk19776011a752009-04-01 16:25:32 +0000930 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
931 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
932 int nFrag; /* Number of fragmented bytes on pPage */
drh43605152004-05-29 21:46:49 +0000933 int top;
drh43605152004-05-29 21:46:49 +0000934
danielk19773b8a05f2007-03-19 17:44:26 +0000935 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000936 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +0000937 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +0000938 assert( nByte>=0 ); /* Minimum cell size is 4 */
939 assert( pPage->nFree>=nByte );
940 assert( pPage->nOverflow==0 );
drh43605152004-05-29 21:46:49 +0000941
danielk19776011a752009-04-01 16:25:32 +0000942 /* Assert that the space between the cell-offset array and the
943 ** cell-content area is greater than nByte bytes.
944 */
945 assert( nByte <= (
946 get2byte(&data[hdr+5])-(hdr+8+(pPage->leaf?0:4)+2*get2byte(&data[hdr+3]))
947 ));
948
949 pPage->nFree -= (u16)nByte;
drh43605152004-05-29 21:46:49 +0000950 nFrag = data[hdr+7];
danielk19776011a752009-04-01 16:25:32 +0000951 if( nFrag>=60 ){
952 defragmentPage(pPage);
953 }else{
954 /* Search the freelist looking for a free slot big enough to satisfy
955 ** the request. The allocation is made from the first free slot in
956 ** the list that is large enough to accomadate it.
957 */
958 int pc, addr;
959 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
960 int size = get2byte(&data[pc+2]); /* Size of free slot */
drh43605152004-05-29 21:46:49 +0000961 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +0000962 int x = size - nByte;
danielk19776011a752009-04-01 16:25:32 +0000963 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +0000964 /* Remove the slot from the free-list. Update the number of
965 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +0000966 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +0000967 data[hdr+7] = (u8)(nFrag + x);
drh43605152004-05-29 21:46:49 +0000968 }else{
danielk1977fad91942009-04-29 17:49:59 +0000969 /* The slot remains on the free-list. Reduce its size to account
970 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +0000971 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +0000972 }
danielk19776011a752009-04-01 16:25:32 +0000973 return pc + x;
drh43605152004-05-29 21:46:49 +0000974 }
drh9e572e62004-04-23 23:43:10 +0000975 }
976 }
drh43605152004-05-29 21:46:49 +0000977
978 /* Allocate memory from the gap in between the cell pointer array
979 ** and the cell content area.
980 */
danielk19776011a752009-04-01 16:25:32 +0000981 top = get2byte(&data[hdr+5]) - nByte;
drh43605152004-05-29 21:46:49 +0000982 put2byte(&data[hdr+5], top);
983 return top;
drh7e3b0a02001-04-28 16:52:40 +0000984}
985
986/*
drh9e572e62004-04-23 23:43:10 +0000987** Return a section of the pPage->aData to the freelist.
988** The first byte of the new free block is pPage->aDisk[start]
989** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +0000990**
991** Most of the effort here is involved in coalesing adjacent
992** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000993*/
shanedcc50b72008-11-13 18:29:50 +0000994static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +0000995 int addr, pbegin, hdr;
drh9e572e62004-04-23 23:43:10 +0000996 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +0000997
drh9e572e62004-04-23 23:43:10 +0000998 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +0000999 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001000 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +00001001 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001002 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001003 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001004
drhfcce93f2006-02-22 03:08:32 +00001005#ifdef SQLITE_SECURE_DELETE
1006 /* Overwrite deleted information with zeros when the SECURE_DELETE
1007 ** option is enabled at compile-time */
1008 memset(&data[start], 0, size);
1009#endif
1010
drh9e572e62004-04-23 23:43:10 +00001011 /* Add the space back into the linked list of freeblocks */
drh43605152004-05-29 21:46:49 +00001012 hdr = pPage->hdrOffset;
1013 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001014 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +00001015 assert( pbegin<=pPage->pBt->usableSize-4 );
shanedcc50b72008-11-13 18:29:50 +00001016 if( pbegin<=addr ) {
1017 return SQLITE_CORRUPT_BKPT;
1018 }
drh3aac2dd2004-04-26 14:10:20 +00001019 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001020 }
shanedcc50b72008-11-13 18:29:50 +00001021 if ( pbegin>pPage->pBt->usableSize-4 ) {
1022 return SQLITE_CORRUPT_BKPT;
1023 }
drh3aac2dd2004-04-26 14:10:20 +00001024 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001025 put2byte(&data[addr], start);
1026 put2byte(&data[start], pbegin);
1027 put2byte(&data[start+2], size);
drhf49661a2008-12-10 16:45:50 +00001028 pPage->nFree += (u16)size;
drh9e572e62004-04-23 23:43:10 +00001029
1030 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +00001031 addr = pPage->hdrOffset + 1;
1032 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001033 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001034 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001035 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001036 pnext = get2byte(&data[pbegin]);
1037 psize = get2byte(&data[pbegin+2]);
1038 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1039 int frag = pnext - (pbegin+psize);
drhf49661a2008-12-10 16:45:50 +00001040 if( (frag<0) || (frag>(int)data[pPage->hdrOffset+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001041 return SQLITE_CORRUPT_BKPT;
1042 }
drhf49661a2008-12-10 16:45:50 +00001043 data[pPage->hdrOffset+7] -= (u8)frag;
1044 x = get2byte(&data[pnext]);
1045 put2byte(&data[pbegin], x);
1046 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1047 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001048 }else{
drh3aac2dd2004-04-26 14:10:20 +00001049 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001050 }
1051 }
drh7e3b0a02001-04-28 16:52:40 +00001052
drh43605152004-05-29 21:46:49 +00001053 /* If the cell content area begins with a freeblock, remove it. */
1054 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1055 int top;
1056 pbegin = get2byte(&data[hdr+1]);
1057 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001058 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1059 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001060 }
drhc5053fb2008-11-27 02:22:10 +00001061 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001062 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001063}
1064
1065/*
drh271efa52004-05-30 19:19:05 +00001066** Decode the flags byte (the first byte of the header) for a page
1067** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001068**
1069** Only the following combinations are supported. Anything different
1070** indicates a corrupt database files:
1071**
1072** PTF_ZERODATA
1073** PTF_ZERODATA | PTF_LEAF
1074** PTF_LEAFDATA | PTF_INTKEY
1075** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001076*/
drh44845222008-07-17 18:39:57 +00001077static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001078 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001079
1080 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001081 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001082 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001083 flagByte &= ~PTF_LEAF;
1084 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001085 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001086 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1087 pPage->intKey = 1;
1088 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001089 pPage->maxLocal = pBt->maxLeaf;
1090 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001091 }else if( flagByte==PTF_ZERODATA ){
1092 pPage->intKey = 0;
1093 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001094 pPage->maxLocal = pBt->maxLocal;
1095 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001096 }else{
1097 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001098 }
drh44845222008-07-17 18:39:57 +00001099 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001100}
1101
1102/*
drh7e3b0a02001-04-28 16:52:40 +00001103** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001104**
1105** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001106** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001107** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1108** guarantee that the page is well-formed. It only shows that
1109** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001110*/
danielk197771d5d2c2008-09-29 11:49:47 +00001111int sqlite3BtreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001112
danielk197771d5d2c2008-09-29 11:49:47 +00001113 assert( pPage->pBt!=0 );
1114 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001115 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001116 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1117 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001118
1119 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001120 u16 pc; /* Address of a freeblock within pPage->aData[] */
1121 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001122 u8 *data; /* Equal to pPage->aData */
1123 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001124 u16 usableSize; /* Amount of usable space on each page */
1125 u16 cellOffset; /* Offset from start of page to first cell pointer */
1126 u16 nFree; /* Number of unused bytes on the page */
1127 u16 top; /* First byte of the cell content area */
danielk197771d5d2c2008-09-29 11:49:47 +00001128
1129 pBt = pPage->pBt;
1130
danielk1977eaa06f62008-09-18 17:34:44 +00001131 hdr = pPage->hdrOffset;
1132 data = pPage->aData;
1133 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1134 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1135 pPage->maskPage = pBt->pageSize - 1;
1136 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001137 usableSize = pBt->usableSize;
1138 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1139 top = get2byte(&data[hdr+5]);
1140 pPage->nCell = get2byte(&data[hdr+3]);
1141 if( pPage->nCell>MX_CELL(pBt) ){
1142 /* To many cells for a single page. The page must be corrupt */
1143 return SQLITE_CORRUPT_BKPT;
1144 }
danielk1977eaa06f62008-09-18 17:34:44 +00001145
1146 /* Compute the total free space on the page */
1147 pc = get2byte(&data[hdr+1]);
1148 nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
1149 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001150 u16 next, size;
danielk1977eaa06f62008-09-18 17:34:44 +00001151 if( pc>usableSize-4 ){
1152 /* Free block is off the page */
1153 return SQLITE_CORRUPT_BKPT;
1154 }
1155 next = get2byte(&data[pc]);
1156 size = get2byte(&data[pc+2]);
1157 if( next>0 && next<=pc+size+3 ){
1158 /* Free blocks must be in accending order */
1159 return SQLITE_CORRUPT_BKPT;
1160 }
1161 nFree += size;
1162 pc = next;
1163 }
drhf49661a2008-12-10 16:45:50 +00001164 pPage->nFree = (u16)nFree;
danielk1977eaa06f62008-09-18 17:34:44 +00001165 if( nFree>=usableSize ){
1166 /* Free space cannot exceed total page size */
drh49285702005-09-17 15:20:26 +00001167 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001168 }
drh9e572e62004-04-23 23:43:10 +00001169
drh1688c862008-07-18 02:44:17 +00001170#if 0
1171 /* Check that all the offsets in the cell offset array are within range.
1172 **
1173 ** Omitting this consistency check and using the pPage->maskPage mask
1174 ** to prevent overrunning the page buffer in findCell() results in a
1175 ** 2.5% performance gain.
1176 */
1177 {
1178 u8 *pOff; /* Iterator used to check all cell offsets are in range */
1179 u8 *pEnd; /* Pointer to end of cell offset array */
1180 u8 mask; /* Mask of bits that must be zero in MSB of cell offsets */
1181 mask = ~(((u8)(pBt->pageSize>>8))-1);
1182 pEnd = &data[cellOffset + pPage->nCell*2];
1183 for(pOff=&data[cellOffset]; pOff!=pEnd && !((*pOff)&mask); pOff+=2);
1184 if( pOff!=pEnd ){
1185 return SQLITE_CORRUPT_BKPT;
1186 }
danielk1977e16535f2008-06-11 18:15:29 +00001187 }
drh1688c862008-07-18 02:44:17 +00001188#endif
danielk1977e16535f2008-06-11 18:15:29 +00001189
danielk197771d5d2c2008-09-29 11:49:47 +00001190 pPage->isInit = 1;
1191 }
drh9e572e62004-04-23 23:43:10 +00001192 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001193}
1194
1195/*
drh8b2f49b2001-06-08 00:21:52 +00001196** Set up a raw page so that it looks like a database page holding
1197** no entries.
drhbd03cae2001-06-02 02:40:57 +00001198*/
drh9e572e62004-04-23 23:43:10 +00001199static void zeroPage(MemPage *pPage, int flags){
1200 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001201 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001202 u8 hdr = pPage->hdrOffset;
1203 u16 first;
drh9e572e62004-04-23 23:43:10 +00001204
danielk19773b8a05f2007-03-19 17:44:26 +00001205 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001206 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1207 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001208 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001209 assert( sqlite3_mutex_held(pBt->mutex) );
drh1af4a6e2008-07-18 03:32:51 +00001210 /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
drh1bd10f82008-12-10 21:19:56 +00001211 data[hdr] = (char)flags;
1212 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001213 memset(&data[hdr+1], 0, 4);
1214 data[hdr+7] = 0;
1215 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001216 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001217 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001218 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001219 pPage->cellOffset = first;
1220 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001221 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1222 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001223 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001224 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001225}
1226
drh897a8202008-09-18 01:08:15 +00001227
1228/*
1229** Convert a DbPage obtained from the pager into a MemPage used by
1230** the btree layer.
1231*/
1232static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1233 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1234 pPage->aData = sqlite3PagerGetData(pDbPage);
1235 pPage->pDbPage = pDbPage;
1236 pPage->pBt = pBt;
1237 pPage->pgno = pgno;
1238 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1239 return pPage;
1240}
1241
drhbd03cae2001-06-02 02:40:57 +00001242/*
drh3aac2dd2004-04-26 14:10:20 +00001243** Get a page from the pager. Initialize the MemPage.pBt and
1244** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001245**
1246** If the noContent flag is set, it means that we do not care about
1247** the content of the page at this time. So do not go to the disk
1248** to fetch the content. Just fill in the content with zeros for now.
1249** If in the future we call sqlite3PagerWrite() on this page, that
1250** means we have started to be concerned about content and the disk
1251** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001252*/
drh16a9b832007-05-05 18:39:25 +00001253int sqlite3BtreeGetPage(
1254 BtShared *pBt, /* The btree */
1255 Pgno pgno, /* Number of the page to fetch */
1256 MemPage **ppPage, /* Return the page in this parameter */
1257 int noContent /* Do not load page content if true */
1258){
drh3aac2dd2004-04-26 14:10:20 +00001259 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001260 DbPage *pDbPage;
1261
drh1fee73e2007-08-29 04:00:57 +00001262 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001263 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001264 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001265 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001266 return SQLITE_OK;
1267}
1268
1269/*
danielk1977bea2a942009-01-20 17:06:27 +00001270** Retrieve a page from the pager cache. If the requested page is not
1271** already in the pager cache return NULL. Initialize the MemPage.pBt and
1272** MemPage.aData elements if needed.
1273*/
1274static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1275 DbPage *pDbPage;
1276 assert( sqlite3_mutex_held(pBt->mutex) );
1277 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1278 if( pDbPage ){
1279 return btreePageFromDbPage(pDbPage, pgno, pBt);
1280 }
1281 return 0;
1282}
1283
1284/*
danielk197789d40042008-11-17 14:20:56 +00001285** Return the size of the database file in pages. If there is any kind of
1286** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001287*/
danielk197789d40042008-11-17 14:20:56 +00001288static Pgno pagerPagecount(BtShared *pBt){
1289 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001290 int rc;
danielk197789d40042008-11-17 14:20:56 +00001291 assert( pBt->pPage1 );
1292 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1293 assert( rc==SQLITE_OK || nPage==-1 );
1294 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001295}
1296
1297/*
drhde647132004-05-07 17:57:49 +00001298** Get a page from the pager and initialize it. This routine
1299** is just a convenience wrapper around separate calls to
drh16a9b832007-05-05 18:39:25 +00001300** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
drhde647132004-05-07 17:57:49 +00001301*/
1302static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001303 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001304 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001305 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001306){
1307 int rc;
drh897a8202008-09-18 01:08:15 +00001308 MemPage *pPage;
1309
drh1fee73e2007-08-29 04:00:57 +00001310 assert( sqlite3_mutex_held(pBt->mutex) );
drh897a8202008-09-18 01:08:15 +00001311 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001312 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001313 }
danielk19779f580ad2008-09-10 14:45:57 +00001314
drh897a8202008-09-18 01:08:15 +00001315 /* It is often the case that the page we want is already in cache.
1316 ** If so, get it directly. This saves us from having to call
1317 ** pagerPagecount() to make sure pgno is within limits, which results
1318 ** in a measureable performance improvements.
1319 */
danielk1977bea2a942009-01-20 17:06:27 +00001320 *ppPage = pPage = btreePageLookup(pBt, pgno);
1321 if( pPage ){
drh897a8202008-09-18 01:08:15 +00001322 /* Page is already in cache */
drh897a8202008-09-18 01:08:15 +00001323 rc = SQLITE_OK;
1324 }else{
1325 /* Page not in cache. Acquire it. */
danielk197789d40042008-11-17 14:20:56 +00001326 if( pgno>pagerPagecount(pBt) ){
drh897a8202008-09-18 01:08:15 +00001327 return SQLITE_CORRUPT_BKPT;
1328 }
1329 rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
1330 if( rc ) return rc;
1331 pPage = *ppPage;
1332 }
danielk197771d5d2c2008-09-29 11:49:47 +00001333 if( !pPage->isInit ){
1334 rc = sqlite3BtreeInitPage(pPage);
drh897a8202008-09-18 01:08:15 +00001335 }
1336 if( rc!=SQLITE_OK ){
1337 releasePage(pPage);
1338 *ppPage = 0;
1339 }
drhde647132004-05-07 17:57:49 +00001340 return rc;
1341}
1342
1343/*
drh3aac2dd2004-04-26 14:10:20 +00001344** Release a MemPage. This should be called once for each prior
drh16a9b832007-05-05 18:39:25 +00001345** call to sqlite3BtreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001346*/
drh4b70f112004-05-02 21:12:19 +00001347static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001348 if( pPage ){
drh30df0092008-12-23 15:58:06 +00001349 assert( pPage->nOverflow==0 || sqlite3PagerPageRefcount(pPage->pDbPage)>1 );
drh3aac2dd2004-04-26 14:10:20 +00001350 assert( pPage->aData );
1351 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001352 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1353 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001354 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001355 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001356 }
1357}
1358
1359/*
drha6abd042004-06-09 17:37:22 +00001360** During a rollback, when the pager reloads information into the cache
1361** so that the cache is restored to its original state at the start of
1362** the transaction, for each page restored this routine is called.
1363**
1364** This routine needs to reset the extra data section at the end of the
1365** page to agree with the restored data.
1366*/
danielk1977eaa06f62008-09-18 17:34:44 +00001367static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001368 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001369 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001370 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001371 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001372 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001373 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001374 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001375 /* pPage might not be a btree page; it might be an overflow page
1376 ** or ptrmap page or a free page. In those cases, the following
1377 ** call to sqlite3BtreeInitPage() will likely return SQLITE_CORRUPT.
1378 ** But no harm is done by this. And it is very important that
1379 ** sqlite3BtreeInitPage() be called on every btree page so we make
1380 ** the call for every page that comes in for re-initing. */
danielk197771d5d2c2008-09-29 11:49:47 +00001381 sqlite3BtreeInitPage(pPage);
1382 }
drha6abd042004-06-09 17:37:22 +00001383 }
1384}
1385
1386/*
drhe5fe6902007-12-07 18:55:28 +00001387** Invoke the busy handler for a btree.
1388*/
danielk19771ceedd32008-11-19 10:22:33 +00001389static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001390 BtShared *pBt = (BtShared*)pArg;
1391 assert( pBt->db );
1392 assert( sqlite3_mutex_held(pBt->db->mutex) );
1393 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1394}
1395
1396/*
drhad3e0102004-09-03 23:32:18 +00001397** Open a database file.
1398**
drh382c0242001-10-06 16:33:02 +00001399** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001400** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001401** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001402** If zFilename is ":memory:" then an in-memory database is created
1403** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001404**
1405** If the database is already opened in the same database connection
1406** and we are in shared cache mode, then the open will fail with an
1407** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1408** objects in the same database connection since doing so will lead
1409** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001410*/
drh23e11ca2004-05-04 17:27:28 +00001411int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001412 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001413 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001414 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001415 int flags, /* Options */
1416 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001417){
drh7555d8e2009-03-20 13:15:30 +00001418 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1419 BtShared *pBt = 0; /* Shared part of btree structure */
1420 Btree *p; /* Handle to return */
1421 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1422 int rc = SQLITE_OK; /* Result code from this function */
1423 u8 nReserve; /* Byte of unused space on each page */
1424 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001425
1426 /* Set the variable isMemdb to true for an in-memory database, or
1427 ** false for a file-based database. This symbol is only required if
1428 ** either of the shared-data or autovacuum features are compiled
1429 ** into the library.
1430 */
1431#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1432 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001433 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001434 #else
drh980b1a72006-08-16 16:42:48 +00001435 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001436 #endif
1437#endif
1438
drhe5fe6902007-12-07 18:55:28 +00001439 assert( db!=0 );
1440 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001441
drhe5fe6902007-12-07 18:55:28 +00001442 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001443 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001444 if( !p ){
1445 return SQLITE_NOMEM;
1446 }
1447 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001448 p->db = db;
danielk1977aef0bf62005-12-30 16:28:01 +00001449
drh198bf392006-01-06 21:52:49 +00001450#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001451 /*
1452 ** If this Btree is a candidate for shared cache, try to find an
1453 ** existing BtShared object that we can share with
1454 */
danielk197720c6cc22009-04-01 18:03:00 +00001455 if( isMemdb==0 && zFilename && zFilename[0] ){
danielk1977502b4e02008-09-02 14:07:24 +00001456 if( sqlite3GlobalConfig.sharedCacheEnabled ){
danielk1977adfb9b02007-09-17 07:02:56 +00001457 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001458 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001459 sqlite3_mutex *mutexShared;
1460 p->sharable = 1;
drh34004ce2008-07-11 16:15:17 +00001461 db->flags |= SQLITE_SharedCache;
drhff0587c2007-08-29 17:43:19 +00001462 if( !zFullPathname ){
1463 sqlite3_free(p);
1464 return SQLITE_NOMEM;
1465 }
danielk1977adfb9b02007-09-17 07:02:56 +00001466 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001467 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1468 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001469 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001470 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001471 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001472 assert( pBt->nRef>0 );
1473 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1474 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001475 int iDb;
1476 for(iDb=db->nDb-1; iDb>=0; iDb--){
1477 Btree *pExisting = db->aDb[iDb].pBt;
1478 if( pExisting && pExisting->pBt==pBt ){
1479 sqlite3_mutex_leave(mutexShared);
1480 sqlite3_mutex_leave(mutexOpen);
1481 sqlite3_free(zFullPathname);
1482 sqlite3_free(p);
1483 return SQLITE_CONSTRAINT;
1484 }
1485 }
drhff0587c2007-08-29 17:43:19 +00001486 p->pBt = pBt;
1487 pBt->nRef++;
1488 break;
1489 }
1490 }
1491 sqlite3_mutex_leave(mutexShared);
1492 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001493 }
drhff0587c2007-08-29 17:43:19 +00001494#ifdef SQLITE_DEBUG
1495 else{
1496 /* In debug mode, we mark all persistent databases as sharable
1497 ** even when they are not. This exercises the locking code and
1498 ** gives more opportunity for asserts(sqlite3_mutex_held())
1499 ** statements to find locking problems.
1500 */
1501 p->sharable = 1;
1502 }
1503#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001504 }
1505#endif
drha059ad02001-04-17 20:09:11 +00001506 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001507 /*
1508 ** The following asserts make sure that structures used by the btree are
1509 ** the right size. This is to guard against size changes that result
1510 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001511 */
drhe53831d2007-08-17 01:14:38 +00001512 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1513 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1514 assert( sizeof(u32)==4 );
1515 assert( sizeof(u16)==2 );
1516 assert( sizeof(Pgno)==4 );
1517
1518 pBt = sqlite3MallocZero( sizeof(*pBt) );
1519 if( pBt==0 ){
1520 rc = SQLITE_NOMEM;
1521 goto btree_open_out;
1522 }
danielk197771d5d2c2008-09-29 11:49:47 +00001523 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh33f4e022007-09-03 15:19:34 +00001524 EXTRA_SIZE, flags, vfsFlags);
drhe53831d2007-08-17 01:14:38 +00001525 if( rc==SQLITE_OK ){
1526 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1527 }
1528 if( rc!=SQLITE_OK ){
1529 goto btree_open_out;
1530 }
danielk19772a50ff02009-04-10 09:47:06 +00001531 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001532 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001533 p->pBt = pBt;
1534
drhe53831d2007-08-17 01:14:38 +00001535 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
1536 pBt->pCursor = 0;
1537 pBt->pPage1 = 0;
1538 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1539 pBt->pageSize = get2byte(&zDbHeader[16]);
1540 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1541 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001542 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001543#ifndef SQLITE_OMIT_AUTOVACUUM
1544 /* If the magic name ":memory:" will create an in-memory database, then
1545 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1546 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1547 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1548 ** regular file-name. In this case the auto-vacuum applies as per normal.
1549 */
1550 if( zFilename && !isMemdb ){
1551 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1552 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1553 }
1554#endif
1555 nReserve = 0;
1556 }else{
1557 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001558 pBt->pageSizeFixed = 1;
1559#ifndef SQLITE_OMIT_AUTOVACUUM
1560 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1561 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1562#endif
1563 }
drhc0b61812009-04-30 01:22:41 +00001564 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
1565 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001566 pBt->usableSize = pBt->pageSize - nReserve;
1567 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001568
1569#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1570 /* Add the new BtShared object to the linked list sharable BtShareds.
1571 */
1572 if( p->sharable ){
1573 sqlite3_mutex *mutexShared;
1574 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001575 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001576 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001577 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001578 if( pBt->mutex==0 ){
1579 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001580 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001581 goto btree_open_out;
1582 }
drhff0587c2007-08-29 17:43:19 +00001583 }
drhe53831d2007-08-17 01:14:38 +00001584 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001585 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1586 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001587 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001588 }
drheee46cf2004-11-06 00:02:48 +00001589#endif
drh90f5ecb2004-07-22 01:19:35 +00001590 }
danielk1977aef0bf62005-12-30 16:28:01 +00001591
drhcfed7bc2006-03-13 14:28:05 +00001592#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001593 /* If the new Btree uses a sharable pBtShared, then link the new
1594 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001595 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001596 */
drhe53831d2007-08-17 01:14:38 +00001597 if( p->sharable ){
1598 int i;
1599 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001600 for(i=0; i<db->nDb; i++){
1601 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001602 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1603 if( p->pBt<pSib->pBt ){
1604 p->pNext = pSib;
1605 p->pPrev = 0;
1606 pSib->pPrev = p;
1607 }else{
drhabddb0c2007-08-20 13:14:28 +00001608 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001609 pSib = pSib->pNext;
1610 }
1611 p->pNext = pSib->pNext;
1612 p->pPrev = pSib;
1613 if( p->pNext ){
1614 p->pNext->pPrev = p;
1615 }
1616 pSib->pNext = p;
1617 }
1618 break;
1619 }
1620 }
danielk1977aef0bf62005-12-30 16:28:01 +00001621 }
danielk1977aef0bf62005-12-30 16:28:01 +00001622#endif
1623 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001624
1625btree_open_out:
1626 if( rc!=SQLITE_OK ){
1627 if( pBt && pBt->pPager ){
1628 sqlite3PagerClose(pBt->pPager);
1629 }
drh17435752007-08-16 04:30:38 +00001630 sqlite3_free(pBt);
1631 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001632 *ppBtree = 0;
1633 }
drh7555d8e2009-03-20 13:15:30 +00001634 if( mutexOpen ){
1635 assert( sqlite3_mutex_held(mutexOpen) );
1636 sqlite3_mutex_leave(mutexOpen);
1637 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001638 return rc;
drha059ad02001-04-17 20:09:11 +00001639}
1640
1641/*
drhe53831d2007-08-17 01:14:38 +00001642** Decrement the BtShared.nRef counter. When it reaches zero,
1643** remove the BtShared structure from the sharing list. Return
1644** true if the BtShared.nRef counter reaches zero and return
1645** false if it is still positive.
1646*/
1647static int removeFromSharingList(BtShared *pBt){
1648#ifndef SQLITE_OMIT_SHARED_CACHE
1649 sqlite3_mutex *pMaster;
1650 BtShared *pList;
1651 int removed = 0;
1652
drhd677b3d2007-08-20 22:48:41 +00001653 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001654 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001655 sqlite3_mutex_enter(pMaster);
1656 pBt->nRef--;
1657 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001658 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1659 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001660 }else{
drh78f82d12008-09-02 00:52:52 +00001661 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001662 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001663 pList=pList->pNext;
1664 }
drh34004ce2008-07-11 16:15:17 +00001665 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001666 pList->pNext = pBt->pNext;
1667 }
1668 }
drh3285db22007-09-03 22:00:39 +00001669 if( SQLITE_THREADSAFE ){
1670 sqlite3_mutex_free(pBt->mutex);
1671 }
drhe53831d2007-08-17 01:14:38 +00001672 removed = 1;
1673 }
1674 sqlite3_mutex_leave(pMaster);
1675 return removed;
1676#else
1677 return 1;
1678#endif
1679}
1680
1681/*
drhf7141992008-06-19 00:16:08 +00001682** Make sure pBt->pTmpSpace points to an allocation of
1683** MX_CELL_SIZE(pBt) bytes.
1684*/
1685static void allocateTempSpace(BtShared *pBt){
1686 if( !pBt->pTmpSpace ){
1687 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1688 }
1689}
1690
1691/*
1692** Free the pBt->pTmpSpace allocation
1693*/
1694static void freeTempSpace(BtShared *pBt){
1695 sqlite3PageFree( pBt->pTmpSpace);
1696 pBt->pTmpSpace = 0;
1697}
1698
1699/*
drha059ad02001-04-17 20:09:11 +00001700** Close an open database and invalidate all cursors.
1701*/
danielk1977aef0bf62005-12-30 16:28:01 +00001702int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001703 BtShared *pBt = p->pBt;
1704 BtCursor *pCur;
1705
danielk1977aef0bf62005-12-30 16:28:01 +00001706 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001707 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001708 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001709 pCur = pBt->pCursor;
1710 while( pCur ){
1711 BtCursor *pTmp = pCur;
1712 pCur = pCur->pNext;
1713 if( pTmp->pBtree==p ){
1714 sqlite3BtreeCloseCursor(pTmp);
1715 }
drha059ad02001-04-17 20:09:11 +00001716 }
danielk1977aef0bf62005-12-30 16:28:01 +00001717
danielk19778d34dfd2006-01-24 16:37:57 +00001718 /* Rollback any active transaction and free the handle structure.
1719 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1720 ** this handle.
1721 */
danielk1977b597f742006-01-15 11:39:18 +00001722 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001723 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001724
danielk1977aef0bf62005-12-30 16:28:01 +00001725 /* If there are still other outstanding references to the shared-btree
1726 ** structure, return now. The remainder of this procedure cleans
1727 ** up the shared-btree.
1728 */
drhe53831d2007-08-17 01:14:38 +00001729 assert( p->wantToLock==0 && p->locked==0 );
1730 if( !p->sharable || removeFromSharingList(pBt) ){
1731 /* The pBt is no longer on the sharing list, so we can access
1732 ** it without having to hold the mutex.
1733 **
1734 ** Clean out and delete the BtShared object.
1735 */
1736 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001737 sqlite3PagerClose(pBt->pPager);
1738 if( pBt->xFreeSchema && pBt->pSchema ){
1739 pBt->xFreeSchema(pBt->pSchema);
1740 }
1741 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00001742 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00001743 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001744 }
1745
drhe53831d2007-08-17 01:14:38 +00001746#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00001747 assert( p->wantToLock==0 );
1748 assert( p->locked==0 );
1749 if( p->pPrev ) p->pPrev->pNext = p->pNext;
1750 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00001751#endif
1752
drhe53831d2007-08-17 01:14:38 +00001753 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00001754 return SQLITE_OK;
1755}
1756
1757/*
drhda47d772002-12-02 04:25:19 +00001758** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001759**
1760** The maximum number of cache pages is set to the absolute
1761** value of mxPage. If mxPage is negative, the pager will
1762** operate asynchronously - it will not stop to do fsync()s
1763** to insure data is written to the disk surface before
1764** continuing. Transactions still work if synchronous is off,
1765** and the database cannot be corrupted if this program
1766** crashes. But if the operating system crashes or there is
1767** an abrupt power failure when synchronous is off, the database
1768** could be left in an inconsistent and unrecoverable state.
1769** Synchronous is on by default so database corruption is not
1770** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001771*/
danielk1977aef0bf62005-12-30 16:28:01 +00001772int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
1773 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00001774 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001775 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001776 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00001777 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00001778 return SQLITE_OK;
1779}
1780
1781/*
drh973b6e32003-02-12 14:09:42 +00001782** Change the way data is synced to disk in order to increase or decrease
1783** how well the database resists damage due to OS crashes and power
1784** failures. Level 1 is the same as asynchronous (no syncs() occur and
1785** there is a high probability of damage) Level 2 is the default. There
1786** is a very low but non-zero probability of damage. Level 3 reduces the
1787** probability of damage to near zero but with a write performance reduction.
1788*/
danielk197793758c82005-01-21 08:13:14 +00001789#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00001790int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00001791 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00001792 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001793 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001794 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00001795 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00001796 return SQLITE_OK;
1797}
danielk197793758c82005-01-21 08:13:14 +00001798#endif
drh973b6e32003-02-12 14:09:42 +00001799
drh2c8997b2005-08-27 16:36:48 +00001800/*
1801** Return TRUE if the given btree is set to safety level 1. In other
1802** words, return TRUE if no sync() occurs on the disk files.
1803*/
danielk1977aef0bf62005-12-30 16:28:01 +00001804int sqlite3BtreeSyncDisabled(Btree *p){
1805 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001806 int rc;
drhe5fe6902007-12-07 18:55:28 +00001807 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001808 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00001809 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00001810 rc = sqlite3PagerNosync(pBt->pPager);
1811 sqlite3BtreeLeave(p);
1812 return rc;
drh2c8997b2005-08-27 16:36:48 +00001813}
1814
danielk1977576ec6b2005-01-21 11:55:25 +00001815#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00001816/*
drh90f5ecb2004-07-22 01:19:35 +00001817** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00001818** Or, if the page size has already been fixed, return SQLITE_READONLY
1819** without changing anything.
drh06f50212004-11-02 14:24:33 +00001820**
1821** The page size must be a power of 2 between 512 and 65536. If the page
1822** size supplied does not meet this constraint then the page size is not
1823** changed.
