blob: 7754f3a213fa477372122c50e70f51876d93bc5c [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh86f8c192007-08-22 00:39:19 +000035
36
drhe53831d2007-08-17 01:14:38 +000037#ifndef SQLITE_OMIT_SHARED_CACHE
38/*
danielk1977502b4e02008-09-02 14:07:24 +000039** A list of BtShared objects that are eligible for participation
40** in shared cache. This variable has file scope during normal builds,
41** but the test harness needs to access it so we make it global for
42** test builds.
drh7555d8e2009-03-20 13:15:30 +000043**
44** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000045*/
46#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000047BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000048#else
drh78f82d12008-09-02 00:52:52 +000049static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#endif
drhe53831d2007-08-17 01:14:38 +000051#endif /* SQLITE_OMIT_SHARED_CACHE */
52
53#ifndef SQLITE_OMIT_SHARED_CACHE
54/*
55** Enable or disable the shared pager and schema features.
56**
57** This routine has no effect on existing database connections.
58** The shared cache setting effects only future calls to
59** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
60*/
61int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000062 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000063 return SQLITE_OK;
64}
65#endif
66
drhd677b3d2007-08-20 22:48:41 +000067
danielk1977aef0bf62005-12-30 16:28:01 +000068
69#ifdef SQLITE_OMIT_SHARED_CACHE
70 /*
drhc25eabe2009-02-24 18:57:31 +000071 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
72 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000073 ** manipulate entries in the BtShared.pLock linked list used to store
74 ** shared-cache table level locks. If the library is compiled with the
75 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000076 ** of each BtShared structure and so this locking is not necessary.
77 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000078 */
drhc25eabe2009-02-24 18:57:31 +000079 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
80 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
81 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000082 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000083 #define hasSharedCacheTableLock(a,b,c,d) 1
84 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000085#endif
danielk1977aef0bf62005-12-30 16:28:01 +000086
drhe53831d2007-08-17 01:14:38 +000087#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000088
89#ifdef SQLITE_DEBUG
90/*
drh0ee3dbe2009-10-16 15:05:18 +000091**** This function is only used as part of an assert() statement. ***
92**
93** Check to see if pBtree holds the required locks to read or write to the
94** table with root page iRoot. Return 1 if it does and 0 if not.
95**
96** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +000097** Btree connection pBtree:
98**
99** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
100**
drh0ee3dbe2009-10-16 15:05:18 +0000101** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000102** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000103** the corresponding table. This makes things a bit more complicated,
104** as this module treats each table as a separate structure. To determine
105** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000106** function has to search through the database schema.
107**
drh0ee3dbe2009-10-16 15:05:18 +0000108** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000109** hold a write-lock on the schema table (root page 1). This is also
110** acceptable.
111*/
112static int hasSharedCacheTableLock(
113 Btree *pBtree, /* Handle that must hold lock */
114 Pgno iRoot, /* Root page of b-tree */
115 int isIndex, /* True if iRoot is the root of an index b-tree */
116 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
117){
118 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
119 Pgno iTab = 0;
120 BtLock *pLock;
121
drh0ee3dbe2009-10-16 15:05:18 +0000122 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000123 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000124 ** Return true immediately.
125 */
danielk197796d48e92009-06-29 06:00:37 +0000126 if( (pBtree->sharable==0)
127 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000128 ){
129 return 1;
130 }
131
drh0ee3dbe2009-10-16 15:05:18 +0000132 /* If the client is reading or writing an index and the schema is
133 ** not loaded, then it is too difficult to actually check to see if
134 ** the correct locks are held. So do not bother - just return true.
135 ** This case does not come up very often anyhow.
136 */
137 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
138 return 1;
139 }
140
danielk197796d48e92009-06-29 06:00:37 +0000141 /* Figure out the root-page that the lock should be held on. For table
142 ** b-trees, this is just the root page of the b-tree being read or
143 ** written. For index b-trees, it is the root page of the associated
144 ** table. */
145 if( isIndex ){
146 HashElem *p;
147 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
148 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000149 if( pIdx->tnum==(int)iRoot ){
150 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000151 }
152 }
153 }else{
154 iTab = iRoot;
155 }
156
157 /* Search for the required lock. Either a write-lock on root-page iTab, a
158 ** write-lock on the schema table, or (if the client is reading) a
159 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
160 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
161 if( pLock->pBtree==pBtree
162 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
163 && pLock->eLock>=eLockType
164 ){
165 return 1;
166 }
167 }
168
169 /* Failed to find the required lock. */
170 return 0;
171}
drh0ee3dbe2009-10-16 15:05:18 +0000172#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000173
drh0ee3dbe2009-10-16 15:05:18 +0000174#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000175/*
drh0ee3dbe2009-10-16 15:05:18 +0000176**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000177**
drh0ee3dbe2009-10-16 15:05:18 +0000178** Return true if it would be illegal for pBtree to write into the
179** table or index rooted at iRoot because other shared connections are
180** simultaneously reading that same table or index.
181**
182** It is illegal for pBtree to write if some other Btree object that
183** shares the same BtShared object is currently reading or writing
184** the iRoot table. Except, if the other Btree object has the
185** read-uncommitted flag set, then it is OK for the other object to
186** have a read cursor.
187**
188** For example, before writing to any part of the table or index
189** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000190**
191** assert( !hasReadConflicts(pBtree, iRoot) );
192*/
193static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
194 BtCursor *p;
195 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
196 if( p->pgnoRoot==iRoot
197 && p->pBtree!=pBtree
198 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
199 ){
200 return 1;
201 }
202 }
203 return 0;
204}
205#endif /* #ifdef SQLITE_DEBUG */
206
danielk1977da184232006-01-05 11:34:32 +0000207/*
drh0ee3dbe2009-10-16 15:05:18 +0000208** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000209** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000210** SQLITE_OK if the lock may be obtained (by calling
211** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000212*/
drhc25eabe2009-02-24 18:57:31 +0000213static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000214 BtShared *pBt = p->pBt;
215 BtLock *pIter;
216
drh1fee73e2007-08-29 04:00:57 +0000217 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000218 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
219 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000220 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000221
danielk19775b413d72009-04-01 09:41:54 +0000222 /* If requesting a write-lock, then the Btree must have an open write
223 ** transaction on this file. And, obviously, for this to be so there
224 ** must be an open write transaction on the file itself.
225 */
226 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
227 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
228
drh0ee3dbe2009-10-16 15:05:18 +0000229 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000230 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000231 return SQLITE_OK;
232 }
233
danielk1977641b0f42007-12-21 04:47:25 +0000234 /* If some other connection is holding an exclusive lock, the
235 ** requested lock may not be obtained.
236 */
danielk1977404ca072009-03-16 13:19:36 +0000237 if( pBt->pWriter!=p && pBt->isExclusive ){
238 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
239 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000240 }
241
danielk1977e0d9e6f2009-07-03 16:25:06 +0000242 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
243 /* The condition (pIter->eLock!=eLock) in the following if(...)
244 ** statement is a simplification of:
245 **
246 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
247 **
248 ** since we know that if eLock==WRITE_LOCK, then no other connection
249 ** may hold a WRITE_LOCK on any table in this file (since there can
250 ** only be a single writer).
251 */
252 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
253 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
254 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
255 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
256 if( eLock==WRITE_LOCK ){
257 assert( p==pBt->pWriter );
258 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000259 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000260 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000261 }
262 }
263 return SQLITE_OK;
264}
drhe53831d2007-08-17 01:14:38 +0000265#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000266
drhe53831d2007-08-17 01:14:38 +0000267#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000268/*
269** Add a lock on the table with root-page iTable to the shared-btree used
270** by Btree handle p. Parameter eLock must be either READ_LOCK or
271** WRITE_LOCK.
272**
danielk19779d104862009-07-09 08:27:14 +0000273** This function assumes the following:
274**
drh0ee3dbe2009-10-16 15:05:18 +0000275** (a) The specified Btree object p is connected to a sharable
276** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000277**
drh0ee3dbe2009-10-16 15:05:18 +0000278** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000279** with the requested lock (i.e. querySharedCacheTableLock() has
280** already been called and returned SQLITE_OK).
281**
282** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
283** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000284*/
drhc25eabe2009-02-24 18:57:31 +0000285static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000286 BtShared *pBt = p->pBt;
287 BtLock *pLock = 0;
288 BtLock *pIter;
289
drh1fee73e2007-08-29 04:00:57 +0000290 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000291 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
292 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000293
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 /* A connection with the read-uncommitted flag set will never try to
295 ** obtain a read-lock using this function. The only read-lock obtained
296 ** by a connection in read-uncommitted mode is on the sqlite_master
297 ** table, and that lock is obtained in BtreeBeginTrans(). */
298 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
299
danielk19779d104862009-07-09 08:27:14 +0000300 /* This function should only be called on a sharable b-tree after it
301 ** has been determined that no other b-tree holds a conflicting lock. */
302 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000303 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000304
305 /* First search the list for an existing lock on this table. */
306 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
307 if( pIter->iTable==iTable && pIter->pBtree==p ){
308 pLock = pIter;
309 break;
310 }
311 }
312
313 /* If the above search did not find a BtLock struct associating Btree p
314 ** with table iTable, allocate one and link it into the list.
315 */
316 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000317 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000318 if( !pLock ){
319 return SQLITE_NOMEM;
320 }
321 pLock->iTable = iTable;
322 pLock->pBtree = p;
323 pLock->pNext = pBt->pLock;
324 pBt->pLock = pLock;
325 }
326
327 /* Set the BtLock.eLock variable to the maximum of the current lock
328 ** and the requested lock. This means if a write-lock was already held
329 ** and a read-lock requested, we don't incorrectly downgrade the lock.
