blob: 766fd0805b5f5fa65e8a3f2ade06675467af726e [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
drhccb21132020-06-19 11:34:57 +000072** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drh37ccfcf2020-08-31 18:49:04 +0000115#ifdef SQLITE_DEBUG
116/*
drha7fc1682020-11-24 19:55:49 +0000117** Return and reset the seek counter for a Btree object.
drh37ccfcf2020-08-31 18:49:04 +0000118*/
119sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120 u64 n = pBt->nSeek;
121 pBt->nSeek = 0;
122 return n;
123}
124#endif
125
daneebf2f52017-11-18 17:30:08 +0000126/*
127** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128** (MemPage*) as an argument. The (MemPage*) must not be NULL.
129**
130** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133** with the page number and filename associated with the (MemPage*).
134*/
135#ifdef SQLITE_DEBUG
136int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000137 char *zMsg;
138 sqlite3BeginBenignMalloc();
139 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
141 );
drh8bfe66a2018-01-22 15:45:12 +0000142 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000143 if( zMsg ){
144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
145 }
146 sqlite3_free(zMsg);
147 return SQLITE_CORRUPT_BKPT;
148}
149# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150#else
151# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152#endif
153
drhe53831d2007-08-17 01:14:38 +0000154#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000155
156#ifdef SQLITE_DEBUG
157/*
drh0ee3dbe2009-10-16 15:05:18 +0000158**** This function is only used as part of an assert() statement. ***
159**
160** Check to see if pBtree holds the required locks to read or write to the
161** table with root page iRoot. Return 1 if it does and 0 if not.
162**
163** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000164** Btree connection pBtree:
165**
166** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
167**
drh0ee3dbe2009-10-16 15:05:18 +0000168** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000169** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000170** the corresponding table. This makes things a bit more complicated,
171** as this module treats each table as a separate structure. To determine
172** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000173** function has to search through the database schema.
174**
drh0ee3dbe2009-10-16 15:05:18 +0000175** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000176** hold a write-lock on the schema table (root page 1). This is also
177** acceptable.
178*/
179static int hasSharedCacheTableLock(
180 Btree *pBtree, /* Handle that must hold lock */
181 Pgno iRoot, /* Root page of b-tree */
182 int isIndex, /* True if iRoot is the root of an index b-tree */
183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
184){
185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186 Pgno iTab = 0;
187 BtLock *pLock;
188
drh0ee3dbe2009-10-16 15:05:18 +0000189 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000190 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000191 ** Return true immediately.
192 */
danielk197796d48e92009-06-29 06:00:37 +0000193 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000195 ){
196 return 1;
197 }
198
drh0ee3dbe2009-10-16 15:05:18 +0000199 /* If the client is reading or writing an index and the schema is
200 ** not loaded, then it is too difficult to actually check to see if
201 ** the correct locks are held. So do not bother - just return true.
202 ** This case does not come up very often anyhow.
203 */
drh2c5e35f2014-08-05 11:04:21 +0000204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000205 return 1;
206 }
207
danielk197796d48e92009-06-29 06:00:37 +0000208 /* Figure out the root-page that the lock should be held on. For table
209 ** b-trees, this is just the root page of the b-tree being read or
210 ** written. For index b-trees, it is the root page of the associated
211 ** table. */
212 if( isIndex ){
213 HashElem *p;
dan877859f2020-06-17 20:29:56 +0000214 int bSeen = 0;
danielk197796d48e92009-06-29 06:00:37 +0000215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000217 if( pIdx->tnum==(int)iRoot ){
dan877859f2020-06-17 20:29:56 +0000218 if( bSeen ){
drh1ffede82015-01-30 20:59:27 +0000219 /* Two or more indexes share the same root page. There must
220 ** be imposter tables. So just return true. The assert is not
221 ** useful in that case. */
222 return 1;
223 }
shane5eff7cf2009-08-10 03:57:58 +0000224 iTab = pIdx->pTable->tnum;
dan877859f2020-06-17 20:29:56 +0000225 bSeen = 1;
danielk197796d48e92009-06-29 06:00:37 +0000226 }
227 }
228 }else{
229 iTab = iRoot;
230 }
231
232 /* Search for the required lock. Either a write-lock on root-page iTab, a
233 ** write-lock on the schema table, or (if the client is reading) a
234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236 if( pLock->pBtree==pBtree
237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238 && pLock->eLock>=eLockType
239 ){
240 return 1;
241 }
242 }
243
244 /* Failed to find the required lock. */
245 return 0;
246}
drh0ee3dbe2009-10-16 15:05:18 +0000247#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000248
drh0ee3dbe2009-10-16 15:05:18 +0000249#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000250/*
drh0ee3dbe2009-10-16 15:05:18 +0000251**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000252**
drh0ee3dbe2009-10-16 15:05:18 +0000253** Return true if it would be illegal for pBtree to write into the
254** table or index rooted at iRoot because other shared connections are
255** simultaneously reading that same table or index.
256**
257** It is illegal for pBtree to write if some other Btree object that
258** shares the same BtShared object is currently reading or writing
259** the iRoot table. Except, if the other Btree object has the
260** read-uncommitted flag set, then it is OK for the other object to
261** have a read cursor.
262**
263** For example, before writing to any part of the table or index
264** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000265**
266** assert( !hasReadConflicts(pBtree, iRoot) );
267*/
268static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269 BtCursor *p;
270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271 if( p->pgnoRoot==iRoot
272 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000274 ){
275 return 1;
276 }
277 }
278 return 0;
279}
280#endif /* #ifdef SQLITE_DEBUG */
281
danielk1977da184232006-01-05 11:34:32 +0000282/*
drh0ee3dbe2009-10-16 15:05:18 +0000283** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000284** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000285** SQLITE_OK if the lock may be obtained (by calling
286** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000287*/
drhc25eabe2009-02-24 18:57:31 +0000288static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000289 BtShared *pBt = p->pBt;
290 BtLock *pIter;
291
drh1fee73e2007-08-29 04:00:57 +0000292 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000296
danielk19775b413d72009-04-01 09:41:54 +0000297 /* If requesting a write-lock, then the Btree must have an open write
298 ** transaction on this file. And, obviously, for this to be so there
299 ** must be an open write transaction on the file itself.
300 */
301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
303
drh0ee3dbe2009-10-16 15:05:18 +0000304 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000305 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000306 return SQLITE_OK;
307 }
308
danielk1977641b0f42007-12-21 04:47:25 +0000309 /* If some other connection is holding an exclusive lock, the
310 ** requested lock may not be obtained.
311 */
drhc9166342012-01-05 23:32:06 +0000312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000315 }
316
danielk1977e0d9e6f2009-07-03 16:25:06 +0000317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318 /* The condition (pIter->eLock!=eLock) in the following if(...)
319 ** statement is a simplification of:
320 **
321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
322 **
323 ** since we know that if eLock==WRITE_LOCK, then no other connection
324 ** may hold a WRITE_LOCK on any table in this file (since there can
325 ** only be a single writer).
326 */
327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331 if( eLock==WRITE_LOCK ){
332 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000333 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000334 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000335 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000336 }
337 }
338 return SQLITE_OK;
339}
drhe53831d2007-08-17 01:14:38 +0000340#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000341
drhe53831d2007-08-17 01:14:38 +0000342#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000343/*
344** Add a lock on the table with root-page iTable to the shared-btree used
345** by Btree handle p. Parameter eLock must be either READ_LOCK or
346** WRITE_LOCK.
347**
danielk19779d104862009-07-09 08:27:14 +0000348** This function assumes the following:
349**
drh0ee3dbe2009-10-16 15:05:18 +0000350** (a) The specified Btree object p is connected to a sharable
351** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000352**
drh0ee3dbe2009-10-16 15:05:18 +0000353** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000354** with the requested lock (i.e. querySharedCacheTableLock() has
355** already been called and returned SQLITE_OK).
356**
357** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000359*/
drhc25eabe2009-02-24 18:57:31 +0000360static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000361 BtShared *pBt = p->pBt;
362 BtLock *pLock = 0;
363 BtLock *pIter;
364
drh1fee73e2007-08-29 04:00:57 +0000365 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000368
danielk1977e0d9e6f2009-07-03 16:25:06 +0000369 /* A connection with the read-uncommitted flag set will never try to
370 ** obtain a read-lock using this function. The only read-lock obtained
drh1e32bed2020-06-19 13:33:53 +0000371 ** by a connection in read-uncommitted mode is on the sqlite_schema
danielk1977e0d9e6f2009-07-03 16:25:06 +0000372 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000374
danielk19779d104862009-07-09 08:27:14 +0000375 /* This function should only be called on a sharable b-tree after it
376 ** has been determined that no other b-tree holds a conflicting lock. */
377 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000379
380 /* First search the list for an existing lock on this table. */
381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382 if( pIter->iTable==iTable && pIter->pBtree==p ){
383 pLock = pIter;
384 break;
385 }
386 }
387
388 /* If the above search did not find a BtLock struct associating Btree p
389 ** with table iTable, allocate one and link it into the list.
390 */
391 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000393 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000394 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }
396 pLock->iTable = iTable;
397 pLock->pBtree = p;
398 pLock->pNext = pBt->pLock;
399 pBt->pLock = pLock;
400 }
401
402 /* Set the BtLock.eLock variable to the maximum of the current lock
403 ** and the requested lock. This means if a write-lock was already held
404 ** and a read-lock requested, we don't incorrectly downgrade the lock.
405 */
406 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000407 if( eLock>pLock->eLock ){
408 pLock->eLock = eLock;
409 }
danielk1977aef0bf62005-12-30 16:28:01 +0000410
411 return SQLITE_OK;
412}
drhe53831d2007-08-17 01:14:38 +0000413#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000414
drhe53831d2007-08-17 01:14:38 +0000415#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000416/*
drhc25eabe2009-02-24 18:57:31 +0000417** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000418** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000419**
drh0ee3dbe2009-10-16 15:05:18 +0000420** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000421** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000422** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000423*/
drhc25eabe2009-02-24 18:57:31 +0000424static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000425 BtShared *pBt = p->pBt;
426 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000427
drh1fee73e2007-08-29 04:00:57 +0000428 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000429 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000430 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000431
danielk1977aef0bf62005-12-30 16:28:01 +0000432 while( *ppIter ){
433 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000435 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000436 if( pLock->pBtree==p ){
437 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000438 assert( pLock->iTable!=1 || pLock==&p->lock );
439 if( pLock->iTable!=1 ){
440 sqlite3_free(pLock);
441 }
danielk1977aef0bf62005-12-30 16:28:01 +0000442 }else{
443 ppIter = &pLock->pNext;
444 }
445 }
danielk1977641b0f42007-12-21 04:47:25 +0000446
drhc9166342012-01-05 23:32:06 +0000447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000448 if( pBt->pWriter==p ){
449 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000451 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000452 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000453 ** transaction. If there currently exists a writer, and p is not
454 ** that writer, then the number of locks held by connections other
455 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000456 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000457 **
drhc9166342012-01-05 23:32:06 +0000458 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000459 ** be zero already. So this next line is harmless in that case.
460 */
drhc9166342012-01-05 23:32:06 +0000461 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000462 }
danielk1977aef0bf62005-12-30 16:28:01 +0000463}
danielk197794b30732009-07-02 17:21:57 +0000464
danielk1977e0d9e6f2009-07-03 16:25:06 +0000465/*
drh0ee3dbe2009-10-16 15:05:18 +0000466** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000467*/
danielk197794b30732009-07-02 17:21:57 +0000468static void downgradeAllSharedCacheTableLocks(Btree *p){
469 BtShared *pBt = p->pBt;
470 if( pBt->pWriter==p ){
471 BtLock *pLock;
472 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476 pLock->eLock = READ_LOCK;
477 }
478 }
479}
480
danielk1977aef0bf62005-12-30 16:28:01 +0000481#endif /* SQLITE_OMIT_SHARED_CACHE */
482
drh3908fe92017-09-01 14:50:19 +0000483static void releasePage(MemPage *pPage); /* Forward reference */
484static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000485static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000486
drh1fee73e2007-08-29 04:00:57 +0000487/*
drh0ee3dbe2009-10-16 15:05:18 +0000488***** This routine is used inside of assert() only ****
489**
490** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000491*/
drh0ee3dbe2009-10-16 15:05:18 +0000492#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000493static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000494 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000495}
drh5e08d0f2016-06-04 21:05:54 +0000496
497/* Verify that the cursor and the BtShared agree about what is the current
498** database connetion. This is important in shared-cache mode. If the database
499** connection pointers get out-of-sync, it is possible for routines like
500** btreeInitPage() to reference an stale connection pointer that references a
501** a connection that has already closed. This routine is used inside assert()
502** statements only and for the purpose of double-checking that the btree code
503** does keep the database connection pointers up-to-date.
504*/
dan7a2347e2016-01-07 16:43:54 +0000505static int cursorOwnsBtShared(BtCursor *p){
506 assert( cursorHoldsMutex(p) );
507 return (p->pBtree->db==p->pBt->db);
508}
drh1fee73e2007-08-29 04:00:57 +0000509#endif
510
danielk197792d4d7a2007-05-04 12:05:56 +0000511/*
dan5a500af2014-03-11 20:33:04 +0000512** Invalidate the overflow cache of the cursor passed as the first argument.
513** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000514*/
drh036dbec2014-03-11 23:40:44 +0000515#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000516
517/*
518** Invalidate the overflow page-list cache for all cursors opened
519** on the shared btree structure pBt.
520*/
521static void invalidateAllOverflowCache(BtShared *pBt){
522 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000523 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000524 for(p=pBt->pCursor; p; p=p->pNext){
525 invalidateOverflowCache(p);
526 }
527}
danielk197796d48e92009-06-29 06:00:37 +0000528
dan5a500af2014-03-11 20:33:04 +0000529#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000530/*
531** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000532** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000533** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000534**
535** If argument isClearTable is true, then the entire contents of the
536** table is about to be deleted. In this case invalidate all incrblob
537** cursors open on any row within the table with root-page pgnoRoot.
538**
539** Otherwise, if argument isClearTable is false, then the row with
540** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000541** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000542*/
543static void invalidateIncrblobCursors(
544 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000545 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000546 i64 iRow, /* The rowid that might be changing */
547 int isClearTable /* True if all rows are being deleted */
548){
549 BtCursor *p;
drh49bb56e2021-05-14 20:01:36 +0000550 assert( pBtree->hasIncrblobCur );
danielk197796d48e92009-06-29 06:00:37 +0000551 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000552 pBtree->hasIncrblobCur = 0;
553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554 if( (p->curFlags & BTCF_Incrblob)!=0 ){
555 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000557 p->eState = CURSOR_INVALID;
558 }
danielk197796d48e92009-06-29 06:00:37 +0000559 }
560 }
561}
562
danielk197792d4d7a2007-05-04 12:05:56 +0000563#else
dan5a500af2014-03-11 20:33:04 +0000564 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000565 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000566#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000567
drh980b1a72006-08-16 16:42:48 +0000568/*
danielk1977bea2a942009-01-20 17:06:27 +0000569** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570** when a page that previously contained data becomes a free-list leaf
571** page.
572**
573** The BtShared.pHasContent bitvec exists to work around an obscure
574** bug caused by the interaction of two useful IO optimizations surrounding
575** free-list leaf pages:
576**
577** 1) When all data is deleted from a page and the page becomes
578** a free-list leaf page, the page is not written to the database
579** (as free-list leaf pages contain no meaningful data). Sometimes
580** such a page is not even journalled (as it will not be modified,
581** why bother journalling it?).
582**
583** 2) When a free-list leaf page is reused, its content is not read
584** from the database or written to the journal file (why should it
585** be, if it is not at all meaningful?).
586**
587** By themselves, these optimizations work fine and provide a handy
588** performance boost to bulk delete or insert operations. However, if
589** a page is moved to the free-list and then reused within the same
590** transaction, a problem comes up. If the page is not journalled when
591** it is moved to the free-list and it is also not journalled when it
592** is extracted from the free-list and reused, then the original data
593** may be lost. In the event of a rollback, it may not be possible
594** to restore the database to its original configuration.
595**
596** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597** moved to become a free-list leaf page, the corresponding bit is
598** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000599** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000600** set in BtShared.pHasContent. The contents of the bitvec are cleared
601** at the end of every transaction.
602*/
603static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604 int rc = SQLITE_OK;
605 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000606 assert( pgno<=pBt->nPage );
607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000608 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000609 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000610 }
611 }
612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
614 }
615 return rc;
616}
617
618/*
619** Query the BtShared.pHasContent vector.
620**
621** This function is called when a free-list leaf page is removed from the
622** free-list for reuse. It returns false if it is safe to retrieve the
623** page from the pager layer with the 'no-content' flag set. True otherwise.
624*/
625static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626 Bitvec *p = pBt->pHasContent;
pdrdb9cb172020-03-08 13:33:58 +0000627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
danielk1977bea2a942009-01-20 17:06:27 +0000628}
629
630/*
631** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632** invoked at the conclusion of each write-transaction.
633*/
634static void btreeClearHasContent(BtShared *pBt){
635 sqlite3BitvecDestroy(pBt->pHasContent);
636 pBt->pHasContent = 0;
637}
638
639/*
drh138eeeb2013-03-27 03:15:23 +0000640** Release all of the apPage[] pages for a cursor.
641*/
642static void btreeReleaseAllCursorPages(BtCursor *pCur){
643 int i;
drh352a35a2017-08-15 03:46:47 +0000644 if( pCur->iPage>=0 ){
645 for(i=0; i<pCur->iPage; i++){
646 releasePageNotNull(pCur->apPage[i]);
647 }
648 releasePageNotNull(pCur->pPage);
649 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000650 }
drh138eeeb2013-03-27 03:15:23 +0000651}
652
danf0ee1d32015-09-12 19:26:11 +0000653/*
654** The cursor passed as the only argument must point to a valid entry
655** when this function is called (i.e. have eState==CURSOR_VALID). This
656** function saves the current cursor key in variables pCur->nKey and
657** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658** code otherwise.
659**
660** If the cursor is open on an intkey table, then the integer key
661** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663** set to point to a malloced buffer pCur->nKey bytes in size containing
664** the key.
665*/
666static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000667 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000668 assert( CURSOR_VALID==pCur->eState );
669 assert( 0==pCur->pKey );
670 assert( cursorHoldsMutex(pCur) );
671
drha7c90c42016-06-04 20:37:10 +0000672 if( pCur->curIntKey ){
673 /* Only the rowid is required for a table btree */
674 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675 }else{
danfffaf232018-12-14 13:18:35 +0000676 /* For an index btree, save the complete key content. It is possible
677 ** that the current key is corrupt. In that case, it is possible that
678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679 ** up to the size of 1 varint plus 1 8-byte value when the cursor
680 ** position is restored. Hence the 17 bytes of padding allocated
681 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000682 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000683 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000685 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000687 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000689 pCur->pKey = pKey;
690 }else{
691 sqlite3_free(pKey);
692 }
693 }else{
mistachkinfad30392016-02-13 23:43:46 +0000694 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000695 }
696 }
697 assert( !pCur->curIntKey || !pCur->pKey );
698 return rc;
699}
drh138eeeb2013-03-27 03:15:23 +0000700
701/*
drh980b1a72006-08-16 16:42:48 +0000702** Save the current cursor position in the variables BtCursor.nKey
703** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000704**
705** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000707*/
708static int saveCursorPosition(BtCursor *pCur){
709 int rc;
710
drhd2f83132015-03-25 17:35:01 +0000711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000712 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000713 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000714
drh7b14b652019-12-29 22:08:20 +0000715 if( pCur->curFlags & BTCF_Pinned ){
716 return SQLITE_CONSTRAINT_PINNED;
717 }
drhd2f83132015-03-25 17:35:01 +0000718 if( pCur->eState==CURSOR_SKIPNEXT ){
719 pCur->eState = CURSOR_VALID;
720 }else{
721 pCur->skipNext = 0;
722 }
drh980b1a72006-08-16 16:42:48 +0000723
danf0ee1d32015-09-12 19:26:11 +0000724 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000725 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000726 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000727 pCur->eState = CURSOR_REQUIRESEEK;
728 }
729
dane755e102015-09-30 12:59:12 +0000730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000731 return rc;
732}
733
drh637f3d82014-08-22 22:26:07 +0000734/* Forward reference */
735static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
736
drh980b1a72006-08-16 16:42:48 +0000737/*
drh0ee3dbe2009-10-16 15:05:18 +0000738** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000739** the table with root-page iRoot. "Saving the cursor position" means that
740** the location in the btree is remembered in such a way that it can be
741** moved back to the same spot after the btree has been modified. This
742** routine is called just before cursor pExcept is used to modify the
743** table, for example in BtreeDelete() or BtreeInsert().
744**
drh27fb7462015-06-30 02:47:36 +0000745** If there are two or more cursors on the same btree, then all such
746** cursors should have their BTCF_Multiple flag set. The btreeCursor()
747** routine enforces that rule. This routine only needs to be called in
748** the uncommon case when pExpect has the BTCF_Multiple flag set.
749**
750** If pExpect!=NULL and if no other cursors are found on the same root-page,
751** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752** pointless call to this routine.
753**
drh637f3d82014-08-22 22:26:07 +0000754** Implementation note: This routine merely checks to see if any cursors
755** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
756** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000757*/
758static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000760 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000761 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000762 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
764 }
drh27fb7462015-06-30 02:47:36 +0000765 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000768}
769
770/* This helper routine to saveAllCursors does the actual work of saving
771** the cursors if and when a cursor is found that actually requires saving.
772** The common case is that no cursors need to be saved, so this routine is
773** broken out from its caller to avoid unnecessary stack pointer movement.
774*/
775static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000776 BtCursor *p, /* The first cursor that needs saving */
777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
778 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000779){
780 do{
drh138eeeb2013-03-27 03:15:23 +0000781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000783 int rc = saveCursorPosition(p);
784 if( SQLITE_OK!=rc ){
785 return rc;
786 }
787 }else{
drh85ef6302017-08-02 15:50:09 +0000788 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000789 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000790 }
791 }
drh637f3d82014-08-22 22:26:07 +0000792 p = p->pNext;
793 }while( p );
drh980b1a72006-08-16 16:42:48 +0000794 return SQLITE_OK;
795}
796
797/*
drhbf700f32007-03-31 02:36:44 +0000798** Clear the current cursor position.
799*/
danielk1977be51a652008-10-08 17:58:48 +0000800void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000801 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000802 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000803 pCur->pKey = 0;
804 pCur->eState = CURSOR_INVALID;
805}
806
807/*
danielk19773509a652009-07-06 18:56:13 +0000808** In this version of BtreeMoveto, pKey is a packed index record
809** such as is generated by the OP_MakeRecord opcode. Unpack the
810** record and then call BtreeMovetoUnpacked() to do the work.
811*/
812static int btreeMoveto(
813 BtCursor *pCur, /* Cursor open on the btree to be searched */
814 const void *pKey, /* Packed key if the btree is an index */
815 i64 nKey, /* Integer key for tables. Size of pKey for indices */
816 int bias, /* Bias search to the high end */
817 int *pRes /* Write search results here */
818){
819 int rc; /* Status code */
820 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000821
822 if( pKey ){
danb0c4c942019-01-24 15:16:17 +0000823 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +0000824 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +0000825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +0000827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +0000829 rc = SQLITE_CORRUPT_BKPT;
drh42a410d2021-06-19 18:32:20 +0000830 }else{
831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
drh094b7582013-11-30 12:49:28 +0000832 }
drh42a410d2021-06-19 18:32:20 +0000833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000834 }else{
835 pIdxKey = 0;
drh42a410d2021-06-19 18:32:20 +0000836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
danielk19773509a652009-07-06 18:56:13 +0000837 }
838 return rc;
839}
840
841/*
drh980b1a72006-08-16 16:42:48 +0000842** Restore the cursor to the position it was in (or as close to as possible)
843** when saveCursorPosition() was called. Note that this call deletes the
844** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000845** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000846** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000847*/
danielk197730548662009-07-09 05:07:37 +0000848static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000849 int rc;
mistachkin4e2d3d42019-04-01 03:07:21 +0000850 int skipNext = 0;
dan7a2347e2016-01-07 16:43:54 +0000851 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000852 assert( pCur->eState>=CURSOR_REQUIRESEEK );
853 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000854 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000855 }
drh980b1a72006-08-16 16:42:48 +0000856 pCur->eState = CURSOR_INVALID;
drhb336d1a2019-03-30 19:17:35 +0000857 if( sqlite3FaultSim(410) ){
858 rc = SQLITE_IOERR;
859 }else{
860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
861 }
drh980b1a72006-08-16 16:42:48 +0000862 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000863 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000864 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +0000866 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +0000867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
868 pCur->eState = CURSOR_SKIPNEXT;
869 }
drh980b1a72006-08-16 16:42:48 +0000870 }
871 return rc;
872}
873
drha3460582008-07-11 21:02:53 +0000874#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000875 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000876 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000877 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000878
drha3460582008-07-11 21:02:53 +0000879/*
drh6848dad2014-08-22 23:33:03 +0000880** Determine whether or not a cursor has moved from the position where
881** it was last placed, or has been invalidated for any other reason.
882** Cursors can move when the row they are pointing at is deleted out
883** from under them, for example. Cursor might also move if a btree
884** is rebalanced.
drha3460582008-07-11 21:02:53 +0000885**
drh6848dad2014-08-22 23:33:03 +0000886** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000887**
drh6848dad2014-08-22 23:33:03 +0000888** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000890*/
drh6848dad2014-08-22 23:33:03 +0000891int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000892 assert( EIGHT_BYTE_ALIGNMENT(pCur)
893 || pCur==sqlite3BtreeFakeValidCursor() );
894 assert( offsetof(BtCursor, eState)==0 );
895 assert( sizeof(pCur->eState)==1 );
896 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000897}
898
899/*
drhfe0cf7a2017-08-16 19:20:20 +0000900** Return a pointer to a fake BtCursor object that will always answer
901** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
902** cursor returned must not be used with any other Btree interface.
903*/
904BtCursor *sqlite3BtreeFakeValidCursor(void){
905 static u8 fakeCursor = CURSOR_VALID;
906 assert( offsetof(BtCursor, eState)==0 );
907 return (BtCursor*)&fakeCursor;
908}
909
910/*
drh6848dad2014-08-22 23:33:03 +0000911** This routine restores a cursor back to its original position after it
912** has been moved by some outside activity (such as a btree rebalance or
913** a row having been deleted out from under the cursor).
914**
915** On success, the *pDifferentRow parameter is false if the cursor is left
916** pointing at exactly the same row. *pDifferntRow is the row the cursor
917** was pointing to has been deleted, forcing the cursor to point to some
918** nearby row.
919**
920** This routine should only be called for a cursor that just returned
921** TRUE from sqlite3BtreeCursorHasMoved().
922*/
923int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000924 int rc;
925
drh6848dad2014-08-22 23:33:03 +0000926 assert( pCur!=0 );
927 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000928 rc = restoreCursorPosition(pCur);
929 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000930 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000931 return rc;
932 }
drh606a3572015-03-25 18:29:10 +0000933 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000934 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000935 }else{
drh6848dad2014-08-22 23:33:03 +0000936 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000937 }
938 return SQLITE_OK;
939}
940
drhf7854c72015-10-27 13:24:37 +0000941#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000942/*
drh0df57012015-08-14 15:05:55 +0000943** Provide hints to the cursor. The particular hint given (and the type
944** and number of the varargs parameters) is determined by the eHintType
945** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000946*/
drh0df57012015-08-14 15:05:55 +0000947void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000948 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000949}
drhf7854c72015-10-27 13:24:37 +0000950#endif
951
952/*
953** Provide flag hints to the cursor.
954*/
955void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
957 pCur->hints = x;
958}
959
drh28935362013-12-07 20:39:19 +0000960
danielk1977599fcba2004-11-08 07:13:13 +0000961#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000962/*
drha3152892007-05-05 11:48:52 +0000963** Given a page number of a regular database page, return the page
964** number for the pointer-map page that contains the entry for the
965** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000966**
967** Return 0 (not a valid page) for pgno==1 since there is
968** no pointer map associated with page 1. The integrity_check logic
969** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000970*/
danielk1977266664d2006-02-10 08:24:21 +0000971static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000972 int nPagesPerMapPage;
973 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000974 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000975 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000976 nPagesPerMapPage = (pBt->usableSize/5)+1;
977 iPtrMap = (pgno-2)/nPagesPerMapPage;
978 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000979 if( ret==PENDING_BYTE_PAGE(pBt) ){
980 ret++;
981 }
982 return ret;
983}
danielk1977a19df672004-11-03 11:37:07 +0000984
danielk1977afcdd022004-10-31 16:25:42 +0000985/*
danielk1977afcdd022004-10-31 16:25:42 +0000986** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000987**
988** This routine updates the pointer map entry for page number 'key'
989** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000990**
991** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992** a no-op. If an error occurs, the appropriate error code is written
993** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000994*/
drh98add2e2009-07-20 17:11:49 +0000995static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000996 DbPage *pDbPage; /* The pointer map page */
997 u8 *pPtrmap; /* The pointer map data */
998 Pgno iPtrmap; /* The pointer map page number */
999 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +00001000 int rc; /* Return code from subfunctions */
1001
1002 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +00001003
drh1fee73e2007-08-29 04:00:57 +00001004 assert( sqlite3_mutex_held(pBt->mutex) );
drh067b92b2020-06-19 15:24:12 +00001005 /* The super-journal page number must never be used as a pointer map page */
danielk1977266664d2006-02-10 08:24:21 +00001006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1007
danielk1977ac11ee62005-01-15 12:45:51 +00001008 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +00001009 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +00001010 *pRC = SQLITE_CORRUPT_BKPT;
1011 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +00001012 }
danielk1977266664d2006-02-10 08:24:21 +00001013 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00001015 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00001016 *pRC = rc;
1017 return;
danielk1977afcdd022004-10-31 16:25:42 +00001018 }
drh203b1ea2018-12-14 03:14:18 +00001019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1020 /* The first byte of the extra data is the MemPage.isInit byte.
1021 ** If that byte is set, it means this page is also being used
1022 ** as a btree page. */
1023 *pRC = SQLITE_CORRUPT_BKPT;
1024 goto ptrmap_exit;
1025 }
danielk19778c666b12008-07-18 09:34:57 +00001026 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001027 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001028 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001029 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001030 }
drhfc243732011-05-17 15:21:56 +00001031 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001033
drh615ae552005-01-16 23:21:00 +00001034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001036 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001037 if( rc==SQLITE_OK ){
1038 pPtrmap[offset] = eType;
1039 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001040 }
danielk1977afcdd022004-10-31 16:25:42 +00001041 }
1042
drh4925a552009-07-07 11:39:58 +00001043ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001044 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001045}
1046
1047/*
1048** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001049**
1050** This routine retrieves the pointer map entry for page 'key', writing
1051** the type and parent page number to *pEType and *pPgno respectively.
1052** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001053*/
danielk1977aef0bf62005-12-30 16:28:01 +00001054static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001055 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001056 int iPtrmap; /* Pointer map page index */
1057 u8 *pPtrmap; /* Pointer map page data */
1058 int offset; /* Offset of entry in pointer map */
1059 int rc;
1060
drh1fee73e2007-08-29 04:00:57 +00001061 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001062
danielk1977266664d2006-02-10 08:24:21 +00001063 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001065 if( rc!=0 ){
1066 return rc;
1067 }
danielk19773b8a05f2007-03-19 17:44:26 +00001068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001069
danielk19778c666b12008-07-18 09:34:57 +00001070 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001071 if( offset<0 ){
1072 sqlite3PagerUnref(pDbPage);
1073 return SQLITE_CORRUPT_BKPT;
1074 }
1075 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001076 assert( pEType!=0 );
1077 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001079
danielk19773b8a05f2007-03-19 17:44:26 +00001080 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001082 return SQLITE_OK;
1083}
1084
danielk197785d90ca2008-07-19 14:25:15 +00001085#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001086 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001087 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001088 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001089#endif
danielk1977afcdd022004-10-31 16:25:42 +00001090
drh0d316a42002-08-11 20:10:47 +00001091/*
drh271efa52004-05-30 19:19:05 +00001092** Given a btree page and a cell index (0 means the first cell on
1093** the page, 1 means the second cell, and so forth) return a pointer
1094** to the cell content.
1095**
drhf44890a2015-06-27 03:58:15 +00001096** findCellPastPtr() does the same except it skips past the initial
1097** 4-byte child pointer found on interior pages, if there is one.
1098**
drh271efa52004-05-30 19:19:05 +00001099** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001100*/
drh1688c862008-07-18 02:44:17 +00001101#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001103#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001105
drh43605152004-05-29 21:46:49 +00001106
1107/*
drh5fa60512015-06-19 17:19:34 +00001108** This is common tail processing for btreeParseCellPtr() and
1109** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110** on a single B-tree page. Make necessary adjustments to the CellInfo
1111** structure.
drh43605152004-05-29 21:46:49 +00001112*/
drh5fa60512015-06-19 17:19:34 +00001113static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1114 MemPage *pPage, /* Page containing the cell */
1115 u8 *pCell, /* Pointer to the cell text. */
1116 CellInfo *pInfo /* Fill in this structure */
1117){
1118 /* If the payload will not fit completely on the local page, we have
1119 ** to decide how much to store locally and how much to spill onto
1120 ** overflow pages. The strategy is to minimize the amount of unused
1121 ** space on overflow pages while keeping the amount of local storage
1122 ** in between minLocal and maxLocal.
1123 **
1124 ** Warning: changing the way overflow payload is distributed in any
1125 ** way will result in an incompatible file format.
1126 */
1127 int minLocal; /* Minimum amount of payload held locally */
1128 int maxLocal; /* Maximum amount of payload held locally */
1129 int surplus; /* Overflow payload available for local storage */
1130
1131 minLocal = pPage->minLocal;
1132 maxLocal = pPage->maxLocal;
1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1134 testcase( surplus==maxLocal );
1135 testcase( surplus==maxLocal+1 );
1136 if( surplus <= maxLocal ){
1137 pInfo->nLocal = (u16)surplus;
1138 }else{
1139 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001140 }
drh45ac1c72015-12-18 03:59:16 +00001141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001142}
1143
1144/*
danebbf3682020-12-09 16:32:11 +00001145** Given a record with nPayload bytes of payload stored within btree
1146** page pPage, return the number of bytes of payload stored locally.
1147*/
dan59964b42020-12-14 15:25:14 +00001148static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
danebbf3682020-12-09 16:32:11 +00001149 int maxLocal; /* Maximum amount of payload held locally */
1150 maxLocal = pPage->maxLocal;
1151 if( nPayload<=maxLocal ){
1152 return nPayload;
1153 }else{
1154 int minLocal; /* Minimum amount of payload held locally */
1155 int surplus; /* Overflow payload available for local storage */
1156 minLocal = pPage->minLocal;
1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1158 return ( surplus <= maxLocal ) ? surplus : minLocal;
1159 }
1160}
1161
1162/*
drh5fa60512015-06-19 17:19:34 +00001163** The following routines are implementations of the MemPage.xParseCell()
1164** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001165**
drh5fa60512015-06-19 17:19:34 +00001166** Parse a cell content block and fill in the CellInfo structure.
1167**
1168** btreeParseCellPtr() => table btree leaf nodes
1169** btreeParseCellNoPayload() => table btree internal nodes
1170** btreeParseCellPtrIndex() => index btree nodes
1171**
1172** There is also a wrapper function btreeParseCell() that works for
1173** all MemPage types and that references the cell by index rather than
1174** by pointer.
drh43605152004-05-29 21:46:49 +00001175*/
drh5fa60512015-06-19 17:19:34 +00001176static void btreeParseCellPtrNoPayload(
1177 MemPage *pPage, /* Page containing the cell */
1178 u8 *pCell, /* Pointer to the cell text. */
1179 CellInfo *pInfo /* Fill in this structure */
1180){
1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001183 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001184#ifndef SQLITE_DEBUG
1185 UNUSED_PARAMETER(pPage);
1186#endif
drh5fa60512015-06-19 17:19:34 +00001187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1188 pInfo->nPayload = 0;
1189 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001190 pInfo->pPayload = 0;
1191 return;
1192}
danielk197730548662009-07-09 05:07:37 +00001193static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001194 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001195 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001196 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001197){
drh3e28ff52014-09-24 00:59:08 +00001198 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001199 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001200 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001201
drh1fee73e2007-08-29 04:00:57 +00001202 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001203 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001204 assert( pPage->intKeyLeaf );
1205 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001206 pIter = pCell;
1207
1208 /* The next block of code is equivalent to:
1209 **
1210 ** pIter += getVarint32(pIter, nPayload);
1211 **
1212 ** The code is inlined to avoid a function call.
1213 */
1214 nPayload = *pIter;
1215 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001216 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001217 nPayload &= 0x7f;
1218 do{
1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1220 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001221 }
drh56cb04e2015-06-19 18:24:37 +00001222 pIter++;
1223
1224 /* The next block of code is equivalent to:
1225 **
1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1227 **
1228 ** The code is inlined to avoid a function call.
1229 */
1230 iKey = *pIter;
1231 if( iKey>=0x80 ){
1232 u8 *pEnd = &pIter[7];
1233 iKey &= 0x7f;
1234 while(1){
1235 iKey = (iKey<<7) | (*++pIter & 0x7f);
1236 if( (*pIter)<0x80 ) break;
1237 if( pIter>=pEnd ){
1238 iKey = (iKey<<8) | *++pIter;
1239 break;
1240 }
1241 }
1242 }
1243 pIter++;
1244
1245 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001246 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001247 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001248 testcase( nPayload==pPage->maxLocal );
1249 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001250 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001251 /* This is the (easy) common case where the entire payload fits
1252 ** on the local page. No overflow is required.
1253 */
drhab1cc582014-09-23 21:25:19 +00001254 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1255 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001256 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001257 }else{
drh5fa60512015-06-19 17:19:34 +00001258 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001259 }
drh3aac2dd2004-04-26 14:10:20 +00001260}
drh5fa60512015-06-19 17:19:34 +00001261static void btreeParseCellPtrIndex(
1262 MemPage *pPage, /* Page containing the cell */
1263 u8 *pCell, /* Pointer to the cell text. */
1264 CellInfo *pInfo /* Fill in this structure */
1265){
1266 u8 *pIter; /* For scanning through pCell */
1267 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001268
drh5fa60512015-06-19 17:19:34 +00001269 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1270 assert( pPage->leaf==0 || pPage->leaf==1 );
1271 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001272 pIter = pCell + pPage->childPtrSize;
1273 nPayload = *pIter;
1274 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001275 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001276 nPayload &= 0x7f;
1277 do{
1278 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1279 }while( *(pIter)>=0x80 && pIter<pEnd );
1280 }
1281 pIter++;
1282 pInfo->nKey = nPayload;
1283 pInfo->nPayload = nPayload;
1284 pInfo->pPayload = pIter;
1285 testcase( nPayload==pPage->maxLocal );
1286 testcase( nPayload==pPage->maxLocal+1 );
1287 if( nPayload<=pPage->maxLocal ){
1288 /* This is the (easy) common case where the entire payload fits
1289 ** on the local page. No overflow is required.
1290 */
1291 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1292 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1293 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001294 }else{
1295 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001296 }
1297}
danielk197730548662009-07-09 05:07:37 +00001298static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001299 MemPage *pPage, /* Page containing the cell */
1300 int iCell, /* The cell index. First cell is 0 */
1301 CellInfo *pInfo /* Fill in this structure */
1302){
drh5fa60512015-06-19 17:19:34 +00001303 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001304}
drh3aac2dd2004-04-26 14:10:20 +00001305
1306/*
drh5fa60512015-06-19 17:19:34 +00001307** The following routines are implementations of the MemPage.xCellSize
1308** method.
1309**
drh43605152004-05-29 21:46:49 +00001310** Compute the total number of bytes that a Cell needs in the cell
1311** data area of the btree-page. The return number includes the cell
1312** data header and the local payload, but not any overflow page or
1313** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001314**
drh5fa60512015-06-19 17:19:34 +00001315** cellSizePtrNoPayload() => table internal nodes
1316** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001317*/
danielk1977ae5558b2009-04-29 11:31:47 +00001318static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001319 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1320 u8 *pEnd; /* End mark for a varint */
1321 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001322
1323#ifdef SQLITE_DEBUG
1324 /* The value returned by this function should always be the same as
1325 ** the (CellInfo.nSize) value found by doing a full parse of the
1326 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1327 ** this function verifies that this invariant is not violated. */
1328 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001329 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001330#endif
1331
drh3e28ff52014-09-24 00:59:08 +00001332 nSize = *pIter;
1333 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001334 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001335 nSize &= 0x7f;
1336 do{
1337 nSize = (nSize<<7) | (*++pIter & 0x7f);
1338 }while( *(pIter)>=0x80 && pIter<pEnd );
1339 }
1340 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001341 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001342 /* pIter now points at the 64-bit integer key value, a variable length
1343 ** integer. The following block moves pIter to point at the first byte
1344 ** past the end of the key value. */
1345 pEnd = &pIter[9];
1346 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001347 }
drh0a45c272009-07-08 01:49:11 +00001348 testcase( nSize==pPage->maxLocal );
1349 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001350 if( nSize<=pPage->maxLocal ){
1351 nSize += (u32)(pIter - pCell);
1352 if( nSize<4 ) nSize = 4;
1353 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001354 int minLocal = pPage->minLocal;
1355 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001356 testcase( nSize==pPage->maxLocal );
1357 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001358 if( nSize>pPage->maxLocal ){
1359 nSize = minLocal;
1360 }
drh3e28ff52014-09-24 00:59:08 +00001361 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001362 }
drhdc41d602014-09-22 19:51:35 +00001363 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001364 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001365}
drh25ada072015-06-19 15:07:14 +00001366static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1367 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1368 u8 *pEnd; /* End mark for a varint */
1369
1370#ifdef SQLITE_DEBUG
1371 /* The value returned by this function should always be the same as
1372 ** the (CellInfo.nSize) value found by doing a full parse of the
1373 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1374 ** this function verifies that this invariant is not violated. */
1375 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001376 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001377#else
1378 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001379#endif
1380
1381 assert( pPage->childPtrSize==4 );
1382 pEnd = pIter + 9;
1383 while( (*pIter++)&0x80 && pIter<pEnd );
1384 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1385 return (u16)(pIter - pCell);
1386}
1387
drh0ee3dbe2009-10-16 15:05:18 +00001388
1389#ifdef SQLITE_DEBUG
1390/* This variation on cellSizePtr() is used inside of assert() statements
1391** only. */
drha9121e42008-02-19 14:59:35 +00001392static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001393 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001394}
danielk1977bc6ada42004-06-30 08:20:16 +00001395#endif
drh3b7511c2001-05-26 13:15:44 +00001396
danielk197779a40da2005-01-16 08:00:01 +00001397#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001398/*
drh0f1bf4c2019-01-13 20:17:21 +00001399** The cell pCell is currently part of page pSrc but will ultimately be part
1400** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1401** pointer to an overflow page, insert an entry into the pointer-map for
1402** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001403*/
drh0f1bf4c2019-01-13 20:17:21 +00001404static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001405 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001406 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001407 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001408 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001409 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001410 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001411 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1412 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001413 *pRC = SQLITE_CORRUPT_BKPT;
1414 return;
1415 }
1416 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001417 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001418 }
danielk1977ac11ee62005-01-15 12:45:51 +00001419}
danielk197779a40da2005-01-16 08:00:01 +00001420#endif
1421
danielk1977ac11ee62005-01-15 12:45:51 +00001422
drhda200cc2004-05-09 11:51:38 +00001423/*
dane6d065a2017-02-24 19:58:22 +00001424** Defragment the page given. This routine reorganizes cells within the
1425** page so that there are no free-blocks on the free-block list.
1426**
1427** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1428** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001429**
1430** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1431** b-tree page so that there are no freeblocks or fragment bytes, all
1432** unused bytes are contained in the unallocated space region, and all
1433** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001434*/
dane6d065a2017-02-24 19:58:22 +00001435static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001436 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001437 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001438 int hdr; /* Offset to the page header */
1439 int size; /* Size of a cell */
1440 int usableSize; /* Number of usable bytes on a page */
1441 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001442 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001443 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001444 unsigned char *data; /* The page data */
1445 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001446 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001447 int iCellFirst; /* First allowable cell index */
1448 int iCellLast; /* Last possible cell index */
dan7f65b7a2021-04-10 20:27:06 +00001449 int iCellStart; /* First cell offset in input */
drh17146622009-07-07 17:38:38 +00001450
danielk19773b8a05f2007-03-19 17:44:26 +00001451 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001452 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001453 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001454 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001455 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001456 temp = 0;
1457 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001458 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001459 cellOffset = pPage->cellOffset;
1460 nCell = pPage->nCell;
drh45616c72019-02-28 13:21:36 +00001461 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001462 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001463 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001464
1465 /* This block handles pages with two or fewer free blocks and nMaxFrag
1466 ** or fewer fragmented bytes. In this case it is faster to move the
1467 ** two (or one) blocks of cells using memmove() and add the required
1468 ** offsets to each pointer in the cell-pointer array than it is to
1469 ** reconstruct the entire page. */
1470 if( (int)data[hdr+7]<=nMaxFrag ){
1471 int iFree = get2byte(&data[hdr+1]);
drh119e1ff2019-03-30 18:39:13 +00001472 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001473 if( iFree ){
1474 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001475 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001476 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1477 u8 *pEnd = &data[cellOffset + nCell*2];
1478 u8 *pAddr;
1479 int sz2 = 0;
1480 int sz = get2byte(&data[iFree+2]);
1481 int top = get2byte(&data[hdr+5]);
drh4b9e7362020-02-18 23:58:58 +00001482 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001483 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001484 }
dane6d065a2017-02-24 19:58:22 +00001485 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001486 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001487 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001488 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001489 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1490 sz += sz2;
drhd78fe4e2021-04-09 22:34:59 +00001491 }else if( iFree+sz>usableSize ){
dandcc427c2019-03-21 21:18:36 +00001492 return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001493 }
dandcc427c2019-03-21 21:18:36 +00001494
dane6d065a2017-02-24 19:58:22 +00001495 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001496 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001497 memmove(&data[cbrk], &data[top], iFree-top);
1498 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1499 pc = get2byte(pAddr);
1500 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1501 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1502 }
1503 goto defragment_out;
1504 }
1505 }
1506 }
1507
drh281b21d2008-08-22 12:57:08 +00001508 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001509 iCellLast = usableSize - 4;
dan7f65b7a2021-04-10 20:27:06 +00001510 iCellStart = get2byte(&data[hdr+5]);
drh43605152004-05-29 21:46:49 +00001511 for(i=0; i<nCell; i++){
1512 u8 *pAddr; /* The i-th cell pointer */
1513 pAddr = &data[cellOffset + i*2];
1514 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001515 testcase( pc==iCellFirst );
1516 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001517 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001518 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001519 */
dan7f65b7a2021-04-10 20:27:06 +00001520 if( pc<iCellStart || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001521 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001522 }
dan7f65b7a2021-04-10 20:27:06 +00001523 assert( pc>=iCellStart && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001524 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001525 cbrk -= size;
dan7f65b7a2021-04-10 20:27:06 +00001526 if( cbrk<iCellStart || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001527 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001528 }
dan7f65b7a2021-04-10 20:27:06 +00001529 assert( cbrk+size<=usableSize && cbrk>=iCellStart );
drh0a45c272009-07-08 01:49:11 +00001530 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001531 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001532 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001533 if( temp==0 ){
drh588400b2014-09-27 05:00:25 +00001534 if( cbrk==pc ) continue;
1535 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drhccf0bb42021-06-07 13:50:36 +00001536 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
drh588400b2014-09-27 05:00:25 +00001537 src = temp;
1538 }
1539 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001540 }
dane6d065a2017-02-24 19:58:22 +00001541 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001542
1543 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001544 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001545 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001546 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001547 }
drh17146622009-07-07 17:38:38 +00001548 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001549 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001550 data[hdr+1] = 0;
1551 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001552 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001553 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001554 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001555}
1556
drha059ad02001-04-17 20:09:11 +00001557/*
dan8e9ba0c2014-10-14 17:27:04 +00001558** Search the free-list on page pPg for space to store a cell nByte bytes in
1559** size. If one can be found, return a pointer to the space and remove it
1560** from the free-list.