1824**
1825** Page sizes are constrained to be a power of two so that the region
1826** of the database file used for locking (beginning at PENDING_BYTE,
1827** the first byte past the 1GB boundary, 0x40000000) needs to occur
1828** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00001829**
1830** If parameter nReserve is less than zero, then the number of reserved
1831** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00001832**
1833** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
1834** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00001835*/
drhce4869f2009-04-02 20:16:58 +00001836int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00001837 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00001838 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00001839 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00001840 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00001841 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00001842 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00001843 return SQLITE_READONLY;
1844 }
1845 if( nReserve<0 ){
1846 nReserve = pBt->pageSize - pBt->usableSize;
1847 }
drhf49661a2008-12-10 16:45:50 +00001848 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00001849 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
1850 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00001851 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00001852 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00001853 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00001854 freeTempSpace(pBt);
danielk1977a1644fd2007-08-29 12:31:25 +00001855 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
drh90f5ecb2004-07-22 01:19:35 +00001856 }
drhf49661a2008-12-10 16:45:50 +00001857 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00001858 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00001859 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00001860 return rc;
drh90f5ecb2004-07-22 01:19:35 +00001861}
1862
1863/*
1864** Return the currently defined page size
1865*/
danielk1977aef0bf62005-12-30 16:28:01 +00001866int sqlite3BtreeGetPageSize(Btree *p){
1867 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00001868}
drh7f751222009-03-17 22:33:00 +00001869
1870/*
1871** Return the number of bytes of space at the end of every page that
1872** are intentually left unused. This is the "reserved" space that is
1873** sometimes used by extensions.
1874*/
danielk1977aef0bf62005-12-30 16:28:01 +00001875int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00001876 int n;
1877 sqlite3BtreeEnter(p);
1878 n = p->pBt->pageSize - p->pBt->usableSize;
1879 sqlite3BtreeLeave(p);
1880 return n;
drh2011d5f2004-07-22 02:40:37 +00001881}
drhf8e632b2007-05-08 14:51:36 +00001882
1883/*
1884** Set the maximum page count for a database if mxPage is positive.
1885** No changes are made if mxPage is 0 or negative.
1886** Regardless of the value of mxPage, return the maximum page count.
1887*/
1888int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00001889 int n;
1890 sqlite3BtreeEnter(p);
1891 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
1892 sqlite3BtreeLeave(p);
1893 return n;
drhf8e632b2007-05-08 14:51:36 +00001894}
danielk1977576ec6b2005-01-21 11:55:25 +00001895#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00001896
1897/*
danielk1977951af802004-11-05 15:45:09 +00001898** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
1899** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
1900** is disabled. The default value for the auto-vacuum property is
1901** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
1902*/
danielk1977aef0bf62005-12-30 16:28:01 +00001903int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00001904#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00001905 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00001906#else
danielk1977dddbcdc2007-04-26 14:42:34 +00001907 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001908 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00001909 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00001910
1911 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00001912 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00001913 rc = SQLITE_READONLY;
1914 }else{
drh076d4662009-02-18 20:31:18 +00001915 pBt->autoVacuum = av ?1:0;
1916 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00001917 }
drhd677b3d2007-08-20 22:48:41 +00001918 sqlite3BtreeLeave(p);
1919 return rc;
danielk1977951af802004-11-05 15:45:09 +00001920#endif
1921}
1922
1923/*
1924** Return the value of the 'auto-vacuum' property. If auto-vacuum is
1925** enabled 1 is returned. Otherwise 0.
1926*/
danielk1977aef0bf62005-12-30 16:28:01 +00001927int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00001928#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00001929 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00001930#else
drhd677b3d2007-08-20 22:48:41 +00001931 int rc;
1932 sqlite3BtreeEnter(p);
1933 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00001934 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
1935 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
1936 BTREE_AUTOVACUUM_INCR
1937 );
drhd677b3d2007-08-20 22:48:41 +00001938 sqlite3BtreeLeave(p);
1939 return rc;
danielk1977951af802004-11-05 15:45:09 +00001940#endif
1941}
1942
1943
1944/*
drha34b6762004-05-07 13:30:42 +00001945** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00001946** also acquire a readlock on that file.
1947**
1948** SQLITE_OK is returned on success. If the file is not a
1949** well-formed database file, then SQLITE_CORRUPT is returned.
1950** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00001951** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00001952*/
danielk1977aef0bf62005-12-30 16:28:01 +00001953static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00001954 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001955 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00001956 int nPage;
drhd677b3d2007-08-20 22:48:41 +00001957
drh1fee73e2007-08-29 04:00:57 +00001958 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00001959 assert( pBt->pPage1==0 );
drh16a9b832007-05-05 18:39:25 +00001960 rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00001961 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00001962
1963 /* Do some checking to help insure the file we opened really is
1964 ** a valid database file.
1965 */
danielk1977ad0132d2008-06-07 08:58:22 +00001966 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1967 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00001968 goto page1_init_failed;
1969 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00001970 int pageSize;
1971 int usableSize;
drhb6f41482004-05-14 01:58:11 +00001972 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00001973 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00001974 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00001975 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00001976 }
drh309169a2007-04-24 17:27:51 +00001977 if( page1[18]>1 ){
1978 pBt->readOnly = 1;
1979 }
1980 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00001981 goto page1_init_failed;
1982 }
drhe5ae5732008-06-15 02:51:47 +00001983
1984 /* The maximum embedded fraction must be exactly 25%. And the minimum
1985 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
1986 ** The original design allowed these amounts to vary, but as of
1987 ** version 3.6.0, we require them to be fixed.
1988 */
1989 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
1990 goto page1_init_failed;
1991 }
drh07d183d2005-05-01 22:52:42 +00001992 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00001993 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
1994 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
1995 ){
drh07d183d2005-05-01 22:52:42 +00001996 goto page1_init_failed;
1997 }
1998 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00001999 usableSize = pageSize - page1[20];
2000 if( pageSize!=pBt->pageSize ){
2001 /* After reading the first page of the database assuming a page size
2002 ** of BtShared.pageSize, we have discovered that the page-size is
2003 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2004 ** zero and return SQLITE_OK. The caller will call this function
2005 ** again with the correct page-size.
2006 */
2007 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002008 pBt->usableSize = (u16)usableSize;
2009 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002010 freeTempSpace(pBt);
drhc0b61812009-04-30 01:22:41 +00002011 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
2012 if( rc ) goto page1_init_failed;
danielk1977f653d782008-03-20 11:04:21 +00002013 return SQLITE_OK;
2014 }
2015 if( usableSize<500 ){
drhb6f41482004-05-14 01:58:11 +00002016 goto page1_init_failed;
2017 }
drh1bd10f82008-12-10 21:19:56 +00002018 pBt->pageSize = (u16)pageSize;
2019 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002020#ifndef SQLITE_OMIT_AUTOVACUUM
2021 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002022 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002023#endif
drh306dc212001-05-21 13:45:10 +00002024 }
drhb6f41482004-05-14 01:58:11 +00002025
2026 /* maxLocal is the maximum amount of payload to store locally for
2027 ** a cell. Make sure it is small enough so that at least minFanout
2028 ** cells can will fit on one page. We assume a 10-byte page header.
2029 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002030 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002031 ** 4-byte child pointer
2032 ** 9-byte nKey value
2033 ** 4-byte nData value
2034 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002035 ** So a cell consists of a 2-byte poiner, a header which is as much as
2036 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2037 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002038 */
drhe5ae5732008-06-15 02:51:47 +00002039 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2040 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002041 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002042 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002043 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002044 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002045 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002046
drh72f82862001-05-24 21:06:34 +00002047page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002048 releasePage(pPage1);
2049 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002050 return rc;
drh306dc212001-05-21 13:45:10 +00002051}
2052
2053/*
drhb8ef32c2005-03-14 02:01:49 +00002054** This routine works like lockBtree() except that it also invokes the
2055** busy callback if there is lock contention.
2056*/
danielk1977aef0bf62005-12-30 16:28:01 +00002057static int lockBtreeWithRetry(Btree *pRef){
drhb8ef32c2005-03-14 02:01:49 +00002058 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00002059
drh1fee73e2007-08-29 04:00:57 +00002060 assert( sqlite3BtreeHoldsMutex(pRef) );
danielk1977aef0bf62005-12-30 16:28:01 +00002061 if( pRef->inTrans==TRANS_NONE ){
2062 u8 inTransaction = pRef->pBt->inTransaction;
2063 btreeIntegrity(pRef);
2064 rc = sqlite3BtreeBeginTrans(pRef, 0);
2065 pRef->pBt->inTransaction = inTransaction;
2066 pRef->inTrans = TRANS_NONE;
2067 if( rc==SQLITE_OK ){
2068 pRef->pBt->nTransaction--;
2069 }
2070 btreeIntegrity(pRef);
drhb8ef32c2005-03-14 02:01:49 +00002071 }
2072 return rc;
2073}
2074
2075
2076/*
drhb8ca3072001-12-05 00:21:20 +00002077** If there are no outstanding cursors and we are not in the middle
2078** of a transaction but there is a read lock on the database, then
2079** this routine unrefs the first page of the database file which
2080** has the effect of releasing the read lock.
2081**
2082** If there are any outstanding cursors, this routine is a no-op.
2083**
2084** If there is a transaction in progress, this routine is a no-op.
2085*/
danielk1977aef0bf62005-12-30 16:28:01 +00002086static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002087 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00002088 if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00002089 if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
drhde4fcfd2008-01-19 23:50:26 +00002090 assert( pBt->pPage1->aData );
drh24c9a2e2007-01-05 02:00:47 +00002091 releasePage(pBt->pPage1);
drh51c6d962004-06-06 00:42:25 +00002092 }
drh3aac2dd2004-04-26 14:10:20 +00002093 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002094 }
2095}
2096
2097/*
drh9e572e62004-04-23 23:43:10 +00002098** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00002099** file.
drh8b2f49b2001-06-08 00:21:52 +00002100*/
danielk1977aef0bf62005-12-30 16:28:01 +00002101static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002102 MemPage *pP1;
2103 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002104 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002105 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002106
drh1fee73e2007-08-29 04:00:57 +00002107 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002108 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2109 if( rc!=SQLITE_OK || nPage>0 ){
2110 return rc;
2111 }
drh3aac2dd2004-04-26 14:10:20 +00002112 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002113 assert( pP1!=0 );
2114 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002115 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002116 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002117 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2118 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002119 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002120 data[18] = 1;
2121 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002122 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2123 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002124 data[21] = 64;
2125 data[22] = 32;
2126 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002127 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002128 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002129 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002130#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002131 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002132 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002133 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002134 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002135#endif
drh8b2f49b2001-06-08 00:21:52 +00002136 return SQLITE_OK;
2137}
2138
2139/*
danielk1977ee5741e2004-05-31 10:01:34 +00002140** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002141** is started if the second argument is nonzero, otherwise a read-
2142** transaction. If the second argument is 2 or more and exclusive
2143** transaction is started, meaning that no other process is allowed
2144** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002145** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002146** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002147**
danielk1977ee5741e2004-05-31 10:01:34 +00002148** A write-transaction must be started before attempting any
2149** changes to the database. None of the following routines
2150** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002151**
drh23e11ca2004-05-04 17:27:28 +00002152** sqlite3BtreeCreateTable()
2153** sqlite3BtreeCreateIndex()
2154** sqlite3BtreeClearTable()
2155** sqlite3BtreeDropTable()
2156** sqlite3BtreeInsert()
2157** sqlite3BtreeDelete()
2158** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002159**
drhb8ef32c2005-03-14 02:01:49 +00002160** If an initial attempt to acquire the lock fails because of lock contention
2161** and the database was previously unlocked, then invoke the busy handler
2162** if there is one. But if there was previously a read-lock, do not
2163** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2164** returned when there is already a read-lock in order to avoid a deadlock.
2165**
2166** Suppose there are two processes A and B. A has a read lock and B has
2167** a reserved lock. B tries to promote to exclusive but is blocked because
2168** of A's read lock. A tries to promote to reserved but is blocked by B.
2169** One or the other of the two processes must give way or there can be
2170** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2171** when A already has a read lock, we encourage A to give up and let B
2172** proceed.
drha059ad02001-04-17 20:09:11 +00002173*/
danielk1977aef0bf62005-12-30 16:28:01 +00002174int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002175 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002176 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002177 int rc = SQLITE_OK;
2178
drhd677b3d2007-08-20 22:48:41 +00002179 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002180 btreeIntegrity(p);
2181
danielk1977ee5741e2004-05-31 10:01:34 +00002182 /* If the btree is already in a write-transaction, or it
2183 ** is already in a read-transaction and a read-transaction
2184 ** is requested, this is a no-op.
2185 */
danielk1977aef0bf62005-12-30 16:28:01 +00002186 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002187 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002188 }
drhb8ef32c2005-03-14 02:01:49 +00002189
2190 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002191 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002192 rc = SQLITE_READONLY;
2193 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002194 }
2195
danielk1977404ca072009-03-16 13:19:36 +00002196#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002197 /* If another database handle has already opened a write transaction
2198 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002199 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002200 */
danielk1977404ca072009-03-16 13:19:36 +00002201 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2202 pBlock = pBt->pWriter->db;
2203 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002204 BtLock *pIter;
2205 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2206 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002207 pBlock = pIter->pBtree->db;
2208 break;
danielk1977641b0f42007-12-21 04:47:25 +00002209 }
2210 }
2211 }
danielk1977404ca072009-03-16 13:19:36 +00002212 if( pBlock ){
2213 sqlite3ConnectionBlocked(p->db, pBlock);
2214 rc = SQLITE_LOCKED_SHAREDCACHE;
2215 goto trans_begun;
2216 }
danielk1977641b0f42007-12-21 04:47:25 +00002217#endif
2218
drhb8ef32c2005-03-14 02:01:49 +00002219 do {
danielk1977295dc102009-04-01 19:07:03 +00002220 /* Call lockBtree() until either pBt->pPage1 is populated or
2221 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2222 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2223 ** reading page 1 it discovers that the page-size of the database
2224 ** file is not pBt->pageSize. In this case lockBtree() will update
2225 ** pBt->pageSize to the page-size of the file on disk.
2226 */
2227 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002228
drhb8ef32c2005-03-14 02:01:49 +00002229 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002230 if( pBt->readOnly ){
2231 rc = SQLITE_READONLY;
2232 }else{
danielk1977d8293352009-04-30 09:10:37 +00002233 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002234 if( rc==SQLITE_OK ){
2235 rc = newDatabase(pBt);
2236 }
drhb8ef32c2005-03-14 02:01:49 +00002237 }
2238 }
2239
danielk1977bd434552009-03-18 10:33:00 +00002240 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002241 unlockBtreeIfUnused(pBt);
2242 }
danielk1977aef0bf62005-12-30 16:28:01 +00002243 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002244 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002245
2246 if( rc==SQLITE_OK ){
2247 if( p->inTrans==TRANS_NONE ){
2248 pBt->nTransaction++;
2249 }
2250 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2251 if( p->inTrans>pBt->inTransaction ){
2252 pBt->inTransaction = p->inTrans;
2253 }
danielk1977641b0f42007-12-21 04:47:25 +00002254#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002255 if( wrflag ){
2256 assert( !pBt->pWriter );
2257 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002258 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002259 }
2260#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002261 }
2262
drhd677b3d2007-08-20 22:48:41 +00002263
2264trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002265 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002266 /* This call makes sure that the pager has the correct number of
2267 ** open savepoints. If the second parameter is greater than 0 and
2268 ** the sub-journal is not already open, then it will be opened here.
2269 */
danielk1977fd7f0452008-12-17 17:30:26 +00002270 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2271 }
danielk197712dd5492008-12-18 15:45:07 +00002272
danielk1977aef0bf62005-12-30 16:28:01 +00002273 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002274 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002275 return rc;
drha059ad02001-04-17 20:09:11 +00002276}
2277
danielk1977687566d2004-11-02 12:56:41 +00002278#ifndef SQLITE_OMIT_AUTOVACUUM
2279
2280/*
2281** Set the pointer-map entries for all children of page pPage. Also, if
2282** pPage contains cells that point to overflow pages, set the pointer
2283** map entries for the overflow pages as well.
2284*/
2285static int setChildPtrmaps(MemPage *pPage){
2286 int i; /* Counter variable */
2287 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002288 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002289 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002290 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002291 Pgno pgno = pPage->pgno;
2292
drh1fee73e2007-08-29 04:00:57 +00002293 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197771d5d2c2008-09-29 11:49:47 +00002294 rc = sqlite3BtreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002295 if( rc!=SQLITE_OK ){
2296 goto set_child_ptrmaps_out;
2297 }
danielk1977687566d2004-11-02 12:56:41 +00002298 nCell = pPage->nCell;
2299
2300 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002301 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002302
danielk197726836652005-01-17 01:33:13 +00002303 rc = ptrmapPutOvflPtr(pPage, pCell);
2304 if( rc!=SQLITE_OK ){
2305 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002306 }
danielk197726836652005-01-17 01:33:13 +00002307
danielk1977687566d2004-11-02 12:56:41 +00002308 if( !pPage->leaf ){
2309 Pgno childPgno = get4byte(pCell);
2310 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
danielk197700a696d2008-09-29 16:41:31 +00002311 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002312 }
2313 }
2314
2315 if( !pPage->leaf ){
2316 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2317 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2318 }
2319
2320set_child_ptrmaps_out:
2321 pPage->isInit = isInitOrig;
2322 return rc;
2323}
2324
2325/*
danielk1977fa542f12009-04-02 18:28:08 +00002326** Somewhere on pPage, which is guaranteed to be a btree page, not an overflow
danielk1977687566d2004-11-02 12:56:41 +00002327** page, is a pointer to page iFrom. Modify this pointer so that it points to
2328** iTo. Parameter eType describes the type of pointer to be modified, as
2329** follows:
2330**
2331** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2332** page of pPage.
2333**
2334** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2335** page pointed to by one of the cells on pPage.
2336**
2337** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2338** overflow page in the list.
2339*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002340static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002341 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002342 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002343 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002344 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002345 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002346 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002347 }
danielk1977f78fc082004-11-02 14:40:32 +00002348 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002349 }else{
drhf49661a2008-12-10 16:45:50 +00002350 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002351 int i;
2352 int nCell;
2353
danielk197771d5d2c2008-09-29 11:49:47 +00002354 sqlite3BtreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002355 nCell = pPage->nCell;
2356
danielk1977687566d2004-11-02 12:56:41 +00002357 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002358 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002359 if( eType==PTRMAP_OVERFLOW1 ){
2360 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00002361 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002362 if( info.iOverflow ){
2363 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2364 put4byte(&pCell[info.iOverflow], iTo);
2365 break;
2366 }
2367 }
2368 }else{
2369 if( get4byte(pCell)==iFrom ){
2370 put4byte(pCell, iTo);
2371 break;
2372 }
2373 }
2374 }
2375
2376 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002377 if( eType!=PTRMAP_BTREE ||
2378 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002379 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002380 }
danielk1977687566d2004-11-02 12:56:41 +00002381 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2382 }
2383
2384 pPage->isInit = isInitOrig;
2385 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002386 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002387}
2388
danielk1977003ba062004-11-04 02:57:33 +00002389
danielk19777701e812005-01-10 12:59:51 +00002390/*
2391** Move the open database page pDbPage to location iFreePage in the
2392** database. The pDbPage reference remains valid.
2393*/
danielk1977003ba062004-11-04 02:57:33 +00002394static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002395 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002396 MemPage *pDbPage, /* Open page to move */
2397 u8 eType, /* Pointer map 'type' entry for pDbPage */
2398 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002399 Pgno iFreePage, /* The location to move pDbPage to */
2400 int isCommit
danielk1977003ba062004-11-04 02:57:33 +00002401){
2402 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2403 Pgno iDbPage = pDbPage->pgno;
2404 Pager *pPager = pBt->pPager;
2405 int rc;
2406
danielk1977a0bf2652004-11-04 14:30:04 +00002407 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2408 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002409 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002410 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002411
drh85b623f2007-12-13 21:54:09 +00002412 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002413 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2414 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002415 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002416 if( rc!=SQLITE_OK ){
2417 return rc;
2418 }
2419 pDbPage->pgno = iFreePage;
2420
2421 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2422 ** that point to overflow pages. The pointer map entries for all these
2423 ** pages need to be changed.
2424 **
2425 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2426 ** pointer to a subsequent overflow page. If this is the case, then
2427 ** the pointer map needs to be updated for the subsequent overflow page.
2428 */
danielk1977a0bf2652004-11-04 14:30:04 +00002429 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002430 rc = setChildPtrmaps(pDbPage);
2431 if( rc!=SQLITE_OK ){
2432 return rc;
2433 }
2434 }else{
2435 Pgno nextOvfl = get4byte(pDbPage->aData);
2436 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002437 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2438 if( rc!=SQLITE_OK ){
2439 return rc;
2440 }
2441 }
2442 }
2443
2444 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2445 ** that it points at iFreePage. Also fix the pointer map entry for
2446 ** iPtrPage.
2447 */
danielk1977a0bf2652004-11-04 14:30:04 +00002448 if( eType!=PTRMAP_ROOTPAGE ){
drh16a9b832007-05-05 18:39:25 +00002449 rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002450 if( rc!=SQLITE_OK ){
2451 return rc;
2452 }
danielk19773b8a05f2007-03-19 17:44:26 +00002453 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002454 if( rc!=SQLITE_OK ){
2455 releasePage(pPtrPage);
2456 return rc;
2457 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002458 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002459 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002460 if( rc==SQLITE_OK ){
2461 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2462 }
danielk1977003ba062004-11-04 02:57:33 +00002463 }
danielk1977003ba062004-11-04 02:57:33 +00002464 return rc;
2465}
2466
danielk1977dddbcdc2007-04-26 14:42:34 +00002467/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002468static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002469
2470/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002471** Perform a single step of an incremental-vacuum. If successful,
2472** return SQLITE_OK. If there is no work to do (and therefore no
2473** point in calling this function again), return SQLITE_DONE.
2474**
2475** More specificly, this function attempts to re-organize the
2476** database so that the last page of the file currently in use
2477** is no longer in use.
2478**
2479** If the nFin parameter is non-zero, the implementation assumes
2480** that the caller will keep calling incrVacuumStep() until
2481** it returns SQLITE_DONE or an error, and that nFin is the
2482** number of pages the database file will contain after this
2483** process is complete.
2484*/
danielk19773460d192008-12-27 15:23:13 +00002485static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002486 Pgno nFreeList; /* Number of pages still on the free-list */
2487
drh1fee73e2007-08-29 04:00:57 +00002488 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002489 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002490
2491 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2492 int rc;
2493 u8 eType;
2494 Pgno iPtrPage;
2495
2496 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002497 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002498 return SQLITE_DONE;
2499 }
2500
2501 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2502 if( rc!=SQLITE_OK ){
2503 return rc;
2504 }
2505 if( eType==PTRMAP_ROOTPAGE ){
2506 return SQLITE_CORRUPT_BKPT;
2507 }
2508
2509 if( eType==PTRMAP_FREEPAGE ){
2510 if( nFin==0 ){
2511 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002512 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002513 ** truncated to zero after this function returns, so it doesn't
2514 ** matter if it still contains some garbage entries.
2515 */
2516 Pgno iFreePg;
2517 MemPage *pFreePg;
2518 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2519 if( rc!=SQLITE_OK ){
2520 return rc;
2521 }
2522 assert( iFreePg==iLastPg );
2523 releasePage(pFreePg);
2524 }
2525 } else {
2526 Pgno iFreePg; /* Index of free page to move pLastPg to */
2527 MemPage *pLastPg;
2528
drh16a9b832007-05-05 18:39:25 +00002529 rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002530 if( rc!=SQLITE_OK ){
2531 return rc;
2532 }
2533
danielk1977b4626a32007-04-28 15:47:43 +00002534 /* If nFin is zero, this loop runs exactly once and page pLastPg
2535 ** is swapped with the first free page pulled off the free list.
2536 **
2537 ** On the other hand, if nFin is greater than zero, then keep
2538 ** looping until a free-page located within the first nFin pages
2539 ** of the file is found.
2540 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002541 do {
2542 MemPage *pFreePg;
2543 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2544 if( rc!=SQLITE_OK ){
2545 releasePage(pLastPg);
2546 return rc;
2547 }
2548 releasePage(pFreePg);
2549 }while( nFin!=0 && iFreePg>nFin );
2550 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002551
2552 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002553 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002554 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002555 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002556 releasePage(pLastPg);
2557 if( rc!=SQLITE_OK ){
2558 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002559 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002560 }
2561 }
2562
danielk19773460d192008-12-27 15:23:13 +00002563 if( nFin==0 ){
2564 iLastPg--;
2565 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002566 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2567 MemPage *pPg;
2568 int rc = sqlite3BtreeGetPage(pBt, iLastPg, &pPg, 0);
2569 if( rc!=SQLITE_OK ){
2570 return rc;
2571 }
2572 rc = sqlite3PagerWrite(pPg->pDbPage);
2573 releasePage(pPg);
2574 if( rc!=SQLITE_OK ){
2575 return rc;
2576 }
2577 }
danielk19773460d192008-12-27 15:23:13 +00002578 iLastPg--;
2579 }
2580 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002581 }
2582 return SQLITE_OK;
2583}
2584
2585/*
2586** A write-transaction must be opened before calling this function.
2587** It performs a single unit of work towards an incremental vacuum.
2588**
2589** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002590** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002591** SQLITE_OK is returned. Otherwise an SQLite error code.
2592*/
2593int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002594 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002595 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002596
2597 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002598 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2599 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002600 rc = SQLITE_DONE;
2601 }else{
2602 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002603 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002604 }
drhd677b3d2007-08-20 22:48:41 +00002605 sqlite3BtreeLeave(p);
2606 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002607}
2608
2609/*
danielk19773b8a05f2007-03-19 17:44:26 +00002610** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002611** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002612**
2613** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2614** the database file should be truncated to during the commit process.
2615** i.e. the database has been reorganized so that only the first *pnTrunc
2616** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002617*/
danielk19773460d192008-12-27 15:23:13 +00002618static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002619 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002620 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002621 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002622
drh1fee73e2007-08-29 04:00:57 +00002623 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002624 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002625 assert(pBt->autoVacuum);
2626 if( !pBt->incrVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002627 Pgno nFin;
2628 Pgno nFree;
2629 Pgno nPtrmap;
2630 Pgno iFree;
2631 const int pgsz = pBt->pageSize;
2632 Pgno nOrig = pagerPagecount(pBt);
danielk1977687566d2004-11-02 12:56:41 +00002633
danielk1977ef165ce2009-04-06 17:50:03 +00002634 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2635 /* It is not possible to create a database for which the final page
2636 ** is either a pointer-map page or the pending-byte page. If one
2637 ** is encountered, this indicates corruption.
2638 */
danielk19773460d192008-12-27 15:23:13 +00002639 return SQLITE_CORRUPT_BKPT;
2640 }
danielk1977ef165ce2009-04-06 17:50:03 +00002641
danielk19773460d192008-12-27 15:23:13 +00002642 nFree = get4byte(&pBt->pPage1->aData[36]);
2643 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
2644 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002645 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002646 nFin--;
2647 }
2648 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2649 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002650 }
danielk1977687566d2004-11-02 12:56:41 +00002651
danielk19773460d192008-12-27 15:23:13 +00002652 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2653 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002654 }
danielk19773460d192008-12-27 15:23:13 +00002655 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002656 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002657 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2658 put4byte(&pBt->pPage1->aData[32], 0);
2659 put4byte(&pBt->pPage1->aData[36], 0);
2660 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002661 }
2662 if( rc!=SQLITE_OK ){
2663 sqlite3PagerRollback(pPager);
2664 }
danielk1977687566d2004-11-02 12:56:41 +00002665 }
2666
danielk19773b8a05f2007-03-19 17:44:26 +00002667 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002668 return rc;
2669}
danielk1977dddbcdc2007-04-26 14:42:34 +00002670
shane831c3292008-11-10 17:14:58 +00002671#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
danielk1977687566d2004-11-02 12:56:41 +00002672
2673/*
drh80e35f42007-03-30 14:06:34 +00002674** This routine does the first phase of a two-phase commit. This routine
2675** causes a rollback journal to be created (if it does not already exist)
2676** and populated with enough information so that if a power loss occurs
2677** the database can be restored to its original state by playing back
2678** the journal. Then the contents of the journal are flushed out to
2679** the disk. After the journal is safely on oxide, the changes to the
2680** database are written into the database file and flushed to oxide.
2681** At the end of this call, the rollback journal still exists on the
2682** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002683** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002684** commit process.
2685**
2686** This call is a no-op if no write-transaction is currently active on pBt.
2687**
2688** Otherwise, sync the database file for the btree pBt. zMaster points to
2689** the name of a master journal file that should be written into the
2690** individual journal file, or is NULL, indicating no master journal file
2691** (single database transaction).
2692**
2693** When this is called, the master journal should already have been
2694** created, populated with this journal pointer and synced to disk.
2695**
2696** Once this is routine has returned, the only thing required to commit
2697** the write-transaction for this database file is to delete the journal.
2698*/
2699int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2700 int rc = SQLITE_OK;
2701 if( p->inTrans==TRANS_WRITE ){
2702 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002703 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002704#ifndef SQLITE_OMIT_AUTOVACUUM
2705 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002706 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002707 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002708 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002709 return rc;
2710 }
2711 }
2712#endif
drh49b9d332009-01-02 18:10:42 +00002713 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00002714 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002715 }
2716 return rc;
2717}
2718
2719/*
drh2aa679f2001-06-25 02:11:07 +00002720** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002721**
drh6e345992007-03-30 11:12:08 +00002722** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00002723** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
2724** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
2725** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00002726** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00002727** routine has to do is delete or truncate or zero the header in the
2728** the rollback journal (which causes the transaction to commit) and
2729** drop locks.
drh6e345992007-03-30 11:12:08 +00002730**
drh5e00f6c2001-09-13 13:46:56 +00002731** This will release the write lock on the database file. If there
2732** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002733*/
drh80e35f42007-03-30 14:06:34 +00002734int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002735 BtShared *pBt = p->pBt;
2736
drhd677b3d2007-08-20 22:48:41 +00002737 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002738 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002739
2740 /* If the handle has a write-transaction open, commit the shared-btrees
2741 ** transaction and set the shared state to TRANS_READ.
2742 */
2743 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00002744 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002745 assert( pBt->inTransaction==TRANS_WRITE );
2746 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00002747 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00002748 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002749 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002750 return rc;
2751 }
danielk1977aef0bf62005-12-30 16:28:01 +00002752 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00002753 }
danielk1977aef0bf62005-12-30 16:28:01 +00002754
2755 /* If the handle has any kind of transaction open, decrement the transaction
2756 ** count of the shared btree. If the transaction count reaches 0, set
2757 ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
2758 ** will unlock the pager.
2759 */
2760 if( p->inTrans!=TRANS_NONE ){
danielk1977fa542f12009-04-02 18:28:08 +00002761 clearAllSharedCacheTableLocks(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002762 pBt->nTransaction--;
2763 if( 0==pBt->nTransaction ){
2764 pBt->inTransaction = TRANS_NONE;
2765 }
2766 }
2767
drh51898cf2009-04-19 20:51:06 +00002768 /* Set the current transaction state to TRANS_NONE and unlock
danielk1977aef0bf62005-12-30 16:28:01 +00002769 ** the pager if this call closed the only read or write transaction.
2770 */
danielk1977bea2a942009-01-20 17:06:27 +00002771 btreeClearHasContent(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002772 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002773 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002774
2775 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002776 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002777 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002778}
2779
drh80e35f42007-03-30 14:06:34 +00002780/*
2781** Do both phases of a commit.
2782*/
2783int sqlite3BtreeCommit(Btree *p){
2784 int rc;
drhd677b3d2007-08-20 22:48:41 +00002785 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002786 rc = sqlite3BtreeCommitPhaseOne(p, 0);
2787 if( rc==SQLITE_OK ){
2788 rc = sqlite3BtreeCommitPhaseTwo(p);
2789 }
drhd677b3d2007-08-20 22:48:41 +00002790 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002791 return rc;
2792}
2793
danielk1977fbcd5852004-06-15 02:44:18 +00002794#ifndef NDEBUG
2795/*
2796** Return the number of write-cursors open on this handle. This is for use
2797** in assert() expressions, so it is only compiled if NDEBUG is not
2798** defined.
drhfb982642007-08-30 01:19:59 +00002799**
2800** For the purposes of this routine, a write-cursor is any cursor that
2801** is capable of writing to the databse. That means the cursor was
2802** originally opened for writing and the cursor has not be disabled
2803** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00002804*/
danielk1977aef0bf62005-12-30 16:28:01 +00002805static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00002806 BtCursor *pCur;
2807 int r = 0;
2808 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00002809 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00002810 }
2811 return r;
2812}
2813#endif
2814
drhc39e0002004-05-07 23:50:57 +00002815/*
drhfb982642007-08-30 01:19:59 +00002816** This routine sets the state to CURSOR_FAULT and the error
2817** code to errCode for every cursor on BtShared that pBtree
2818** references.