330 */
331 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000332 if( eLock>pLock->eLock ){
333 pLock->eLock = eLock;
334 }
danielk1977aef0bf62005-12-30 16:28:01 +0000335
336 return SQLITE_OK;
337}
drhe53831d2007-08-17 01:14:38 +0000338#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000339
drhe53831d2007-08-17 01:14:38 +0000340#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000341/*
drhc25eabe2009-02-24 18:57:31 +0000342** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000343** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000344**
drh0ee3dbe2009-10-16 15:05:18 +0000345** This function assumes that Btree p has an open read or write
danielk1977fa542f12009-04-02 18:28:08 +0000346** transaction. If it does not, then the BtShared.isPending variable
347** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000348*/
drhc25eabe2009-02-24 18:57:31 +0000349static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000350 BtShared *pBt = p->pBt;
351 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000352
drh1fee73e2007-08-29 04:00:57 +0000353 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000354 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000355 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000356
danielk1977aef0bf62005-12-30 16:28:01 +0000357 while( *ppIter ){
358 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000359 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000360 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000361 if( pLock->pBtree==p ){
362 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000363 assert( pLock->iTable!=1 || pLock==&p->lock );
364 if( pLock->iTable!=1 ){
365 sqlite3_free(pLock);
366 }
danielk1977aef0bf62005-12-30 16:28:01 +0000367 }else{
368 ppIter = &pLock->pNext;
369 }
370 }
danielk1977641b0f42007-12-21 04:47:25 +0000371
danielk1977404ca072009-03-16 13:19:36 +0000372 assert( pBt->isPending==0 || pBt->pWriter );
373 if( pBt->pWriter==p ){
374 pBt->pWriter = 0;
375 pBt->isExclusive = 0;
376 pBt->isPending = 0;
377 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000378 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000379 ** transaction. If there currently exists a writer, and p is not
380 ** that writer, then the number of locks held by connections other
381 ** than the writer must be about to drop to zero. In this case
382 ** set the isPending flag to 0.
383 **
384 ** If there is not currently a writer, then BtShared.isPending must
385 ** be zero already. So this next line is harmless in that case.
386 */
387 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000388 }
danielk1977aef0bf62005-12-30 16:28:01 +0000389}
danielk197794b30732009-07-02 17:21:57 +0000390
danielk1977e0d9e6f2009-07-03 16:25:06 +0000391/*
drh0ee3dbe2009-10-16 15:05:18 +0000392** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000393*/
danielk197794b30732009-07-02 17:21:57 +0000394static void downgradeAllSharedCacheTableLocks(Btree *p){
395 BtShared *pBt = p->pBt;
396 if( pBt->pWriter==p ){
397 BtLock *pLock;
398 pBt->pWriter = 0;
399 pBt->isExclusive = 0;
400 pBt->isPending = 0;
401 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
402 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
403 pLock->eLock = READ_LOCK;
404 }
405 }
406}
407
danielk1977aef0bf62005-12-30 16:28:01 +0000408#endif /* SQLITE_OMIT_SHARED_CACHE */
409
drh980b1a72006-08-16 16:42:48 +0000410static void releasePage(MemPage *pPage); /* Forward reference */
411
drh1fee73e2007-08-29 04:00:57 +0000412/*
drh0ee3dbe2009-10-16 15:05:18 +0000413***** This routine is used inside of assert() only ****
414**
415** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000416*/
drh0ee3dbe2009-10-16 15:05:18 +0000417#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000418static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000419 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000420}
421#endif
422
423
danielk197792d4d7a2007-05-04 12:05:56 +0000424#ifndef SQLITE_OMIT_INCRBLOB
425/*
426** Invalidate the overflow page-list cache for cursor pCur, if any.
427*/
428static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000429 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000430 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000431 pCur->aOverflow = 0;
432}
433
434/*
435** Invalidate the overflow page-list cache for all cursors opened
436** on the shared btree structure pBt.
437*/
438static void invalidateAllOverflowCache(BtShared *pBt){
439 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000440 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000441 for(p=pBt->pCursor; p; p=p->pNext){
442 invalidateOverflowCache(p);
443 }
444}
danielk197796d48e92009-06-29 06:00:37 +0000445
446/*
447** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000448** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000449** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000450**
451** If argument isClearTable is true, then the entire contents of the
452** table is about to be deleted. In this case invalidate all incrblob
453** cursors open on any row within the table with root-page pgnoRoot.
454**
455** Otherwise, if argument isClearTable is false, then the row with
456** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000457** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000458*/
459static void invalidateIncrblobCursors(
460 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000461 i64 iRow, /* The rowid that might be changing */
462 int isClearTable /* True if all rows are being deleted */
463){
464 BtCursor *p;
465 BtShared *pBt = pBtree->pBt;
466 assert( sqlite3BtreeHoldsMutex(pBtree) );
467 for(p=pBt->pCursor; p; p=p->pNext){
468 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
469 p->eState = CURSOR_INVALID;
470 }
471 }
472}
473
danielk197792d4d7a2007-05-04 12:05:56 +0000474#else
drh0ee3dbe2009-10-16 15:05:18 +0000475 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000476 #define invalidateOverflowCache(x)
477 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000478 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000479#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000480
drh980b1a72006-08-16 16:42:48 +0000481/*
danielk1977bea2a942009-01-20 17:06:27 +0000482** Set bit pgno of the BtShared.pHasContent bitvec. This is called
483** when a page that previously contained data becomes a free-list leaf
484** page.
485**
486** The BtShared.pHasContent bitvec exists to work around an obscure
487** bug caused by the interaction of two useful IO optimizations surrounding
488** free-list leaf pages:
489**
490** 1) When all data is deleted from a page and the page becomes
491** a free-list leaf page, the page is not written to the database
492** (as free-list leaf pages contain no meaningful data). Sometimes
493** such a page is not even journalled (as it will not be modified,
494** why bother journalling it?).
495**
496** 2) When a free-list leaf page is reused, its content is not read
497** from the database or written to the journal file (why should it
498** be, if it is not at all meaningful?).
499**
500** By themselves, these optimizations work fine and provide a handy
501** performance boost to bulk delete or insert operations. However, if
502** a page is moved to the free-list and then reused within the same
503** transaction, a problem comes up. If the page is not journalled when
504** it is moved to the free-list and it is also not journalled when it
505** is extracted from the free-list and reused, then the original data
506** may be lost. In the event of a rollback, it may not be possible
507** to restore the database to its original configuration.
508**
509** The solution is the BtShared.pHasContent bitvec. Whenever a page is
510** moved to become a free-list leaf page, the corresponding bit is
511** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000512** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000513** set in BtShared.pHasContent. The contents of the bitvec are cleared
514** at the end of every transaction.
515*/
516static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
517 int rc = SQLITE_OK;
518 if( !pBt->pHasContent ){
drh4c301aa2009-07-15 17:25:45 +0000519 int nPage = 100;
520 sqlite3PagerPagecount(pBt->pPager, &nPage);
521 /* If sqlite3PagerPagecount() fails there is no harm because the
522 ** nPage variable is unchanged from its default value of 100 */
523 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
524 if( !pBt->pHasContent ){
525 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000526 }
527 }
528 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
529 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
530 }
531 return rc;
532}
533
534/*
535** Query the BtShared.pHasContent vector.
536**
537** This function is called when a free-list leaf page is removed from the
538** free-list for reuse. It returns false if it is safe to retrieve the
539** page from the pager layer with the 'no-content' flag set. True otherwise.
540*/
541static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
542 Bitvec *p = pBt->pHasContent;
543 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
544}
545
546/*
547** Clear (destroy) the BtShared.pHasContent bitvec. This should be
548** invoked at the conclusion of each write-transaction.
549*/
550static void btreeClearHasContent(BtShared *pBt){
551 sqlite3BitvecDestroy(pBt->pHasContent);
552 pBt->pHasContent = 0;
553}
554
555/*
drh980b1a72006-08-16 16:42:48 +0000556** Save the current cursor position in the variables BtCursor.nKey
557** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000558**
559** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
560** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000561*/
562static int saveCursorPosition(BtCursor *pCur){
563 int rc;
564
565 assert( CURSOR_VALID==pCur->eState );
566 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000567 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000568
569 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000570 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000571
572 /* If this is an intKey table, then the above call to BtreeKeySize()
573 ** stores the integer key in pCur->nKey. In this case this value is
574 ** all that is required. Otherwise, if pCur is not open on an intKey
575 ** table, then malloc space for and store the pCur->nKey bytes of key
576 ** data.
577 */
drh4c301aa2009-07-15 17:25:45 +0000578 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000579 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000580 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000581 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000582 if( rc==SQLITE_OK ){
583 pCur->pKey = pKey;
584 }else{
drh17435752007-08-16 04:30:38 +0000585 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000586 }
587 }else{
588 rc = SQLITE_NOMEM;
589 }
590 }
danielk197771d5d2c2008-09-29 11:49:47 +0000591 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000592
593 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000594 int i;
595 for(i=0; i<=pCur->iPage; i++){
596 releasePage(pCur->apPage[i]);
597 pCur->apPage[i] = 0;
598 }
599 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000600 pCur->eState = CURSOR_REQUIRESEEK;
601 }
602
danielk197792d4d7a2007-05-04 12:05:56 +0000603 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000604 return rc;
605}
606
607/*
drh0ee3dbe2009-10-16 15:05:18 +0000608** Save the positions of all cursors (except pExcept) that are open on
609** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000610** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
611*/
612static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
613 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000614 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000615 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000616 for(p=pBt->pCursor; p; p=p->pNext){
617 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
618 p->eState==CURSOR_VALID ){
619 int rc = saveCursorPosition(p);
620 if( SQLITE_OK!=rc ){
621 return rc;
622 }
623 }
624 }
625 return SQLITE_OK;
626}
627
628/*
drhbf700f32007-03-31 02:36:44 +0000629** Clear the current cursor position.
630*/
danielk1977be51a652008-10-08 17:58:48 +0000631void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000632 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000633 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000634 pCur->pKey = 0;
635 pCur->eState = CURSOR_INVALID;
636}
637
638/*
danielk19773509a652009-07-06 18:56:13 +0000639** In this version of BtreeMoveto, pKey is a packed index record
640** such as is generated by the OP_MakeRecord opcode. Unpack the
641** record and then call BtreeMovetoUnpacked() to do the work.