1561**
1562** If no suitable space can be found on the free-list, return NULL.
1563**
drhba0f9992014-10-30 20:48:44 +00001564** This function may detect corruption within pPg. If corruption is
1565** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001566**
drhb7580e82015-06-25 18:36:13 +00001567** Slots on the free list that are between 1 and 3 bytes larger than nByte
1568** will be ignored if adding the extra space to the fragmentation count
1569** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001570*/
drhb7580e82015-06-25 18:36:13 +00001571static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001572 const int hdr = pPg->hdrOffset; /* Offset to page header */
1573 u8 * const aData = pPg->aData; /* Page data */
1574 int iAddr = hdr + 1; /* Address of ptr to pc */
1575 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */
1576 int x; /* Excess size of the slot */
1577 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1578 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001579
drhb7580e82015-06-25 18:36:13 +00001580 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001581 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001582 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1583 ** freeblock form a big-endian integer which is the size of the freeblock
1584 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001585 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001586 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001587 testcase( x==4 );
1588 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001589 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001590 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1591 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001592 if( aData[hdr+7]>57 ) return 0;
1593
dan8e9ba0c2014-10-14 17:27:04 +00001594 /* Remove the slot from the free-list. Update the number of
1595 ** fragmented bytes within the page. */
1596 memcpy(&aData[iAddr], &aData[pc], 2);
1597 aData[hdr+7] += (u8)x;
drh298f45c2019-02-08 22:34:59 +00001598 }else if( x+pc > maxPC ){
1599 /* This slot extends off the end of the usable part of the page */
1600 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1601 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001602 }else{
1603 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001604 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001605 put2byte(&aData[pc+2], x);
1606 }
1607 return &aData[pc + x];
1608 }
drhb7580e82015-06-25 18:36:13 +00001609 iAddr = pc;
1610 pc = get2byte(&aData[pc]);
drh2a934d72019-03-13 10:29:16 +00001611 if( pc<=iAddr+size ){
drh298f45c2019-02-08 22:34:59 +00001612 if( pc ){
1613 /* The next slot in the chain is not past the end of the current slot */
1614 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1615 }
1616 return 0;
1617 }
drh87d63c92017-08-23 23:09:03 +00001618 }
drh298f45c2019-02-08 22:34:59 +00001619 if( pc>maxPC+nByte-4 ){
1620 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001621 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001622 }
dan8e9ba0c2014-10-14 17:27:04 +00001623 return 0;
1624}
1625
1626/*
danielk19776011a752009-04-01 16:25:32 +00001627** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001628** as the first argument. Write into *pIdx the index into pPage->aData[]
1629** of the first byte of allocated space. Return either SQLITE_OK or
1630** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001631**
drh0a45c272009-07-08 01:49:11 +00001632** The caller guarantees that there is sufficient space to make the
1633** allocation. This routine might need to defragment in order to bring
1634** all the space together, however. This routine will avoid using
1635** the first two bytes past the cell pointer area since presumably this
1636** allocation is being made in order to insert a new cell, so we will
1637** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001638*/
drh0a45c272009-07-08 01:49:11 +00001639static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001640 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1641 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001642 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001643 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001644 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001645
danielk19773b8a05f2007-03-19 17:44:26 +00001646 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001647 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001648 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001649 assert( nByte>=0 ); /* Minimum cell size is 4 */
1650 assert( pPage->nFree>=nByte );
1651 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001652 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001653
drh0a45c272009-07-08 01:49:11 +00001654 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1655 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001656 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001657 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1658 ** and the reserved space is zero (the usual value for reserved space)
1659 ** then the cell content offset of an empty page wants to be 65536.
1660 ** However, that integer is too large to be stored in a 2-byte unsigned
1661 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001662 top = get2byte(&data[hdr+5]);
drhdfcecdf2019-05-08 00:17:45 +00001663 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
drhded340e2015-06-25 15:04:56 +00001664 if( gap>top ){
drh291508f2019-05-08 04:33:17 +00001665 if( top==0 && pPage->pBt->usableSize==65536 ){
drhded340e2015-06-25 15:04:56 +00001666 top = 65536;
1667 }else{
daneebf2f52017-11-18 17:30:08 +00001668 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001669 }
1670 }
drh43605152004-05-29 21:46:49 +00001671
drhd4a67442019-02-11 19:27:36 +00001672 /* If there is enough space between gap and top for one more cell pointer,
1673 ** and if the freelist is not empty, then search the
1674 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001675 */
drh5e2f8b92001-05-28 00:41:15 +00001676 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001677 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001678 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001679 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001680 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001681 if( pSpace ){
drh3b76c452020-01-03 17:40:30 +00001682 int g2;
drh2b96b692019-08-05 16:22:20 +00001683 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
drh3b76c452020-01-03 17:40:30 +00001684 *pIdx = g2 = (int)(pSpace-data);
drhb9154182021-06-20 22:49:26 +00001685 if( g2<=gap ){
drh2b96b692019-08-05 16:22:20 +00001686 return SQLITE_CORRUPT_PAGE(pPage);
1687 }else{
1688 return SQLITE_OK;
1689 }
drhb7580e82015-06-25 18:36:13 +00001690 }else if( rc ){
1691 return rc;
drh9e572e62004-04-23 23:43:10 +00001692 }
1693 }
drh43605152004-05-29 21:46:49 +00001694
drh4c04f3c2014-08-20 11:56:14 +00001695 /* The request could not be fulfilled using a freelist slot. Check
1696 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001697 */
1698 testcase( gap+2+nByte==top );
1699 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001700 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001701 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001702 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001703 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001704 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001705 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001706 }
1707
1708
drh43605152004-05-29 21:46:49 +00001709 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001710 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001711 ** validated the freelist. Given that the freelist is valid, there
1712 ** is no way that the allocation can extend off the end of the page.
1713 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001714 */
drh0a45c272009-07-08 01:49:11 +00001715 top -= nByte;
drh43605152004-05-29 21:46:49 +00001716 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001717 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001718 *pIdx = top;
1719 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001720}
1721
1722/*
drh9e572e62004-04-23 23:43:10 +00001723** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001724** The first byte of the new free block is pPage->aData[iStart]
1725** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001726**
drh5f5c7532014-08-20 17:56:27 +00001727** Adjacent freeblocks are coalesced.
1728**
drh5860a612019-02-12 16:58:26 +00001729** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001730** that routine will not detect overlap between cells or freeblocks. Nor
1731** does it detect cells or freeblocks that encrouch into the reserved bytes
1732** at the end of the page. So do additional corruption checks inside this
1733** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001734*/
drh5f5c7532014-08-20 17:56:27 +00001735static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001736 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001737 u16 iFreeBlk; /* Address of the next freeblock */
1738 u8 hdr; /* Page header size. 0 or 100 */
1739 u8 nFrag = 0; /* Reduction in fragmentation */
1740 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001741 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001742 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001743 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001744
drh9e572e62004-04-23 23:43:10 +00001745 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001746 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001747 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001748 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001749 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001750 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001751 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001752
drh5f5c7532014-08-20 17:56:27 +00001753 /* The list of freeblocks must be in ascending order. Find the
1754 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001755 */
drh43605152004-05-29 21:46:49 +00001756 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001757 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001758 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1759 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1760 }else{
drh85f071b2016-09-17 19:34:32 +00001761 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1762 if( iFreeBlk<iPtr+4 ){
drh05e8c542020-01-14 16:39:54 +00001763 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
daneebf2f52017-11-18 17:30:08 +00001764 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001765 }
drh7bc4c452014-08-20 18:43:44 +00001766 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001767 }
drh628b1a32020-01-05 21:53:15 +00001768 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
daneebf2f52017-11-18 17:30:08 +00001769 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001770 }
drh7bc4c452014-08-20 18:43:44 +00001771 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1772
1773 /* At this point:
1774 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001775 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001776 **
1777 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1778 */
1779 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1780 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001781 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001782 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drh6aa75152020-06-12 00:31:52 +00001783 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001784 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001785 }
drh7bc4c452014-08-20 18:43:44 +00001786 iSize = iEnd - iStart;
1787 iFreeBlk = get2byte(&data[iFreeBlk]);
1788 }
1789
drh3f387402014-09-24 01:23:00 +00001790 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1791 ** pointer in the page header) then check to see if iStart should be
1792 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001793 */
1794 if( iPtr>hdr+1 ){
1795 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1796 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001797 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001798 nFrag += iStart - iPtrEnd;
1799 iSize = iEnd - iPtr;
1800 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001801 }
drh9e572e62004-04-23 23:43:10 +00001802 }
daneebf2f52017-11-18 17:30:08 +00001803 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001804 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001805 }
drh5e398e42017-08-23 20:36:06 +00001806 x = get2byte(&data[hdr+5]);
1807 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001808 /* The new freeblock is at the beginning of the cell content area,
1809 ** so just extend the cell content area rather than create another
1810 ** freelist entry */
drh3b76c452020-01-03 17:40:30 +00001811 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
drh48118e42020-01-29 13:50:11 +00001812 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001813 put2byte(&data[hdr+1], iFreeBlk);
1814 put2byte(&data[hdr+5], iEnd);
1815 }else{
1816 /* Insert the new freeblock into the freelist */
1817 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001818 }
drh5e398e42017-08-23 20:36:06 +00001819 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1820 /* Overwrite deleted information with zeros when the secure_delete
1821 ** option is enabled */
1822 memset(&data[iStart], 0, iSize);
1823 }
1824 put2byte(&data[iStart], iFreeBlk);
1825 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001826 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001827 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001828}
1829
1830/*
drh271efa52004-05-30 19:19:05 +00001831** Decode the flags byte (the first byte of the header) for a page
1832** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001833**
1834** Only the following combinations are supported. Anything different
1835** indicates a corrupt database files:
1836**
1837** PTF_ZERODATA
1838** PTF_ZERODATA | PTF_LEAF
1839** PTF_LEAFDATA | PTF_INTKEY
1840** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001841*/
drh44845222008-07-17 18:39:57 +00001842static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001843 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001844
1845 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001846 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001847 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001848 flagByte &= ~PTF_LEAF;
1849 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001850 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001851 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001852 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001853 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1854 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001855 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001856 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1857 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001858 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001859 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001860 if( pPage->leaf ){
1861 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001862 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001863 }else{
1864 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001865 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001866 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001867 }
drh271efa52004-05-30 19:19:05 +00001868 pPage->maxLocal = pBt->maxLeaf;
1869 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001870 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001871 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1872 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001873 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001874 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1875 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001876 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001877 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001878 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001879 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001880 pPage->maxLocal = pBt->maxLocal;
1881 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001882 }else{
drhfdab0262014-11-20 15:30:50 +00001883 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1884 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001885 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001886 }
drhc9166342012-01-05 23:32:06 +00001887 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001888 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001889}
1890
1891/*
drhb0ea9432019-02-09 21:06:40 +00001892** Compute the amount of freespace on the page. In other words, fill
1893** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00001894*/
drhb0ea9432019-02-09 21:06:40 +00001895static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001896 int pc; /* Address of a freeblock within pPage->aData[] */
1897 u8 hdr; /* Offset to beginning of page header */
1898 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00001899 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00001900 int nFree; /* Number of unused bytes on the page */
1901 int top; /* First byte of the cell content area */
1902 int iCellFirst; /* First allowable cell or freeblock offset */
1903 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001904
danielk197771d5d2c2008-09-29 11:49:47 +00001905 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001906 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001907 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001908 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001909 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1910 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00001911 assert( pPage->isInit==1 );
1912 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001913
drhb0ea9432019-02-09 21:06:40 +00001914 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00001915 hdr = pPage->hdrOffset;
1916 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00001917 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1918 ** the start of the cell content area. A zero value for this integer is
1919 ** interpreted as 65536. */
1920 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00001921 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00001922 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00001923
drh14e845a2017-05-25 21:35:56 +00001924 /* Compute the total free space on the page
1925 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1926 ** start of the first freeblock on the page, or is zero if there are no
1927 ** freeblocks. */
1928 pc = get2byte(&data[hdr+1]);
1929 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1930 if( pc>0 ){
1931 u32 next, size;
dan9a20ea92020-01-03 15:51:23 +00001932 if( pc<top ){
drh14e845a2017-05-25 21:35:56 +00001933 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1934 ** always be at least one cell before the first freeblock.
1935 */
daneebf2f52017-11-18 17:30:08 +00001936 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001937 }
drh14e845a2017-05-25 21:35:56 +00001938 while( 1 ){
1939 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001940 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001941 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001942 }
1943 next = get2byte(&data[pc]);
1944 size = get2byte(&data[pc+2]);
1945 nFree = nFree + size;
1946 if( next<=pc+size+3 ) break;
1947 pc = next;
1948 }
1949 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001950 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001951 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001952 }
1953 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001954 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001955 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001956 }
danielk197771d5d2c2008-09-29 11:49:47 +00001957 }
drh14e845a2017-05-25 21:35:56 +00001958
1959 /* At this point, nFree contains the sum of the offset to the start
1960 ** of the cell-content area plus the number of free bytes within
1961 ** the cell-content area. If this is greater than the usable-size
1962 ** of the page, then the page must be corrupted. This check also
1963 ** serves to verify that the offset to the start of the cell-content
1964 ** area, according to the page header, lies within the page.
1965 */
drhdfcecdf2019-05-08 00:17:45 +00001966 if( nFree>usableSize || nFree<iCellFirst ){
daneebf2f52017-11-18 17:30:08 +00001967 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001968 }
1969 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00001970 return SQLITE_OK;
1971}
1972
1973/*
drh5860a612019-02-12 16:58:26 +00001974** Do additional sanity check after btreeInitPage() if
1975** PRAGMA cell_size_check=ON
1976*/
1977static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1978 int iCellFirst; /* First allowable cell or freeblock offset */
1979 int iCellLast; /* Last possible cell or freeblock offset */
1980 int i; /* Index into the cell pointer array */
1981 int sz; /* Size of a cell */
1982 int pc; /* Address of a freeblock within pPage->aData[] */
1983 u8 *data; /* Equal to pPage->aData */
1984 int usableSize; /* Maximum usable space on the page */
1985 int cellOffset; /* Start of cell content area */
1986
1987 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1988 usableSize = pPage->pBt->usableSize;
1989 iCellLast = usableSize - 4;
1990 data = pPage->aData;
1991 cellOffset = pPage->cellOffset;
1992 if( !pPage->leaf ) iCellLast--;
1993 for(i=0; i<pPage->nCell; i++){
1994 pc = get2byteAligned(&data[cellOffset+i*2]);
1995 testcase( pc==iCellFirst );
1996 testcase( pc==iCellLast );
1997 if( pc<iCellFirst || pc>iCellLast ){
1998 return SQLITE_CORRUPT_PAGE(pPage);
1999 }
2000 sz = pPage->xCellSize(pPage, &data[pc]);
2001 testcase( pc+sz==usableSize );
2002 if( pc+sz>usableSize ){
2003 return SQLITE_CORRUPT_PAGE(pPage);
2004 }
2005 }
2006 return SQLITE_OK;
2007}
2008
2009/*
drhb0ea9432019-02-09 21:06:40 +00002010** Initialize the auxiliary information for a disk block.
2011**
2012** Return SQLITE_OK on success. If we see that the page does
2013** not contain a well-formed database page, then return
2014** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2015** guarantee that the page is well-formed. It only shows that
2016** we failed to detect any corruption.
2017*/
2018static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00002019 u8 *data; /* Equal to pPage->aData */
2020 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00002021
2022 assert( pPage->pBt!=0 );
2023 assert( pPage->pBt->db!=0 );
2024 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2025 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2026 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2027 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2028 assert( pPage->isInit==0 );
2029
2030 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00002031 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00002032 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2033 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00002034 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00002035 return SQLITE_CORRUPT_PAGE(pPage);
2036 }
2037 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2038 pPage->maskPage = (u16)(pBt->pageSize - 1);
2039 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00002040 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2041 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2042 pPage->aDataEnd = pPage->aData + pBt->usableSize;
2043 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002044 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2045 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002046 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002047 if( pPage->nCell>MX_CELL(pBt) ){
2048 /* To many cells for a single page. The page must be corrupt */
2049 return SQLITE_CORRUPT_PAGE(pPage);
2050 }
2051 testcase( pPage->nCell==MX_CELL(pBt) );
2052 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2053 ** possible for a root page of a table that contains no rows) then the
2054 ** offset to the cell content area will equal the page size minus the
2055 ** bytes of reserved space. */
2056 assert( pPage->nCell>0
mistachkin065f3bf2019-03-20 05:45:03 +00002057 || get2byteNotZero(&data[5])==(int)pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002058 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002059 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002060 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002061 if( pBt->db->flags & SQLITE_CellSizeCk ){
2062 return btreeCellSizeCheck(pPage);
2063 }
drh9e572e62004-04-23 23:43:10 +00002064 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002065}
2066
2067/*
drh8b2f49b2001-06-08 00:21:52 +00002068** Set up a raw page so that it looks like a database page holding
2069** no entries.
drhbd03cae2001-06-02 02:40:57 +00002070*/
drh9e572e62004-04-23 23:43:10 +00002071static void zeroPage(MemPage *pPage, int flags){
2072 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002073 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002074 u8 hdr = pPage->hdrOffset;
2075 u16 first;
drh9e572e62004-04-23 23:43:10 +00002076
danielk19773b8a05f2007-03-19 17:44:26 +00002077 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00002078 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2079 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002080 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002081 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002082 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002083 memset(&data[hdr], 0, pBt->usableSize - hdr);
2084 }
drh1bd10f82008-12-10 21:19:56 +00002085 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002086 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002087 memset(&data[hdr+1], 0, 4);
2088 data[hdr+7] = 0;
2089 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002090 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002091 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002092 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002093 pPage->aDataEnd = &data[pBt->usableSize];
2094 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002095 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002096 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002097 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2098 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002099 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002100 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002101}
2102
drh897a8202008-09-18 01:08:15 +00002103
2104/*
2105** Convert a DbPage obtained from the pager into a MemPage used by
2106** the btree layer.
2107*/
2108static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2109 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002110 if( pgno!=pPage->pgno ){
2111 pPage->aData = sqlite3PagerGetData(pDbPage);
2112 pPage->pDbPage = pDbPage;
2113 pPage->pBt = pBt;
2114 pPage->pgno = pgno;
2115 pPage->hdrOffset = pgno==1 ? 100 : 0;
2116 }
2117 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002118 return pPage;
2119}
2120
drhbd03cae2001-06-02 02:40:57 +00002121/*
drh3aac2dd2004-04-26 14:10:20 +00002122** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002123** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002124**
drh7e8c6f12015-05-28 03:28:27 +00002125** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2126** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002127** to fetch the content. Just fill in the content with zeros for now.
2128** If in the future we call sqlite3PagerWrite() on this page, that
2129** means we have started to be concerned about content and the disk
2130** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002131*/
danielk197730548662009-07-09 05:07:37 +00002132static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002133 BtShared *pBt, /* The btree */
2134 Pgno pgno, /* Number of the page to fetch */
2135 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002136 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002137){
drh3aac2dd2004-04-26 14:10:20 +00002138 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002139 DbPage *pDbPage;
2140
drhb00fc3b2013-08-21 23:42:32 +00002141 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002142 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002143 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002144 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002145 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002146 return SQLITE_OK;
2147}
2148
2149/*
danielk1977bea2a942009-01-20 17:06:27 +00002150** Retrieve a page from the pager cache. If the requested page is not
2151** already in the pager cache return NULL. Initialize the MemPage.pBt and
2152** MemPage.aData elements if needed.
2153*/
2154static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2155 DbPage *pDbPage;
2156 assert( sqlite3_mutex_held(pBt->mutex) );
2157 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2158 if( pDbPage ){
2159 return btreePageFromDbPage(pDbPage, pgno, pBt);
2160 }
2161 return 0;
2162}
2163
2164/*
danielk197789d40042008-11-17 14:20:56 +00002165** Return the size of the database file in pages. If there is any kind of
2166** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002167*/
drhb1299152010-03-30 22:58:33 +00002168static Pgno btreePagecount(BtShared *pBt){
drh406dfcb2020-01-07 18:10:01 +00002169 return pBt->nPage;
drhb1299152010-03-30 22:58:33 +00002170}
drh584e8b72020-07-22 17:12:59 +00002171Pgno sqlite3BtreeLastPage(Btree *p){
drhb1299152010-03-30 22:58:33 +00002172 assert( sqlite3BtreeHoldsMutex(p) );
drh584e8b72020-07-22 17:12:59 +00002173 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002174}
2175
2176/*
drh28f58dd2015-06-27 19:45:03 +00002177** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002178**
drh15a00212015-06-27 20:55:00 +00002179** If pCur!=0 then the page is being fetched as part of a moveToChild()
2180** call. Do additional sanity checking on the page in this case.
2181** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002182**
2183** The page is fetched as read-write unless pCur is not NULL and is
2184** a read-only cursor.
2185**
2186** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002187** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002188*/
2189static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002190 BtShared *pBt, /* The database file */
2191 Pgno pgno, /* Number of the page to get */
2192 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002193 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2194 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002195){
2196 int rc;
drh28f58dd2015-06-27 19:45:03 +00002197 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002198 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002199 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002200 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002201 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002202
danba3cbf32010-06-30 04:29:03 +00002203 if( pgno>btreePagecount(pBt) ){
2204 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002205 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002206 }
drh9584f582015-11-04 20:22:37 +00002207 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002208 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002209 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002210 }
drh8dd1c252015-11-04 22:31:02 +00002211 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002212 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002213 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002214 rc = btreeInitPage(*ppPage);
2215 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002216 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002217 }
drhee696e22004-08-30 16:52:17 +00002218 }
drh8dd1c252015-11-04 22:31:02 +00002219 assert( (*ppPage)->pgno==pgno );
2220 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002221
drh15a00212015-06-27 20:55:00 +00002222 /* If obtaining a child page for a cursor, we must verify that the page is
2223 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002224 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002225 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002226 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002227 }
drh28f58dd2015-06-27 19:45:03 +00002228 return SQLITE_OK;
2229
drhb0ea9432019-02-09 21:06:40 +00002230getAndInitPage_error2:
2231 releasePage(*ppPage);
2232getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002233 if( pCur ){
2234 pCur->iPage--;
2235 pCur->pPage = pCur->apPage[pCur->iPage];
2236 }
danba3cbf32010-06-30 04:29:03 +00002237 testcase( pgno==0 );
2238 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002239 return rc;
2240}
2241
2242/*
drh3aac2dd2004-04-26 14:10:20 +00002243** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002244** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002245**
2246** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002247*/
drhbbf0f862015-06-27 14:59:26 +00002248static void releasePageNotNull(MemPage *pPage){
2249 assert( pPage->aData );
2250 assert( pPage->pBt );
2251 assert( pPage->pDbPage!=0 );
2252 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2253 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2254 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2255 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002256}
drh3aac2dd2004-04-26 14:10:20 +00002257static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002258 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002259}
drh3908fe92017-09-01 14:50:19 +00002260static void releasePageOne(MemPage *pPage){
2261 assert( pPage!=0 );
2262 assert( pPage->aData );
2263 assert( pPage->pBt );
2264 assert( pPage->pDbPage!=0 );
2265 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2266 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2267 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2268 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2269}
drh3aac2dd2004-04-26 14:10:20 +00002270
2271/*
drh7e8c6f12015-05-28 03:28:27 +00002272** Get an unused page.
2273**
2274** This works just like btreeGetPage() with the addition:
2275**
2276** * If the page is already in use for some other purpose, immediately
2277** release it and return an SQLITE_CURRUPT error.
2278** * Make sure the isInit flag is clear
2279*/
2280static int btreeGetUnusedPage(
2281 BtShared *pBt, /* The btree */
2282 Pgno pgno, /* Number of the page to fetch */
2283 MemPage **ppPage, /* Return the page in this parameter */
2284 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2285){
2286 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2287 if( rc==SQLITE_OK ){
2288 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2289 releasePage(*ppPage);
2290 *ppPage = 0;
2291 return SQLITE_CORRUPT_BKPT;
2292 }
2293 (*ppPage)->isInit = 0;
2294 }else{
2295 *ppPage = 0;
2296 }
2297 return rc;
2298}
2299
drha059ad02001-04-17 20:09:11 +00002300
2301/*
drha6abd042004-06-09 17:37:22 +00002302** During a rollback, when the pager reloads information into the cache
2303** so that the cache is restored to its original state at the start of
2304** the transaction, for each page restored this routine is called.
2305**
2306** This routine needs to reset the extra data section at the end of the
2307** page to agree with the restored data.
2308*/
danielk1977eaa06f62008-09-18 17:34:44 +00002309static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002310 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002311 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002312 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002313 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002314 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002315 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002316 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002317 /* pPage might not be a btree page; it might be an overflow page
2318 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002319 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002320 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002321 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002322 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002323 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002324 }
drha6abd042004-06-09 17:37:22 +00002325 }
2326}
2327
2328/*
drhe5fe6902007-12-07 18:55:28 +00002329** Invoke the busy handler for a btree.
2330*/
danielk19771ceedd32008-11-19 10:22:33 +00002331static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002332 BtShared *pBt = (BtShared*)pArg;
2333 assert( pBt->db );
2334 assert( sqlite3_mutex_held(pBt->db->mutex) );
drh783e1592020-05-06 20:55:38 +00002335 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
drhe5fe6902007-12-07 18:55:28 +00002336}
2337
2338/*
drhad3e0102004-09-03 23:32:18 +00002339** Open a database file.
2340**
drh382c0242001-10-06 16:33:02 +00002341** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002342** then an ephemeral database is created. The ephemeral database might
2343** be exclusively in memory, or it might use a disk-based memory cache.
2344** Either way, the ephemeral database will be automatically deleted
2345** when sqlite3BtreeClose() is called.
2346**
drhe53831d2007-08-17 01:14:38 +00002347** If zFilename is ":memory:" then an in-memory database is created
2348** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002349**
drh33f111d2012-01-17 15:29:14 +00002350** The "flags" parameter is a bitmask that might contain bits like
2351** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002352**
drhc47fd8e2009-04-30 13:30:32 +00002353** If the database is already opened in the same database connection
2354** and we are in shared cache mode, then the open will fail with an
2355** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2356** objects in the same database connection since doing so will lead
2357** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002358*/
drh23e11ca2004-05-04 17:27:28 +00002359int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002360 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002361 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002362 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002363 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002364 int flags, /* Options */
2365 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002366){
drh7555d8e2009-03-20 13:15:30 +00002367 BtShared *pBt = 0; /* Shared part of btree structure */
2368 Btree *p; /* Handle to return */
2369 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2370 int rc = SQLITE_OK; /* Result code from this function */
2371 u8 nReserve; /* Byte of unused space on each page */
2372 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002373
drh75c014c2010-08-30 15:02:28 +00002374 /* True if opening an ephemeral, temporary database */
2375 const int isTempDb = zFilename==0 || zFilename[0]==0;
2376
danielk1977aef0bf62005-12-30 16:28:01 +00002377 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002378 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002379 */
drhb0a7c9c2010-12-06 21:09:59 +00002380#ifdef SQLITE_OMIT_MEMORYDB
2381 const int isMemdb = 0;
2382#else
2383 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002384 || (isTempDb && sqlite3TempInMemory(db))
2385 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002386#endif
2387
drhe5fe6902007-12-07 18:55:28 +00002388 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002389 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002390 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002391 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2392
2393 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2394 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2395
2396 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2397 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002398
drh75c014c2010-08-30 15:02:28 +00002399 if( isMemdb ){
2400 flags |= BTREE_MEMORY;
2401 }
2402 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2403 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2404 }
drh17435752007-08-16 04:30:38 +00002405 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002406 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002407 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002408 }
2409 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002410 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002411#ifndef SQLITE_OMIT_SHARED_CACHE
2412 p->lock.pBtree = p;
2413 p->lock.iTable = 1;
2414#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002415
drh198bf392006-01-06 21:52:49 +00002416#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002417 /*
2418 ** If this Btree is a candidate for shared cache, try to find an
2419 ** existing BtShared object that we can share with
2420 */
drh4ab9d252012-05-26 20:08:49 +00002421 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002422 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002423 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002424 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002425 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002426 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002427
drhff0587c2007-08-29 17:43:19 +00002428 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002429 if( !zFullPathname ){
2430 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002431 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002432 }
drhafc8b7f2012-05-26 18:06:38 +00002433 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002434 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002435 }else{
2436 rc = sqlite3OsFullPathname(pVfs, zFilename,
2437 nFullPathname, zFullPathname);
2438 if( rc ){
drhc398c652019-11-22 00:42:01 +00002439 if( rc==SQLITE_OK_SYMLINK ){
2440 rc = SQLITE_OK;
2441 }else{
2442 sqlite3_free(zFullPathname);
2443 sqlite3_free(p);
2444 return rc;
2445 }
drhafc8b7f2012-05-26 18:06:38 +00002446 }
drh070ad6b2011-11-17 11:43:19 +00002447 }
drh30ddce62011-10-15 00:16:30 +00002448#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002449 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2450 sqlite3_mutex_enter(mutexOpen);
drhccb21132020-06-19 11:34:57 +00002451 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
drhff0587c2007-08-29 17:43:19 +00002452 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002453#endif
drh78f82d12008-09-02 00:52:52 +00002454 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002455 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002456 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002457 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002458 int iDb;
2459 for(iDb=db->nDb-1; iDb>=0; iDb--){
2460 Btree *pExisting = db->aDb[iDb].pBt;
2461 if( pExisting && pExisting->pBt==pBt ){
2462 sqlite3_mutex_leave(mutexShared);
2463 sqlite3_mutex_leave(mutexOpen);
2464 sqlite3_free(zFullPathname);
2465 sqlite3_free(p);
2466 return SQLITE_CONSTRAINT;
2467 }
2468 }
drhff0587c2007-08-29 17:43:19 +00002469 p->pBt = pBt;
2470 pBt->nRef++;
2471 break;
2472 }
2473 }
2474 sqlite3_mutex_leave(mutexShared);
2475 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002476 }
drhff0587c2007-08-29 17:43:19 +00002477#ifdef SQLITE_DEBUG
2478 else{
2479 /* In debug mode, we mark all persistent databases as sharable
2480 ** even when they are not. This exercises the locking code and
2481 ** gives more opportunity for asserts(sqlite3_mutex_held())
2482 ** statements to find locking problems.
2483 */
2484 p->sharable = 1;
2485 }
2486#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002487 }
2488#endif
drha059ad02001-04-17 20:09:11 +00002489 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002490 /*
2491 ** The following asserts make sure that structures used by the btree are
2492 ** the right size. This is to guard against size changes that result
2493 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002494 */
drh062cf272015-03-23 19:03:51 +00002495 assert( sizeof(i64)==8 );
2496 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002497 assert( sizeof(u32)==4 );
2498 assert( sizeof(u16)==2 );
2499 assert( sizeof(Pgno)==4 );
2500
2501 pBt = sqlite3MallocZero( sizeof(*pBt) );
2502 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002503 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002504 goto btree_open_out;
2505 }
danielk197771d5d2c2008-09-29 11:49:47 +00002506 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002507 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002508 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002509 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002510 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2511 }
2512 if( rc!=SQLITE_OK ){
2513 goto btree_open_out;
2514 }
shanehbd2aaf92010-09-01 02:38:21 +00002515 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002516 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002517 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002518 p->pBt = pBt;
2519
drhe53831d2007-08-17 01:14:38 +00002520 pBt->pCursor = 0;
2521 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002522 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002523#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002524 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002525#elif defined(SQLITE_FAST_SECURE_DELETE)
2526 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002527#endif
drh113762a2014-11-19 16:36:25 +00002528 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2529 ** determined by the 2-byte integer located at an offset of 16 bytes from
2530 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002531 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002532 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2533 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002534 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002535#ifndef SQLITE_OMIT_AUTOVACUUM
2536 /* If the magic name ":memory:" will create an in-memory database, then
2537 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2538 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2539 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2540 ** regular file-name. In this case the auto-vacuum applies as per normal.
2541 */
2542 if( zFilename && !isMemdb ){
2543 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2544 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2545 }
2546#endif
2547 nReserve = 0;
2548 }else{
drh113762a2014-11-19 16:36:25 +00002549 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2550 ** determined by the one-byte unsigned integer found at an offset of 20
2551 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002552 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002553 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002554#ifndef SQLITE_OMIT_AUTOVACUUM
2555 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2556 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2557#endif
2558 }
drhfa9601a2009-06-18 17:22:39 +00002559 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002560 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002561 pBt->usableSize = pBt->pageSize - nReserve;
2562 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002563
2564#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2565 /* Add the new BtShared object to the linked list sharable BtShareds.
2566 */
dan272989b2016-07-06 10:12:02 +00002567 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002568 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002569 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhccb21132020-06-19 11:34:57 +00002570 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
danielk1977075c23a2008-09-01 18:34:20 +00002571 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002572 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002573 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002574 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002575 goto btree_open_out;
2576 }
drhff0587c2007-08-29 17:43:19 +00002577 }
drhe53831d2007-08-17 01:14:38 +00002578 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002579 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2580 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002581 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002582 }
drheee46cf2004-11-06 00:02:48 +00002583#endif
drh90f5ecb2004-07-22 01:19:35 +00002584 }
danielk1977aef0bf62005-12-30 16:28:01 +00002585
drhcfed7bc2006-03-13 14:28:05 +00002586#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002587 /* If the new Btree uses a sharable pBtShared, then link the new
2588 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002589 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002590 */
drhe53831d2007-08-17 01:14:38 +00002591 if( p->sharable ){
2592 int i;
2593 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002594 for(i=0; i<db->nDb; i++){
2595 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002596 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002597 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002598 p->pNext = pSib;
2599 p->pPrev = 0;
2600 pSib->pPrev = p;
2601 }else{
drh3bfa7e82016-03-22 14:37:59 +00002602 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002603 pSib = pSib->pNext;
2604 }
2605 p->pNext = pSib->pNext;
2606 p->pPrev = pSib;
2607 if( p->pNext ){
2608 p->pNext->pPrev = p;
2609 }
2610 pSib->pNext = p;
2611 }
2612 break;
2613 }
2614 }
danielk1977aef0bf62005-12-30 16:28:01 +00002615 }
danielk1977aef0bf62005-12-30 16:28:01 +00002616#endif
2617 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002618
2619btree_open_out:
2620 if( rc!=SQLITE_OK ){
2621 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002622 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002623 }
drh17435752007-08-16 04:30:38 +00002624 sqlite3_free(pBt);
2625 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002626 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002627 }else{
dan0f5a1862016-08-13 14:30:23 +00002628 sqlite3_file *pFile;
2629
drh75c014c2010-08-30 15:02:28 +00002630 /* If the B-Tree was successfully opened, set the pager-cache size to the
2631 ** default value. Except, when opening on an existing shared pager-cache,
2632 ** do not change the pager-cache size.
2633 */
2634 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
dan78f04752020-09-04 19:10:43 +00002635 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
drh75c014c2010-08-30 15:02:28 +00002636 }
dan0f5a1862016-08-13 14:30:23 +00002637
2638 pFile = sqlite3PagerFile(pBt->pPager);
2639 if( pFile->pMethods ){
2640 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2641 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002642 }
drh7555d8e2009-03-20 13:15:30 +00002643 if( mutexOpen ){
2644 assert( sqlite3_mutex_held(mutexOpen) );
2645 sqlite3_mutex_leave(mutexOpen);
2646 }
dan272989b2016-07-06 10:12:02 +00002647 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002648 return rc;
drha059ad02001-04-17 20:09:11 +00002649}
2650
2651/*
drhe53831d2007-08-17 01:14:38 +00002652** Decrement the BtShared.nRef counter. When it reaches zero,
2653** remove the BtShared structure from the sharing list. Return
2654** true if the BtShared.nRef counter reaches zero and return
2655** false if it is still positive.
2656*/
2657static int removeFromSharingList(BtShared *pBt){
2658#ifndef SQLITE_OMIT_SHARED_CACHE
drh067b92b2020-06-19 15:24:12 +00002659 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
drhe53831d2007-08-17 01:14:38 +00002660 BtShared *pList;
2661 int removed = 0;
2662
drhd677b3d2007-08-20 22:48:41 +00002663 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh067b92b2020-06-19 15:24:12 +00002664 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2665 sqlite3_mutex_enter(pMainMtx);
drhe53831d2007-08-17 01:14:38 +00002666 pBt->nRef--;
2667 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002668 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2669 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002670 }else{
drh78f82d12008-09-02 00:52:52 +00002671 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002672 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002673 pList=pList->pNext;
2674 }
drh34004ce2008-07-11 16:15:17 +00002675 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002676 pList->pNext = pBt->pNext;
2677 }
2678 }
drh3285db22007-09-03 22:00:39 +00002679 if( SQLITE_THREADSAFE ){
2680 sqlite3_mutex_free(pBt->mutex);
2681 }
drhe53831d2007-08-17 01:14:38 +00002682 removed = 1;
2683 }
drh067b92b2020-06-19 15:24:12 +00002684 sqlite3_mutex_leave(pMainMtx);
drhe53831d2007-08-17 01:14:38 +00002685 return removed;
2686#else
2687 return 1;
2688#endif
2689}
2690
2691/*
drhf7141992008-06-19 00:16:08 +00002692** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002693** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2694** pointer.
drhf7141992008-06-19 00:16:08 +00002695*/
2696static void allocateTempSpace(BtShared *pBt){
2697 if( !pBt->pTmpSpace ){
2698 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002699
2700 /* One of the uses of pBt->pTmpSpace is to format cells before
2701 ** inserting them into a leaf page (function fillInCell()). If
2702 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2703 ** by the various routines that manipulate binary cells. Which
2704 ** can mean that fillInCell() only initializes the first 2 or 3
2705 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2706 ** it into a database page. This is not actually a problem, but it
2707 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2708 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002709 ** zero the first 4 bytes of temp space here.
2710 **
2711 ** Also: Provide four bytes of initialized space before the
2712 ** beginning of pTmpSpace as an area available to prepend the
2713 ** left-child pointer to the beginning of a cell.
2714 */
2715 if( pBt->pTmpSpace ){
2716 memset(pBt->pTmpSpace, 0, 8);
2717 pBt->pTmpSpace += 4;
2718 }
drhf7141992008-06-19 00:16:08 +00002719 }
2720}
2721
2722/*
2723** Free the pBt->pTmpSpace allocation
2724*/
2725static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002726 if( pBt->pTmpSpace ){
2727 pBt->pTmpSpace -= 4;
2728 sqlite3PageFree(pBt->pTmpSpace);
2729 pBt->pTmpSpace = 0;
2730 }
drhf7141992008-06-19 00:16:08 +00002731}
2732
2733/*
drha059ad02001-04-17 20:09:11 +00002734** Close an open database and invalidate all cursors.
2735*/
danielk1977aef0bf62005-12-30 16:28:01 +00002736int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002737 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00002738
danielk1977aef0bf62005-12-30 16:28:01 +00002739 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002740 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002741 sqlite3BtreeEnter(p);
drh5a4a15f2021-03-18 15:42:59 +00002742
2743 /* Verify that no other cursors have this Btree open */
2744#ifdef SQLITE_DEBUG
2745 {
2746 BtCursor *pCur = pBt->pCursor;
2747 while( pCur ){
2748 BtCursor *pTmp = pCur;
2749 pCur = pCur->pNext;
2750 assert( pTmp->pBtree!=p );
2751
danielk1977aef0bf62005-12-30 16:28:01 +00002752 }
drha059ad02001-04-17 20:09:11 +00002753 }
drh5a4a15f2021-03-18 15:42:59 +00002754#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002755
danielk19778d34dfd2006-01-24 16:37:57 +00002756 /* Rollback any active transaction and free the handle structure.
2757 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2758 ** this handle.
2759 */
drh47b7fc72014-11-11 01:33:57 +00002760 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002761 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002762
danielk1977aef0bf62005-12-30 16:28:01 +00002763 /* If there are still other outstanding references to the shared-btree
2764 ** structure, return now. The remainder of this procedure cleans
2765 ** up the shared-btree.
2766 */
drhe53831d2007-08-17 01:14:38 +00002767 assert( p->wantToLock==0 && p->locked==0 );
2768 if( !p->sharable || removeFromSharingList(pBt) ){
2769 /* The pBt is no longer on the sharing list, so we can access
2770 ** it without having to hold the mutex.
2771 **
2772 ** Clean out and delete the BtShared object.
2773 */
2774 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002775 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002776 if( pBt->xFreeSchema && pBt->pSchema ){
2777 pBt->xFreeSchema(pBt->pSchema);
2778 }
drhb9755982010-07-24 16:34:37 +00002779 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002780 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002781 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002782 }
2783
drhe53831d2007-08-17 01:14:38 +00002784#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002785 assert( p->wantToLock==0 );
2786 assert( p->locked==0 );
2787 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2788 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002789#endif
2790
drhe53831d2007-08-17 01:14:38 +00002791 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002792 return SQLITE_OK;
2793}
2794
2795/*
drh9b0cf342015-11-12 14:57:19 +00002796** Change the "soft" limit on the number of pages in the cache.
2797** Unused and unmodified pages will be recycled when the number of
2798** pages in the cache exceeds this soft limit. But the size of the
2799** cache is allowed to grow larger than this limit if it contains
2800** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002801*/
danielk1977aef0bf62005-12-30 16:28:01 +00002802int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2803 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002804 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002805 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002806 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002807 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002808 return SQLITE_OK;
2809}
2810
drh9b0cf342015-11-12 14:57:19 +00002811/*
2812** Change the "spill" limit on the number of pages in the cache.
2813** If the number of pages exceeds this limit during a write transaction,
2814** the pager might attempt to "spill" pages to the journal early in
2815** order to free up memory.
2816**
2817** The value returned is the current spill size. If zero is passed
2818** as an argument, no changes are made to the spill size setting, so
2819** using mxPage of 0 is a way to query the current spill size.
2820*/
2821int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2822 BtShared *pBt = p->pBt;
2823 int res;
2824 assert( sqlite3_mutex_held(p->db->mutex) );
2825 sqlite3BtreeEnter(p);
2826 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2827 sqlite3BtreeLeave(p);
2828 return res;
2829}
2830
drh18c7e402014-03-14 11:46:10 +00002831#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002832/*
dan5d8a1372013-03-19 19:28:06 +00002833** Change the limit on the amount of the database file that may be
2834** memory mapped.
2835*/
drh9b4c59f2013-04-15 17:03:42 +00002836int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002837 BtShared *pBt = p->pBt;
2838 assert( sqlite3_mutex_held(p->db->mutex) );
2839 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002840 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002841 sqlite3BtreeLeave(p);
2842 return SQLITE_OK;
2843}
drh18c7e402014-03-14 11:46:10 +00002844#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002845
2846/*
drh973b6e32003-02-12 14:09:42 +00002847** Change the way data is synced to disk in order to increase or decrease
2848** how well the database resists damage due to OS crashes and power
2849** failures. Level 1 is the same as asynchronous (no syncs() occur and
2850** there is a high probability of damage) Level 2 is the default. There
2851** is a very low but non-zero probability of damage. Level 3 reduces the
2852** probability of damage to near zero but with a write performance reduction.
2853*/
danielk197793758c82005-01-21 08:13:14 +00002854#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002855int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002856 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002857 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002858){
danielk1977aef0bf62005-12-30 16:28:01 +00002859 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002860 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002861 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002862 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002863 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002864 return SQLITE_OK;
2865}
danielk197793758c82005-01-21 08:13:14 +00002866#endif
drh973b6e32003-02-12 14:09:42 +00002867
drh2c8997b2005-08-27 16:36:48 +00002868/*
drh90f5ecb2004-07-22 01:19:35 +00002869** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002870** Or, if the page size has already been fixed, return SQLITE_READONLY
2871** without changing anything.
drh06f50212004-11-02 14:24:33 +00002872**
2873** The page size must be a power of 2 between 512 and 65536. If the page
2874** size supplied does not meet this constraint then the page size is not
2875** changed.