2819**
2820** Every cursor is tripped, including cursors that belong
2821** to other database connections that happen to be sharing
2822** the cache with pBtree.
2823**
2824** This routine gets called when a rollback occurs.
2825** All cursors using the same cache must be tripped
2826** to prevent them from trying to use the btree after
2827** the rollback. The rollback may have deleted tables
2828** or moved root pages, so it is not sufficient to
2829** save the state of the cursor. The cursor must be
2830** invalidated.
2831*/
2832void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
2833 BtCursor *p;
2834 sqlite3BtreeEnter(pBtree);
2835 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00002836 int i;
danielk1977be51a652008-10-08 17:58:48 +00002837 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00002838 p->eState = CURSOR_FAULT;
2839 p->skip = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00002840 for(i=0; i<=p->iPage; i++){
2841 releasePage(p->apPage[i]);
2842 p->apPage[i] = 0;
2843 }
drhfb982642007-08-30 01:19:59 +00002844 }
2845 sqlite3BtreeLeave(pBtree);
2846}
2847
2848/*
drhecdc7532001-09-23 02:35:53 +00002849** Rollback the transaction in progress. All cursors will be
2850** invalided by this operation. Any attempt to use a cursor
2851** that was open at the beginning of this operation will result
2852** in an error.
drh5e00f6c2001-09-13 13:46:56 +00002853**
2854** This will release the write lock on the database file. If there
2855** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002856*/
danielk1977aef0bf62005-12-30 16:28:01 +00002857int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00002858 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002859 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00002860 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00002861
drhd677b3d2007-08-20 22:48:41 +00002862 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00002863 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00002864#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00002865 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00002866 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00002867 ** trying to save cursor positions. If this is an automatic rollback (as
2868 ** the result of a constraint, malloc() failure or IO error) then
2869 ** the cache may be internally inconsistent (not contain valid trees) so
2870 ** we cannot simply return the error to the caller. Instead, abort
2871 ** all queries that may be using any of the cursors that failed to save.
2872 */
drhfb982642007-08-30 01:19:59 +00002873 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00002874 }
danielk19778d34dfd2006-01-24 16:37:57 +00002875#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002876 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002877
2878 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00002879 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00002880
danielk19778d34dfd2006-01-24 16:37:57 +00002881 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00002882 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00002883 if( rc2!=SQLITE_OK ){
2884 rc = rc2;
2885 }
2886
drh24cd67e2004-05-10 16:18:47 +00002887 /* The rollback may have destroyed the pPage1->aData value. So
drh16a9b832007-05-05 18:39:25 +00002888 ** call sqlite3BtreeGetPage() on page 1 again to make
2889 ** sure pPage1->aData is set correctly. */
2890 if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00002891 releasePage(pPage1);
2892 }
danielk1977fbcd5852004-06-15 02:44:18 +00002893 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002894 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00002895 }
danielk1977aef0bf62005-12-30 16:28:01 +00002896
2897 if( p->inTrans!=TRANS_NONE ){
danielk1977fa542f12009-04-02 18:28:08 +00002898 clearAllSharedCacheTableLocks(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002899 assert( pBt->nTransaction>0 );
2900 pBt->nTransaction--;
2901 if( 0==pBt->nTransaction ){
2902 pBt->inTransaction = TRANS_NONE;
2903 }
2904 }
2905
danielk1977bea2a942009-01-20 17:06:27 +00002906 btreeClearHasContent(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002907 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002908 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002909
2910 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002911 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00002912 return rc;
2913}
2914
2915/*
danielk1977bd434552009-03-18 10:33:00 +00002916** Start a statement subtransaction. The subtransaction can can be rolled
2917** back independently of the main transaction. You must start a transaction
2918** before starting a subtransaction. The subtransaction is ended automatically
2919** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00002920**
2921** Statement subtransactions are used around individual SQL statements
2922** that are contained within a BEGIN...COMMIT block. If a constraint
2923** error occurs within the statement, the effect of that one statement
2924** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00002925**
2926** A statement sub-transaction is implemented as an anonymous savepoint. The
2927** value passed as the second parameter is the total number of savepoints,
2928** including the new anonymous savepoint, open on the B-Tree. i.e. if there
2929** are no active savepoints and no other statement-transactions open,
2930** iStatement is 1. This anonymous savepoint can be released or rolled back
2931** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00002932*/
danielk1977bd434552009-03-18 10:33:00 +00002933int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00002934 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002935 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002936 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00002937 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00002938 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00002939 assert( iStatement>0 );
2940 assert( iStatement>p->db->nSavepoint );
2941 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00002942 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00002943 }else{
2944 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00002945 /* At the pager level, a statement transaction is a savepoint with
2946 ** an index greater than all savepoints created explicitly using
2947 ** SQL statements. It is illegal to open, release or rollback any
2948 ** such savepoints while the statement transaction savepoint is active.
2949 */
danielk1977bd434552009-03-18 10:33:00 +00002950 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00002951 }
drhd677b3d2007-08-20 22:48:41 +00002952 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00002953 return rc;
2954}
2955
2956/*
danielk1977fd7f0452008-12-17 17:30:26 +00002957** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
2958** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00002959** savepoint identified by parameter iSavepoint, depending on the value
2960** of op.
2961**
2962** Normally, iSavepoint is greater than or equal to zero. However, if op is
2963** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
2964** contents of the entire transaction are rolled back. This is different
2965** from a normal transaction rollback, as no locks are released and the
2966** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00002967*/
2968int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
2969 int rc = SQLITE_OK;
2970 if( p && p->inTrans==TRANS_WRITE ){
2971 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00002972 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
2973 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
2974 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00002975 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00002976 if( rc==SQLITE_OK ){
2977 rc = newDatabase(pBt);
2978 }
danielk1977fd7f0452008-12-17 17:30:26 +00002979 sqlite3BtreeLeave(p);
2980 }
2981 return rc;
2982}
2983
2984/*
drh8b2f49b2001-06-08 00:21:52 +00002985** Create a new cursor for the BTree whose root is on the page
2986** iTable. The act of acquiring a cursor gets a read lock on
2987** the database file.
drh1bee3d72001-10-15 00:44:35 +00002988**
2989** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00002990** If wrFlag==1, then the cursor can be used for reading or for
2991** writing if other conditions for writing are also met. These
2992** are the conditions that must be met in order for writing to
2993** be allowed:
drh6446c4d2001-12-15 14:22:18 +00002994**
drhf74b8d92002-09-01 23:20:45 +00002995** 1: The cursor must have been opened with wrFlag==1
2996**
drhfe5d71d2007-03-19 11:54:10 +00002997** 2: Other database connections that share the same pager cache
2998** but which are not in the READ_UNCOMMITTED state may not have
2999** cursors open with wrFlag==0 on the same table. Otherwise
3000** the changes made by this write cursor would be visible to
3001** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003002**
3003** 3: The database must be writable (not on read-only media)
3004**
3005** 4: There must be an active transaction.
3006**
drh6446c4d2001-12-15 14:22:18 +00003007** No checking is done to make sure that page iTable really is the
3008** root page of a b-tree. If it is not, then the cursor acquired
3009** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003010**
3011** It is assumed that the sqlite3BtreeCursorSize() bytes of memory
3012** pointed to by pCur have been zeroed by the caller.
drha059ad02001-04-17 20:09:11 +00003013*/
drhd677b3d2007-08-20 22:48:41 +00003014static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003015 Btree *p, /* The btree */
3016 int iTable, /* Root page of table to open */
3017 int wrFlag, /* 1 to write. 0 read-only */
3018 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3019 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003020){
drha059ad02001-04-17 20:09:11 +00003021 int rc;
danielk197789d40042008-11-17 14:20:56 +00003022 Pgno nPage;
danielk1977aef0bf62005-12-30 16:28:01 +00003023 BtShared *pBt = p->pBt;
drhecdc7532001-09-23 02:35:53 +00003024
drh1fee73e2007-08-29 04:00:57 +00003025 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003026 assert( wrFlag==0 || wrFlag==1 );
drh8dcd7ca2004-08-08 19:43:29 +00003027 if( wrFlag ){
drh64022502009-01-09 14:11:04 +00003028 assert( !pBt->readOnly );
3029 if( NEVER(pBt->readOnly) ){
drh8dcd7ca2004-08-08 19:43:29 +00003030 return SQLITE_READONLY;
3031 }
danielk1977404ca072009-03-16 13:19:36 +00003032 rc = checkForReadConflicts(p, iTable, 0, 0);
3033 if( rc!=SQLITE_OK ){
3034 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
3035 return rc;
drh8dcd7ca2004-08-08 19:43:29 +00003036 }
drha0c9a112004-03-10 13:42:37 +00003037 }
danielk1977aef0bf62005-12-30 16:28:01 +00003038
drh4b70f112004-05-02 21:12:19 +00003039 if( pBt->pPage1==0 ){
danielk1977aef0bf62005-12-30 16:28:01 +00003040 rc = lockBtreeWithRetry(p);
drha059ad02001-04-17 20:09:11 +00003041 if( rc!=SQLITE_OK ){
drha059ad02001-04-17 20:09:11 +00003042 return rc;
3043 }
3044 }
drh8b2f49b2001-06-08 00:21:52 +00003045 pCur->pgnoRoot = (Pgno)iTable;
danielk197789d40042008-11-17 14:20:56 +00003046 rc = sqlite3PagerPagecount(pBt->pPager, (int *)&nPage);
3047 if( rc!=SQLITE_OK ){
3048 return rc;
3049 }
3050 if( iTable==1 && nPage==0 ){
drh24cd67e2004-05-10 16:18:47 +00003051 rc = SQLITE_EMPTY;
3052 goto create_cursor_exception;
3053 }
danielk197771d5d2c2008-09-29 11:49:47 +00003054 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
drhbd03cae2001-06-02 02:40:57 +00003055 if( rc!=SQLITE_OK ){
3056 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00003057 }
danielk1977aef0bf62005-12-30 16:28:01 +00003058
danielk1977aef0bf62005-12-30 16:28:01 +00003059 /* Now that no other errors can occur, finish filling in the BtCursor
3060 ** variables, link the cursor into the BtShared list and set *ppCur (the
3061 ** output argument to this function).
3062 */
drh1e968a02008-03-25 00:22:21 +00003063 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003064 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003065 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003066 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003067 pCur->pNext = pBt->pCursor;
3068 if( pCur->pNext ){
3069 pCur->pNext->pPrev = pCur;
3070 }
3071 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003072 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003073 pCur->cachedRowid = 0;
drhbd03cae2001-06-02 02:40:57 +00003074
danielk1977aef0bf62005-12-30 16:28:01 +00003075 return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003076
drhbd03cae2001-06-02 02:40:57 +00003077create_cursor_exception:
danielk197771d5d2c2008-09-29 11:49:47 +00003078 releasePage(pCur->apPage[0]);
drh5e00f6c2001-09-13 13:46:56 +00003079 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00003080 return rc;
drha059ad02001-04-17 20:09:11 +00003081}
drhd677b3d2007-08-20 22:48:41 +00003082int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003083 Btree *p, /* The btree */
3084 int iTable, /* Root page of table to open */
3085 int wrFlag, /* 1 to write. 0 read-only */
3086 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3087 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003088){
3089 int rc;
3090 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003091 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003092 sqlite3BtreeLeave(p);
3093 return rc;
3094}
drh7f751222009-03-17 22:33:00 +00003095
3096/*
3097** Return the size of a BtCursor object in bytes.
3098**
3099** This interfaces is needed so that users of cursors can preallocate
3100** sufficient storage to hold a cursor. The BtCursor object is opaque
3101** to users so they cannot do the sizeof() themselves - they must call
3102** this routine.
3103*/
3104int sqlite3BtreeCursorSize(void){
danielk1977cd3e8f72008-03-25 09:47:35 +00003105 return sizeof(BtCursor);
3106}
3107
drh7f751222009-03-17 22:33:00 +00003108/*
3109** Set the cached rowid value of every cursor in the same database file
3110** as pCur and having the same root page number as pCur. The value is
3111** set to iRowid.
3112**
3113** Only positive rowid values are considered valid for this cache.
3114** The cache is initialized to zero, indicating an invalid cache.
3115** A btree will work fine with zero or negative rowids. We just cannot
3116** cache zero or negative rowids, which means tables that use zero or
3117** negative rowids might run a little slower. But in practice, zero
3118** or negative rowids are very uncommon so this should not be a problem.
3119*/
3120void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3121 BtCursor *p;
3122 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3123 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3124 }
3125 assert( pCur->cachedRowid==iRowid );
3126}
drhd677b3d2007-08-20 22:48:41 +00003127
drh7f751222009-03-17 22:33:00 +00003128/*
3129** Return the cached rowid for the given cursor. A negative or zero
3130** return value indicates that the rowid cache is invalid and should be
3131** ignored. If the rowid cache has never before been set, then a
3132** zero is returned.
3133*/
3134sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3135 return pCur->cachedRowid;
3136}
drha059ad02001-04-17 20:09:11 +00003137
3138/*
drh5e00f6c2001-09-13 13:46:56 +00003139** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003140** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003141*/
drh3aac2dd2004-04-26 14:10:20 +00003142int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003143 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003144 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003145 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003146 BtShared *pBt = pCur->pBt;
3147 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003148 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003149 if( pCur->pPrev ){
3150 pCur->pPrev->pNext = pCur->pNext;
3151 }else{
3152 pBt->pCursor = pCur->pNext;
3153 }
3154 if( pCur->pNext ){
3155 pCur->pNext->pPrev = pCur->pPrev;
3156 }
danielk197771d5d2c2008-09-29 11:49:47 +00003157 for(i=0; i<=pCur->iPage; i++){
3158 releasePage(pCur->apPage[i]);
3159 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003160 unlockBtreeIfUnused(pBt);
3161 invalidateOverflowCache(pCur);
3162 /* sqlite3_free(pCur); */
3163 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003164 }
drh8c42ca92001-06-22 19:15:00 +00003165 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003166}
3167
drh7e3b0a02001-04-28 16:52:40 +00003168/*
drh5e2f8b92001-05-28 00:41:15 +00003169** Make a temporary cursor by filling in the fields of pTempCur.
3170** The temporary cursor is not on the cursor list for the Btree.
3171*/
drh16a9b832007-05-05 18:39:25 +00003172void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003173 int i;
drh1fee73e2007-08-29 04:00:57 +00003174 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003175 memcpy(pTempCur, pCur, sizeof(BtCursor));
drh5e2f8b92001-05-28 00:41:15 +00003176 pTempCur->pNext = 0;
3177 pTempCur->pPrev = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003178 for(i=0; i<=pTempCur->iPage; i++){
3179 sqlite3PagerRef(pTempCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003180 }
danielk197736e20932008-11-26 07:40:30 +00003181 assert( pTempCur->pKey==0 );
drh5e2f8b92001-05-28 00:41:15 +00003182}
3183
3184/*
drhbd03cae2001-06-02 02:40:57 +00003185** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00003186** function above.
3187*/
drh16a9b832007-05-05 18:39:25 +00003188void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003189 int i;
drh1fee73e2007-08-29 04:00:57 +00003190 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003191 for(i=0; i<=pCur->iPage; i++){
3192 sqlite3PagerUnref(pCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003193 }
danielk197736e20932008-11-26 07:40:30 +00003194 sqlite3_free(pCur->pKey);
drh5e2f8b92001-05-28 00:41:15 +00003195}
3196
drh7f751222009-03-17 22:33:00 +00003197
3198
drh5e2f8b92001-05-28 00:41:15 +00003199/*
drh86057612007-06-26 01:04:48 +00003200** Make sure the BtCursor* given in the argument has a valid
3201** BtCursor.info structure. If it is not already valid, call
danielk19771cc5ed82007-05-16 17:28:43 +00003202** sqlite3BtreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003203**
3204** BtCursor.info is a cache of the information in the current cell.
drh16a9b832007-05-05 18:39:25 +00003205** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
drh86057612007-06-26 01:04:48 +00003206**
3207** 2007-06-25: There is a bug in some versions of MSVC that cause the
3208** compiler to crash when getCellInfo() is implemented as a macro.
3209** But there is a measureable speed advantage to using the macro on gcc
3210** (when less compiler optimizations like -Os or -O0 are used and the
3211** compiler is not doing agressive inlining.) So we use a real function
3212** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003213*/
drh9188b382004-05-14 21:12:22 +00003214#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003215 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003216 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003217 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003218 memset(&info, 0, sizeof(info));
danielk197771d5d2c2008-09-29 11:49:47 +00003219 sqlite3BtreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003220 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003221 }
danielk19771cc5ed82007-05-16 17:28:43 +00003222#else
3223 #define assertCellInfo(x)
3224#endif
drh86057612007-06-26 01:04:48 +00003225#ifdef _MSC_VER
3226 /* Use a real function in MSVC to work around bugs in that compiler. */
3227 static void getCellInfo(BtCursor *pCur){
3228 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003229 int iPage = pCur->iPage;
3230 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003231 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003232 }else{
3233 assertCellInfo(pCur);
3234 }
3235 }
3236#else /* if not _MSC_VER */
3237 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003238#define getCellInfo(pCur) \
3239 if( pCur->info.nSize==0 ){ \
3240 int iPage = pCur->iPage; \
3241 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3242 pCur->validNKey = 1; \
3243 }else{ \
3244 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003245 }
3246#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003247
3248/*
drh3aac2dd2004-04-26 14:10:20 +00003249** Set *pSize to the size of the buffer needed to hold the value of
3250** the key for the current entry. If the cursor is not pointing
3251** to a valid entry, *pSize is set to 0.
3252**
drh4b70f112004-05-02 21:12:19 +00003253** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003254** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00003255*/
drh4a1c3802004-05-12 15:15:47 +00003256int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003257 int rc;
3258
drh1fee73e2007-08-29 04:00:57 +00003259 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003260 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003261 if( rc==SQLITE_OK ){
3262 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3263 if( pCur->eState==CURSOR_INVALID ){
3264 *pSize = 0;
3265 }else{
drh86057612007-06-26 01:04:48 +00003266 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003267 *pSize = pCur->info.nKey;
3268 }
drh72f82862001-05-24 21:06:34 +00003269 }
danielk1977da184232006-01-05 11:34:32 +00003270 return rc;
drha059ad02001-04-17 20:09:11 +00003271}
drh2af926b2001-05-15 00:39:25 +00003272
drh72f82862001-05-24 21:06:34 +00003273/*
drh0e1c19e2004-05-11 00:58:56 +00003274** Set *pSize to the number of bytes of data in the entry the
3275** cursor currently points to. Always return SQLITE_OK.
3276** Failure is not possible. If the cursor is not currently
3277** pointing to an entry (which can happen, for example, if
3278** the database is empty) then *pSize is set to 0.
3279*/
3280int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003281 int rc;
3282
drh1fee73e2007-08-29 04:00:57 +00003283 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003284 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003285 if( rc==SQLITE_OK ){
3286 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3287 if( pCur->eState==CURSOR_INVALID ){
3288 /* Not pointing at a valid entry - set *pSize to 0. */
3289 *pSize = 0;
3290 }else{
drh86057612007-06-26 01:04:48 +00003291 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003292 *pSize = pCur->info.nData;
3293 }
drh0e1c19e2004-05-11 00:58:56 +00003294 }
danielk1977da184232006-01-05 11:34:32 +00003295 return rc;
drh0e1c19e2004-05-11 00:58:56 +00003296}
3297
3298/*
danielk1977d04417962007-05-02 13:16:30 +00003299** Given the page number of an overflow page in the database (parameter
3300** ovfl), this function finds the page number of the next page in the
3301** linked list of overflow pages. If possible, it uses the auto-vacuum
3302** pointer-map data instead of reading the content of page ovfl to do so.
3303**
3304** If an error occurs an SQLite error code is returned. Otherwise:
3305**
danielk1977bea2a942009-01-20 17:06:27 +00003306** The page number of the next overflow page in the linked list is
3307** written to *pPgnoNext. If page ovfl is the last page in its linked
3308** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003309**
danielk1977bea2a942009-01-20 17:06:27 +00003310** If ppPage is not NULL, and a reference to the MemPage object corresponding
3311** to page number pOvfl was obtained, then *ppPage is set to point to that
3312** reference. It is the responsibility of the caller to call releasePage()
3313** on *ppPage to free the reference. In no reference was obtained (because
3314** the pointer-map was used to obtain the value for *pPgnoNext), then
3315** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003316*/
3317static int getOverflowPage(
3318 BtShared *pBt,
3319 Pgno ovfl, /* Overflow page */
danielk1977bea2a942009-01-20 17:06:27 +00003320 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003321 Pgno *pPgnoNext /* OUT: Next overflow page number */
3322){
3323 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003324 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003325 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003326
drh1fee73e2007-08-29 04:00:57 +00003327 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003328 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003329
3330#ifndef SQLITE_OMIT_AUTOVACUUM
3331 /* Try to find the next page in the overflow list using the
3332 ** autovacuum pointer-map pages. Guess that the next page in
3333 ** the overflow list is page number (ovfl+1). If that guess turns
3334 ** out to be wrong, fall back to loading the data of page
3335 ** number ovfl to determine the next page number.
3336 */
3337 if( pBt->autoVacuum ){
3338 Pgno pgno;
3339 Pgno iGuess = ovfl+1;
3340 u8 eType;
3341
3342 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3343 iGuess++;
3344 }
3345
danielk197789d40042008-11-17 14:20:56 +00003346 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003347 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003348 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003349 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003350 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003351 }
3352 }
3353 }
3354#endif
3355
danielk1977bea2a942009-01-20 17:06:27 +00003356 if( rc==SQLITE_OK ){
3357 rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d04417962007-05-02 13:16:30 +00003358 assert(rc==SQLITE_OK || pPage==0);
3359 if( next==0 && rc==SQLITE_OK ){
3360 next = get4byte(pPage->aData);
3361 }
danielk1977443c0592009-01-16 15:21:05 +00003362 }
danielk197745d68822009-01-16 16:23:38 +00003363
danielk1977bea2a942009-01-20 17:06:27 +00003364 *pPgnoNext = next;
3365 if( ppPage ){
3366 *ppPage = pPage;
3367 }else{
3368 releasePage(pPage);
3369 }
3370 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003371}
3372
danielk1977da107192007-05-04 08:32:13 +00003373/*
3374** Copy data from a buffer to a page, or from a page to a buffer.
3375**
3376** pPayload is a pointer to data stored on database page pDbPage.
3377** If argument eOp is false, then nByte bytes of data are copied
3378** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3379** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3380** of data are copied from the buffer pBuf to pPayload.
3381**
3382** SQLITE_OK is returned on success, otherwise an error code.
3383*/
3384static int copyPayload(
3385 void *pPayload, /* Pointer to page data */
3386 void *pBuf, /* Pointer to buffer */
3387 int nByte, /* Number of bytes to copy */
3388 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3389 DbPage *pDbPage /* Page containing pPayload */
3390){
3391 if( eOp ){
3392 /* Copy data from buffer to page (a write operation) */
3393 int rc = sqlite3PagerWrite(pDbPage);
3394 if( rc!=SQLITE_OK ){
3395 return rc;
3396 }
3397 memcpy(pPayload, pBuf, nByte);
3398 }else{
3399 /* Copy data from page to buffer (a read operation) */
3400 memcpy(pBuf, pPayload, nByte);
3401 }
3402 return SQLITE_OK;
3403}
danielk1977d04417962007-05-02 13:16:30 +00003404
3405/*
danielk19779f8d6402007-05-02 17:48:45 +00003406** This function is used to read or overwrite payload information
3407** for the entry that the pCur cursor is pointing to. If the eOp
3408** parameter is 0, this is a read operation (data copied into
3409** buffer pBuf). If it is non-zero, a write (data copied from
3410** buffer pBuf).
3411**
3412** A total of "amt" bytes are read or written beginning at "offset".
3413** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003414**
3415** This routine does not make a distinction between key and data.
danielk19779f8d6402007-05-02 17:48:45 +00003416** It just reads or writes bytes from the payload area. Data might
3417** appear on the main page or be scattered out on multiple overflow
3418** pages.
danielk1977da107192007-05-04 08:32:13 +00003419**
danielk1977dcbb5d32007-05-04 18:36:44 +00003420** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003421** cursor entry uses one or more overflow pages, this function
3422** allocates space for and lazily popluates the overflow page-list
3423** cache array (BtCursor.aOverflow). Subsequent calls use this
3424** cache to make seeking to the supplied offset more efficient.
3425**
3426** Once an overflow page-list cache has been allocated, it may be
3427** invalidated if some other cursor writes to the same table, or if
3428** the cursor is moved to a different row. Additionally, in auto-vacuum
3429** mode, the following events may invalidate an overflow page-list cache.
3430**
3431** * An incremental vacuum,
3432** * A commit in auto_vacuum="full" mode,
3433** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003434*/
danielk19779f8d6402007-05-02 17:48:45 +00003435static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003436 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003437 u32 offset, /* Begin reading this far into payload */
3438 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003439 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003440 int skipKey, /* offset begins at data if this is true */
3441 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003442){
3443 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003444 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003445 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003446 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003447 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003448 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003449
danielk1977da107192007-05-04 08:32:13 +00003450 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003451 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003452 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003453 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003454
drh86057612007-06-26 01:04:48 +00003455 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003456 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003457 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003458
drh3aac2dd2004-04-26 14:10:20 +00003459 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003460 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00003461 }
danielk19770d065412008-11-12 18:21:36 +00003462 if( offset+amt > nKey+pCur->info.nData
3463 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3464 ){
danielk1977da107192007-05-04 08:32:13 +00003465 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003466 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003467 }
danielk1977da107192007-05-04 08:32:13 +00003468
3469 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003470 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003471 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003472 if( a+offset>pCur->info.nLocal ){
3473 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003474 }
danielk1977da107192007-05-04 08:32:13 +00003475 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003476 offset = 0;
drha34b6762004-05-07 13:30:42 +00003477 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003478 amt -= a;
drhdd793422001-06-28 01:54:48 +00003479 }else{
drhfa1a98a2004-05-14 19:08:17 +00003480 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003481 }
danielk1977da107192007-05-04 08:32:13 +00003482
3483 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003484 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003485 Pgno nextPage;
3486
drhfa1a98a2004-05-14 19:08:17 +00003487 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003488
danielk19772dec9702007-05-02 16:48:37 +00003489#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003490 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003491 ** has not been allocated, allocate it now. The array is sized at
3492 ** one entry for each overflow page in the overflow chain. The
3493 ** page number of the first overflow page is stored in aOverflow[0],
3494 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3495 ** (the cache is lazily populated).
3496 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003497 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003498 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003499 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
danielk19772dec9702007-05-02 16:48:37 +00003500 if( nOvfl && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003501 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003502 }
3503 }
danielk1977da107192007-05-04 08:32:13 +00003504
3505 /* If the overflow page-list cache has been allocated and the
3506 ** entry for the first required overflow page is valid, skip
3507 ** directly to it.
3508 */
danielk19772dec9702007-05-02 16:48:37 +00003509 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3510 iIdx = (offset/ovflSize);
3511 nextPage = pCur->aOverflow[iIdx];
3512 offset = (offset%ovflSize);
3513 }
3514#endif
danielk1977da107192007-05-04 08:32:13 +00003515
3516 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3517
3518#ifndef SQLITE_OMIT_INCRBLOB
3519 /* If required, populate the overflow page-list cache. */
3520 if( pCur->aOverflow ){
3521 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3522 pCur->aOverflow[iIdx] = nextPage;
3523 }
3524#endif
3525
danielk1977d04417962007-05-02 13:16:30 +00003526 if( offset>=ovflSize ){
3527 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003528 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003529 ** data is not required. So first try to lookup the overflow
3530 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003531 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003532 */
danielk19772dec9702007-05-02 16:48:37 +00003533#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003534 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3535 nextPage = pCur->aOverflow[iIdx+1];
3536 } else
danielk19772dec9702007-05-02 16:48:37 +00003537#endif
danielk1977da107192007-05-04 08:32:13 +00003538 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003539 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003540 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003541 /* Need to read this page properly. It contains some of the
3542 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003543 */
3544 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003545 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003546 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003547 if( rc==SQLITE_OK ){
3548 aPayload = sqlite3PagerGetData(pDbPage);
3549 nextPage = get4byte(aPayload);
3550 if( a + offset > ovflSize ){
3551 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003552 }
danielk1977da107192007-05-04 08:32:13 +00003553 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3554 sqlite3PagerUnref(pDbPage);
3555 offset = 0;
3556 amt -= a;
3557 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003558 }
danielk1977cfe9a692004-06-16 12:00:29 +00003559 }
drh2af926b2001-05-15 00:39:25 +00003560 }
drh2af926b2001-05-15 00:39:25 +00003561 }
danielk1977cfe9a692004-06-16 12:00:29 +00003562
danielk1977da107192007-05-04 08:32:13 +00003563 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003564 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003565 }
danielk1977da107192007-05-04 08:32:13 +00003566 return rc;
drh2af926b2001-05-15 00:39:25 +00003567}
3568
drh72f82862001-05-24 21:06:34 +00003569/*
drh3aac2dd2004-04-26 14:10:20 +00003570** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003571** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003572** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003573**
drh3aac2dd2004-04-26 14:10:20 +00003574** Return SQLITE_OK on success or an error code if anything goes
3575** wrong. An error is returned if "offset+amt" is larger than
3576** the available payload.
drh72f82862001-05-24 21:06:34 +00003577*/
drha34b6762004-05-07 13:30:42 +00003578int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003579 int rc;
3580
drh1fee73e2007-08-29 04:00:57 +00003581 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003582 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003583 if( rc==SQLITE_OK ){
3584 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003585 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3586 if( pCur->apPage[0]->intKey ){
danielk1977da184232006-01-05 11:34:32 +00003587 return SQLITE_CORRUPT_BKPT;
3588 }
danielk197771d5d2c2008-09-29 11:49:47 +00003589 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003590 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
drh6575a222005-03-10 17:06:34 +00003591 }
danielk1977da184232006-01-05 11:34:32 +00003592 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003593}
3594
3595/*
drh3aac2dd2004-04-26 14:10:20 +00003596** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003597** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003598** begins at "offset".
3599**
3600** Return SQLITE_OK on success or an error code if anything goes
3601** wrong. An error is returned if "offset+amt" is larger than
3602** the available payload.
drh72f82862001-05-24 21:06:34 +00003603*/
drh3aac2dd2004-04-26 14:10:20 +00003604int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003605 int rc;
3606
danielk19773588ceb2008-06-10 17:30:26 +00003607#ifndef SQLITE_OMIT_INCRBLOB
3608 if ( pCur->eState==CURSOR_INVALID ){
3609 return SQLITE_ABORT;
3610 }
3611#endif
3612
drh1fee73e2007-08-29 04:00:57 +00003613 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003614 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003615 if( rc==SQLITE_OK ){
3616 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003617 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3618 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003619 rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
danielk1977da184232006-01-05 11:34:32 +00003620 }
3621 return rc;
drh2af926b2001-05-15 00:39:25 +00003622}
3623
drh72f82862001-05-24 21:06:34 +00003624/*
drh0e1c19e2004-05-11 00:58:56 +00003625** Return a pointer to payload information from the entry that the
3626** pCur cursor is pointing to. The pointer is to the beginning of
3627** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003628** skipKey==1. The number of bytes of available key/data is written
3629** into *pAmt. If *pAmt==0, then the value returned will not be
3630** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003631**
3632** This routine is an optimization. It is common for the entire key
3633** and data to fit on the local page and for there to be no overflow
3634** pages. When that is so, this routine can be used to access the
3635** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003636** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003637** the key/data and copy it into a preallocated buffer.
3638**
3639** The pointer returned by this routine looks directly into the cached
3640** page of the database. The data might change or move the next time
3641** any btree routine is called.
3642*/
3643static const unsigned char *fetchPayload(
3644 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003645 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003646 int skipKey /* read beginning at data if this is true */
3647){
3648 unsigned char *aPayload;
3649 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003650 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003651 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003652
danielk197771d5d2c2008-09-29 11:49:47 +00003653 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003654 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003655 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003656 pPage = pCur->apPage[pCur->iPage];
3657 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh86057612007-06-26 01:04:48 +00003658 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003659 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003660 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003661 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003662 nKey = 0;
3663 }else{
drhf49661a2008-12-10 16:45:50 +00003664 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003665 }
drh0e1c19e2004-05-11 00:58:56 +00003666 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003667 aPayload += nKey;
3668 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003669 }else{
drhfa1a98a2004-05-14 19:08:17 +00003670 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003671 if( nLocal>nKey ){
3672 nLocal = nKey;
3673 }
drh0e1c19e2004-05-11 00:58:56 +00003674 }
drhe51c44f2004-05-30 20:46:09 +00003675 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003676 return aPayload;
3677}
3678
3679
3680/*
drhe51c44f2004-05-30 20:46:09 +00003681** For the entry that cursor pCur is point to, return as
3682** many bytes of the key or data as are available on the local
3683** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003684**
3685** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003686** or be destroyed on the next call to any Btree routine,
3687** including calls from other threads against the same cache.