642*/
643static int btreeMoveto(
644 BtCursor *pCur, /* Cursor open on the btree to be searched */
645 const void *pKey, /* Packed key if the btree is an index */
646 i64 nKey, /* Integer key for tables. Size of pKey for indices */
647 int bias, /* Bias search to the high end */
648 int *pRes /* Write search results here */
649){
650 int rc; /* Status code */
651 UnpackedRecord *pIdxKey; /* Unpacked index key */
652 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
653
654 if( pKey ){
655 assert( nKey==(i64)(int)nKey );
656 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
657 aSpace, sizeof(aSpace));
658 if( pIdxKey==0 ) return SQLITE_NOMEM;
659 }else{
660 pIdxKey = 0;
661 }
662 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
663 if( pKey ){
664 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
665 }
666 return rc;
667}
668
669/*
drh980b1a72006-08-16 16:42:48 +0000670** Restore the cursor to the position it was in (or as close to as possible)
671** when saveCursorPosition() was called. Note that this call deletes the
672** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000673** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000674** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000675*/
danielk197730548662009-07-09 05:07:37 +0000676static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000677 int rc;
drh1fee73e2007-08-29 04:00:57 +0000678 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000679 assert( pCur->eState>=CURSOR_REQUIRESEEK );
680 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000681 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000682 }
drh980b1a72006-08-16 16:42:48 +0000683 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000684 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000685 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000686 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000687 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000688 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000689 }
690 return rc;
691}
692
drha3460582008-07-11 21:02:53 +0000693#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000694 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000695 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000696 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000697
drha3460582008-07-11 21:02:53 +0000698/*
699** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000700** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000701** at is deleted out from under them.
702**
703** This routine returns an error code if something goes wrong. The
704** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
705*/
706int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
707 int rc;
708
709 rc = restoreCursorPosition(pCur);
710 if( rc ){
711 *pHasMoved = 1;
712 return rc;
713 }
drh4c301aa2009-07-15 17:25:45 +0000714 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000715 *pHasMoved = 1;
716 }else{
717 *pHasMoved = 0;
718 }
719 return SQLITE_OK;
720}
721
danielk1977599fcba2004-11-08 07:13:13 +0000722#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000723/*
drha3152892007-05-05 11:48:52 +0000724** Given a page number of a regular database page, return the page
725** number for the pointer-map page that contains the entry for the
726** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000727*/
danielk1977266664d2006-02-10 08:24:21 +0000728static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000729 int nPagesPerMapPage;
730 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000731 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000732 nPagesPerMapPage = (pBt->usableSize/5)+1;
733 iPtrMap = (pgno-2)/nPagesPerMapPage;
734 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000735 if( ret==PENDING_BYTE_PAGE(pBt) ){
736 ret++;
737 }
738 return ret;
739}
danielk1977a19df672004-11-03 11:37:07 +0000740
danielk1977afcdd022004-10-31 16:25:42 +0000741/*
danielk1977afcdd022004-10-31 16:25:42 +0000742** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000743**
744** This routine updates the pointer map entry for page number 'key'
745** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000746**
747** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
748** a no-op. If an error occurs, the appropriate error code is written
749** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000750*/
drh98add2e2009-07-20 17:11:49 +0000751static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000752 DbPage *pDbPage; /* The pointer map page */
753 u8 *pPtrmap; /* The pointer map data */
754 Pgno iPtrmap; /* The pointer map page number */
755 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000756 int rc; /* Return code from subfunctions */
757
758 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000759
drh1fee73e2007-08-29 04:00:57 +0000760 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000761 /* The master-journal page number must never be used as a pointer map page */
762 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
763
danielk1977ac11ee62005-01-15 12:45:51 +0000764 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000765 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000766 *pRC = SQLITE_CORRUPT_BKPT;
767 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000768 }
danielk1977266664d2006-02-10 08:24:21 +0000769 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000770 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000771 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000772 *pRC = rc;
773 return;
danielk1977afcdd022004-10-31 16:25:42 +0000774 }
danielk19778c666b12008-07-18 09:34:57 +0000775 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000776 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000777 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000778 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000779 }
danielk19773b8a05f2007-03-19 17:44:26 +0000780 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000781
drh615ae552005-01-16 23:21:00 +0000782 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
783 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000784 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000785 if( rc==SQLITE_OK ){
786 pPtrmap[offset] = eType;
787 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000788 }
danielk1977afcdd022004-10-31 16:25:42 +0000789 }
790
drh4925a552009-07-07 11:39:58 +0000791ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000792 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000793}
794
795/*
796** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000797**
798** This routine retrieves the pointer map entry for page 'key', writing
799** the type and parent page number to *pEType and *pPgno respectively.
800** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000801*/
danielk1977aef0bf62005-12-30 16:28:01 +0000802static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000803 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000804 int iPtrmap; /* Pointer map page index */
805 u8 *pPtrmap; /* Pointer map page data */
806 int offset; /* Offset of entry in pointer map */
807 int rc;
808
drh1fee73e2007-08-29 04:00:57 +0000809 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000810
danielk1977266664d2006-02-10 08:24:21 +0000811 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000812 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000813 if( rc!=0 ){
814 return rc;
815 }
danielk19773b8a05f2007-03-19 17:44:26 +0000816 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000817
danielk19778c666b12008-07-18 09:34:57 +0000818 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000819 assert( pEType!=0 );
820 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000821 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000822
danielk19773b8a05f2007-03-19 17:44:26 +0000823 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000824 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000825 return SQLITE_OK;
826}
827
danielk197785d90ca2008-07-19 14:25:15 +0000828#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000829 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000830 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000831 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000832#endif
danielk1977afcdd022004-10-31 16:25:42 +0000833
drh0d316a42002-08-11 20:10:47 +0000834/*
drh271efa52004-05-30 19:19:05 +0000835** Given a btree page and a cell index (0 means the first cell on
836** the page, 1 means the second cell, and so forth) return a pointer
837** to the cell content.
838**
839** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000840*/
drh1688c862008-07-18 02:44:17 +0000841#define findCell(P,I) \
842 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000843
844/*
drh93a960a2008-07-10 00:32:42 +0000845** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000846** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000847*/
848static u8 *findOverflowCell(MemPage *pPage, int iCell){
849 int i;
drh1fee73e2007-08-29 04:00:57 +0000850 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000851 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000852 int k;
853 struct _OvflCell *pOvfl;
854 pOvfl = &pPage->aOvfl[i];
855 k = pOvfl->idx;
856 if( k<=iCell ){
857 if( k==iCell ){
858 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000859 }
860 iCell--;
861 }
862 }
danielk19771cc5ed82007-05-16 17:28:43 +0000863 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000864}
865
866/*
867** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000868** are two versions of this function. btreeParseCell() takes a
869** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000870** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000871**
872** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000873** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000874*/
danielk197730548662009-07-09 05:07:37 +0000875static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000876 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000877 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000878 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000879){
drhf49661a2008-12-10 16:45:50 +0000880 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000881 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000882
drh1fee73e2007-08-29 04:00:57 +0000883 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000884
drh43605152004-05-29 21:46:49 +0000885 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000886 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000887 n = pPage->childPtrSize;
888 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000889 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000890 if( pPage->hasData ){
891 n += getVarint32(&pCell[n], nPayload);
892 }else{
893 nPayload = 0;
894 }
drh1bd10f82008-12-10 21:19:56 +0000895 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000896 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000897 }else{
drh79df1f42008-07-18 00:57:33 +0000898 pInfo->nData = 0;
899 n += getVarint32(&pCell[n], nPayload);
900 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000901 }
drh72365832007-03-06 15:53:44 +0000902 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000903 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000904 testcase( nPayload==pPage->maxLocal );
905 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000906 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000907 /* This is the (easy) common case where the entire payload fits
908 ** on the local page. No overflow is required.
909 */
910 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000911 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000912 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000913 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000914 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000915 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000916 }
drh1bd10f82008-12-10 21:19:56 +0000917 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000918 }else{
drh271efa52004-05-30 19:19:05 +0000919 /* If the payload will not fit completely on the local page, we have
920 ** to decide how much to store locally and how much to spill onto
921 ** overflow pages. The strategy is to minimize the amount of unused
922 ** space on overflow pages while keeping the amount of local storage
923 ** in between minLocal and maxLocal.
924 **
925 ** Warning: changing the way overflow payload is distributed in any
926 ** way will result in an incompatible file format.