2876**
2877** Page sizes are constrained to be a power of two so that the region
2878** of the database file used for locking (beginning at PENDING_BYTE,
2879** the first byte past the 1GB boundary, 0x40000000) needs to occur
2880** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002881**
2882** If parameter nReserve is less than zero, then the number of reserved
2883** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002884**
drhc9166342012-01-05 23:32:06 +00002885** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002886** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002887*/
drhce4869f2009-04-02 20:16:58 +00002888int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002889 int rc = SQLITE_OK;
drhe937df82020-05-07 01:56:57 +00002890 int x;
danielk1977aef0bf62005-12-30 16:28:01 +00002891 BtShared *pBt = p->pBt;
drhe937df82020-05-07 01:56:57 +00002892 assert( nReserve>=0 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002893 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00002894 pBt->nReserveWanted = nReserve;
2895 x = pBt->pageSize - pBt->usableSize;
2896 if( nReserve<x ) nReserve = x;
drhc9166342012-01-05 23:32:06 +00002897 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002898 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002899 return SQLITE_READONLY;
2900 }
drhf49661a2008-12-10 16:45:50 +00002901 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002902 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2903 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002904 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002905 assert( !pBt->pCursor );
drh906602a2021-01-21 21:36:25 +00002906 if( nReserve>32 && pageSize==512 ) pageSize = 1024;
drhb2eced52010-08-12 02:41:12 +00002907 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002908 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002909 }
drhfa9601a2009-06-18 17:22:39 +00002910 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002911 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002912 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002913 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002914 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002915}
2916
2917/*
2918** Return the currently defined page size
2919*/
danielk1977aef0bf62005-12-30 16:28:01 +00002920int sqlite3BtreeGetPageSize(Btree *p){
2921 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002922}
drh7f751222009-03-17 22:33:00 +00002923
dan0094f372012-09-28 20:23:42 +00002924/*
2925** This function is similar to sqlite3BtreeGetReserve(), except that it
2926** may only be called if it is guaranteed that the b-tree mutex is already
2927** held.
2928**
2929** This is useful in one special case in the backup API code where it is
2930** known that the shared b-tree mutex is held, but the mutex on the
2931** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2932** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002933** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002934*/
2935int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002936 int n;
dan0094f372012-09-28 20:23:42 +00002937 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002938 n = p->pBt->pageSize - p->pBt->usableSize;
2939 return n;
dan0094f372012-09-28 20:23:42 +00002940}
2941
drh7f751222009-03-17 22:33:00 +00002942/*
2943** Return the number of bytes of space at the end of every page that
2944** are intentually left unused. This is the "reserved" space that is
2945** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002946**
drh4d347662020-04-22 00:50:21 +00002947** The value returned is the larger of the current reserve size and
2948** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2949** The amount of reserve can only grow - never shrink.
drh7f751222009-03-17 22:33:00 +00002950*/
drh45248de2020-04-20 15:18:43 +00002951int sqlite3BtreeGetRequestedReserve(Btree *p){
drhe937df82020-05-07 01:56:57 +00002952 int n1, n2;
drhd677b3d2007-08-20 22:48:41 +00002953 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00002954 n1 = (int)p->pBt->nReserveWanted;
2955 n2 = sqlite3BtreeGetReserveNoMutex(p);
drhd677b3d2007-08-20 22:48:41 +00002956 sqlite3BtreeLeave(p);
drhe937df82020-05-07 01:56:57 +00002957 return n1>n2 ? n1 : n2;
drh2011d5f2004-07-22 02:40:37 +00002958}
drhf8e632b2007-05-08 14:51:36 +00002959
drhad0961b2015-02-21 00:19:25 +00002960
drhf8e632b2007-05-08 14:51:36 +00002961/*
2962** Set the maximum page count for a database if mxPage is positive.
2963** No changes are made if mxPage is 0 or negative.
2964** Regardless of the value of mxPage, return the maximum page count.
2965*/
drhe9261db2020-07-20 12:47:32 +00002966Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
2967 Pgno n;
drhd677b3d2007-08-20 22:48:41 +00002968 sqlite3BtreeEnter(p);
2969 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2970 sqlite3BtreeLeave(p);
2971 return n;
drhf8e632b2007-05-08 14:51:36 +00002972}
drh5b47efa2010-02-12 18:18:39 +00002973
2974/*
drha5907a82017-06-19 11:44:22 +00002975** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2976**
2977** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2978** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2979** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2980** newFlag==(-1) No changes
2981**
2982** This routine acts as a query if newFlag is less than zero
2983**
2984** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2985** freelist leaf pages are not written back to the database. Thus in-page
2986** deleted content is cleared, but freelist deleted content is not.
2987**
2988** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2989** that freelist leaf pages are written back into the database, increasing
2990** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002991*/
2992int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2993 int b;
drhaf034ed2010-02-12 19:46:26 +00002994 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002995 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002996 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2997 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002998 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002999 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3000 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3001 }
3002 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00003003 sqlite3BtreeLeave(p);
3004 return b;
3005}
drh90f5ecb2004-07-22 01:19:35 +00003006
3007/*
danielk1977951af802004-11-05 15:45:09 +00003008** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3009** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3010** is disabled. The default value for the auto-vacuum property is
3011** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3012*/
danielk1977aef0bf62005-12-30 16:28:01 +00003013int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00003014#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00003015 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00003016#else
danielk1977dddbcdc2007-04-26 14:42:34 +00003017 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003018 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00003019 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00003020
3021 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00003022 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003023 rc = SQLITE_READONLY;
3024 }else{
drh076d4662009-02-18 20:31:18 +00003025 pBt->autoVacuum = av ?1:0;
3026 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00003027 }
drhd677b3d2007-08-20 22:48:41 +00003028 sqlite3BtreeLeave(p);
3029 return rc;
danielk1977951af802004-11-05 15:45:09 +00003030#endif
3031}
3032
3033/*
3034** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3035** enabled 1 is returned. Otherwise 0.
3036*/
danielk1977aef0bf62005-12-30 16:28:01 +00003037int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00003038#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003039 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00003040#else
drhd677b3d2007-08-20 22:48:41 +00003041 int rc;
3042 sqlite3BtreeEnter(p);
3043 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003044 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3045 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3046 BTREE_AUTOVACUUM_INCR
3047 );
drhd677b3d2007-08-20 22:48:41 +00003048 sqlite3BtreeLeave(p);
3049 return rc;
danielk1977951af802004-11-05 15:45:09 +00003050#endif
3051}
3052
danf5da7db2017-03-16 18:14:39 +00003053/*
3054** If the user has not set the safety-level for this database connection
3055** using "PRAGMA synchronous", and if the safety-level is not already
3056** set to the value passed to this function as the second parameter,
3057** set it so.
3058*/
drh2ed57372017-10-05 20:57:38 +00003059#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3060 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003061static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3062 sqlite3 *db;
3063 Db *pDb;
3064 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3065 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3066 if( pDb->bSyncSet==0
3067 && pDb->safety_level!=safety_level
3068 && pDb!=&db->aDb[1]
3069 ){
3070 pDb->safety_level = safety_level;
3071 sqlite3PagerSetFlags(pBt->pPager,
3072 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3073 }
3074 }
3075}
3076#else
danfc8f4b62017-03-16 18:54:42 +00003077# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003078#endif
danielk1977951af802004-11-05 15:45:09 +00003079
drh0314cf32018-04-28 01:27:09 +00003080/* Forward declaration */
3081static int newDatabase(BtShared*);
3082
3083
danielk1977951af802004-11-05 15:45:09 +00003084/*
drha34b6762004-05-07 13:30:42 +00003085** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003086** also acquire a readlock on that file.
3087**
3088** SQLITE_OK is returned on success. If the file is not a
3089** well-formed database file, then SQLITE_CORRUPT is returned.
3090** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003091** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003092*/
danielk1977aef0bf62005-12-30 16:28:01 +00003093static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003094 int rc; /* Result code from subfunctions */
3095 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003096 u32 nPage; /* Number of pages in the database */
3097 u32 nPageFile = 0; /* Number of pages in the database file */
drhd677b3d2007-08-20 22:48:41 +00003098
drh1fee73e2007-08-29 04:00:57 +00003099 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003100 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003101 rc = sqlite3PagerSharedLock(pBt->pPager);
3102 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003103 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003104 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003105
3106 /* Do some checking to help insure the file we opened really is
3107 ** a valid database file.
3108 */
drh7d4c94b2021-10-04 22:34:38 +00003109 nPage = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003110 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003111 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003112 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003113 }
drh0314cf32018-04-28 01:27:09 +00003114 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3115 nPage = 0;
3116 }
drh97b59a52010-03-31 02:31:33 +00003117 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003118 u32 pageSize;
3119 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003120 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003121 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003122 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3123 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3124 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003125 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003126 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003127 }
dan5cf53532010-05-01 16:40:20 +00003128
3129#ifdef SQLITE_OMIT_WAL
3130 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003131 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003132 }
3133 if( page1[19]>1 ){
3134 goto page1_init_failed;
3135 }
3136#else
dane04dc882010-04-20 18:53:15 +00003137 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003138 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003139 }
dane04dc882010-04-20 18:53:15 +00003140 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003141 goto page1_init_failed;
3142 }
drhe5ae5732008-06-15 02:51:47 +00003143
drh0ccda522021-08-23 15:56:01 +00003144 /* If the read version is set to 2, this database should be accessed
dana470aeb2010-04-21 11:43:38 +00003145 ** in WAL mode. If the log is not already open, open it now. Then
3146 ** return SQLITE_OK and return without populating BtShared.pPage1.
3147 ** The caller detects this and calls this function again. This is
3148 ** required as the version of page 1 currently in the page1 buffer
3149 ** may not be the latest version - there may be a newer one in the log
3150 ** file.
3151 */
drhc9166342012-01-05 23:32:06 +00003152 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003153 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003154 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003155 if( rc!=SQLITE_OK ){
3156 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003157 }else{
danf5da7db2017-03-16 18:14:39 +00003158 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003159 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003160 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003161 return SQLITE_OK;
3162 }
dane04dc882010-04-20 18:53:15 +00003163 }
dan8b5444b2010-04-27 14:37:47 +00003164 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003165 }else{
3166 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003167 }
dan5cf53532010-05-01 16:40:20 +00003168#endif
dane04dc882010-04-20 18:53:15 +00003169
drh113762a2014-11-19 16:36:25 +00003170 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3171 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3172 **
drhe5ae5732008-06-15 02:51:47 +00003173 ** The original design allowed these amounts to vary, but as of
3174 ** version 3.6.0, we require them to be fixed.
3175 */
3176 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3177 goto page1_init_failed;
3178 }
drh113762a2014-11-19 16:36:25 +00003179 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3180 ** determined by the 2-byte integer located at an offset of 16 bytes from
3181 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003182 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003183 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3184 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003185 if( ((pageSize-1)&pageSize)!=0
3186 || pageSize>SQLITE_MAX_PAGE_SIZE
3187 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003188 ){
drh07d183d2005-05-01 22:52:42 +00003189 goto page1_init_failed;
3190 }
drhdcc27002019-01-06 02:06:31 +00003191 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003192 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003193 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3194 ** integer at offset 20 is the number of bytes of space at the end of
3195 ** each page to reserve for extensions.
3196 **
3197 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3198 ** determined by the one-byte unsigned integer found at an offset of 20
3199 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003200 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003201 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003202 /* After reading the first page of the database assuming a page size
3203 ** of BtShared.pageSize, we have discovered that the page-size is
3204 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3205 ** zero and return SQLITE_OK. The caller will call this function
3206 ** again with the correct page-size.
3207 */
drh3908fe92017-09-01 14:50:19 +00003208 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003209 pBt->usableSize = usableSize;
3210 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003211 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003212 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3213 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003214 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003215 }
drh0f1c2eb2018-11-03 17:31:48 +00003216 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003217 rc = SQLITE_CORRUPT_BKPT;
3218 goto page1_init_failed;
3219 }
drh113762a2014-11-19 16:36:25 +00003220 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3221 ** be less than 480. In other words, if the page size is 512, then the
3222 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003223 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003224 goto page1_init_failed;
3225 }
drh43b18e12010-08-17 19:40:08 +00003226 pBt->pageSize = pageSize;
3227 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003228#ifndef SQLITE_OMIT_AUTOVACUUM
3229 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003230 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003231#endif
drh306dc212001-05-21 13:45:10 +00003232 }
drhb6f41482004-05-14 01:58:11 +00003233
3234 /* maxLocal is the maximum amount of payload to store locally for
3235 ** a cell. Make sure it is small enough so that at least minFanout
3236 ** cells can will fit on one page. We assume a 10-byte page header.
3237 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003238 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003239 ** 4-byte child pointer
3240 ** 9-byte nKey value
3241 ** 4-byte nData value
3242 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003243 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003244 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3245 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003246 */
shaneh1df2db72010-08-18 02:28:48 +00003247 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3248 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3249 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3250 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003251 if( pBt->maxLocal>127 ){
3252 pBt->max1bytePayload = 127;
3253 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003254 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003255 }
drh2e38c322004-09-03 18:38:44 +00003256 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003257 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003258 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003259 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003260
drh72f82862001-05-24 21:06:34 +00003261page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003262 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003263 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003264 return rc;
drh306dc212001-05-21 13:45:10 +00003265}
3266
drh85ec3b62013-05-14 23:12:06 +00003267#ifndef NDEBUG
3268/*
3269** Return the number of cursors open on pBt. This is for use
3270** in assert() expressions, so it is only compiled if NDEBUG is not
3271** defined.
3272**
3273** Only write cursors are counted if wrOnly is true. If wrOnly is
3274** false then all cursors are counted.
3275**
3276** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003277** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003278** have been tripped into the CURSOR_FAULT state are not counted.
3279*/
3280static int countValidCursors(BtShared *pBt, int wrOnly){
3281 BtCursor *pCur;
3282 int r = 0;
3283 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003284 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3285 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003286 }
3287 return r;
3288}
3289#endif
3290
drh306dc212001-05-21 13:45:10 +00003291/*
drhb8ca3072001-12-05 00:21:20 +00003292** If there are no outstanding cursors and we are not in the middle
3293** of a transaction but there is a read lock on the database, then
3294** this routine unrefs the first page of the database file which
3295** has the effect of releasing the read lock.
3296**
drhb8ca3072001-12-05 00:21:20 +00003297** If there is a transaction in progress, this routine is a no-op.
3298*/
danielk1977aef0bf62005-12-30 16:28:01 +00003299static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003300 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003301 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003302 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003303 MemPage *pPage1 = pBt->pPage1;
3304 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003305 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003306 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003307 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003308 }
3309}
3310
3311/*
drhe39f2f92009-07-23 01:43:59 +00003312** If pBt points to an empty file then convert that empty file
3313** into a new empty database by initializing the first page of
3314** the database.
drh8b2f49b2001-06-08 00:21:52 +00003315*/
danielk1977aef0bf62005-12-30 16:28:01 +00003316static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003317 MemPage *pP1;
3318 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003319 int rc;
drhd677b3d2007-08-20 22:48:41 +00003320
drh1fee73e2007-08-29 04:00:57 +00003321 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003322 if( pBt->nPage>0 ){
3323 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003324 }
drh3aac2dd2004-04-26 14:10:20 +00003325 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003326 assert( pP1!=0 );
3327 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003328 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003329 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003330 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3331 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003332 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3333 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003334 data[18] = 1;
3335 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003336 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3337 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003338 data[21] = 64;
3339 data[22] = 32;
3340 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003341 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003342 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003343 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003344#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003345 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003346 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003347 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003348 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003349#endif
drhdd3cd972010-03-27 17:12:36 +00003350 pBt->nPage = 1;
3351 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003352 return SQLITE_OK;
3353}
3354
3355/*
danb483eba2012-10-13 19:58:11 +00003356** Initialize the first page of the database file (creating a database
3357** consisting of a single page and no schema objects). Return SQLITE_OK
3358** if successful, or an SQLite error code otherwise.
3359*/
3360int sqlite3BtreeNewDb(Btree *p){
3361 int rc;
3362 sqlite3BtreeEnter(p);
3363 p->pBt->nPage = 0;
3364 rc = newDatabase(p->pBt);
3365 sqlite3BtreeLeave(p);
3366 return rc;
3367}
3368
3369/*
danielk1977ee5741e2004-05-31 10:01:34 +00003370** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003371** is started if the second argument is nonzero, otherwise a read-
3372** transaction. If the second argument is 2 or more and exclusive
3373** transaction is started, meaning that no other process is allowed
3374** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003375** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003376** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003377**
danielk1977ee5741e2004-05-31 10:01:34 +00003378** A write-transaction must be started before attempting any
3379** changes to the database. None of the following routines
3380** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003381**
drh23e11ca2004-05-04 17:27:28 +00003382** sqlite3BtreeCreateTable()
3383** sqlite3BtreeCreateIndex()
3384** sqlite3BtreeClearTable()
3385** sqlite3BtreeDropTable()
3386** sqlite3BtreeInsert()
3387** sqlite3BtreeDelete()
3388** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003389**
drhb8ef32c2005-03-14 02:01:49 +00003390** If an initial attempt to acquire the lock fails because of lock contention
3391** and the database was previously unlocked, then invoke the busy handler
3392** if there is one. But if there was previously a read-lock, do not
3393** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3394** returned when there is already a read-lock in order to avoid a deadlock.
3395**
3396** Suppose there are two processes A and B. A has a read lock and B has
3397** a reserved lock. B tries to promote to exclusive but is blocked because
3398** of A's read lock. A tries to promote to reserved but is blocked by B.
3399** One or the other of the two processes must give way or there can be
3400** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3401** when A already has a read lock, we encourage A to give up and let B
3402** proceed.
drha059ad02001-04-17 20:09:11 +00003403*/
drhbb2d9b12018-06-06 16:28:40 +00003404int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003405 BtShared *pBt = p->pBt;
dan7bb8b8a2020-05-06 20:27:18 +00003406 Pager *pPager = pBt->pPager;
danielk1977ee5741e2004-05-31 10:01:34 +00003407 int rc = SQLITE_OK;
3408
drhd677b3d2007-08-20 22:48:41 +00003409 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003410 btreeIntegrity(p);
3411
danielk1977ee5741e2004-05-31 10:01:34 +00003412 /* If the btree is already in a write-transaction, or it
3413 ** is already in a read-transaction and a read-transaction
3414 ** is requested, this is a no-op.
3415 */
danielk1977aef0bf62005-12-30 16:28:01 +00003416 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003417 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003418 }
dan56c517a2013-09-26 11:04:33 +00003419 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003420
danea933f02018-07-19 11:44:02 +00003421 if( (p->db->flags & SQLITE_ResetDatabase)
dan7bb8b8a2020-05-06 20:27:18 +00003422 && sqlite3PagerIsreadonly(pPager)==0
danea933f02018-07-19 11:44:02 +00003423 ){
3424 pBt->btsFlags &= ~BTS_READ_ONLY;
3425 }
3426
drhb8ef32c2005-03-14 02:01:49 +00003427 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003428 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003429 rc = SQLITE_READONLY;
3430 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003431 }
3432
danielk1977404ca072009-03-16 13:19:36 +00003433#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003434 {
3435 sqlite3 *pBlock = 0;
3436 /* If another database handle has already opened a write transaction
3437 ** on this shared-btree structure and a second write transaction is
3438 ** requested, return SQLITE_LOCKED.
3439 */
3440 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3441 || (pBt->btsFlags & BTS_PENDING)!=0
3442 ){
3443 pBlock = pBt->pWriter->db;
3444 }else if( wrflag>1 ){
3445 BtLock *pIter;
3446 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3447 if( pIter->pBtree!=p ){
3448 pBlock = pIter->pBtree->db;
3449 break;
3450 }
danielk1977641b0f42007-12-21 04:47:25 +00003451 }
3452 }
drh5a1fb182016-01-08 19:34:39 +00003453 if( pBlock ){
3454 sqlite3ConnectionBlocked(p->db, pBlock);
3455 rc = SQLITE_LOCKED_SHAREDCACHE;
3456 goto trans_begun;
3457 }
danielk1977404ca072009-03-16 13:19:36 +00003458 }
danielk1977641b0f42007-12-21 04:47:25 +00003459#endif
3460
danielk1977602b4662009-07-02 07:47:33 +00003461 /* Any read-only or read-write transaction implies a read-lock on
3462 ** page 1. So if some other shared-cache client already has a write-lock
3463 ** on page 1, the transaction cannot be opened. */
drh346a70c2020-06-15 20:27:35 +00003464 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
drh4c301aa2009-07-15 17:25:45 +00003465 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003466
drhc9166342012-01-05 23:32:06 +00003467 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3468 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003469 do {
dan11a81822020-05-07 14:26:40 +00003470 sqlite3PagerWalDb(pPager, p->db);
dan58021b22020-05-05 20:30:07 +00003471
3472#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3473 /* If transitioning from no transaction directly to a write transaction,
3474 ** block for the WRITER lock first if possible. */
3475 if( pBt->pPage1==0 && wrflag ){
3476 assert( pBt->inTransaction==TRANS_NONE );
dan861fb1e2020-05-06 19:14:41 +00003477 rc = sqlite3PagerWalWriteLock(pPager, 1);
dan7bb8b8a2020-05-06 20:27:18 +00003478 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
dan58021b22020-05-05 20:30:07 +00003479 }
3480#endif
3481
danielk1977295dc102009-04-01 19:07:03 +00003482 /* Call lockBtree() until either pBt->pPage1 is populated or
3483 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3484 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3485 ** reading page 1 it discovers that the page-size of the database
3486 ** file is not pBt->pageSize. In this case lockBtree() will update
3487 ** pBt->pageSize to the page-size of the file on disk.
3488 */
3489 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003490
drhb8ef32c2005-03-14 02:01:49 +00003491 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003492 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003493 rc = SQLITE_READONLY;
3494 }else{
dan58021b22020-05-05 20:30:07 +00003495 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003496 if( rc==SQLITE_OK ){
3497 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003498 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3499 /* if there was no transaction opened when this function was
3500 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3501 ** code to SQLITE_BUSY. */
3502 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003503 }
drhb8ef32c2005-03-14 02:01:49 +00003504 }
3505 }
3506
danielk1977bd434552009-03-18 10:33:00 +00003507 if( rc!=SQLITE_OK ){
danfc87ab82020-05-06 19:22:59 +00003508 (void)sqlite3PagerWalWriteLock(pPager, 0);
drhb8ef32c2005-03-14 02:01:49 +00003509 unlockBtreeIfUnused(pBt);
3510 }
danf9b76712010-06-01 14:12:45 +00003511 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003512 btreeInvokeBusyHandler(pBt) );
dan7bb8b8a2020-05-06 20:27:18 +00003513 sqlite3PagerWalDb(pPager, 0);
3514#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3515 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3516#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003517
3518 if( rc==SQLITE_OK ){
3519 if( p->inTrans==TRANS_NONE ){
3520 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003521#ifndef SQLITE_OMIT_SHARED_CACHE
3522 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003523 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003524 p->lock.eLock = READ_LOCK;
3525 p->lock.pNext = pBt->pLock;
3526 pBt->pLock = &p->lock;
3527 }
3528#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003529 }
3530 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3531 if( p->inTrans>pBt->inTransaction ){
3532 pBt->inTransaction = p->inTrans;
3533 }
danielk1977404ca072009-03-16 13:19:36 +00003534 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003535 MemPage *pPage1 = pBt->pPage1;
3536#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003537 assert( !pBt->pWriter );
3538 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003539 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3540 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003541#endif
dan59257dc2010-08-04 11:34:31 +00003542
3543 /* If the db-size header field is incorrect (as it may be if an old
3544 ** client has been writing the database file), update it now. Doing
3545 ** this sooner rather than later means the database size can safely
3546 ** re-read the database size from page 1 if a savepoint or transaction
3547 ** rollback occurs within the transaction.
3548 */
3549 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3550 rc = sqlite3PagerWrite(pPage1->pDbPage);
3551 if( rc==SQLITE_OK ){
3552 put4byte(&pPage1->aData[28], pBt->nPage);
3553 }
3554 }
3555 }
danielk1977aef0bf62005-12-30 16:28:01 +00003556 }
3557
drhd677b3d2007-08-20 22:48:41 +00003558trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003559 if( rc==SQLITE_OK ){
3560 if( pSchemaVersion ){
3561 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3562 }
3563 if( wrflag ){
3564 /* This call makes sure that the pager has the correct number of
3565 ** open savepoints. If the second parameter is greater than 0 and
3566 ** the sub-journal is not already open, then it will be opened here.
3567 */
dan7bb8b8a2020-05-06 20:27:18 +00003568 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
drhbb2d9b12018-06-06 16:28:40 +00003569 }
danielk1977fd7f0452008-12-17 17:30:26 +00003570 }
danielk197712dd5492008-12-18 15:45:07 +00003571
danielk1977aef0bf62005-12-30 16:28:01 +00003572 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003573 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003574 return rc;
drha059ad02001-04-17 20:09:11 +00003575}
3576
danielk1977687566d2004-11-02 12:56:41 +00003577#ifndef SQLITE_OMIT_AUTOVACUUM
3578
3579/*
3580** Set the pointer-map entries for all children of page pPage. Also, if
3581** pPage contains cells that point to overflow pages, set the pointer
3582** map entries for the overflow pages as well.
3583*/
3584static int setChildPtrmaps(MemPage *pPage){
3585 int i; /* Counter variable */
3586 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003587 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003588 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003589 Pgno pgno = pPage->pgno;
3590
drh1fee73e2007-08-29 04:00:57 +00003591 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003592 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003593 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003594 nCell = pPage->nCell;
3595
3596 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003597 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003598
drh0f1bf4c2019-01-13 20:17:21 +00003599 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003600
danielk1977687566d2004-11-02 12:56:41 +00003601 if( !pPage->leaf ){
3602 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003603 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003604 }
3605 }
3606
3607 if( !pPage->leaf ){
3608 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003609 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003610 }
3611
danielk1977687566d2004-11-02 12:56:41 +00003612 return rc;
3613}
3614
3615/*
drhf3aed592009-07-08 18:12:49 +00003616** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3617** that it points to iTo. Parameter eType describes the type of pointer to
3618** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003619**
3620** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3621** page of pPage.
3622**
3623** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3624** page pointed to by one of the cells on pPage.
3625**
3626** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3627** overflow page in the list.
3628*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003629static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003630 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003631 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003632 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003633 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003634 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003635 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003636 }
danielk1977f78fc082004-11-02 14:40:32 +00003637 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003638 }else{
danielk1977687566d2004-11-02 12:56:41 +00003639 int i;
3640 int nCell;
drha1f75d92015-05-24 10:18:12 +00003641 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003642
drh14e845a2017-05-25 21:35:56 +00003643 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003644 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003645 nCell = pPage->nCell;
3646
danielk1977687566d2004-11-02 12:56:41 +00003647 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003648 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003649 if( eType==PTRMAP_OVERFLOW1 ){
3650 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003651 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003652 if( info.nLocal<info.nPayload ){
3653 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003654 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003655 }
3656 if( iFrom==get4byte(pCell+info.nSize-4) ){
3657 put4byte(pCell+info.nSize-4, iTo);
3658 break;
3659 }
danielk1977687566d2004-11-02 12:56:41 +00003660 }
3661 }else{
3662 if( get4byte(pCell)==iFrom ){
3663 put4byte(pCell, iTo);
3664 break;
3665 }
3666 }
3667 }
3668
3669 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003670 if( eType!=PTRMAP_BTREE ||
3671 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003672 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003673 }
danielk1977687566d2004-11-02 12:56:41 +00003674 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3675 }
danielk1977687566d2004-11-02 12:56:41 +00003676 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003677 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003678}
3679
danielk1977003ba062004-11-04 02:57:33 +00003680
danielk19777701e812005-01-10 12:59:51 +00003681/*
3682** Move the open database page pDbPage to location iFreePage in the
3683** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003684**
3685** The isCommit flag indicates that there is no need to remember that
3686** the journal needs to be sync()ed before database page pDbPage->pgno
3687** can be written to. The caller has already promised not to write to that
3688** page.
danielk19777701e812005-01-10 12:59:51 +00003689*/
danielk1977003ba062004-11-04 02:57:33 +00003690static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003691 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003692 MemPage *pDbPage, /* Open page to move */
3693 u8 eType, /* Pointer map 'type' entry for pDbPage */
3694 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003695 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003696 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003697){
3698 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3699 Pgno iDbPage = pDbPage->pgno;
3700 Pager *pPager = pBt->pPager;
3701 int rc;
3702
danielk1977a0bf2652004-11-04 14:30:04 +00003703 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3704 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003705 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003706 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003707 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003708
drh85b623f2007-12-13 21:54:09 +00003709 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003710 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3711 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003712 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003713 if( rc!=SQLITE_OK ){
3714 return rc;
3715 }
3716 pDbPage->pgno = iFreePage;
3717
3718 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3719 ** that point to overflow pages. The pointer map entries for all these
3720 ** pages need to be changed.
3721 **
3722 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3723 ** pointer to a subsequent overflow page. If this is the case, then
3724 ** the pointer map needs to be updated for the subsequent overflow page.
3725 */
danielk1977a0bf2652004-11-04 14:30:04 +00003726 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003727 rc = setChildPtrmaps(pDbPage);
3728 if( rc!=SQLITE_OK ){
3729 return rc;
3730 }
3731 }else{
3732 Pgno nextOvfl = get4byte(pDbPage->aData);
3733 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003734 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003735 if( rc!=SQLITE_OK ){
3736 return rc;
3737 }
3738 }
3739 }
3740
3741 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3742 ** that it points at iFreePage. Also fix the pointer map entry for
3743 ** iPtrPage.
3744 */
danielk1977a0bf2652004-11-04 14:30:04 +00003745 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003746 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003747 if( rc!=SQLITE_OK ){
3748 return rc;
3749 }
danielk19773b8a05f2007-03-19 17:44:26 +00003750 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003751 if( rc!=SQLITE_OK ){
3752 releasePage(pPtrPage);
3753 return rc;
3754 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003755 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003756 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003757 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003758 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003759 }
danielk1977003ba062004-11-04 02:57:33 +00003760 }
danielk1977003ba062004-11-04 02:57:33 +00003761 return rc;
3762}
3763
danielk1977dddbcdc2007-04-26 14:42:34 +00003764/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003765static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003766
3767/*
dan51f0b6d2013-02-22 20:16:34 +00003768** Perform a single step of an incremental-vacuum. If successful, return
3769** SQLITE_OK. If there is no work to do (and therefore no point in
3770** calling this function again), return SQLITE_DONE. Or, if an error
3771** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003772**
peter.d.reid60ec9142014-09-06 16:39:46 +00003773** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003774** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003775**
dan51f0b6d2013-02-22 20:16:34 +00003776** Parameter nFin is the number of pages that this database would contain
3777** were this function called until it returns SQLITE_DONE.
3778**
3779** If the bCommit parameter is non-zero, this function assumes that the
3780** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003781** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003782** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003783*/
dan51f0b6d2013-02-22 20:16:34 +00003784static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003785 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003786 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003787
drh1fee73e2007-08-29 04:00:57 +00003788 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003789 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003790
3791 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003792 u8 eType;
3793 Pgno iPtrPage;
3794
3795 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003796 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003797 return SQLITE_DONE;
3798 }
3799
3800 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3801 if( rc!=SQLITE_OK ){
3802 return rc;
3803 }
3804 if( eType==PTRMAP_ROOTPAGE ){
3805 return SQLITE_CORRUPT_BKPT;
3806 }
3807
3808 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003809 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003810 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003811 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003812 ** truncated to zero after this function returns, so it doesn't
3813 ** matter if it still contains some garbage entries.
3814 */
3815 Pgno iFreePg;
3816 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003817 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003818 if( rc!=SQLITE_OK ){
3819 return rc;
3820 }
3821 assert( iFreePg==iLastPg );
3822 releasePage(pFreePg);
3823 }
3824 } else {
3825 Pgno iFreePg; /* Index of free page to move pLastPg to */
3826 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003827 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3828 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003829
drhb00fc3b2013-08-21 23:42:32 +00003830 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003831 if( rc!=SQLITE_OK ){
3832 return rc;
3833 }
3834
dan51f0b6d2013-02-22 20:16:34 +00003835 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003836 ** is swapped with the first free page pulled off the free list.
3837 **
dan51f0b6d2013-02-22 20:16:34 +00003838 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003839 ** looping until a free-page located within the first nFin pages
3840 ** of the file is found.
3841 */
dan51f0b6d2013-02-22 20:16:34 +00003842 if( bCommit==0 ){
3843 eMode = BTALLOC_LE;
3844 iNear = nFin;
3845 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003846 do {
3847 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003848 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003849 if( rc!=SQLITE_OK ){
3850 releasePage(pLastPg);
3851 return rc;
3852 }
3853 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003854 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003855 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003856
dane1df4e32013-03-05 11:27:04 +00003857 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003858 releasePage(pLastPg);
3859 if( rc!=SQLITE_OK ){
3860 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003861 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003862 }
3863 }
3864
dan51f0b6d2013-02-22 20:16:34 +00003865 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003866 do {
danielk19773460d192008-12-27 15:23:13 +00003867 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003868 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3869 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003870 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003871 }
3872 return SQLITE_OK;
3873}
3874
3875/*
dan51f0b6d2013-02-22 20:16:34 +00003876** The database opened by the first argument is an auto-vacuum database
3877** nOrig pages in size containing nFree free pages. Return the expected
3878** size of the database in pages following an auto-vacuum operation.
3879*/
3880static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3881 int nEntry; /* Number of entries on one ptrmap page */
3882 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3883 Pgno nFin; /* Return value */
3884
3885 nEntry = pBt->usableSize/5;
3886 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3887 nFin = nOrig - nFree - nPtrmap;
3888 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3889 nFin--;
3890 }
3891 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3892 nFin--;
3893 }
dan51f0b6d2013-02-22 20:16:34 +00003894
3895 return nFin;
3896}
3897
3898/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003899** A write-transaction must be opened before calling this function.
3900** It performs a single unit of work towards an incremental vacuum.
3901**
3902** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003903** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003904** SQLITE_OK is returned. Otherwise an SQLite error code.
3905*/
3906int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003907 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003908 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003909
3910 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003911 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3912 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003913 rc = SQLITE_DONE;
3914 }else{
dan51f0b6d2013-02-22 20:16:34 +00003915 Pgno nOrig = btreePagecount(pBt);
3916 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3917 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3918
drhbc2cf3b2020-07-14 12:40:53 +00003919 if( nOrig<nFin || nFree>=nOrig ){
dan91384712013-02-24 11:50:43 +00003920 rc = SQLITE_CORRUPT_BKPT;
3921 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003922 rc = saveAllCursors(pBt, 0, 0);
3923 if( rc==SQLITE_OK ){
3924 invalidateAllOverflowCache(pBt);
3925 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3926 }
dan51f0b6d2013-02-22 20:16:34 +00003927 if( rc==SQLITE_OK ){
3928 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3929 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3930 }
3931 }else{
3932 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003933 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003934 }
drhd677b3d2007-08-20 22:48:41 +00003935 sqlite3BtreeLeave(p);
3936 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003937}
3938
3939/*
danielk19773b8a05f2007-03-19 17:44:26 +00003940** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003941** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003942**
3943** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3944** the database file should be truncated to during the commit process.
3945** i.e. the database has been reorganized so that only the first *pnTrunc
3946** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003947*/
danielk19773460d192008-12-27 15:23:13 +00003948static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003949 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003950 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003951 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003952
drh1fee73e2007-08-29 04:00:57 +00003953 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003954 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003955 assert(pBt->autoVacuum);
3956 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003957 Pgno nFin; /* Number of pages in database after autovacuuming */
3958 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003959 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003960 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003961
drhb1299152010-03-30 22:58:33 +00003962 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003963 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3964 /* It is not possible to create a database for which the final page
3965 ** is either a pointer-map page or the pending-byte page. If one
3966 ** is encountered, this indicates corruption.
3967 */
danielk19773460d192008-12-27 15:23:13 +00003968 return SQLITE_CORRUPT_BKPT;
3969 }
danielk1977ef165ce2009-04-06 17:50:03 +00003970
danielk19773460d192008-12-27 15:23:13 +00003971 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003972 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003973 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003974 if( nFin<nOrig ){
3975 rc = saveAllCursors(pBt, 0, 0);
3976 }
danielk19773460d192008-12-27 15:23:13 +00003977 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003978 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003979 }
danielk19773460d192008-12-27 15:23:13 +00003980 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003981 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3982 put4byte(&pBt->pPage1->aData[32], 0);
3983 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003984 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003985 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003986 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003987 }
3988 if( rc!=SQLITE_OK ){
3989 sqlite3PagerRollback(pPager);
3990 }
danielk1977687566d2004-11-02 12:56:41 +00003991 }
3992
dan0aed84d2013-03-26 14:16:20 +00003993 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003994 return rc;
3995}
danielk1977dddbcdc2007-04-26 14:42:34 +00003996
danielk1977a50d9aa2009-06-08 14:49:45 +00003997#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3998# define setChildPtrmaps(x) SQLITE_OK
3999#endif
danielk1977687566d2004-11-02 12:56:41 +00004000
4001/*
drh80e35f42007-03-30 14:06:34 +00004002** This routine does the first phase of a two-phase commit. This routine
4003** causes a rollback journal to be created (if it does not already exist)
4004** and populated with enough information so that if a power loss occurs
4005** the database can be restored to its original state by playing back
4006** the journal. Then the contents of the journal are flushed out to
4007** the disk. After the journal is safely on oxide, the changes to the
4008** database are written into the database file and flushed to oxide.
4009** At the end of this call, the rollback journal still exists on the
4010** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00004011** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00004012** commit process.
4013**
4014** This call is a no-op if no write-transaction is currently active on pBt.
4015**
drh067b92b2020-06-19 15:24:12 +00004016** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4017** the name of a super-journal file that should be written into the
4018** individual journal file, or is NULL, indicating no super-journal file
drh80e35f42007-03-30 14:06:34 +00004019** (single database transaction).
4020**
drh067b92b2020-06-19 15:24:12 +00004021** When this is called, the super-journal should already have been
drh80e35f42007-03-30 14:06:34 +00004022** created, populated with this journal pointer and synced to disk.
4023**
4024** Once this is routine has returned, the only thing required to commit
4025** the write-transaction for this database file is to delete the journal.
4026*/
drh067b92b2020-06-19 15:24:12 +00004027int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
drh80e35f42007-03-30 14:06:34 +00004028 int rc = SQLITE_OK;
4029 if( p->inTrans==TRANS_WRITE ){
4030 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004031 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004032#ifndef SQLITE_OMIT_AUTOVACUUM
4033 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00004034 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00004035 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00004036 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004037 return rc;
4038 }
4039 }
danbc1a3c62013-02-23 16:40:46 +00004040 if( pBt->bDoTruncate ){
4041 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4042 }
drh80e35f42007-03-30 14:06:34 +00004043#endif
drh067b92b2020-06-19 15:24:12 +00004044 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
drhd677b3d2007-08-20 22:48:41 +00004045 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004046 }
4047 return rc;
4048}
4049
4050/*
danielk197794b30732009-07-02 17:21:57 +00004051** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4052** at the conclusion of a transaction.
4053*/
4054static void btreeEndTransaction(Btree *p){
4055 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00004056 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004057 assert( sqlite3BtreeHoldsMutex(p) );
4058
danbc1a3c62013-02-23 16:40:46 +00004059#ifndef SQLITE_OMIT_AUTOVACUUM
4060 pBt->bDoTruncate = 0;
4061#endif
danc0537fe2013-06-28 19:41:43 +00004062 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004063 /* If there are other active statements that belong to this database
4064 ** handle, downgrade to a read-only transaction. The other statements
4065 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004066 downgradeAllSharedCacheTableLocks(p);
4067 p->inTrans = TRANS_READ;
4068 }else{
4069 /* If the handle had any kind of transaction open, decrement the
4070 ** transaction count of the shared btree. If the transaction count
4071 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4072 ** call below will unlock the pager. */
4073 if( p->inTrans!=TRANS_NONE ){
4074 clearAllSharedCacheTableLocks(p);
4075 pBt->nTransaction--;
4076 if( 0==pBt->nTransaction ){
4077 pBt->inTransaction = TRANS_NONE;
4078 }
4079 }
4080
4081 /* Set the current transaction state to TRANS_NONE and unlock the
4082 ** pager if this call closed the only read or write transaction. */
4083 p->inTrans = TRANS_NONE;
4084 unlockBtreeIfUnused(pBt);
4085 }
4086
4087 btreeIntegrity(p);
4088}
4089
4090/*
drh2aa679f2001-06-25 02:11:07 +00004091** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004092**
drh6e345992007-03-30 11:12:08 +00004093** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004094** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4095** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4096** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004097** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004098** routine has to do is delete or truncate or zero the header in the
4099** the rollback journal (which causes the transaction to commit) and
4100** drop locks.
drh6e345992007-03-30 11:12:08 +00004101**
dan60939d02011-03-29 15:40:55 +00004102** Normally, if an error occurs while the pager layer is attempting to
4103** finalize the underlying journal file, this function returns an error and
4104** the upper layer will attempt a rollback. However, if the second argument
4105** is non-zero then this b-tree transaction is part of a multi-file
4106** transaction. In this case, the transaction has already been committed
drh067b92b2020-06-19 15:24:12 +00004107** (by deleting a super-journal file) and the caller will ignore this
dan60939d02011-03-29 15:40:55 +00004108** functions return code. So, even if an error occurs in the pager layer,
4109** reset the b-tree objects internal state to indicate that the write
4110** transaction has been closed. This is quite safe, as the pager will have
4111** transitioned to the error state.
4112**
drh5e00f6c2001-09-13 13:46:56 +00004113** This will release the write lock on the database file. If there
4114** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004115*/
dan60939d02011-03-29 15:40:55 +00004116int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004117
drh075ed302010-10-14 01:17:30 +00004118 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004119 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004120 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004121
4122 /* If the handle has a write-transaction open, commit the shared-btrees
4123 ** transaction and set the shared state to TRANS_READ.
4124 */
4125 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004126 int rc;
drh075ed302010-10-14 01:17:30 +00004127 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004128 assert( pBt->inTransaction==TRANS_WRITE );
4129 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004130 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004131 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004132 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004133 return rc;
4134 }
drh2b994ce2021-03-18 12:36:09 +00004135 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004136 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004137 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004138 }
danielk1977aef0bf62005-12-30 16:28:01 +00004139
danielk197794b30732009-07-02 17:21:57 +00004140 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004141 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004142 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004143}
4144
drh80e35f42007-03-30 14:06:34 +00004145/*
4146** Do both phases of a commit.
4147*/
4148int sqlite3BtreeCommit(Btree *p){
4149 int rc;
drhd677b3d2007-08-20 22:48:41 +00004150 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004151 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4152 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004153 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004154 }
drhd677b3d2007-08-20 22:48:41 +00004155 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004156 return rc;
4157}
4158
drhc39e0002004-05-07 23:50:57 +00004159/*
drhfb982642007-08-30 01:19:59 +00004160** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004161** code to errCode for every cursor on any BtShared that pBtree
4162** references. Or if the writeOnly flag is set to 1, then only
4163** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004164**
drh47b7fc72014-11-11 01:33:57 +00004165** Every cursor is a candidate to be tripped, including cursors
4166** that belong to other database connections that happen to be
4167** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004168**
dan80231042014-11-12 14:56:02 +00004169** This routine gets called when a rollback occurs. If the writeOnly
4170** flag is true, then only write-cursors need be tripped - read-only
4171** cursors save their current positions so that they may continue
4172** following the rollback. Or, if writeOnly is false, all cursors are
4173** tripped. In general, writeOnly is false if the transaction being
4174** rolled back modified the database schema. In this case b-tree root
4175** pages may be moved or deleted from the database altogether, making
4176** it unsafe for read cursors to continue.
4177**
4178** If the writeOnly flag is true and an error is encountered while
4179** saving the current position of a read-only cursor, all cursors,
4180** including all read-cursors are tripped.
4181**
4182** SQLITE_OK is returned if successful, or if an error occurs while
4183** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004184*/
dan80231042014-11-12 14:56:02 +00004185int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004186 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004187 int rc = SQLITE_OK;
4188
drh47b7fc72014-11-11 01:33:57 +00004189 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004190 if( pBtree ){
4191 sqlite3BtreeEnter(pBtree);
4192 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004193 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004194 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004195 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004196 if( rc!=SQLITE_OK ){
4197 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4198 break;
4199 }
4200 }
4201 }else{
4202 sqlite3BtreeClearCursor(p);
4203 p->eState = CURSOR_FAULT;
4204 p->skipNext = errCode;
4205 }
drh85ef6302017-08-02 15:50:09 +00004206 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004207 }
dan80231042014-11-12 14:56:02 +00004208 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004209 }
dan80231042014-11-12 14:56:02 +00004210 return rc;
drhfb982642007-08-30 01:19:59 +00004211}
4212
4213/*
drh41422652019-05-10 14:34:18 +00004214** Set the pBt->nPage field correctly, according to the current
4215** state of the database. Assume pBt->pPage1 is valid.
4216*/
4217static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4218 int nPage = get4byte(&pPage1->aData[28]);
4219 testcase( nPage==0 );
4220 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4221 testcase( pBt->nPage!=nPage );
4222 pBt->nPage = nPage;
4223}
4224
4225/*
drh47b7fc72014-11-11 01:33:57 +00004226** Rollback the transaction in progress.
4227**
4228** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4229** Only write cursors are tripped if writeOnly is true but all cursors are
4230** tripped if writeOnly is false. Any attempt to use
4231** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004232**
4233** This will release the write lock on the database file. If there
4234** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004235*/
drh47b7fc72014-11-11 01:33:57 +00004236int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004237 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004238 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004239 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004240
drh47b7fc72014-11-11 01:33:57 +00004241 assert( writeOnly==1 || writeOnly==0 );
4242 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004243 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004244 if( tripCode==SQLITE_OK ){
4245 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004246 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004247 }else{
4248 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004249 }
drh0f198a72012-02-13 16:43:16 +00004250 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004251 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4252 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4253 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004254 }
danielk1977aef0bf62005-12-30 16:28:01 +00004255 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004256
4257 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004258 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004259
danielk19778d34dfd2006-01-24 16:37:57 +00004260 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004261 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004262 if( rc2!=SQLITE_OK ){
4263 rc = rc2;
4264 }
4265
drh24cd67e2004-05-10 16:18:47 +00004266 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004267 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004268 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004269 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh41422652019-05-10 14:34:18 +00004270 btreeSetNPage(pBt, pPage1);
drh3908fe92017-09-01 14:50:19 +00004271 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004272 }
drh85ec3b62013-05-14 23:12:06 +00004273 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004274 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004275 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004276 }
danielk1977aef0bf62005-12-30 16:28:01 +00004277
danielk197794b30732009-07-02 17:21:57 +00004278 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004279 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004280 return rc;
4281}
4282
4283/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004284** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004285** back independently of the main transaction. You must start a transaction
4286** before starting a subtransaction. The subtransaction is ended automatically
4287** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004288**
4289** Statement subtransactions are used around individual SQL statements
4290** that are contained within a BEGIN...COMMIT block. If a constraint
4291** error occurs within the statement, the effect of that one statement
4292** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004293**
4294** A statement sub-transaction is implemented as an anonymous savepoint. The
4295** value passed as the second parameter is the total number of savepoints,
4296** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4297** are no active savepoints and no other statement-transactions open,
4298** iStatement is 1. This anonymous savepoint can be released or rolled back
4299** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004300*/
danielk1977bd434552009-03-18 10:33:00 +00004301int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004302 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004303 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004304 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004305 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004306 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004307 assert( iStatement>0 );
4308 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004309 assert( pBt->inTransaction==TRANS_WRITE );
4310 /* At the pager level, a statement transaction is a savepoint with
4311 ** an index greater than all savepoints created explicitly using
4312 ** SQL statements. It is illegal to open, release or rollback any
4313 ** such savepoints while the statement transaction savepoint is active.