3688** Hence, a mutex on the BtShared should be held prior to calling
3689** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003690**
3691** These routines is used to get quick access to key and data
3692** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003693*/
drhe51c44f2004-05-30 20:46:09 +00003694const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drh1fee73e2007-08-29 04:00:57 +00003695 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003696 if( pCur->eState==CURSOR_VALID ){
3697 return (const void*)fetchPayload(pCur, pAmt, 0);
3698 }
3699 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003700}
drhe51c44f2004-05-30 20:46:09 +00003701const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drh1fee73e2007-08-29 04:00:57 +00003702 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003703 if( pCur->eState==CURSOR_VALID ){
3704 return (const void*)fetchPayload(pCur, pAmt, 1);
3705 }
3706 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003707}
3708
3709
3710/*
drh8178a752003-01-05 21:41:40 +00003711** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003712** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003713*/
drh3aac2dd2004-04-26 14:10:20 +00003714static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003715 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003716 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003717 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003718 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003719
drh1fee73e2007-08-29 04:00:57 +00003720 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003721 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003722 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3723 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3724 return SQLITE_CORRUPT_BKPT;
3725 }
3726 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003727 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003728 pCur->apPage[i+1] = pNewPage;
3729 pCur->aiIdx[i+1] = 0;
3730 pCur->iPage++;
3731
drh271efa52004-05-30 19:19:05 +00003732 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003733 pCur->validNKey = 0;
drh4be295b2003-12-16 03:44:47 +00003734 if( pNewPage->nCell<1 ){
drh49285702005-09-17 15:20:26 +00003735 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003736 }
drh72f82862001-05-24 21:06:34 +00003737 return SQLITE_OK;
3738}
3739
danielk1977bf93c562008-09-29 15:53:25 +00003740#ifndef NDEBUG
3741/*
3742** Page pParent is an internal (non-leaf) tree page. This function
3743** asserts that page number iChild is the left-child if the iIdx'th
3744** cell in page pParent. Or, if iIdx is equal to the total number of
3745** cells in pParent, that page number iChild is the right-child of
3746** the page.
3747*/
3748static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
3749 assert( iIdx<=pParent->nCell );
3750 if( iIdx==pParent->nCell ){
3751 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
3752 }else{
3753 assert( get4byte(findCell(pParent, iIdx))==iChild );
3754 }
3755}
3756#else
3757# define assertParentIndex(x,y,z)
3758#endif
3759
drh72f82862001-05-24 21:06:34 +00003760/*
drh5e2f8b92001-05-28 00:41:15 +00003761** Move the cursor up to the parent page.
3762**
3763** pCur->idx is set to the cell index that contains the pointer
3764** to the page we are coming from. If we are coming from the
3765** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003766** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003767*/
drh16a9b832007-05-05 18:39:25 +00003768void sqlite3BtreeMoveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00003769 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003770 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003771 assert( pCur->iPage>0 );
3772 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00003773 assertParentIndex(
3774 pCur->apPage[pCur->iPage-1],
3775 pCur->aiIdx[pCur->iPage-1],
3776 pCur->apPage[pCur->iPage]->pgno
3777 );
danielk197771d5d2c2008-09-29 11:49:47 +00003778 releasePage(pCur->apPage[pCur->iPage]);
3779 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00003780 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003781 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00003782}
3783
3784/*
3785** Move the cursor to the root page
3786*/
drh5e2f8b92001-05-28 00:41:15 +00003787static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00003788 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00003789 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003790 Btree *p = pCur->pBtree;
3791 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00003792
drh1fee73e2007-08-29 04:00:57 +00003793 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00003794 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
3795 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
3796 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
3797 if( pCur->eState>=CURSOR_REQUIRESEEK ){
3798 if( pCur->eState==CURSOR_FAULT ){
3799 return pCur->skip;
3800 }
danielk1977be51a652008-10-08 17:58:48 +00003801 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00003802 }
danielk197771d5d2c2008-09-29 11:49:47 +00003803
3804 if( pCur->iPage>=0 ){
3805 int i;
3806 for(i=1; i<=pCur->iPage; i++){
3807 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00003808 }
drh777e4c42006-01-13 04:31:58 +00003809 }else{
3810 if(
danielk197771d5d2c2008-09-29 11:49:47 +00003811 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]))
drh777e4c42006-01-13 04:31:58 +00003812 ){
3813 pCur->eState = CURSOR_INVALID;
3814 return rc;
3815 }
drhc39e0002004-05-07 23:50:57 +00003816 }
danielk197771d5d2c2008-09-29 11:49:47 +00003817
3818 pRoot = pCur->apPage[0];
3819 assert( pRoot->pgno==pCur->pgnoRoot );
3820 pCur->iPage = 0;
3821 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00003822 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003823 pCur->atLast = 0;
3824 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003825
drh8856d6a2004-04-29 14:42:46 +00003826 if( pRoot->nCell==0 && !pRoot->leaf ){
3827 Pgno subpage;
3828 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00003829 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00003830 assert( subpage>0 );
danielk1977da184232006-01-05 11:34:32 +00003831 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00003832 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00003833 }else{
3834 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00003835 }
3836 return rc;
drh72f82862001-05-24 21:06:34 +00003837}
drh2af926b2001-05-15 00:39:25 +00003838
drh5e2f8b92001-05-28 00:41:15 +00003839/*
3840** Move the cursor down to the left-most leaf entry beneath the
3841** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00003842**
3843** The left-most leaf is the one with the smallest key - the first
3844** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00003845*/
3846static int moveToLeftmost(BtCursor *pCur){
3847 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00003848 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00003849 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00003850
drh1fee73e2007-08-29 04:00:57 +00003851 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003852 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003853 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
3854 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
3855 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00003856 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00003857 }
drhd677b3d2007-08-20 22:48:41 +00003858 return rc;
drh5e2f8b92001-05-28 00:41:15 +00003859}
3860
drh2dcc9aa2002-12-04 13:40:25 +00003861/*
3862** Move the cursor down to the right-most leaf entry beneath the
3863** page to which it is currently pointing. Notice the difference
3864** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
3865** finds the left-most entry beneath the *entry* whereas moveToRightmost()
3866** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00003867**
3868** The right-most entry is the one with the largest key - the last
3869** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00003870*/
3871static int moveToRightmost(BtCursor *pCur){
3872 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00003873 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00003874 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00003875
drh1fee73e2007-08-29 04:00:57 +00003876 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003877 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003878 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00003879 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00003880 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00003881 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00003882 }
drhd677b3d2007-08-20 22:48:41 +00003883 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00003884 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00003885 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003886 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00003887 }
danielk1977518002e2008-09-05 05:02:46 +00003888 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00003889}
3890
drh5e00f6c2001-09-13 13:46:56 +00003891/* Move the cursor to the first entry in the table. Return SQLITE_OK
3892** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003893** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00003894*/
drh3aac2dd2004-04-26 14:10:20 +00003895int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00003896 int rc;
drhd677b3d2007-08-20 22:48:41 +00003897
drh1fee73e2007-08-29 04:00:57 +00003898 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003899 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00003900 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003901 if( rc==SQLITE_OK ){
3902 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00003903 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00003904 *pRes = 1;
3905 rc = SQLITE_OK;
3906 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00003907 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00003908 *pRes = 0;
3909 rc = moveToLeftmost(pCur);
3910 }
drh5e00f6c2001-09-13 13:46:56 +00003911 }
drh5e00f6c2001-09-13 13:46:56 +00003912 return rc;
3913}
drh5e2f8b92001-05-28 00:41:15 +00003914
drh9562b552002-02-19 15:00:07 +00003915/* Move the cursor to the last entry in the table. Return SQLITE_OK
3916** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003917** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00003918*/
drh3aac2dd2004-04-26 14:10:20 +00003919int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00003920 int rc;
drhd677b3d2007-08-20 22:48:41 +00003921
drh1fee73e2007-08-29 04:00:57 +00003922 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003923 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh9562b552002-02-19 15:00:07 +00003924 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003925 if( rc==SQLITE_OK ){
3926 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00003927 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00003928 *pRes = 1;
3929 }else{
3930 assert( pCur->eState==CURSOR_VALID );
3931 *pRes = 0;
3932 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00003933 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00003934 }
drh9562b552002-02-19 15:00:07 +00003935 }
drh9562b552002-02-19 15:00:07 +00003936 return rc;
3937}
3938
drhe14006d2008-03-25 17:23:32 +00003939/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00003940** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00003941**
drhe63d9992008-08-13 19:11:48 +00003942** For INTKEY tables, the intKey parameter is used. pIdxKey
3943** must be NULL. For index tables, pIdxKey is used and intKey
3944** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00003945**
drh5e2f8b92001-05-28 00:41:15 +00003946** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00003947** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00003948** were present. The cursor might point to an entry that comes
3949** before or after the key.
3950**
drh64022502009-01-09 14:11:04 +00003951** An integer is written into *pRes which is the result of
3952** comparing the key with the entry to which the cursor is
3953** pointing. The meaning of the integer written into
3954** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00003955**
3956** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00003957** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00003958** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00003959**
3960** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00003961** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00003962**
3963** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00003964** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00003965**
drha059ad02001-04-17 20:09:11 +00003966*/
drhe63d9992008-08-13 19:11:48 +00003967int sqlite3BtreeMovetoUnpacked(
3968 BtCursor *pCur, /* The cursor to be moved */
3969 UnpackedRecord *pIdxKey, /* Unpacked index key */
3970 i64 intKey, /* The table key */
3971 int biasRight, /* If true, bias the search to the high end */
3972 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00003973){
drh72f82862001-05-24 21:06:34 +00003974 int rc;
drhd677b3d2007-08-20 22:48:41 +00003975
drh1fee73e2007-08-29 04:00:57 +00003976 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003977 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drha2c20e42008-03-29 16:01:04 +00003978
3979 /* If the cursor is already positioned at the point we are trying
3980 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00003981 if( pCur->eState==CURSOR_VALID && pCur->validNKey
3982 && pCur->apPage[0]->intKey
3983 ){
drhe63d9992008-08-13 19:11:48 +00003984 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00003985 *pRes = 0;
3986 return SQLITE_OK;
3987 }
drhe63d9992008-08-13 19:11:48 +00003988 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00003989 *pRes = -1;
3990 return SQLITE_OK;
3991 }
3992 }
3993
drh5e2f8b92001-05-28 00:41:15 +00003994 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003995 if( rc ){
3996 return rc;
3997 }
danielk197771d5d2c2008-09-29 11:49:47 +00003998 assert( pCur->apPage[pCur->iPage] );
3999 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977da184232006-01-05 11:34:32 +00004000 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004001 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004002 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004003 return SQLITE_OK;
4004 }
danielk197771d5d2c2008-09-29 11:49:47 +00004005 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004006 for(;;){
drh72f82862001-05-24 21:06:34 +00004007 int lwr, upr;
4008 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004009 MemPage *pPage = pCur->apPage[pCur->iPage];
drh1a844c32002-12-04 22:29:28 +00004010 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00004011 lwr = 0;
4012 upr = pPage->nCell-1;
drh64022502009-01-09 14:11:04 +00004013 if( (!pPage->intKey && pIdxKey==0) || upr<0 ){
drh1e968a02008-03-25 00:22:21 +00004014 rc = SQLITE_CORRUPT_BKPT;
4015 goto moveto_finish;
drh4eec4c12005-01-21 00:22:37 +00004016 }
drhe4d90812007-03-29 05:51:49 +00004017 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004018 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004019 }else{
drhf49661a2008-12-10 16:45:50 +00004020 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004021 }
drh64022502009-01-09 14:11:04 +00004022 for(;;){
danielk197713adf8a2004-06-03 16:08:41 +00004023 void *pCellKey;
drh4a1c3802004-05-12 15:15:47 +00004024 i64 nCellKey;
danielk197771d5d2c2008-09-29 11:49:47 +00004025 int idx = pCur->aiIdx[pCur->iPage];
drh366fda62006-01-13 02:35:09 +00004026 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004027 pCur->validNKey = 1;
drh3aac2dd2004-04-26 14:10:20 +00004028 if( pPage->intKey ){
drh777e4c42006-01-13 04:31:58 +00004029 u8 *pCell;
danielk197771d5d2c2008-09-29 11:49:47 +00004030 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drhd172f862006-01-12 15:01:15 +00004031 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004032 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004033 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004034 }
drha2c20e42008-03-29 16:01:04 +00004035 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004036 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004037 c = 0;
drhe63d9992008-08-13 19:11:48 +00004038 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004039 c = -1;
4040 }else{
drhe63d9992008-08-13 19:11:48 +00004041 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004042 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004043 }
drh3aac2dd2004-04-26 14:10:20 +00004044 }else{
drhe51c44f2004-05-30 20:46:09 +00004045 int available;
danielk197713adf8a2004-06-03 16:08:41 +00004046 pCellKey = (void *)fetchPayload(pCur, &available, 0);
drh366fda62006-01-13 02:35:09 +00004047 nCellKey = pCur->info.nKey;
drhe51c44f2004-05-30 20:46:09 +00004048 if( available>=nCellKey ){
drhf49661a2008-12-10 16:45:50 +00004049 c = sqlite3VdbeRecordCompare((int)nCellKey, pCellKey, pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004050 }else{
drhf49661a2008-12-10 16:45:50 +00004051 pCellKey = sqlite3Malloc( (int)nCellKey );
danielk19776507ecb2008-03-25 09:56:44 +00004052 if( pCellKey==0 ){
4053 rc = SQLITE_NOMEM;
4054 goto moveto_finish;
4055 }
drhf49661a2008-12-10 16:45:50 +00004056 rc = sqlite3BtreeKey(pCur, 0, (int)nCellKey, (void*)pCellKey);
drh1bd10f82008-12-10 21:19:56 +00004057 c = sqlite3VdbeRecordCompare((int)nCellKey, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004058 sqlite3_free(pCellKey);
drh1e968a02008-03-25 00:22:21 +00004059 if( rc ) goto moveto_finish;
drhe51c44f2004-05-30 20:46:09 +00004060 }
drh3aac2dd2004-04-26 14:10:20 +00004061 }
drh72f82862001-05-24 21:06:34 +00004062 if( c==0 ){
drha2c20e42008-03-29 16:01:04 +00004063 pCur->info.nKey = nCellKey;
drh44845222008-07-17 18:39:57 +00004064 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004065 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004066 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004067 break;
4068 }else{
drh64022502009-01-09 14:11:04 +00004069 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004070 rc = SQLITE_OK;
4071 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004072 }
drh72f82862001-05-24 21:06:34 +00004073 }
4074 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004075 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004076 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004077 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004078 }
drhf1d68b32007-03-29 04:43:26 +00004079 if( lwr>upr ){
drha2c20e42008-03-29 16:01:04 +00004080 pCur->info.nKey = nCellKey;
drhf1d68b32007-03-29 04:43:26 +00004081 break;
4082 }
drhf49661a2008-12-10 16:45:50 +00004083 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004084 }
4085 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004086 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004087 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004088 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004089 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004090 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004091 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004092 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004093 }
4094 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004095 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh72f82862001-05-24 21:06:34 +00004096 if( pRes ) *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004097 rc = SQLITE_OK;
4098 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004099 }
drhf49661a2008-12-10 16:45:50 +00004100 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004101 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004102 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004103 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004104 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004105 }
drh1e968a02008-03-25 00:22:21 +00004106moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004107 return rc;
4108}
4109
4110/*
4111** In this version of BtreeMoveto, pKey is a packed index record
4112** such as is generated by the OP_MakeRecord opcode. Unpack the
4113** record and then call BtreeMovetoUnpacked() to do the work.
4114*/
4115int sqlite3BtreeMoveto(
4116 BtCursor *pCur, /* Cursor open on the btree to be searched */
4117 const void *pKey, /* Packed key if the btree is an index */
4118 i64 nKey, /* Integer key for tables. Size of pKey for indices */
4119 int bias, /* Bias search to the high end */
4120 int *pRes /* Write search results here */
4121){
4122 int rc; /* Status code */
4123 UnpackedRecord *pIdxKey; /* Unpacked index key */
drh8c5d1522009-04-10 00:56:28 +00004124 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
4125
drhe63d9992008-08-13 19:11:48 +00004126
drhe14006d2008-03-25 17:23:32 +00004127 if( pKey ){
drhf49661a2008-12-10 16:45:50 +00004128 assert( nKey==(i64)(int)nKey );
4129 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
drh23f79d02008-08-20 22:06:47 +00004130 aSpace, sizeof(aSpace));
drhe63d9992008-08-13 19:11:48 +00004131 if( pIdxKey==0 ) return SQLITE_NOMEM;
4132 }else{
4133 pIdxKey = 0;
4134 }
4135 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
4136 if( pKey ){
4137 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
drhe14006d2008-03-25 17:23:32 +00004138 }
drh1e968a02008-03-25 00:22:21 +00004139 return rc;
drh72f82862001-05-24 21:06:34 +00004140}
4141
drhd677b3d2007-08-20 22:48:41 +00004142
drh72f82862001-05-24 21:06:34 +00004143/*
drhc39e0002004-05-07 23:50:57 +00004144** Return TRUE if the cursor is not pointing at an entry of the table.
4145**
4146** TRUE will be returned after a call to sqlite3BtreeNext() moves
4147** past the last entry in the table or sqlite3BtreePrev() moves past
4148** the first entry. TRUE is also returned if the table is empty.
4149*/
4150int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004151 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4152 ** have been deleted? This API will need to change to return an error code
4153 ** as well as the boolean result value.
4154 */
4155 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004156}
4157
4158/*
drhb21c8cd2007-08-21 19:33:56 +00004159** Return the database connection handle for a cursor.
4160*/
4161sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
drhe5fe6902007-12-07 18:55:28 +00004162 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4163 return pCur->pBtree->db;
drhb21c8cd2007-08-21 19:33:56 +00004164}
4165
4166/*
drhbd03cae2001-06-02 02:40:57 +00004167** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004168** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004169** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004170** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004171*/
drhd094db12008-04-03 21:46:57 +00004172int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004173 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004174 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004175 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004176
drh1fee73e2007-08-29 04:00:57 +00004177 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004178 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004179 if( rc!=SQLITE_OK ){
4180 return rc;
4181 }
drh8c4d3a62007-04-06 01:03:32 +00004182 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004183 if( CURSOR_INVALID==pCur->eState ){
4184 *pRes = 1;
4185 return SQLITE_OK;
4186 }
danielk1977da184232006-01-05 11:34:32 +00004187 if( pCur->skip>0 ){
4188 pCur->skip = 0;
4189 *pRes = 0;
4190 return SQLITE_OK;
4191 }
4192 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004193
danielk197771d5d2c2008-09-29 11:49:47 +00004194 pPage = pCur->apPage[pCur->iPage];
4195 idx = ++pCur->aiIdx[pCur->iPage];
4196 assert( pPage->isInit );
4197 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004198
drh271efa52004-05-30 19:19:05 +00004199 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004200 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004201 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004202 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004203 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004204 if( rc ) return rc;
4205 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004206 *pRes = 0;
4207 return rc;
drh72f82862001-05-24 21:06:34 +00004208 }
drh5e2f8b92001-05-28 00:41:15 +00004209 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004210 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004211 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004212 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004213 return SQLITE_OK;
4214 }
drh16a9b832007-05-05 18:39:25 +00004215 sqlite3BtreeMoveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004216 pPage = pCur->apPage[pCur->iPage];
4217 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004218 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004219 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004220 rc = sqlite3BtreeNext(pCur, pRes);
4221 }else{
4222 rc = SQLITE_OK;
4223 }
4224 return rc;
drh8178a752003-01-05 21:41:40 +00004225 }
4226 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004227 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004228 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004229 }
drh5e2f8b92001-05-28 00:41:15 +00004230 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004231 return rc;
drh72f82862001-05-24 21:06:34 +00004232}
drhd677b3d2007-08-20 22:48:41 +00004233
drh72f82862001-05-24 21:06:34 +00004234
drh3b7511c2001-05-26 13:15:44 +00004235/*
drh2dcc9aa2002-12-04 13:40:25 +00004236** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004237** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004238** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004239** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004240*/
drhd094db12008-04-03 21:46:57 +00004241int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004242 int rc;
drh8178a752003-01-05 21:41:40 +00004243 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004244
drh1fee73e2007-08-29 04:00:57 +00004245 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004246 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004247 if( rc!=SQLITE_OK ){
4248 return rc;
4249 }
drha2c20e42008-03-29 16:01:04 +00004250 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004251 if( CURSOR_INVALID==pCur->eState ){
4252 *pRes = 1;
4253 return SQLITE_OK;
4254 }
danielk1977da184232006-01-05 11:34:32 +00004255 if( pCur->skip<0 ){
4256 pCur->skip = 0;
4257 *pRes = 0;
4258 return SQLITE_OK;
4259 }
4260 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004261
danielk197771d5d2c2008-09-29 11:49:47 +00004262 pPage = pCur->apPage[pCur->iPage];
4263 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004264 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004265 int idx = pCur->aiIdx[pCur->iPage];
4266 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004267 if( rc ){
4268 return rc;
4269 }
drh2dcc9aa2002-12-04 13:40:25 +00004270 rc = moveToRightmost(pCur);
4271 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004272 while( pCur->aiIdx[pCur->iPage]==0 ){
4273 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004274 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004275 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004276 return SQLITE_OK;
4277 }
drh16a9b832007-05-05 18:39:25 +00004278 sqlite3BtreeMoveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004279 }
drh271efa52004-05-30 19:19:05 +00004280 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004281 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004282
4283 pCur->aiIdx[pCur->iPage]--;
4284 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004285 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004286 rc = sqlite3BtreePrevious(pCur, pRes);
4287 }else{
4288 rc = SQLITE_OK;
4289 }
drh2dcc9aa2002-12-04 13:40:25 +00004290 }
drh8178a752003-01-05 21:41:40 +00004291 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004292 return rc;
4293}
4294
4295/*
drh3b7511c2001-05-26 13:15:44 +00004296** Allocate a new page from the database file.
4297**
danielk19773b8a05f2007-03-19 17:44:26 +00004298** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004299** has already been called on the new page.) The new page has also
4300** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004301** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004302**
4303** SQLITE_OK is returned on success. Any other return value indicates
4304** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004305** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004306**
drh199e3cf2002-07-18 11:01:47 +00004307** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4308** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004309** attempt to keep related pages close to each other in the database file,
4310** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004311**
4312** If the "exact" parameter is not 0, and the page-number nearby exists
4313** anywhere on the free-list, then it is guarenteed to be returned. This
4314** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004315*/
drh4f0c5872007-03-26 22:05:01 +00004316static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004317 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004318 MemPage **ppPage,
4319 Pgno *pPgno,
4320 Pgno nearby,
4321 u8 exact
4322){
drh3aac2dd2004-04-26 14:10:20 +00004323 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004324 int rc;
drh3aac2dd2004-04-26 14:10:20 +00004325 int n; /* Number of pages on the freelist */
4326 int k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004327 MemPage *pTrunk = 0;
4328 MemPage *pPrevTrunk = 0;
drh30e58752002-03-02 20:41:57 +00004329
drh1fee73e2007-08-29 04:00:57 +00004330 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004331 pPage1 = pBt->pPage1;
4332 n = get4byte(&pPage1->aData[36]);
4333 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004334 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004335 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004336 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4337
4338 /* If the 'exact' parameter was true and a query of the pointer-map
4339 ** shows that the page 'nearby' is somewhere on the free-list, then
4340 ** the entire-list will be searched for that page.
4341 */
4342#ifndef SQLITE_OMIT_AUTOVACUUM
danielk197789d40042008-11-17 14:20:56 +00004343 if( exact && nearby<=pagerPagecount(pBt) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004344 u8 eType;
4345 assert( nearby>0 );
4346 assert( pBt->autoVacuum );
4347 rc = ptrmapGet(pBt, nearby, &eType, 0);
4348 if( rc ) return rc;
4349 if( eType==PTRMAP_FREEPAGE ){
4350 searchList = 1;
4351 }
4352 *pPgno = nearby;
4353 }
4354#endif
4355
4356 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4357 ** first free-list trunk page. iPrevTrunk is initially 1.
4358 */
danielk19773b8a05f2007-03-19 17:44:26 +00004359 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004360 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004361 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004362
4363 /* The code within this loop is run only once if the 'searchList' variable
4364 ** is not true. Otherwise, it runs once for each trunk-page on the
4365 ** free-list until the page 'nearby' is located.
4366 */
4367 do {
4368 pPrevTrunk = pTrunk;
4369 if( pPrevTrunk ){
4370 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004371 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004372 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004373 }
drh16a9b832007-05-05 18:39:25 +00004374 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004375 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004376 pTrunk = 0;
4377 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004378 }
4379
4380 k = get4byte(&pTrunk->aData[4]);
4381 if( k==0 && !searchList ){
4382 /* The trunk has no leaves and the list is not being searched.
4383 ** So extract the trunk page itself and use it as the newly
4384 ** allocated page */
4385 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004386 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004387 if( rc ){
4388 goto end_allocate_page;
4389 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004390 *pPgno = iTrunk;
4391 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4392 *ppPage = pTrunk;
4393 pTrunk = 0;
4394 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh45b1fac2008-07-04 17:52:42 +00004395 }else if( k>pBt->usableSize/4 - 2 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004396 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004397 rc = SQLITE_CORRUPT_BKPT;
4398 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004399#ifndef SQLITE_OMIT_AUTOVACUUM
4400 }else if( searchList && nearby==iTrunk ){
4401 /* The list is being searched and this trunk page is the page
4402 ** to allocate, regardless of whether it has leaves.
4403 */
4404 assert( *pPgno==iTrunk );
4405 *ppPage = pTrunk;
4406 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004407 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004408 if( rc ){
4409 goto end_allocate_page;
4410 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004411 if( k==0 ){
4412 if( !pPrevTrunk ){
4413 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4414 }else{
4415 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4416 }
4417 }else{
4418 /* The trunk page is required by the caller but it contains
4419 ** pointers to free-list leaves. The first leaf becomes a trunk
4420 ** page in this case.
4421 */
4422 MemPage *pNewTrunk;
4423 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh16a9b832007-05-05 18:39:25 +00004424 rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004425 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004426 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004427 }
danielk19773b8a05f2007-03-19 17:44:26 +00004428 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004429 if( rc!=SQLITE_OK ){
4430 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004431 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004432 }
4433 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4434 put4byte(&pNewTrunk->aData[4], k-1);
4435 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004436 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004437 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004438 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004439 put4byte(&pPage1->aData[32], iNewTrunk);
4440 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004441 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004442 if( rc ){
4443 goto end_allocate_page;
4444 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004445 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4446 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004447 }
4448 pTrunk = 0;
4449 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4450#endif
4451 }else{
4452 /* Extract a leaf from the trunk */
4453 int closest;
4454 Pgno iPage;
4455 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004456 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004457 if( rc ){
4458 goto end_allocate_page;
4459 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004460 if( nearby>0 ){
4461 int i, dist;
4462 closest = 0;
4463 dist = get4byte(&aData[8]) - nearby;
4464 if( dist<0 ) dist = -dist;
4465 for(i=1; i<k; i++){
4466 int d2 = get4byte(&aData[8+i*4]) - nearby;
4467 if( d2<0 ) d2 = -d2;
4468 if( d2<dist ){
4469 closest = i;
4470 dist = d2;
4471 }
4472 }
4473 }else{
4474 closest = 0;
4475 }
4476
4477 iPage = get4byte(&aData[8+closest*4]);
4478 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004479 int noContent;
danielk197789d40042008-11-17 14:20:56 +00004480 Pgno nPage;
shane1f9e6aa2008-06-09 19:27:11 +00004481 *pPgno = iPage;
danielk197789d40042008-11-17 14:20:56 +00004482 nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004483 if( *pPgno>nPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004484 /* Free page off the end of the file */
danielk197743e377a2008-05-05 12:09:32 +00004485 rc = SQLITE_CORRUPT_BKPT;
4486 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004487 }
4488 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4489 ": %d more free pages\n",
4490 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4491 if( closest<k-1 ){
4492 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4493 }
4494 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004495 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004496 noContent = !btreeGetHasContent(pBt, *pPgno);
4497 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004498 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004499 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004500 if( rc!=SQLITE_OK ){
4501 releasePage(*ppPage);
4502 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004503 }
4504 searchList = 0;
4505 }
drhee696e22004-08-30 16:52:17 +00004506 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004507 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004508 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004509 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004510 }else{
drh3aac2dd2004-04-26 14:10:20 +00004511 /* There are no pages on the freelist, so create a new page at the
4512 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004513 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004514 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004515
danielk1977bea2a942009-01-20 17:06:27 +00004516 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4517 (*pPgno)++;
4518 }
4519
danielk1977afcdd022004-10-31 16:25:42 +00004520#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004521 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004522 /* If *pPgno refers to a pointer-map page, allocate two new pages
4523 ** at the end of the file instead of one. The first allocated page
4524 ** becomes a new pointer-map page, the second is used by the caller.
4525 */
danielk1977ac861692009-03-28 10:54:22 +00004526 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004527 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004528 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk1977ac861692009-03-28 10:54:22 +00004529 rc = sqlite3BtreeGetPage(pBt, *pPgno, &pPg, 0);
4530 if( rc==SQLITE_OK ){
4531 rc = sqlite3PagerWrite(pPg->pDbPage);
4532 releasePage(pPg);
4533 }
4534 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004535 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004536 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004537 }
4538#endif
4539
danielk1977599fcba2004-11-08 07:13:13 +00004540 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh16a9b832007-05-05 18:39:25 +00004541 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004542 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004543 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004544 if( rc!=SQLITE_OK ){
4545 releasePage(*ppPage);
4546 }
drh3a4c1412004-05-09 20:40:11 +00004547 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004548 }
danielk1977599fcba2004-11-08 07:13:13 +00004549
4550 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004551
4552end_allocate_page:
4553 releasePage(pTrunk);
4554 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004555 if( rc==SQLITE_OK ){
4556 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4557 releasePage(*ppPage);
4558 return SQLITE_CORRUPT_BKPT;
4559 }
4560 (*ppPage)->isInit = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004561 }
drh3b7511c2001-05-26 13:15:44 +00004562 return rc;
4563}
4564
4565/*
danielk1977bea2a942009-01-20 17:06:27 +00004566** This function is used to add page iPage to the database file free-list.
4567** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004568**
danielk1977bea2a942009-01-20 17:06:27 +00004569** The value passed as the second argument to this function is optional.
4570** If the caller happens to have a pointer to the MemPage object
4571** corresponding to page iPage handy, it may pass it as the second value.
4572** Otherwise, it may pass NULL.
4573**
4574** If a pointer to a MemPage object is passed as the second argument,
4575** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004576*/
danielk1977bea2a942009-01-20 17:06:27 +00004577static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4578 MemPage *pTrunk = 0; /* Free-list trunk page */
4579 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4580 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4581 MemPage *pPage; /* Page being freed. May be NULL. */
4582 int rc; /* Return Code */
4583 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004584
danielk1977bea2a942009-01-20 17:06:27 +00004585 assert( sqlite3_mutex_held(pBt->mutex) );
4586 assert( iPage>1 );
4587 assert( !pMemPage || pMemPage->pgno==iPage );
4588
4589 if( pMemPage ){
4590 pPage = pMemPage;
4591 sqlite3PagerRef(pPage->pDbPage);
4592 }else{
4593 pPage = btreePageLookup(pBt, iPage);
4594 }
drh3aac2dd2004-04-26 14:10:20 +00004595
drha34b6762004-05-07 13:30:42 +00004596 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004597 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004598 if( rc ) goto freepage_out;
4599 nFree = get4byte(&pPage1->aData[36]);
4600 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004601
drhfcce93f2006-02-22 03:08:32 +00004602#ifdef SQLITE_SECURE_DELETE
4603 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4604 ** always fully overwrite deleted information with zeros.
4605 */
danielk1977bea2a942009-01-20 17:06:27 +00004606 if( (!pPage && (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0)))
4607 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4608 ){
4609 goto freepage_out;
4610 }
drhfcce93f2006-02-22 03:08:32 +00004611 memset(pPage->aData, 0, pPage->pBt->pageSize);
4612#endif
4613
danielk1977687566d2004-11-02 12:56:41 +00004614 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004615 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004616 */
danielk197785d90ca2008-07-19 14:25:15 +00004617 if( ISAUTOVACUUM ){
danielk1977bea2a942009-01-20 17:06:27 +00004618 rc = ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0);
4619 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004620 }
danielk1977687566d2004-11-02 12:56:41 +00004621
danielk1977bea2a942009-01-20 17:06:27 +00004622 /* Now manipulate the actual database free-list structure. There are two
4623 ** possibilities. If the free-list is currently empty, or if the first
4624 ** trunk page in the free-list is full, then this page will become a
4625 ** new free-list trunk page. Otherwise, it will become a leaf of the
4626 ** first trunk page in the current free-list. This block tests if it
4627 ** is possible to add the page as a new free-list leaf.