927 */
928 int minLocal; /* Minimum amount of payload held locally */
929 int maxLocal; /* Maximum amount of payload held locally */
930 int surplus; /* Overflow payload available for local storage */
931
932 minLocal = pPage->minLocal;
933 maxLocal = pPage->maxLocal;
934 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000935 testcase( surplus==maxLocal );
936 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000937 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000938 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000939 }else{
drhf49661a2008-12-10 16:45:50 +0000940 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000941 }
drhf49661a2008-12-10 16:45:50 +0000942 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000943 pInfo->nSize = pInfo->iOverflow + 4;
944 }
drh3aac2dd2004-04-26 14:10:20 +0000945}
danielk19771cc5ed82007-05-16 17:28:43 +0000946#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000947 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
948static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000949 MemPage *pPage, /* Page containing the cell */
950 int iCell, /* The cell index. First cell is 0 */
951 CellInfo *pInfo /* Fill in this structure */
952){
danielk19771cc5ed82007-05-16 17:28:43 +0000953 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000954}
drh3aac2dd2004-04-26 14:10:20 +0000955
956/*
drh43605152004-05-29 21:46:49 +0000957** Compute the total number of bytes that a Cell needs in the cell
958** data area of the btree-page. The return number includes the cell
959** data header and the local payload, but not any overflow page or
960** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000961*/
danielk1977ae5558b2009-04-29 11:31:47 +0000962static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
963 u8 *pIter = &pCell[pPage->childPtrSize];
964 u32 nSize;
965
966#ifdef SQLITE_DEBUG
967 /* The value returned by this function should always be the same as
968 ** the (CellInfo.nSize) value found by doing a full parse of the
969 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
970 ** this function verifies that this invariant is not violated. */
971 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000972 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000973#endif
974
975 if( pPage->intKey ){
976 u8 *pEnd;
977 if( pPage->hasData ){
978 pIter += getVarint32(pIter, nSize);
979 }else{
980 nSize = 0;
981 }
982
983 /* pIter now points at the 64-bit integer key value, a variable length
984 ** integer. The following block moves pIter to point at the first byte
985 ** past the end of the key value. */
986 pEnd = &pIter[9];
987 while( (*pIter++)&0x80 && pIter<pEnd );
988 }else{
989 pIter += getVarint32(pIter, nSize);
990 }
991
drh0a45c272009-07-08 01:49:11 +0000992 testcase( nSize==pPage->maxLocal );
993 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000994 if( nSize>pPage->maxLocal ){
995 int minLocal = pPage->minLocal;
996 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000997 testcase( nSize==pPage->maxLocal );
998 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000999 if( nSize>pPage->maxLocal ){
1000 nSize = minLocal;
1001 }
1002 nSize += 4;
1003 }
shane75ac1de2009-06-09 18:58:52 +00001004 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001005
1006 /* The minimum size of any cell is 4 bytes. */
1007 if( nSize<4 ){
1008 nSize = 4;
1009 }
1010
1011 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001012 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001013}
drh0ee3dbe2009-10-16 15:05:18 +00001014
1015#ifdef SQLITE_DEBUG
1016/* This variation on cellSizePtr() is used inside of assert() statements
1017** only. */
drha9121e42008-02-19 14:59:35 +00001018static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001019 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001020}
danielk1977bc6ada42004-06-30 08:20:16 +00001021#endif
drh3b7511c2001-05-26 13:15:44 +00001022
danielk197779a40da2005-01-16 08:00:01 +00001023#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001024/*
danielk197726836652005-01-17 01:33:13 +00001025** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001026** to an overflow page, insert an entry into the pointer-map
1027** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001028*/
drh98add2e2009-07-20 17:11:49 +00001029static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001030 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001031 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001032 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001033 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001034 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001035 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001036 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001037 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001038 }
danielk1977ac11ee62005-01-15 12:45:51 +00001039}
danielk197779a40da2005-01-16 08:00:01 +00001040#endif
1041
danielk1977ac11ee62005-01-15 12:45:51 +00001042
drhda200cc2004-05-09 11:51:38 +00001043/*
drh72f82862001-05-24 21:06:34 +00001044** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001045** end of the page and all free space is collected into one
1046** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001047** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001048*/
shane0af3f892008-11-12 04:55:34 +00001049static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001050 int i; /* Loop counter */
1051 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001052 int hdr; /* Offset to the page header */
1053 int size; /* Size of a cell */
1054 int usableSize; /* Number of usable bytes on a page */
1055 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001056 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001057 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001058 unsigned char *data; /* The page data */
1059 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001060 int iCellFirst; /* First allowable cell index */
1061 int iCellLast; /* Last possible cell index */
1062
drh2af926b2001-05-15 00:39:25 +00001063
danielk19773b8a05f2007-03-19 17:44:26 +00001064 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001065 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001066 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001067 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001068 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001069 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001070 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001071 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001072 cellOffset = pPage->cellOffset;
1073 nCell = pPage->nCell;
1074 assert( nCell==get2byte(&data[hdr+3]) );
1075 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001076 cbrk = get2byte(&data[hdr+5]);
1077 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1078 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001079 iCellFirst = cellOffset + 2*nCell;
1080 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001081 for(i=0; i<nCell; i++){
1082 u8 *pAddr; /* The i-th cell pointer */
1083 pAddr = &data[cellOffset + i*2];
1084 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001085 testcase( pc==iCellFirst );
1086 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001087#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001088 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001089 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1090 */
1091 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001092 return SQLITE_CORRUPT_BKPT;
1093 }
drh17146622009-07-07 17:38:38 +00001094#endif
1095 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001096 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001097 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001098#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1099 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001100 return SQLITE_CORRUPT_BKPT;
1101 }
drh17146622009-07-07 17:38:38 +00001102#else
1103 if( cbrk<iCellFirst || pc+size>usableSize ){
1104 return SQLITE_CORRUPT_BKPT;
1105 }
1106#endif
drh7157e1d2009-07-09 13:25:32 +00001107 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001108 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001109 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001110 memcpy(&data[cbrk], &temp[pc], size);
1111 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001112 }
drh17146622009-07-07 17:38:38 +00001113 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001114 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001115 data[hdr+1] = 0;
1116 data[hdr+2] = 0;
1117 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001118 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001119 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001120 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001121 return SQLITE_CORRUPT_BKPT;
1122 }
shane0af3f892008-11-12 04:55:34 +00001123 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001124}
1125
drha059ad02001-04-17 20:09:11 +00001126/*
danielk19776011a752009-04-01 16:25:32 +00001127** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001128** as the first argument. Write into *pIdx the index into pPage->aData[]
1129** of the first byte of allocated space. Return either SQLITE_OK or
1130** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001131**
drh0a45c272009-07-08 01:49:11 +00001132** The caller guarantees that there is sufficient space to make the
1133** allocation. This routine might need to defragment in order to bring
1134** all the space together, however. This routine will avoid using
1135** the first two bytes past the cell pointer area since presumably this
1136** allocation is being made in order to insert a new cell, so we will
1137** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001138*/
drh0a45c272009-07-08 01:49:11 +00001139static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001140 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1141 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1142 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001143 int top; /* First byte of cell content area */
1144 int gap; /* First byte of gap between cell pointers and cell content */
1145 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001146 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001147
danielk19773b8a05f2007-03-19 17:44:26 +00001148 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001149 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001150 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001151 assert( nByte>=0 ); /* Minimum cell size is 4 */
1152 assert( pPage->nFree>=nByte );
1153 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001154 usableSize = pPage->pBt->usableSize;
1155 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001156
1157 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001158 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1159 gap = pPage->cellOffset + 2*pPage->nCell;
1160 top = get2byte(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001161 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001162 testcase( gap+2==top );
1163 testcase( gap+1==top );
1164 testcase( gap==top );
1165
danielk19776011a752009-04-01 16:25:32 +00001166 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001167 /* Always defragment highly fragmented pages */
1168 rc = defragmentPage(pPage);
1169 if( rc ) return rc;
1170 top = get2byte(&data[hdr+5]);
1171 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001172 /* Search the freelist looking for a free slot big enough to satisfy
1173 ** the request. The allocation is made from the first free slot in
1174 ** the list that is large enough to accomadate it.
1175 */
1176 int pc, addr;
1177 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001178 int size; /* Size of the free slot */
1179 if( pc>usableSize-4 || pc<addr+4 ){
1180 return SQLITE_CORRUPT_BKPT;
1181 }
1182 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001183 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001184 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001185 testcase( x==4 );
1186 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001187 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001188 /* Remove the slot from the free-list. Update the number of
1189 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001190 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001191 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001192 }else if( size+pc > usableSize ){
1193 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001194 }else{
danielk1977fad91942009-04-29 17:49:59 +00001195 /* The slot remains on the free-list. Reduce its size to account
1196 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001197 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001198 }
drh0a45c272009-07-08 01:49:11 +00001199 *pIdx = pc + x;
1200 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001201 }
drh9e572e62004-04-23 23:43:10 +00001202 }
1203 }
drh43605152004-05-29 21:46:49 +00001204
drh0a45c272009-07-08 01:49:11 +00001205 /* Check to make sure there is enough space in the gap to satisfy
1206 ** the allocation. If not, defragment.
1207 */
1208 testcase( gap+2+nByte==top );
1209 if( gap+2+nByte>top ){
1210 rc = defragmentPage(pPage);
1211 if( rc ) return rc;
1212 top = get2byte(&data[hdr+5]);
1213 assert( gap+nByte<=top );
1214 }
1215
1216
drh43605152004-05-29 21:46:49 +00001217 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001218 ** and the cell content area. The btreeInitPage() call has already
1219 ** validated the freelist. Given that the freelist is valid, there
1220 ** is no way that the allocation can extend off the end of the page.
1221 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001222 */
drh0a45c272009-07-08 01:49:11 +00001223 top -= nByte;
drh43605152004-05-29 21:46:49 +00001224 put2byte(&data[hdr+5], top);
drhc314dc72009-07-21 11:52:34 +00001225 assert( top+nByte <= pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001226 *pIdx = top;
1227 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001228}
1229
1230/*
drh9e572e62004-04-23 23:43:10 +00001231** Return a section of the pPage->aData to the freelist.