4314 */
4315 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004316 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004317 return rc;
4318}
4319
4320/*
danielk1977fd7f0452008-12-17 17:30:26 +00004321** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4322** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004323** savepoint identified by parameter iSavepoint, depending on the value
4324** of op.
4325**
4326** Normally, iSavepoint is greater than or equal to zero. However, if op is
4327** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4328** contents of the entire transaction are rolled back. This is different
4329** from a normal transaction rollback, as no locks are released and the
4330** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004331*/
4332int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4333 int rc = SQLITE_OK;
4334 if( p && p->inTrans==TRANS_WRITE ){
4335 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004336 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4337 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4338 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004339 if( op==SAVEPOINT_ROLLBACK ){
4340 rc = saveAllCursors(pBt, 0, 0);
4341 }
4342 if( rc==SQLITE_OK ){
4343 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4344 }
drh9f0bbf92009-01-02 21:08:09 +00004345 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004346 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4347 pBt->nPage = 0;
4348 }
drh9f0bbf92009-01-02 21:08:09 +00004349 rc = newDatabase(pBt);
drh41422652019-05-10 14:34:18 +00004350 btreeSetNPage(pBt, pBt->pPage1);
drhb9b49bf2010-08-05 03:21:39 +00004351
dana9a54652019-04-22 11:47:40 +00004352 /* pBt->nPage might be zero if the database was corrupt when
4353 ** the transaction was started. Otherwise, it must be at least 1. */
4354 assert( CORRUPT_DB || pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004355 }
danielk1977fd7f0452008-12-17 17:30:26 +00004356 sqlite3BtreeLeave(p);
4357 }
4358 return rc;
4359}
4360
4361/*
drh8b2f49b2001-06-08 00:21:52 +00004362** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004363** iTable. If a read-only cursor is requested, it is assumed that
4364** the caller already has at least a read-only transaction open
4365** on the database already. If a write-cursor is requested, then
4366** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004367**
drhe807bdb2016-01-21 17:06:33 +00004368** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4369** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4370** can be used for reading or for writing if other conditions for writing
4371** are also met. These are the conditions that must be met in order
4372** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004373**
drhe807bdb2016-01-21 17:06:33 +00004374** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004375**
drhfe5d71d2007-03-19 11:54:10 +00004376** 2: Other database connections that share the same pager cache
4377** but which are not in the READ_UNCOMMITTED state may not have
4378** cursors open with wrFlag==0 on the same table. Otherwise
4379** the changes made by this write cursor would be visible to
4380** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004381**
4382** 3: The database must be writable (not on read-only media)
4383**
4384** 4: There must be an active transaction.
4385**
drhe807bdb2016-01-21 17:06:33 +00004386** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4387** is set. If FORDELETE is set, that is a hint to the implementation that
4388** this cursor will only be used to seek to and delete entries of an index
4389** as part of a larger DELETE statement. The FORDELETE hint is not used by
4390** this implementation. But in a hypothetical alternative storage engine
4391** in which index entries are automatically deleted when corresponding table
4392** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4393** operations on this cursor can be no-ops and all READ operations can
4394** return a null row (2-bytes: 0x01 0x00).
4395**
drh6446c4d2001-12-15 14:22:18 +00004396** No checking is done to make sure that page iTable really is the
4397** root page of a b-tree. If it is not, then the cursor acquired
4398** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004399**
drhf25a5072009-11-18 23:01:25 +00004400** It is assumed that the sqlite3BtreeCursorZero() has been called
4401** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004402*/
drhd677b3d2007-08-20 22:48:41 +00004403static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004404 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004405 Pgno iTable, /* Root page of table to open */
danielk1977cd3e8f72008-03-25 09:47:35 +00004406 int wrFlag, /* 1 to write. 0 read-only */
4407 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4408 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004409){
danielk19773e8add92009-07-04 17:16:00 +00004410 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004411 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004412
drh1fee73e2007-08-29 04:00:57 +00004413 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004414 assert( wrFlag==0
4415 || wrFlag==BTREE_WRCSR
4416 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4417 );
danielk197796d48e92009-06-29 06:00:37 +00004418
danielk1977602b4662009-07-02 07:47:33 +00004419 /* The following assert statements verify that if this is a sharable
4420 ** b-tree database, the connection is holding the required table locks,
4421 ** and that no other connection has any open cursor that conflicts with
drhac801802019-11-17 11:47:50 +00004422 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4423 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4424 || iTable<1 );
danielk197796d48e92009-06-29 06:00:37 +00004425 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4426
danielk19773e8add92009-07-04 17:16:00 +00004427 /* Assert that the caller has opened the required transaction. */
4428 assert( p->inTrans>TRANS_NONE );
4429 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4430 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004431 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004432
drh3fbb0222014-09-24 19:47:27 +00004433 if( wrFlag ){
4434 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004435 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004436 }
drhdb561bc2019-10-25 14:46:05 +00004437 if( iTable<=1 ){
4438 if( iTable<1 ){
4439 return SQLITE_CORRUPT_BKPT;
4440 }else if( btreePagecount(pBt)==0 ){
4441 assert( wrFlag==0 );
4442 iTable = 0;
4443 }
danielk19773e8add92009-07-04 17:16:00 +00004444 }
danielk1977aef0bf62005-12-30 16:28:01 +00004445
danielk1977aef0bf62005-12-30 16:28:01 +00004446 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004447 ** variables and link the cursor into the BtShared list. */
drhabc38152020-07-22 13:38:04 +00004448 pCur->pgnoRoot = iTable;
danielk1977172114a2009-07-07 15:47:12 +00004449 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004450 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004451 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004452 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004453 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004454 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004455 /* If there are two or more cursors on the same btree, then all such
4456 ** cursors *must* have the BTCF_Multiple flag set. */
4457 for(pX=pBt->pCursor; pX; pX=pX->pNext){
drhabc38152020-07-22 13:38:04 +00004458 if( pX->pgnoRoot==iTable ){
drh27fb7462015-06-30 02:47:36 +00004459 pX->curFlags |= BTCF_Multiple;
4460 pCur->curFlags |= BTCF_Multiple;
4461 }
drha059ad02001-04-17 20:09:11 +00004462 }
drh27fb7462015-06-30 02:47:36 +00004463 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004464 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004465 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004466 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004467}
drhdb561bc2019-10-25 14:46:05 +00004468static int btreeCursorWithLock(
4469 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004470 Pgno iTable, /* Root page of table to open */
drhdb561bc2019-10-25 14:46:05 +00004471 int wrFlag, /* 1 to write. 0 read-only */
4472 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4473 BtCursor *pCur /* Space for new cursor */
4474){
4475 int rc;
4476 sqlite3BtreeEnter(p);
4477 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4478 sqlite3BtreeLeave(p);
4479 return rc;
4480}
drhd677b3d2007-08-20 22:48:41 +00004481int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004482 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004483 Pgno iTable, /* Root page of table to open */
danielk1977cd3e8f72008-03-25 09:47:35 +00004484 int wrFlag, /* 1 to write. 0 read-only */
4485 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4486 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004487){
drhdb561bc2019-10-25 14:46:05 +00004488 if( p->sharable ){
4489 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004490 }else{
drhdb561bc2019-10-25 14:46:05 +00004491 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004492 }
drhd677b3d2007-08-20 22:48:41 +00004493}
drh7f751222009-03-17 22:33:00 +00004494
4495/*
4496** Return the size of a BtCursor object in bytes.
4497**
4498** This interfaces is needed so that users of cursors can preallocate
4499** sufficient storage to hold a cursor. The BtCursor object is opaque
4500** to users so they cannot do the sizeof() themselves - they must call
4501** this routine.
4502*/
4503int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004504 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004505}
4506
drh7f751222009-03-17 22:33:00 +00004507/*
drhf25a5072009-11-18 23:01:25 +00004508** Initialize memory that will be converted into a BtCursor object.
4509**
4510** The simple approach here would be to memset() the entire object
4511** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4512** do not need to be zeroed and they are large, so we can save a lot
4513** of run-time by skipping the initialization of those elements.
4514*/
4515void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004516 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004517}
4518
4519/*
drh5e00f6c2001-09-13 13:46:56 +00004520** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004521** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004522*/
drh3aac2dd2004-04-26 14:10:20 +00004523int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004524 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004525 if( pBtree ){
4526 BtShared *pBt = pCur->pBt;
4527 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004528 assert( pBt->pCursor!=0 );
4529 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004530 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004531 }else{
4532 BtCursor *pPrev = pBt->pCursor;
4533 do{
4534 if( pPrev->pNext==pCur ){
4535 pPrev->pNext = pCur->pNext;
4536 break;
4537 }
4538 pPrev = pPrev->pNext;
4539 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004540 }
drh352a35a2017-08-15 03:46:47 +00004541 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004542 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004543 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004544 sqlite3_free(pCur->pKey);
daneeee8a52021-03-18 14:31:37 +00004545 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4546 /* Since the BtShared is not sharable, there is no need to
4547 ** worry about the missing sqlite3BtreeLeave() call here. */
4548 assert( pBtree->sharable==0 );
4549 sqlite3BtreeClose(pBtree);
4550 }else{
4551 sqlite3BtreeLeave(pBtree);
4552 }
dan97c8cb32019-01-01 18:00:17 +00004553 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004554 }
drh8c42ca92001-06-22 19:15:00 +00004555 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004556}
4557
drh5e2f8b92001-05-28 00:41:15 +00004558/*
drh86057612007-06-26 01:04:48 +00004559** Make sure the BtCursor* given in the argument has a valid
4560** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004561** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004562**
4563** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004564** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004565*/
drh9188b382004-05-14 21:12:22 +00004566#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004567 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4568 if( a->nKey!=b->nKey ) return 0;
4569 if( a->pPayload!=b->pPayload ) return 0;
4570 if( a->nPayload!=b->nPayload ) return 0;
4571 if( a->nLocal!=b->nLocal ) return 0;
4572 if( a->nSize!=b->nSize ) return 0;
4573 return 1;
4574 }
danielk19771cc5ed82007-05-16 17:28:43 +00004575 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004576 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004577 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004578 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004579 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004580 }
danielk19771cc5ed82007-05-16 17:28:43 +00004581#else
4582 #define assertCellInfo(x)
4583#endif
drhc5b41ac2015-06-17 02:11:46 +00004584static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4585 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004586 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004587 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004588 }else{
4589 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004590 }
drhc5b41ac2015-06-17 02:11:46 +00004591}
drh9188b382004-05-14 21:12:22 +00004592
drhea8ffdf2009-07-22 00:35:23 +00004593#ifndef NDEBUG /* The next routine used only within assert() statements */
4594/*
4595** Return true if the given BtCursor is valid. A valid cursor is one
4596** that is currently pointing to a row in a (non-empty) table.
4597** This is a verification routine is used only within assert() statements.
4598*/
4599int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4600 return pCur && pCur->eState==CURSOR_VALID;
4601}
4602#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004603int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4604 assert( pCur!=0 );
4605 return pCur->eState==CURSOR_VALID;
4606}
drhea8ffdf2009-07-22 00:35:23 +00004607
drh9188b382004-05-14 21:12:22 +00004608/*
drha7c90c42016-06-04 20:37:10 +00004609** Return the value of the integer key or "rowid" for a table btree.
4610** This routine is only valid for a cursor that is pointing into a
4611** ordinary table btree. If the cursor points to an index btree or
4612** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004613*/
drha7c90c42016-06-04 20:37:10 +00004614i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004615 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004616 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004617 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004618 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004619 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004620}
drh2af926b2001-05-15 00:39:25 +00004621
drh7b14b652019-12-29 22:08:20 +00004622/*
4623** Pin or unpin a cursor.
4624*/
4625void sqlite3BtreeCursorPin(BtCursor *pCur){
4626 assert( (pCur->curFlags & BTCF_Pinned)==0 );
4627 pCur->curFlags |= BTCF_Pinned;
4628}
4629void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4630 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4631 pCur->curFlags &= ~BTCF_Pinned;
4632}
4633
drh092457b2017-12-29 15:04:49 +00004634#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004635/*
drh2fc865c2017-12-16 20:20:37 +00004636** Return the offset into the database file for the start of the
4637** payload to which the cursor is pointing.
4638*/
drh092457b2017-12-29 15:04:49 +00004639i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004640 assert( cursorHoldsMutex(pCur) );
4641 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004642 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004643 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004644 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4645}
drh092457b2017-12-29 15:04:49 +00004646#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004647
4648/*
drha7c90c42016-06-04 20:37:10 +00004649** Return the number of bytes of payload for the entry that pCur is
4650** currently pointing to. For table btrees, this will be the amount
4651** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004652**
4653** The caller must guarantee that the cursor is pointing to a non-NULL
4654** valid entry. In other words, the calling procedure must guarantee
4655** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004656*/
drha7c90c42016-06-04 20:37:10 +00004657u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4658 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004659 assert( pCur->eState==CURSOR_VALID );
4660 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004661 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004662}
4663
4664/*
drh53d30dd2019-02-04 21:10:24 +00004665** Return an upper bound on the size of any record for the table
4666** that the cursor is pointing into.
4667**
4668** This is an optimization. Everything will still work if this
4669** routine always returns 2147483647 (which is the largest record
4670** that SQLite can handle) or more. But returning a smaller value might
4671** prevent large memory allocations when trying to interpret a
4672** corrupt datrabase.
4673**
4674** The current implementation merely returns the size of the underlying
4675** database file.
4676*/
4677sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4678 assert( cursorHoldsMutex(pCur) );
4679 assert( pCur->eState==CURSOR_VALID );
4680 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4681}
4682
4683/*
danielk1977d04417962007-05-02 13:16:30 +00004684** Given the page number of an overflow page in the database (parameter
4685** ovfl), this function finds the page number of the next page in the
4686** linked list of overflow pages. If possible, it uses the auto-vacuum
4687** pointer-map data instead of reading the content of page ovfl to do so.
4688**
4689** If an error occurs an SQLite error code is returned. Otherwise:
4690**
danielk1977bea2a942009-01-20 17:06:27 +00004691** The page number of the next overflow page in the linked list is
4692** written to *pPgnoNext. If page ovfl is the last page in its linked
4693** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004694**
danielk1977bea2a942009-01-20 17:06:27 +00004695** If ppPage is not NULL, and a reference to the MemPage object corresponding
4696** to page number pOvfl was obtained, then *ppPage is set to point to that
4697** reference. It is the responsibility of the caller to call releasePage()
4698** on *ppPage to free the reference. In no reference was obtained (because
4699** the pointer-map was used to obtain the value for *pPgnoNext), then
4700** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004701*/
4702static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004703 BtShared *pBt, /* The database file */
4704 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004705 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004706 Pgno *pPgnoNext /* OUT: Next overflow page number */
4707){
4708 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004709 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004710 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004711
drh1fee73e2007-08-29 04:00:57 +00004712 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004713 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004714
4715#ifndef SQLITE_OMIT_AUTOVACUUM
4716 /* Try to find the next page in the overflow list using the
4717 ** autovacuum pointer-map pages. Guess that the next page in
4718 ** the overflow list is page number (ovfl+1). If that guess turns
4719 ** out to be wrong, fall back to loading the data of page
4720 ** number ovfl to determine the next page number.
4721 */
4722 if( pBt->autoVacuum ){
4723 Pgno pgno;
4724 Pgno iGuess = ovfl+1;
4725 u8 eType;
4726
4727 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4728 iGuess++;
4729 }
4730
drhb1299152010-03-30 22:58:33 +00004731 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004732 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004733 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004734 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004735 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004736 }
4737 }
4738 }
4739#endif
4740
danielk1977d8a3f3d2009-07-11 11:45:23 +00004741 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004742 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004743 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004744 assert( rc==SQLITE_OK || pPage==0 );
4745 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004746 next = get4byte(pPage->aData);
4747 }
danielk1977443c0592009-01-16 15:21:05 +00004748 }
danielk197745d68822009-01-16 16:23:38 +00004749
danielk1977bea2a942009-01-20 17:06:27 +00004750 *pPgnoNext = next;
4751 if( ppPage ){
4752 *ppPage = pPage;
4753 }else{
4754 releasePage(pPage);
4755 }
4756 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004757}
4758
danielk1977da107192007-05-04 08:32:13 +00004759/*
4760** Copy data from a buffer to a page, or from a page to a buffer.
4761**
4762** pPayload is a pointer to data stored on database page pDbPage.
4763** If argument eOp is false, then nByte bytes of data are copied
4764** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4765** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4766** of data are copied from the buffer pBuf to pPayload.
4767**
4768** SQLITE_OK is returned on success, otherwise an error code.
4769*/
4770static int copyPayload(
4771 void *pPayload, /* Pointer to page data */
4772 void *pBuf, /* Pointer to buffer */
4773 int nByte, /* Number of bytes to copy */
4774 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4775 DbPage *pDbPage /* Page containing pPayload */
4776){
4777 if( eOp ){
4778 /* Copy data from buffer to page (a write operation) */
4779 int rc = sqlite3PagerWrite(pDbPage);
4780 if( rc!=SQLITE_OK ){
4781 return rc;
4782 }
4783 memcpy(pPayload, pBuf, nByte);
4784 }else{
4785 /* Copy data from page to buffer (a read operation) */
4786 memcpy(pBuf, pPayload, nByte);
4787 }
4788 return SQLITE_OK;
4789}
danielk1977d04417962007-05-02 13:16:30 +00004790
4791/*
danielk19779f8d6402007-05-02 17:48:45 +00004792** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004793** for the entry that the pCur cursor is pointing to. The eOp
4794** argument is interpreted as follows:
4795**
4796** 0: The operation is a read. Populate the overflow cache.
4797** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004798**
4799** A total of "amt" bytes are read or written beginning at "offset".
4800** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004801**
drh3bcdfd22009-07-12 02:32:21 +00004802** The content being read or written might appear on the main page
4803** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004804**
drh42e28f12017-01-27 00:31:59 +00004805** If the current cursor entry uses one or more overflow pages
4806** this function may allocate space for and lazily populate
4807** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004808** Subsequent calls use this cache to make seeking to the supplied offset
4809** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004810**
drh42e28f12017-01-27 00:31:59 +00004811** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004812** invalidated if some other cursor writes to the same table, or if
4813** the cursor is moved to a different row. Additionally, in auto-vacuum
4814** mode, the following events may invalidate an overflow page-list cache.
4815**
4816** * An incremental vacuum,
4817** * A commit in auto_vacuum="full" mode,
4818** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004819*/
danielk19779f8d6402007-05-02 17:48:45 +00004820static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004821 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004822 u32 offset, /* Begin reading this far into payload */
4823 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004824 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004825 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004826){
4827 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004828 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004829 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004830 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004831 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004832#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004833 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004834#endif
drh3aac2dd2004-04-26 14:10:20 +00004835
danielk1977da107192007-05-04 08:32:13 +00004836 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004837 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004838 assert( pCur->eState==CURSOR_VALID );
drha7149082021-10-13 20:11:30 +00004839 if( pCur->ix>=pPage->nCell ){
4840 return SQLITE_CORRUPT_PAGE(pPage);
4841 }
drh1fee73e2007-08-29 04:00:57 +00004842 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004843
drh86057612007-06-26 01:04:48 +00004844 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004845 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004846 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004847
drh0b982072016-03-22 14:10:45 +00004848 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004849 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004850 /* Trying to read or write past the end of the data is an error. The
4851 ** conditional above is really:
4852 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4853 ** but is recast into its current form to avoid integer overflow problems
4854 */
daneebf2f52017-11-18 17:30:08 +00004855 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004856 }
danielk1977da107192007-05-04 08:32:13 +00004857
4858 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004859 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004860 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004861 if( a+offset>pCur->info.nLocal ){
4862 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004863 }
drh42e28f12017-01-27 00:31:59 +00004864 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004865 offset = 0;
drha34b6762004-05-07 13:30:42 +00004866 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004867 amt -= a;
drhdd793422001-06-28 01:54:48 +00004868 }else{
drhfa1a98a2004-05-14 19:08:17 +00004869 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004870 }
danielk1977da107192007-05-04 08:32:13 +00004871
dan85753662014-12-11 16:38:18 +00004872
danielk1977da107192007-05-04 08:32:13 +00004873 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004874 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004875 Pgno nextPage;
4876
drhfa1a98a2004-05-14 19:08:17 +00004877 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
drh584e8b72020-07-22 17:12:59 +00004878
drha38c9512014-04-01 01:24:34 +00004879 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004880 **
4881 ** The aOverflow[] array is sized at one entry for each overflow page
4882 ** in the overflow chain. The page number of the first overflow page is
4883 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4884 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004885 */
drh42e28f12017-01-27 00:31:59 +00004886 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004887 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004888 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004889 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004890 ){
dan85753662014-12-11 16:38:18 +00004891 Pgno *aNew = (Pgno*)sqlite3Realloc(
4892 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004893 );
4894 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004895 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004896 }else{
dan5a500af2014-03-11 20:33:04 +00004897 pCur->aOverflow = aNew;
4898 }
4899 }
drhcd645532017-01-20 20:43:14 +00004900 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4901 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004902 }else{
4903 /* If the overflow page-list cache has been allocated and the
4904 ** entry for the first required overflow page is valid, skip
4905 ** directly to it.
4906 */
4907 if( pCur->aOverflow[offset/ovflSize] ){
4908 iIdx = (offset/ovflSize);
4909 nextPage = pCur->aOverflow[iIdx];
4910 offset = (offset%ovflSize);
4911 }
danielk19772dec9702007-05-02 16:48:37 +00004912 }
danielk1977da107192007-05-04 08:32:13 +00004913
drhcd645532017-01-20 20:43:14 +00004914 assert( rc==SQLITE_OK && amt>0 );
4915 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004916 /* If required, populate the overflow page-list cache. */
drh584e8b72020-07-22 17:12:59 +00004917 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
drh42e28f12017-01-27 00:31:59 +00004918 assert( pCur->aOverflow[iIdx]==0
4919 || pCur->aOverflow[iIdx]==nextPage
4920 || CORRUPT_DB );
4921 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004922
danielk1977d04417962007-05-02 13:16:30 +00004923 if( offset>=ovflSize ){
4924 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004925 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004926 ** data is not required. So first try to lookup the overflow
4927 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004928 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004929 */
drha38c9512014-04-01 01:24:34 +00004930 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004931 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004932 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004933 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004934 }else{
danielk1977da107192007-05-04 08:32:13 +00004935 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004936 }
danielk1977da107192007-05-04 08:32:13 +00004937 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004938 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004939 /* Need to read this page properly. It contains some of the
4940 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004941 */
danielk1977cfe9a692004-06-16 12:00:29 +00004942 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004943 if( a + offset > ovflSize ){
4944 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004945 }
danf4ba1092011-10-08 14:57:07 +00004946
4947#ifdef SQLITE_DIRECT_OVERFLOW_READ
4948 /* If all the following are true:
4949 **
4950 ** 1) this is a read operation, and
4951 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00004952 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00004953 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004954 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004955 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004956 **
4957 ** then data can be read directly from the database file into the
4958 ** output buffer, bypassing the page-cache altogether. This speeds
4959 ** up loading large records that span many overflow pages.
4960 */
drh42e28f12017-01-27 00:31:59 +00004961 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004962 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00004963 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00004964 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004965 ){
dan09236752018-11-22 19:10:14 +00004966 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00004967 u8 aSave[4];
4968 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004969 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004970 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004971 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
drhb9fc4552019-08-15 00:04:44 +00004972 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
danf4ba1092011-10-08 14:57:07 +00004973 nextPage = get4byte(aWrite);
4974 memcpy(aWrite, aSave, 4);
4975 }else
4976#endif
4977
4978 {
4979 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004980 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004981 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004982 );
danf4ba1092011-10-08 14:57:07 +00004983 if( rc==SQLITE_OK ){
4984 aPayload = sqlite3PagerGetData(pDbPage);
4985 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004986 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004987 sqlite3PagerUnref(pDbPage);
4988 offset = 0;
4989 }
4990 }
4991 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004992 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004993 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004994 }
drhcd645532017-01-20 20:43:14 +00004995 if( rc ) break;
4996 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004997 }
drh2af926b2001-05-15 00:39:25 +00004998 }
danielk1977cfe9a692004-06-16 12:00:29 +00004999
danielk1977da107192007-05-04 08:32:13 +00005000 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00005001 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00005002 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00005003 }
danielk1977da107192007-05-04 08:32:13 +00005004 return rc;
drh2af926b2001-05-15 00:39:25 +00005005}
5006
drh72f82862001-05-24 21:06:34 +00005007/*
drhcb3cabd2016-11-25 19:18:28 +00005008** Read part of the payload for the row at which that cursor pCur is currently
5009** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00005010** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00005011**
drhcb3cabd2016-11-25 19:18:28 +00005012** pCur can be pointing to either a table or an index b-tree.
5013** If pointing to a table btree, then the content section is read. If
5014** pCur is pointing to an index b-tree then the key section is read.
5015**
5016** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5017** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5018** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00005019**
drh3aac2dd2004-04-26 14:10:20 +00005020** Return SQLITE_OK on success or an error code if anything goes
5021** wrong. An error is returned if "offset+amt" is larger than
5022** the available payload.
drh72f82862001-05-24 21:06:34 +00005023*/
drhcb3cabd2016-11-25 19:18:28 +00005024int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00005025 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00005026 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005027 assert( pCur->iPage>=0 && pCur->pPage );
drh5d1a8722009-07-22 18:07:40 +00005028 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00005029}
drh83ec2762017-01-26 16:54:47 +00005030
5031/*
5032** This variant of sqlite3BtreePayload() works even if the cursor has not
5033** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5034** interface.
5035*/
danielk19773588ceb2008-06-10 17:30:26 +00005036#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00005037static SQLITE_NOINLINE int accessPayloadChecked(
5038 BtCursor *pCur,
5039 u32 offset,
5040 u32 amt,
5041 void *pBuf
5042){
drhcb3cabd2016-11-25 19:18:28 +00005043 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00005044 if ( pCur->eState==CURSOR_INVALID ){
5045 return SQLITE_ABORT;
5046 }
dan7a2347e2016-01-07 16:43:54 +00005047 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00005048 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00005049 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5050}
5051int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5052 if( pCur->eState==CURSOR_VALID ){
5053 assert( cursorOwnsBtShared(pCur) );
5054 return accessPayload(pCur, offset, amt, pBuf, 0);
5055 }else{
5056 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00005057 }
drh2af926b2001-05-15 00:39:25 +00005058}
drhcb3cabd2016-11-25 19:18:28 +00005059#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00005060
drh72f82862001-05-24 21:06:34 +00005061/*
drh0e1c19e2004-05-11 00:58:56 +00005062** Return a pointer to payload information from the entry that the
5063** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00005064** the key if index btrees (pPage->intKey==0) and is the data for
5065** table btrees (pPage->intKey==1). The number of bytes of available
5066** key/data is written into *pAmt. If *pAmt==0, then the value
5067** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00005068**
5069** This routine is an optimization. It is common for the entire key
5070** and data to fit on the local page and for there to be no overflow
5071** pages. When that is so, this routine can be used to access the
5072** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00005073** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00005074** the key/data and copy it into a preallocated buffer.
5075**
5076** The pointer returned by this routine looks directly into the cached
5077** page of the database. The data might change or move the next time
5078** any btree routine is called.
5079*/
drh2a8d2262013-12-09 20:43:22 +00005080static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00005081 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00005082 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00005083){
danf2f72a02017-10-19 15:17:38 +00005084 int amt;
drh352a35a2017-08-15 03:46:47 +00005085 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00005086 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00005087 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00005088 assert( cursorOwnsBtShared(pCur) );
drhcd789f92021-10-11 09:39:42 +00005089 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
drh86dd3712014-03-25 11:00:21 +00005090 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00005091 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5092 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00005093 amt = pCur->info.nLocal;
5094 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5095 /* There is too little space on the page for the expected amount
5096 ** of local content. Database must be corrupt. */
5097 assert( CORRUPT_DB );
5098 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5099 }
5100 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00005101 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00005102}
5103
5104
5105/*
drhe51c44f2004-05-30 20:46:09 +00005106** For the entry that cursor pCur is point to, return as
5107** many bytes of the key or data as are available on the local
5108** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005109**
5110** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005111** or be destroyed on the next call to any Btree routine,
5112** including calls from other threads against the same cache.
5113** Hence, a mutex on the BtShared should be held prior to calling
5114** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005115**
5116** These routines is used to get quick access to key and data
5117** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005118*/
drha7c90c42016-06-04 20:37:10 +00005119const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005120 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005121}
5122
5123
5124/*
drh8178a752003-01-05 21:41:40 +00005125** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005126** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005127**
5128** This function returns SQLITE_CORRUPT if the page-header flags field of
5129** the new child page does not match the flags field of the parent (i.e.
5130** if an intkey page appears to be the parent of a non-intkey page, or
5131** vice-versa).
drh72f82862001-05-24 21:06:34 +00005132*/
drh3aac2dd2004-04-26 14:10:20 +00005133static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005134 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005135
dan7a2347e2016-01-07 16:43:54 +00005136 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005137 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005138 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005139 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005140 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5141 return SQLITE_CORRUPT_BKPT;
5142 }
drh271efa52004-05-30 19:19:05 +00005143 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005144 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005145 pCur->aiIdx[pCur->iPage] = pCur->ix;
5146 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005147 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005148 pCur->iPage++;
5149 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005150}
5151
drhd879e3e2017-02-13 13:35:55 +00005152#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005153/*
5154** Page pParent is an internal (non-leaf) tree page. This function
5155** asserts that page number iChild is the left-child if the iIdx'th
5156** cell in page pParent. Or, if iIdx is equal to the total number of
5157** cells in pParent, that page number iChild is the right-child of
5158** the page.
5159*/
5160static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005161 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5162 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005163 assert( iIdx<=pParent->nCell );
5164 if( iIdx==pParent->nCell ){
5165 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5166 }else{
5167 assert( get4byte(findCell(pParent, iIdx))==iChild );
5168 }
5169}
5170#else
5171# define assertParentIndex(x,y,z)
5172#endif
5173
drh72f82862001-05-24 21:06:34 +00005174/*
drh5e2f8b92001-05-28 00:41:15 +00005175** Move the cursor up to the parent page.
5176**
5177** pCur->idx is set to the cell index that contains the pointer
5178** to the page we are coming from. If we are coming from the
5179** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005180** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005181*/
danielk197730548662009-07-09 05:07:37 +00005182static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005183 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005184 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005185 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005186 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005187 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005188 assertParentIndex(
5189 pCur->apPage[pCur->iPage-1],
5190 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005191 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005192 );
dan6c2688c2012-01-12 15:05:03 +00005193 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005194 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005195 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005196 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005197 pLeaf = pCur->pPage;
5198 pCur->pPage = pCur->apPage[--pCur->iPage];
5199 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005200}
5201
5202/*
danielk19778f880a82009-07-13 09:41:45 +00005203** Move the cursor to point to the root page of its b-tree structure.
5204**
5205** If the table has a virtual root page, then the cursor is moved to point
5206** to the virtual root page instead of the actual root page. A table has a
5207** virtual root page when the actual root page contains no cells and a
5208** single child page. This can only happen with the table rooted at page 1.
5209**
5210** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005211** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5212** the cursor is set to point to the first cell located on the root
5213** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005214**
5215** If this function returns successfully, it may be assumed that the
5216** page-header flags indicate that the [virtual] root-page is the expected
5217** kind of b-tree page (i.e. if when opening the cursor the caller did not
5218** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5219** indicating a table b-tree, or if the caller did specify a KeyInfo
5220** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5221** b-tree).
drh72f82862001-05-24 21:06:34 +00005222*/
drh5e2f8b92001-05-28 00:41:15 +00005223static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005224 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005225 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005226
dan7a2347e2016-01-07 16:43:54 +00005227 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005228 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5229 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5230 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005231 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005232 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005233
5234 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005235 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005236 releasePageNotNull(pCur->pPage);
5237 while( --pCur->iPage ){
5238 releasePageNotNull(pCur->apPage[pCur->iPage]);
5239 }
5240 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005241 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005242 }
dana205a482011-08-27 18:48:57 +00005243 }else if( pCur->pgnoRoot==0 ){
5244 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005245 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005246 }else{
drh28f58dd2015-06-27 19:45:03 +00005247 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005248 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5249 if( pCur->eState==CURSOR_FAULT ){
5250 assert( pCur->skipNext!=SQLITE_OK );
5251 return pCur->skipNext;
5252 }
5253 sqlite3BtreeClearCursor(pCur);
5254 }
drh352a35a2017-08-15 03:46:47 +00005255 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005256 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005257 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005258 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005259 return rc;
drh777e4c42006-01-13 04:31:58 +00005260 }
danielk1977172114a2009-07-07 15:47:12 +00005261 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005262 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005263 }
drh352a35a2017-08-15 03:46:47 +00005264 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005265 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005266
5267 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5268 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5269 ** NULL, the caller expects a table b-tree. If this is not the case,
5270 ** return an SQLITE_CORRUPT error.
5271 **
5272 ** Earlier versions of SQLite assumed that this test could not fail
5273 ** if the root page was already loaded when this function was called (i.e.
5274 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5275 ** in such a way that page pRoot is linked into a second b-tree table
5276 ** (or the freelist). */
5277 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5278 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005279 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005280 }
danielk19778f880a82009-07-13 09:41:45 +00005281
drh7ad3eb62016-10-24 01:01:09 +00005282skip_init:
drh75e96b32017-04-01 00:20:06 +00005283 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005284 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005285 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005286
drh352a35a2017-08-15 03:46:47 +00005287 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005288 if( pRoot->nCell>0 ){
5289 pCur->eState = CURSOR_VALID;
5290 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005291 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005292 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005293 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005294 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005295 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005296 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005297 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005298 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005299 }
5300 return rc;
drh72f82862001-05-24 21:06:34 +00005301}
drh2af926b2001-05-15 00:39:25 +00005302
drh5e2f8b92001-05-28 00:41:15 +00005303/*
5304** Move the cursor down to the left-most leaf entry beneath the
5305** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005306**
5307** The left-most leaf is the one with the smallest key - the first
5308** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005309*/
5310static int moveToLeftmost(BtCursor *pCur){
5311 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005312 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005313 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005314
dan7a2347e2016-01-07 16:43:54 +00005315 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005316 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005317 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005318 assert( pCur->ix<pPage->nCell );
5319 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005320 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005321 }
drhd677b3d2007-08-20 22:48:41 +00005322 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005323}
5324
drh2dcc9aa2002-12-04 13:40:25 +00005325/*
5326** Move the cursor down to the right-most leaf entry beneath the
5327** page to which it is currently pointing. Notice the difference
5328** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5329** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5330** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005331**
5332** The right-most entry is the one with the largest key - the last
5333** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005334*/
5335static int moveToRightmost(BtCursor *pCur){
5336 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005337 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005338 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005339
dan7a2347e2016-01-07 16:43:54 +00005340 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005341 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005342 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005343 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005344 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005345 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005346 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005347 }
drh75e96b32017-04-01 00:20:06 +00005348 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005349 assert( pCur->info.nSize==0 );
5350 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5351 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005352}
5353
drh5e00f6c2001-09-13 13:46:56 +00005354/* Move the cursor to the first entry in the table. Return SQLITE_OK
5355** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005356** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005357*/
drh3aac2dd2004-04-26 14:10:20 +00005358int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005359 int rc;
drhd677b3d2007-08-20 22:48:41 +00005360
dan7a2347e2016-01-07 16:43:54 +00005361 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005362 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005363 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005364 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005365 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005366 *pRes = 0;
5367 rc = moveToLeftmost(pCur);
5368 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005369 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005370 *pRes = 1;
5371 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005372 }
drh5e00f6c2001-09-13 13:46:56 +00005373 return rc;
5374}
drh5e2f8b92001-05-28 00:41:15 +00005375
drh9562b552002-02-19 15:00:07 +00005376/* Move the cursor to the last entry in the table. Return SQLITE_OK
5377** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005378** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005379*/
drh3aac2dd2004-04-26 14:10:20 +00005380int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005381 int rc;
drhd677b3d2007-08-20 22:48:41 +00005382
dan7a2347e2016-01-07 16:43:54 +00005383 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005384 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005385
5386 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005387 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005388#ifdef SQLITE_DEBUG
5389 /* This block serves to assert() that the cursor really does point
5390 ** to the last entry in the b-tree. */
5391 int ii;
5392 for(ii=0; ii<pCur->iPage; ii++){
5393 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5394 }
drh319deef2021-04-04 23:56:15 +00005395 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5396 testcase( pCur->ix!=pCur->pPage->nCell-1 );
5397 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
drh352a35a2017-08-15 03:46:47 +00005398 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005399#endif
drheb265342019-05-08 23:55:04 +00005400 *pRes = 0;
danielk19773f632d52009-05-02 10:03:09 +00005401 return SQLITE_OK;
5402 }
5403
drh9562b552002-02-19 15:00:07 +00005404 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005405 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005406 assert( pCur->eState==CURSOR_VALID );
5407 *pRes = 0;
5408 rc = moveToRightmost(pCur);
5409 if( rc==SQLITE_OK ){
5410 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005411 }else{
drh44548e72017-08-14 18:13:52 +00005412 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005413 }
drh44548e72017-08-14 18:13:52 +00005414 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005415 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005416 *pRes = 1;
5417 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005418 }
drh9562b552002-02-19 15:00:07 +00005419 return rc;
5420}
5421
drh42a410d2021-06-19 18:32:20 +00005422/* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5423** table near the key intKey. Return a success code.
drh3aac2dd2004-04-26 14:10:20 +00005424**
drh5e2f8b92001-05-28 00:41:15 +00005425** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005426** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005427** were present. The cursor might point to an entry that comes
5428** before or after the key.
5429**
drh64022502009-01-09 14:11:04 +00005430** An integer is written into *pRes which is the result of
5431** comparing the key with the entry to which the cursor is
5432** pointing. The meaning of the integer written into
5433** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005434**
5435** *pRes<0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005436** is smaller than intKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005437** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005438**
5439** *pRes==0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005440** exactly matches intKey.
drhbd03cae2001-06-02 02:40:57 +00005441**
5442** *pRes>0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005443** is larger than intKey.
drha059ad02001-04-17 20:09:11 +00005444*/
drh42a410d2021-06-19 18:32:20 +00005445int sqlite3BtreeTableMoveto(
drhe63d9992008-08-13 19:11:48 +00005446 BtCursor *pCur, /* The cursor to be moved */
drhe63d9992008-08-13 19:11:48 +00005447 i64 intKey, /* The table key */
5448 int biasRight, /* If true, bias the search to the high end */
5449 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005450){
drh72f82862001-05-24 21:06:34 +00005451 int rc;
drhd677b3d2007-08-20 22:48:41 +00005452
dan7a2347e2016-01-07 16:43:54 +00005453 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005454 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005455 assert( pRes );
drh42a410d2021-06-19 18:32:20 +00005456 assert( pCur->pKeyInfo==0 );
5457 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
drha2c20e42008-03-29 16:01:04 +00005458
5459 /* If the cursor is already positioned at the point we are trying
5460 ** to move to, then just return without doing any work */
drh42a410d2021-06-19 18:32:20 +00005461 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
drhe63d9992008-08-13 19:11:48 +00005462 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005463 *pRes = 0;
5464 return SQLITE_OK;
5465 }
drh451e76d2017-01-21 16:54:19 +00005466 if( pCur->info.nKey<intKey ){
5467 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5468 *pRes = -1;
5469 return SQLITE_OK;
5470 }
drh7f11afa2017-01-21 21:47:54 +00005471 /* If the requested key is one more than the previous key, then
5472 ** try to get there using sqlite3BtreeNext() rather than a full
5473 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005474 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005475 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005476 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005477 rc = sqlite3BtreeNext(pCur, 0);
5478 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005479 getCellInfo(pCur);
5480 if( pCur->info.nKey==intKey ){
5481 return SQLITE_OK;
5482 }
drhe85e1da2021-10-01 21:01:07 +00005483 }else if( rc!=SQLITE_DONE ){
drh2ab792e2017-05-30 18:34:07 +00005484 return rc;
drh451e76d2017-01-21 16:54:19 +00005485 }
5486 }
drha2c20e42008-03-29 16:01:04 +00005487 }
5488 }
5489
drh37ccfcf2020-08-31 18:49:04 +00005490#ifdef SQLITE_DEBUG
5491 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5492#endif
5493
drh42a410d2021-06-19 18:32:20 +00005494 rc = moveToRoot(pCur);
5495 if( rc ){
5496 if( rc==SQLITE_EMPTY ){
5497 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5498 *pRes = -1;
5499 return SQLITE_OK;
5500 }
5501 return rc;
dan1fed5da2014-02-25 21:01:25 +00005502 }
drh42a410d2021-06-19 18:32:20 +00005503 assert( pCur->pPage );
5504 assert( pCur->pPage->isInit );
5505 assert( pCur->eState==CURSOR_VALID );
5506 assert( pCur->pPage->nCell > 0 );
5507 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5508 assert( pCur->curIntKey );
5509
5510 for(;;){
5511 int lwr, upr, idx, c;
5512 Pgno chldPg;
5513 MemPage *pPage = pCur->pPage;
5514 u8 *pCell; /* Pointer to current cell in pPage */
5515
5516 /* pPage->nCell must be greater than zero. If this is the root-page
5517 ** the cursor would have been INVALID above and this for(;;) loop
5518 ** not run. If this is not the root-page, then the moveToChild() routine
5519 ** would have already detected db corruption. Similarly, pPage must
5520 ** be the right kind (index or table) of b-tree page. Otherwise
5521 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5522 assert( pPage->nCell>0 );
5523 assert( pPage->intKey );
5524 lwr = 0;
5525 upr = pPage->nCell-1;
5526 assert( biasRight==0 || biasRight==1 );
5527 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5528 pCur->ix = (u16)idx;
5529 for(;;){
5530 i64 nCellKey;
5531 pCell = findCellPastPtr(pPage, idx);
5532 if( pPage->intKeyLeaf ){
5533 while( 0x80 <= *(pCell++) ){
5534 if( pCell>=pPage->aDataEnd ){
5535 return SQLITE_CORRUPT_PAGE(pPage);
5536 }
5537 }
5538 }
5539 getVarint(pCell, (u64*)&nCellKey);
5540 if( nCellKey<intKey ){
5541 lwr = idx+1;
5542 if( lwr>upr ){ c = -1; break; }
5543 }else if( nCellKey>intKey ){
5544 upr = idx-1;
5545 if( lwr>upr ){ c = +1; break; }
5546 }else{
5547 assert( nCellKey==intKey );
5548 pCur->ix = (u16)idx;
5549 if( !pPage->leaf ){
5550 lwr = idx;
5551 goto moveto_table_next_layer;
5552 }else{
5553 pCur->curFlags |= BTCF_ValidNKey;
5554 pCur->info.nKey = nCellKey;
5555 pCur->info.nSize = 0;
5556 *pRes = 0;
5557 return SQLITE_OK;
5558 }
5559 }
5560 assert( lwr+upr>=0 );
5561 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
5562 }
5563 assert( lwr==upr+1 || !pPage->leaf );
5564 assert( pPage->isInit );
5565 if( pPage->leaf ){
5566 assert( pCur->ix<pCur->pPage->nCell );
5567 pCur->ix = (u16)idx;
5568 *pRes = c;
5569 rc = SQLITE_OK;
5570 goto moveto_table_finish;
5571 }
5572moveto_table_next_layer:
5573 if( lwr>=pPage->nCell ){
5574 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5575 }else{
5576 chldPg = get4byte(findCell(pPage, lwr));
5577 }
5578 pCur->ix = (u16)lwr;
5579 rc = moveToChild(pCur, chldPg);
5580 if( rc ) break;
5581 }
5582moveto_table_finish:
5583 pCur->info.nSize = 0;
5584 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5585 return rc;
5586}
5587
5588/* Move the cursor so that it points to an entry in an index table
5589** near the key pIdxKey. Return a success code.
5590**
5591** If an exact match is not found, then the cursor is always
5592** left pointing at a leaf page which would hold the entry if it
5593** were present. The cursor might point to an entry that comes
5594** before or after the key.
5595**
5596** An integer is written into *pRes which is the result of
5597** comparing the key with the entry to which the cursor is
5598** pointing. The meaning of the integer written into
5599** *pRes is as follows:
5600**
5601** *pRes<0 The cursor is left pointing at an entry that
5602** is smaller than pIdxKey or if the table is empty
5603** and the cursor is therefore left point to nothing.
5604**
5605** *pRes==0 The cursor is left pointing at an entry that
5606** exactly matches pIdxKey.
5607**
5608** *pRes>0 The cursor is left pointing at an entry that
5609** is larger than pIdxKey.
5610**
5611** The pIdxKey->eqSeen field is set to 1 if there
5612** exists an entry in the table that exactly matches pIdxKey.