4628 */
4629 if( nFree!=0 ){
4630 int nLeaf; /* Initial number of leaf cells on trunk page */
4631
4632 iTrunk = get4byte(&pPage1->aData[32]);
4633 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
4634 if( rc!=SQLITE_OK ){
4635 goto freepage_out;
4636 }
4637
4638 nLeaf = get4byte(&pTrunk->aData[4]);
4639 if( nLeaf<0 ){
4640 rc = SQLITE_CORRUPT_BKPT;
4641 goto freepage_out;
4642 }
4643 if( nLeaf<pBt->usableSize/4 - 8 ){
4644 /* In this case there is room on the trunk page to insert the page
4645 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004646 **
4647 ** Note that the trunk page is not really full until it contains
4648 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4649 ** coded. But due to a coding error in versions of SQLite prior to
4650 ** 3.6.0, databases with freelist trunk pages holding more than
4651 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4652 ** to maintain backwards compatibility with older versions of SQLite,
4653 ** we will contain to restrict the number of entries to usableSize/4 - 8
4654 ** for now. At some point in the future (once everyone has upgraded
4655 ** to 3.6.0 or later) we should consider fixing the conditional above
4656 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4657 */
danielk19773b8a05f2007-03-19 17:44:26 +00004658 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004659 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004660 put4byte(&pTrunk->aData[4], nLeaf+1);
4661 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhfcce93f2006-02-22 03:08:32 +00004662#ifndef SQLITE_SECURE_DELETE
danielk1977bea2a942009-01-20 17:06:27 +00004663 if( pPage ){
4664 sqlite3PagerDontWrite(pPage->pDbPage);
4665 }
drhfcce93f2006-02-22 03:08:32 +00004666#endif
danielk1977bea2a942009-01-20 17:06:27 +00004667 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004668 }
drh3a4c1412004-05-09 20:40:11 +00004669 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004670 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004671 }
drh3b7511c2001-05-26 13:15:44 +00004672 }
danielk1977bea2a942009-01-20 17:06:27 +00004673
4674 /* If control flows to this point, then it was not possible to add the
4675 ** the page being freed as a leaf page of the first trunk in the free-list.
4676 ** Possibly because the free-list is empty, or possibly because the
4677 ** first trunk in the free-list is full. Either way, the page being freed
4678 ** will become the new first trunk page in the free-list.
4679 */
shane63207ab2009-02-04 01:49:30 +00004680 if( ((!pPage) && (0 != (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0))))
4681 || (0 != (rc = sqlite3PagerWrite(pPage->pDbPage)))
danielk1977bea2a942009-01-20 17:06:27 +00004682 ){
4683 goto freepage_out;
4684 }
4685 put4byte(pPage->aData, iTrunk);
4686 put4byte(&pPage->aData[4], 0);
4687 put4byte(&pPage1->aData[32], iPage);
4688 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
4689
4690freepage_out:
4691 if( pPage ){
4692 pPage->isInit = 0;
4693 }
4694 releasePage(pPage);
4695 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004696 return rc;
4697}
danielk1977bea2a942009-01-20 17:06:27 +00004698static int freePage(MemPage *pPage){
4699 return freePage2(pPage->pBt, pPage, pPage->pgno);
4700}
drh3b7511c2001-05-26 13:15:44 +00004701
4702/*
drh3aac2dd2004-04-26 14:10:20 +00004703** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00004704*/
drh3aac2dd2004-04-26 14:10:20 +00004705static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00004706 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00004707 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00004708 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00004709 int rc;
drh94440812007-03-06 11:42:19 +00004710 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00004711 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00004712
drh1fee73e2007-08-29 04:00:57 +00004713 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh16a9b832007-05-05 18:39:25 +00004714 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004715 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00004716 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00004717 }
drh6f11bef2004-05-13 01:12:56 +00004718 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00004719 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00004720 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00004721 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
4722 assert( ovflPgno==0 || nOvfl>0 );
4723 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00004724 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004725 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00004726 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
4727 /* 0 is not a legal page number and page 1 cannot be an
4728 ** overflow page. Therefore if ovflPgno<2 or past the end of the
4729 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00004730 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00004731 }
danielk1977bea2a942009-01-20 17:06:27 +00004732 if( nOvfl ){
4733 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
4734 if( rc ) return rc;
4735 }
4736 rc = freePage2(pBt, pOvfl, ovflPgno);
4737 if( pOvfl ){
4738 sqlite3PagerUnref(pOvfl->pDbPage);
4739 }
drh3b7511c2001-05-26 13:15:44 +00004740 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00004741 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00004742 }
drh5e2f8b92001-05-28 00:41:15 +00004743 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00004744}
4745
4746/*
drh91025292004-05-03 19:49:32 +00004747** Create the byte sequence used to represent a cell on page pPage
4748** and write that byte sequence into pCell[]. Overflow pages are
4749** allocated and filled in as necessary. The calling procedure
4750** is responsible for making sure sufficient space has been allocated
4751** for pCell[].
4752**
4753** Note that pCell does not necessary need to point to the pPage->aData
4754** area. pCell might point to some temporary storage. The cell will
4755** be constructed in this temporary area then copied into pPage->aData
4756** later.
drh3b7511c2001-05-26 13:15:44 +00004757*/
4758static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00004759 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00004760 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00004761 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00004762 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00004763 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00004764 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00004765){
drh3b7511c2001-05-26 13:15:44 +00004766 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00004767 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00004768 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00004769 int spaceLeft;
4770 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00004771 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00004772 unsigned char *pPrior;
4773 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00004774 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00004775 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00004776 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00004777 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00004778
drh1fee73e2007-08-29 04:00:57 +00004779 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00004780
drhc5053fb2008-11-27 02:22:10 +00004781 /* pPage is not necessarily writeable since pCell might be auxiliary
4782 ** buffer space that is separate from the pPage buffer area */
4783 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
4784 || sqlite3PagerIswriteable(pPage->pDbPage) );
4785
drh91025292004-05-03 19:49:32 +00004786 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00004787 nHeader = 0;
drh91025292004-05-03 19:49:32 +00004788 if( !pPage->leaf ){
4789 nHeader += 4;
4790 }
drh8b18dd42004-05-12 19:18:15 +00004791 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00004792 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00004793 }else{
drhb026e052007-05-02 01:34:31 +00004794 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00004795 }
drh6f11bef2004-05-13 01:12:56 +00004796 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh16a9b832007-05-05 18:39:25 +00004797 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004798 assert( info.nHeader==nHeader );
4799 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00004800 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00004801
4802 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00004803 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00004804 if( pPage->intKey ){
4805 pSrc = pData;
4806 nSrc = nData;
drh91025292004-05-03 19:49:32 +00004807 nData = 0;
drhf49661a2008-12-10 16:45:50 +00004808 }else{
drh20abac22009-01-28 20:21:17 +00004809 if( nKey>0x7fffffff || pKey==0 ){
4810 return SQLITE_CORRUPT;
4811 }
drhf49661a2008-12-10 16:45:50 +00004812 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00004813 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00004814 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00004815 }
drh6f11bef2004-05-13 01:12:56 +00004816 *pnSize = info.nSize;
4817 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00004818 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00004819 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00004820
drh3b7511c2001-05-26 13:15:44 +00004821 while( nPayload>0 ){
4822 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00004823#ifndef SQLITE_OMIT_AUTOVACUUM
4824 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00004825 if( pBt->autoVacuum ){
4826 do{
4827 pgnoOvfl++;
4828 } while(
4829 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
4830 );
danielk1977b39f70b2007-05-17 18:28:11 +00004831 }
danielk1977afcdd022004-10-31 16:25:42 +00004832#endif
drhf49661a2008-12-10 16:45:50 +00004833 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00004834#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00004835 /* If the database supports auto-vacuum, and the second or subsequent
4836 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00004837 ** for that page now.
4838 **
4839 ** If this is the first overflow page, then write a partial entry
4840 ** to the pointer-map. If we write nothing to this pointer-map slot,
4841 ** then the optimistic overflow chain processing in clearCell()
4842 ** may misinterpret the uninitialised values and delete the
4843 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00004844 */
danielk19774ef24492007-05-23 09:52:41 +00004845 if( pBt->autoVacuum && rc==SQLITE_OK ){
4846 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
4847 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
danielk197789a4be82007-05-23 13:34:32 +00004848 if( rc ){
4849 releasePage(pOvfl);
4850 }
danielk1977afcdd022004-10-31 16:25:42 +00004851 }
4852#endif
drh3b7511c2001-05-26 13:15:44 +00004853 if( rc ){
drh9b171272004-05-08 02:03:22 +00004854 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004855 return rc;
4856 }
drhc5053fb2008-11-27 02:22:10 +00004857
4858 /* If pToRelease is not zero than pPrior points into the data area
4859 ** of pToRelease. Make sure pToRelease is still writeable. */
4860 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
4861
4862 /* If pPrior is part of the data area of pPage, then make sure pPage
4863 ** is still writeable */
4864 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
4865 || sqlite3PagerIswriteable(pPage->pDbPage) );
4866
drh3aac2dd2004-04-26 14:10:20 +00004867 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00004868 releasePage(pToRelease);
4869 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00004870 pPrior = pOvfl->aData;
4871 put4byte(pPrior, 0);
4872 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00004873 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00004874 }
4875 n = nPayload;
4876 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00004877
4878 /* If pToRelease is not zero than pPayload points into the data area
4879 ** of pToRelease. Make sure pToRelease is still writeable. */
4880 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
4881
4882 /* If pPayload is part of the data area of pPage, then make sure pPage
4883 ** is still writeable */
4884 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
4885 || sqlite3PagerIswriteable(pPage->pDbPage) );
4886
drhb026e052007-05-02 01:34:31 +00004887 if( nSrc>0 ){
4888 if( n>nSrc ) n = nSrc;
4889 assert( pSrc );
4890 memcpy(pPayload, pSrc, n);
4891 }else{
4892 memset(pPayload, 0, n);
4893 }
drh3b7511c2001-05-26 13:15:44 +00004894 nPayload -= n;
drhde647132004-05-07 17:57:49 +00004895 pPayload += n;
drh9b171272004-05-08 02:03:22 +00004896 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00004897 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00004898 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00004899 if( nSrc==0 ){
4900 nSrc = nData;
4901 pSrc = pData;
4902 }
drhdd793422001-06-28 01:54:48 +00004903 }
drh9b171272004-05-08 02:03:22 +00004904 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004905 return SQLITE_OK;
4906}
4907
drh14acc042001-06-10 19:56:58 +00004908/*
4909** Remove the i-th cell from pPage. This routine effects pPage only.
4910** The cell content is not freed or deallocated. It is assumed that
4911** the cell content has been copied someplace else. This routine just
4912** removes the reference to the cell from pPage.
4913**
4914** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00004915*/
shane0af3f892008-11-12 04:55:34 +00004916static int dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00004917 int i; /* Loop counter */
4918 int pc; /* Offset to cell content of cell being deleted */
4919 u8 *data; /* pPage->aData */
4920 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00004921 int rc; /* The return code */
drh43605152004-05-29 21:46:49 +00004922
drh8c42ca92001-06-22 19:15:00 +00004923 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00004924 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00004925 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00004926 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00004927 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00004928 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00004929 pc = get2byte(ptr);
drhc5053fb2008-11-27 02:22:10 +00004930 if( (pc<pPage->hdrOffset+6+(pPage->leaf?0:4))
4931 || (pc+sz>pPage->pBt->usableSize) ){
shane0af3f892008-11-12 04:55:34 +00004932 return SQLITE_CORRUPT_BKPT;
4933 }
shanedcc50b72008-11-13 18:29:50 +00004934 rc = freeSpace(pPage, pc, sz);
4935 if( rc!=SQLITE_OK ){
4936 return rc;
4937 }
drh43605152004-05-29 21:46:49 +00004938 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
4939 ptr[0] = ptr[2];
4940 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00004941 }
4942 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00004943 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
4944 pPage->nFree += 2;
shane0af3f892008-11-12 04:55:34 +00004945 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00004946}
4947
4948/*
4949** Insert a new cell on pPage at cell index "i". pCell points to the
4950** content of the cell.
4951**
4952** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00004953** will not fit, then make a copy of the cell content into pTemp if
4954** pTemp is not null. Regardless of pTemp, allocate a new entry
4955** in pPage->aOvfl[] and make it point to the cell content (either
4956** in pTemp or the original pCell) and also record its index.
4957** Allocating a new entry in pPage->aCell[] implies that
4958** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00004959**
4960** If nSkip is non-zero, then do not copy the first nSkip bytes of the
4961** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00004962** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00004963** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00004964*/
danielk1977e80463b2004-11-03 03:01:16 +00004965static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00004966 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00004967 int i, /* New cell becomes the i-th cell of the page */
4968 u8 *pCell, /* Content of the new cell */
4969 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00004970 u8 *pTemp, /* Temp storage space for pCell, if needed */
4971 u8 nSkip /* Do not write the first nSkip bytes of the cell */
drh24cd67e2004-05-10 16:18:47 +00004972){
drh43605152004-05-29 21:46:49 +00004973 int idx; /* Where to write new cell content in data[] */
4974 int j; /* Loop counter */
4975 int top; /* First byte of content for any cell in data[] */
4976 int end; /* First byte past the last cell pointer in data[] */
4977 int ins; /* Index in data[] where new cell pointer is inserted */
4978 int hdr; /* Offset into data[] of the page header */
4979 int cellOffset; /* Address of first cell pointer in data[] */
4980 u8 *data; /* The content of the whole page */
4981 u8 *ptr; /* Used for moving information around in data[] */
4982
4983 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00004984 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
4985 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh43605152004-05-29 21:46:49 +00004986 assert( sz==cellSizePtr(pPage, pCell) );
drh1fee73e2007-08-29 04:00:57 +00004987 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00004988 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00004989 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00004990 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00004991 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00004992 }
drh43605152004-05-29 21:46:49 +00004993 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00004994 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00004995 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00004996 pPage->aOvfl[j].idx = (u16)i;
drh43605152004-05-29 21:46:49 +00004997 pPage->nFree = 0;
drh14acc042001-06-10 19:56:58 +00004998 }else{
danielk19776e465eb2007-08-21 13:11:00 +00004999 int rc = sqlite3PagerWrite(pPage->pDbPage);
5000 if( rc!=SQLITE_OK ){
5001 return rc;
5002 }
5003 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005004 data = pPage->aData;
5005 hdr = pPage->hdrOffset;
5006 top = get2byte(&data[hdr+5]);
5007 cellOffset = pPage->cellOffset;
5008 end = cellOffset + 2*pPage->nCell + 2;
5009 ins = cellOffset + 2*i;
5010 if( end > top - sz ){
shane0af3f892008-11-12 04:55:34 +00005011 rc = defragmentPage(pPage);
5012 if( rc!=SQLITE_OK ){
5013 return rc;
5014 }
drh43605152004-05-29 21:46:49 +00005015 top = get2byte(&data[hdr+5]);
5016 assert( end + sz <= top );
5017 }
5018 idx = allocateSpace(pPage, sz);
5019 assert( idx>0 );
5020 assert( end <= get2byte(&data[hdr+5]) );
shane0af3f892008-11-12 04:55:34 +00005021 if (idx+sz > pPage->pBt->usableSize) {
shane34ac18d2008-11-11 22:18:20 +00005022 return SQLITE_CORRUPT_BKPT;
shane0af3f892008-11-12 04:55:34 +00005023 }
drh43605152004-05-29 21:46:49 +00005024 pPage->nCell++;
5025 pPage->nFree -= 2;
danielk1977a3ad5e72005-01-07 08:56:44 +00005026 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005027 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
5028 ptr[0] = ptr[-2];
5029 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005030 }
drh43605152004-05-29 21:46:49 +00005031 put2byte(&data[ins], idx);
5032 put2byte(&data[hdr+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005033#ifndef SQLITE_OMIT_AUTOVACUUM
5034 if( pPage->pBt->autoVacuum ){
5035 /* The cell may contain a pointer to an overflow page. If so, write
5036 ** the entry for the overflow page into the pointer map.
5037 */
5038 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00005039 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh72365832007-03-06 15:53:44 +00005040 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19777b801382009-04-29 06:27:56 +00005041 if( info.iOverflow ){
danielk1977a19df672004-11-03 11:37:07 +00005042 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
danielk19776e465eb2007-08-21 13:11:00 +00005043 rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977a19df672004-11-03 11:37:07 +00005044 if( rc!=SQLITE_OK ) return rc;
5045 }
5046 }
5047#endif
drh14acc042001-06-10 19:56:58 +00005048 }
danielk1977e80463b2004-11-03 03:01:16 +00005049
danielk1977e80463b2004-11-03 03:01:16 +00005050 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005051}
5052
5053/*
drhfa1a98a2004-05-14 19:08:17 +00005054** Add a list of cells to a page. The page should be initially empty.
5055** The cells are guaranteed to fit on the page.
5056*/
5057static void assemblePage(
5058 MemPage *pPage, /* The page to be assemblied */
5059 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005060 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005061 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005062){
5063 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005064 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005065 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005066 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5067 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5068 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005069
drh43605152004-05-29 21:46:49 +00005070 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005071 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005072 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005073 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005074
5075 /* Check that the page has just been zeroed by zeroPage() */
5076 assert( pPage->nCell==0 );
5077 assert( get2byte(&data[hdr+5])==nUsable );
5078
5079 pCellptr = &data[pPage->cellOffset + nCell*2];
5080 cellbody = nUsable;
5081 for(i=nCell-1; i>=0; i--){
5082 pCellptr -= 2;
5083 cellbody -= aSize[i];
5084 put2byte(pCellptr, cellbody);
5085 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005086 }
danielk1977fad91942009-04-29 17:49:59 +00005087 put2byte(&data[hdr+3], nCell);
5088 put2byte(&data[hdr+5], cellbody);
5089 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005090 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005091}
5092
drh14acc042001-06-10 19:56:58 +00005093/*
drhc3b70572003-01-04 19:44:07 +00005094** The following parameters determine how many adjacent pages get involved
5095** in a balancing operation. NN is the number of neighbors on either side
5096** of the page that participate in the balancing operation. NB is the
5097** total number of pages that participate, including the target page and
5098** NN neighbors on either side.
5099**
5100** The minimum value of NN is 1 (of course). Increasing NN above 1
5101** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5102** in exchange for a larger degradation in INSERT and UPDATE performance.
5103** The value of NN appears to give the best results overall.
5104*/
5105#define NN 1 /* Number of neighbors on either side of pPage */
5106#define NB (NN*2+1) /* Total pages involved in the balance */
5107
drh43605152004-05-29 21:46:49 +00005108/* Forward reference */
danielk197771d5d2c2008-09-29 11:49:47 +00005109static int balance(BtCursor*, int);
danielk1977ac245ec2005-01-14 13:50:11 +00005110
drh615ae552005-01-16 23:21:00 +00005111#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005112/*
5113** This version of balance() handles the common special case where
5114** a new entry is being inserted on the extreme right-end of the
5115** tree, in other words, when the new entry will become the largest
5116** entry in the tree.
5117**
5118** Instead of trying balance the 3 right-most leaf pages, just add
5119** a new page to the right-hand side and put the one new entry in
5120** that page. This leaves the right side of the tree somewhat
5121** unbalanced. But odds are that we will be inserting new entries
5122** at the end soon afterwards so the nearly empty page will quickly
5123** fill up. On average.
5124**
5125** pPage is the leaf page which is the right-most page in the tree.
5126** pParent is its parent. pPage must have a single overflow entry
5127** which is also the right-most entry on the page.
5128*/
danielk197771d5d2c2008-09-29 11:49:47 +00005129static int balance_quick(BtCursor *pCur){
danielk1977ac245ec2005-01-14 13:50:11 +00005130 int rc;
danielk1977eaa06f62008-09-18 17:34:44 +00005131 MemPage *pNew = 0;
danielk1977ac245ec2005-01-14 13:50:11 +00005132 Pgno pgnoNew;
5133 u8 *pCell;
drha9121e42008-02-19 14:59:35 +00005134 u16 szCell;
danielk1977ac245ec2005-01-14 13:50:11 +00005135 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00005136 MemPage *pPage = pCur->apPage[pCur->iPage];
5137 MemPage *pParent = pCur->apPage[pCur->iPage-1];
danielk1977aef0bf62005-12-30 16:28:01 +00005138 BtShared *pBt = pPage->pBt;
danielk197779a40da2005-01-16 08:00:01 +00005139 int parentIdx = pParent->nCell; /* pParent new divider cell index */
5140 int parentSize; /* Size of new divider cell */
5141 u8 parentCell[64]; /* Space for the new divider cell */
danielk1977ac245ec2005-01-14 13:50:11 +00005142
drh1fee73e2007-08-29 04:00:57 +00005143 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005144
danielk1977ac245ec2005-01-14 13:50:11 +00005145 /* Allocate a new page. Insert the overflow cell from pPage
5146 ** into it. Then remove the overflow cell from pPage.
5147 */
drh4f0c5872007-03-26 22:05:01 +00005148 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk1977eaa06f62008-09-18 17:34:44 +00005149 if( rc==SQLITE_OK ){
5150 pCell = pPage->aOvfl[0].pCell;
5151 szCell = cellSizePtr(pPage, pCell);
drhc5053fb2008-11-27 02:22:10 +00005152 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977eaa06f62008-09-18 17:34:44 +00005153 zeroPage(pNew, pPage->aData[0]);
5154 assemblePage(pNew, 1, &pCell, &szCell);
5155 pPage->nOverflow = 0;
5156
danielk1977eaa06f62008-09-18 17:34:44 +00005157 /* pPage is currently the right-child of pParent. Change this
5158 ** so that the right-child is the new page allocated above and
5159 ** pPage is the next-to-right child.
5160 **
5161 ** Ignore the return value of the call to fillInCell(). fillInCell()
5162 ** may only return other than SQLITE_OK if it is required to allocate
5163 ** one or more overflow pages. Since an internal table B-Tree cell
5164 ** may never spill over onto an overflow page (it is a maximum of
5165 ** 13 bytes in size), it is not neccessary to check the return code.
5166 **
5167 ** Similarly, the insertCell() function cannot fail if the page
5168 ** being inserted into is already writable and the cell does not
5169 ** contain an overflow pointer. So ignore this return code too.
5170 */
5171 assert( pPage->nCell>0 );
5172 pCell = findCell(pPage, pPage->nCell-1);
5173 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
5174 fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
5175 assert( parentSize<64 );
5176 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
5177 insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
5178 put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
5179 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5180
5181 /* If this is an auto-vacuum database, update the pointer map
5182 ** with entries for the new page, and any pointer from the
5183 ** cell on the page to an overflow page.
5184 */
5185 if( ISAUTOVACUUM ){
5186 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
5187 if( rc==SQLITE_OK ){
5188 rc = ptrmapPutOvfl(pNew, 0);
5189 }
danielk1977ac11ee62005-01-15 12:45:51 +00005190 }
danielk1977e08a3c42008-09-18 18:17:03 +00005191
5192 /* Release the reference to the new page. */
5193 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005194 }
5195
danielk1977eaa06f62008-09-18 17:34:44 +00005196 /* At this point the pPage->nFree variable is not set correctly with
5197 ** respect to the content of the page (because it was set to 0 by
5198 ** insertCell). So call sqlite3BtreeInitPage() to make sure it is
5199 ** correct.
5200 **
5201 ** This has to be done even if an error will be returned. Normally, if
5202 ** an error occurs during tree balancing, the contents of MemPage are
5203 ** not important, as they will be recalculated when the page is rolled
5204 ** back. But here, in balance_quick(), it is possible that pPage has
5205 ** not yet been marked dirty or written into the journal file. Therefore
5206 ** it will not be rolled back and so it is important to make sure that
5207 ** the page data and contents of MemPage are consistent.
5208 */
5209 pPage->isInit = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00005210 sqlite3BtreeInitPage(pPage);
danielk1977a4124bd2008-12-23 10:37:47 +00005211 assert( pPage->nOverflow==0 );
danielk1977eaa06f62008-09-18 17:34:44 +00005212
danielk1977e08a3c42008-09-18 18:17:03 +00005213 /* If everything else succeeded, balance the parent page, in
5214 ** case the divider cell inserted caused it to become overfull.
danielk197779a40da2005-01-16 08:00:01 +00005215 */
danielk1977eaa06f62008-09-18 17:34:44 +00005216 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00005217 releasePage(pPage);
5218 pCur->iPage--;
5219 rc = balance(pCur, 0);
danielk1977eaa06f62008-09-18 17:34:44 +00005220 }
5221 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005222}
drh615ae552005-01-16 23:21:00 +00005223#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005224
drhc3b70572003-01-04 19:44:07 +00005225/*
drhab01f612004-05-22 02:55:23 +00005226** This routine redistributes Cells on pPage and up to NN*2 siblings
drh8b2f49b2001-06-08 00:21:52 +00005227** of pPage so that all pages have about the same amount of free space.
drh0c6cc4e2004-06-15 02:13:26 +00005228** Usually NN siblings on either side of pPage is used in the balancing,
5229** though more siblings might come from one side if pPage is the first
drhab01f612004-05-22 02:55:23 +00005230** or last child of its parent. If pPage has fewer than 2*NN siblings
drh8b2f49b2001-06-08 00:21:52 +00005231** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00005232** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005233**
drh0c6cc4e2004-06-15 02:13:26 +00005234** The number of siblings of pPage might be increased or decreased by one or
5235** two in an effort to keep pages nearly full but not over full. The root page
drhab01f612004-05-22 02:55:23 +00005236** is special and is allowed to be nearly empty. If pPage is
drh8c42ca92001-06-22 19:15:00 +00005237** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00005238** or decreased by one, as necessary, to keep the root page from being
drhab01f612004-05-22 02:55:23 +00005239** overfull or completely empty.
drh14acc042001-06-10 19:56:58 +00005240**
drh8b2f49b2001-06-08 00:21:52 +00005241** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00005242** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00005243** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00005244** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00005245**
drh8c42ca92001-06-22 19:15:00 +00005246** In the course of balancing the siblings of pPage, the parent of pPage
5247** might become overfull or underfull. If that happens, then this routine
5248** is called recursively on the parent.
5249**
drh5e00f6c2001-09-13 13:46:56 +00005250** If this routine fails for any reason, it might leave the database
5251** in a corrupted state. So if this routine fails, the database should
5252** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00005253*/
danielk197771d5d2c2008-09-29 11:49:47 +00005254static int balance_nonroot(BtCursor *pCur){
5255 MemPage *pPage; /* The over or underfull page to balance */
drh8b2f49b2001-06-08 00:21:52 +00005256 MemPage *pParent; /* The parent of pPage */
drh16a9b832007-05-05 18:39:25 +00005257 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005258 int nCell = 0; /* Number of cells in apCell[] */
5259 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005260 int nOld = 0; /* Number of pages in apOld[] */
5261 int nNew = 0; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00005262 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00005263 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005264 int idx; /* Index of pPage in pParent->aCell[] */
5265 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00005266 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00005267 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005268 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005269 int usableSpace; /* Bytes in pPage beyond the header */
5270 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005271 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005272 int iSpace1 = 0; /* First unused byte of aSpace1[] */
5273 int iSpace2 = 0; /* First unused byte of aSpace2[] */
drhfacf0302008-06-17 15:12:00 +00005274 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005275 MemPage *apOld[NB]; /* pPage and up to two siblings */
5276 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00005277 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005278 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
5279 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
drh4b70f112004-05-02 21:12:19 +00005280 u8 *apDiv[NB]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005281 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5282 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005283 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005284 u16 *szCell; /* Local size of all cells in apCell[] */
drhe5ae5732008-06-15 02:51:47 +00005285 u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
5286 u8 *aSpace1; /* Space for copies of dividers cells before balance */
5287 u8 *aSpace2 = 0; /* Space for overflow dividers cells after balance */
danielk1977ac11ee62005-01-15 12:45:51 +00005288 u8 *aFrom = 0;
drh8b2f49b2001-06-08 00:21:52 +00005289
danielk197771d5d2c2008-09-29 11:49:47 +00005290 pPage = pCur->apPage[pCur->iPage];
drh1fee73e2007-08-29 04:00:57 +00005291 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf94a1732008-09-30 17:18:17 +00005292 VVA_ONLY( pCur->pagesShuffled = 1 );
drhd677b3d2007-08-20 22:48:41 +00005293
drh14acc042001-06-10 19:56:58 +00005294 /*
drh43605152004-05-29 21:46:49 +00005295 ** Find the parent page.
drh8b2f49b2001-06-08 00:21:52 +00005296 */
danielk197771d5d2c2008-09-29 11:49:47 +00005297 assert( pCur->iPage>0 );
5298 assert( pPage->isInit );
danielk19776e465eb2007-08-21 13:11:00 +00005299 assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
drh4b70f112004-05-02 21:12:19 +00005300 pBt = pPage->pBt;
danielk197771d5d2c2008-09-29 11:49:47 +00005301 pParent = pCur->apPage[pCur->iPage-1];
drh43605152004-05-29 21:46:49 +00005302 assert( pParent );
danielk19773b8a05f2007-03-19 17:44:26 +00005303 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
danielk1977a4124bd2008-12-23 10:37:47 +00005304 goto balance_cleanup;
danielk197707cb5602006-01-20 10:55:05 +00005305 }
danielk1977474b7cc2008-07-09 11:49:46 +00005306
drh43605152004-05-29 21:46:49 +00005307 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
drh2e38c322004-09-03 18:38:44 +00005308
drh615ae552005-01-16 23:21:00 +00005309#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005310 /*
5311 ** A special case: If a new entry has just been inserted into a
5312 ** table (that is, a btree with integer keys and all data at the leaves)
drh09d0deb2005-08-02 17:13:09 +00005313 ** and the new entry is the right-most entry in the tree (it has the
drhf222e712005-01-14 22:55:49 +00005314 ** largest key) then use the special balance_quick() routine for
5315 ** balancing. balance_quick() is much faster and results in a tighter
5316 ** packing of data in the common case.
5317 */
danielk1977ac245ec2005-01-14 13:50:11 +00005318 if( pPage->leaf &&
5319 pPage->intKey &&
danielk1977ac245ec2005-01-14 13:50:11 +00005320 pPage->nOverflow==1 &&
5321 pPage->aOvfl[0].idx==pPage->nCell &&
danielk197771d5d2c2008-09-29 11:49:47 +00005322 pParent->pgno!=1 &&
danielk1977ac245ec2005-01-14 13:50:11 +00005323 get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
5324 ){
drh44845222008-07-17 18:39:57 +00005325 assert( pPage->intKey );
danielk1977ac11ee62005-01-15 12:45:51 +00005326 /*
5327 ** TODO: Check the siblings to the left of pPage. It may be that
5328 ** they are not full and no new page is required.