1232** The first byte of the new free block is pPage->aDisk[start]
1233** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001234**
1235** Most of the effort here is involved in coalesing adjacent
1236** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001237*/
shanedcc50b72008-11-13 18:29:50 +00001238static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001239 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001240 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001241 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001242
drh9e572e62004-04-23 23:43:10 +00001243 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001244 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001245 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
danielk1977bc6ada42004-06-30 08:20:16 +00001246 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001247 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001248 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001249
drh5b47efa2010-02-12 18:18:39 +00001250 if( pPage->pBt->secureDelete ){
1251 /* Overwrite deleted information with zeros when the secure_delete
1252 ** option is enabled */
1253 memset(&data[start], 0, size);
1254 }
drhfcce93f2006-02-22 03:08:32 +00001255
drh0a45c272009-07-08 01:49:11 +00001256 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001257 ** even though the freeblock list was checked by btreeInitPage(),
1258 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001259 ** freeblocks that overlapped cells. Nor does it detect when the
1260 ** cell content area exceeds the value in the page header. If these
1261 ** situations arise, then subsequent insert operations might corrupt
1262 ** the freelist. So we do need to check for corruption while scanning
1263 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001264 */
drh43605152004-05-29 21:46:49 +00001265 hdr = pPage->hdrOffset;
1266 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001267 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001268 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001269 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001270 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001271 return SQLITE_CORRUPT_BKPT;
1272 }
drh3aac2dd2004-04-26 14:10:20 +00001273 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001274 }
drh0a45c272009-07-08 01:49:11 +00001275 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001276 return SQLITE_CORRUPT_BKPT;
1277 }
drh3aac2dd2004-04-26 14:10:20 +00001278 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001279 put2byte(&data[addr], start);
1280 put2byte(&data[start], pbegin);
1281 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001282 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001283
1284 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001285 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001286 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001287 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001288 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001289 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001290 pnext = get2byte(&data[pbegin]);
1291 psize = get2byte(&data[pbegin+2]);
1292 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1293 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001294 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001295 return SQLITE_CORRUPT_BKPT;
1296 }
drh0a45c272009-07-08 01:49:11 +00001297 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001298 x = get2byte(&data[pnext]);
1299 put2byte(&data[pbegin], x);
1300 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1301 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001302 }else{
drh3aac2dd2004-04-26 14:10:20 +00001303 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001304 }
1305 }
drh7e3b0a02001-04-28 16:52:40 +00001306
drh43605152004-05-29 21:46:49 +00001307 /* If the cell content area begins with a freeblock, remove it. */
1308 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1309 int top;
1310 pbegin = get2byte(&data[hdr+1]);
1311 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001312 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1313 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001314 }
drhc5053fb2008-11-27 02:22:10 +00001315 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001316 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001317}
1318
1319/*
drh271efa52004-05-30 19:19:05 +00001320** Decode the flags byte (the first byte of the header) for a page
1321** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001322**
1323** Only the following combinations are supported. Anything different
1324** indicates a corrupt database files:
1325**
1326** PTF_ZERODATA
1327** PTF_ZERODATA | PTF_LEAF
1328** PTF_LEAFDATA | PTF_INTKEY
1329** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001330*/
drh44845222008-07-17 18:39:57 +00001331static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001332 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001333
1334 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001335 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001336 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001337 flagByte &= ~PTF_LEAF;
1338 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001339 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001340 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1341 pPage->intKey = 1;
1342 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001343 pPage->maxLocal = pBt->maxLeaf;
1344 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001345 }else if( flagByte==PTF_ZERODATA ){
1346 pPage->intKey = 0;
1347 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001348 pPage->maxLocal = pBt->maxLocal;
1349 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001350 }else{
1351 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001352 }
drh44845222008-07-17 18:39:57 +00001353 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001354}
1355
1356/*
drh7e3b0a02001-04-28 16:52:40 +00001357** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001358**
1359** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001360** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001361** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1362** guarantee that the page is well-formed. It only shows that
1363** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001364*/
danielk197730548662009-07-09 05:07:37 +00001365static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001366
danielk197771d5d2c2008-09-29 11:49:47 +00001367 assert( pPage->pBt!=0 );
1368 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001369 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001370 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1371 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001372
1373 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001374 u16 pc; /* Address of a freeblock within pPage->aData[] */
1375 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001376 u8 *data; /* Equal to pPage->aData */
1377 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001378 u16 usableSize; /* Amount of usable space on each page */
1379 u16 cellOffset; /* Offset from start of page to first cell pointer */
1380 u16 nFree; /* Number of unused bytes on the page */
1381 u16 top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001382 int iCellFirst; /* First allowable cell or freeblock offset */
1383 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001384
1385 pBt = pPage->pBt;
1386
danielk1977eaa06f62008-09-18 17:34:44 +00001387 hdr = pPage->hdrOffset;
1388 data = pPage->aData;
1389 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1390 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1391 pPage->maskPage = pBt->pageSize - 1;
1392 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001393 usableSize = pBt->usableSize;
1394 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1395 top = get2byte(&data[hdr+5]);
1396 pPage->nCell = get2byte(&data[hdr+3]);
1397 if( pPage->nCell>MX_CELL(pBt) ){
1398 /* To many cells for a single page. The page must be corrupt */
1399 return SQLITE_CORRUPT_BKPT;
1400 }
drhb908d762009-07-08 16:54:40 +00001401 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001402
shane5eff7cf2009-08-10 03:57:58 +00001403 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001404 ** of page when parsing a cell.
1405 **
1406 ** The following block of code checks early to see if a cell extends
1407 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1408 ** returned if it does.
1409 */
drh0a45c272009-07-08 01:49:11 +00001410 iCellFirst = cellOffset + 2*pPage->nCell;
1411 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001412#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001413 {
drh69e931e2009-06-03 21:04:35 +00001414 int i; /* Index into the cell pointer array */
1415 int sz; /* Size of a cell */
1416
drh69e931e2009-06-03 21:04:35 +00001417 if( !pPage->leaf ) iCellLast--;
1418 for(i=0; i<pPage->nCell; i++){
1419 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001420 testcase( pc==iCellFirst );
1421 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001422 if( pc<iCellFirst || pc>iCellLast ){
1423 return SQLITE_CORRUPT_BKPT;
1424 }
1425 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001426 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001427 if( pc+sz>usableSize ){
1428 return SQLITE_CORRUPT_BKPT;
1429 }
1430 }
drh0a45c272009-07-08 01:49:11 +00001431 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001432 }
1433#endif
1434
danielk1977eaa06f62008-09-18 17:34:44 +00001435 /* Compute the total free space on the page */
1436 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001437 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001438 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001439 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001440 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001441 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001442 return SQLITE_CORRUPT_BKPT;
1443 }
1444 next = get2byte(&data[pc]);
1445 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001446 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1447 /* Free blocks must be in ascending order. And the last byte of
1448 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001449 return SQLITE_CORRUPT_BKPT;
1450 }
shane85095702009-06-15 16:27:08 +00001451 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001452 pc = next;
1453 }
danielk197793c829c2009-06-03 17:26:17 +00001454
1455 /* At this point, nFree contains the sum of the offset to the start
1456 ** of the cell-content area plus the number of free bytes within
1457 ** the cell-content area. If this is greater than the usable-size
1458 ** of the page, then the page must be corrupted. This check also
1459 ** serves to verify that the offset to the start of the cell-content
1460 ** area, according to the page header, lies within the page.
1461 */
1462 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001463 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001464 }
shane5eff7cf2009-08-10 03:57:58 +00001465 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001466 pPage->isInit = 1;
1467 }
drh9e572e62004-04-23 23:43:10 +00001468 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001469}
1470
1471/*
drh8b2f49b2001-06-08 00:21:52 +00001472** Set up a raw page so that it looks like a database page holding
1473** no entries.
drhbd03cae2001-06-02 02:40:57 +00001474*/
drh9e572e62004-04-23 23:43:10 +00001475static void zeroPage(MemPage *pPage, int flags){
1476 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001477 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001478 u8 hdr = pPage->hdrOffset;
1479 u16 first;
drh9e572e62004-04-23 23:43:10 +00001480
danielk19773b8a05f2007-03-19 17:44:26 +00001481 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001482 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1483 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001484 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001485 assert( sqlite3_mutex_held(pBt->mutex) );
drh5b47efa2010-02-12 18:18:39 +00001486 if( pBt->secureDelete ){
1487 memset(&data[hdr], 0, pBt->usableSize - hdr);
1488 }
drh1bd10f82008-12-10 21:19:56 +00001489 data[hdr] = (char)flags;
1490 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001491 memset(&data[hdr+1], 0, 4);
1492 data[hdr+7] = 0;
1493 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001494 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001495 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001496 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001497 pPage->cellOffset = first;
1498 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001499 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1500 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001501 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001502 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001503}
1504
drh897a8202008-09-18 01:08:15 +00001505
1506/*
1507** Convert a DbPage obtained from the pager into a MemPage used by
1508** the btree layer.
1509*/
1510static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1511 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1512 pPage->aData = sqlite3PagerGetData(pDbPage);
1513 pPage->pDbPage = pDbPage;
1514 pPage->pBt = pBt;
1515 pPage->pgno = pgno;
1516 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1517 return pPage;
1518}
1519
drhbd03cae2001-06-02 02:40:57 +00001520/*
drh3aac2dd2004-04-26 14:10:20 +00001521** Get a page from the pager. Initialize the MemPage.pBt and
1522** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001523**
1524** If the noContent flag is set, it means that we do not care about
1525** the content of the page at this time. So do not go to the disk
1526** to fetch the content. Just fill in the content with zeros for now.
1527** If in the future we call sqlite3PagerWrite() on this page, that
1528** means we have started to be concerned about content and the disk
1529** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001530*/
danielk197730548662009-07-09 05:07:37 +00001531static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001532 BtShared *pBt, /* The btree */
1533 Pgno pgno, /* Number of the page to fetch */
1534 MemPage **ppPage, /* Return the page in this parameter */
1535 int noContent /* Do not load page content if true */
1536){
drh3aac2dd2004-04-26 14:10:20 +00001537 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001538 DbPage *pDbPage;
1539
drh1fee73e2007-08-29 04:00:57 +00001540 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001541 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001542 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001543 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001544 return SQLITE_OK;
1545}
1546
1547/*
danielk1977bea2a942009-01-20 17:06:27 +00001548** Retrieve a page from the pager cache. If the requested page is not
1549** already in the pager cache return NULL. Initialize the MemPage.pBt and
1550** MemPage.aData elements if needed.
1551*/
1552static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1553 DbPage *pDbPage;
1554 assert( sqlite3_mutex_held(pBt->mutex) );
1555 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1556 if( pDbPage ){
1557 return btreePageFromDbPage(pDbPage, pgno, pBt);
1558 }
1559 return 0;
1560}
1561
1562/*
danielk197789d40042008-11-17 14:20:56 +00001563** Return the size of the database file in pages. If there is any kind of
1564** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001565*/
danielk197789d40042008-11-17 14:20:56 +00001566static Pgno pagerPagecount(BtShared *pBt){
1567 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001568 int rc;
danielk197789d40042008-11-17 14:20:56 +00001569 assert( pBt->pPage1 );
1570 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1571 assert( rc==SQLITE_OK || nPage==-1 );
1572 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001573}
1574
1575/*
danielk197789bc4bc2009-07-21 19:25:24 +00001576** Get a page from the pager and initialize it. This routine is just a
1577** convenience wrapper around separate calls to btreeGetPage() and
1578** btreeInitPage().