5613*/
5614int sqlite3BtreeIndexMoveto(
5615 BtCursor *pCur, /* The cursor to be moved */
5616 UnpackedRecord *pIdxKey, /* Unpacked index key */
5617 int *pRes /* Write search results here */
5618){
5619 int rc;
5620 RecordCompare xRecordCompare;
5621
5622 assert( cursorOwnsBtShared(pCur) );
5623 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5624 assert( pRes );
5625 assert( pCur->pKeyInfo!=0 );
5626
5627#ifdef SQLITE_DEBUG
5628 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5629#endif
5630
5631 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5632 pIdxKey->errCode = 0;
5633 assert( pIdxKey->default_rc==1
5634 || pIdxKey->default_rc==0
5635 || pIdxKey->default_rc==-1
5636 );
dan1fed5da2014-02-25 21:01:25 +00005637
drh5e2f8b92001-05-28 00:41:15 +00005638 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005639 if( rc ){
drh44548e72017-08-14 18:13:52 +00005640 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005641 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005642 *pRes = -1;
5643 return SQLITE_OK;
5644 }
drhd677b3d2007-08-20 22:48:41 +00005645 return rc;
5646 }
drh352a35a2017-08-15 03:46:47 +00005647 assert( pCur->pPage );
5648 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005649 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005650 assert( pCur->pPage->nCell > 0 );
5651 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005652 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005653 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005654 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005655 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005656 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005657 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005658
5659 /* pPage->nCell must be greater than zero. If this is the root-page
5660 ** the cursor would have been INVALID above and this for(;;) loop
5661 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005662 ** would have already detected db corruption. Similarly, pPage must
5663 ** be the right kind (index or table) of b-tree page. Otherwise
5664 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005665 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005666 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005667 lwr = 0;
5668 upr = pPage->nCell-1;
drh42a410d2021-06-19 18:32:20 +00005669 idx = upr>>1; /* idx = (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005670 pCur->ix = (u16)idx;
drh42a410d2021-06-19 18:32:20 +00005671 for(;;){
5672 int nCell; /* Size of the pCell cell in bytes */
5673 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005674
drh42a410d2021-06-19 18:32:20 +00005675 /* The maximum supported page-size is 65536 bytes. This means that
5676 ** the maximum number of record bytes stored on an index B-Tree
5677 ** page is less than 16384 bytes and may be stored as a 2-byte
5678 ** varint. This information is used to attempt to avoid parsing
5679 ** the entire cell by checking for the cases where the record is
5680 ** stored entirely within the b-tree page by inspecting the first
5681 ** 2 bytes of the cell.
5682 */
5683 nCell = pCell[0];
5684 if( nCell<=pPage->max1bytePayload ){
5685 /* This branch runs if the record-size field of the cell is a
5686 ** single byte varint and the record fits entirely on the main
5687 ** b-tree page. */
5688 testcase( pCell+nCell+1==pPage->aDataEnd );
5689 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5690 }else if( !(pCell[1] & 0x80)
5691 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5692 ){
5693 /* The record-size field is a 2 byte varint and the record
5694 ** fits entirely on the main b-tree page. */
5695 testcase( pCell+nCell+2==pPage->aDataEnd );
5696 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5697 }else{
5698 /* The record flows over onto one or more overflow pages. In
5699 ** this case the whole cell needs to be parsed, a buffer allocated
5700 ** and accessPayload() used to retrieve the record into the
5701 ** buffer before VdbeRecordCompare() can be called.
5702 **
5703 ** If the record is corrupt, the xRecordCompare routine may read
5704 ** up to two varints past the end of the buffer. An extra 18
5705 ** bytes of padding is allocated at the end of the buffer in
5706 ** case this happens. */
5707 void *pCellKey;
5708 u8 * const pCellBody = pCell - pPage->childPtrSize;
5709 const int nOverrun = 18; /* Size of the overrun padding */
5710 pPage->xParseCell(pPage, pCellBody, &pCur->info);
5711 nCell = (int)pCur->info.nKey;
5712 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5713 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5714 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5715 testcase( nCell==2 ); /* Minimum legal index key size */
5716 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5717 rc = SQLITE_CORRUPT_PAGE(pPage);
5718 goto moveto_index_finish;
5719 }
5720 pCellKey = sqlite3Malloc( nCell+nOverrun );
5721 if( pCellKey==0 ){
5722 rc = SQLITE_NOMEM_BKPT;
5723 goto moveto_index_finish;
5724 }
5725 pCur->ix = (u16)idx;
5726 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5727 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5728 pCur->curFlags &= ~BTCF_ValidOvfl;
5729 if( rc ){
drhfacf0302008-06-17 15:12:00 +00005730 sqlite3_free(pCellKey);
drh42a410d2021-06-19 18:32:20 +00005731 goto moveto_index_finish;
drhe51c44f2004-05-30 20:46:09 +00005732 }
drh42a410d2021-06-19 18:32:20 +00005733 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5734 sqlite3_free(pCellKey);
drh72f82862001-05-24 21:06:34 +00005735 }
drh42a410d2021-06-19 18:32:20 +00005736 assert(
5737 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5738 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5739 );
5740 if( c<0 ){
5741 lwr = idx+1;
5742 }else if( c>0 ){
5743 upr = idx-1;
5744 }else{
5745 assert( c==0 );
5746 *pRes = 0;
5747 rc = SQLITE_OK;
5748 pCur->ix = (u16)idx;
5749 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5750 goto moveto_index_finish;
5751 }
5752 if( lwr>upr ) break;
5753 assert( lwr+upr>=0 );
5754 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005755 }
drhb07028f2011-10-14 21:49:18 +00005756 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005757 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005758 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005759 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005760 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005761 *pRes = c;
5762 rc = SQLITE_OK;
drh42a410d2021-06-19 18:32:20 +00005763 goto moveto_index_finish;
drhebf10b12013-11-25 17:38:26 +00005764 }
drhebf10b12013-11-25 17:38:26 +00005765 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005766 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005767 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005768 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005769 }
drh75e96b32017-04-01 00:20:06 +00005770 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005771 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005772 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005773 }
drh42a410d2021-06-19 18:32:20 +00005774moveto_index_finish:
drhd2022b02013-11-25 16:23:52 +00005775 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005776 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005777 return rc;
5778}
5779
drhd677b3d2007-08-20 22:48:41 +00005780
drh72f82862001-05-24 21:06:34 +00005781/*
drhc39e0002004-05-07 23:50:57 +00005782** Return TRUE if the cursor is not pointing at an entry of the table.
5783**
5784** TRUE will be returned after a call to sqlite3BtreeNext() moves
5785** past the last entry in the table or sqlite3BtreePrev() moves past
5786** the first entry. TRUE is also returned if the table is empty.
5787*/
5788int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005789 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5790 ** have been deleted? This API will need to change to return an error code
5791 ** as well as the boolean result value.
5792 */
5793 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005794}
5795
5796/*
drh5e98e832017-02-17 19:24:06 +00005797** Return an estimate for the number of rows in the table that pCur is
5798** pointing to. Return a negative number if no estimate is currently
5799** available.
5800*/
5801i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5802 i64 n;
5803 u8 i;
5804
5805 assert( cursorOwnsBtShared(pCur) );
5806 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005807
5808 /* Currently this interface is only called by the OP_IfSmaller
5809 ** opcode, and it that case the cursor will always be valid and
5810 ** will always point to a leaf node. */
5811 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005812 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005813
drh352a35a2017-08-15 03:46:47 +00005814 n = pCur->pPage->nCell;
5815 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005816 n *= pCur->apPage[i]->nCell;
5817 }
5818 return n;
5819}
5820
5821/*
drh2ab792e2017-05-30 18:34:07 +00005822** Advance the cursor to the next entry in the database.
5823** Return value:
5824**
5825** SQLITE_OK success
5826** SQLITE_DONE cursor is already pointing at the last element
5827** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005828**
drhee6438d2014-09-01 13:29:32 +00005829** The main entry point is sqlite3BtreeNext(). That routine is optimized
5830** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5831** to the next cell on the current page. The (slower) btreeNext() helper
5832** routine is called when it is necessary to move to a different page or
5833** to restore the cursor.
5834**
drh89997982017-07-11 18:11:33 +00005835** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5836** cursor corresponds to an SQL index and this routine could have been
5837** skipped if the SQL index had been a unique index. The F argument
5838** is a hint to the implement. SQLite btree implementation does not use
5839** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005840*/
drh89997982017-07-11 18:11:33 +00005841static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005842 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005843 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005844 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005845
dan7a2347e2016-01-07 16:43:54 +00005846 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00005847 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005848 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005849 rc = restoreCursorPosition(pCur);
5850 if( rc!=SQLITE_OK ){
5851 return rc;
5852 }
5853 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005854 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005855 }
drh0c873bf2019-01-28 00:42:06 +00005856 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00005857 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005858 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005859 }
danielk1977da184232006-01-05 11:34:32 +00005860 }
danielk1977da184232006-01-05 11:34:32 +00005861
drh352a35a2017-08-15 03:46:47 +00005862 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005863 idx = ++pCur->ix;
drha957e222020-09-30 00:48:45 +00005864 if( !pPage->isInit || sqlite3FaultSim(412) ){
drhf3cd0c82018-06-08 19:13:57 +00005865 /* The only known way for this to happen is for there to be a
5866 ** recursive SQL function that does a DELETE operation as part of a
5867 ** SELECT which deletes content out from under an active cursor
5868 ** in a corrupt database file where the table being DELETE-ed from
5869 ** has pages in common with the table being queried. See TH3
5870 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5871 ** example. */
5872 return SQLITE_CORRUPT_BKPT;
5873 }
danbb246c42012-01-12 14:25:55 +00005874
danielk197771d5d2c2008-09-29 11:49:47 +00005875 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005876 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005877 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005878 if( rc ) return rc;
5879 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005880 }
drh5e2f8b92001-05-28 00:41:15 +00005881 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005882 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005883 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005884 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005885 }
danielk197730548662009-07-09 05:07:37 +00005886 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005887 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005888 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005889 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005890 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005891 }else{
drhee6438d2014-09-01 13:29:32 +00005892 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005893 }
drh8178a752003-01-05 21:41:40 +00005894 }
drh3aac2dd2004-04-26 14:10:20 +00005895 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005896 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005897 }else{
5898 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005899 }
drh72f82862001-05-24 21:06:34 +00005900}
drh2ab792e2017-05-30 18:34:07 +00005901int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005902 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005903 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005904 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005905 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005906 pCur->info.nSize = 0;
5907 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005908 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005909 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005910 if( (++pCur->ix)>=pPage->nCell ){
5911 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005912 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005913 }
5914 if( pPage->leaf ){
5915 return SQLITE_OK;
5916 }else{
5917 return moveToLeftmost(pCur);
5918 }
5919}
drh72f82862001-05-24 21:06:34 +00005920
drh3b7511c2001-05-26 13:15:44 +00005921/*
drh2ab792e2017-05-30 18:34:07 +00005922** Step the cursor to the back to the previous entry in the database.
5923** Return values:
5924**
5925** SQLITE_OK success
5926** SQLITE_DONE the cursor is already on the first element of the table
5927** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005928**
drhee6438d2014-09-01 13:29:32 +00005929** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5930** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005931** to the previous cell on the current page. The (slower) btreePrevious()
5932** helper routine is called when it is necessary to move to a different page
5933** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005934**
drh89997982017-07-11 18:11:33 +00005935** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5936** the cursor corresponds to an SQL index and this routine could have been
5937** skipped if the SQL index had been a unique index. The F argument is a
5938** hint to the implement. The native SQLite btree implementation does not
5939** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005940*/
drh89997982017-07-11 18:11:33 +00005941static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005942 int rc;
drh8178a752003-01-05 21:41:40 +00005943 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005944
dan7a2347e2016-01-07 16:43:54 +00005945 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005946 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5947 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005948 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005949 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005950 if( rc!=SQLITE_OK ){
5951 return rc;
drhf66f26a2013-08-19 20:04:10 +00005952 }
5953 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005954 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005955 }
drh0c873bf2019-01-28 00:42:06 +00005956 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00005957 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005958 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005959 }
danielk1977da184232006-01-05 11:34:32 +00005960 }
danielk1977da184232006-01-05 11:34:32 +00005961
drh352a35a2017-08-15 03:46:47 +00005962 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005963 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005964 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005965 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005966 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005967 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005968 rc = moveToRightmost(pCur);
5969 }else{
drh75e96b32017-04-01 00:20:06 +00005970 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005971 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005972 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005973 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005974 }
danielk197730548662009-07-09 05:07:37 +00005975 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005976 }
drhee6438d2014-09-01 13:29:32 +00005977 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005978 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005979
drh75e96b32017-04-01 00:20:06 +00005980 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005981 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005982 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005983 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005984 }else{
5985 rc = SQLITE_OK;
5986 }
drh2dcc9aa2002-12-04 13:40:25 +00005987 }
drh2dcc9aa2002-12-04 13:40:25 +00005988 return rc;
5989}
drh2ab792e2017-05-30 18:34:07 +00005990int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005991 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005992 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00005993 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005994 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5995 pCur->info.nSize = 0;
5996 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005997 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005998 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005999 ){
drh89997982017-07-11 18:11:33 +00006000 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00006001 }
drh75e96b32017-04-01 00:20:06 +00006002 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00006003 return SQLITE_OK;
6004}
drh2dcc9aa2002-12-04 13:40:25 +00006005
6006/*
drh3b7511c2001-05-26 13:15:44 +00006007** Allocate a new page from the database file.
6008**
danielk19773b8a05f2007-03-19 17:44:26 +00006009** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00006010** has already been called on the new page.) The new page has also
6011** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00006012** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00006013**
6014** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00006015** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00006016**
drh82e647d2013-03-02 03:25:55 +00006017** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00006018** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00006019** attempt to keep related pages close to each other in the database file,
6020** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00006021**
drh82e647d2013-03-02 03:25:55 +00006022** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6023** anywhere on the free-list, then it is guaranteed to be returned. If
6024** eMode is BTALLOC_LT then the page returned will be less than or equal
6025** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
6026** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00006027*/
drh4f0c5872007-03-26 22:05:01 +00006028static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00006029 BtShared *pBt, /* The btree */
6030 MemPage **ppPage, /* Store pointer to the allocated page here */
6031 Pgno *pPgno, /* Store the page number here */
6032 Pgno nearby, /* Search for a page near this one */
6033 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006034){
drh3aac2dd2004-04-26 14:10:20 +00006035 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00006036 int rc;
drh35cd6432009-06-05 14:17:21 +00006037 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00006038 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00006039 MemPage *pTrunk = 0;
6040 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00006041 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00006042
drh1fee73e2007-08-29 04:00:57 +00006043 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00006044 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00006045 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00006046 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00006047 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
6048 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00006049 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00006050 testcase( n==mxPage-1 );
6051 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00006052 return SQLITE_CORRUPT_BKPT;
6053 }
drh3aac2dd2004-04-26 14:10:20 +00006054 if( n>0 ){
drh91025292004-05-03 19:49:32 +00006055 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006056 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006057 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00006058 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006059
drh82e647d2013-03-02 03:25:55 +00006060 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006061 ** shows that the page 'nearby' is somewhere on the free-list, then
6062 ** the entire-list will be searched for that page.
6063 */
6064#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006065 if( eMode==BTALLOC_EXACT ){
drh41af5b32020-07-31 02:07:16 +00006066 if( nearby<=mxPage ){
dan51f0b6d2013-02-22 20:16:34 +00006067 u8 eType;
6068 assert( nearby>0 );
6069 assert( pBt->autoVacuum );
6070 rc = ptrmapGet(pBt, nearby, &eType, 0);
6071 if( rc ) return rc;
6072 if( eType==PTRMAP_FREEPAGE ){
6073 searchList = 1;
6074 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006075 }
dan51f0b6d2013-02-22 20:16:34 +00006076 }else if( eMode==BTALLOC_LE ){
6077 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006078 }
6079#endif
6080
6081 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6082 ** first free-list trunk page. iPrevTrunk is initially 1.
6083 */
danielk19773b8a05f2007-03-19 17:44:26 +00006084 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00006085 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00006086 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006087
6088 /* The code within this loop is run only once if the 'searchList' variable
6089 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00006090 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6091 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00006092 */
6093 do {
6094 pPrevTrunk = pTrunk;
6095 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00006096 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6097 ** is the page number of the next freelist trunk page in the list or
6098 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006099 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00006100 }else{
drh113762a2014-11-19 16:36:25 +00006101 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6102 ** stores the page number of the first page of the freelist, or zero if
6103 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006104 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00006105 }
drhdf35a082009-07-09 02:24:35 +00006106 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00006107 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00006108 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00006109 }else{
drh7e8c6f12015-05-28 03:28:27 +00006110 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00006111 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006112 if( rc ){
drhd3627af2006-12-18 18:34:51 +00006113 pTrunk = 0;
6114 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006115 }
drhb07028f2011-10-14 21:49:18 +00006116 assert( pTrunk!=0 );
6117 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00006118 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6119 ** is the number of leaf page pointers to follow. */
6120 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006121 if( k==0 && !searchList ){
6122 /* The trunk has no leaves and the list is not being searched.
6123 ** So extract the trunk page itself and use it as the newly
6124 ** allocated page */
6125 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006126 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006127 if( rc ){
6128 goto end_allocate_page;
6129 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006130 *pPgno = iTrunk;
6131 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6132 *ppPage = pTrunk;
6133 pTrunk = 0;
6134 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00006135 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006136 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00006137 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00006138 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006139#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006140 }else if( searchList
6141 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6142 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006143 /* The list is being searched and this trunk page is the page
6144 ** to allocate, regardless of whether it has leaves.
6145 */
dan51f0b6d2013-02-22 20:16:34 +00006146 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006147 *ppPage = pTrunk;
6148 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006149 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006150 if( rc ){
6151 goto end_allocate_page;
6152 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006153 if( k==0 ){
6154 if( !pPrevTrunk ){
6155 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6156 }else{
danf48c3552010-08-23 15:41:24 +00006157 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6158 if( rc!=SQLITE_OK ){
6159 goto end_allocate_page;
6160 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006161 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6162 }
6163 }else{
6164 /* The trunk page is required by the caller but it contains
6165 ** pointers to free-list leaves. The first leaf becomes a trunk
6166 ** page in this case.
6167 */
6168 MemPage *pNewTrunk;
6169 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00006170 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006171 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006172 goto end_allocate_page;
6173 }
drhdf35a082009-07-09 02:24:35 +00006174 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00006175 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006176 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00006177 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006178 }
danielk19773b8a05f2007-03-19 17:44:26 +00006179 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006180 if( rc!=SQLITE_OK ){
6181 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00006182 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006183 }
6184 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6185 put4byte(&pNewTrunk->aData[4], k-1);
6186 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006187 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006188 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006189 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006190 put4byte(&pPage1->aData[32], iNewTrunk);
6191 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006192 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006193 if( rc ){
6194 goto end_allocate_page;
6195 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006196 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6197 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006198 }
6199 pTrunk = 0;
6200 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6201#endif
danielk1977e5765212009-06-17 11:13:28 +00006202 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006203 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006204 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006205 Pgno iPage;
6206 unsigned char *aData = pTrunk->aData;
6207 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006208 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006209 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006210 if( eMode==BTALLOC_LE ){
6211 for(i=0; i<k; i++){
6212 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006213 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006214 closest = i;
6215 break;
6216 }
6217 }
6218 }else{
6219 int dist;
6220 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6221 for(i=1; i<k; i++){
6222 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6223 if( d2<dist ){
6224 closest = i;
6225 dist = d2;
6226 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006227 }
6228 }
6229 }else{
6230 closest = 0;
6231 }
6232
6233 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006234 testcase( iPage==mxPage );
drh07812192021-04-07 12:21:35 +00006235 if( iPage>mxPage || iPage<2 ){
drhcc97ca42017-06-07 22:32:59 +00006236 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006237 goto end_allocate_page;
6238 }
drhdf35a082009-07-09 02:24:35 +00006239 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006240 if( !searchList
6241 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6242 ){
danielk1977bea2a942009-01-20 17:06:27 +00006243 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006244 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006245 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6246 ": %d more free pages\n",
6247 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006248 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6249 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006250 if( closest<k-1 ){
6251 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6252 }
6253 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006254 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006255 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006256 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006257 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006258 if( rc!=SQLITE_OK ){
6259 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006260 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006261 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006262 }
6263 searchList = 0;
6264 }
drhee696e22004-08-30 16:52:17 +00006265 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006266 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006267 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006268 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006269 }else{
danbc1a3c62013-02-23 16:40:46 +00006270 /* There are no pages on the freelist, so append a new page to the
6271 ** database image.
6272 **
6273 ** Normally, new pages allocated by this block can be requested from the
6274 ** pager layer with the 'no-content' flag set. This prevents the pager
6275 ** from trying to read the pages content from disk. However, if the
6276 ** current transaction has already run one or more incremental-vacuum
6277 ** steps, then the page we are about to allocate may contain content
6278 ** that is required in the event of a rollback. In this case, do
6279 ** not set the no-content flag. This causes the pager to load and journal
6280 ** the current page content before overwriting it.
6281 **
6282 ** Note that the pager will not actually attempt to load or journal
6283 ** content for any page that really does lie past the end of the database
6284 ** file on disk. So the effects of disabling the no-content optimization
6285 ** here are confined to those pages that lie between the end of the
6286 ** database image and the end of the database file.
6287 */
drh3f387402014-09-24 01:23:00 +00006288 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006289
drhdd3cd972010-03-27 17:12:36 +00006290 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6291 if( rc ) return rc;
6292 pBt->nPage++;
6293 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006294
danielk1977afcdd022004-10-31 16:25:42 +00006295#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006296 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006297 /* If *pPgno refers to a pointer-map page, allocate two new pages
6298 ** at the end of the file instead of one. The first allocated page
6299 ** becomes a new pointer-map page, the second is used by the caller.
6300 */
danielk1977ac861692009-03-28 10:54:22 +00006301 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006302 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6303 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006304 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006305 if( rc==SQLITE_OK ){
6306 rc = sqlite3PagerWrite(pPg->pDbPage);
6307 releasePage(pPg);
6308 }
6309 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006310 pBt->nPage++;
6311 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006312 }
6313#endif
drhdd3cd972010-03-27 17:12:36 +00006314 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6315 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006316
danielk1977599fcba2004-11-08 07:13:13 +00006317 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006318 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006319 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006320 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006321 if( rc!=SQLITE_OK ){
6322 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006323 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006324 }
drh3a4c1412004-05-09 20:40:11 +00006325 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006326 }
danielk1977599fcba2004-11-08 07:13:13 +00006327
danba14c692019-01-25 13:42:12 +00006328 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006329
6330end_allocate_page:
6331 releasePage(pTrunk);
6332 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006333 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6334 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006335 return rc;
6336}
6337
6338/*
danielk1977bea2a942009-01-20 17:06:27 +00006339** This function is used to add page iPage to the database file free-list.
6340** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006341**
danielk1977bea2a942009-01-20 17:06:27 +00006342** The value passed as the second argument to this function is optional.
6343** If the caller happens to have a pointer to the MemPage object
6344** corresponding to page iPage handy, it may pass it as the second value.
6345** Otherwise, it may pass NULL.
6346**
6347** If a pointer to a MemPage object is passed as the second argument,
6348** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006349*/
danielk1977bea2a942009-01-20 17:06:27 +00006350static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6351 MemPage *pTrunk = 0; /* Free-list trunk page */
6352 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6353 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6354 MemPage *pPage; /* Page being freed. May be NULL. */
6355 int rc; /* Return Code */
drh25050f22019-04-09 01:26:31 +00006356 u32 nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006357
danielk1977bea2a942009-01-20 17:06:27 +00006358 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006359 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006360 assert( !pMemPage || pMemPage->pgno==iPage );
6361
drh53218e22020-07-31 23:34:53 +00006362 if( iPage<2 || iPage>pBt->nPage ){
drh58b42ad2019-03-25 19:50:19 +00006363 return SQLITE_CORRUPT_BKPT;
6364 }
danielk1977bea2a942009-01-20 17:06:27 +00006365 if( pMemPage ){
6366 pPage = pMemPage;
6367 sqlite3PagerRef(pPage->pDbPage);
6368 }else{
6369 pPage = btreePageLookup(pBt, iPage);
6370 }
drh3aac2dd2004-04-26 14:10:20 +00006371
drha34b6762004-05-07 13:30:42 +00006372 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006373 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006374 if( rc ) goto freepage_out;
6375 nFree = get4byte(&pPage1->aData[36]);
6376 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006377
drhc9166342012-01-05 23:32:06 +00006378 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006379 /* If the secure_delete option is enabled, then
6380 ** always fully overwrite deleted information with zeros.
6381 */
drhb00fc3b2013-08-21 23:42:32 +00006382 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006383 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006384 ){
6385 goto freepage_out;
6386 }
6387 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006388 }
drhfcce93f2006-02-22 03:08:32 +00006389
danielk1977687566d2004-11-02 12:56:41 +00006390 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006391 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006392 */
danielk197785d90ca2008-07-19 14:25:15 +00006393 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006394 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006395 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006396 }
danielk1977687566d2004-11-02 12:56:41 +00006397
danielk1977bea2a942009-01-20 17:06:27 +00006398 /* Now manipulate the actual database free-list structure. There are two
6399 ** possibilities. If the free-list is currently empty, or if the first
6400 ** trunk page in the free-list is full, then this page will become a
6401 ** new free-list trunk page. Otherwise, it will become a leaf of the
6402 ** first trunk page in the current free-list. This block tests if it
6403 ** is possible to add the page as a new free-list leaf.
6404 */
6405 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006406 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006407
6408 iTrunk = get4byte(&pPage1->aData[32]);
drh10248222020-07-28 20:32:12 +00006409 if( iTrunk>btreePagecount(pBt) ){
6410 rc = SQLITE_CORRUPT_BKPT;
6411 goto freepage_out;
6412 }
drhb00fc3b2013-08-21 23:42:32 +00006413 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006414 if( rc!=SQLITE_OK ){
6415 goto freepage_out;
6416 }
6417
6418 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006419 assert( pBt->usableSize>32 );
6420 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006421 rc = SQLITE_CORRUPT_BKPT;
6422 goto freepage_out;
6423 }
drheeb844a2009-08-08 18:01:07 +00006424 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006425 /* In this case there is room on the trunk page to insert the page
6426 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006427 **
6428 ** Note that the trunk page is not really full until it contains
6429 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6430 ** coded. But due to a coding error in versions of SQLite prior to
6431 ** 3.6.0, databases with freelist trunk pages holding more than
6432 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6433 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006434 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006435 ** for now. At some point in the future (once everyone has upgraded
6436 ** to 3.6.0 or later) we should consider fixing the conditional above
6437 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006438 **
6439 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6440 ** avoid using the last six entries in the freelist trunk page array in
6441 ** order that database files created by newer versions of SQLite can be
6442 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006443 */
danielk19773b8a05f2007-03-19 17:44:26 +00006444 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006445 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006446 put4byte(&pTrunk->aData[4], nLeaf+1);
6447 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006448 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006449 sqlite3PagerDontWrite(pPage->pDbPage);
6450 }
danielk1977bea2a942009-01-20 17:06:27 +00006451 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006452 }
drh3a4c1412004-05-09 20:40:11 +00006453 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006454 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006455 }
drh3b7511c2001-05-26 13:15:44 +00006456 }
danielk1977bea2a942009-01-20 17:06:27 +00006457
6458 /* If control flows to this point, then it was not possible to add the
6459 ** the page being freed as a leaf page of the first trunk in the free-list.
6460 ** Possibly because the free-list is empty, or possibly because the
6461 ** first trunk in the free-list is full. Either way, the page being freed
6462 ** will become the new first trunk page in the free-list.
6463 */
drhb00fc3b2013-08-21 23:42:32 +00006464 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006465 goto freepage_out;
6466 }
6467 rc = sqlite3PagerWrite(pPage->pDbPage);
6468 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006469 goto freepage_out;
6470 }
6471 put4byte(pPage->aData, iTrunk);
6472 put4byte(&pPage->aData[4], 0);
6473 put4byte(&pPage1->aData[32], iPage);
6474 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6475
6476freepage_out:
6477 if( pPage ){
6478 pPage->isInit = 0;
6479 }
6480 releasePage(pPage);
6481 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006482 return rc;
6483}
drhc314dc72009-07-21 11:52:34 +00006484static void freePage(MemPage *pPage, int *pRC){
6485 if( (*pRC)==SQLITE_OK ){
6486 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6487 }
danielk1977bea2a942009-01-20 17:06:27 +00006488}
drh3b7511c2001-05-26 13:15:44 +00006489
6490/*
drh86c779f2021-05-15 13:08:44 +00006491** Free the overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00006492*/
drh86c779f2021-05-15 13:08:44 +00006493static SQLITE_NOINLINE int clearCellOverflow(
drh9bfdc252014-09-24 02:05:41 +00006494 MemPage *pPage, /* The page that contains the Cell */
6495 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006496 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006497){
drh60172a52017-08-02 18:27:50 +00006498 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006499 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006500 int rc;
drh94440812007-03-06 11:42:19 +00006501 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006502 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006503
drh1fee73e2007-08-29 04:00:57 +00006504 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh86c779f2021-05-15 13:08:44 +00006505 assert( pInfo->nLocal!=pInfo->nPayload );
drh6fcf83a2018-05-05 01:23:28 +00006506 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6507 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6508 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006509 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006510 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006511 }
drh80159da2016-12-09 17:32:51 +00006512 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006513 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006514 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006515 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006516 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006517 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006518 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006519 );
drh72365832007-03-06 15:53:44 +00006520 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006521 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006522 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006523 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006524 /* 0 is not a legal page number and page 1 cannot be an
6525 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6526 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006527 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006528 }
danielk1977bea2a942009-01-20 17:06:27 +00006529 if( nOvfl ){
6530 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6531 if( rc ) return rc;
6532 }
dan887d4b22010-02-25 12:09:16 +00006533
shaneh1da207e2010-03-09 14:41:12 +00006534 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006535 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6536 ){
6537 /* There is no reason any cursor should have an outstanding reference
6538 ** to an overflow page belonging to a cell that is being deleted/updated.
6539 ** So if there exists more than one reference to this page, then it
6540 ** must not really be an overflow page and the database must be corrupt.
6541 ** It is helpful to detect this before calling freePage2(), as
6542 ** freePage2() may zero the page contents if secure-delete mode is
6543 ** enabled. If this 'overflow' page happens to be a page that the
6544 ** caller is iterating through or using in some other way, this
6545 ** can be problematic.
6546 */
6547 rc = SQLITE_CORRUPT_BKPT;
6548 }else{
6549 rc = freePage2(pBt, pOvfl, ovflPgno);
6550 }
6551
danielk1977bea2a942009-01-20 17:06:27 +00006552 if( pOvfl ){
6553 sqlite3PagerUnref(pOvfl->pDbPage);
6554 }
drh3b7511c2001-05-26 13:15:44 +00006555 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006556 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006557 }
drh5e2f8b92001-05-28 00:41:15 +00006558 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006559}
6560
drh86c779f2021-05-15 13:08:44 +00006561/* Call xParseCell to compute the size of a cell. If the cell contains
6562** overflow, then invoke cellClearOverflow to clear out that overflow.
6563** STore the result code (SQLITE_OK or some error code) in rc.
6564**
6565** Implemented as macro to force inlining for performance.
6566*/
6567#define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
6568 pPage->xParseCell(pPage, pCell, &sInfo); \
6569 if( sInfo.nLocal!=sInfo.nPayload ){ \
6570 rc = clearCellOverflow(pPage, pCell, &sInfo); \
6571 }else{ \
6572 rc = SQLITE_OK; \
6573 }
6574
6575
drh3b7511c2001-05-26 13:15:44 +00006576/*
drh91025292004-05-03 19:49:32 +00006577** Create the byte sequence used to represent a cell on page pPage
6578** and write that byte sequence into pCell[]. Overflow pages are
6579** allocated and filled in as necessary. The calling procedure
6580** is responsible for making sure sufficient space has been allocated
6581** for pCell[].
6582**
6583** Note that pCell does not necessary need to point to the pPage->aData
6584** area. pCell might point to some temporary storage. The cell will
6585** be constructed in this temporary area then copied into pPage->aData
6586** later.
drh3b7511c2001-05-26 13:15:44 +00006587*/
6588static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006589 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006590 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006591 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006592 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006593){
drh3b7511c2001-05-26 13:15:44 +00006594 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006595 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006596 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006597 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006598 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006599 unsigned char *pPrior;
6600 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006601 BtShared *pBt;
6602 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006603 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006604
drh1fee73e2007-08-29 04:00:57 +00006605 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006606
drhc5053fb2008-11-27 02:22:10 +00006607 /* pPage is not necessarily writeable since pCell might be auxiliary
6608 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006609 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006610 || sqlite3PagerIswriteable(pPage->pDbPage) );
6611
drh91025292004-05-03 19:49:32 +00006612 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006613 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006614 if( pPage->intKey ){
6615 nPayload = pX->nData + pX->nZero;
6616 pSrc = pX->pData;
6617 nSrc = pX->nData;
6618 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006619 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006620 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006621 }else{
drh8eeb4462016-05-21 20:03:42 +00006622 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6623 nSrc = nPayload = (int)pX->nKey;
6624 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006625 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006626 }
drhdfc2daa2016-05-21 23:25:29 +00006627
6628 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006629 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006630 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006631 /* This is the common case where everything fits on the btree page
6632 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006633 n = nHeader + nPayload;
6634 testcase( n==3 );
6635 testcase( n==4 );
6636 if( n<4 ) n = 4;
6637 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006638 assert( nSrc<=nPayload );
6639 testcase( nSrc<nPayload );
6640 memcpy(pPayload, pSrc, nSrc);
6641 memset(pPayload+nSrc, 0, nPayload-nSrc);
6642 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006643 }
drh5e27e1d2017-08-23 14:45:59 +00006644
6645 /* If we reach this point, it means that some of the content will need
6646 ** to spill onto overflow pages.
6647 */
6648 mn = pPage->minLocal;
6649 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6650 testcase( n==pPage->maxLocal );
6651 testcase( n==pPage->maxLocal+1 );
6652 if( n > pPage->maxLocal ) n = mn;
6653 spaceLeft = n;
6654 *pnSize = n + nHeader + 4;
6655 pPrior = &pCell[nHeader+n];
6656 pToRelease = 0;
6657 pgnoOvfl = 0;
6658 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006659
drh6200c882014-09-23 22:36:25 +00006660 /* At this point variables should be set as follows:
6661 **
6662 ** nPayload Total payload size in bytes
6663 ** pPayload Begin writing payload here
6664 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6665 ** that means content must spill into overflow pages.
6666 ** *pnSize Size of the local cell (not counting overflow pages)
6667 ** pPrior Where to write the pgno of the first overflow page
6668 **
6669 ** Use a call to btreeParseCellPtr() to verify that the values above
6670 ** were computed correctly.
6671 */
drhd879e3e2017-02-13 13:35:55 +00006672#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006673 {
6674 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006675 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006676 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006677 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006678 assert( *pnSize == info.nSize );
6679 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006680 }
6681#endif
6682
6683 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006684 while( 1 ){
6685 n = nPayload;
6686 if( n>spaceLeft ) n = spaceLeft;
6687
6688 /* If pToRelease is not zero than pPayload points into the data area
6689 ** of pToRelease. Make sure pToRelease is still writeable. */
6690 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6691
6692 /* If pPayload is part of the data area of pPage, then make sure pPage
6693 ** is still writeable */
6694 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6695 || sqlite3PagerIswriteable(pPage->pDbPage) );
6696
6697 if( nSrc>=n ){
6698 memcpy(pPayload, pSrc, n);
6699 }else if( nSrc>0 ){
6700 n = nSrc;
6701 memcpy(pPayload, pSrc, n);
6702 }else{
6703 memset(pPayload, 0, n);
6704 }
6705 nPayload -= n;
6706 if( nPayload<=0 ) break;
6707 pPayload += n;
6708 pSrc += n;
6709 nSrc -= n;
6710 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006711 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006712 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006713#ifndef SQLITE_OMIT_AUTOVACUUM
6714 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006715 if( pBt->autoVacuum ){
6716 do{
6717 pgnoOvfl++;
6718 } while(
6719 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6720 );
danielk1977b39f70b2007-05-17 18:28:11 +00006721 }
danielk1977afcdd022004-10-31 16:25:42 +00006722#endif
drhf49661a2008-12-10 16:45:50 +00006723 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006724#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006725 /* If the database supports auto-vacuum, and the second or subsequent
6726 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006727 ** for that page now.
6728 **
6729 ** If this is the first overflow page, then write a partial entry
6730 ** to the pointer-map. If we write nothing to this pointer-map slot,
6731 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006732 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006733 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006734 */
danielk19774ef24492007-05-23 09:52:41 +00006735 if( pBt->autoVacuum && rc==SQLITE_OK ){
6736 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006737 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006738 if( rc ){
6739 releasePage(pOvfl);
6740 }
danielk1977afcdd022004-10-31 16:25:42 +00006741 }
6742#endif
drh3b7511c2001-05-26 13:15:44 +00006743 if( rc ){
drh9b171272004-05-08 02:03:22 +00006744 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006745 return rc;
6746 }
drhc5053fb2008-11-27 02:22:10 +00006747
6748 /* If pToRelease is not zero than pPrior points into the data area
6749 ** of pToRelease. Make sure pToRelease is still writeable. */
6750 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6751
6752 /* If pPrior is part of the data area of pPage, then make sure pPage
6753 ** is still writeable */
6754 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6755 || sqlite3PagerIswriteable(pPage->pDbPage) );
6756
drh3aac2dd2004-04-26 14:10:20 +00006757 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006758 releasePage(pToRelease);
6759 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006760 pPrior = pOvfl->aData;
6761 put4byte(pPrior, 0);
6762 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006763 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006764 }
drhdd793422001-06-28 01:54:48 +00006765 }
drh9b171272004-05-08 02:03:22 +00006766 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006767 return SQLITE_OK;
6768}
6769
drh14acc042001-06-10 19:56:58 +00006770/*
6771** Remove the i-th cell from pPage. This routine effects pPage only.
6772** The cell content is not freed or deallocated. It is assumed that
6773** the cell content has been copied someplace else. This routine just
6774** removes the reference to the cell from pPage.
6775**
6776** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006777*/
drh98add2e2009-07-20 17:11:49 +00006778static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006779 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006780 u8 *data; /* pPage->aData */
6781 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006782 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006783 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006784
drh98add2e2009-07-20 17:11:49 +00006785 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006786 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006787 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006788 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006789 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00006790 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00006791 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006792 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006793 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006794 hdr = pPage->hdrOffset;
6795 testcase( pc==get2byte(&data[hdr+5]) );
6796 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006797 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006798 *pRC = SQLITE_CORRUPT_BKPT;
6799 return;
shane0af3f892008-11-12 04:55:34 +00006800 }
shanedcc50b72008-11-13 18:29:50 +00006801 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006802 if( rc ){
6803 *pRC = rc;
6804 return;
shanedcc50b72008-11-13 18:29:50 +00006805 }
drh14acc042001-06-10 19:56:58 +00006806 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006807 if( pPage->nCell==0 ){
6808 memset(&data[hdr+1], 0, 4);
6809 data[hdr+7] = 0;
6810 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6811 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6812 - pPage->childPtrSize - 8;
6813 }else{
6814 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6815 put2byte(&data[hdr+3], pPage->nCell);
6816 pPage->nFree += 2;
6817 }
drh14acc042001-06-10 19:56:58 +00006818}
6819
6820/*
6821** Insert a new cell on pPage at cell index "i". pCell points to the
6822** content of the cell.
6823**
6824** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006825** will not fit, then make a copy of the cell content into pTemp if
6826** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006827** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006828** in pTemp or the original pCell) and also record its index.
6829** Allocating a new entry in pPage->aCell[] implies that
6830** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006831**
6832** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006833*/
drh98add2e2009-07-20 17:11:49 +00006834static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006835 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006836 int i, /* New cell becomes the i-th cell of the page */
6837 u8 *pCell, /* Content of the new cell */
6838 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006839 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006840 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6841 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006842){
drh383d30f2010-02-26 13:07:37 +00006843 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006844 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006845 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006846 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006847
drhcb89f4a2016-05-21 11:23:26 +00006848 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006849 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006850 assert( MX_CELL(pPage->pBt)<=10921 );
6851 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006852 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6853 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006854 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh996f5cc2019-07-17 16:18:01 +00006855 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00006856 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00006857 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006858 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006859 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006860 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006861 }
danielk19774dbaa892009-06-16 16:50:22 +00006862 if( iChild ){
6863 put4byte(pCell, iChild);
6864 }
drh43605152004-05-29 21:46:49 +00006865 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006866 /* Comparison against ArraySize-1 since we hold back one extra slot
6867 ** as a contingency. In other words, never need more than 3 overflow
6868 ** slots but 4 are allocated, just to be safe. */
6869 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006870 pPage->apOvfl[j] = pCell;
6871 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006872
6873 /* When multiple overflows occur, they are always sequential and in
6874 ** sorted order. This invariants arise because multiple overflows can
6875 ** only occur when inserting divider cells into the parent page during
6876 ** balancing, and the dividers are adjacent and sorted.
6877 */
6878 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6879 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006880 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006881 int rc = sqlite3PagerWrite(pPage->pDbPage);
6882 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006883 *pRC = rc;
6884 return;
danielk19776e465eb2007-08-21 13:11:00 +00006885 }
6886 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006887 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006888 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006889 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006890 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006891 /* The allocateSpace() routine guarantees the following properties
6892 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006893 assert( idx >= 0 );
6894 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006895 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006896 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00006897 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00006898 /* In a corrupt database where an entry in the cell index section of
6899 ** a btree page has a value of 3 or less, the pCell value might point
6900 ** as many as 4 bytes in front of the start of the aData buffer for
6901 ** the source page. Make sure this does not cause problems by not
6902 ** reading the first 4 bytes */
6903 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00006904 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00006905 }else{
6906 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006907 }
drh2c8fb922015-06-25 19:53:48 +00006908 pIns = pPage->aCellIdx + i*2;
6909 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6910 put2byte(pIns, idx);
6911 pPage->nCell++;
6912 /* increment the cell count */
6913 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00006914 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
danielk1977a19df672004-11-03 11:37:07 +00006915#ifndef SQLITE_OMIT_AUTOVACUUM
6916 if( pPage->pBt->autoVacuum ){
6917 /* The cell may contain a pointer to an overflow page. If so, write
6918 ** the entry for the overflow page into the pointer map.
6919 */
drh0f1bf4c2019-01-13 20:17:21 +00006920 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006921 }
6922#endif
drh14acc042001-06-10 19:56:58 +00006923 }
6924}
6925
6926/*
drhe3dadac2019-01-23 19:25:59 +00006927** The following parameters determine how many adjacent pages get involved
6928** in a balancing operation. NN is the number of neighbors on either side
6929** of the page that participate in the balancing operation. NB is the
6930** total number of pages that participate, including the target page and
6931** NN neighbors on either side.
6932**
6933** The minimum value of NN is 1 (of course). Increasing NN above 1
6934** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6935** in exchange for a larger degradation in INSERT and UPDATE performance.
6936** The value of NN appears to give the best results overall.
6937**
6938** (Later:) The description above makes it seem as if these values are
6939** tunable - as if you could change them and recompile and it would all work.
6940** But that is unlikely. NB has been 3 since the inception of SQLite and
6941** we have never tested any other value.
6942*/
6943#define NN 1 /* Number of neighbors on either side of pPage */
6944#define NB 3 /* (NN*2+1): Total pages involved in the balance */
6945
6946/*
drh1ffd2472015-06-23 02:37:30 +00006947** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006948** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00006949**
6950** The cells in this array are the divider cell or cells from the pParent
6951** page plus up to three child pages. There are a total of nCell cells.
6952**
6953** pRef is a pointer to one of the pages that contributes cells. This is
6954** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6955** which should be common to all pages that contribute cells to this array.
6956**
6957** apCell[] and szCell[] hold, respectively, pointers to the start of each
6958** cell and the size of each cell. Some of the apCell[] pointers might refer
6959** to overflow cells. In other words, some apCel[] pointers might not point
6960** to content area of the pages.
6961**
6962** A szCell[] of zero means the size of that cell has not yet been computed.
6963**
6964** The cells come from as many as four different pages:
6965**
6966** -----------
6967** | Parent |
6968** -----------
6969** / | \
6970** / | \
6971** --------- --------- ---------
6972** |Child-1| |Child-2| |Child-3|
6973** --------- --------- ---------
6974**
drh26b7ec82019-02-01 14:50:43 +00006975** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00006976**
6977** 1. All cells from Child-1 in order
6978** 2. The first divider cell from Parent
6979** 3. All cells from Child-2 in order
6980** 4. The second divider cell from Parent
6981** 5. All cells from Child-3 in order
6982**
drh26b7ec82019-02-01 14:50:43 +00006983** For a table-btree (with rowids) the items 2 and 4 are empty because
6984** content exists only in leaves and there are no divider cells.
6985**
6986** For an index btree, the apEnd[] array holds pointer to the end of page
6987** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6988** respectively. The ixNx[] array holds the number of cells contained in
6989** each of these 5 stages, and all stages to the left. Hence:
6990**
drhe3dadac2019-01-23 19:25:59 +00006991** ixNx[0] = Number of cells in Child-1.
6992** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6993** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6994** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6995** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00006996**
6997** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6998** are used and they point to the leaf pages only, and the ixNx value are:
6999**
7000** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00007001** ixNx[1] = Number of cells in Child-1 and Child-2.
7002** ixNx[2] = Total number of cells.
7003**
7004** Sometimes when deleting, a child page can have zero cells. In those
7005** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7006** entries, shift down. The end result is that each ixNx[] entry should
7007** be larger than the previous
drhfa1a98a2004-05-14 19:08:17 +00007008*/
drh1ffd2472015-06-23 02:37:30 +00007009typedef struct CellArray CellArray;
7010struct CellArray {
7011 int nCell; /* Number of cells in apCell[] */
7012 MemPage *pRef; /* Reference page */
7013 u8 **apCell; /* All cells begin balanced */
7014 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00007015 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
7016 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00007017};
drhfa1a98a2004-05-14 19:08:17 +00007018
drh1ffd2472015-06-23 02:37:30 +00007019/*
7020** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7021** computed.
7022*/
7023static void populateCellCache(CellArray *p, int idx, int N){
7024 assert( idx>=0 && idx+N<=p->nCell );
7025 while( N>0 ){
7026 assert( p->apCell[idx]!=0 );
7027 if( p->szCell[idx]==0 ){
7028 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
7029 }else{
7030 assert( CORRUPT_DB ||
7031 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
7032 }
7033 idx++;
7034 N--;
drhfa1a98a2004-05-14 19:08:17 +00007035 }
drh1ffd2472015-06-23 02:37:30 +00007036}
7037
7038/*
7039** Return the size of the Nth element of the cell array
7040*/
7041static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7042 assert( N>=0 && N<p->nCell );
7043 assert( p->szCell[N]==0 );
7044 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7045 return p->szCell[N];
7046}
7047static u16 cachedCellSize(CellArray *p, int N){
7048 assert( N>=0 && N<p->nCell );
7049 if( p->szCell[N] ) return p->szCell[N];
7050 return computeCellSize(p, N);
7051}
7052
7053/*
dan8e9ba0c2014-10-14 17:27:04 +00007054** Array apCell[] contains pointers to nCell b-tree page cells. The
7055** szCell[] array contains the size in bytes of each cell. This function
7056** replaces the current contents of page pPg with the contents of the cell
7057** array.