5329 */
danielk197771d5d2c2008-09-29 11:49:47 +00005330 return balance_quick(pCur);
danielk1977ac245ec2005-01-14 13:50:11 +00005331 }
5332#endif
5333
danielk19776e465eb2007-08-21 13:11:00 +00005334 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
danielk1977a4124bd2008-12-23 10:37:47 +00005335 goto balance_cleanup;
danielk19776e465eb2007-08-21 13:11:00 +00005336 }
5337
drh2e38c322004-09-03 18:38:44 +00005338 /*
drh4b70f112004-05-02 21:12:19 +00005339 ** Find the cell in the parent page whose left child points back
drh14acc042001-06-10 19:56:58 +00005340 ** to pPage. The "idx" variable is the index of that cell. If pPage
5341 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00005342 */
danielk1977bf93c562008-09-29 15:53:25 +00005343 idx = pCur->aiIdx[pCur->iPage-1];
5344 assertParentIndex(pParent, idx, pPage->pgno);
drh8b2f49b2001-06-08 00:21:52 +00005345
5346 /*
drh4b70f112004-05-02 21:12:19 +00005347 ** Find sibling pages to pPage and the cells in pParent that divide
drhc3b70572003-01-04 19:44:07 +00005348 ** the siblings. An attempt is made to find NN siblings on either
5349 ** side of pPage. More siblings are taken from one side, however, if
5350 ** pPage there are fewer than NN siblings on the other side. If pParent
5351 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00005352 */
drhc3b70572003-01-04 19:44:07 +00005353 nxDiv = idx - NN;
5354 if( nxDiv + NB > pParent->nCell ){
5355 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00005356 }
drhc3b70572003-01-04 19:44:07 +00005357 if( nxDiv<0 ){
5358 nxDiv = 0;
5359 }
drh8b2f49b2001-06-08 00:21:52 +00005360 nDiv = 0;
drhc3b70572003-01-04 19:44:07 +00005361 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00005362 if( k<pParent->nCell ){
danielk19771cc5ed82007-05-16 17:28:43 +00005363 apDiv[i] = findCell(pParent, k);
drh8b2f49b2001-06-08 00:21:52 +00005364 nDiv++;
drha34b6762004-05-07 13:30:42 +00005365 assert( !pParent->leaf );
drh43605152004-05-29 21:46:49 +00005366 pgnoOld[i] = get4byte(apDiv[i]);
drh14acc042001-06-10 19:56:58 +00005367 }else if( k==pParent->nCell ){
drh43605152004-05-29 21:46:49 +00005368 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
drh14acc042001-06-10 19:56:58 +00005369 }else{
5370 break;
drh8b2f49b2001-06-08 00:21:52 +00005371 }
danielk197771d5d2c2008-09-29 11:49:47 +00005372 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i]);
drh6019e162001-07-02 17:51:45 +00005373 if( rc ) goto balance_cleanup;
danielk197771d5d2c2008-09-29 11:49:47 +00005374 /* apOld[i]->idxParent = k; */
drh91025292004-05-03 19:49:32 +00005375 apCopy[i] = 0;
5376 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00005377 nOld++;
danielk1977634f2982005-03-28 08:44:07 +00005378 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
drh8b2f49b2001-06-08 00:21:52 +00005379 }
5380
drha9121e42008-02-19 14:59:35 +00005381 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005382 ** alignment */
drha9121e42008-02-19 14:59:35 +00005383 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005384
drh8b2f49b2001-06-08 00:21:52 +00005385 /*
danielk1977634f2982005-03-28 08:44:07 +00005386 ** Allocate space for memory structures
5387 */
drhfacf0302008-06-17 15:12:00 +00005388 szScratch =
drha9121e42008-02-19 14:59:35 +00005389 nMaxCells*sizeof(u8*) /* apCell */
5390 + nMaxCells*sizeof(u16) /* szCell */
5391 + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB /* aCopy */
drhe5ae5732008-06-15 02:51:47 +00005392 + pBt->pageSize /* aSpace1 */
drhfacf0302008-06-17 15:12:00 +00005393 + (ISAUTOVACUUM ? nMaxCells : 0); /* aFrom */
5394 apCell = sqlite3ScratchMalloc( szScratch );
danielk1977634f2982005-03-28 08:44:07 +00005395 if( apCell==0 ){
5396 rc = SQLITE_NOMEM;
5397 goto balance_cleanup;
5398 }
drha9121e42008-02-19 14:59:35 +00005399 szCell = (u16*)&apCell[nMaxCells];
danielk1977634f2982005-03-28 08:44:07 +00005400 aCopy[0] = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005401 assert( EIGHT_BYTE_ALIGNMENT(aCopy[0]) );
danielk1977634f2982005-03-28 08:44:07 +00005402 for(i=1; i<NB; i++){
drhc96d8532005-05-03 12:30:33 +00005403 aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
drh66e80082008-12-16 13:46:29 +00005404 assert( ((aCopy[i] - (u8*)0) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00005405 }
drhe5ae5732008-06-15 02:51:47 +00005406 aSpace1 = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
drhea598cb2009-04-05 12:22:08 +00005407 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
danielk197785d90ca2008-07-19 14:25:15 +00005408 if( ISAUTOVACUUM ){
drhe5ae5732008-06-15 02:51:47 +00005409 aFrom = &aSpace1[pBt->pageSize];
danielk1977634f2982005-03-28 08:44:07 +00005410 }
drhfacf0302008-06-17 15:12:00 +00005411 aSpace2 = sqlite3PageMalloc(pBt->pageSize);
drhe5ae5732008-06-15 02:51:47 +00005412 if( aSpace2==0 ){
5413 rc = SQLITE_NOMEM;
5414 goto balance_cleanup;
5415 }
danielk1977634f2982005-03-28 08:44:07 +00005416
5417 /*
drh14acc042001-06-10 19:56:58 +00005418 ** Make copies of the content of pPage and its siblings into aOld[].
5419 ** The rest of this function will use data from the copies rather
5420 ** that the original pages since the original pages will be in the
5421 ** process of being overwritten.
5422 */
5423 for(i=0; i<nOld; i++){
drhbf4bca52007-09-06 22:19:14 +00005424 MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
5425 memcpy(p, apOld[i], sizeof(MemPage));
5426 p->aData = (void*)&p[1];
5427 memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
drh14acc042001-06-10 19:56:58 +00005428 }
5429
5430 /*
5431 ** Load pointers to all cells on sibling pages and the divider cells
5432 ** into the local apCell[] array. Make copies of the divider cells
drhe5ae5732008-06-15 02:51:47 +00005433 ** into space obtained form aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005434 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005435 **
5436 ** If the siblings are on leaf pages, then the child pointers of the
5437 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005438 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005439 ** child pointers. If siblings are not leaves, then all cell in
5440 ** apCell[] include child pointers. Either way, all cells in apCell[]
5441 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005442 **
5443 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5444 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005445 */
5446 nCell = 0;
drh4b70f112004-05-02 21:12:19 +00005447 leafCorrection = pPage->leaf*4;
drh44845222008-07-17 18:39:57 +00005448 leafData = pPage->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005449 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00005450 MemPage *pOld = apCopy[i];
drh43605152004-05-29 21:46:49 +00005451 int limit = pOld->nCell+pOld->nOverflow;
5452 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005453 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005454 apCell[nCell] = findOverflowCell(pOld, j);
5455 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk197785d90ca2008-07-19 14:25:15 +00005456 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005457 int a;
drhf49661a2008-12-10 16:45:50 +00005458 aFrom[nCell] = (u8)i; assert( i>=0 && i<6 );
danielk1977ac11ee62005-01-15 12:45:51 +00005459 for(a=0; a<pOld->nOverflow; a++){
5460 if( pOld->aOvfl[a].pCell==apCell[nCell] ){
5461 aFrom[nCell] = 0xFF;
5462 break;
5463 }
5464 }
5465 }
drh14acc042001-06-10 19:56:58 +00005466 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005467 }
5468 if( i<nOld-1 ){
drha9121e42008-02-19 14:59:35 +00005469 u16 sz = cellSizePtr(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00005470 if( leafData ){
drh96f5b762004-05-16 16:24:36 +00005471 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
5472 ** are duplicates of keys on the child pages. We need to remove
5473 ** the divider cells from pParent, but the dividers cells are not
5474 ** added to apCell[] because they are duplicates of child cells.
5475 */
drh8b18dd42004-05-12 19:18:15 +00005476 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00005477 }else{
drhb6f41482004-05-14 01:58:11 +00005478 u8 *pTemp;
danielk1977634f2982005-03-28 08:44:07 +00005479 assert( nCell<nMaxCells );
drhb6f41482004-05-14 01:58:11 +00005480 szCell[nCell] = sz;
drhe5ae5732008-06-15 02:51:47 +00005481 pTemp = &aSpace1[iSpace1];
5482 iSpace1 += sz;
5483 assert( sz<=pBt->pageSize/4 );
5484 assert( iSpace1<=pBt->pageSize );
drhb6f41482004-05-14 01:58:11 +00005485 memcpy(pTemp, apDiv[i], sz);
5486 apCell[nCell] = pTemp+leafCorrection;
danielk197785d90ca2008-07-19 14:25:15 +00005487 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005488 aFrom[nCell] = 0xFF;
5489 }
drhb6f41482004-05-14 01:58:11 +00005490 dropCell(pParent, nxDiv, sz);
drhf49661a2008-12-10 16:45:50 +00005491 assert( leafCorrection==0 || leafCorrection==4 );
5492 szCell[nCell] -= (u16)leafCorrection;
drh43605152004-05-29 21:46:49 +00005493 assert( get4byte(pTemp)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00005494 if( !pOld->leaf ){
5495 assert( leafCorrection==0 );
5496 /* The right pointer of the child page pOld becomes the left
5497 ** pointer of the divider cell */
drh43605152004-05-29 21:46:49 +00005498 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
drh8b18dd42004-05-12 19:18:15 +00005499 }else{
5500 assert( leafCorrection==4 );
danielk197739c96042007-05-12 10:41:47 +00005501 if( szCell[nCell]<4 ){
5502 /* Do not allow any cells smaller than 4 bytes. */
5503 szCell[nCell] = 4;
5504 }
drh8b18dd42004-05-12 19:18:15 +00005505 }
5506 nCell++;
drh4b70f112004-05-02 21:12:19 +00005507 }
drh8b2f49b2001-06-08 00:21:52 +00005508 }
5509 }
5510
5511 /*
drh6019e162001-07-02 17:51:45 +00005512 ** Figure out the number of pages needed to hold all nCell cells.
5513 ** Store this number in "k". Also compute szNew[] which is the total
5514 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005515 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005516 ** cntNew[k] should equal nCell.
5517 **
drh96f5b762004-05-16 16:24:36 +00005518 ** Values computed by this block:
5519 **
5520 ** k: The total number of sibling pages
5521 ** szNew[i]: Spaced used on the i-th sibling page.
5522 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5523 ** the right of the i-th sibling page.
5524 ** usableSpace: Number of bytes of space available on each sibling.
5525 **
drh8b2f49b2001-06-08 00:21:52 +00005526 */
drh43605152004-05-29 21:46:49 +00005527 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005528 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005529 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005530 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005531 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005532 szNew[k] = subtotal - szCell[i];
5533 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005534 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005535 subtotal = 0;
5536 k++;
5537 }
5538 }
5539 szNew[k] = subtotal;
5540 cntNew[k] = nCell;
5541 k++;
drh96f5b762004-05-16 16:24:36 +00005542
5543 /*
5544 ** The packing computed by the previous block is biased toward the siblings
5545 ** on the left side. The left siblings are always nearly full, while the
5546 ** right-most sibling might be nearly empty. This block of code attempts
5547 ** to adjust the packing of siblings to get a better balance.
5548 **
5549 ** This adjustment is more than an optimization. The packing above might
5550 ** be so out of balance as to be illegal. For example, the right-most
5551 ** sibling might be completely empty. This adjustment is not optional.
5552 */
drh6019e162001-07-02 17:51:45 +00005553 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005554 int szRight = szNew[i]; /* Size of sibling on the right */
5555 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5556 int r; /* Index of right-most cell in left sibling */
5557 int d; /* Index of first cell to the left of right sibling */
5558
5559 r = cntNew[i-1] - 1;
5560 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005561 assert( d<nMaxCells );
5562 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005563 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5564 szRight += szCell[d] + 2;
5565 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005566 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005567 r = cntNew[i-1] - 1;
5568 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005569 }
drh96f5b762004-05-16 16:24:36 +00005570 szNew[i] = szRight;
5571 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005572 }
drh09d0deb2005-08-02 17:13:09 +00005573
5574 /* Either we found one or more cells (cntnew[0])>0) or we are the
5575 ** a virtual root page. A virtual root page is when the real root
5576 ** page is page 1 and we are the only child of that page.
5577 */
5578 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005579
5580 /*
drh6b308672002-07-08 02:16:37 +00005581 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005582 */
drh4b70f112004-05-02 21:12:19 +00005583 assert( pPage->pgno>1 );
5584 pageFlags = pPage->aData[0];
drh14acc042001-06-10 19:56:58 +00005585 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005586 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005587 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005588 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005589 pgnoNew[i] = pgnoOld[i];
5590 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005591 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005592 nNew++;
danielk197728129562005-01-11 10:25:06 +00005593 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005594 }else{
drh7aa8f852006-03-28 00:24:44 +00005595 assert( i>0 );
drh4f0c5872007-03-26 22:05:01 +00005596 rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
drh6b308672002-07-08 02:16:37 +00005597 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005598 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005599 nNew++;
drh6b308672002-07-08 02:16:37 +00005600 }
drh8b2f49b2001-06-08 00:21:52 +00005601 }
5602
danielk1977299b1872004-11-22 10:02:10 +00005603 /* Free any old pages that were not reused as new pages.
5604 */
5605 while( i<nOld ){
5606 rc = freePage(apOld[i]);
5607 if( rc ) goto balance_cleanup;
5608 releasePage(apOld[i]);
5609 apOld[i] = 0;
5610 i++;
5611 }
5612
drh8b2f49b2001-06-08 00:21:52 +00005613 /*
drhf9ffac92002-03-02 19:00:31 +00005614 ** Put the new pages in accending order. This helps to
5615 ** keep entries in the disk file in order so that a scan
5616 ** of the table is a linear scan through the file. That
5617 ** in turn helps the operating system to deliver pages
5618 ** from the disk more rapidly.
5619 **
5620 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005621 ** n is never more than NB (a small constant), that should
5622 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005623 **
drhc3b70572003-01-04 19:44:07 +00005624 ** When NB==3, this one optimization makes the database
5625 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00005626 */
5627 for(i=0; i<k-1; i++){
5628 int minV = pgnoNew[i];
5629 int minI = i;
5630 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00005631 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00005632 minI = j;
5633 minV = pgnoNew[j];
5634 }
5635 }
5636 if( minI>i ){
5637 int t;
5638 MemPage *pT;
5639 t = pgnoNew[i];
5640 pT = apNew[i];
5641 pgnoNew[i] = pgnoNew[minI];
5642 apNew[i] = apNew[minI];
5643 pgnoNew[minI] = t;
5644 apNew[minI] = pT;
5645 }
5646 }
drha2fce642004-06-05 00:01:44 +00005647 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
drh24cd67e2004-05-10 16:18:47 +00005648 pgnoOld[0],
5649 nOld>=2 ? pgnoOld[1] : 0,
5650 nOld>=3 ? pgnoOld[2] : 0,
drh10c0fa62004-05-18 12:50:17 +00005651 pgnoNew[0], szNew[0],
5652 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
5653 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
drha2fce642004-06-05 00:01:44 +00005654 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
5655 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
drh24cd67e2004-05-10 16:18:47 +00005656
drhf9ffac92002-03-02 19:00:31 +00005657 /*
drh14acc042001-06-10 19:56:58 +00005658 ** Evenly distribute the data in apCell[] across the new pages.
5659 ** Insert divider cells into pParent as necessary.
5660 */
5661 j = 0;
5662 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00005663 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00005664 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00005665 assert( j<nMaxCells );
drh4b70f112004-05-02 21:12:19 +00005666 assert( pNew->pgno==pgnoNew[i] );
drh10131482008-07-11 03:34:09 +00005667 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00005668 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00005669 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00005670 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00005671
danielk1977ac11ee62005-01-15 12:45:51 +00005672 /* If this is an auto-vacuum database, update the pointer map entries
5673 ** that point to the siblings that were rearranged. These can be: left
5674 ** children of cells, the right-child of the page, or overflow pages
5675 ** pointed to by cells.
5676 */
danielk197785d90ca2008-07-19 14:25:15 +00005677 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005678 for(k=j; k<cntNew[i]; k++){
danielk1977634f2982005-03-28 08:44:07 +00005679 assert( k<nMaxCells );
danielk1977ac11ee62005-01-15 12:45:51 +00005680 if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
danielk197779a40da2005-01-16 08:00:01 +00005681 rc = ptrmapPutOvfl(pNew, k-j);
danielk197787c52b52008-07-19 11:49:07 +00005682 if( rc==SQLITE_OK && leafCorrection==0 ){
5683 rc = ptrmapPut(pBt, get4byte(apCell[k]), PTRMAP_BTREE, pNew->pgno);
5684 }
danielk197779a40da2005-01-16 08:00:01 +00005685 if( rc!=SQLITE_OK ){
5686 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00005687 }
5688 }
5689 }
5690 }
danielk1977ac11ee62005-01-15 12:45:51 +00005691
5692 j = cntNew[i];
5693
5694 /* If the sibling page assembled above was not the right-most sibling,
5695 ** insert a divider cell into the parent page.
5696 */
drh14acc042001-06-10 19:56:58 +00005697 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00005698 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00005699 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00005700 int sz;
danielk1977634f2982005-03-28 08:44:07 +00005701
5702 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00005703 pCell = apCell[j];
5704 sz = szCell[j] + leafCorrection;
drhe5ae5732008-06-15 02:51:47 +00005705 pTemp = &aSpace2[iSpace2];
drh4b70f112004-05-02 21:12:19 +00005706 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00005707 memcpy(&pNew->aData[8], pCell, 4);
danielk197785d90ca2008-07-19 14:25:15 +00005708 if( ISAUTOVACUUM
danielk197787c52b52008-07-19 11:49:07 +00005709 && (aFrom[j]==0xFF || apCopy[aFrom[j]]->pgno!=pNew->pgno)
5710 ){
5711 rc = ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno);
5712 if( rc!=SQLITE_OK ){
5713 goto balance_cleanup;
5714 }
5715 }
drh8b18dd42004-05-12 19:18:15 +00005716 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00005717 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00005718 ** then there is no divider cell in apCell[]. Instead, the divider
5719 ** cell consists of the integer key for the right-most cell of
5720 ** the sibling-page assembled above only.
5721 */
drh6f11bef2004-05-13 01:12:56 +00005722 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00005723 j--;
drh16a9b832007-05-05 18:39:25 +00005724 sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00005725 pCell = pTemp;
drh20abac22009-01-28 20:21:17 +00005726 rc = fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
5727 if( rc!=SQLITE_OK ){
5728 goto balance_cleanup;
5729 }
drh8b18dd42004-05-12 19:18:15 +00005730 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00005731 }else{
5732 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00005733 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00005734 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00005735 ** bytes, then it may actually be smaller than this
5736 ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00005737 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00005738 ** insertCell(), so reparse the cell now.
5739 **
5740 ** Note that this can never happen in an SQLite data file, as all
5741 ** cells are at least 4 bytes. It only happens in b-trees used
5742 ** to evaluate "IN (SELECT ...)" and similar clauses.
5743 */
5744 if( szCell[j]==4 ){
5745 assert(leafCorrection==4);
5746 sz = cellSizePtr(pParent, pCell);
5747 }
drh4b70f112004-05-02 21:12:19 +00005748 }
drhe5ae5732008-06-15 02:51:47 +00005749 iSpace2 += sz;
5750 assert( sz<=pBt->pageSize/4 );
5751 assert( iSpace2<=pBt->pageSize );
danielk1977a3ad5e72005-01-07 08:56:44 +00005752 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
danielk1977e80463b2004-11-03 03:01:16 +00005753 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00005754 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh43605152004-05-29 21:46:49 +00005755 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
danielk197785d90ca2008-07-19 14:25:15 +00005756
danielk1977ac11ee62005-01-15 12:45:51 +00005757 /* If this is an auto-vacuum database, and not a leaf-data tree,
5758 ** then update the pointer map with an entry for the overflow page
5759 ** that the cell just inserted points to (if any).
5760 */
danielk197785d90ca2008-07-19 14:25:15 +00005761 if( ISAUTOVACUUM && !leafData ){
danielk197779a40da2005-01-16 08:00:01 +00005762 rc = ptrmapPutOvfl(pParent, nxDiv);
5763 if( rc!=SQLITE_OK ){
5764 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00005765 }
5766 }
drh14acc042001-06-10 19:56:58 +00005767 j++;
5768 nxDiv++;
5769 }
danielk197787c52b52008-07-19 11:49:07 +00005770
danielk197787c52b52008-07-19 11:49:07 +00005771 /* Set the pointer-map entry for the new sibling page. */
danielk197785d90ca2008-07-19 14:25:15 +00005772 if( ISAUTOVACUUM ){
danielk197787c52b52008-07-19 11:49:07 +00005773 rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
5774 if( rc!=SQLITE_OK ){
5775 goto balance_cleanup;
5776 }
5777 }
drh14acc042001-06-10 19:56:58 +00005778 }
drh6019e162001-07-02 17:51:45 +00005779 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00005780 assert( nOld>0 );
5781 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00005782 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00005783 u8 *zChild = &apCopy[nOld-1]->aData[8];
5784 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
danielk197785d90ca2008-07-19 14:25:15 +00005785 if( ISAUTOVACUUM ){
danielk197787c52b52008-07-19 11:49:07 +00005786 rc = ptrmapPut(pBt, get4byte(zChild), PTRMAP_BTREE, apNew[nNew-1]->pgno);
5787 if( rc!=SQLITE_OK ){
5788 goto balance_cleanup;
5789 }
5790 }
drh14acc042001-06-10 19:56:58 +00005791 }
drhc5053fb2008-11-27 02:22:10 +00005792 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh43605152004-05-29 21:46:49 +00005793 if( nxDiv==pParent->nCell+pParent->nOverflow ){
drh4b70f112004-05-02 21:12:19 +00005794 /* Right-most sibling is the right-most child of pParent */
drh43605152004-05-29 21:46:49 +00005795 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
drh4b70f112004-05-02 21:12:19 +00005796 }else{
5797 /* Right-most sibling is the left child of the first entry in pParent
5798 ** past the right-most divider entry */
drh43605152004-05-29 21:46:49 +00005799 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00005800 }
5801
5802 /*
drh3a4c1412004-05-09 20:40:11 +00005803 ** Balance the parent page. Note that the current page (pPage) might
danielk1977ac11ee62005-01-15 12:45:51 +00005804 ** have been added to the freelist so it might no longer be initialized.
drh3a4c1412004-05-09 20:40:11 +00005805 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00005806 */
danielk197771d5d2c2008-09-29 11:49:47 +00005807 assert( pParent->isInit );
drhfacf0302008-06-17 15:12:00 +00005808 sqlite3ScratchFree(apCell);
drhe5ae5732008-06-15 02:51:47 +00005809 apCell = 0;
danielk1977a4124bd2008-12-23 10:37:47 +00005810 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
5811 pPage->pgno, nOld, nNew, nCell));
5812 pPage->nOverflow = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00005813 releasePage(pPage);
5814 pCur->iPage--;
5815 rc = balance(pCur, 0);
drhda200cc2004-05-09 11:51:38 +00005816
drh8b2f49b2001-06-08 00:21:52 +00005817 /*
drh14acc042001-06-10 19:56:58 +00005818 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00005819 */
drh14acc042001-06-10 19:56:58 +00005820balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00005821 sqlite3PageFree(aSpace2);
5822 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00005823 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00005824 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00005825 }
drh14acc042001-06-10 19:56:58 +00005826 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00005827 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00005828 }
danielk1977a4124bd2008-12-23 10:37:47 +00005829 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005830
drh8b2f49b2001-06-08 00:21:52 +00005831 return rc;
5832}
5833
5834/*
drh43605152004-05-29 21:46:49 +00005835** This routine is called for the root page of a btree when the root
5836** page contains no cells. This is an opportunity to make the tree
5837** shallower by one level.
5838*/
danielk197771d5d2c2008-09-29 11:49:47 +00005839static int balance_shallower(BtCursor *pCur){
5840 MemPage *pPage; /* Root page of B-Tree */
drh43605152004-05-29 21:46:49 +00005841 MemPage *pChild; /* The only child page of pPage */
5842 Pgno pgnoChild; /* Page number for pChild */
drh2e38c322004-09-03 18:38:44 +00005843 int rc = SQLITE_OK; /* Return code from subprocedures */
danielk1977aef0bf62005-12-30 16:28:01 +00005844 BtShared *pBt; /* The main BTree structure */
drh2e38c322004-09-03 18:38:44 +00005845 int mxCellPerPage; /* Maximum number of cells per page */
5846 u8 **apCell; /* All cells from pages being balanced */
drha9121e42008-02-19 14:59:35 +00005847 u16 *szCell; /* Local size of all cells */
drh43605152004-05-29 21:46:49 +00005848
danielk197771d5d2c2008-09-29 11:49:47 +00005849 assert( pCur->iPage==0 );
5850 pPage = pCur->apPage[0];
5851
drh43605152004-05-29 21:46:49 +00005852 assert( pPage->nCell==0 );
drh1fee73e2007-08-29 04:00:57 +00005853 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh2e38c322004-09-03 18:38:44 +00005854 pBt = pPage->pBt;
5855 mxCellPerPage = MX_CELL(pBt);
drhe5ae5732008-06-15 02:51:47 +00005856 apCell = sqlite3Malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) );
drh2e38c322004-09-03 18:38:44 +00005857 if( apCell==0 ) return SQLITE_NOMEM;
drha9121e42008-02-19 14:59:35 +00005858 szCell = (u16*)&apCell[mxCellPerPage];
drh43605152004-05-29 21:46:49 +00005859 if( pPage->leaf ){
5860 /* The table is completely empty */
5861 TRACE(("BALANCE: empty table %d\n", pPage->pgno));
5862 }else{
5863 /* The root page is empty but has one child. Transfer the
5864 ** information from that one child into the root page if it
5865 ** will fit. This reduces the depth of the tree by one.
5866 **
5867 ** If the root page is page 1, it has less space available than
5868 ** its child (due to the 100 byte header that occurs at the beginning
5869 ** of the database fle), so it might not be able to hold all of the
5870 ** information currently contained in the child. If this is the
5871 ** case, then do not do the transfer. Leave page 1 empty except
5872 ** for the right-pointer to the child page. The child page becomes
5873 ** the virtual root of the tree.
5874 */
drhf94a1732008-09-30 17:18:17 +00005875 VVA_ONLY( pCur->pagesShuffled = 1 );
drh43605152004-05-29 21:46:49 +00005876 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5877 assert( pgnoChild>0 );
danielk197789d40042008-11-17 14:20:56 +00005878 assert( pgnoChild<=pagerPagecount(pPage->pBt) );
drh16a9b832007-05-05 18:39:25 +00005879 rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
drh2e38c322004-09-03 18:38:44 +00005880 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005881 if( pPage->pgno==1 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005882 rc = sqlite3BtreeInitPage(pChild);
drh2e38c322004-09-03 18:38:44 +00005883 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005884 assert( pChild->nOverflow==0 );
5885 if( pChild->nFree>=100 ){
5886 /* The child information will fit on the root page, so do the
5887 ** copy */
5888 int i;
5889 zeroPage(pPage, pChild->aData[0]);
5890 for(i=0; i<pChild->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00005891 apCell[i] = findCell(pChild,i);
drh43605152004-05-29 21:46:49 +00005892 szCell[i] = cellSizePtr(pChild, apCell[i]);
5893 }
5894 assemblePage(pPage, pChild->nCell, apCell, szCell);
danielk1977ae825582004-11-23 09:06:55 +00005895 /* Copy the right-pointer of the child to the parent. */
drhc5053fb2008-11-27 02:22:10 +00005896 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977ae825582004-11-23 09:06:55 +00005897 put4byte(&pPage->aData[pPage->hdrOffset+8],
5898 get4byte(&pChild->aData[pChild->hdrOffset+8]));
drh9bf9e9c2008-12-05 20:01:43 +00005899 rc = freePage(pChild);
drh43605152004-05-29 21:46:49 +00005900 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
5901 }else{
5902 /* The child has more information that will fit on the root.
5903 ** The tree is already balanced. Do nothing. */
5904 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
5905 }
5906 }else{
5907 memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
5908 pPage->isInit = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00005909 rc = sqlite3BtreeInitPage(pPage);
drh43605152004-05-29 21:46:49 +00005910 assert( rc==SQLITE_OK );
5911 freePage(pChild);
5912 TRACE(("BALANCE: transfer child %d into root %d\n",
5913 pChild->pgno, pPage->pgno));
5914 }
danielk1977ac11ee62005-01-15 12:45:51 +00005915 assert( pPage->nOverflow==0 );
shane831c3292008-11-10 17:14:58 +00005916#ifndef SQLITE_OMIT_AUTOVACUUM
drh9bf9e9c2008-12-05 20:01:43 +00005917 if( ISAUTOVACUUM && rc==SQLITE_OK ){
danielk197700a696d2008-09-29 16:41:31 +00005918 rc = setChildPtrmaps(pPage);
danielk1977ac11ee62005-01-15 12:45:51 +00005919 }
shane831c3292008-11-10 17:14:58 +00005920#endif
drh43605152004-05-29 21:46:49 +00005921 releasePage(pChild);
5922 }
drh2e38c322004-09-03 18:38:44 +00005923end_shallow_balance:
drh17435752007-08-16 04:30:38 +00005924 sqlite3_free(apCell);
drh2e38c322004-09-03 18:38:44 +00005925 return rc;
drh43605152004-05-29 21:46:49 +00005926}
5927
5928
5929/*
5930** The root page is overfull
5931**
5932** When this happens, Create a new child page and copy the
5933** contents of the root into the child. Then make the root
5934** page an empty page with rightChild pointing to the new
5935** child. Finally, call balance_internal() on the new child
5936** to cause it to split.
5937*/
danielk197771d5d2c2008-09-29 11:49:47 +00005938static int balance_deeper(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00005939 int rc; /* Return value from subprocedures */
danielk197771d5d2c2008-09-29 11:49:47 +00005940 MemPage *pPage; /* Pointer to the root page */
drh43605152004-05-29 21:46:49 +00005941 MemPage *pChild; /* Pointer to a new child page */
5942 Pgno pgnoChild; /* Page number of the new child page */
danielk1977aef0bf62005-12-30 16:28:01 +00005943 BtShared *pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00005944 int usableSize; /* Total usable size of a page */
5945 u8 *data; /* Content of the parent page */
5946 u8 *cdata; /* Content of the child page */
5947 int hdr; /* Offset to page header in parent */
drh281b21d2008-08-22 12:57:08 +00005948 int cbrk; /* Offset to content of first cell in parent */
drh43605152004-05-29 21:46:49 +00005949
danielk197771d5d2c2008-09-29 11:49:47 +00005950 assert( pCur->iPage==0 );
5951 assert( pCur->apPage[0]->nOverflow>0 );
5952
drhf94a1732008-09-30 17:18:17 +00005953 VVA_ONLY( pCur->pagesShuffled = 1 );
danielk197771d5d2c2008-09-29 11:49:47 +00005954 pPage = pCur->apPage[0];
drh43605152004-05-29 21:46:49 +00005955 pBt = pPage->pBt;
drh1fee73e2007-08-29 04:00:57 +00005956 assert( sqlite3_mutex_held(pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00005957 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh4f0c5872007-03-26 22:05:01 +00005958 rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
drh43605152004-05-29 21:46:49 +00005959 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005960 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
drh43605152004-05-29 21:46:49 +00005961 usableSize = pBt->usableSize;
5962 data = pPage->aData;
5963 hdr = pPage->hdrOffset;
drh281b21d2008-08-22 12:57:08 +00005964 cbrk = get2byte(&data[hdr+5]);
drh43605152004-05-29 21:46:49 +00005965 cdata = pChild->aData;
5966 memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
drh281b21d2008-08-22 12:57:08 +00005967 memcpy(&cdata[cbrk], &data[cbrk], usableSize-cbrk);
danielk1977bc2ca9e2008-11-13 14:28:28 +00005968
5969 assert( pChild->isInit==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005970 rc = sqlite3BtreeInitPage(pChild);
5971 if( rc==SQLITE_OK ){
5972 int nCopy = pPage->nOverflow*sizeof(pPage->aOvfl[0]);
5973 memcpy(pChild->aOvfl, pPage->aOvfl, nCopy);
5974 pChild->nOverflow = pPage->nOverflow;
5975 if( pChild->nOverflow ){
5976 pChild->nFree = 0;
5977 }
5978 assert( pChild->nCell==pPage->nCell );
drhc5053fb2008-11-27 02:22:10 +00005979 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00005980 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
5981 put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
5982 TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
5983 if( ISAUTOVACUUM ){
danielk197771d5d2c2008-09-29 11:49:47 +00005984 rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
shane831c3292008-11-10 17:14:58 +00005985#ifndef SQLITE_OMIT_AUTOVACUUM
danielk197771d5d2c2008-09-29 11:49:47 +00005986 if( rc==SQLITE_OK ){
danielk197700a696d2008-09-29 16:41:31 +00005987 rc = setChildPtrmaps(pChild);
danielk1977ac11ee62005-01-15 12:45:51 +00005988 }
drh30df0092008-12-23 15:58:06 +00005989 if( rc ){
5990 pChild->nOverflow = 0;
5991 }
shane831c3292008-11-10 17:14:58 +00005992#endif
danielk1977ac11ee62005-01-15 12:45:51 +00005993 }
danielk197787c52b52008-07-19 11:49:07 +00005994 }
danielk19776b456a22005-03-21 04:04:02 +00005995
danielk197771d5d2c2008-09-29 11:49:47 +00005996 if( rc==SQLITE_OK ){
5997 pCur->iPage++;
5998 pCur->apPage[1] = pChild;
danielk1977bf93c562008-09-29 15:53:25 +00005999 pCur->aiIdx[0] = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006000 rc = balance_nonroot(pCur);
6001 }else{
6002 releasePage(pChild);
6003 }
6004
drh43605152004-05-29 21:46:49 +00006005 return rc;
6006}
6007
6008/*
danielk197771d5d2c2008-09-29 11:49:47 +00006009** The page that pCur currently points to has just been modified in
6010** some way. This function figures out if this modification means the
6011** tree needs to be balanced, and if so calls the appropriate balancing
6012** routine.