1579**
1580** If an error occurs, then the value *ppPage is set to is undefined. It
1581** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001582*/
1583static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001584 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001585 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001586 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001587){
1588 int rc;
danielk197789bc4bc2009-07-21 19:25:24 +00001589 TESTONLY( Pgno iLastPg = pagerPagecount(pBt); )
drh1fee73e2007-08-29 04:00:57 +00001590 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001591
1592 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1593 if( rc==SQLITE_OK ){
1594 rc = btreeInitPage(*ppPage);
1595 if( rc!=SQLITE_OK ){
1596 releasePage(*ppPage);
1597 }
drhee696e22004-08-30 16:52:17 +00001598 }
danielk19779f580ad2008-09-10 14:45:57 +00001599
danielk197789bc4bc2009-07-21 19:25:24 +00001600 /* If the requested page number was either 0 or greater than the page
1601 ** number of the last page in the database, this function should return
1602 ** SQLITE_CORRUPT or some other error (i.e. SQLITE_FULL). Check that this
1603 ** is the case. */
1604 assert( (pgno>0 && pgno<=iLastPg) || rc!=SQLITE_OK );
1605 testcase( pgno==0 );
1606 testcase( pgno==iLastPg );
1607
drhde647132004-05-07 17:57:49 +00001608 return rc;
1609}
1610
1611/*
drh3aac2dd2004-04-26 14:10:20 +00001612** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001613** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001614*/
drh4b70f112004-05-02 21:12:19 +00001615static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001616 if( pPage ){
1617 assert( pPage->aData );
1618 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001619 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1620 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001621 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001622 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001623 }
1624}
1625
1626/*
drha6abd042004-06-09 17:37:22 +00001627** During a rollback, when the pager reloads information into the cache
1628** so that the cache is restored to its original state at the start of
1629** the transaction, for each page restored this routine is called.
1630**
1631** This routine needs to reset the extra data section at the end of the
1632** page to agree with the restored data.
1633*/
danielk1977eaa06f62008-09-18 17:34:44 +00001634static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001635 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001636 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001637 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001638 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001639 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001640 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001641 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001642 /* pPage might not be a btree page; it might be an overflow page
1643 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001644 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001645 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001646 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001647 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001648 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001649 }
drha6abd042004-06-09 17:37:22 +00001650 }
1651}
1652
1653/*
drhe5fe6902007-12-07 18:55:28 +00001654** Invoke the busy handler for a btree.
1655*/
danielk19771ceedd32008-11-19 10:22:33 +00001656static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001657 BtShared *pBt = (BtShared*)pArg;
1658 assert( pBt->db );
1659 assert( sqlite3_mutex_held(pBt->db->mutex) );
1660 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1661}
1662
1663/*
drhad3e0102004-09-03 23:32:18 +00001664** Open a database file.
1665**
drh382c0242001-10-06 16:33:02 +00001666** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001667** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001668** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001669** If zFilename is ":memory:" then an in-memory database is created
1670** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001671**
1672** If the database is already opened in the same database connection
1673** and we are in shared cache mode, then the open will fail with an
1674** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1675** objects in the same database connection since doing so will lead
1676** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001677*/
drh23e11ca2004-05-04 17:27:28 +00001678int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001679 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001680 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001681 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001682 int flags, /* Options */
1683 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001684){
drh7555d8e2009-03-20 13:15:30 +00001685 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1686 BtShared *pBt = 0; /* Shared part of btree structure */
1687 Btree *p; /* Handle to return */
1688 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1689 int rc = SQLITE_OK; /* Result code from this function */
1690 u8 nReserve; /* Byte of unused space on each page */
1691 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001692
1693 /* Set the variable isMemdb to true for an in-memory database, or
1694 ** false for a file-based database. This symbol is only required if
1695 ** either of the shared-data or autovacuum features are compiled
1696 ** into the library.
1697 */
1698#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1699 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001700 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001701 #else
drh980b1a72006-08-16 16:42:48 +00001702 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001703 #endif
1704#endif
1705
drhe5fe6902007-12-07 18:55:28 +00001706 assert( db!=0 );
1707 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001708
drhe5fe6902007-12-07 18:55:28 +00001709 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001710 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001711 if( !p ){
1712 return SQLITE_NOMEM;
1713 }
1714 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001715 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001716#ifndef SQLITE_OMIT_SHARED_CACHE
1717 p->lock.pBtree = p;
1718 p->lock.iTable = 1;
1719#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001720
drh198bf392006-01-06 21:52:49 +00001721#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001722 /*
1723 ** If this Btree is a candidate for shared cache, try to find an
1724 ** existing BtShared object that we can share with
1725 */
danielk197720c6cc22009-04-01 18:03:00 +00001726 if( isMemdb==0 && zFilename && zFilename[0] ){
drhf1f12682009-09-09 14:17:52 +00001727 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001728 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001729 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001730 sqlite3_mutex *mutexShared;
1731 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001732 if( !zFullPathname ){
1733 sqlite3_free(p);
1734 return SQLITE_NOMEM;
1735 }
danielk1977adfb9b02007-09-17 07:02:56 +00001736 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001737 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1738 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001739 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001740 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001741 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001742 assert( pBt->nRef>0 );
1743 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1744 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001745 int iDb;
1746 for(iDb=db->nDb-1; iDb>=0; iDb--){
1747 Btree *pExisting = db->aDb[iDb].pBt;
1748 if( pExisting && pExisting->pBt==pBt ){
1749 sqlite3_mutex_leave(mutexShared);
1750 sqlite3_mutex_leave(mutexOpen);
1751 sqlite3_free(zFullPathname);
1752 sqlite3_free(p);
1753 return SQLITE_CONSTRAINT;
1754 }
1755 }
drhff0587c2007-08-29 17:43:19 +00001756 p->pBt = pBt;
1757 pBt->nRef++;
1758 break;
1759 }
1760 }
1761 sqlite3_mutex_leave(mutexShared);
1762 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001763 }
drhff0587c2007-08-29 17:43:19 +00001764#ifdef SQLITE_DEBUG
1765 else{
1766 /* In debug mode, we mark all persistent databases as sharable
1767 ** even when they are not. This exercises the locking code and
1768 ** gives more opportunity for asserts(sqlite3_mutex_held())
1769 ** statements to find locking problems.
1770 */
1771 p->sharable = 1;
1772 }
1773#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001774 }
1775#endif
drha059ad02001-04-17 20:09:11 +00001776 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001777 /*
1778 ** The following asserts make sure that structures used by the btree are
1779 ** the right size. This is to guard against size changes that result
1780 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001781 */
drhe53831d2007-08-17 01:14:38 +00001782 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1783 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1784 assert( sizeof(u32)==4 );
1785 assert( sizeof(u16)==2 );
1786 assert( sizeof(Pgno)==4 );
1787
1788 pBt = sqlite3MallocZero( sizeof(*pBt) );
1789 if( pBt==0 ){
1790 rc = SQLITE_NOMEM;
1791 goto btree_open_out;
1792 }
danielk197771d5d2c2008-09-29 11:49:47 +00001793 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001794 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001795 if( rc==SQLITE_OK ){
1796 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1797 }
1798 if( rc!=SQLITE_OK ){
1799 goto btree_open_out;
1800 }
danielk19772a50ff02009-04-10 09:47:06 +00001801 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001802 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001803 p->pBt = pBt;
1804
drhe53831d2007-08-17 01:14:38 +00001805 pBt->pCursor = 0;
1806 pBt->pPage1 = 0;
1807 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
drh5b47efa2010-02-12 18:18:39 +00001808#ifdef SQLITE_SECURE_DELETE
1809 pBt->secureDelete = 1;
1810#endif
drhe53831d2007-08-17 01:14:38 +00001811 pBt->pageSize = get2byte(&zDbHeader[16]);
1812 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1813 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001814 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001815#ifndef SQLITE_OMIT_AUTOVACUUM
1816 /* If the magic name ":memory:" will create an in-memory database, then
1817 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1818 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1819 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1820 ** regular file-name. In this case the auto-vacuum applies as per normal.
1821 */
1822 if( zFilename && !isMemdb ){
1823 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1824 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1825 }
1826#endif
1827 nReserve = 0;
1828 }else{
1829 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001830 pBt->pageSizeFixed = 1;
1831#ifndef SQLITE_OMIT_AUTOVACUUM
1832 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1833 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1834#endif
1835 }
drhfa9601a2009-06-18 17:22:39 +00001836 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001837 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001838 pBt->usableSize = pBt->pageSize - nReserve;
1839 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001840
1841#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1842 /* Add the new BtShared object to the linked list sharable BtShareds.
1843 */
1844 if( p->sharable ){
1845 sqlite3_mutex *mutexShared;
1846 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001847 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001848 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001849 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001850 if( pBt->mutex==0 ){
1851 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001852 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001853 goto btree_open_out;
1854 }
drhff0587c2007-08-29 17:43:19 +00001855 }
drhe53831d2007-08-17 01:14:38 +00001856 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001857 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1858 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001859 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001860 }
drheee46cf2004-11-06 00:02:48 +00001861#endif
drh90f5ecb2004-07-22 01:19:35 +00001862 }
danielk1977aef0bf62005-12-30 16:28:01 +00001863
drhcfed7bc2006-03-13 14:28:05 +00001864#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001865 /* If the new Btree uses a sharable pBtShared, then link the new
1866 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001867 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001868 */
drhe53831d2007-08-17 01:14:38 +00001869 if( p->sharable ){
1870 int i;
1871 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001872 for(i=0; i<db->nDb; i++){
1873 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001874 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1875 if( p->pBt<pSib->pBt ){
1876 p->pNext = pSib;
1877 p->pPrev = 0;
1878 pSib->pPrev = p;
1879 }else{
drhabddb0c2007-08-20 13:14:28 +00001880 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001881 pSib = pSib->pNext;
1882 }
1883 p->pNext = pSib->pNext;
1884 p->pPrev = pSib;
1885 if( p->pNext ){
1886 p->pNext->pPrev = p;
1887 }
1888 pSib->pNext = p;
1889 }
1890 break;
1891 }
1892 }
danielk1977aef0bf62005-12-30 16:28:01 +00001893 }
danielk1977aef0bf62005-12-30 16:28:01 +00001894#endif
1895 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001896
1897btree_open_out:
1898 if( rc!=SQLITE_OK ){
1899 if( pBt && pBt->pPager ){
1900 sqlite3PagerClose(pBt->pPager);
1901 }
drh17435752007-08-16 04:30:38 +00001902 sqlite3_free(pBt);
1903 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001904 *ppBtree = 0;
1905 }
drh7555d8e2009-03-20 13:15:30 +00001906 if( mutexOpen ){
1907 assert( sqlite3_mutex_held(mutexOpen) );
1908 sqlite3_mutex_leave(mutexOpen);
1909 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001910 return rc;
drha059ad02001-04-17 20:09:11 +00001911}
1912
1913/*
drhe53831d2007-08-17 01:14:38 +00001914** Decrement the BtShared.nRef counter. When it reaches zero,
1915** remove the BtShared structure from the sharing list. Return
1916** true if the BtShared.nRef counter reaches zero and return
1917** false if it is still positive.