7058**
7059** Some of the cells in apCell[] may currently be stored in pPg. This
7060** function works around problems caused by this by making a copy of any
7061** such cells before overwriting the page data.
7062**
7063** The MemPage.nFree field is invalidated by this function. It is the
7064** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00007065*/
drh658873b2015-06-22 20:02:04 +00007066static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00007067 CellArray *pCArray, /* Content to be added to page pPg */
7068 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00007069 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00007070 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00007071){
7072 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
7073 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
7074 const int usableSize = pPg->pBt->usableSize;
7075 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00007076 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00007077 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00007078 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00007079 u8 *pCellptr = pPg->aCellIdx;
7080 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7081 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00007082 int k; /* Current slot in pCArray->apEnd[] */
7083 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00007084
drhe3dadac2019-01-23 19:25:59 +00007085 assert( i<iEnd );
7086 j = get2byte(&aData[hdr+5]);
drh7f581172021-09-10 01:02:42 +00007087 if( NEVER(j>(u32)usableSize) ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00007088 memcpy(&pTmp[j], &aData[j], usableSize - j);
7089
7090 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7091 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00007092
dan8e9ba0c2014-10-14 17:27:04 +00007093 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00007094 while( 1/*exit by break*/ ){
7095 u8 *pCell = pCArray->apCell[i];
7096 u16 sz = pCArray->szCell[i];
7097 assert( sz>0 );
drh8cae5a42021-04-20 20:48:15 +00007098 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
drhb2b61bb2020-01-04 14:50:06 +00007099 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00007100 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00007101 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7102 && (uptr)(pCell)<(uptr)pSrcEnd
7103 ){
7104 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00007105 }
drhe3dadac2019-01-23 19:25:59 +00007106
7107 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00007108 put2byte(pCellptr, (pData - aData));
7109 pCellptr += 2;
drhe5cf3e92020-01-04 12:34:44 +00007110 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drheca3c672021-04-22 20:01:02 +00007111 memmove(pData, pCell, sz);
drhe5cf3e92020-01-04 12:34:44 +00007112 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007113 i++;
7114 if( i>=iEnd ) break;
7115 if( pCArray->ixNx[k]<=i ){
7116 k++;
7117 pSrcEnd = pCArray->apEnd[k];
7118 }
dan33ea4862014-10-09 19:35:37 +00007119 }
7120
dand7b545b2014-10-13 18:03:27 +00007121 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00007122 pPg->nCell = nCell;
7123 pPg->nOverflow = 0;
7124
7125 put2byte(&aData[hdr+1], 0);
7126 put2byte(&aData[hdr+3], pPg->nCell);
7127 put2byte(&aData[hdr+5], pData - aData);
7128 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00007129 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00007130}
7131
dan8e9ba0c2014-10-14 17:27:04 +00007132/*
drhe3dadac2019-01-23 19:25:59 +00007133** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7134** This function attempts to add the cells stored in the array to page pPg.
7135** If it cannot (because the page needs to be defragmented before the cells
7136** will fit), non-zero is returned. Otherwise, if the cells are added
7137** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00007138**
7139** Argument pCellptr points to the first entry in the cell-pointer array
7140** (part of page pPg) to populate. After cell apCell[0] is written to the
7141** page body, a 16-bit offset is written to pCellptr. And so on, for each
7142** cell in the array. It is the responsibility of the caller to ensure
7143** that it is safe to overwrite this part of the cell-pointer array.
7144**
7145** When this function is called, *ppData points to the start of the
7146** content area on page pPg. If the size of the content area is extended,
7147** *ppData is updated to point to the new start of the content area
7148** before returning.
7149**
7150** Finally, argument pBegin points to the byte immediately following the
7151** end of the space required by this page for the cell-pointer area (for
7152** all cells - not just those inserted by the current call). If the content
7153** area must be extended to before this point in order to accomodate all
7154** cells in apCell[], then the cells do not fit and non-zero is returned.
7155*/
dand7b545b2014-10-13 18:03:27 +00007156static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00007157 MemPage *pPg, /* Page to add cells to */
7158 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00007159 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00007160 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00007161 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00007162 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00007163 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007164){
drhe3dadac2019-01-23 19:25:59 +00007165 int i = iFirst; /* Loop counter - cell index to insert */
7166 u8 *aData = pPg->aData; /* Complete page */
7167 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7168 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7169 int k; /* Current slot in pCArray->apEnd[] */
7170 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00007171 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00007172 if( iEnd<=iFirst ) return 0;
7173 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7174 pEnd = pCArray->apEnd[k];
7175 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00007176 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00007177 u8 *pSlot;
dan666a42f2019-08-24 21:02:47 +00007178 assert( pCArray->szCell[i]!=0 );
7179 sz = pCArray->szCell[i];
drhb7580e82015-06-25 18:36:13 +00007180 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00007181 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00007182 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00007183 pSlot = pData;
7184 }
drh48310f82015-10-10 16:41:28 +00007185 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7186 ** database. But they might for a corrupt database. Hence use memmove()
7187 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7188 assert( (pSlot+sz)<=pCArray->apCell[i]
7189 || pSlot>=(pCArray->apCell[i]+sz)
7190 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007191 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7192 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7193 ){
7194 assert( CORRUPT_DB );
7195 (void)SQLITE_CORRUPT_BKPT;
7196 return 1;
7197 }
drh48310f82015-10-10 16:41:28 +00007198 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007199 put2byte(pCellptr, (pSlot - aData));
7200 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007201 i++;
7202 if( i>=iEnd ) break;
7203 if( pCArray->ixNx[k]<=i ){
7204 k++;
7205 pEnd = pCArray->apEnd[k];
7206 }
dand7b545b2014-10-13 18:03:27 +00007207 }
7208 *ppData = pData;
7209 return 0;
7210}
7211
dan8e9ba0c2014-10-14 17:27:04 +00007212/*
drhe3dadac2019-01-23 19:25:59 +00007213** The pCArray object contains pointers to b-tree cells and their sizes.
7214**
7215** This function adds the space associated with each cell in the array
7216** that is currently stored within the body of pPg to the pPg free-list.
7217** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007218**
7219** This function returns the total number of cells added to the free-list.
7220*/
dand7b545b2014-10-13 18:03:27 +00007221static int pageFreeArray(
7222 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007223 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007224 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007225 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007226){
7227 u8 * const aData = pPg->aData;
7228 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007229 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007230 int nRet = 0;
7231 int i;
drhf7838932015-06-23 15:36:34 +00007232 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007233 u8 *pFree = 0;
7234 int szFree = 0;
7235
drhf7838932015-06-23 15:36:34 +00007236 for(i=iFirst; i<iEnd; i++){
7237 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007238 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007239 int sz;
7240 /* No need to use cachedCellSize() here. The sizes of all cells that
7241 ** are to be freed have already been computing while deciding which
7242 ** cells need freeing */
7243 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007244 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007245 if( pFree ){
7246 assert( pFree>aData && (pFree - aData)<65536 );
7247 freeSpace(pPg, (u16)(pFree - aData), szFree);
7248 }
dand7b545b2014-10-13 18:03:27 +00007249 pFree = pCell;
7250 szFree = sz;
drhccb897c2021-05-11 10:47:41 +00007251 if( pFree+sz>pEnd ){
7252 return 0;
drhc3c23f32021-05-06 11:02:55 +00007253 }
dand7b545b2014-10-13 18:03:27 +00007254 }else{
7255 pFree = pCell;
7256 szFree += sz;
7257 }
7258 nRet++;
7259 }
7260 }
drhfefa0942014-11-05 21:21:08 +00007261 if( pFree ){
7262 assert( pFree>aData && (pFree - aData)<65536 );
7263 freeSpace(pPg, (u16)(pFree - aData), szFree);
7264 }
dand7b545b2014-10-13 18:03:27 +00007265 return nRet;
7266}
7267
dand7b545b2014-10-13 18:03:27 +00007268/*
drha0466432019-01-29 16:41:13 +00007269** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007270** balanced. The current page, pPg, has pPg->nCell cells starting with
7271** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007272** starting at apCell[iNew].
7273**
7274** This routine makes the necessary adjustments to pPg so that it contains
7275** the correct cells after being balanced.
7276**
dand7b545b2014-10-13 18:03:27 +00007277** The pPg->nFree field is invalid when this function returns. It is the
7278** responsibility of the caller to set it correctly.
7279*/
drh658873b2015-06-22 20:02:04 +00007280static int editPage(
dan09c68402014-10-11 20:00:24 +00007281 MemPage *pPg, /* Edit this page */
7282 int iOld, /* Index of first cell currently on page */
7283 int iNew, /* Index of new first cell on page */
7284 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007285 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007286){
dand7b545b2014-10-13 18:03:27 +00007287 u8 * const aData = pPg->aData;
7288 const int hdr = pPg->hdrOffset;
7289 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7290 int nCell = pPg->nCell; /* Cells stored on pPg */
7291 u8 *pData;
7292 u8 *pCellptr;
7293 int i;
7294 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7295 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007296
7297#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007298 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7299 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007300#endif
7301
dand7b545b2014-10-13 18:03:27 +00007302 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007303 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007304 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007305 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drhfde25922020-05-05 19:54:02 +00007306 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007307 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7308 nCell -= nShift;
7309 }
7310 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007311 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7312 assert( nCell>=nTail );
7313 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007314 }
dan09c68402014-10-11 20:00:24 +00007315
drh5ab63772014-11-27 03:46:04 +00007316 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007317 if( pData<pBegin ) goto editpage_fail;
drh7f581172021-09-10 01:02:42 +00007318 if( NEVER(pData>pPg->aDataEnd) ) goto editpage_fail;
dand7b545b2014-10-13 18:03:27 +00007319
7320 /* Add cells to the start of the page */
7321 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007322 int nAdd = MIN(nNew,iOld-iNew);
7323 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007324 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007325 pCellptr = pPg->aCellIdx;
7326 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7327 if( pageInsertArray(
7328 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007329 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007330 ) ) goto editpage_fail;
7331 nCell += nAdd;
7332 }
7333
7334 /* Add any overflow cells */
7335 for(i=0; i<pPg->nOverflow; i++){
7336 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7337 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007338 pCellptr = &pPg->aCellIdx[iCell * 2];
drh4b986b22019-03-08 14:02:11 +00007339 if( nCell>iCell ){
7340 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7341 }
dand7b545b2014-10-13 18:03:27 +00007342 nCell++;
dan666a42f2019-08-24 21:02:47 +00007343 cachedCellSize(pCArray, iCell+iNew);
dand7b545b2014-10-13 18:03:27 +00007344 if( pageInsertArray(
7345 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007346 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007347 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007348 }
dand7b545b2014-10-13 18:03:27 +00007349 }
dan09c68402014-10-11 20:00:24 +00007350
dand7b545b2014-10-13 18:03:27 +00007351 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007352 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007353 pCellptr = &pPg->aCellIdx[nCell*2];
7354 if( pageInsertArray(
7355 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007356 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007357 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007358
dand7b545b2014-10-13 18:03:27 +00007359 pPg->nCell = nNew;
7360 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007361
dand7b545b2014-10-13 18:03:27 +00007362 put2byte(&aData[hdr+3], pPg->nCell);
7363 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007364
7365#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007366 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007367 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007368 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007369 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007370 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007371 }
drh1ffd2472015-06-23 02:37:30 +00007372 assert( 0==memcmp(pCell, &aData[iOff],
7373 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007374 }
dan09c68402014-10-11 20:00:24 +00007375#endif
7376
drh658873b2015-06-22 20:02:04 +00007377 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007378 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007379 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007380 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007381 return rebuildPage(pCArray, iNew, nNew, pPg);
drhfa1a98a2004-05-14 19:08:17 +00007382}
7383
danielk1977ac245ec2005-01-14 13:50:11 +00007384
drh615ae552005-01-16 23:21:00 +00007385#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007386/*
7387** This version of balance() handles the common special case where
7388** a new entry is being inserted on the extreme right-end of the
7389** tree, in other words, when the new entry will become the largest
7390** entry in the tree.
7391**
drhc314dc72009-07-21 11:52:34 +00007392** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007393** a new page to the right-hand side and put the one new entry in
7394** that page. This leaves the right side of the tree somewhat
7395** unbalanced. But odds are that we will be inserting new entries
7396** at the end soon afterwards so the nearly empty page will quickly
7397** fill up. On average.
7398**
7399** pPage is the leaf page which is the right-most page in the tree.
7400** pParent is its parent. pPage must have a single overflow entry
7401** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007402**
7403** The pSpace buffer is used to store a temporary copy of the divider
7404** cell that will be inserted into pParent. Such a cell consists of a 4
7405** byte page number followed by a variable length integer. In other
7406** words, at most 13 bytes. Hence the pSpace buffer must be at
7407** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007408*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007409static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7410 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007411 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007412 int rc; /* Return Code */
7413 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007414
drh1fee73e2007-08-29 04:00:57 +00007415 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007416 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007417 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007418
drh6301c432018-12-13 21:52:18 +00007419 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007420 assert( pPage->nFree>=0 );
7421 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007422
danielk1977a50d9aa2009-06-08 14:49:45 +00007423 /* Allocate a new page. This page will become the right-sibling of
7424 ** pPage. Make the parent page writable, so that the new divider cell
7425 ** may be inserted. If both these operations are successful, proceed.
7426 */
drh4f0c5872007-03-26 22:05:01 +00007427 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007428
danielk1977eaa06f62008-09-18 17:34:44 +00007429 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007430
7431 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007432 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007433 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007434 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007435 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007436
drhc5053fb2008-11-27 02:22:10 +00007437 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007438 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007439 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007440 b.nCell = 1;
7441 b.pRef = pPage;
7442 b.apCell = &pCell;
7443 b.szCell = &szCell;
7444 b.apEnd[0] = pPage->aDataEnd;
7445 b.ixNx[0] = 2;
7446 rc = rebuildPage(&b, 0, 1, pNew);
7447 if( NEVER(rc) ){
7448 releasePage(pNew);
7449 return rc;
7450 }
dan8e9ba0c2014-10-14 17:27:04 +00007451 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007452
7453 /* If this is an auto-vacuum database, update the pointer map
7454 ** with entries for the new page, and any pointer from the
7455 ** cell on the page to an overflow page. If either of these
7456 ** operations fails, the return code is set, but the contents
7457 ** of the parent page are still manipulated by thh code below.
7458 ** That is Ok, at this point the parent page is guaranteed to
7459 ** be marked as dirty. Returning an error code will cause a
7460 ** rollback, undoing any changes made to the parent page.
7461 */
7462 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007463 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7464 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007465 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007466 }
7467 }
danielk1977eaa06f62008-09-18 17:34:44 +00007468
danielk19776f235cc2009-06-04 14:46:08 +00007469 /* Create a divider cell to insert into pParent. The divider cell
7470 ** consists of a 4-byte page number (the page number of pPage) and
7471 ** a variable length key value (which must be the same value as the
7472 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007473 **
danielk19776f235cc2009-06-04 14:46:08 +00007474 ** To find the largest key value on pPage, first find the right-most
7475 ** cell on pPage. The first two fields of this cell are the
7476 ** record-length (a variable length integer at most 32-bits in size)
7477 ** and the key value (a variable length integer, may have any value).
7478 ** The first of the while(...) loops below skips over the record-length
7479 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007480 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007481 */
danielk1977eaa06f62008-09-18 17:34:44 +00007482 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007483 pStop = &pCell[9];
7484 while( (*(pCell++)&0x80) && pCell<pStop );
7485 pStop = &pCell[9];
7486 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7487
danielk19774dbaa892009-06-16 16:50:22 +00007488 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007489 if( rc==SQLITE_OK ){
7490 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7491 0, pPage->pgno, &rc);
7492 }
danielk19776f235cc2009-06-04 14:46:08 +00007493
7494 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007495 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7496
danielk1977e08a3c42008-09-18 18:17:03 +00007497 /* Release the reference to the new page. */
7498 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007499 }
7500
danielk1977eaa06f62008-09-18 17:34:44 +00007501 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007502}
drh615ae552005-01-16 23:21:00 +00007503#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007504
danielk19774dbaa892009-06-16 16:50:22 +00007505#if 0
drhc3b70572003-01-04 19:44:07 +00007506/*
danielk19774dbaa892009-06-16 16:50:22 +00007507** This function does not contribute anything to the operation of SQLite.
7508** it is sometimes activated temporarily while debugging code responsible
7509** for setting pointer-map entries.
7510*/
7511static int ptrmapCheckPages(MemPage **apPage, int nPage){
7512 int i, j;
7513 for(i=0; i<nPage; i++){
7514 Pgno n;
7515 u8 e;
7516 MemPage *pPage = apPage[i];
7517 BtShared *pBt = pPage->pBt;
7518 assert( pPage->isInit );
7519
7520 for(j=0; j<pPage->nCell; j++){
7521 CellInfo info;
7522 u8 *z;
7523
7524 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007525 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007526 if( info.nLocal<info.nPayload ){
7527 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007528 ptrmapGet(pBt, ovfl, &e, &n);
7529 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7530 }
7531 if( !pPage->leaf ){
7532 Pgno child = get4byte(z);
7533 ptrmapGet(pBt, child, &e, &n);
7534 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7535 }
7536 }
7537 if( !pPage->leaf ){
7538 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7539 ptrmapGet(pBt, child, &e, &n);
7540 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7541 }
7542 }
7543 return 1;
7544}
7545#endif
7546
danielk1977cd581a72009-06-23 15:43:39 +00007547/*
7548** This function is used to copy the contents of the b-tree node stored
7549** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7550** the pointer-map entries for each child page are updated so that the
7551** parent page stored in the pointer map is page pTo. If pFrom contained
7552** any cells with overflow page pointers, then the corresponding pointer
7553** map entries are also updated so that the parent page is page pTo.
7554**
7555** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007556** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007557**
danielk197730548662009-07-09 05:07:37 +00007558** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007559**
7560** The performance of this function is not critical. It is only used by
7561** the balance_shallower() and balance_deeper() procedures, neither of
7562** which are called often under normal circumstances.
7563*/
drhc314dc72009-07-21 11:52:34 +00007564static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7565 if( (*pRC)==SQLITE_OK ){
7566 BtShared * const pBt = pFrom->pBt;
7567 u8 * const aFrom = pFrom->aData;
7568 u8 * const aTo = pTo->aData;
7569 int const iFromHdr = pFrom->hdrOffset;
7570 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007571 int rc;
drhc314dc72009-07-21 11:52:34 +00007572 int iData;
7573
7574
7575 assert( pFrom->isInit );
7576 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007577 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007578
7579 /* Copy the b-tree node content from page pFrom to page pTo. */
7580 iData = get2byte(&aFrom[iFromHdr+5]);
7581 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7582 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7583
7584 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007585 ** match the new data. The initialization of pTo can actually fail under
7586 ** fairly obscure circumstances, even though it is a copy of initialized
7587 ** page pFrom.
7588 */
drhc314dc72009-07-21 11:52:34 +00007589 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007590 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00007591 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00007592 if( rc!=SQLITE_OK ){
7593 *pRC = rc;
7594 return;
7595 }
drhc314dc72009-07-21 11:52:34 +00007596
7597 /* If this is an auto-vacuum database, update the pointer-map entries
7598 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7599 */
7600 if( ISAUTOVACUUM ){
7601 *pRC = setChildPtrmaps(pTo);
7602 }
danielk1977cd581a72009-06-23 15:43:39 +00007603 }
danielk1977cd581a72009-06-23 15:43:39 +00007604}
7605
7606/*
danielk19774dbaa892009-06-16 16:50:22 +00007607** This routine redistributes cells on the iParentIdx'th child of pParent
7608** (hereafter "the page") and up to 2 siblings so that all pages have about the
7609** same amount of free space. Usually a single sibling on either side of the
7610** page are used in the balancing, though both siblings might come from one
7611** side if the page is the first or last child of its parent. If the page
7612** has fewer than 2 siblings (something which can only happen if the page
7613** is a root page or a child of a root page) then all available siblings
7614** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007615**
danielk19774dbaa892009-06-16 16:50:22 +00007616** The number of siblings of the page might be increased or decreased by
7617** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007618**
danielk19774dbaa892009-06-16 16:50:22 +00007619** Note that when this routine is called, some of the cells on the page
7620** might not actually be stored in MemPage.aData[]. This can happen
7621** if the page is overfull. This routine ensures that all cells allocated
7622** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007623**
danielk19774dbaa892009-06-16 16:50:22 +00007624** In the course of balancing the page and its siblings, cells may be
7625** inserted into or removed from the parent page (pParent). Doing so
7626** may cause the parent page to become overfull or underfull. If this
7627** happens, it is the responsibility of the caller to invoke the correct
7628** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007629**
drh5e00f6c2001-09-13 13:46:56 +00007630** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007631** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007632** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007633**
7634** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007635** buffer big enough to hold one page. If while inserting cells into the parent
7636** page (pParent) the parent page becomes overfull, this buffer is
7637** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007638** a maximum of four divider cells into the parent page, and the maximum
7639** size of a cell stored within an internal node is always less than 1/4
7640** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7641** enough for all overflow cells.
7642**
7643** If aOvflSpace is set to a null pointer, this function returns
7644** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007645*/
danielk19774dbaa892009-06-16 16:50:22 +00007646static int balance_nonroot(
7647 MemPage *pParent, /* Parent page of siblings being balanced */
7648 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007649 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007650 int isRoot, /* True if pParent is a root-page */
7651 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007652){
drh16a9b832007-05-05 18:39:25 +00007653 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007654 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007655 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007656 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007657 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007658 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007659 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007660 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007661 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007662 int usableSpace; /* Bytes in pPage beyond the header */
7663 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007664 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007665 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007666 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007667 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007668 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007669 u8 *pRight; /* Location in parent of right-sibling pointer */
7670 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007671 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7672 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007673 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007674 u8 *aSpace1; /* Space for copies of dividers cells */
7675 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007676 u8 abDone[NB+2]; /* True after i'th new page is populated */
7677 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007678 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007679 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh7d4c94b2021-10-04 22:34:38 +00007680 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007681
dan33ea4862014-10-09 19:35:37 +00007682 memset(abDone, 0, sizeof(abDone));
drh7d4c94b2021-10-04 22:34:38 +00007683 memset(&b, 0, sizeof(b));
danielk1977a50d9aa2009-06-08 14:49:45 +00007684 pBt = pParent->pBt;
7685 assert( sqlite3_mutex_held(pBt->mutex) );
7686 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007687
danielk19774dbaa892009-06-16 16:50:22 +00007688 /* At this point pParent may have at most one overflow cell. And if
7689 ** this overflow cell is present, it must be the cell with
7690 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007691 ** is called (indirectly) from sqlite3BtreeDelete().
7692 */
danielk19774dbaa892009-06-16 16:50:22 +00007693 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007694 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007695
danielk197711a8a862009-06-17 11:49:52 +00007696 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007697 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007698 }
drh68133502019-02-11 17:22:30 +00007699 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00007700
danielk1977a50d9aa2009-06-08 14:49:45 +00007701 /* Find the sibling pages to balance. Also locate the cells in pParent
7702 ** that divide the siblings. An attempt is made to find NN siblings on
7703 ** either side of pPage. More siblings are taken from one side, however,
7704 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007705 ** has NB or fewer children then all children of pParent are taken.
7706 **
7707 ** This loop also drops the divider cells from the parent page. This
7708 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007709 ** overflow cells in the parent page, since if any existed they will
7710 ** have already been removed.
7711 */
danielk19774dbaa892009-06-16 16:50:22 +00007712 i = pParent->nOverflow + pParent->nCell;
7713 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007714 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007715 }else{
dan7d6885a2012-08-08 14:04:56 +00007716 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007717 if( iParentIdx==0 ){
7718 nxDiv = 0;
7719 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007720 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007721 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007722 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007723 }
dan7d6885a2012-08-08 14:04:56 +00007724 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007725 }
dan7d6885a2012-08-08 14:04:56 +00007726 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007727 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7728 pRight = &pParent->aData[pParent->hdrOffset+8];
7729 }else{
7730 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7731 }
7732 pgno = get4byte(pRight);
7733 while( 1 ){
dan1f9f5762021-03-01 16:15:41 +00007734 if( rc==SQLITE_OK ){
7735 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7736 }
danielk19774dbaa892009-06-16 16:50:22 +00007737 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007738 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007739 goto balance_cleanup;
7740 }
drh85a379b2019-02-09 22:33:44 +00007741 if( apOld[i]->nFree<0 ){
7742 rc = btreeComputeFreeSpace(apOld[i]);
7743 if( rc ){
7744 memset(apOld, 0, (i)*sizeof(MemPage*));
7745 goto balance_cleanup;
7746 }
7747 }
danb9f8a182021-06-22 14:59:34 +00007748 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
danielk19774dbaa892009-06-16 16:50:22 +00007749 if( (i--)==0 ) break;
7750
drh9cc5b4e2016-12-26 01:41:33 +00007751 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007752 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007753 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007754 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007755 pParent->nOverflow = 0;
7756 }else{
7757 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7758 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007759 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007760
7761 /* Drop the cell from the parent page. apDiv[i] still points to
7762 ** the cell within the parent, even though it has been dropped.
7763 ** This is safe because dropping a cell only overwrites the first
7764 ** four bytes of it, and this function does not need the first
7765 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007766 ** later on.
7767 **
drh8a575d92011-10-12 17:00:28 +00007768 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007769 ** the dropCell() routine will overwrite the entire cell with zeroes.
7770 ** In this case, temporarily copy the cell into the aOvflSpace[]
7771 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7772 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007773 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007774 int iOff;
7775
dan1f9f5762021-03-01 16:15:41 +00007776 /* If the following if() condition is not true, the db is corrupted.
7777 ** The call to dropCell() below will detect this. */
drh8a575d92011-10-12 17:00:28 +00007778 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
dan1f9f5762021-03-01 16:15:41 +00007779 if( (iOff+szNew[i])<=(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007780 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7781 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7782 }
drh5b47efa2010-02-12 18:18:39 +00007783 }
drh98add2e2009-07-20 17:11:49 +00007784 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007785 }
drh8b2f49b2001-06-08 00:21:52 +00007786 }
7787
drha9121e42008-02-19 14:59:35 +00007788 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007789 ** alignment */
drha9121e42008-02-19 14:59:35 +00007790 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007791
drh8b2f49b2001-06-08 00:21:52 +00007792 /*
danielk1977634f2982005-03-28 08:44:07 +00007793 ** Allocate space for memory structures
7794 */
drhfacf0302008-06-17 15:12:00 +00007795 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007796 nMaxCells*sizeof(u8*) /* b.apCell */
7797 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007798 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007799
drhf012dc42019-03-19 15:36:46 +00007800 assert( szScratch<=7*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007801 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007802 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007803 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007804 goto balance_cleanup;
7805 }
drh1ffd2472015-06-23 02:37:30 +00007806 b.szCell = (u16*)&b.apCell[nMaxCells];
7807 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007808 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007809
7810 /*
7811 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007812 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007813 ** into space obtained from aSpace1[]. The divider cells have already
7814 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007815 **
7816 ** If the siblings are on leaf pages, then the child pointers of the
7817 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007818 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007819 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007820 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007821 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007822 **
7823 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7824 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007825 */
drh1ffd2472015-06-23 02:37:30 +00007826 b.pRef = apOld[0];
7827 leafCorrection = b.pRef->leaf*4;
7828 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007829 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007830 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007831 int limit = pOld->nCell;
7832 u8 *aData = pOld->aData;
7833 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007834 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007835 u8 *piEnd;
drhe12ca5a2019-05-02 15:56:39 +00007836 VVA_ONLY( int nCellAtStart = b.nCell; )
danielk19774dbaa892009-06-16 16:50:22 +00007837
drh73d340a2015-05-28 11:23:11 +00007838 /* Verify that all sibling pages are of the same "type" (table-leaf,
7839 ** table-interior, index-leaf, or index-interior).
7840 */
7841 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7842 rc = SQLITE_CORRUPT_BKPT;
7843 goto balance_cleanup;
7844 }
7845
drhfe647dc2015-06-23 18:24:25 +00007846 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007847 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007848 ** in the correct spot.
7849 **
7850 ** Note that when there are multiple overflow cells, it is always the
7851 ** case that they are sequential and adjacent. This invariant arises
7852 ** because multiple overflows can only occurs when inserting divider
7853 ** cells into a parent on a prior balance, and divider cells are always
7854 ** adjacent and are inserted in order. There is an assert() tagged
7855 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7856 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007857 **
7858 ** This must be done in advance. Once the balance starts, the cell
7859 ** offset section of the btree page will be overwritten and we will no
7860 ** long be able to find the cells if a pointer to each cell is not saved
7861 ** first.
7862 */
drh36b78ee2016-01-20 01:32:00 +00007863 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007864 if( pOld->nOverflow>0 ){
drh27e80a32019-08-15 13:17:49 +00007865 if( NEVER(limit<pOld->aiOvfl[0]) ){
drhe12ca5a2019-05-02 15:56:39 +00007866 rc = SQLITE_CORRUPT_BKPT;
7867 goto balance_cleanup;
7868 }
drhfe647dc2015-06-23 18:24:25 +00007869 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007870 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007871 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007872 piCell += 2;
7873 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007874 }
drhfe647dc2015-06-23 18:24:25 +00007875 for(k=0; k<pOld->nOverflow; k++){
7876 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007877 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007878 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007879 }
drh1ffd2472015-06-23 02:37:30 +00007880 }
drhfe647dc2015-06-23 18:24:25 +00007881 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7882 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007883 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007884 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007885 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007886 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007887 }
drhe12ca5a2019-05-02 15:56:39 +00007888 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
drh4edfdd32015-06-23 14:49:42 +00007889
drh1ffd2472015-06-23 02:37:30 +00007890 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007891 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007892 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007893 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007894 assert( b.nCell<nMaxCells );
7895 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007896 pTemp = &aSpace1[iSpace1];
7897 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007898 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007899 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007900 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007901 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007902 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007903 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007904 if( !pOld->leaf ){
7905 assert( leafCorrection==0 );
dan5b482a92021-04-20 13:31:51 +00007906 assert( pOld->hdrOffset==0 || CORRUPT_DB );
danielk19774dbaa892009-06-16 16:50:22 +00007907 /* The right pointer of the child page pOld becomes the left
7908 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007909 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007910 }else{
7911 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007912 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007913 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7914 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007915 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7916 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007917 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007918 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007919 }
7920 }
drh1ffd2472015-06-23 02:37:30 +00007921 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007922 }
drh8b2f49b2001-06-08 00:21:52 +00007923 }
7924
7925 /*
drh1ffd2472015-06-23 02:37:30 +00007926 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007927 ** Store this number in "k". Also compute szNew[] which is the total
7928 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007929 ** in b.apCell[] of the cell that divides page i from page i+1.
7930 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007931 **
drh96f5b762004-05-16 16:24:36 +00007932 ** Values computed by this block:
7933 **
7934 ** k: The total number of sibling pages
7935 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007936 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007937 ** the right of the i-th sibling page.
7938 ** usableSpace: Number of bytes of space available on each sibling.
7939 **
drh8b2f49b2001-06-08 00:21:52 +00007940 */
drh43605152004-05-29 21:46:49 +00007941 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00007942 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00007943 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00007944 b.apEnd[k] = p->aDataEnd;
7945 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00007946 if( k && b.ixNx[k]==b.ixNx[k-1] ){
7947 k--; /* Omit b.ixNx[] entry for child pages with no cells */
7948 }
drh26b7ec82019-02-01 14:50:43 +00007949 if( !leafData ){
7950 k++;
7951 b.apEnd[k] = pParent->aDataEnd;
7952 b.ixNx[k] = cntOld[i]+1;
7953 }
drhb0ea9432019-02-09 21:06:40 +00007954 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00007955 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007956 for(j=0; j<p->nOverflow; j++){
7957 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7958 }
7959 cntNew[i] = cntOld[i];
7960 }
7961 k = nOld;
7962 for(i=0; i<k; i++){
7963 int sz;
7964 while( szNew[i]>usableSpace ){
7965 if( i+1>=k ){
7966 k = i+2;
7967 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7968 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007969 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007970 }
drh1ffd2472015-06-23 02:37:30 +00007971 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007972 szNew[i] -= sz;
7973 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007974 if( cntNew[i]<b.nCell ){
7975 sz = 2 + cachedCellSize(&b, cntNew[i]);
7976 }else{
7977 sz = 0;
7978 }
drh658873b2015-06-22 20:02:04 +00007979 }
7980 szNew[i+1] += sz;
7981 cntNew[i]--;
7982 }
drh1ffd2472015-06-23 02:37:30 +00007983 while( cntNew[i]<b.nCell ){
7984 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007985 if( szNew[i]+sz>usableSpace ) break;
7986 szNew[i] += sz;
7987 cntNew[i]++;
7988 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007989 if( cntNew[i]<b.nCell ){
7990 sz = 2 + cachedCellSize(&b, cntNew[i]);
7991 }else{
7992 sz = 0;
7993 }
drh658873b2015-06-22 20:02:04 +00007994 }
7995 szNew[i+1] -= sz;
7996 }
drh1ffd2472015-06-23 02:37:30 +00007997 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007998 k = i+1;
drh672073a2015-06-24 12:07:40 +00007999 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00008000 rc = SQLITE_CORRUPT_BKPT;
8001 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00008002 }
8003 }
drh96f5b762004-05-16 16:24:36 +00008004
8005 /*
8006 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00008007 ** on the left side (siblings with smaller keys). The left siblings are
8008 ** always nearly full, while the right-most sibling might be nearly empty.
8009 ** The next block of code attempts to adjust the packing of siblings to
8010 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00008011 **
8012 ** This adjustment is more than an optimization. The packing above might
8013 ** be so out of balance as to be illegal. For example, the right-most
8014 ** sibling might be completely empty. This adjustment is not optional.
8015 */
drh6019e162001-07-02 17:51:45 +00008016 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00008017 int szRight = szNew[i]; /* Size of sibling on the right */
8018 int szLeft = szNew[i-1]; /* Size of sibling on the left */
8019 int r; /* Index of right-most cell in left sibling */
8020 int d; /* Index of first cell to the left of right sibling */
8021
8022 r = cntNew[i-1] - 1;
8023 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00008024 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00008025 do{
drh1ffd2472015-06-23 02:37:30 +00008026 assert( d<nMaxCells );
8027 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008028 (void)cachedCellSize(&b, r);
8029 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00008030 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00008031 break;
8032 }
8033 szRight += b.szCell[d] + 2;
8034 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00008035 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00008036 r--;
8037 d--;
drh672073a2015-06-24 12:07:40 +00008038 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00008039 szNew[i] = szRight;
8040 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00008041 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8042 rc = SQLITE_CORRUPT_BKPT;
8043 goto balance_cleanup;
8044 }
drh6019e162001-07-02 17:51:45 +00008045 }
drh09d0deb2005-08-02 17:13:09 +00008046
drh2a0df922014-10-30 23:14:56 +00008047 /* Sanity check: For a non-corrupt database file one of the follwing
8048 ** must be true:
8049 ** (1) We found one or more cells (cntNew[0])>0), or
8050 ** (2) pPage is a virtual root page. A virtual root page is when
8051 ** the real root page is page 1 and we are the only child of
8052 ** that page.
drh09d0deb2005-08-02 17:13:09 +00008053 */
drh2a0df922014-10-30 23:14:56 +00008054 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00008055 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8056 apOld[0]->pgno, apOld[0]->nCell,
8057 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8058 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00008059 ));
8060
drh8b2f49b2001-06-08 00:21:52 +00008061 /*
drh6b308672002-07-08 02:16:37 +00008062 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00008063 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008064 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00008065 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00008066 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00008067 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00008068 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00008069 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00008070 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00008071 nNew++;
drh41d26392021-06-20 22:17:49 +00008072 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8073 && rc==SQLITE_OK
8074 ){
drh9e673ac2021-02-01 12:39:50 +00008075 rc = SQLITE_CORRUPT_BKPT;
8076 }
danielk197728129562005-01-11 10:25:06 +00008077 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00008078 }else{
drh7aa8f852006-03-28 00:24:44 +00008079 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00008080 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00008081 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008082 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00008083 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00008084 nNew++;
drh1ffd2472015-06-23 02:37:30 +00008085 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00008086
8087 /* Set the pointer-map entry for the new sibling page. */
8088 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00008089 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008090 if( rc!=SQLITE_OK ){
8091 goto balance_cleanup;
8092 }
8093 }
drh6b308672002-07-08 02:16:37 +00008094 }
drh8b2f49b2001-06-08 00:21:52 +00008095 }
8096
8097 /*
dan33ea4862014-10-09 19:35:37 +00008098 ** Reassign page numbers so that the new pages are in ascending order.
8099 ** This helps to keep entries in the disk file in order so that a scan
8100 ** of the table is closer to a linear scan through the file. That in turn
8101 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00008102 **
dan33ea4862014-10-09 19:35:37 +00008103 ** An O(n^2) insertion sort algorithm is used, but since n is never more
8104 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00008105 **
dan33ea4862014-10-09 19:35:37 +00008106 ** When NB==3, this one optimization makes the database about 25% faster
8107 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00008108 */
dan33ea4862014-10-09 19:35:37 +00008109 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00008110 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00008111 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00008112 for(j=0; j<i; j++){
drh8ab79d62021-02-04 13:52:34 +00008113 if( NEVER(aPgno[j]==aPgno[i]) ){
dan89ca0b32014-10-25 20:36:28 +00008114 /* This branch is taken if the set of sibling pages somehow contains
8115 ** duplicate entries. This can happen if the database is corrupt.
8116 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00008117 ** we do the detection here in order to avoid populating the pager
8118 ** cache with two separate objects associated with the same
8119 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00008120 assert( CORRUPT_DB );
8121 rc = SQLITE_CORRUPT_BKPT;
8122 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00008123 }
8124 }
dan33ea4862014-10-09 19:35:37 +00008125 }
8126 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00008127 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00008128 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00008129 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00008130 }
drh00fe08a2014-10-31 00:05:23 +00008131 pgno = aPgOrder[iBest];
8132 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00008133 if( iBest!=i ){
8134 if( iBest>i ){
8135 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
8136 }
8137 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8138 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00008139 }
8140 }
dan33ea4862014-10-09 19:35:37 +00008141
8142 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8143 "%d(%d nc=%d) %d(%d nc=%d)\n",
8144 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00008145 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00008146 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008147 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00008148 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008149 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00008150 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8151 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8152 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8153 ));
danielk19774dbaa892009-06-16 16:50:22 +00008154
8155 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh55f66b32019-07-16 19:44:32 +00008156 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8157 assert( apNew[nNew-1]!=0 );
danielk19774dbaa892009-06-16 16:50:22 +00008158 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00008159
dan33ea4862014-10-09 19:35:37 +00008160 /* If the sibling pages are not leaves, ensure that the right-child pointer
8161 ** of the right-most new sibling page is set to the value that was
8162 ** originally in the same field of the right-most old sibling page. */
8163 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8164 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8165 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8166 }
danielk1977ac11ee62005-01-15 12:45:51 +00008167
dan33ea4862014-10-09 19:35:37 +00008168 /* Make any required updates to pointer map entries associated with
8169 ** cells stored on sibling pages following the balance operation. Pointer
8170 ** map entries associated with divider cells are set by the insertCell()
8171 ** routine. The associated pointer map entries are:
8172 **
8173 ** a) if the cell contains a reference to an overflow chain, the
8174 ** entry associated with the first page in the overflow chain, and
8175 **
8176 ** b) if the sibling pages are not leaves, the child page associated
8177 ** with the cell.
8178 **
8179 ** If the sibling pages are not leaves, then the pointer map entry
8180 ** associated with the right-child of each sibling may also need to be
8181 ** updated. This happens below, after the sibling pages have been
8182 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00008183 */
dan33ea4862014-10-09 19:35:37 +00008184 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00008185 MemPage *pOld;
8186 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00008187 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00008188 int iNew = 0;
8189 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00008190
drh1ffd2472015-06-23 02:37:30 +00008191 for(i=0; i<b.nCell; i++){
8192 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00008193 while( i==cntOldNext ){
8194 iOld++;
8195 assert( iOld<nNew || iOld<nOld );
drhdd2d9a32019-05-07 17:47:43 +00008196 assert( iOld>=0 && iOld<NB );
drh9c7e44c2019-02-14 15:27:12 +00008197 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00008198 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
drh4b70f112004-05-02 21:12:19 +00008199 }
dan33ea4862014-10-09 19:35:37 +00008200 if( i==cntNew[iNew] ){
8201 pNew = apNew[++iNew];
8202 if( !leafData ) continue;
8203 }
danielk197785d90ca2008-07-19 14:25:15 +00008204
dan33ea4862014-10-09 19:35:37 +00008205 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00008206 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00008207 ** or else the divider cell to the left of sibling page iOld. So,
8208 ** if sibling page iOld had the same page number as pNew, and if
8209 ** pCell really was a part of sibling page iOld (not a divider or
8210 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008211 if( iOld>=nNew
8212 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008213 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008214 ){
dan33ea4862014-10-09 19:35:37 +00008215 if( !leafCorrection ){
8216 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8217 }
drh1ffd2472015-06-23 02:37:30 +00008218 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008219 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00008220 }
drhea82b372015-06-23 21:35:28 +00008221 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00008222 }
drh14acc042001-06-10 19:56:58 +00008223 }
8224 }
dan33ea4862014-10-09 19:35:37 +00008225
8226 /* Insert new divider cells into pParent. */
8227 for(i=0; i<nNew-1; i++){
8228 u8 *pCell;
8229 u8 *pTemp;
8230 int sz;
drhc3c23f32021-05-06 11:02:55 +00008231 u8 *pSrcEnd;
dan33ea4862014-10-09 19:35:37 +00008232 MemPage *pNew = apNew[i];
8233 j = cntNew[i];
8234
8235 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008236 assert( b.apCell[j]!=0 );
8237 pCell = b.apCell[j];
8238 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008239 pTemp = &aOvflSpace[iOvflSpace];
8240 if( !pNew->leaf ){
8241 memcpy(&pNew->aData[8], pCell, 4);
8242 }else if( leafData ){
8243 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008244 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008245 ** cell consists of the integer key for the right-most cell of
8246 ** the sibling-page assembled above only.
8247 */
8248 CellInfo info;
8249 j--;
drh1ffd2472015-06-23 02:37:30 +00008250 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008251 pCell = pTemp;
8252 sz = 4 + putVarint(&pCell[4], info.nKey);
8253 pTemp = 0;
8254 }else{
8255 pCell -= 4;
8256 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8257 ** previously stored on a leaf node, and its reported size was 4
8258 ** bytes, then it may actually be smaller than this
8259 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8260 ** any cell). But it is important to pass the correct size to
8261 ** insertCell(), so reparse the cell now.
8262 **
drhc1fb2b82016-03-09 03:29:27 +00008263 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8264 ** and WITHOUT ROWID tables with exactly one column which is the
8265 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008266 */
drh1ffd2472015-06-23 02:37:30 +00008267 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008268 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008269 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008270 }
8271 }
8272 iOvflSpace += sz;
8273 assert( sz<=pBt->maxLocal+23 );
8274 assert( iOvflSpace <= (int)pBt->pageSize );
drhc3c23f32021-05-06 11:02:55 +00008275 for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
8276 pSrcEnd = b.apEnd[k];
8277 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8278 rc = SQLITE_CORRUPT_BKPT;
8279 goto balance_cleanup;
8280 }
dan33ea4862014-10-09 19:35:37 +00008281 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
drhd2cfbea2019-05-08 03:34:53 +00008282 if( rc!=SQLITE_OK ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008283 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8284 }
8285
8286 /* Now update the actual sibling pages. The order in which they are updated
8287 ** is important, as this code needs to avoid disrupting any page from which
8288 ** cells may still to be read. In practice, this means:
8289 **
drhd836d422014-10-31 14:26:36 +00008290 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8291 ** then it is not safe to update page apNew[iPg] until after
8292 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008293 **
drhd836d422014-10-31 14:26:36 +00008294 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8295 ** then it is not safe to update page apNew[iPg] until after
8296 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008297 **
8298 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008299 **
8300 ** The iPg value in the following loop starts at nNew-1 goes down
8301 ** to 0, then back up to nNew-1 again, thus making two passes over
8302 ** the pages. On the initial downward pass, only condition (1) above
8303 ** needs to be tested because (2) will always be true from the previous
8304 ** step. On the upward pass, both conditions are always true, so the
8305 ** upwards pass simply processes pages that were missed on the downward
8306 ** pass.
dan33ea4862014-10-09 19:35:37 +00008307 */
drhbec021b2014-10-31 12:22:00 +00008308 for(i=1-nNew; i<nNew; i++){
8309 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008310 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008311 if( abDone[iPg] ) continue; /* Skip pages already processed */
8312 if( i>=0 /* On the upwards pass, or... */
8313 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008314 ){
dan09c68402014-10-11 20:00:24 +00008315 int iNew;
8316 int iOld;
8317 int nNewCell;
8318
drhd836d422014-10-31 14:26:36 +00008319 /* Verify condition (1): If cells are moving left, update iPg
8320 ** only after iPg-1 has already been updated. */
8321 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8322
8323 /* Verify condition (2): If cells are moving right, update iPg
8324 ** only after iPg+1 has already been updated. */
8325 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8326
dan09c68402014-10-11 20:00:24 +00008327 if( iPg==0 ){
8328 iNew = iOld = 0;
8329 nNewCell = cntNew[0];
8330 }else{
drh1ffd2472015-06-23 02:37:30 +00008331 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008332 iNew = cntNew[iPg-1] + !leafData;
8333 nNewCell = cntNew[iPg] - iNew;
8334 }
8335
drh1ffd2472015-06-23 02:37:30 +00008336 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008337 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008338 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008339 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008340 assert( apNew[iPg]->nOverflow==0 );
8341 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008342 }
8343 }
drhd836d422014-10-31 14:26:36 +00008344
8345 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008346 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8347
drh7aa8f852006-03-28 00:24:44 +00008348 assert( nOld>0 );
8349 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008350
danielk197713bd99f2009-06-24 05:40:34 +00008351 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8352 /* The root page of the b-tree now contains no cells. The only sibling
8353 ** page is the right-child of the parent. Copy the contents of the
8354 ** child page into the parent, decreasing the overall height of the
8355 ** b-tree structure by one. This is described as the "balance-shallower"
8356 ** sub-algorithm in some documentation.
8357 **
8358 ** If this is an auto-vacuum database, the call to copyNodeContent()
8359 ** sets all pointer-map entries corresponding to database image pages
8360 ** for which the pointer is stored within the content being copied.