6013**
6014** Parameter isInsert is true if a new cell was just inserted into the
6015** page, or false otherwise.
drh43605152004-05-29 21:46:49 +00006016*/
danielk197771d5d2c2008-09-29 11:49:47 +00006017static int balance(BtCursor *pCur, int isInsert){
drh43605152004-05-29 21:46:49 +00006018 int rc = SQLITE_OK;
danielk197771d5d2c2008-09-29 11:49:47 +00006019 MemPage *pPage = pCur->apPage[pCur->iPage];
6020
drh1fee73e2007-08-29 04:00:57 +00006021 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197771d5d2c2008-09-29 11:49:47 +00006022 if( pCur->iPage==0 ){
danielk19776e465eb2007-08-21 13:11:00 +00006023 rc = sqlite3PagerWrite(pPage->pDbPage);
6024 if( rc==SQLITE_OK && pPage->nOverflow>0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00006025 rc = balance_deeper(pCur);
danielk1977a4124bd2008-12-23 10:37:47 +00006026 assert( pCur->apPage[0]==pPage );
drh9bf9e9c2008-12-05 20:01:43 +00006027 assert( pPage->nOverflow==0 || rc!=SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006028 }
danielk1977687566d2004-11-02 12:56:41 +00006029 if( rc==SQLITE_OK && pPage->nCell==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00006030 rc = balance_shallower(pCur);
danielk1977a4124bd2008-12-23 10:37:47 +00006031 assert( pCur->apPage[0]==pPage );
drh9bf9e9c2008-12-05 20:01:43 +00006032 assert( pPage->nOverflow==0 || rc!=SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006033 }
6034 }else{
danielk1977ac245ec2005-01-14 13:50:11 +00006035 if( pPage->nOverflow>0 ||
danielk197771d5d2c2008-09-29 11:49:47 +00006036 (!isInsert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
6037 rc = balance_nonroot(pCur);
drh43605152004-05-29 21:46:49 +00006038 }
6039 }
6040 return rc;
6041}
6042
6043/*
drh8dcd7ca2004-08-08 19:43:29 +00006044** This routine checks all cursors that point to table pgnoRoot.
drh980b1a72006-08-16 16:42:48 +00006045** If any of those cursors were opened with wrFlag==0 in a different
6046** database connection (a database connection that shares the pager
6047** cache with the current connection) and that other connection
6048** is not in the ReadUncommmitted state, then this routine returns
6049** SQLITE_LOCKED.
danielk1977299b1872004-11-22 10:02:10 +00006050**
drh11b57d62009-02-24 19:21:41 +00006051** As well as cursors with wrFlag==0, cursors with
6052** isIncrblobHandle==1 are also considered 'read' cursors because
6053** incremental blob cursors are used for both reading and writing.
danielk19773588ceb2008-06-10 17:30:26 +00006054**
6055** When pgnoRoot is the root page of an intkey table, this function is also
6056** responsible for invalidating incremental blob cursors when the table row
6057** on which they are opened is deleted or modified. Cursors are invalidated
6058** according to the following rules:
6059**
6060** 1) When BtreeClearTable() is called to completely delete the contents
6061** of a B-Tree table, pExclude is set to zero and parameter iRow is
6062** set to non-zero. In this case all incremental blob cursors open
6063** on the table rooted at pgnoRoot are invalidated.
6064**
6065** 2) When BtreeInsert(), BtreeDelete() or BtreePutData() is called to
6066** modify a table row via an SQL statement, pExclude is set to the
6067** write cursor used to do the modification and parameter iRow is set
6068** to the integer row id of the B-Tree entry being modified. Unless
6069** pExclude is itself an incremental blob cursor, then all incremental
6070** blob cursors open on row iRow of the B-Tree are invalidated.
6071**
6072** 3) If both pExclude and iRow are set to zero, no incremental blob
6073** cursors are invalidated.
drhf74b8d92002-09-01 23:20:45 +00006074*/
drh11b57d62009-02-24 19:21:41 +00006075static int checkForReadConflicts(
6076 Btree *pBtree, /* The database file to check */
6077 Pgno pgnoRoot, /* Look for read cursors on this btree */
6078 BtCursor *pExclude, /* Ignore this cursor */
6079 i64 iRow /* The rowid that might be changing */
danielk19773588ceb2008-06-10 17:30:26 +00006080){
danielk1977299b1872004-11-22 10:02:10 +00006081 BtCursor *p;
drh980b1a72006-08-16 16:42:48 +00006082 BtShared *pBt = pBtree->pBt;
drhe5fe6902007-12-07 18:55:28 +00006083 sqlite3 *db = pBtree->db;
drh1fee73e2007-08-29 04:00:57 +00006084 assert( sqlite3BtreeHoldsMutex(pBtree) );
danielk1977299b1872004-11-22 10:02:10 +00006085 for(p=pBt->pCursor; p; p=p->pNext){
drh980b1a72006-08-16 16:42:48 +00006086 if( p==pExclude ) continue;
drh980b1a72006-08-16 16:42:48 +00006087 if( p->pgnoRoot!=pgnoRoot ) continue;
danielk19773588ceb2008-06-10 17:30:26 +00006088#ifndef SQLITE_OMIT_INCRBLOB
6089 if( p->isIncrblobHandle && (
6090 (!pExclude && iRow)
6091 || (pExclude && !pExclude->isIncrblobHandle && p->info.nKey==iRow)
6092 )){
6093 p->eState = CURSOR_INVALID;
6094 }
6095#endif
6096 if( p->eState!=CURSOR_VALID ) continue;
6097 if( p->wrFlag==0
6098#ifndef SQLITE_OMIT_INCRBLOB
6099 || p->isIncrblobHandle
6100#endif
6101 ){
drhe5fe6902007-12-07 18:55:28 +00006102 sqlite3 *dbOther = p->pBtree->db;
danielk1977404ca072009-03-16 13:19:36 +00006103 assert(dbOther);
6104 if( dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0 ){
6105 sqlite3ConnectionBlocked(db, dbOther);
6106 return SQLITE_LOCKED_SHAREDCACHE;
drh980b1a72006-08-16 16:42:48 +00006107 }
danielk1977299b1872004-11-22 10:02:10 +00006108 }
6109 }
drhf74b8d92002-09-01 23:20:45 +00006110 return SQLITE_OK;
6111}
6112
6113/*
drh3b7511c2001-05-26 13:15:44 +00006114** Insert a new record into the BTree. The key is given by (pKey,nKey)
6115** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006116** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006117** is left pointing at a random location.
6118**
6119** For an INTKEY table, only the nKey value of the key is used. pKey is
6120** ignored. For a ZERODATA table, the pData and nData are both ignored.
drh3b7511c2001-05-26 13:15:44 +00006121*/
drh3aac2dd2004-04-26 14:10:20 +00006122int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006123 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006124 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006125 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006126 int nZero, /* Number of extra 0 bytes to append to data */
drhe4d90812007-03-29 05:51:49 +00006127 int appendBias /* True if this is likely an append */
drh3b7511c2001-05-26 13:15:44 +00006128){
drh3b7511c2001-05-26 13:15:44 +00006129 int rc;
6130 int loc;
drh14acc042001-06-10 19:56:58 +00006131 int szNew;
danielk197771d5d2c2008-09-29 11:49:47 +00006132 int idx;
drh3b7511c2001-05-26 13:15:44 +00006133 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006134 Btree *p = pCur->pBtree;
6135 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006136 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006137 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006138
drh1fee73e2007-08-29 04:00:57 +00006139 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006140 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006141 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006142 assert( pCur->wrFlag );
danielk1977404ca072009-03-16 13:19:36 +00006143 rc = checkForReadConflicts(pCur->pBtree, pCur->pgnoRoot, pCur, nKey);
6144 if( rc ){
6145 /* The table pCur points to has a read lock */
6146 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
6147 return rc;
drhf74b8d92002-09-01 23:20:45 +00006148 }
drhfb982642007-08-30 01:19:59 +00006149 if( pCur->eState==CURSOR_FAULT ){
6150 return pCur->skip;
6151 }
danielk1977da184232006-01-05 11:34:32 +00006152
6153 /* Save the positions of any other cursors open on this table */
danielk1977be51a652008-10-08 17:58:48 +00006154 sqlite3BtreeClearCursor(pCur);
danielk19772e94d4d2006-01-09 05:36:27 +00006155 if(
danielk19772e94d4d2006-01-09 05:36:27 +00006156 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
drhe63d9992008-08-13 19:11:48 +00006157 SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
danielk19772e94d4d2006-01-09 05:36:27 +00006158 ){
danielk1977da184232006-01-05 11:34:32 +00006159 return rc;
6160 }
6161
danielk197771d5d2c2008-09-29 11:49:47 +00006162 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006163 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006164 assert( pPage->leaf || !pPage->intKey );
drh3a4c1412004-05-09 20:40:11 +00006165 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6166 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6167 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006168 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006169 allocateTempSpace(pBt);
6170 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006171 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006172 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006173 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006174 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006175 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006176 idx = pCur->aiIdx[pCur->iPage];
danielk1977da184232006-01-05 11:34:32 +00006177 if( loc==0 && CURSOR_VALID==pCur->eState ){
drha9121e42008-02-19 14:59:35 +00006178 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006179 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006180 rc = sqlite3PagerWrite(pPage->pDbPage);
6181 if( rc ){
6182 goto end_insert;
6183 }
danielk197771d5d2c2008-09-29 11:49:47 +00006184 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006185 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006186 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006187 }
drh43605152004-05-29 21:46:49 +00006188 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006189 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00006190 if( rc ) goto end_insert;
shane0af3f892008-11-12 04:55:34 +00006191 rc = dropCell(pPage, idx, szOld);
6192 if( rc!=SQLITE_OK ) {
6193 goto end_insert;
6194 }
drh7c717f72001-06-24 20:39:41 +00006195 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006196 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006197 idx = ++pCur->aiIdx[pCur->iPage];
drh271efa52004-05-30 19:19:05 +00006198 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00006199 pCur->validNKey = 0;
drh14acc042001-06-10 19:56:58 +00006200 }else{
drh4b70f112004-05-02 21:12:19 +00006201 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006202 }
danielk197771d5d2c2008-09-29 11:49:47 +00006203 rc = insertCell(pPage, idx, newCell, szNew, 0, 0);
drh9bf9e9c2008-12-05 20:01:43 +00006204 if( rc==SQLITE_OK ){
6205 rc = balance(pCur, 1);
6206 }
6207
6208 /* Must make sure nOverflow is reset to zero even if the balance()
6209 ** fails. Internal data structure corruption will result otherwise. */
danielk1977a4124bd2008-12-23 10:37:47 +00006210 pCur->apPage[pCur->iPage]->nOverflow = 0;
drh9bf9e9c2008-12-05 20:01:43 +00006211
danielk1977299b1872004-11-22 10:02:10 +00006212 if( rc==SQLITE_OK ){
6213 moveToRoot(pCur);
6214 }
drh2e38c322004-09-03 18:38:44 +00006215end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006216 return rc;
6217}
6218
6219/*
drh4b70f112004-05-02 21:12:19 +00006220** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006221** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006222*/
drh3aac2dd2004-04-26 14:10:20 +00006223int sqlite3BtreeDelete(BtCursor *pCur){
danielk197771d5d2c2008-09-29 11:49:47 +00006224 MemPage *pPage = pCur->apPage[pCur->iPage];
6225 int idx;
drh4b70f112004-05-02 21:12:19 +00006226 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00006227 int rc;
danielk1977cfe9a692004-06-16 12:00:29 +00006228 Pgno pgnoChild = 0;
drhd677b3d2007-08-20 22:48:41 +00006229 Btree *p = pCur->pBtree;
6230 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006231
drh1fee73e2007-08-29 04:00:57 +00006232 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00006233 assert( pPage->isInit );
drh64022502009-01-09 14:11:04 +00006234 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006235 assert( !pBt->readOnly );
drhfb982642007-08-30 01:19:59 +00006236 if( pCur->eState==CURSOR_FAULT ){
6237 return pCur->skip;
6238 }
drh64022502009-01-09 14:11:04 +00006239 if( NEVER(pCur->aiIdx[pCur->iPage]>=pPage->nCell) ){
drhbd03cae2001-06-02 02:40:57 +00006240 return SQLITE_ERROR; /* The cursor is not pointing to anything */
6241 }
drh64022502009-01-09 14:11:04 +00006242 assert( pCur->wrFlag );
danielk1977404ca072009-03-16 13:19:36 +00006243 rc = checkForReadConflicts(p, pCur->pgnoRoot, pCur, pCur->info.nKey);
6244 if( rc!=SQLITE_OK ){
6245 /* The table pCur points to has a read lock */
6246 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
6247 return rc;
drhf74b8d92002-09-01 23:20:45 +00006248 }
danielk1977da184232006-01-05 11:34:32 +00006249
6250 /* Restore the current cursor position (a no-op if the cursor is not in
6251 ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
danielk19773b8a05f2007-03-19 17:44:26 +00006252 ** open on the same table. Then call sqlite3PagerWrite() on the page
danielk1977da184232006-01-05 11:34:32 +00006253 ** that the entry will be deleted from.
6254 */
6255 if(
drha3460582008-07-11 21:02:53 +00006256 (rc = restoreCursorPosition(pCur))!=0 ||
drhd1167392006-01-23 13:00:35 +00006257 (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
danielk19773b8a05f2007-03-19 17:44:26 +00006258 (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
danielk1977da184232006-01-05 11:34:32 +00006259 ){
6260 return rc;
6261 }
danielk1977e6efa742004-11-10 11:55:10 +00006262
drh85b623f2007-12-13 21:54:09 +00006263 /* Locate the cell within its page and leave pCell pointing to the
danielk1977e6efa742004-11-10 11:55:10 +00006264 ** data. The clearCell() call frees any overflow pages associated with the
6265 ** cell. The cell itself is still intact.
6266 */
danielk197771d5d2c2008-09-29 11:49:47 +00006267 idx = pCur->aiIdx[pCur->iPage];
6268 pCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006269 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006270 pgnoChild = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00006271 }
danielk197728129562005-01-11 10:25:06 +00006272 rc = clearCell(pPage, pCell);
drhd677b3d2007-08-20 22:48:41 +00006273 if( rc ){
drhd677b3d2007-08-20 22:48:41 +00006274 return rc;
6275 }
danielk1977e6efa742004-11-10 11:55:10 +00006276
drh4b70f112004-05-02 21:12:19 +00006277 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00006278 /*
drh5e00f6c2001-09-13 13:46:56 +00006279 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00006280 ** do something we will leave a hole on an internal page.
6281 ** We have to fill the hole by moving in a cell from a leaf. The
6282 ** next Cell after the one to be deleted is guaranteed to exist and
danielk1977299b1872004-11-22 10:02:10 +00006283 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00006284 */
drh14acc042001-06-10 19:56:58 +00006285 BtCursor leafCur;
drh1bd10f82008-12-10 21:19:56 +00006286 MemPage *pLeafPage = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006287
drh4b70f112004-05-02 21:12:19 +00006288 unsigned char *pNext;
danielk1977299b1872004-11-22 10:02:10 +00006289 int notUsed;
danielk19776b456a22005-03-21 04:04:02 +00006290 unsigned char *tempCell = 0;
drh44845222008-07-17 18:39:57 +00006291 assert( !pPage->intKey );
drh16a9b832007-05-05 18:39:25 +00006292 sqlite3BtreeGetTempCursor(pCur, &leafCur);
danielk1977299b1872004-11-22 10:02:10 +00006293 rc = sqlite3BtreeNext(&leafCur, &notUsed);
danielk19776b456a22005-03-21 04:04:02 +00006294 if( rc==SQLITE_OK ){
danielk19772f78fc62008-09-30 09:31:45 +00006295 assert( leafCur.aiIdx[leafCur.iPage]==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006296 pLeafPage = leafCur.apPage[leafCur.iPage];
danielk197771d5d2c2008-09-29 11:49:47 +00006297 rc = sqlite3PagerWrite(pLeafPage->pDbPage);
danielk19776b456a22005-03-21 04:04:02 +00006298 }
6299 if( rc==SQLITE_OK ){
danielk19772f78fc62008-09-30 09:31:45 +00006300 int leafCursorInvalid = 0;
drha9121e42008-02-19 14:59:35 +00006301 u16 szNext;
danielk19776b456a22005-03-21 04:04:02 +00006302 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
danielk197771d5d2c2008-09-29 11:49:47 +00006303 pCur->pgnoRoot, pPage->pgno, pLeafPage->pgno));
6304 dropCell(pPage, idx, cellSizePtr(pPage, pCell));
danielk19772f78fc62008-09-30 09:31:45 +00006305 pNext = findCell(pLeafPage, 0);
danielk197771d5d2c2008-09-29 11:49:47 +00006306 szNext = cellSizePtr(pLeafPage, pNext);
danielk19776b456a22005-03-21 04:04:02 +00006307 assert( MX_CELL_SIZE(pBt)>=szNext+4 );
danielk197752ae7242008-03-25 14:24:56 +00006308 allocateTempSpace(pBt);
6309 tempCell = pBt->pTmpSpace;
danielk19776b456a22005-03-21 04:04:02 +00006310 if( tempCell==0 ){
6311 rc = SQLITE_NOMEM;
6312 }
danielk19778ea1cfa2008-01-01 06:19:02 +00006313 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00006314 rc = insertCell(pPage, idx, pNext-4, szNext+4, tempCell, 0);
danielk19778ea1cfa2008-01-01 06:19:02 +00006315 }
danielk19772f78fc62008-09-30 09:31:45 +00006316
drhf94a1732008-09-30 17:18:17 +00006317
6318 /* The "if" statement in the next code block is critical. The
6319 ** slightest error in that statement would allow SQLite to operate
6320 ** correctly most of the time but produce very rare failures. To
6321 ** guard against this, the following macros help to verify that
6322 ** the "if" statement is well tested.
6323 */
6324 testcase( pPage->nOverflow==0 && pPage->nFree<pBt->usableSize*2/3
6325 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6326 testcase( pPage->nOverflow==0 && pPage->nFree==pBt->usableSize*2/3
6327 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6328 testcase( pPage->nOverflow==0 && pPage->nFree==pBt->usableSize*2/3+1
6329 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6330 testcase( pPage->nOverflow>0 && pPage->nFree<=pBt->usableSize*2/3
6331 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6332 testcase( (pPage->nOverflow>0 || (pPage->nFree > pBt->usableSize*2/3))
6333 && pLeafPage->nFree+2+szNext == pBt->usableSize*2/3 );
6334
6335
danielk19772f78fc62008-09-30 09:31:45 +00006336 if( (pPage->nOverflow>0 || (pPage->nFree > pBt->usableSize*2/3)) &&
6337 (pLeafPage->nFree+2+szNext > pBt->usableSize*2/3)
6338 ){
drhf94a1732008-09-30 17:18:17 +00006339 /* This branch is taken if the internal node is now either overflowing
6340 ** or underfull and the leaf node will be underfull after the just cell
danielk19772f78fc62008-09-30 09:31:45 +00006341 ** copied to the internal node is deleted from it. This is a special
6342 ** case because the call to balance() to correct the internal node
6343 ** may change the tree structure and invalidate the contents of
6344 ** the leafCur.apPage[] and leafCur.aiIdx[] arrays, which will be
6345 ** used by the balance() required to correct the underfull leaf
6346 ** node.
6347 **
6348 ** The formula used in the expression above are based on facets of
6349 ** the SQLite file-format that do not change over time.
6350 */
drhf94a1732008-09-30 17:18:17 +00006351 testcase( pPage->nFree==pBt->usableSize*2/3+1 );
6352 testcase( pLeafPage->nFree+2+szNext==pBt->usableSize*2/3+1 );
danielk19772f78fc62008-09-30 09:31:45 +00006353 leafCursorInvalid = 1;
6354 }
6355
danielk19778ea1cfa2008-01-01 06:19:02 +00006356 if( rc==SQLITE_OK ){
drhc5053fb2008-11-27 02:22:10 +00006357 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00006358 put4byte(findOverflowCell(pPage, idx), pgnoChild);
drhf94a1732008-09-30 17:18:17 +00006359 VVA_ONLY( pCur->pagesShuffled = 0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006360 rc = balance(pCur, 0);
danielk19778ea1cfa2008-01-01 06:19:02 +00006361 }
danielk19772f78fc62008-09-30 09:31:45 +00006362
6363 if( rc==SQLITE_OK && leafCursorInvalid ){
6364 /* The leaf-node is now underfull and so the tree needs to be
6365 ** rebalanced. However, the balance() operation on the internal
6366 ** node above may have modified the structure of the B-Tree and
6367 ** so the current contents of leafCur.apPage[] and leafCur.aiIdx[]
6368 ** may not be trusted.
6369 **
6370 ** It is not possible to copy the ancestry from pCur, as the same
6371 ** balance() call has invalidated the pCur->apPage[] and aiIdx[]
6372 ** arrays.
drh7b682802008-09-30 14:06:28 +00006373 **
6374 ** The call to saveCursorPosition() below internally saves the
6375 ** key that leafCur is currently pointing to. Currently, there
6376 ** are two copies of that key in the tree - one here on the leaf
6377 ** page and one on some internal node in the tree. The copy on
6378 ** the leaf node is always the next key in tree-order after the
6379 ** copy on the internal node. So, the call to sqlite3BtreeNext()
6380 ** calls restoreCursorPosition() to point the cursor to the copy
6381 ** stored on the internal node, then advances to the next entry,
6382 ** which happens to be the copy of the key on the internal node.
danielk1977a69fda22008-09-30 16:48:10 +00006383 ** Net effect: leafCur is pointing back to the duplicate cell
6384 ** that needs to be removed, and the leafCur.apPage[] and
6385 ** leafCur.aiIdx[] arrays are correct.
danielk19772f78fc62008-09-30 09:31:45 +00006386 */
drhf94a1732008-09-30 17:18:17 +00006387 VVA_ONLY( Pgno leafPgno = pLeafPage->pgno );
danielk19772f78fc62008-09-30 09:31:45 +00006388 rc = saveCursorPosition(&leafCur);
6389 if( rc==SQLITE_OK ){
6390 rc = sqlite3BtreeNext(&leafCur, &notUsed);
6391 }
6392 pLeafPage = leafCur.apPage[leafCur.iPage];
danielk19775d189852009-04-07 14:38:58 +00006393 assert( rc!=SQLITE_OK || pLeafPage->pgno==leafPgno );
6394 assert( rc!=SQLITE_OK || leafCur.aiIdx[leafCur.iPage]==0 );
danielk19772f78fc62008-09-30 09:31:45 +00006395 }
6396
danielk19770cd1bbd2008-11-26 07:25:52 +00006397 if( SQLITE_OK==rc
6398 && SQLITE_OK==(rc = sqlite3PagerWrite(pLeafPage->pDbPage))
6399 ){
danielk19772f78fc62008-09-30 09:31:45 +00006400 dropCell(pLeafPage, 0, szNext);
drhf94a1732008-09-30 17:18:17 +00006401 VVA_ONLY( leafCur.pagesShuffled = 0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006402 rc = balance(&leafCur, 0);
drhf94a1732008-09-30 17:18:17 +00006403 assert( leafCursorInvalid || !leafCur.pagesShuffled
6404 || !pCur->pagesShuffled );
danielk19778ea1cfa2008-01-01 06:19:02 +00006405 }
danielk19776b456a22005-03-21 04:04:02 +00006406 }
drh16a9b832007-05-05 18:39:25 +00006407 sqlite3BtreeReleaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00006408 }else{
danielk1977299b1872004-11-22 10:02:10 +00006409 TRACE(("DELETE: table=%d delete from leaf %d\n",
6410 pCur->pgnoRoot, pPage->pgno));
shanedcc50b72008-11-13 18:29:50 +00006411 rc = dropCell(pPage, idx, cellSizePtr(pPage, pCell));
6412 if( rc==SQLITE_OK ){
6413 rc = balance(pCur, 0);
6414 }
drh5e2f8b92001-05-28 00:41:15 +00006415 }
danielk19776b456a22005-03-21 04:04:02 +00006416 if( rc==SQLITE_OK ){
6417 moveToRoot(pCur);
6418 }
drh5e2f8b92001-05-28 00:41:15 +00006419 return rc;
drh3b7511c2001-05-26 13:15:44 +00006420}
drh8b2f49b2001-06-08 00:21:52 +00006421
6422/*
drhc6b52df2002-01-04 03:09:29 +00006423** Create a new BTree table. Write into *piTable the page
6424** number for the root page of the new table.
6425**
drhab01f612004-05-22 02:55:23 +00006426** The type of type is determined by the flags parameter. Only the
6427** following values of flags are currently in use. Other values for
6428** flags might not work:
6429**
6430** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6431** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006432*/
drhd677b3d2007-08-20 22:48:41 +00006433static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006434 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006435 MemPage *pRoot;
6436 Pgno pgnoRoot;
6437 int rc;
drhd677b3d2007-08-20 22:48:41 +00006438
drh1fee73e2007-08-29 04:00:57 +00006439 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006440 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006441 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006442
danielk1977003ba062004-11-04 02:57:33 +00006443#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006444 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006445 if( rc ){
6446 return rc;
6447 }
danielk1977003ba062004-11-04 02:57:33 +00006448#else
danielk1977687566d2004-11-02 12:56:41 +00006449 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006450 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6451 MemPage *pPageMove; /* The page to move to. */
6452
danielk197720713f32007-05-03 11:43:33 +00006453 /* Creating a new table may probably require moving an existing database
6454 ** to make room for the new tables root page. In case this page turns
6455 ** out to be an overflow page, delete all overflow page-map caches
6456 ** held by open cursors.
6457 */
danielk197792d4d7a2007-05-04 12:05:56 +00006458 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006459
danielk1977003ba062004-11-04 02:57:33 +00006460 /* Read the value of meta[3] from the database to determine where the
6461 ** root page of the new table should go. meta[3] is the largest root-page
6462 ** created so far, so the new root-page is (meta[3]+1).
6463 */
danielk1977aef0bf62005-12-30 16:28:01 +00006464 rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
drhd677b3d2007-08-20 22:48:41 +00006465 if( rc!=SQLITE_OK ){
6466 return rc;
6467 }
danielk1977003ba062004-11-04 02:57:33 +00006468 pgnoRoot++;
6469
danielk1977599fcba2004-11-08 07:13:13 +00006470 /* The new root-page may not be allocated on a pointer-map page, or the
6471 ** PENDING_BYTE page.
6472 */
drh72190432008-01-31 14:54:43 +00006473 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006474 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006475 pgnoRoot++;
6476 }
6477 assert( pgnoRoot>=3 );
6478
6479 /* Allocate a page. The page that currently resides at pgnoRoot will
6480 ** be moved to the allocated page (unless the allocated page happens
6481 ** to reside at pgnoRoot).
6482 */
drh4f0c5872007-03-26 22:05:01 +00006483 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006484 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006485 return rc;
6486 }
danielk1977003ba062004-11-04 02:57:33 +00006487
6488 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006489 /* pgnoRoot is the page that will be used for the root-page of
6490 ** the new table (assuming an error did not occur). But we were
6491 ** allocated pgnoMove. If required (i.e. if it was not allocated
6492 ** by extending the file), the current page at position pgnoMove
6493 ** is already journaled.
6494 */
danielk1977003ba062004-11-04 02:57:33 +00006495 u8 eType;
6496 Pgno iPtrPage;
6497
6498 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006499
6500 /* Move the page currently at pgnoRoot to pgnoMove. */
drh16a9b832007-05-05 18:39:25 +00006501 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006502 if( rc!=SQLITE_OK ){
6503 return rc;
6504 }
6505 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drhccae6022005-02-26 17:31:26 +00006506 if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00006507 releasePage(pRoot);
6508 return rc;
6509 }
drhccae6022005-02-26 17:31:26 +00006510 assert( eType!=PTRMAP_ROOTPAGE );
6511 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006512 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006513 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006514
6515 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006516 if( rc!=SQLITE_OK ){
6517 return rc;
6518 }
drh16a9b832007-05-05 18:39:25 +00006519 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006520 if( rc!=SQLITE_OK ){
6521 return rc;
6522 }
danielk19773b8a05f2007-03-19 17:44:26 +00006523 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006524 if( rc!=SQLITE_OK ){
6525 releasePage(pRoot);
6526 return rc;
6527 }
6528 }else{
6529 pRoot = pPageMove;
6530 }
6531
danielk197742741be2005-01-08 12:42:39 +00006532 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00006533 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
6534 if( rc ){
6535 releasePage(pRoot);
6536 return rc;
6537 }
danielk1977aef0bf62005-12-30 16:28:01 +00006538 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006539 if( rc ){
6540 releasePage(pRoot);
6541 return rc;
6542 }
danielk197742741be2005-01-08 12:42:39 +00006543
danielk1977003ba062004-11-04 02:57:33 +00006544 }else{
drh4f0c5872007-03-26 22:05:01 +00006545 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006546 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006547 }
6548#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006549 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006550 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006551 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006552 *piTable = (int)pgnoRoot;
6553 return SQLITE_OK;
6554}
drhd677b3d2007-08-20 22:48:41 +00006555int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6556 int rc;
6557 sqlite3BtreeEnter(p);
6558 rc = btreeCreateTable(p, piTable, flags);
6559 sqlite3BtreeLeave(p);
6560 return rc;
6561}
drh8b2f49b2001-06-08 00:21:52 +00006562
6563/*
6564** Erase the given database page and all its children. Return
6565** the page to the freelist.
6566*/
drh4b70f112004-05-02 21:12:19 +00006567static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006568 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00006569 Pgno pgno, /* Page number to clear */
danielk1977c7af4842008-10-27 13:59:33 +00006570 int freePageFlag, /* Deallocate page if true */
6571 int *pnChange
drh4b70f112004-05-02 21:12:19 +00006572){
danielk19776b456a22005-03-21 04:04:02 +00006573 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006574 int rc;
drh4b70f112004-05-02 21:12:19 +00006575 unsigned char *pCell;
6576 int i;
drh8b2f49b2001-06-08 00:21:52 +00006577
drh1fee73e2007-08-29 04:00:57 +00006578 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006579 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006580 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006581 }
6582
danielk197771d5d2c2008-09-29 11:49:47 +00006583 rc = getAndInitPage(pBt, pgno, &pPage);
danielk19776b456a22005-03-21 04:04:02 +00006584 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00006585 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006586 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006587 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006588 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006589 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006590 }
drh4b70f112004-05-02 21:12:19 +00006591 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006592 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006593 }
drha34b6762004-05-07 13:30:42 +00006594 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006595 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006596 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006597 }else if( pnChange ){
6598 assert( pPage->intKey );
6599 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006600 }
6601 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00006602 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00006603 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006604 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006605 }
danielk19776b456a22005-03-21 04:04:02 +00006606
6607cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006608 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006609 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006610}
6611
6612/*
drhab01f612004-05-22 02:55:23 +00006613** Delete all information from a single table in the database. iTable is
6614** the page number of the root of the table. After this routine returns,
6615** the root page is empty, but still exists.
6616**
6617** This routine will fail with SQLITE_LOCKED if there are any open
6618** read cursors on the table. Open write cursors are moved to the
6619** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006620**
6621** If pnChange is not NULL, then table iTable must be an intkey table. The
6622** integer value pointed to by pnChange is incremented by the number of
6623** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006624*/
danielk1977c7af4842008-10-27 13:59:33 +00006625int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006626 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006627 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006628 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006629 assert( p->inTrans==TRANS_WRITE );
drh11b57d62009-02-24 19:21:41 +00006630 if( (rc = checkForReadConflicts(p, iTable, 0, 1))!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00006631 /* nothing to do */
6632 }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
6633 /* nothing to do */
6634 }else{
danielk197762c14b32008-11-19 09:05:26 +00006635 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006636 }
drhd677b3d2007-08-20 22:48:41 +00006637 sqlite3BtreeLeave(p);
6638 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006639}
6640
6641/*
6642** Erase all information in a table and add the root of the table to
6643** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006644** page 1) is never added to the freelist.
6645**
6646** This routine will fail with SQLITE_LOCKED if there are any open
6647** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006648**
6649** If AUTOVACUUM is enabled and the page at iTable is not the last
6650** root page in the database file, then the last root page
6651** in the database file is moved into the slot formerly occupied by
6652** iTable and that last slot formerly occupied by the last root page
6653** is added to the freelist instead of iTable. In this say, all
6654** root pages are kept at the beginning of the database file, which
6655** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6656** page number that used to be the last root page in the file before
6657** the move. If no page gets moved, *piMoved is set to 0.
6658** The last root page is recorded in meta[3] and the value of
6659** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006660*/
danielk197789d40042008-11-17 14:20:56 +00006661static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006662 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006663 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006664 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006665
drh1fee73e2007-08-29 04:00:57 +00006666 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006667 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006668
danielk1977e6efa742004-11-10 11:55:10 +00006669 /* It is illegal to drop a table if any cursors are open on the
6670 ** database. This is because in auto-vacuum mode the backend may
6671 ** need to move another root-page to fill a gap left by the deleted
6672 ** root page. If an open cursor was using this page a problem would
6673 ** occur.
6674 */
6675 if( pBt->pCursor ){
danielk1977404ca072009-03-16 13:19:36 +00006676 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
6677 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00006678 }
danielk1977a0bf2652004-11-04 14:30:04 +00006679
drh16a9b832007-05-05 18:39:25 +00006680 rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006681 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00006682 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00006683 if( rc ){
6684 releasePage(pPage);
6685 return rc;
6686 }
danielk1977a0bf2652004-11-04 14:30:04 +00006687
drh205f48e2004-11-05 00:43:11 +00006688 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006689
drh4b70f112004-05-02 21:12:19 +00006690 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006691#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00006692 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00006693 releasePage(pPage);
6694#else
6695 if( pBt->autoVacuum ){
6696 Pgno maxRootPgno;
danielk1977aef0bf62005-12-30 16:28:01 +00006697 rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006698 if( rc!=SQLITE_OK ){
6699 releasePage(pPage);
6700 return rc;
6701 }
6702
6703 if( iTable==maxRootPgno ){
6704 /* If the table being dropped is the table with the largest root-page
6705 ** number in the database, put the root page on the free list.
6706 */
6707 rc = freePage(pPage);
6708 releasePage(pPage);
6709 if( rc!=SQLITE_OK ){
6710 return rc;
6711 }
6712 }else{
6713 /* The table being dropped does not have the largest root-page
6714 ** number in the database. So move the page that does into the
6715 ** gap left by the deleted root-page.