1918*/
1919static int removeFromSharingList(BtShared *pBt){
1920#ifndef SQLITE_OMIT_SHARED_CACHE
1921 sqlite3_mutex *pMaster;
1922 BtShared *pList;
1923 int removed = 0;
1924
drhd677b3d2007-08-20 22:48:41 +00001925 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001926 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001927 sqlite3_mutex_enter(pMaster);
1928 pBt->nRef--;
1929 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001930 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1931 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001932 }else{
drh78f82d12008-09-02 00:52:52 +00001933 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001934 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001935 pList=pList->pNext;
1936 }
drh34004ce2008-07-11 16:15:17 +00001937 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001938 pList->pNext = pBt->pNext;
1939 }
1940 }
drh3285db22007-09-03 22:00:39 +00001941 if( SQLITE_THREADSAFE ){
1942 sqlite3_mutex_free(pBt->mutex);
1943 }
drhe53831d2007-08-17 01:14:38 +00001944 removed = 1;
1945 }
1946 sqlite3_mutex_leave(pMaster);
1947 return removed;
1948#else
1949 return 1;
1950#endif
1951}
1952
1953/*
drhf7141992008-06-19 00:16:08 +00001954** Make sure pBt->pTmpSpace points to an allocation of
1955** MX_CELL_SIZE(pBt) bytes.
1956*/
1957static void allocateTempSpace(BtShared *pBt){
1958 if( !pBt->pTmpSpace ){
1959 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1960 }
1961}
1962
1963/*
1964** Free the pBt->pTmpSpace allocation
1965*/
1966static void freeTempSpace(BtShared *pBt){
1967 sqlite3PageFree( pBt->pTmpSpace);
1968 pBt->pTmpSpace = 0;
1969}
1970
1971/*
drha059ad02001-04-17 20:09:11 +00001972** Close an open database and invalidate all cursors.
1973*/
danielk1977aef0bf62005-12-30 16:28:01 +00001974int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001975 BtShared *pBt = p->pBt;
1976 BtCursor *pCur;
1977
danielk1977aef0bf62005-12-30 16:28:01 +00001978 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001979 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001980 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001981 pCur = pBt->pCursor;
1982 while( pCur ){
1983 BtCursor *pTmp = pCur;
1984 pCur = pCur->pNext;
1985 if( pTmp->pBtree==p ){
1986 sqlite3BtreeCloseCursor(pTmp);
1987 }
drha059ad02001-04-17 20:09:11 +00001988 }
danielk1977aef0bf62005-12-30 16:28:01 +00001989
danielk19778d34dfd2006-01-24 16:37:57 +00001990 /* Rollback any active transaction and free the handle structure.
1991 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1992 ** this handle.
1993 */
danielk1977b597f742006-01-15 11:39:18 +00001994 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001995 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001996
danielk1977aef0bf62005-12-30 16:28:01 +00001997 /* If there are still other outstanding references to the shared-btree
1998 ** structure, return now. The remainder of this procedure cleans
1999 ** up the shared-btree.
2000 */
drhe53831d2007-08-17 01:14:38 +00002001 assert( p->wantToLock==0 && p->locked==0 );
2002 if( !p->sharable || removeFromSharingList(pBt) ){
2003 /* The pBt is no longer on the sharing list, so we can access
2004 ** it without having to hold the mutex.
2005 **
2006 ** Clean out and delete the BtShared object.
2007 */
2008 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002009 sqlite3PagerClose(pBt->pPager);
2010 if( pBt->xFreeSchema && pBt->pSchema ){
2011 pBt->xFreeSchema(pBt->pSchema);
2012 }
2013 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002014 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002015 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002016 }
2017
drhe53831d2007-08-17 01:14:38 +00002018#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002019 assert( p->wantToLock==0 );
2020 assert( p->locked==0 );
2021 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2022 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002023#endif
2024
drhe53831d2007-08-17 01:14:38 +00002025 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002026 return SQLITE_OK;
2027}
2028
2029/*
drhda47d772002-12-02 04:25:19 +00002030** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002031**
2032** The maximum number of cache pages is set to the absolute
2033** value of mxPage. If mxPage is negative, the pager will
2034** operate asynchronously - it will not stop to do fsync()s
2035** to insure data is written to the disk surface before
2036** continuing. Transactions still work if synchronous is off,
2037** and the database cannot be corrupted if this program
2038** crashes. But if the operating system crashes or there is
2039** an abrupt power failure when synchronous is off, the database
2040** could be left in an inconsistent and unrecoverable state.
2041** Synchronous is on by default so database corruption is not
2042** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002043*/
danielk1977aef0bf62005-12-30 16:28:01 +00002044int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2045 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002046 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002047 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002048 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002049 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002050 return SQLITE_OK;
2051}
2052
2053/*
drh973b6e32003-02-12 14:09:42 +00002054** Change the way data is synced to disk in order to increase or decrease
2055** how well the database resists damage due to OS crashes and power
2056** failures. Level 1 is the same as asynchronous (no syncs() occur and
2057** there is a high probability of damage) Level 2 is the default. There
2058** is a very low but non-zero probability of damage. Level 3 reduces the
2059** probability of damage to near zero but with a write performance reduction.
2060*/
danielk197793758c82005-01-21 08:13:14 +00002061#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002062int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002063 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002064 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002065 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002066 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002067 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002068 return SQLITE_OK;
2069}
danielk197793758c82005-01-21 08:13:14 +00002070#endif
drh973b6e32003-02-12 14:09:42 +00002071
drh2c8997b2005-08-27 16:36:48 +00002072/*
2073** Return TRUE if the given btree is set to safety level 1. In other
2074** words, return TRUE if no sync() occurs on the disk files.
2075*/
danielk1977aef0bf62005-12-30 16:28:01 +00002076int sqlite3BtreeSyncDisabled(Btree *p){
2077 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002078 int rc;
drhe5fe6902007-12-07 18:55:28 +00002079 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002080 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002081 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002082 rc = sqlite3PagerNosync(pBt->pPager);
2083 sqlite3BtreeLeave(p);
2084 return rc;
drh2c8997b2005-08-27 16:36:48 +00002085}
2086
danielk1977576ec6b2005-01-21 11:55:25 +00002087#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002088/*
drh90f5ecb2004-07-22 01:19:35 +00002089** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002090** Or, if the page size has already been fixed, return SQLITE_READONLY
2091** without changing anything.
drh06f50212004-11-02 14:24:33 +00002092**
2093** The page size must be a power of 2 between 512 and 65536. If the page
2094** size supplied does not meet this constraint then the page size is not
2095** changed.
2096**
2097** Page sizes are constrained to be a power of two so that the region
2098** of the database file used for locking (beginning at PENDING_BYTE,
2099** the first byte past the 1GB boundary, 0x40000000) needs to occur
2100** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002101**
2102** If parameter nReserve is less than zero, then the number of reserved
2103** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002104**
2105** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2106** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002107*/
drhce4869f2009-04-02 20:16:58 +00002108int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002109 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002110 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002111 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002112 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002113 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002114 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002115 return SQLITE_READONLY;
2116 }
2117 if( nReserve<0 ){
2118 nReserve = pBt->pageSize - pBt->usableSize;
2119 }
drhf49661a2008-12-10 16:45:50 +00002120 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002121 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2122 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002123 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002124 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00002125 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002126 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002127 }
drhfa9601a2009-06-18 17:22:39 +00002128 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002129 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002130 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002131 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002132 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002133}
2134
2135/*
2136** Return the currently defined page size
2137*/
danielk1977aef0bf62005-12-30 16:28:01 +00002138int sqlite3BtreeGetPageSize(Btree *p){
2139 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002140}
drh7f751222009-03-17 22:33:00 +00002141
2142/*
2143** Return the number of bytes of space at the end of every page that
2144** are intentually left unused. This is the "reserved" space that is
2145** sometimes used by extensions.
2146*/
danielk1977aef0bf62005-12-30 16:28:01 +00002147int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002148 int n;
2149 sqlite3BtreeEnter(p);
2150 n = p->pBt->pageSize - p->pBt->usableSize;
2151 sqlite3BtreeLeave(p);
2152 return n;
drh2011d5f2004-07-22 02:40:37 +00002153}
drhf8e632b2007-05-08 14:51:36 +00002154
2155/*
2156** Set the maximum page count for a database if mxPage is positive.
2157** No changes are made if mxPage is 0 or negative.
2158** Regardless of the value of mxPage, return the maximum page count.
2159*/
2160int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002161 int n;
2162 sqlite3BtreeEnter(p);
2163 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2164 sqlite3BtreeLeave(p);
2165 return n;
drhf8e632b2007-05-08 14:51:36 +00002166}
drh5b47efa2010-02-12 18:18:39 +00002167
2168/*
2169** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1,
2170** then make no changes. Always return the value of the secureDelete
2171** setting after the change.
2172*/
2173int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2174 int b;
drhaf034ed2010-02-12 19:46:26 +00002175 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002176 sqlite3BtreeEnter(p);
2177 if( newFlag>=0 ){
2178 p->pBt->secureDelete = (newFlag!=0) ? 1 : 0;
2179 }
2180 b = p->pBt->secureDelete;
2181 sqlite3BtreeLeave(p);
2182 return b;
2183}
danielk1977576ec6b2005-01-21 11:55:25 +00002184#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002185
2186/*
danielk1977951af802004-11-05 15:45:09 +00002187** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2188** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2189** is disabled. The default value for the auto-vacuum property is
2190** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2191*/
danielk1977aef0bf62005-12-30 16:28:01 +00002192int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002193#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002194 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002195#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002196 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002197 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002198 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002199
2200 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002201 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002202 rc = SQLITE_READONLY;
2203 }else{
drh076d4662009-02-18 20:31:18 +00002204 pBt->autoVacuum = av ?1:0;
2205 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002206 }
drhd677b3d2007-08-20 22:48:41 +00002207 sqlite3BtreeLeave(p);
2208 return rc;
danielk1977951af802004-11-05 15:45:09 +00002209#endif
2210}
2211
2212/*
2213** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2214** enabled 1 is returned. Otherwise 0.