8361 **
drh768f2902014-10-31 02:51:41 +00008362 ** It is critical that the child page be defragmented before being
8363 ** copied into the parent, because if the parent is page 1 then it will
8364 ** by smaller than the child due to the database header, and so all the
8365 ** free space needs to be up front.
8366 */
drh9b5351d2015-09-30 14:19:08 +00008367 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008368 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008369 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00008370 assert( apNew[0]->nFree ==
drh1c960262019-03-25 18:44:08 +00008371 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8372 - apNew[0]->nCell*2)
drh768f2902014-10-31 02:51:41 +00008373 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00008374 );
drhc314dc72009-07-21 11:52:34 +00008375 copyNodeContent(apNew[0], pParent, &rc);
8376 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00008377 }else if( ISAUTOVACUUM && !leafCorrection ){
8378 /* Fix the pointer map entries associated with the right-child of each
8379 ** sibling page. All other pointer map entries have already been taken
8380 ** care of. */
8381 for(i=0; i<nNew; i++){
8382 u32 key = get4byte(&apNew[i]->aData[8]);
8383 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008384 }
dan33ea4862014-10-09 19:35:37 +00008385 }
danielk19774dbaa892009-06-16 16:50:22 +00008386
dan33ea4862014-10-09 19:35:37 +00008387 assert( pParent->isInit );
8388 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008389 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008390
dan33ea4862014-10-09 19:35:37 +00008391 /* Free any old pages that were not reused as new pages.
8392 */
8393 for(i=nNew; i<nOld; i++){
8394 freePage(apOld[i], &rc);
8395 }
danielk19774dbaa892009-06-16 16:50:22 +00008396
8397#if 0
dan33ea4862014-10-09 19:35:37 +00008398 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008399 /* The ptrmapCheckPages() contains assert() statements that verify that
8400 ** all pointer map pages are set correctly. This is helpful while
8401 ** debugging. This is usually disabled because a corrupt database may
8402 ** cause an assert() statement to fail. */
8403 ptrmapCheckPages(apNew, nNew);
8404 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008405 }
dan33ea4862014-10-09 19:35:37 +00008406#endif
danielk1977cd581a72009-06-23 15:43:39 +00008407
drh8b2f49b2001-06-08 00:21:52 +00008408 /*
drh14acc042001-06-10 19:56:58 +00008409 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008410 */
drh14acc042001-06-10 19:56:58 +00008411balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008412 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008413 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008414 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008415 }
drh14acc042001-06-10 19:56:58 +00008416 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008417 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008418 }
danielk1977eaa06f62008-09-18 17:34:44 +00008419
drh8b2f49b2001-06-08 00:21:52 +00008420 return rc;
8421}
8422
drh43605152004-05-29 21:46:49 +00008423
8424/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008425** This function is called when the root page of a b-tree structure is
8426** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008427**
danielk1977a50d9aa2009-06-08 14:49:45 +00008428** A new child page is allocated and the contents of the current root
8429** page, including overflow cells, are copied into the child. The root
8430** page is then overwritten to make it an empty page with the right-child
8431** pointer pointing to the new page.
8432**
8433** Before returning, all pointer-map entries corresponding to pages
8434** that the new child-page now contains pointers to are updated. The
8435** entry corresponding to the new right-child pointer of the root
8436** page is also updated.
8437**
8438** If successful, *ppChild is set to contain a reference to the child
8439** page and SQLITE_OK is returned. In this case the caller is required
8440** to call releasePage() on *ppChild exactly once. If an error occurs,
8441** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008442*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008443static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8444 int rc; /* Return value from subprocedures */
8445 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008446 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008447 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008448
danielk1977a50d9aa2009-06-08 14:49:45 +00008449 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008450 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008451
danielk1977a50d9aa2009-06-08 14:49:45 +00008452 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8453 ** page that will become the new right-child of pPage. Copy the contents
8454 ** of the node stored on pRoot into the new child page.
8455 */
drh98add2e2009-07-20 17:11:49 +00008456 rc = sqlite3PagerWrite(pRoot->pDbPage);
8457 if( rc==SQLITE_OK ){
8458 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008459 copyNodeContent(pRoot, pChild, &rc);
8460 if( ISAUTOVACUUM ){
8461 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008462 }
8463 }
8464 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008465 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008466 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008467 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008468 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008469 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8470 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drh12fe9a02019-02-19 16:42:54 +00008471 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00008472
danielk1977a50d9aa2009-06-08 14:49:45 +00008473 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8474
8475 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008476 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8477 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8478 memcpy(pChild->apOvfl, pRoot->apOvfl,
8479 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008480 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008481
8482 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8483 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8484 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8485
8486 *ppChild = pChild;
8487 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008488}
8489
8490/*
drha2d50282019-12-23 18:02:15 +00008491** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8492** on the same B-tree as pCur.
8493**
drh87463962021-10-05 22:51:26 +00008494** This can occur if a database is corrupt with two or more SQL tables
drha2d50282019-12-23 18:02:15 +00008495** pointing to the same b-tree. If an insert occurs on one SQL table
8496** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8497** table linked to the same b-tree. If the secondary insert causes a
8498** rebalance, that can change content out from under the cursor on the
8499** first SQL table, violating invariants on the first insert.
8500*/
8501static int anotherValidCursor(BtCursor *pCur){
8502 BtCursor *pOther;
8503 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8504 if( pOther!=pCur
8505 && pOther->eState==CURSOR_VALID
8506 && pOther->pPage==pCur->pPage
8507 ){
8508 return SQLITE_CORRUPT_BKPT;
8509 }
8510 }
8511 return SQLITE_OK;
8512}
8513
8514/*
danielk197771d5d2c2008-09-29 11:49:47 +00008515** The page that pCur currently points to has just been modified in
8516** some way. This function figures out if this modification means the
8517** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008518** routine. Balancing routines are:
8519**
8520** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008521** balance_deeper()
8522** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008523*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008524static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008525 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008526 const int nMin = pCur->pBt->usableSize * 2 / 3;
8527 u8 aBalanceQuickSpace[13];
8528 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008529
drhcc5f8a42016-02-06 22:32:06 +00008530 VVA_ONLY( int balance_quick_called = 0 );
8531 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008532
8533 do {
dan01fd42b2019-07-13 09:55:33 +00008534 int iPage;
drh352a35a2017-08-15 03:46:47 +00008535 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008536
drha941ff72019-02-12 00:58:10 +00008537 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
dan01fd42b2019-07-13 09:55:33 +00008538 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8539 break;
8540 }else if( (iPage = pCur->iPage)==0 ){
drha2d50282019-12-23 18:02:15 +00008541 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008542 /* The root page of the b-tree is overfull. In this case call the
8543 ** balance_deeper() function to create a new child for the root-page
8544 ** and copy the current contents of the root-page to it. The
8545 ** next iteration of the do-loop will balance the child page.
8546 */
drhcc5f8a42016-02-06 22:32:06 +00008547 assert( balance_deeper_called==0 );
8548 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008549 rc = balance_deeper(pPage, &pCur->apPage[1]);
8550 if( rc==SQLITE_OK ){
8551 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008552 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008553 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008554 pCur->apPage[0] = pPage;
8555 pCur->pPage = pCur->apPage[1];
8556 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008557 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008558 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008559 break;
8560 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008561 }else{
8562 MemPage * const pParent = pCur->apPage[iPage-1];
8563 int const iIdx = pCur->aiIdx[iPage-1];
8564
8565 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00008566 if( rc==SQLITE_OK && pParent->nFree<0 ){
8567 rc = btreeComputeFreeSpace(pParent);
8568 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008569 if( rc==SQLITE_OK ){
8570#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008571 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008572 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008573 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008574 && pParent->pgno!=1
8575 && pParent->nCell==iIdx
8576 ){
8577 /* Call balance_quick() to create a new sibling of pPage on which
8578 ** to store the overflow cell. balance_quick() inserts a new cell
8579 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008580 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008581 ** use either balance_nonroot() or balance_deeper(). Until this
8582 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8583 ** buffer.
8584 **
8585 ** The purpose of the following assert() is to check that only a
8586 ** single call to balance_quick() is made for each call to this
8587 ** function. If this were not verified, a subtle bug involving reuse
8588 ** of the aBalanceQuickSpace[] might sneak in.
8589 */
drhcc5f8a42016-02-06 22:32:06 +00008590 assert( balance_quick_called==0 );
8591 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008592 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8593 }else
8594#endif
8595 {
8596 /* In this case, call balance_nonroot() to redistribute cells
8597 ** between pPage and up to 2 of its sibling pages. This involves
8598 ** modifying the contents of pParent, which may cause pParent to
8599 ** become overfull or underfull. The next iteration of the do-loop
8600 ** will balance the parent page to correct this.
8601 **
8602 ** If the parent page becomes overfull, the overflow cell or cells
8603 ** are stored in the pSpace buffer allocated immediately below.
8604 ** A subsequent iteration of the do-loop will deal with this by
8605 ** calling balance_nonroot() (balance_deeper() may be called first,
8606 ** but it doesn't deal with overflow cells - just moves them to a
8607 ** different page). Once this subsequent call to balance_nonroot()
8608 ** has completed, it is safe to release the pSpace buffer used by
8609 ** the previous call, as the overflow cell data will have been
8610 ** copied either into the body of a database page or into the new
8611 ** pSpace buffer passed to the latter call to balance_nonroot().
8612 */
8613 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008614 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8615 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008616 if( pFree ){
8617 /* If pFree is not NULL, it points to the pSpace buffer used
8618 ** by a previous call to balance_nonroot(). Its contents are
8619 ** now stored either on real database pages or within the
8620 ** new pSpace buffer, so it may be safely freed here. */
8621 sqlite3PageFree(pFree);
8622 }
8623
danielk19774dbaa892009-06-16 16:50:22 +00008624 /* The pSpace buffer will be freed after the next call to
8625 ** balance_nonroot(), or just before this function returns, whichever
8626 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008627 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008628 }
8629 }
8630
8631 pPage->nOverflow = 0;
8632
8633 /* The next iteration of the do-loop balances the parent page. */
8634 releasePage(pPage);
8635 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008636 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008637 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008638 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008639 }while( rc==SQLITE_OK );
8640
8641 if( pFree ){
8642 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008643 }
8644 return rc;
8645}
8646
drh3de5d162018-05-03 03:59:02 +00008647/* Overwrite content from pX into pDest. Only do the write if the
8648** content is different from what is already there.
8649*/
8650static int btreeOverwriteContent(
8651 MemPage *pPage, /* MemPage on which writing will occur */
8652 u8 *pDest, /* Pointer to the place to start writing */
8653 const BtreePayload *pX, /* Source of data to write */
8654 int iOffset, /* Offset of first byte to write */
8655 int iAmt /* Number of bytes to be written */
8656){
8657 int nData = pX->nData - iOffset;
8658 if( nData<=0 ){
8659 /* Overwritting with zeros */
8660 int i;
8661 for(i=0; i<iAmt && pDest[i]==0; i++){}
8662 if( i<iAmt ){
8663 int rc = sqlite3PagerWrite(pPage->pDbPage);
8664 if( rc ) return rc;
8665 memset(pDest + i, 0, iAmt - i);
8666 }
8667 }else{
8668 if( nData<iAmt ){
8669 /* Mixed read data and zeros at the end. Make a recursive call
8670 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008671 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8672 iAmt-nData);
8673 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008674 iAmt = nData;
8675 }
8676 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8677 int rc = sqlite3PagerWrite(pPage->pDbPage);
8678 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00008679 /* In a corrupt database, it is possible for the source and destination
8680 ** buffers to overlap. This is harmless since the database is already
8681 ** corrupt but it does cause valgrind and ASAN warnings. So use
8682 ** memmove(). */
8683 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00008684 }
8685 }
8686 return SQLITE_OK;
8687}
8688
8689/*
8690** Overwrite the cell that cursor pCur is pointing to with fresh content
8691** contained in pX.
8692*/
8693static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8694 int iOffset; /* Next byte of pX->pData to write */
8695 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8696 int rc; /* Return code */
8697 MemPage *pPage = pCur->pPage; /* Page being written */
8698 BtShared *pBt; /* Btree */
8699 Pgno ovflPgno; /* Next overflow page to write */
8700 u32 ovflPageSize; /* Size to write on overflow page */
8701
drh27e80a32019-08-15 13:17:49 +00008702 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8703 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8704 ){
drh4f84e9c2018-05-03 13:56:23 +00008705 return SQLITE_CORRUPT_BKPT;
8706 }
drh3de5d162018-05-03 03:59:02 +00008707 /* Overwrite the local portion first */
8708 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8709 0, pCur->info.nLocal);
8710 if( rc ) return rc;
8711 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8712
8713 /* Now overwrite the overflow pages */
8714 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008715 assert( nTotal>=0 );
8716 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008717 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8718 pBt = pPage->pBt;
8719 ovflPageSize = pBt->usableSize - 4;
8720 do{
8721 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8722 if( rc ) return rc;
drh7f581172021-09-10 01:02:42 +00008723 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
drhd5aa9262018-05-03 16:56:06 +00008724 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008725 }else{
drh30f7a252018-05-07 11:29:59 +00008726 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008727 ovflPgno = get4byte(pPage->aData);
8728 }else{
8729 ovflPageSize = nTotal - iOffset;
8730 }
8731 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8732 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008733 }
drhd5aa9262018-05-03 16:56:06 +00008734 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008735 if( rc ) return rc;
8736 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008737 }while( iOffset<nTotal );
8738 return SQLITE_OK;
8739}
8740
drhf74b8d92002-09-01 23:20:45 +00008741
8742/*
drh8eeb4462016-05-21 20:03:42 +00008743** Insert a new record into the BTree. The content of the new record
8744** is described by the pX object. The pCur cursor is used only to
8745** define what table the record should be inserted into, and is left
8746** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008747**
drh8eeb4462016-05-21 20:03:42 +00008748** For a table btree (used for rowid tables), only the pX.nKey value of
8749** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8750** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8751** hold the content of the row.
8752**
8753** For an index btree (used for indexes and WITHOUT ROWID tables), the
8754** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8755** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008756**
8757** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008758** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8759** been performed. In other words, if seekResult!=0 then the cursor
8760** is currently pointing to a cell that will be adjacent to the cell
8761** to be inserted. If seekResult<0 then pCur points to a cell that is
8762** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8763** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008764**
drheaf6ae22016-11-09 20:14:34 +00008765** If seekResult==0, that means pCur is pointing at some unknown location.
8766** In that case, this routine must seek the cursor to the correct insertion
8767** point for (pKey,nKey) before doing the insertion. For index btrees,
8768** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8769** key values and pX->aMem can be used instead of pX->pKey to avoid having
8770** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008771*/
drh3aac2dd2004-04-26 14:10:20 +00008772int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008773 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008774 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008775 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008776 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008777){
drh3b7511c2001-05-26 13:15:44 +00008778 int rc;
drh3e9ca092009-09-08 01:14:48 +00008779 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008780 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008781 int idx;
drh3b7511c2001-05-26 13:15:44 +00008782 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008783 Btree *p = pCur->pBtree;
8784 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008785 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008786 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008787
dancd1b2d02020-12-09 20:33:51 +00008788 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
dan7aae7352020-12-10 18:06:24 +00008789 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
danf91c1312017-01-10 20:04:38 +00008790
danf5ea93b2021-04-08 19:39:00 +00008791 if( pCur->eState==CURSOR_FAULT ){
8792 assert( pCur->skipNext!=SQLITE_OK );
8793 return pCur->skipNext;
drh98add2e2009-07-20 17:11:49 +00008794 }
8795
dan7a2347e2016-01-07 16:43:54 +00008796 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008797 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8798 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008799 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008800 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8801
danielk197731d31b82009-07-13 13:18:07 +00008802 /* Assert that the caller has been consistent. If this cursor was opened
8803 ** expecting an index b-tree, then the caller should be inserting blob
8804 ** keys with no associated data. If the cursor was opened expecting an
8805 ** intkey table, the caller should be inserting integer keys with a
8806 ** blob of associated data. */
dan855aed12020-12-11 19:01:24 +00008807 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008808
danielk19779c3acf32009-05-02 07:36:49 +00008809 /* Save the positions of any other cursors open on this table.
8810 **
danielk19773509a652009-07-06 18:56:13 +00008811 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008812 ** example, when inserting data into a table with auto-generated integer
8813 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8814 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008815 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008816 ** that the cursor is already where it needs to be and returns without
8817 ** doing any work. To avoid thwarting these optimizations, it is important
8818 ** not to clear the cursor here.
8819 */
drh27fb7462015-06-30 02:47:36 +00008820 if( pCur->curFlags & BTCF_Multiple ){
8821 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8822 if( rc ) return rc;
danf5ea93b2021-04-08 19:39:00 +00008823 if( loc && pCur->iPage<0 ){
8824 /* This can only happen if the schema is corrupt such that there is more
8825 ** than one table or index with the same root page as used by the cursor.
8826 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
8827 ** the schema was loaded. This cannot be asserted though, as a user might
8828 ** set the flag, load the schema, and then unset the flag. */
8829 return SQLITE_CORRUPT_BKPT;
8830 }
drhd60f4f42012-03-23 14:23:52 +00008831 }
8832
danielk197771d5d2c2008-09-29 11:49:47 +00008833 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008834 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008835 /* If this is an insert into a table b-tree, invalidate any incrblob
8836 ** cursors open on the row being replaced */
drh49bb56e2021-05-14 20:01:36 +00008837 if( p->hasIncrblobCur ){
8838 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8839 }
drhe0670b62014-02-12 21:31:12 +00008840
danf91c1312017-01-10 20:04:38 +00008841 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008842 ** to a row with the same key as the new entry being inserted.
8843 */
8844#ifdef SQLITE_DEBUG
8845 if( flags & BTREE_SAVEPOSITION ){
8846 assert( pCur->curFlags & BTCF_ValidNKey );
8847 assert( pX->nKey==pCur->info.nKey );
drhd720d392018-05-07 17:27:04 +00008848 assert( loc==0 );
8849 }
8850#endif
danf91c1312017-01-10 20:04:38 +00008851
drhd720d392018-05-07 17:27:04 +00008852 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8853 ** that the cursor is not pointing to a row to be overwritten.
8854 ** So do a complete check.
8855 */
drh7a1c28d2016-11-10 20:42:08 +00008856 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008857 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008858 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008859 assert( pX->nData>=0 && pX->nZero>=0 );
8860 if( pCur->info.nSize!=0
8861 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8862 ){
drhd720d392018-05-07 17:27:04 +00008863 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008864 return btreeOverwriteCell(pCur, pX);
8865 }
drhd720d392018-05-07 17:27:04 +00008866 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008867 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008868 /* The cursor is *not* pointing to the cell to be overwritten, nor
8869 ** to an adjacent cell. Move the cursor so that it is pointing either
8870 ** to the cell to be overwritten or an adjacent cell.
8871 */
drh42a410d2021-06-19 18:32:20 +00008872 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
8873 (flags & BTREE_APPEND)!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008874 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008875 }
drhd720d392018-05-07 17:27:04 +00008876 }else{
8877 /* This is an index or a WITHOUT ROWID table */
8878
8879 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8880 ** to a row with the same key as the new entry being inserted.
8881 */
8882 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8883
8884 /* If the cursor is not already pointing either to the cell to be
8885 ** overwritten, or if a new cell is being inserted, if the cursor is
8886 ** not pointing to an immediately adjacent cell, then move the cursor
8887 ** so that it does.
8888 */
8889 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8890 if( pX->nMem ){
8891 UnpackedRecord r;
8892 r.pKeyInfo = pCur->pKeyInfo;
8893 r.aMem = pX->aMem;
8894 r.nField = pX->nMem;
8895 r.default_rc = 0;
drhd720d392018-05-07 17:27:04 +00008896 r.eqSeen = 0;
drh42a410d2021-06-19 18:32:20 +00008897 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
drhd720d392018-05-07 17:27:04 +00008898 }else{
drh42a410d2021-06-19 18:32:20 +00008899 rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
8900 (flags & BTREE_APPEND)!=0, &loc);
drhd720d392018-05-07 17:27:04 +00008901 }
8902 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00008903 }
drh89ee2292018-05-07 18:41:19 +00008904
8905 /* If the cursor is currently pointing to an entry to be overwritten
8906 ** and the new content is the same as as the old, then use the
8907 ** overwrite optimization.
8908 */
8909 if( loc==0 ){
8910 getCellInfo(pCur);
8911 if( pCur->info.nKey==pX->nKey ){
8912 BtreePayload x2;
8913 x2.pData = pX->pKey;
8914 x2.nData = pX->nKey;
8915 x2.nZero = 0;
8916 return btreeOverwriteCell(pCur, &x2);
8917 }
8918 }
danielk1977da184232006-01-05 11:34:32 +00008919 }
drh0e5ce802019-12-20 12:33:17 +00008920 assert( pCur->eState==CURSOR_VALID
8921 || (pCur->eState==CURSOR_INVALID && loc)
8922 || CORRUPT_DB );
danielk1977da184232006-01-05 11:34:32 +00008923
drh352a35a2017-08-15 03:46:47 +00008924 pPage = pCur->pPage;
dancd1b2d02020-12-09 20:33:51 +00008925 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
drh44845222008-07-17 18:39:57 +00008926 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00008927 if( pPage->nFree<0 ){
drh21c7ccb2021-04-10 20:21:28 +00008928 if( NEVER(pCur->eState>CURSOR_INVALID) ){
drha1085f02020-07-11 16:42:28 +00008929 rc = SQLITE_CORRUPT_BKPT;
8930 }else{
8931 rc = btreeComputeFreeSpace(pPage);
8932 }
drhb0ea9432019-02-09 21:06:40 +00008933 if( rc ) return rc;
8934 }
danielk19778f880a82009-07-13 09:41:45 +00008935
drh3a4c1412004-05-09 20:40:11 +00008936 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008937 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008938 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008939 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008940 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008941 assert( newCell!=0 );
dancd1b2d02020-12-09 20:33:51 +00008942 if( flags & BTREE_PREFORMAT ){
dancd1b2d02020-12-09 20:33:51 +00008943 rc = SQLITE_OK;
dan7aae7352020-12-10 18:06:24 +00008944 szNew = pBt->nPreformatSize;
8945 if( szNew<4 ) szNew = 4;
8946 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
8947 CellInfo info;
8948 pPage->xParseCell(pPage, newCell, &info);
dan9257ddb2020-12-10 19:54:13 +00008949 if( info.nPayload!=info.nLocal ){
dan7aae7352020-12-10 18:06:24 +00008950 Pgno ovfl = get4byte(&newCell[szNew-4]);
8951 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
8952 }
8953 }
dancd1b2d02020-12-09 20:33:51 +00008954 }else{
8955 rc = fillInCell(pPage, newCell, pX, &szNew);
dancd1b2d02020-12-09 20:33:51 +00008956 }
dan7aae7352020-12-10 18:06:24 +00008957 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008958 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008959 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008960 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008961 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008962 CellInfo info;
drh635480e2021-10-08 16:15:17 +00008963 assert( idx>=0 );
8964 if( idx>=pPage->nCell ){
8965 return SQLITE_CORRUPT_BKPT;
8966 }
danielk19776e465eb2007-08-21 13:11:00 +00008967 rc = sqlite3PagerWrite(pPage->pDbPage);
8968 if( rc ){
8969 goto end_insert;
8970 }
danielk197771d5d2c2008-09-29 11:49:47 +00008971 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008972 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008973 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008974 }
drh86c779f2021-05-15 13:08:44 +00008975 BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
drh554a19d2019-08-12 18:26:46 +00008976 testcase( pCur->curFlags & BTCF_ValidOvfl );
8977 invalidateOverflowCache(pCur);
danca66f6c2017-06-08 11:14:08 +00008978 if( info.nSize==szNew && info.nLocal==info.nPayload
8979 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8980 ){
drhf9238252016-12-09 18:09:42 +00008981 /* Overwrite the old cell with the new if they are the same size.
8982 ** We could also try to do this if the old cell is smaller, then add
8983 ** the leftover space to the free list. But experiments show that
8984 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008985 ** calling dropCell() and insertCell().
8986 **
8987 ** This optimization cannot be used on an autovacuum database if the
8988 ** new entry uses overflow pages, as the insertCell() call below is
8989 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008990 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh93788182019-07-22 23:24:01 +00008991 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
8992 return SQLITE_CORRUPT_BKPT;
8993 }
8994 if( oldCell+szNew > pPage->aDataEnd ){
8995 return SQLITE_CORRUPT_BKPT;
8996 }
drh80159da2016-12-09 17:32:51 +00008997 memcpy(oldCell, newCell, szNew);
8998 return SQLITE_OK;
8999 }
9000 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00009001 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00009002 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00009003 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00009004 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00009005 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00009006 }else{
drh4b70f112004-05-02 21:12:19 +00009007 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00009008 }
drh98add2e2009-07-20 17:11:49 +00009009 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00009010 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00009011 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00009012
mistachkin48864df2013-03-21 21:20:32 +00009013 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00009014 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00009015 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00009016 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00009017 **
danielk1977a50d9aa2009-06-08 14:49:45 +00009018 ** Previous versions of SQLite called moveToRoot() to move the cursor
9019 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00009020 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9021 ** set the cursor state to "invalid". This makes common insert operations
9022 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00009023 **
danielk1977a50d9aa2009-06-08 14:49:45 +00009024 ** There is a subtle but important optimization here too. When inserting
9025 ** multiple records into an intkey b-tree using a single cursor (as can
9026 ** happen while processing an "INSERT INTO ... SELECT" statement), it
9027 ** is advantageous to leave the cursor pointing to the last entry in
9028 ** the b-tree if possible. If the cursor is left pointing to the last
9029 ** entry in the table, and the next row inserted has an integer key
9030 ** larger than the largest existing key, it is possible to insert the
9031 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00009032 */
danielk1977a50d9aa2009-06-08 14:49:45 +00009033 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00009034 if( pPage->nOverflow ){
9035 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00009036 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00009037 rc = balance(pCur);
9038
9039 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00009040 ** fails. Internal data structure corruption will result otherwise.
9041 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9042 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00009043 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00009044 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00009045 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00009046 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00009047 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00009048 assert( pCur->pKey==0 );
9049 pCur->pKey = sqlite3Malloc( pX->nKey );
9050 if( pCur->pKey==0 ){
9051 rc = SQLITE_NOMEM;
9052 }else{
9053 memcpy(pCur->pKey, pX->pKey, pX->nKey);
9054 }
9055 }
9056 pCur->eState = CURSOR_REQUIRESEEK;
9057 pCur->nKey = pX->nKey;
9058 }
danielk19773f632d52009-05-02 10:03:09 +00009059 }
drh352a35a2017-08-15 03:46:47 +00009060 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00009061
drh2e38c322004-09-03 18:38:44 +00009062end_insert:
drh5e2f8b92001-05-28 00:41:15 +00009063 return rc;
9064}
9065
dand2ffc972020-12-10 19:20:15 +00009066/*
9067** This function is used as part of copying the current row from cursor
9068** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9069** parameter iKey is used as the rowid value when the record is copied
9070** into pDest. Otherwise, the record is copied verbatim.
9071**
9072** This function does not actually write the new value to cursor pDest.
9073** Instead, it creates and populates any required overflow pages and
9074** writes the data for the new cell into the BtShared.pTmpSpace buffer
9075** for the destination database. The size of the cell, in bytes, is left
9076** in BtShared.nPreformatSize. The caller completes the insertion by
9077** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9078**
9079** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9080*/
dan7aae7352020-12-10 18:06:24 +00009081int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
dan036e0672020-12-08 20:19:07 +00009082 int rc = SQLITE_OK;
dan7aae7352020-12-10 18:06:24 +00009083 BtShared *pBt = pDest->pBt;
9084 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */
danebbf3682020-12-09 16:32:11 +00009085 const u8 *aIn; /* Pointer to next input buffer */
drhe5baf5c2020-12-16 14:20:45 +00009086 u32 nIn; /* Size of input buffer aIn[] */
dan7f607062020-12-15 19:27:20 +00009087 u32 nRem; /* Bytes of data still to copy */
dan036e0672020-12-08 20:19:07 +00009088
dan036e0672020-12-08 20:19:07 +00009089 getCellInfo(pSrc);
dan7aae7352020-12-10 18:06:24 +00009090 aOut += putVarint32(aOut, pSrc->info.nPayload);
9091 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
danebbf3682020-12-09 16:32:11 +00009092 nIn = pSrc->info.nLocal;
9093 aIn = pSrc->info.pPayload;
drh0a8b6a92020-12-16 21:09:45 +00009094 if( aIn+nIn>pSrc->pPage->aDataEnd ){
9095 return SQLITE_CORRUPT_BKPT;
9096 }
danebbf3682020-12-09 16:32:11 +00009097 nRem = pSrc->info.nPayload;
dan7aae7352020-12-10 18:06:24 +00009098 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9099 memcpy(aOut, aIn, nIn);
9100 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9101 }else{
9102 Pager *pSrcPager = pSrc->pBt->pPager;
9103 u8 *pPgnoOut = 0;
9104 Pgno ovflIn = 0;
9105 DbPage *pPageIn = 0;
9106 MemPage *pPageOut = 0;
drhe5baf5c2020-12-16 14:20:45 +00009107 u32 nOut; /* Size of output buffer aOut[] */
danebbf3682020-12-09 16:32:11 +00009108
dan7aae7352020-12-10 18:06:24 +00009109 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9110 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9111 if( nOut<pSrc->info.nPayload ){
9112 pPgnoOut = &aOut[nOut];
9113 pBt->nPreformatSize += 4;
9114 }
9115
9116 if( nRem>nIn ){
drh0a8b6a92020-12-16 21:09:45 +00009117 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9118 return SQLITE_CORRUPT_BKPT;
9119 }
dan7aae7352020-12-10 18:06:24 +00009120 ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9121 }
9122
9123 do {
9124 nRem -= nOut;
9125 do{
9126 assert( nOut>0 );
9127 if( nIn>0 ){
9128 int nCopy = MIN(nOut, nIn);
9129 memcpy(aOut, aIn, nCopy);
9130 nOut -= nCopy;
9131 nIn -= nCopy;
9132 aOut += nCopy;
9133 aIn += nCopy;
9134 }
9135 if( nOut>0 ){
9136 sqlite3PagerUnref(pPageIn);
9137 pPageIn = 0;
9138 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9139 if( rc==SQLITE_OK ){
9140 aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9141 ovflIn = get4byte(aIn);
9142 aIn += 4;
9143 nIn = pSrc->pBt->usableSize - 4;
9144 }
9145 }
9146 }while( rc==SQLITE_OK && nOut>0 );
9147
drhad1188b2021-10-02 18:22:24 +00009148 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
dan7aae7352020-12-10 18:06:24 +00009149 Pgno pgnoNew;
9150 MemPage *pNew = 0;
9151 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9152 put4byte(pPgnoOut, pgnoNew);
9153 if( ISAUTOVACUUM && pPageOut ){
9154 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9155 }
9156 releasePage(pPageOut);
9157 pPageOut = pNew;
9158 if( pPageOut ){
9159 pPgnoOut = pPageOut->aData;
9160 put4byte(pPgnoOut, 0);
9161 aOut = &pPgnoOut[4];
9162 nOut = MIN(pBt->usableSize - 4, nRem);
danebbf3682020-12-09 16:32:11 +00009163 }
9164 }
dan7aae7352020-12-10 18:06:24 +00009165 }while( nRem>0 && rc==SQLITE_OK );
9166
9167 releasePage(pPageOut);
9168 sqlite3PagerUnref(pPageIn);
dan036e0672020-12-08 20:19:07 +00009169 }
9170
9171 return rc;
9172}
9173
drh5e2f8b92001-05-28 00:41:15 +00009174/*
danf0ee1d32015-09-12 19:26:11 +00009175** Delete the entry that the cursor is pointing to.
9176**
drhe807bdb2016-01-21 17:06:33 +00009177** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9178** the cursor is left pointing at an arbitrary location after the delete.
9179** But if that bit is set, then the cursor is left in a state such that
9180** the next call to BtreeNext() or BtreePrev() moves it to the same row
9181** as it would have been on if the call to BtreeDelete() had been omitted.
9182**
drhdef19e32016-01-27 16:26:25 +00009183** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9184** associated with a single table entry and its indexes. Only one of those
9185** deletes is considered the "primary" delete. The primary delete occurs
9186** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9187** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9188** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00009189** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00009190*/
drhe807bdb2016-01-21 17:06:33 +00009191int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00009192 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00009193 BtShared *pBt = p->pBt;
9194 int rc; /* Return code */
9195 MemPage *pPage; /* Page to delete cell from */
9196 unsigned char *pCell; /* Pointer to cell to delete */
9197 int iCellIdx; /* Index of cell to delete */
9198 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00009199 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00009200 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00009201 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00009202
dan7a2347e2016-01-07 16:43:54 +00009203 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00009204 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009205 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00009206 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00009207 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9208 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drhdef19e32016-01-27 16:26:25 +00009209 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danb560a712019-03-13 15:29:14 +00009210 if( pCur->eState==CURSOR_REQUIRESEEK ){
9211 rc = btreeRestoreCursorPosition(pCur);
danf0ac2902021-04-26 15:32:36 +00009212 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9213 if( rc || pCur->eState!=CURSOR_VALID ) return rc;
danb560a712019-03-13 15:29:14 +00009214 }
dan112501f2021-04-06 18:02:17 +00009215 assert( CORRUPT_DB || pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00009216
danielk19774dbaa892009-06-16 16:50:22 +00009217 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00009218 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00009219 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00009220 pCell = findCell(pPage, iCellIdx);
drhb0ea9432019-02-09 21:06:40 +00009221 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
danielk19774dbaa892009-06-16 16:50:22 +00009222
drhbfc7a8b2016-04-09 17:04:05 +00009223 /* If the bPreserve flag is set to true, then the cursor position must
9224 ** be preserved following this delete operation. If the current delete
9225 ** will cause a b-tree rebalance, then this is done by saving the cursor
9226 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9227 ** returning.
9228 **
9229 ** Or, if the current delete will not cause a rebalance, then the cursor
9230 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9231 ** before or after the deleted entry. In this case set bSkipnext to true. */
9232 if( bPreserve ){
9233 if( !pPage->leaf
9234 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00009235 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00009236 ){
9237 /* A b-tree rebalance will be required after deleting this entry.
9238 ** Save the cursor key. */
9239 rc = saveCursorKey(pCur);
9240 if( rc ) return rc;
9241 }else{
9242 bSkipnext = 1;
9243 }
9244 }
9245
danielk19774dbaa892009-06-16 16:50:22 +00009246 /* If the page containing the entry to delete is not a leaf page, move
9247 ** the cursor to the largest entry in the tree that is smaller than
9248 ** the entry being deleted. This cell will replace the cell being deleted
9249 ** from the internal node. The 'previous' entry is used for this instead
9250 ** of the 'next' entry, as the previous entry is always a part of the
9251 ** sub-tree headed by the child page of the cell being deleted. This makes
9252 ** balancing the tree following the delete operation easier. */
9253 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00009254 rc = sqlite3BtreePrevious(pCur, 0);
9255 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00009256 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00009257 }
9258
9259 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00009260 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00009261 if( pCur->curFlags & BTCF_Multiple ){
9262 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9263 if( rc ) return rc;
9264 }
drhd60f4f42012-03-23 14:23:52 +00009265
9266 /* If this is a delete operation to remove a row from a table b-tree,
9267 ** invalidate any incrblob cursors open on the row being deleted. */
drh49bb56e2021-05-14 20:01:36 +00009268 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
drh9ca431a2017-03-29 18:03:50 +00009269 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00009270 }
9271
danf0ee1d32015-09-12 19:26:11 +00009272 /* Make the page containing the entry to be deleted writable. Then free any
9273 ** overflow pages associated with the entry and finally remove the cell
9274 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00009275 rc = sqlite3PagerWrite(pPage->pDbPage);
9276 if( rc ) return rc;
drh86c779f2021-05-15 13:08:44 +00009277 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
drh80159da2016-12-09 17:32:51 +00009278 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00009279 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00009280
danielk19774dbaa892009-06-16 16:50:22 +00009281 /* If the cell deleted was not located on a leaf page, then the cursor
9282 ** is currently pointing to the largest entry in the sub-tree headed
9283 ** by the child-page of the cell that was just deleted from an internal
9284 ** node. The cell from the leaf node needs to be moved to the internal
9285 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00009286 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00009287 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00009288 int nCell;
drh352a35a2017-08-15 03:46:47 +00009289 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00009290 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00009291
drhb0ea9432019-02-09 21:06:40 +00009292 if( pLeaf->nFree<0 ){
9293 rc = btreeComputeFreeSpace(pLeaf);
9294 if( rc ) return rc;
9295 }
drh352a35a2017-08-15 03:46:47 +00009296 if( iCellDepth<pCur->iPage-1 ){
9297 n = pCur->apPage[iCellDepth+1]->pgno;
9298 }else{
9299 n = pCur->pPage->pgno;
9300 }
danielk19774dbaa892009-06-16 16:50:22 +00009301 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00009302 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00009303 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00009304 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00009305 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009306 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00009307 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00009308 if( rc==SQLITE_OK ){
9309 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9310 }
drh98add2e2009-07-20 17:11:49 +00009311 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00009312 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00009313 }
danielk19774dbaa892009-06-16 16:50:22 +00009314
9315 /* Balance the tree. If the entry deleted was located on a leaf page,
9316 ** then the cursor still points to that page. In this case the first
9317 ** call to balance() repairs the tree, and the if(...) condition is
9318 ** never true.
9319 **
9320 ** Otherwise, if the entry deleted was on an internal node page, then
9321 ** pCur is pointing to the leaf page from which a cell was removed to
9322 ** replace the cell deleted from the internal node. This is slightly
9323 ** tricky as the leaf node may be underfull, and the internal node may
9324 ** be either under or overfull. In this case run the balancing algorithm
9325 ** on the leaf node first. If the balance proceeds far enough up the
9326 ** tree that we can be sure that any problem in the internal node has
9327 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9328 ** walk the cursor up the tree to the internal node and balance it as
9329 ** well. */
9330 rc = balance(pCur);
9331 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00009332 releasePageNotNull(pCur->pPage);
9333 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00009334 while( pCur->iPage>iCellDepth ){
9335 releasePage(pCur->apPage[pCur->iPage--]);
9336 }
drh352a35a2017-08-15 03:46:47 +00009337 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00009338 rc = balance(pCur);
9339 }
9340
danielk19776b456a22005-03-21 04:04:02 +00009341 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00009342 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00009343 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00009344 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00009345 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00009346 pCur->eState = CURSOR_SKIPNEXT;
9347 if( iCellIdx>=pPage->nCell ){
9348 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00009349 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00009350 }else{
9351 pCur->skipNext = 1;
9352 }
9353 }else{
9354 rc = moveToRoot(pCur);
9355 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00009356 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00009357 pCur->eState = CURSOR_REQUIRESEEK;
9358 }
drh44548e72017-08-14 18:13:52 +00009359 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00009360 }
danielk19776b456a22005-03-21 04:04:02 +00009361 }
drh5e2f8b92001-05-28 00:41:15 +00009362 return rc;
drh3b7511c2001-05-26 13:15:44 +00009363}
drh8b2f49b2001-06-08 00:21:52 +00009364
9365/*
drhc6b52df2002-01-04 03:09:29 +00009366** Create a new BTree table. Write into *piTable the page
9367** number for the root page of the new table.
9368**
drhab01f612004-05-22 02:55:23 +00009369** The type of type is determined by the flags parameter. Only the
9370** following values of flags are currently in use. Other values for
9371** flags might not work:
9372**
9373** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9374** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00009375*/
drhabc38152020-07-22 13:38:04 +00009376static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00009377 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009378 MemPage *pRoot;
9379 Pgno pgnoRoot;
9380 int rc;
drhd4187c72010-08-30 22:15:45 +00009381 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00009382
drh1fee73e2007-08-29 04:00:57 +00009383 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009384 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009385 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00009386
danielk1977003ba062004-11-04 02:57:33 +00009387#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00009388 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00009389 if( rc ){
9390 return rc;
9391 }
danielk1977003ba062004-11-04 02:57:33 +00009392#else
danielk1977687566d2004-11-02 12:56:41 +00009393 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009394 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9395 MemPage *pPageMove; /* The page to move to. */
9396
danielk197720713f32007-05-03 11:43:33 +00009397 /* Creating a new table may probably require moving an existing database
9398 ** to make room for the new tables root page. In case this page turns
9399 ** out to be an overflow page, delete all overflow page-map caches
9400 ** held by open cursors.
9401 */
danielk197792d4d7a2007-05-04 12:05:56 +00009402 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009403
danielk1977003ba062004-11-04 02:57:33 +00009404 /* Read the value of meta[3] from the database to determine where the
9405 ** root page of the new table should go. meta[3] is the largest root-page
9406 ** created so far, so the new root-page is (meta[3]+1).
9407 */
danielk1977602b4662009-07-02 07:47:33 +00009408 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
drh10248222020-07-28 20:32:12 +00009409 if( pgnoRoot>btreePagecount(pBt) ){
9410 return SQLITE_CORRUPT_BKPT;
9411 }
danielk1977003ba062004-11-04 02:57:33 +00009412 pgnoRoot++;
9413
danielk1977599fcba2004-11-08 07:13:13 +00009414 /* The new root-page may not be allocated on a pointer-map page, or the
9415 ** PENDING_BYTE page.
9416 */
drh72190432008-01-31 14:54:43 +00009417 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009418 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009419 pgnoRoot++;
9420 }
drh48bf2d72020-07-30 17:14:55 +00009421 assert( pgnoRoot>=3 );
danielk1977003ba062004-11-04 02:57:33 +00009422
9423 /* Allocate a page. The page that currently resides at pgnoRoot will
9424 ** be moved to the allocated page (unless the allocated page happens
9425 ** to reside at pgnoRoot).
9426 */
dan51f0b6d2013-02-22 20:16:34 +00009427 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009428 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009429 return rc;
9430 }
danielk1977003ba062004-11-04 02:57:33 +00009431
9432 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009433 /* pgnoRoot is the page that will be used for the root-page of
9434 ** the new table (assuming an error did not occur). But we were
9435 ** allocated pgnoMove. If required (i.e. if it was not allocated
9436 ** by extending the file), the current page at position pgnoMove
9437 ** is already journaled.
9438 */
drheeb844a2009-08-08 18:01:07 +00009439 u8 eType = 0;
9440 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009441
danf7679ad2013-04-03 11:38:36 +00009442 /* Save the positions of any open cursors. This is required in
9443 ** case they are holding a reference to an xFetch reference
9444 ** corresponding to page pgnoRoot. */
9445 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009446 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009447 if( rc!=SQLITE_OK ){
9448 return rc;
9449 }
danielk1977f35843b2007-04-07 15:03:17 +00009450
9451 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009452 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009453 if( rc!=SQLITE_OK ){
9454 return rc;
9455 }
9456 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009457 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9458 rc = SQLITE_CORRUPT_BKPT;
9459 }
9460 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009461 releasePage(pRoot);
9462 return rc;
9463 }
drhccae6022005-02-26 17:31:26 +00009464 assert( eType!=PTRMAP_ROOTPAGE );
9465 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009466 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009467 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009468
9469 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009470 if( rc!=SQLITE_OK ){
9471 return rc;
9472 }
drhb00fc3b2013-08-21 23:42:32 +00009473 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009474 if( rc!=SQLITE_OK ){
9475 return rc;
9476 }
danielk19773b8a05f2007-03-19 17:44:26 +00009477 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009478 if( rc!=SQLITE_OK ){
9479 releasePage(pRoot);
9480 return rc;
9481 }
9482 }else{
9483 pRoot = pPageMove;
9484 }
9485
danielk197742741be2005-01-08 12:42:39 +00009486 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009487 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009488 if( rc ){
9489 releasePage(pRoot);
9490 return rc;
9491 }
drhbf592832010-03-30 15:51:12 +00009492
9493 /* When the new root page was allocated, page 1 was made writable in
9494 ** order either to increase the database filesize, or to decrement the
9495 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9496 */
9497 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009498 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009499 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009500 releasePage(pRoot);
9501 return rc;
9502 }
danielk197742741be2005-01-08 12:42:39 +00009503
danielk1977003ba062004-11-04 02:57:33 +00009504 }else{
drh4f0c5872007-03-26 22:05:01 +00009505 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009506 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009507 }
9508#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009509 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009510 if( createTabFlags & BTREE_INTKEY ){
9511 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9512 }else{
9513 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9514 }
9515 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009516 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009517 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drhabc38152020-07-22 13:38:04 +00009518 *piTable = pgnoRoot;
drh8b2f49b2001-06-08 00:21:52 +00009519 return SQLITE_OK;
9520}
drhabc38152020-07-22 13:38:04 +00009521int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
drhd677b3d2007-08-20 22:48:41 +00009522 int rc;
9523 sqlite3BtreeEnter(p);
9524 rc = btreeCreateTable(p, piTable, flags);
9525 sqlite3BtreeLeave(p);
9526 return rc;
9527}
drh8b2f49b2001-06-08 00:21:52 +00009528
9529/*
9530** Erase the given database page and all its children. Return
9531** the page to the freelist.
9532*/
drh4b70f112004-05-02 21:12:19 +00009533static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00009534 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00009535 Pgno pgno, /* Page number to clear */
9536 int freePageFlag, /* Deallocate page if true */
dan2c718872021-06-22 18:32:05 +00009537 i64 *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00009538){
danielk1977146ba992009-07-22 14:08:13 +00009539 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00009540 int rc;
drh4b70f112004-05-02 21:12:19 +00009541 unsigned char *pCell;
9542 int i;
dan8ce71842014-01-14 20:14:09 +00009543 int hdr;
drh80159da2016-12-09 17:32:51 +00009544 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00009545
drh1fee73e2007-08-29 04:00:57 +00009546 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00009547 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00009548 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00009549 }
drh28f58dd2015-06-27 19:45:03 +00009550 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00009551 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00009552 if( pPage->bBusy ){
9553 rc = SQLITE_CORRUPT_BKPT;
9554 goto cleardatabasepage_out;
9555 }
9556 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00009557 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00009558 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00009559 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00009560 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00009561 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009562 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009563 }
drh86c779f2021-05-15 13:08:44 +00009564 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
danielk19776b456a22005-03-21 04:04:02 +00009565 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009566 }
drha34b6762004-05-07 13:30:42 +00009567 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00009568 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009569 if( rc ) goto cleardatabasepage_out;
dan020c4f32021-06-22 18:06:23 +00009570 if( pPage->intKey ) pnChange = 0;
drha6df0e62021-06-03 18:51:51 +00009571 }
9572 if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00009573 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00009574 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00009575 }
9576 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00009577 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00009578 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00009579 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00009580 }
danielk19776b456a22005-03-21 04:04:02 +00009581
9582cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00009583 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00009584 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00009585 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009586}
9587
9588/*
drhab01f612004-05-22 02:55:23 +00009589** Delete all information from a single table in the database. iTable is
9590** the page number of the root of the table. After this routine returns,
9591** the root page is empty, but still exists.