6716 */
6717 MemPage *pMove;
6718 releasePage(pPage);
drh16a9b832007-05-05 18:39:25 +00006719 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006720 if( rc!=SQLITE_OK ){
6721 return rc;
6722 }
danielk19774c999992008-07-16 18:17:55 +00006723 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006724 releasePage(pMove);
6725 if( rc!=SQLITE_OK ){
6726 return rc;
6727 }
drh16a9b832007-05-05 18:39:25 +00006728 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006729 if( rc!=SQLITE_OK ){
6730 return rc;
6731 }
6732 rc = freePage(pMove);
6733 releasePage(pMove);
6734 if( rc!=SQLITE_OK ){
6735 return rc;
6736 }
6737 *piMoved = maxRootPgno;
6738 }
6739
danielk1977599fcba2004-11-08 07:13:13 +00006740 /* Set the new 'max-root-page' value in the database header. This
6741 ** is the old value less one, less one more if that happens to
6742 ** be a root-page number, less one again if that is the
6743 ** PENDING_BYTE_PAGE.
6744 */
danielk197787a6e732004-11-05 12:58:25 +00006745 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00006746 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
6747 maxRootPgno--;
6748 }
danielk1977266664d2006-02-10 08:24:21 +00006749 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00006750 maxRootPgno--;
6751 }
danielk1977599fcba2004-11-08 07:13:13 +00006752 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
6753
danielk1977aef0bf62005-12-30 16:28:01 +00006754 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006755 }else{
6756 rc = freePage(pPage);
6757 releasePage(pPage);
6758 }
6759#endif
drh2aa679f2001-06-25 02:11:07 +00006760 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00006761 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00006762 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00006763 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00006764 }
drh8b2f49b2001-06-08 00:21:52 +00006765 return rc;
6766}
drhd677b3d2007-08-20 22:48:41 +00006767int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
6768 int rc;
6769 sqlite3BtreeEnter(p);
6770 rc = btreeDropTable(p, iTable, piMoved);
6771 sqlite3BtreeLeave(p);
6772 return rc;
6773}
drh8b2f49b2001-06-08 00:21:52 +00006774
drh001bbcb2003-03-19 03:14:00 +00006775
drh8b2f49b2001-06-08 00:21:52 +00006776/*
drh23e11ca2004-05-04 17:27:28 +00006777** Read the meta-information out of a database file. Meta[0]
6778** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00006779** through meta[15] are available for use by higher layers. Meta[0]
6780** is read-only, the others are read/write.
6781**
6782** The schema layer numbers meta values differently. At the schema
6783** layer (and the SetCookie and ReadCookie opcodes) the number of
6784** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00006785*/
danielk1977aef0bf62005-12-30 16:28:01 +00006786int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
drh1bd10f82008-12-10 21:19:56 +00006787 DbPage *pDbPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006788 int rc;
drh4b70f112004-05-02 21:12:19 +00006789 unsigned char *pP1;
danielk1977aef0bf62005-12-30 16:28:01 +00006790 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006791
drhd677b3d2007-08-20 22:48:41 +00006792 sqlite3BtreeEnter(p);
6793
danielk1977da184232006-01-05 11:34:32 +00006794 /* Reading a meta-data value requires a read-lock on page 1 (and hence
6795 ** the sqlite_master table. We grab this lock regardless of whether or
6796 ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
drhc25eabe2009-02-24 18:57:31 +00006797 ** 1 is treated as a special case by querySharedCacheTableLock()
6798 ** and setSharedCacheTableLock()).
danielk1977da184232006-01-05 11:34:32 +00006799 */
drhc25eabe2009-02-24 18:57:31 +00006800 rc = querySharedCacheTableLock(p, 1, READ_LOCK);
danielk1977da184232006-01-05 11:34:32 +00006801 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00006802 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006803 return rc;
6804 }
6805
drh23e11ca2004-05-04 17:27:28 +00006806 assert( idx>=0 && idx<=15 );
danielk1977d9f6c532008-09-19 16:39:38 +00006807 if( pBt->pPage1 ){
6808 /* The b-tree is already holding a reference to page 1 of the database
6809 ** file. In this case the required meta-data value can be read directly
6810 ** from the page data of this reference. This is slightly faster than
6811 ** requesting a new reference from the pager layer.
6812 */
6813 pP1 = (unsigned char *)pBt->pPage1->aData;
6814 }else{
6815 /* The b-tree does not have a reference to page 1 of the database file.
6816 ** Obtain one from the pager layer.
6817 */
danielk1977ea897302008-09-19 15:10:58 +00006818 rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
6819 if( rc ){
6820 sqlite3BtreeLeave(p);
6821 return rc;
6822 }
6823 pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
drhd677b3d2007-08-20 22:48:41 +00006824 }
drh23e11ca2004-05-04 17:27:28 +00006825 *pMeta = get4byte(&pP1[36 + idx*4]);
danielk1977ea897302008-09-19 15:10:58 +00006826
danielk1977d9f6c532008-09-19 16:39:38 +00006827 /* If the b-tree is not holding a reference to page 1, then one was
6828 ** requested from the pager layer in the above block. Release it now.
6829 */
danielk1977ea897302008-09-19 15:10:58 +00006830 if( !pBt->pPage1 ){
6831 sqlite3PagerUnref(pDbPage);
6832 }
drhae157872004-08-14 19:20:09 +00006833
danielk1977599fcba2004-11-08 07:13:13 +00006834 /* If autovacuumed is disabled in this build but we are trying to
6835 ** access an autovacuumed database, then make the database readonly.
6836 */
danielk1977003ba062004-11-04 02:57:33 +00006837#ifdef SQLITE_OMIT_AUTOVACUUM
drhae157872004-08-14 19:20:09 +00006838 if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00006839#endif
drhae157872004-08-14 19:20:09 +00006840
danielk1977fa542f12009-04-02 18:28:08 +00006841 /* If there is currently an open transaction, grab a read-lock
6842 ** on page 1 of the database file. This is done to make sure that
6843 ** no other connection can modify the meta value just read from
6844 ** the database until the transaction is concluded.
6845 */
6846 if( p->inTrans>0 ){
6847 rc = setSharedCacheTableLock(p, 1, READ_LOCK);
6848 }
drhd677b3d2007-08-20 22:48:41 +00006849 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006850 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006851}
6852
6853/*
drh23e11ca2004-05-04 17:27:28 +00006854** Write meta-information back into the database. Meta[0] is
6855** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00006856*/
danielk1977aef0bf62005-12-30 16:28:01 +00006857int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
6858 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00006859 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00006860 int rc;
drh23e11ca2004-05-04 17:27:28 +00006861 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00006862 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006863 assert( p->inTrans==TRANS_WRITE );
6864 assert( pBt->pPage1!=0 );
6865 pP1 = pBt->pPage1->aData;
6866 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6867 if( rc==SQLITE_OK ){
6868 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00006869#ifndef SQLITE_OMIT_AUTOVACUUM
drh64022502009-01-09 14:11:04 +00006870 if( idx==7 ){
6871 assert( pBt->autoVacuum || iMeta==0 );
6872 assert( iMeta==0 || iMeta==1 );
6873 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00006874 }
drh64022502009-01-09 14:11:04 +00006875#endif
drh5df72a52002-06-06 23:16:05 +00006876 }
drhd677b3d2007-08-20 22:48:41 +00006877 sqlite3BtreeLeave(p);
6878 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006879}
drh8c42ca92001-06-22 19:15:00 +00006880
drhf328bc82004-05-10 23:29:49 +00006881/*
6882** Return the flag byte at the beginning of the page that the cursor
6883** is currently pointing to.
6884*/
6885int sqlite3BtreeFlags(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00006886 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
drha3460582008-07-11 21:02:53 +00006887 ** restoreCursorPosition() here.
danielk1977da184232006-01-05 11:34:32 +00006888 */
danielk1977e448dc42008-01-02 11:50:51 +00006889 MemPage *pPage;
drha3460582008-07-11 21:02:53 +00006890 restoreCursorPosition(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00006891 pPage = pCur->apPage[pCur->iPage];
drh1fee73e2007-08-29 04:00:57 +00006892 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006893 assert( pPage!=0 );
drhd0679ed2007-08-28 22:24:34 +00006894 assert( pPage->pBt==pCur->pBt );
drh64022502009-01-09 14:11:04 +00006895 return pPage->aData[pPage->hdrOffset];
drhf328bc82004-05-10 23:29:49 +00006896}
6897
danielk1977a5533162009-02-24 10:01:51 +00006898#ifndef SQLITE_OMIT_BTREECOUNT
6899/*
6900** The first argument, pCur, is a cursor opened on some b-tree. Count the
6901** number of entries in the b-tree and write the result to *pnEntry.
6902**
6903** SQLITE_OK is returned if the operation is successfully executed.
6904** Otherwise, if an error is encountered (i.e. an IO error or database
6905** corruption) an SQLite error code is returned.
6906*/
6907int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
6908 i64 nEntry = 0; /* Value to return in *pnEntry */
6909 int rc; /* Return code */
6910 rc = moveToRoot(pCur);
6911
6912 /* Unless an error occurs, the following loop runs one iteration for each
6913 ** page in the B-Tree structure (not including overflow pages).
6914 */
6915 while( rc==SQLITE_OK ){
6916 int iIdx; /* Index of child node in parent */
6917 MemPage *pPage; /* Current page of the b-tree */
6918
6919 /* If this is a leaf page or the tree is not an int-key tree, then
6920 ** this page contains countable entries. Increment the entry counter
6921 ** accordingly.
6922 */
6923 pPage = pCur->apPage[pCur->iPage];
6924 if( pPage->leaf || !pPage->intKey ){
6925 nEntry += pPage->nCell;
6926 }
6927
6928 /* pPage is a leaf node. This loop navigates the cursor so that it
6929 ** points to the first interior cell that it points to the parent of
6930 ** the next page in the tree that has not yet been visited. The
6931 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
6932 ** of the page, or to the number of cells in the page if the next page
6933 ** to visit is the right-child of its parent.
6934 **
6935 ** If all pages in the tree have been visited, return SQLITE_OK to the
6936 ** caller.
6937 */
6938 if( pPage->leaf ){
6939 do {
6940 if( pCur->iPage==0 ){
6941 /* All pages of the b-tree have been visited. Return successfully. */
6942 *pnEntry = nEntry;
6943 return SQLITE_OK;
6944 }
6945 sqlite3BtreeMoveToParent(pCur);
6946 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
6947
6948 pCur->aiIdx[pCur->iPage]++;
6949 pPage = pCur->apPage[pCur->iPage];
6950 }
6951
6952 /* Descend to the child node of the cell that the cursor currently
6953 ** points at. This is the right-child if (iIdx==pPage->nCell).
6954 */
6955 iIdx = pCur->aiIdx[pCur->iPage];
6956 if( iIdx==pPage->nCell ){
6957 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
6958 }else{
6959 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
6960 }
6961 }
6962
shanebe217792009-03-05 04:20:31 +00006963 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00006964 return rc;
6965}
6966#endif
drhdd793422001-06-28 01:54:48 +00006967
drhdd793422001-06-28 01:54:48 +00006968/*
drh5eddca62001-06-30 21:53:53 +00006969** Return the pager associated with a BTree. This routine is used for
6970** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00006971*/
danielk1977aef0bf62005-12-30 16:28:01 +00006972Pager *sqlite3BtreePager(Btree *p){
6973 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00006974}
drh5eddca62001-06-30 21:53:53 +00006975
drhb7f91642004-10-31 02:22:47 +00006976#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006977/*
6978** Append a message to the error message string.
6979*/
drh2e38c322004-09-03 18:38:44 +00006980static void checkAppendMsg(
6981 IntegrityCk *pCheck,
6982 char *zMsg1,
6983 const char *zFormat,
6984 ...
6985){
6986 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00006987 if( !pCheck->mxErr ) return;
6988 pCheck->mxErr--;
6989 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00006990 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00006991 if( pCheck->errMsg.nChar ){
6992 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00006993 }
drhf089aa42008-07-08 19:34:06 +00006994 if( zMsg1 ){
6995 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
6996 }
6997 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
6998 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00006999 if( pCheck->errMsg.mallocFailed ){
7000 pCheck->mallocFailed = 1;
7001 }
drh5eddca62001-06-30 21:53:53 +00007002}
drhb7f91642004-10-31 02:22:47 +00007003#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007004
drhb7f91642004-10-31 02:22:47 +00007005#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007006/*
7007** Add 1 to the reference count for page iPage. If this is the second
7008** reference to the page, add an error message to pCheck->zErrMsg.
7009** Return 1 if there are 2 ore more references to the page and 0 if
7010** if this is the first reference to the page.
7011**
7012** Also check that the page number is in bounds.
7013*/
danielk197789d40042008-11-17 14:20:56 +00007014static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007015 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007016 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007017 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007018 return 1;
7019 }
7020 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007021 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007022 return 1;
7023 }
7024 return (pCheck->anRef[iPage]++)>1;
7025}
7026
danielk1977afcdd022004-10-31 16:25:42 +00007027#ifndef SQLITE_OMIT_AUTOVACUUM
7028/*
7029** Check that the entry in the pointer-map for page iChild maps to
7030** page iParent, pointer type ptrType. If not, append an error message
7031** to pCheck.
7032*/
7033static void checkPtrmap(
7034 IntegrityCk *pCheck, /* Integrity check context */
7035 Pgno iChild, /* Child page number */
7036 u8 eType, /* Expected pointer map type */
7037 Pgno iParent, /* Expected pointer map parent page number */
7038 char *zContext /* Context description (used for error msg) */
7039){
7040 int rc;
7041 u8 ePtrmapType;
7042 Pgno iPtrmapParent;
7043
7044 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7045 if( rc!=SQLITE_OK ){
drhe43ba702008-12-05 22:40:08 +00007046 if( rc==SQLITE_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007047 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7048 return;
7049 }
7050
7051 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7052 checkAppendMsg(pCheck, zContext,
7053 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7054 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7055 }
7056}
7057#endif
7058
drh5eddca62001-06-30 21:53:53 +00007059/*
7060** Check the integrity of the freelist or of an overflow page list.
7061** Verify that the number of pages on the list is N.
7062*/
drh30e58752002-03-02 20:41:57 +00007063static void checkList(
7064 IntegrityCk *pCheck, /* Integrity checking context */
7065 int isFreeList, /* True for a freelist. False for overflow page list */
7066 int iPage, /* Page number for first page in the list */
7067 int N, /* Expected number of pages in the list */
7068 char *zContext /* Context for error messages */
7069){
7070 int i;
drh3a4c1412004-05-09 20:40:11 +00007071 int expected = N;
7072 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007073 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007074 DbPage *pOvflPage;
7075 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007076 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007077 checkAppendMsg(pCheck, zContext,
7078 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007079 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007080 break;
7081 }
7082 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007083 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007084 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007085 break;
7086 }
danielk19773b8a05f2007-03-19 17:44:26 +00007087 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007088 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007089 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007090#ifndef SQLITE_OMIT_AUTOVACUUM
7091 if( pCheck->pBt->autoVacuum ){
7092 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7093 }
7094#endif
drh45b1fac2008-07-04 17:52:42 +00007095 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007096 checkAppendMsg(pCheck, zContext,
7097 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007098 N--;
7099 }else{
7100 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007101 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007102#ifndef SQLITE_OMIT_AUTOVACUUM
7103 if( pCheck->pBt->autoVacuum ){
7104 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7105 }
7106#endif
7107 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007108 }
7109 N -= n;
drh30e58752002-03-02 20:41:57 +00007110 }
drh30e58752002-03-02 20:41:57 +00007111 }
danielk1977afcdd022004-10-31 16:25:42 +00007112#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007113 else{
7114 /* If this database supports auto-vacuum and iPage is not the last
7115 ** page in this overflow list, check that the pointer-map entry for
7116 ** the following page matches iPage.
7117 */
7118 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007119 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007120 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7121 }
danielk1977afcdd022004-10-31 16:25:42 +00007122 }
7123#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007124 iPage = get4byte(pOvflData);
7125 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007126 }
7127}
drhb7f91642004-10-31 02:22:47 +00007128#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007129
drhb7f91642004-10-31 02:22:47 +00007130#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007131/*
7132** Do various sanity checks on a single page of a tree. Return
7133** the tree depth. Root pages return 0. Parents of root pages
7134** return 1, and so forth.
7135**
7136** These checks are done:
7137**
7138** 1. Make sure that cells and freeblocks do not overlap
7139** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007140** NO 2. Make sure cell keys are in order.
7141** NO 3. Make sure no key is less than or equal to zLowerBound.
7142** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007143** 5. Check the integrity of overflow pages.
7144** 6. Recursively call checkTreePage on all children.
7145** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007146** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007147** the root of the tree.
7148*/
7149static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007150 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007151 int iPage, /* Page number of the page to check */
drh74161702006-02-24 02:53:49 +00007152 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00007153){
7154 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007155 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007156 int hdr, cellStart;
7157 int nCell;
drhda200cc2004-05-09 11:51:38 +00007158 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007159 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007160 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007161 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007162 char *hit = 0;
drh5eddca62001-06-30 21:53:53 +00007163
drh5bb3eb92007-05-04 13:15:55 +00007164 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007165
drh5eddca62001-06-30 21:53:53 +00007166 /* Check that the page exists
7167 */
drhd9cb6ac2005-10-20 07:28:17 +00007168 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007169 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007170 if( iPage==0 ) return 0;
7171 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh16a9b832007-05-05 18:39:25 +00007172 if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drhe43ba702008-12-05 22:40:08 +00007173 if( rc==SQLITE_NOMEM ) pCheck->mallocFailed = 1;
drh2e38c322004-09-03 18:38:44 +00007174 checkAppendMsg(pCheck, zContext,
7175 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007176 return 0;
7177 }
danielk197771d5d2c2008-09-29 11:49:47 +00007178 if( (rc = sqlite3BtreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007179 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007180 checkAppendMsg(pCheck, zContext,
7181 "sqlite3BtreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007182 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007183 return 0;
7184 }
7185
7186 /* Check out all the cells.
7187 */
7188 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007189 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007190 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007191 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007192 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007193
7194 /* Check payload overflow pages
7195 */
drh5bb3eb92007-05-04 13:15:55 +00007196 sqlite3_snprintf(sizeof(zContext), zContext,
7197 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007198 pCell = findCell(pPage,i);
drh16a9b832007-05-05 18:39:25 +00007199 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007200 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007201 if( !pPage->intKey ) sz += (int)info.nKey;
drh72365832007-03-06 15:53:44 +00007202 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007203 if( (sz>info.nLocal)
7204 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7205 ){
drhb6f41482004-05-14 01:58:11 +00007206 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007207 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7208#ifndef SQLITE_OMIT_AUTOVACUUM
7209 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007210 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007211 }
7212#endif
7213 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007214 }
7215
7216 /* Check sanity of left child page.
7217 */
drhda200cc2004-05-09 11:51:38 +00007218 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007219 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007220#ifndef SQLITE_OMIT_AUTOVACUUM
7221 if( pBt->autoVacuum ){
7222 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7223 }
7224#endif
danielk197762c14b32008-11-19 09:05:26 +00007225 d2 = checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007226 if( i>0 && d2!=depth ){
7227 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7228 }
7229 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007230 }
drh5eddca62001-06-30 21:53:53 +00007231 }
drhda200cc2004-05-09 11:51:38 +00007232 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007233 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007234 sqlite3_snprintf(sizeof(zContext), zContext,
7235 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007236#ifndef SQLITE_OMIT_AUTOVACUUM
7237 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007238 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00007239 }
7240#endif
danielk197762c14b32008-11-19 09:05:26 +00007241 checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007242 }
drh5eddca62001-06-30 21:53:53 +00007243
7244 /* Check for complete coverage of the page
7245 */
drhda200cc2004-05-09 11:51:38 +00007246 data = pPage->aData;
7247 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007248 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007249 if( hit==0 ){
7250 pCheck->mallocFailed = 1;
7251 }else{
shane5780ebd2008-11-11 17:36:30 +00007252 u16 contentOffset = get2byte(&data[hdr+5]);
7253 if (contentOffset > usableSize) {
7254 checkAppendMsg(pCheck, 0,
7255 "Corruption detected in header on page %d",iPage,0);
shane0af3f892008-11-12 04:55:34 +00007256 goto check_page_abort;
shane5780ebd2008-11-11 17:36:30 +00007257 }
7258 memset(hit+contentOffset, 0, usableSize-contentOffset);
7259 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007260 nCell = get2byte(&data[hdr+3]);
7261 cellStart = hdr + 12 - 4*pPage->leaf;
7262 for(i=0; i<nCell; i++){
7263 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007264 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007265 int j;
danielk1977daca5432008-08-25 11:57:16 +00007266 if( pc<=usableSize ){
7267 size = cellSizePtr(pPage, &data[pc]);
7268 }
danielk19777701e812005-01-10 12:59:51 +00007269 if( (pc+size-1)>=usableSize || pc<0 ){
7270 checkAppendMsg(pCheck, 0,
7271 "Corruption detected in cell %d on page %d",i,iPage,0);
7272 }else{
7273 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7274 }
drh2e38c322004-09-03 18:38:44 +00007275 }
7276 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
7277 cnt++){
7278 int size = get2byte(&data[i+2]);
7279 int j;
danielk19777701e812005-01-10 12:59:51 +00007280 if( (i+size-1)>=usableSize || i<0 ){
7281 checkAppendMsg(pCheck, 0,
7282 "Corruption detected in cell %d on page %d",i,iPage,0);
7283 }else{
7284 for(j=i+size-1; j>=i; j--) hit[j]++;
7285 }
drh2e38c322004-09-03 18:38:44 +00007286 i = get2byte(&data[i]);
7287 }
7288 for(i=cnt=0; i<usableSize; i++){
7289 if( hit[i]==0 ){
7290 cnt++;
7291 }else if( hit[i]>1 ){
7292 checkAppendMsg(pCheck, 0,
7293 "Multiple uses for byte %d of page %d", i, iPage);
7294 break;
7295 }
7296 }
7297 if( cnt!=data[hdr+7] ){
7298 checkAppendMsg(pCheck, 0,
7299 "Fragmented space is %d byte reported as %d on page %d",
7300 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007301 }
7302 }
shane0af3f892008-11-12 04:55:34 +00007303check_page_abort:
7304 if (hit) sqlite3PageFree(hit);
drh6019e162001-07-02 17:51:45 +00007305
drh4b70f112004-05-02 21:12:19 +00007306 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007307 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007308}
drhb7f91642004-10-31 02:22:47 +00007309#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007310
drhb7f91642004-10-31 02:22:47 +00007311#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007312/*
7313** This routine does a complete check of the given BTree file. aRoot[] is
7314** an array of pages numbers were each page number is the root page of
7315** a table. nRoot is the number of entries in aRoot.
7316**
drhc890fec2008-08-01 20:10:08 +00007317** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007318** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007319** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007320** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007321*/
drh1dcdbc02007-01-27 02:24:54 +00007322char *sqlite3BtreeIntegrityCheck(
7323 Btree *p, /* The btree to be checked */
7324 int *aRoot, /* An array of root pages numbers for individual trees */
7325 int nRoot, /* Number of entries in aRoot[] */
7326 int mxErr, /* Stop reporting errors after this many */
7327 int *pnErr /* Write number of errors seen to this variable */
7328){
danielk197789d40042008-11-17 14:20:56 +00007329 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007330 int nRef;
drhaaab5722002-02-19 13:39:21 +00007331 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007332 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007333 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007334
drhd677b3d2007-08-20 22:48:41 +00007335 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00007336 nRef = sqlite3PagerRefcount(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00007337 if( lockBtreeWithRetry(p)!=SQLITE_OK ){
drhc890fec2008-08-01 20:10:08 +00007338 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007339 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007340 return sqlite3DbStrDup(0, "cannot acquire a read lock on the database");
drhefc251d2001-07-01 22:12:01 +00007341 }
drh5eddca62001-06-30 21:53:53 +00007342 sCheck.pBt = pBt;
7343 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007344 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007345 sCheck.mxErr = mxErr;
7346 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007347 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007348 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007349 if( sCheck.nPage==0 ){
7350 unlockBtreeIfUnused(pBt);
drhd677b3d2007-08-20 22:48:41 +00007351 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007352 return 0;
7353 }
drhe5ae5732008-06-15 02:51:47 +00007354 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007355 if( !sCheck.anRef ){
7356 unlockBtreeIfUnused(pBt);
drh1dcdbc02007-01-27 02:24:54 +00007357 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007358 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007359 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007360 }
drhda200cc2004-05-09 11:51:38 +00007361 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007362 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007363 if( i<=sCheck.nPage ){
7364 sCheck.anRef[i] = 1;
7365 }
drhf089aa42008-07-08 19:34:06 +00007366 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007367
7368 /* Check the integrity of the freelist
7369 */
drha34b6762004-05-07 13:30:42 +00007370 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7371 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007372
7373 /* Check all the tables.
7374 */
danielk197789d40042008-11-17 14:20:56 +00007375 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007376 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007377#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007378 if( pBt->autoVacuum && aRoot[i]>1 ){
7379 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7380 }
7381#endif
danielk197762c14b32008-11-19 09:05:26 +00007382 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00007383 }
7384
7385 /* Make sure every page in the file is referenced
7386 */
drh1dcdbc02007-01-27 02:24:54 +00007387 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007388#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007389 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007390 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007391 }
danielk1977afcdd022004-10-31 16:25:42 +00007392#else
7393 /* If the database supports auto-vacuum, make sure no tables contain
7394 ** references to pointer-map pages.
7395 */
7396 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007397 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007398 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7399 }
7400 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007401 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007402 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7403 }
7404#endif
drh5eddca62001-06-30 21:53:53 +00007405 }
7406
drh64022502009-01-09 14:11:04 +00007407 /* Make sure this analysis did not leave any unref() pages.
7408 ** This is an internal consistency check; an integrity check
7409 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007410 */
drh5e00f6c2001-09-13 13:46:56 +00007411 unlockBtreeIfUnused(pBt);
drh64022502009-01-09 14:11:04 +00007412 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007413 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007414 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007415 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007416 );
drh5eddca62001-06-30 21:53:53 +00007417 }
7418
7419 /* Clean up and report errors.
7420 */
drhd677b3d2007-08-20 22:48:41 +00007421 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007422 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007423 if( sCheck.mallocFailed ){
7424 sqlite3StrAccumReset(&sCheck.errMsg);
7425 *pnErr = sCheck.nErr+1;
7426 return 0;
7427 }
drh1dcdbc02007-01-27 02:24:54 +00007428 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007429 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7430 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007431}
drhb7f91642004-10-31 02:22:47 +00007432#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007433
drh73509ee2003-04-06 20:44:45 +00007434/*
7435** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007436**
7437** The pager filename is invariant as long as the pager is
7438** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007439*/
danielk1977aef0bf62005-12-30 16:28:01 +00007440const char *sqlite3BtreeGetFilename(Btree *p){
7441 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007442 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007443}
7444
7445/*
danielk19775865e3d2004-06-14 06:03:57 +00007446** Return the pathname of the journal file for this database. The return
7447** value of this routine is the same regardless of whether the journal file
7448** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007449**
7450** The pager journal filename is invariant as long as the pager is
7451** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007452*/
danielk1977aef0bf62005-12-30 16:28:01 +00007453const char *sqlite3BtreeGetJournalname(Btree *p){
7454 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007455 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007456}
7457
danielk19771d850a72004-05-31 08:26:49 +00007458/*
7459** Return non-zero if a transaction is active.
7460*/
danielk1977aef0bf62005-12-30 16:28:01 +00007461int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007462 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007463 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007464}
7465
7466/*
danielk19772372c2b2006-06-27 16:34:56 +00007467** Return non-zero if a read (or write) transaction is active.
7468*/
7469int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007470 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007471 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007472 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007473}
7474
danielk197704103022009-02-03 16:51:24 +00007475int sqlite3BtreeIsInBackup(Btree *p){
7476 assert( p );
7477 assert( sqlite3_mutex_held(p->db->mutex) );
7478 return p->nBackup!=0;
7479}
7480
danielk19772372c2b2006-06-27 16:34:56 +00007481/*
danielk1977da184232006-01-05 11:34:32 +00007482** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007483** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007484** purposes (for example, to store a high-level schema associated with
7485** the shared-btree). The btree layer manages reference counting issues.
7486**
7487** The first time this is called on a shared-btree, nBytes bytes of memory
7488** are allocated, zeroed, and returned to the caller. For each subsequent
7489** call the nBytes parameter is ignored and a pointer to the same blob
7490** of memory returned.
7491**
danielk1977171bfed2008-06-23 09:50:50 +00007492** If the nBytes parameter is 0 and the blob of memory has not yet been
7493** allocated, a null pointer is returned. If the blob has already been
7494** allocated, it is returned as normal.
7495**
danielk1977da184232006-01-05 11:34:32 +00007496** Just before the shared-btree is closed, the function passed as the
7497** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007498** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007499** on the memory, the btree layer does that.
7500*/
7501void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7502 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007503 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007504 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007505 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007506 pBt->xFreeSchema = xFree;
7507 }
drh27641702007-08-22 02:56:42 +00007508 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007509 return pBt->pSchema;
7510}
7511
danielk1977c87d34d2006-01-06 13:00:28 +00007512/*
danielk1977404ca072009-03-16 13:19:36 +00007513** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7514** btree as the argument handle holds an exclusive lock on the
7515** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007516*/
7517int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007518 int rc;
drhe5fe6902007-12-07 18:55:28 +00007519 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007520 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007521 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7522 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007523 sqlite3BtreeLeave(p);
7524 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007525}
7526
drha154dcd2006-03-22 22:10:07 +00007527
7528#ifndef SQLITE_OMIT_SHARED_CACHE
7529/*
7530** Obtain a lock on the table whose root page is iTab. The
7531** lock is a write lock if isWritelock is true or a read lock
7532** if it is false.
7533*/
danielk1977c00da102006-01-07 13:21:04 +00007534int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007535 int rc = SQLITE_OK;
drh6a9ad3d2008-04-02 16:29:30 +00007536 if( p->sharable ){
7537 u8 lockType = READ_LOCK + isWriteLock;
7538 assert( READ_LOCK+1==WRITE_LOCK );
7539 assert( isWriteLock==0 || isWriteLock==1 );
7540 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007541 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007542 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007543 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007544 }
7545 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007546 }
7547 return rc;
7548}
drha154dcd2006-03-22 22:10:07 +00007549#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007550
danielk1977b4e9af92007-05-01 17:49:49 +00007551#ifndef SQLITE_OMIT_INCRBLOB
7552/*
7553** Argument pCsr must be a cursor opened for writing on an
7554** INTKEY table currently pointing at a valid table entry.
7555** This function modifies the data stored as part of that entry.
7556** Only the data content may only be modified, it is not possible
7557** to change the length of the data stored.
7558*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007559int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977404ca072009-03-16 13:19:36 +00007560 int rc;
7561
drh1fee73e2007-08-29 04:00:57 +00007562 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007563 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007564 assert(pCsr->isIncrblobHandle);
danielk19773588ceb2008-06-10 17:30:26 +00007565
drha3460582008-07-11 21:02:53 +00007566 restoreCursorPosition(pCsr);
danielk19773588ceb2008-06-10 17:30:26 +00007567 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7568 if( pCsr->eState!=CURSOR_VALID ){
7569 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007570 }
7571
danielk1977d04417962007-05-02 13:16:30 +00007572 /* Check some preconditions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007573 ** (a) the cursor is open for writing,
7574 ** (b) there is no read-lock on the table being modified and
7575 ** (c) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007576 */
danielk1977d04417962007-05-02 13:16:30 +00007577 if( !pCsr->wrFlag ){
danielk1977dcbb5d32007-05-04 18:36:44 +00007578 return SQLITE_READONLY;
danielk1977d04417962007-05-02 13:16:30 +00007579 }
drhd0679ed2007-08-28 22:24:34 +00007580 assert( !pCsr->pBt->readOnly
7581 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk1977404ca072009-03-16 13:19:36 +00007582 rc = checkForReadConflicts(pCsr->pBtree, pCsr->pgnoRoot, pCsr, 0);
7583 if( rc!=SQLITE_OK ){
7584 /* The table pCur points to has a read lock */
7585 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
7586 return rc;
danielk1977d04417962007-05-02 13:16:30 +00007587 }
danielk197771d5d2c2008-09-29 11:49:47 +00007588 if( pCsr->eState==CURSOR_INVALID || !pCsr->apPage[pCsr->iPage]->intKey ){
danielk1977d04417962007-05-02 13:16:30 +00007589 return SQLITE_ERROR;
danielk1977b4e9af92007-05-01 17:49:49 +00007590 }
7591
danielk19779f8d6402007-05-02 17:48:45 +00007592 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007593}
danielk19772dec9702007-05-02 16:48:37 +00007594
7595/*
7596** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007597** overflow list for the current row. This is used by cursors opened
7598** for incremental blob IO only.
7599**
7600** This function sets a flag only. The actual page location cache
7601** (stored in BtCursor.aOverflow[]) is allocated and used by function
7602** accessPayload() (the worker function for sqlite3BtreeData() and
7603** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007604*/
7605void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007606 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007607 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007608 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007609 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007610 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007611}
danielk1977b4e9af92007-05-01 17:49:49 +00007612#endif