9592**
9593** This routine will fail with SQLITE_LOCKED if there are any open
9594** read cursors on the table. Open write cursors are moved to the
9595** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00009596**
drha6df0e62021-06-03 18:51:51 +00009597** If pnChange is not NULL, then the integer value pointed to by pnChange
9598** is incremented by the number of entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00009599*/
dan2c718872021-06-22 18:32:05 +00009600int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00009601 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009602 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009603 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009604 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009605
drhc046e3e2009-07-15 11:26:44 +00009606 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009607
drhc046e3e2009-07-15 11:26:44 +00009608 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009609 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9610 ** is the root of a table b-tree - if it is not, the following call is
9611 ** a no-op). */
drh49bb56e2021-05-14 20:01:36 +00009612 if( p->hasIncrblobCur ){
9613 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9614 }
danielk197762c14b32008-11-19 09:05:26 +00009615 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009616 }
drhd677b3d2007-08-20 22:48:41 +00009617 sqlite3BtreeLeave(p);
9618 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009619}
9620
9621/*
drh079a3072014-03-19 14:10:55 +00009622** Delete all information from the single table that pCur is open on.
9623**
9624** This routine only work for pCur on an ephemeral table.
9625*/
9626int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9627 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9628}
9629
9630/*
drh8b2f49b2001-06-08 00:21:52 +00009631** Erase all information in a table and add the root of the table to
9632** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009633** page 1) is never added to the freelist.
9634**
9635** This routine will fail with SQLITE_LOCKED if there are any open
9636** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009637**
9638** If AUTOVACUUM is enabled and the page at iTable is not the last
9639** root page in the database file, then the last root page
9640** in the database file is moved into the slot formerly occupied by
9641** iTable and that last slot formerly occupied by the last root page
9642** is added to the freelist instead of iTable. In this say, all
9643** root pages are kept at the beginning of the database file, which
9644** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9645** page number that used to be the last root page in the file before
9646** the move. If no page gets moved, *piMoved is set to 0.
9647** The last root page is recorded in meta[3] and the value of
9648** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009649*/
danielk197789d40042008-11-17 14:20:56 +00009650static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009651 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009652 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009653 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009654
drh1fee73e2007-08-29 04:00:57 +00009655 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009656 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009657 assert( iTable>=2 );
drh9a518842019-03-08 01:52:30 +00009658 if( iTable>btreePagecount(pBt) ){
9659 return SQLITE_CORRUPT_BKPT;
9660 }
drh055f2982016-01-15 15:06:41 +00009661
drhb00fc3b2013-08-21 23:42:32 +00009662 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00009663 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00009664 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00009665 if( rc ){
9666 releasePage(pPage);
9667 return rc;
9668 }
danielk1977a0bf2652004-11-04 14:30:04 +00009669
drh205f48e2004-11-05 00:43:11 +00009670 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009671
danielk1977a0bf2652004-11-04 14:30:04 +00009672#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009673 freePage(pPage, &rc);
9674 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009675#else
drh055f2982016-01-15 15:06:41 +00009676 if( pBt->autoVacuum ){
9677 Pgno maxRootPgno;
9678 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009679
drh055f2982016-01-15 15:06:41 +00009680 if( iTable==maxRootPgno ){
9681 /* If the table being dropped is the table with the largest root-page
9682 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009683 */
drhc314dc72009-07-21 11:52:34 +00009684 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009685 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009686 if( rc!=SQLITE_OK ){
9687 return rc;
9688 }
9689 }else{
9690 /* The table being dropped does not have the largest root-page
9691 ** number in the database. So move the page that does into the
9692 ** gap left by the deleted root-page.
9693 */
9694 MemPage *pMove;
9695 releasePage(pPage);
9696 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9697 if( rc!=SQLITE_OK ){
9698 return rc;
9699 }
9700 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9701 releasePage(pMove);
9702 if( rc!=SQLITE_OK ){
9703 return rc;
9704 }
9705 pMove = 0;
9706 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9707 freePage(pMove, &rc);
9708 releasePage(pMove);
9709 if( rc!=SQLITE_OK ){
9710 return rc;
9711 }
9712 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009713 }
drh055f2982016-01-15 15:06:41 +00009714
9715 /* Set the new 'max-root-page' value in the database header. This
9716 ** is the old value less one, less one more if that happens to
9717 ** be a root-page number, less one again if that is the
9718 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009719 */
drh055f2982016-01-15 15:06:41 +00009720 maxRootPgno--;
9721 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9722 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9723 maxRootPgno--;
9724 }
9725 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9726
9727 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9728 }else{
9729 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009730 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009731 }
drh055f2982016-01-15 15:06:41 +00009732#endif
drh8b2f49b2001-06-08 00:21:52 +00009733 return rc;
9734}
drhd677b3d2007-08-20 22:48:41 +00009735int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9736 int rc;
9737 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009738 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009739 sqlite3BtreeLeave(p);
9740 return rc;
9741}
drh8b2f49b2001-06-08 00:21:52 +00009742
drh001bbcb2003-03-19 03:14:00 +00009743
drh8b2f49b2001-06-08 00:21:52 +00009744/*
danielk1977602b4662009-07-02 07:47:33 +00009745** This function may only be called if the b-tree connection already
9746** has a read or write transaction open on the database.
9747**
drh23e11ca2004-05-04 17:27:28 +00009748** Read the meta-information out of a database file. Meta[0]
9749** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009750** through meta[15] are available for use by higher layers. Meta[0]
9751** is read-only, the others are read/write.
9752**
9753** The schema layer numbers meta values differently. At the schema
9754** layer (and the SetCookie and ReadCookie opcodes) the number of
9755** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009756**
9757** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9758** of reading the value out of the header, it instead loads the "DataVersion"
9759** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9760** database file. It is a number computed by the pager. But its access
9761** pattern is the same as header meta values, and so it is convenient to
9762** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009763*/
danielk1977602b4662009-07-02 07:47:33 +00009764void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009765 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009766
drhd677b3d2007-08-20 22:48:41 +00009767 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009768 assert( p->inTrans>TRANS_NONE );
drh346a70c2020-06-15 20:27:35 +00009769 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009770 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009771 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009772
drh91618562014-12-19 19:28:02 +00009773 if( idx==BTREE_DATA_VERSION ){
drh2b994ce2021-03-18 12:36:09 +00009774 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
drh91618562014-12-19 19:28:02 +00009775 }else{
9776 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9777 }
drhae157872004-08-14 19:20:09 +00009778
danielk1977602b4662009-07-02 07:47:33 +00009779 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9780 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009781#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009782 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9783 pBt->btsFlags |= BTS_READ_ONLY;
9784 }
danielk1977003ba062004-11-04 02:57:33 +00009785#endif
drhae157872004-08-14 19:20:09 +00009786
drhd677b3d2007-08-20 22:48:41 +00009787 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009788}
9789
9790/*
drh23e11ca2004-05-04 17:27:28 +00009791** Write meta-information back into the database. Meta[0] is
9792** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009793*/
danielk1977aef0bf62005-12-30 16:28:01 +00009794int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9795 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009796 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009797 int rc;
drh23e11ca2004-05-04 17:27:28 +00009798 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009799 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009800 assert( p->inTrans==TRANS_WRITE );
9801 assert( pBt->pPage1!=0 );
9802 pP1 = pBt->pPage1->aData;
9803 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9804 if( rc==SQLITE_OK ){
9805 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009806#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009807 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009808 assert( pBt->autoVacuum || iMeta==0 );
9809 assert( iMeta==0 || iMeta==1 );
9810 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009811 }
drh64022502009-01-09 14:11:04 +00009812#endif
drh5df72a52002-06-06 23:16:05 +00009813 }
drhd677b3d2007-08-20 22:48:41 +00009814 sqlite3BtreeLeave(p);
9815 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009816}
drh8c42ca92001-06-22 19:15:00 +00009817
danielk1977a5533162009-02-24 10:01:51 +00009818/*
9819** The first argument, pCur, is a cursor opened on some b-tree. Count the
9820** number of entries in the b-tree and write the result to *pnEntry.
9821**
9822** SQLITE_OK is returned if the operation is successfully executed.
9823** Otherwise, if an error is encountered (i.e. an IO error or database
9824** corruption) an SQLite error code is returned.
9825*/
drh21f6daa2019-10-11 14:21:48 +00009826int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
danielk1977a5533162009-02-24 10:01:51 +00009827 i64 nEntry = 0; /* Value to return in *pnEntry */
9828 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009829
drh44548e72017-08-14 18:13:52 +00009830 rc = moveToRoot(pCur);
9831 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009832 *pnEntry = 0;
9833 return SQLITE_OK;
9834 }
danielk1977a5533162009-02-24 10:01:51 +00009835
9836 /* Unless an error occurs, the following loop runs one iteration for each
9837 ** page in the B-Tree structure (not including overflow pages).
9838 */
dan892edb62020-03-30 13:35:05 +00009839 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
danielk1977a5533162009-02-24 10:01:51 +00009840 int iIdx; /* Index of child node in parent */
9841 MemPage *pPage; /* Current page of the b-tree */
9842
9843 /* If this is a leaf page or the tree is not an int-key tree, then
9844 ** this page contains countable entries. Increment the entry counter
9845 ** accordingly.
9846 */
drh352a35a2017-08-15 03:46:47 +00009847 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009848 if( pPage->leaf || !pPage->intKey ){
9849 nEntry += pPage->nCell;
9850 }
9851
9852 /* pPage is a leaf node. This loop navigates the cursor so that it
9853 ** points to the first interior cell that it points to the parent of
9854 ** the next page in the tree that has not yet been visited. The
9855 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9856 ** of the page, or to the number of cells in the page if the next page
9857 ** to visit is the right-child of its parent.
9858 **
9859 ** If all pages in the tree have been visited, return SQLITE_OK to the
9860 ** caller.
9861 */
9862 if( pPage->leaf ){
9863 do {
9864 if( pCur->iPage==0 ){
9865 /* All pages of the b-tree have been visited. Return successfully. */
9866 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009867 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009868 }
danielk197730548662009-07-09 05:07:37 +00009869 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009870 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009871
drh75e96b32017-04-01 00:20:06 +00009872 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009873 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009874 }
9875
9876 /* Descend to the child node of the cell that the cursor currently
9877 ** points at. This is the right-child if (iIdx==pPage->nCell).
9878 */
drh75e96b32017-04-01 00:20:06 +00009879 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009880 if( iIdx==pPage->nCell ){
9881 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9882 }else{
9883 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9884 }
9885 }
9886
shanebe217792009-03-05 04:20:31 +00009887 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009888 return rc;
9889}
drhdd793422001-06-28 01:54:48 +00009890
drhdd793422001-06-28 01:54:48 +00009891/*
drh5eddca62001-06-30 21:53:53 +00009892** Return the pager associated with a BTree. This routine is used for
9893** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009894*/
danielk1977aef0bf62005-12-30 16:28:01 +00009895Pager *sqlite3BtreePager(Btree *p){
9896 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009897}
drh5eddca62001-06-30 21:53:53 +00009898
drhb7f91642004-10-31 02:22:47 +00009899#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009900/*
9901** Append a message to the error message string.
9902*/
drh2e38c322004-09-03 18:38:44 +00009903static void checkAppendMsg(
9904 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009905 const char *zFormat,
9906 ...
9907){
9908 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009909 if( !pCheck->mxErr ) return;
9910 pCheck->mxErr--;
9911 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009912 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009913 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +00009914 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009915 }
drh867db832014-09-26 02:41:05 +00009916 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +00009917 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009918 }
drh0cdbe1a2018-05-09 13:46:26 +00009919 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009920 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +00009921 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drh8ddf6352020-06-29 18:30:49 +00009922 pCheck->bOomFault = 1;
drhc890fec2008-08-01 20:10:08 +00009923 }
drh5eddca62001-06-30 21:53:53 +00009924}
drhb7f91642004-10-31 02:22:47 +00009925#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009926
drhb7f91642004-10-31 02:22:47 +00009927#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009928
9929/*
9930** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9931** corresponds to page iPg is already set.
9932*/
9933static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9934 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9935 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9936}
9937
9938/*
9939** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9940*/
9941static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9942 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9943 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9944}
9945
9946
drh5eddca62001-06-30 21:53:53 +00009947/*
9948** Add 1 to the reference count for page iPage. If this is the second
9949** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009950** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009951** if this is the first reference to the page.
9952**
9953** Also check that the page number is in bounds.
9954*/
drh867db832014-09-26 02:41:05 +00009955static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +00009956 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +00009957 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009958 return 1;
9959 }
dan1235bb12012-04-03 17:43:28 +00009960 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009961 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009962 return 1;
9963 }
dan892edb62020-03-30 13:35:05 +00009964 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
dan1235bb12012-04-03 17:43:28 +00009965 setPageReferenced(pCheck, iPage);
9966 return 0;
drh5eddca62001-06-30 21:53:53 +00009967}
9968
danielk1977afcdd022004-10-31 16:25:42 +00009969#ifndef SQLITE_OMIT_AUTOVACUUM
9970/*
9971** Check that the entry in the pointer-map for page iChild maps to
9972** page iParent, pointer type ptrType. If not, append an error message
9973** to pCheck.
9974*/
9975static void checkPtrmap(
9976 IntegrityCk *pCheck, /* Integrity check context */
9977 Pgno iChild, /* Child page number */
9978 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009979 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009980){
9981 int rc;
9982 u8 ePtrmapType;
9983 Pgno iPtrmapParent;
9984
9985 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9986 if( rc!=SQLITE_OK ){
drh8ddf6352020-06-29 18:30:49 +00009987 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
drh867db832014-09-26 02:41:05 +00009988 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009989 return;
9990 }
9991
9992 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009993 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009994 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9995 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9996 }
9997}
9998#endif
9999
drh5eddca62001-06-30 21:53:53 +000010000/*
10001** Check the integrity of the freelist or of an overflow page list.
10002** Verify that the number of pages on the list is N.
10003*/
drh30e58752002-03-02 20:41:57 +000010004static void checkList(
10005 IntegrityCk *pCheck, /* Integrity checking context */
10006 int isFreeList, /* True for a freelist. False for overflow page list */
drhabc38152020-07-22 13:38:04 +000010007 Pgno iPage, /* Page number for first page in the list */
drheaac9992019-02-26 16:17:06 +000010008 u32 N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +000010009){
10010 int i;
drheaac9992019-02-26 16:17:06 +000010011 u32 expected = N;
drh91d58662018-07-20 13:39:28 +000010012 int nErrAtStart = pCheck->nErr;
10013 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +000010014 DbPage *pOvflPage;
10015 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +000010016 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +000010017 N--;
drh9584f582015-11-04 20:22:37 +000010018 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +000010019 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010020 break;
10021 }
danielk19773b8a05f2007-03-19 17:44:26 +000010022 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +000010023 if( isFreeList ){
drhae104742018-12-14 17:57:01 +000010024 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +000010025#ifndef SQLITE_OMIT_AUTOVACUUM
10026 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010027 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010028 }
10029#endif
drhae104742018-12-14 17:57:01 +000010030 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +000010031 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +000010032 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +000010033 N--;
10034 }else{
drhae104742018-12-14 17:57:01 +000010035 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +000010036 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +000010037#ifndef SQLITE_OMIT_AUTOVACUUM
10038 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010039 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010040 }
10041#endif
drh867db832014-09-26 02:41:05 +000010042 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +000010043 }
10044 N -= n;
drh30e58752002-03-02 20:41:57 +000010045 }
drh30e58752002-03-02 20:41:57 +000010046 }
danielk1977afcdd022004-10-31 16:25:42 +000010047#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010048 else{
10049 /* If this database supports auto-vacuum and iPage is not the last
10050 ** page in this overflow list, check that the pointer-map entry for
10051 ** the following page matches iPage.
10052 */
10053 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +000010054 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +000010055 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +000010056 }
danielk1977afcdd022004-10-31 16:25:42 +000010057 }
10058#endif
danielk19773b8a05f2007-03-19 17:44:26 +000010059 iPage = get4byte(pOvflData);
10060 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +000010061 }
10062 if( N && nErrAtStart==pCheck->nErr ){
10063 checkAppendMsg(pCheck,
10064 "%s is %d but should be %d",
10065 isFreeList ? "size" : "overflow list length",
10066 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +000010067 }
10068}
drhb7f91642004-10-31 02:22:47 +000010069#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010070
drh67731a92015-04-16 11:56:03 +000010071/*
10072** An implementation of a min-heap.
10073**
10074** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +000010075** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +000010076** and aHeap[N*2+1].
10077**
10078** The heap property is this: Every node is less than or equal to both
10079** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +000010080** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +000010081**
10082** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10083** the heap, preserving the heap property. The btreeHeapPull() routine
10084** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +000010085** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +000010086** property.
10087**
10088** This heap is used for cell overlap and coverage testing. Each u32
10089** entry represents the span of a cell or freeblock on a btree page.
10090** The upper 16 bits are the index of the first byte of a range and the
10091** lower 16 bits are the index of the last byte of that range.
10092*/
10093static void btreeHeapInsert(u32 *aHeap, u32 x){
10094 u32 j, i = ++aHeap[0];
10095 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +000010096 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +000010097 x = aHeap[j];
10098 aHeap[j] = aHeap[i];
10099 aHeap[i] = x;
10100 i = j;
10101 }
10102}
10103static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10104 u32 j, i, x;
10105 if( (x = aHeap[0])==0 ) return 0;
10106 *pOut = aHeap[1];
10107 aHeap[1] = aHeap[x];
10108 aHeap[x] = 0xffffffff;
10109 aHeap[0]--;
10110 i = 1;
10111 while( (j = i*2)<=aHeap[0] ){
10112 if( aHeap[j]>aHeap[j+1] ) j++;
10113 if( aHeap[i]<aHeap[j] ) break;
10114 x = aHeap[i];
10115 aHeap[i] = aHeap[j];
10116 aHeap[j] = x;
10117 i = j;
10118 }
10119 return 1;
10120}
10121
drhb7f91642004-10-31 02:22:47 +000010122#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010123/*
10124** Do various sanity checks on a single page of a tree. Return
10125** the tree depth. Root pages return 0. Parents of root pages
10126** return 1, and so forth.
10127**
10128** These checks are done:
10129**
10130** 1. Make sure that cells and freeblocks do not overlap
10131** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +000010132** 2. Make sure integer cell keys are in order.
10133** 3. Check the integrity of overflow pages.
10134** 4. Recursively call checkTreePage on all children.
10135** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +000010136*/
10137static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +000010138 IntegrityCk *pCheck, /* Context for the sanity check */
drhabc38152020-07-22 13:38:04 +000010139 Pgno iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +000010140 i64 *piMinKey, /* Write minimum integer primary key here */
10141 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +000010142){
drhcbc6b712015-07-02 16:17:30 +000010143 MemPage *pPage = 0; /* The page being analyzed */
10144 int i; /* Loop counter */
10145 int rc; /* Result code from subroutine call */
10146 int depth = -1, d2; /* Depth of a subtree */
10147 int pgno; /* Page number */
10148 int nFrag; /* Number of fragmented bytes on the page */
10149 int hdr; /* Offset to the page header */
10150 int cellStart; /* Offset to the start of the cell pointer array */
10151 int nCell; /* Number of cells */
10152 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10153 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
10154 ** False if IPK must be strictly less than maxKey */
10155 u8 *data; /* Page content */
10156 u8 *pCell; /* Cell content */
10157 u8 *pCellIdx; /* Next element of the cell pointer array */
10158 BtShared *pBt; /* The BtShared object that owns pPage */
10159 u32 pc; /* Address of a cell */
10160 u32 usableSize; /* Usable size of the page */
10161 u32 contentOffset; /* Offset to the start of the cell content area */
10162 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +000010163 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +000010164 const char *saved_zPfx = pCheck->zPfx;
10165 int saved_v1 = pCheck->v1;
10166 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +000010167 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +000010168
drh5eddca62001-06-30 21:53:53 +000010169 /* Check that the page exists
10170 */
drhd9cb6ac2005-10-20 07:28:17 +000010171 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +000010172 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +000010173 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +000010174 if( checkRef(pCheck, iPage) ) return 0;
drhabc38152020-07-22 13:38:04 +000010175 pCheck->zPfx = "Page %u: ";
drh867db832014-09-26 02:41:05 +000010176 pCheck->v1 = iPage;
drhabc38152020-07-22 13:38:04 +000010177 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +000010178 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +000010179 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +000010180 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +000010181 }
danielk197793caf5a2009-07-11 06:55:33 +000010182
10183 /* Clear MemPage.isInit to make sure the corruption detection code in
10184 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +000010185 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +000010186 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +000010187 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +000010188 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +000010189 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +000010190 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +000010191 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +000010192 }
drhb0ea9432019-02-09 21:06:40 +000010193 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10194 assert( rc==SQLITE_CORRUPT );
10195 checkAppendMsg(pCheck, "free space corruption", rc);
10196 goto end_of_check;
10197 }
drhcbc6b712015-07-02 16:17:30 +000010198 data = pPage->aData;
10199 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +000010200
drhcbc6b712015-07-02 16:17:30 +000010201 /* Set up for cell analysis */
drhabc38152020-07-22 13:38:04 +000010202 pCheck->zPfx = "On tree page %u cell %d: ";
drhcbc6b712015-07-02 16:17:30 +000010203 contentOffset = get2byteNotZero(&data[hdr+5]);
10204 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
10205
10206 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10207 ** number of cells on the page. */
10208 nCell = get2byte(&data[hdr+3]);
10209 assert( pPage->nCell==nCell );
10210
10211 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10212 ** immediately follows the b-tree page header. */
10213 cellStart = hdr + 12 - 4*pPage->leaf;
10214 assert( pPage->aCellIdx==&data[cellStart] );
10215 pCellIdx = &data[cellStart + 2*(nCell-1)];
10216
10217 if( !pPage->leaf ){
10218 /* Analyze the right-child page of internal pages */
10219 pgno = get4byte(&data[hdr+8]);
10220#ifndef SQLITE_OMIT_AUTOVACUUM
10221 if( pBt->autoVacuum ){
drhabc38152020-07-22 13:38:04 +000010222 pCheck->zPfx = "On page %u at right child: ";
drhcbc6b712015-07-02 16:17:30 +000010223 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10224 }
10225#endif
10226 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10227 keyCanBeEqual = 0;
10228 }else{
10229 /* For leaf pages, the coverage check will occur in the same loop
10230 ** as the other cell checks, so initialize the heap. */
10231 heap = pCheck->heap;
10232 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +000010233 }
10234
drhcbc6b712015-07-02 16:17:30 +000010235 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10236 ** integer offsets to the cell contents. */
10237 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +000010238 CellInfo info;
drh5eddca62001-06-30 21:53:53 +000010239
drhcbc6b712015-07-02 16:17:30 +000010240 /* Check cell size */
drh867db832014-09-26 02:41:05 +000010241 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +000010242 assert( pCellIdx==&data[cellStart + i*2] );
10243 pc = get2byteAligned(pCellIdx);
10244 pCellIdx -= 2;
10245 if( pc<contentOffset || pc>usableSize-4 ){
10246 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10247 pc, contentOffset, usableSize-4);
10248 doCoverageCheck = 0;
10249 continue;
shaneh195475d2010-02-19 04:28:08 +000010250 }
drhcbc6b712015-07-02 16:17:30 +000010251 pCell = &data[pc];
10252 pPage->xParseCell(pPage, pCell, &info);
10253 if( pc+info.nSize>usableSize ){
10254 checkAppendMsg(pCheck, "Extends off end of page");
10255 doCoverageCheck = 0;
10256 continue;
drh5eddca62001-06-30 21:53:53 +000010257 }
10258
drhcbc6b712015-07-02 16:17:30 +000010259 /* Check for integer primary key out of range */
10260 if( pPage->intKey ){
10261 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10262 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10263 }
10264 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +000010265 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +000010266 }
10267
10268 /* Check the content overflow list */
10269 if( info.nPayload>info.nLocal ){
drheaac9992019-02-26 16:17:06 +000010270 u32 nPage; /* Number of pages on the overflow chain */
drhcbc6b712015-07-02 16:17:30 +000010271 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +000010272 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +000010273 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +000010274 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +000010275#ifndef SQLITE_OMIT_AUTOVACUUM
10276 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010277 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +000010278 }
10279#endif
drh867db832014-09-26 02:41:05 +000010280 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +000010281 }
10282
drh5eddca62001-06-30 21:53:53 +000010283 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +000010284 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +000010285 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +000010286#ifndef SQLITE_OMIT_AUTOVACUUM
10287 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010288 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +000010289 }
10290#endif
drhcbc6b712015-07-02 16:17:30 +000010291 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10292 keyCanBeEqual = 0;
10293 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +000010294 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +000010295 depth = d2;
drh5eddca62001-06-30 21:53:53 +000010296 }
drhcbc6b712015-07-02 16:17:30 +000010297 }else{
10298 /* Populate the coverage-checking heap for leaf pages */
10299 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +000010300 }
10301 }
drhcbc6b712015-07-02 16:17:30 +000010302 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +000010303
drh5eddca62001-06-30 21:53:53 +000010304 /* Check for complete coverage of the page
10305 */
drh867db832014-09-26 02:41:05 +000010306 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +000010307 if( doCoverageCheck && pCheck->mxErr>0 ){
10308 /* For leaf pages, the min-heap has already been initialized and the
10309 ** cells have already been inserted. But for internal pages, that has
10310 ** not yet been done, so do it now */
10311 if( !pPage->leaf ){
10312 heap = pCheck->heap;
10313 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +000010314 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +000010315 u32 size;
10316 pc = get2byteAligned(&data[cellStart+i*2]);
10317 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +000010318 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +000010319 }
drh2e38c322004-09-03 18:38:44 +000010320 }
drhcbc6b712015-07-02 16:17:30 +000010321 /* Add the freeblocks to the min-heap
10322 **
10323 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +000010324 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +000010325 ** freeblocks on the page.
10326 */
drh8c2bbb62009-07-10 02:52:20 +000010327 i = get2byte(&data[hdr+1]);
10328 while( i>0 ){
10329 int size, j;
drh5860a612019-02-12 16:58:26 +000010330 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010331 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +000010332 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +000010333 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +000010334 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10335 ** big-endian integer which is the offset in the b-tree page of the next
10336 ** freeblock in the chain, or zero if the freeblock is the last on the
10337 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +000010338 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +000010339 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10340 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +000010341 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10342 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010343 i = j;
drh2e38c322004-09-03 18:38:44 +000010344 }
drhcbc6b712015-07-02 16:17:30 +000010345 /* Analyze the min-heap looking for overlap between cells and/or
10346 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +000010347 **
10348 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10349 ** There is an implied first entry the covers the page header, the cell
10350 ** pointer index, and the gap between the cell pointer index and the start
10351 ** of cell content.
10352 **
10353 ** The loop below pulls entries from the min-heap in order and compares
10354 ** the start_address against the previous end_address. If there is an
10355 ** overlap, that means bytes are used multiple times. If there is a gap,
10356 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +000010357 */
10358 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +000010359 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +000010360 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +000010361 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +000010362 checkAppendMsg(pCheck,
drhabc38152020-07-22 13:38:04 +000010363 "Multiple uses for byte %u of page %u", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +000010364 break;
drh67731a92015-04-16 11:56:03 +000010365 }else{
drhcbc6b712015-07-02 16:17:30 +000010366 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +000010367 prev = x;
drh2e38c322004-09-03 18:38:44 +000010368 }
10369 }
drhcbc6b712015-07-02 16:17:30 +000010370 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +000010371 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10372 ** is stored in the fifth field of the b-tree page header.
10373 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10374 ** number of fragmented free bytes within the cell content area.
10375 */
drhcbc6b712015-07-02 16:17:30 +000010376 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +000010377 checkAppendMsg(pCheck,
drhabc38152020-07-22 13:38:04 +000010378 "Fragmentation of %d bytes reported as %d on page %u",
drhcbc6b712015-07-02 16:17:30 +000010379 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +000010380 }
10381 }
drh867db832014-09-26 02:41:05 +000010382
10383end_of_check:
drh72e191e2015-07-04 11:14:20 +000010384 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +000010385 releasePage(pPage);
drh867db832014-09-26 02:41:05 +000010386 pCheck->zPfx = saved_zPfx;
10387 pCheck->v1 = saved_v1;
10388 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +000010389 return depth+1;
drh5eddca62001-06-30 21:53:53 +000010390}
drhb7f91642004-10-31 02:22:47 +000010391#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010392
drhb7f91642004-10-31 02:22:47 +000010393#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010394/*
10395** This routine does a complete check of the given BTree file. aRoot[] is
10396** an array of pages numbers were each page number is the root page of
10397** a table. nRoot is the number of entries in aRoot.
10398**
danielk19773509a652009-07-06 18:56:13 +000010399** A read-only or read-write transaction must be opened before calling
10400** this function.
10401**
drhc890fec2008-08-01 20:10:08 +000010402** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010403** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010404** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010405** returned. If a memory allocation error occurs, NULL is returned.
drh17d2d592020-07-23 00:45:06 +000010406**
10407** If the first entry in aRoot[] is 0, that indicates that the list of
10408** root pages is incomplete. This is a "partial integrity-check". This
10409** happens when performing an integrity check on a single table. The
10410** zero is skipped, of course. But in addition, the freelist checks
10411** and the checks to make sure every page is referenced are also skipped,
10412** since obviously it is not possible to know which pages are covered by
10413** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10414** checks are still performed.
drh5eddca62001-06-30 21:53:53 +000010415*/
drh1dcdbc02007-01-27 02:24:54 +000010416char *sqlite3BtreeIntegrityCheck(
drh21f6daa2019-10-11 14:21:48 +000010417 sqlite3 *db, /* Database connection that is running the check */
drh1dcdbc02007-01-27 02:24:54 +000010418 Btree *p, /* The btree to be checked */
drhabc38152020-07-22 13:38:04 +000010419 Pgno *aRoot, /* An array of root pages numbers for individual trees */
drh1dcdbc02007-01-27 02:24:54 +000010420 int nRoot, /* Number of entries in aRoot[] */
10421 int mxErr, /* Stop reporting errors after this many */
10422 int *pnErr /* Write number of errors seen to this variable */
10423){
danielk197789d40042008-11-17 14:20:56 +000010424 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010425 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010426 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010427 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010428 char zErr[100];
drh17d2d592020-07-23 00:45:06 +000010429 int bPartial = 0; /* True if not checking all btrees */
10430 int bCkFreelist = 1; /* True to scan the freelist */
drh8deae5a2020-07-29 12:23:20 +000010431 VVA_ONLY( int nRef );
drh17d2d592020-07-23 00:45:06 +000010432 assert( nRoot>0 );
10433
10434 /* aRoot[0]==0 means this is a partial check */
10435 if( aRoot[0]==0 ){
10436 assert( nRoot>1 );
10437 bPartial = 1;
10438 if( aRoot[1]!=1 ) bCkFreelist = 0;
10439 }
drh5eddca62001-06-30 21:53:53 +000010440
drhd677b3d2007-08-20 22:48:41 +000010441 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010442 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010443 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10444 assert( nRef>=0 );
drh21f6daa2019-10-11 14:21:48 +000010445 sCheck.db = db;
drh5eddca62001-06-30 21:53:53 +000010446 sCheck.pBt = pBt;
10447 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010448 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010449 sCheck.mxErr = mxErr;
10450 sCheck.nErr = 0;
drh8ddf6352020-06-29 18:30:49 +000010451 sCheck.bOomFault = 0;
drh867db832014-09-26 02:41:05 +000010452 sCheck.zPfx = 0;
10453 sCheck.v1 = 0;
10454 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010455 sCheck.aPgRef = 0;
10456 sCheck.heap = 0;
10457 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010458 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010459 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010460 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010461 }
dan1235bb12012-04-03 17:43:28 +000010462
10463 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10464 if( !sCheck.aPgRef ){
drh8ddf6352020-06-29 18:30:49 +000010465 sCheck.bOomFault = 1;
drhe05b3f82015-07-01 17:53:49 +000010466 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010467 }
drhe05b3f82015-07-01 17:53:49 +000010468 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10469 if( sCheck.heap==0 ){
drh8ddf6352020-06-29 18:30:49 +000010470 sCheck.bOomFault = 1;
drhe05b3f82015-07-01 17:53:49 +000010471 goto integrity_ck_cleanup;
10472 }
10473
drh42cac6d2004-11-20 20:31:11 +000010474 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010475 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010476
10477 /* Check the integrity of the freelist
10478 */
drh17d2d592020-07-23 00:45:06 +000010479 if( bCkFreelist ){
10480 sCheck.zPfx = "Main freelist: ";
10481 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10482 get4byte(&pBt->pPage1->aData[36]));
10483 sCheck.zPfx = 0;
10484 }
drh5eddca62001-06-30 21:53:53 +000010485
10486 /* Check all the tables.
10487 */
drh040d77a2018-07-20 15:44:09 +000010488#ifndef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010489 if( !bPartial ){
10490 if( pBt->autoVacuum ){
drhed109c02020-07-23 09:14:25 +000010491 Pgno mx = 0;
10492 Pgno mxInHdr;
drh17d2d592020-07-23 00:45:06 +000010493 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10494 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10495 if( mx!=mxInHdr ){
10496 checkAppendMsg(&sCheck,
10497 "max rootpage (%d) disagrees with header (%d)",
10498 mx, mxInHdr
10499 );
10500 }
10501 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
drh040d77a2018-07-20 15:44:09 +000010502 checkAppendMsg(&sCheck,
drh17d2d592020-07-23 00:45:06 +000010503 "incremental_vacuum enabled with a max rootpage of zero"
drh040d77a2018-07-20 15:44:09 +000010504 );
10505 }
drh040d77a2018-07-20 15:44:09 +000010506 }
10507#endif
drhcbc6b712015-07-02 16:17:30 +000010508 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010509 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010510 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010511 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010512 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010513#ifndef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010514 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
drh867db832014-09-26 02:41:05 +000010515 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010516 }
10517#endif
drhcbc6b712015-07-02 16:17:30 +000010518 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000010519 }
drhcbc6b712015-07-02 16:17:30 +000010520 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000010521
10522 /* Make sure every page in the file is referenced
10523 */
drh17d2d592020-07-23 00:45:06 +000010524 if( !bPartial ){
10525 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000010526#ifdef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010527 if( getPageReferenced(&sCheck, i)==0 ){
10528 checkAppendMsg(&sCheck, "Page %d is never used", i);
10529 }
danielk1977afcdd022004-10-31 16:25:42 +000010530#else
drh17d2d592020-07-23 00:45:06 +000010531 /* If the database supports auto-vacuum, make sure no tables contain
10532 ** references to pointer-map pages.
10533 */
10534 if( getPageReferenced(&sCheck, i)==0 &&
10535 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10536 checkAppendMsg(&sCheck, "Page %d is never used", i);
10537 }
10538 if( getPageReferenced(&sCheck, i)!=0 &&
10539 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10540 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10541 }
danielk1977afcdd022004-10-31 16:25:42 +000010542#endif
drh47eb5612020-08-10 21:01:32 +000010543 }
drh5eddca62001-06-30 21:53:53 +000010544 }
10545
drh5eddca62001-06-30 21:53:53 +000010546 /* Clean up and report errors.
10547 */
drhe05b3f82015-07-01 17:53:49 +000010548integrity_ck_cleanup:
10549 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000010550 sqlite3_free(sCheck.aPgRef);
drh8ddf6352020-06-29 18:30:49 +000010551 if( sCheck.bOomFault ){
drh0cdbe1a2018-05-09 13:46:26 +000010552 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010553 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000010554 }
drh1dcdbc02007-01-27 02:24:54 +000010555 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000010556 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010557 /* Make sure this analysis did not leave any unref() pages. */
10558 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10559 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000010560 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000010561}
drhb7f91642004-10-31 02:22:47 +000010562#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000010563
drh73509ee2003-04-06 20:44:45 +000010564/*
drhd4e0bb02012-05-27 01:19:04 +000010565** Return the full pathname of the underlying database file. Return
10566** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000010567**
10568** The pager filename is invariant as long as the pager is
10569** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000010570*/
danielk1977aef0bf62005-12-30 16:28:01 +000010571const char *sqlite3BtreeGetFilename(Btree *p){
10572 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000010573 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000010574}
10575
10576/*
danielk19775865e3d2004-06-14 06:03:57 +000010577** Return the pathname of the journal file for this database. The return
10578** value of this routine is the same regardless of whether the journal file
10579** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000010580**
10581** The pager journal filename is invariant as long as the pager is
10582** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000010583*/
danielk1977aef0bf62005-12-30 16:28:01 +000010584const char *sqlite3BtreeGetJournalname(Btree *p){
10585 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000010586 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000010587}
10588
danielk19771d850a72004-05-31 08:26:49 +000010589/*
drh99744fa2020-08-25 19:09:07 +000010590** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10591** to describe the current transaction state of Btree p.
danielk19771d850a72004-05-31 08:26:49 +000010592*/
drh99744fa2020-08-25 19:09:07 +000010593int sqlite3BtreeTxnState(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000010594 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
drh99744fa2020-08-25 19:09:07 +000010595 return p ? p->inTrans : 0;
danielk19771d850a72004-05-31 08:26:49 +000010596}
10597
dana550f2d2010-08-02 10:47:05 +000010598#ifndef SQLITE_OMIT_WAL
10599/*
10600** Run a checkpoint on the Btree passed as the first argument.
10601**
10602** Return SQLITE_LOCKED if this or any other connection has an open
10603** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000010604**
dancdc1f042010-11-18 12:11:05 +000010605** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000010606*/
dancdc1f042010-11-18 12:11:05 +000010607int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000010608 int rc = SQLITE_OK;
10609 if( p ){
10610 BtShared *pBt = p->pBt;
10611 sqlite3BtreeEnter(p);
10612 if( pBt->inTransaction!=TRANS_NONE ){
10613 rc = SQLITE_LOCKED;
10614 }else{
dan7fb89902016-08-12 16:21:15 +000010615 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000010616 }
10617 sqlite3BtreeLeave(p);
10618 }
10619 return rc;
10620}
10621#endif
10622
danielk19771d850a72004-05-31 08:26:49 +000010623/*
drh99744fa2020-08-25 19:09:07 +000010624** Return true if there is currently a backup running on Btree p.
danielk19772372c2b2006-06-27 16:34:56 +000010625*/
danielk197704103022009-02-03 16:51:24 +000010626int sqlite3BtreeIsInBackup(Btree *p){
10627 assert( p );
10628 assert( sqlite3_mutex_held(p->db->mutex) );
10629 return p->nBackup!=0;
10630}
10631
danielk19772372c2b2006-06-27 16:34:56 +000010632/*
danielk1977da184232006-01-05 11:34:32 +000010633** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010634** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010635** purposes (for example, to store a high-level schema associated with
10636** the shared-btree). The btree layer manages reference counting issues.
10637**
10638** The first time this is called on a shared-btree, nBytes bytes of memory
10639** are allocated, zeroed, and returned to the caller. For each subsequent
10640** call the nBytes parameter is ignored and a pointer to the same blob
10641** of memory returned.
10642**
danielk1977171bfed2008-06-23 09:50:50 +000010643** If the nBytes parameter is 0 and the blob of memory has not yet been
10644** allocated, a null pointer is returned. If the blob has already been
10645** allocated, it is returned as normal.
10646**
danielk1977da184232006-01-05 11:34:32 +000010647** Just before the shared-btree is closed, the function passed as the
10648** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010649** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010650** on the memory, the btree layer does that.
10651*/
10652void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10653 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010654 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010655 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010656 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010657 pBt->xFreeSchema = xFree;
10658 }
drh27641702007-08-22 02:56:42 +000010659 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010660 return pBt->pSchema;
10661}
10662
danielk1977c87d34d2006-01-06 13:00:28 +000010663/*
danielk1977404ca072009-03-16 13:19:36 +000010664** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10665** btree as the argument handle holds an exclusive lock on the
drh1e32bed2020-06-19 13:33:53 +000010666** sqlite_schema table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010667*/
10668int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010669 int rc;
drhe5fe6902007-12-07 18:55:28 +000010670 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010671 sqlite3BtreeEnter(p);
drh346a70c2020-06-15 20:27:35 +000010672 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
danielk1977404ca072009-03-16 13:19:36 +000010673 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010674 sqlite3BtreeLeave(p);
10675 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010676}
10677
drha154dcd2006-03-22 22:10:07 +000010678
10679#ifndef SQLITE_OMIT_SHARED_CACHE
10680/*
10681** Obtain a lock on the table whose root page is iTab. The
10682** lock is a write lock if isWritelock is true or a read lock
10683** if it is false.
10684*/
danielk1977c00da102006-01-07 13:21:04 +000010685int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010686 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010687 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010688 if( p->sharable ){
10689 u8 lockType = READ_LOCK + isWriteLock;
10690 assert( READ_LOCK+1==WRITE_LOCK );
10691 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010692
drh6a9ad3d2008-04-02 16:29:30 +000010693 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010694 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010695 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010696 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010697 }
10698 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010699 }
10700 return rc;
10701}
drha154dcd2006-03-22 22:10:07 +000010702#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010703
danielk1977b4e9af92007-05-01 17:49:49 +000010704#ifndef SQLITE_OMIT_INCRBLOB
10705/*
10706** Argument pCsr must be a cursor opened for writing on an
10707** INTKEY table currently pointing at a valid table entry.
10708** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010709**
10710** Only the data content may only be modified, it is not possible to
10711** change the length of the data stored. If this function is called with
10712** parameters that attempt to write past the end of the existing data,
10713** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010714*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010715int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010716 int rc;
dan7a2347e2016-01-07 16:43:54 +000010717 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010718 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010719 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010720
danielk1977c9000e62009-07-08 13:55:28 +000010721 rc = restoreCursorPosition(pCsr);
10722 if( rc!=SQLITE_OK ){
10723 return rc;
10724 }
danielk19773588ceb2008-06-10 17:30:26 +000010725 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10726 if( pCsr->eState!=CURSOR_VALID ){
10727 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010728 }
10729
dan227a1c42013-04-03 11:17:39 +000010730 /* Save the positions of all other cursors open on this table. This is
10731 ** required in case any of them are holding references to an xFetch
10732 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010733 **
drh3f387402014-09-24 01:23:00 +000010734 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010735 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10736 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010737 */
drh370c9f42013-04-03 20:04:04 +000010738 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10739 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010740
danielk1977c9000e62009-07-08 13:55:28 +000010741 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010742 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010743 ** (b) there is a read/write transaction open,
10744 ** (c) the connection holds a write-lock on the table (if required),
10745 ** (d) there are no conflicting read-locks, and
10746 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010747 */
drh036dbec2014-03-11 23:40:44 +000010748 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010749 return SQLITE_READONLY;
10750 }
drhc9166342012-01-05 23:32:06 +000010751 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10752 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010753 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10754 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010755 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010756
drhfb192682009-07-11 18:26:28 +000010757 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010758}
danielk19772dec9702007-05-02 16:48:37 +000010759
10760/*
dan5a500af2014-03-11 20:33:04 +000010761** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010762*/
dan5a500af2014-03-11 20:33:04 +000010763void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010764 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010765 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010766}
danielk1977b4e9af92007-05-01 17:49:49 +000010767#endif
dane04dc882010-04-20 18:53:15 +000010768
10769/*
10770** Set both the "read version" (single byte at byte offset 18) and
10771** "write version" (single byte at byte offset 19) fields in the database
10772** header to iVersion.
10773*/
10774int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10775 BtShared *pBt = pBtree->pBt;
10776 int rc; /* Return code */
10777
dane04dc882010-04-20 18:53:15 +000010778 assert( iVersion==1 || iVersion==2 );
10779
danb9780022010-04-21 18:37:57 +000010780 /* If setting the version fields to 1, do not automatically open the
10781 ** WAL connection, even if the version fields are currently set to 2.
10782 */
drhc9166342012-01-05 23:32:06 +000010783 pBt->btsFlags &= ~BTS_NO_WAL;
10784 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010785
drhbb2d9b12018-06-06 16:28:40 +000010786 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000010787 if( rc==SQLITE_OK ){
10788 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010789 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000010790 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000010791 if( rc==SQLITE_OK ){
10792 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10793 if( rc==SQLITE_OK ){
10794 aData[18] = (u8)iVersion;
10795 aData[19] = (u8)iVersion;
10796 }
10797 }
10798 }
dane04dc882010-04-20 18:53:15 +000010799 }
10800
drhc9166342012-01-05 23:32:06 +000010801 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010802 return rc;
10803}
dan428c2182012-08-06 18:50:11 +000010804
drhe0997b32015-03-20 14:57:50 +000010805/*
10806** Return true if the cursor has a hint specified. This routine is
10807** only used from within assert() statements
10808*/
10809int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10810 return (pCsr->hints & mask)!=0;
10811}
drhe0997b32015-03-20 14:57:50 +000010812
drh781597f2014-05-21 08:21:07 +000010813/*
10814** Return true if the given Btree is read-only.
10815*/
10816int sqlite3BtreeIsReadonly(Btree *p){
10817 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10818}
drhdef68892014-11-04 12:11:23 +000010819
10820/*
10821** Return the size of the header added to each page by this module.
10822*/
drh37c057b2014-12-30 00:57:29 +000010823int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010824
drh5a1fb182016-01-08 19:34:39 +000010825#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010826/*
10827** Return true if the Btree passed as the only argument is sharable.
10828*/
10829int sqlite3BtreeSharable(Btree *p){
10830 return p->sharable;
10831}
dan272989b2016-07-06 10:12:02 +000010832
10833/*
10834** Return the number of connections to the BtShared object accessed by
10835** the Btree handle passed as the only argument. For private caches
10836** this is always 1. For shared caches it may be 1 or greater.
10837*/
10838int sqlite3BtreeConnectionCount(Btree *p){
10839 testcase( p->sharable );
10840 return p->pBt->nRef;
10841}
drh5a1fb182016-01-08 19:34:39 +000010842#endif