2215*/
danielk1977aef0bf62005-12-30 16:28:01 +00002216int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002217#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002218 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002219#else
drhd677b3d2007-08-20 22:48:41 +00002220 int rc;
2221 sqlite3BtreeEnter(p);
2222 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002223 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2224 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2225 BTREE_AUTOVACUUM_INCR
2226 );
drhd677b3d2007-08-20 22:48:41 +00002227 sqlite3BtreeLeave(p);
2228 return rc;
danielk1977951af802004-11-05 15:45:09 +00002229#endif
2230}
2231
2232
2233/*
drha34b6762004-05-07 13:30:42 +00002234** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002235** also acquire a readlock on that file.
2236**
2237** SQLITE_OK is returned on success. If the file is not a
2238** well-formed database file, then SQLITE_CORRUPT is returned.
2239** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002240** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002241*/
danielk1977aef0bf62005-12-30 16:28:01 +00002242static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00002243 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002244 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00002245 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002246
drh1fee73e2007-08-29 04:00:57 +00002247 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002248 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002249 rc = sqlite3PagerSharedLock(pBt->pPager);
2250 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002251 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002252 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002253
2254 /* Do some checking to help insure the file we opened really is
2255 ** a valid database file.
2256 */
danielk1977ad0132d2008-06-07 08:58:22 +00002257 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2258 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00002259 goto page1_init_failed;
2260 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002261 int pageSize;
2262 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002263 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002264 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002265 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002266 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002267 }
drh309169a2007-04-24 17:27:51 +00002268 if( page1[18]>1 ){
2269 pBt->readOnly = 1;
2270 }
2271 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00002272 goto page1_init_failed;
2273 }
drhe5ae5732008-06-15 02:51:47 +00002274
2275 /* The maximum embedded fraction must be exactly 25%. And the minimum
2276 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2277 ** The original design allowed these amounts to vary, but as of
2278 ** version 3.6.0, we require them to be fixed.
2279 */
2280 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2281 goto page1_init_failed;
2282 }
drh07d183d2005-05-01 22:52:42 +00002283 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002284 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2285 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2286 ){
drh07d183d2005-05-01 22:52:42 +00002287 goto page1_init_failed;
2288 }
2289 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002290 usableSize = pageSize - page1[20];
2291 if( pageSize!=pBt->pageSize ){
2292 /* After reading the first page of the database assuming a page size
2293 ** of BtShared.pageSize, we have discovered that the page-size is
2294 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2295 ** zero and return SQLITE_OK. The caller will call this function
2296 ** again with the correct page-size.
2297 */
2298 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002299 pBt->usableSize = (u16)usableSize;
2300 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002301 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002302 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2303 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002304 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002305 }
drhb33e1b92009-06-18 11:29:20 +00002306 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002307 goto page1_init_failed;
2308 }
drh1bd10f82008-12-10 21:19:56 +00002309 pBt->pageSize = (u16)pageSize;
2310 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002311#ifndef SQLITE_OMIT_AUTOVACUUM
2312 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002313 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002314#endif
drh306dc212001-05-21 13:45:10 +00002315 }
drhb6f41482004-05-14 01:58:11 +00002316
2317 /* maxLocal is the maximum amount of payload to store locally for
2318 ** a cell. Make sure it is small enough so that at least minFanout
2319 ** cells can will fit on one page. We assume a 10-byte page header.
2320 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002321 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002322 ** 4-byte child pointer
2323 ** 9-byte nKey value
2324 ** 4-byte nData value
2325 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002326 ** So a cell consists of a 2-byte poiner, a header which is as much as
2327 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2328 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002329 */
drhe5ae5732008-06-15 02:51:47 +00002330 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2331 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002332 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002333 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002334 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002335 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002336 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002337
drh72f82862001-05-24 21:06:34 +00002338page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002339 releasePage(pPage1);
2340 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002341 return rc;
drh306dc212001-05-21 13:45:10 +00002342}
2343
2344/*
drhb8ca3072001-12-05 00:21:20 +00002345** If there are no outstanding cursors and we are not in the middle
2346** of a transaction but there is a read lock on the database, then
2347** this routine unrefs the first page of the database file which
2348** has the effect of releasing the read lock.
2349**
drhb8ca3072001-12-05 00:21:20 +00002350** If there is a transaction in progress, this routine is a no-op.
2351*/
danielk1977aef0bf62005-12-30 16:28:01 +00002352static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002353 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002354 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2355 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002356 assert( pBt->pPage1->aData );
2357 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2358 assert( pBt->pPage1->aData );
2359 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002360 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002361 }
2362}
2363
2364/*
drhe39f2f92009-07-23 01:43:59 +00002365** If pBt points to an empty file then convert that empty file
2366** into a new empty database by initializing the first page of
2367** the database.
drh8b2f49b2001-06-08 00:21:52 +00002368*/
danielk1977aef0bf62005-12-30 16:28:01 +00002369static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002370 MemPage *pP1;
2371 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002372 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002373 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002374
drh1fee73e2007-08-29 04:00:57 +00002375 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002376 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
drh313aa572009-12-03 19:40:00 +00002377 if( rc!=SQLITE_OK || nPage>0 ){
danielk1977ad0132d2008-06-07 08:58:22 +00002378 return rc;
2379 }
drh3aac2dd2004-04-26 14:10:20 +00002380 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002381 assert( pP1!=0 );
2382 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002383 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002384 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002385 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2386 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002387 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002388 data[18] = 1;
2389 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002390 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2391 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002392 data[21] = 64;
2393 data[22] = 32;
2394 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002395 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002396 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002397 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002398#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002399 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002400 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002401 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002402 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002403#endif
drh8b2f49b2001-06-08 00:21:52 +00002404 return SQLITE_OK;
2405}
2406
2407/*
danielk1977ee5741e2004-05-31 10:01:34 +00002408** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002409** is started if the second argument is nonzero, otherwise a read-
2410** transaction. If the second argument is 2 or more and exclusive
2411** transaction is started, meaning that no other process is allowed
2412** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002413** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002414** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002415**
danielk1977ee5741e2004-05-31 10:01:34 +00002416** A write-transaction must be started before attempting any
2417** changes to the database. None of the following routines
2418** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002419**
drh23e11ca2004-05-04 17:27:28 +00002420** sqlite3BtreeCreateTable()
2421** sqlite3BtreeCreateIndex()
2422** sqlite3BtreeClearTable()
2423** sqlite3BtreeDropTable()
2424** sqlite3BtreeInsert()
2425** sqlite3BtreeDelete()
2426** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002427**
drhb8ef32c2005-03-14 02:01:49 +00002428** If an initial attempt to acquire the lock fails because of lock contention
2429** and the database was previously unlocked, then invoke the busy handler
2430** if there is one. But if there was previously a read-lock, do not
2431** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2432** returned when there is already a read-lock in order to avoid a deadlock.
2433**
2434** Suppose there are two processes A and B. A has a read lock and B has
2435** a reserved lock. B tries to promote to exclusive but is blocked because
2436** of A's read lock. A tries to promote to reserved but is blocked by B.
2437** One or the other of the two processes must give way or there can be
2438** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2439** when A already has a read lock, we encourage A to give up and let B
2440** proceed.
drha059ad02001-04-17 20:09:11 +00002441*/
danielk1977aef0bf62005-12-30 16:28:01 +00002442int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002443 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002444 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002445 int rc = SQLITE_OK;
2446
drhd677b3d2007-08-20 22:48:41 +00002447 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002448 btreeIntegrity(p);
2449
danielk1977ee5741e2004-05-31 10:01:34 +00002450 /* If the btree is already in a write-transaction, or it
2451 ** is already in a read-transaction and a read-transaction
2452 ** is requested, this is a no-op.
2453 */
danielk1977aef0bf62005-12-30 16:28:01 +00002454 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002455 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002456 }
drhb8ef32c2005-03-14 02:01:49 +00002457
2458 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002459 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002460 rc = SQLITE_READONLY;
2461 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002462 }
2463
danielk1977404ca072009-03-16 13:19:36 +00002464#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002465 /* If another database handle has already opened a write transaction
2466 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002467 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002468 */
danielk1977404ca072009-03-16 13:19:36 +00002469 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2470 pBlock = pBt->pWriter->db;
2471 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002472 BtLock *pIter;
2473 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2474 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002475 pBlock = pIter->pBtree->db;
2476 break;
danielk1977641b0f42007-12-21 04:47:25 +00002477 }
2478 }
2479 }
danielk1977404ca072009-03-16 13:19:36 +00002480 if( pBlock ){
2481 sqlite3ConnectionBlocked(p->db, pBlock);
2482 rc = SQLITE_LOCKED_SHAREDCACHE;
2483 goto trans_begun;
2484 }
danielk1977641b0f42007-12-21 04:47:25 +00002485#endif
2486
danielk1977602b4662009-07-02 07:47:33 +00002487 /* Any read-only or read-write transaction implies a read-lock on
2488 ** page 1. So if some other shared-cache client already has a write-lock
2489 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002490 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2491 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002492
drhb8ef32c2005-03-14 02:01:49 +00002493 do {
danielk1977295dc102009-04-01 19:07:03 +00002494 /* Call lockBtree() until either pBt->pPage1 is populated or
2495 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2496 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2497 ** reading page 1 it discovers that the page-size of the database
2498 ** file is not pBt->pageSize. In this case lockBtree() will update
2499 ** pBt->pageSize to the page-size of the file on disk.
2500 */
2501 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002502
drhb8ef32c2005-03-14 02:01:49 +00002503 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002504 if( pBt->readOnly ){
2505 rc = SQLITE_READONLY;
2506 }else{
danielk1977d8293352009-04-30 09:10:37 +00002507 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002508 if( rc==SQLITE_OK ){
2509 rc = newDatabase(pBt);
2510 }
drhb8ef32c2005-03-14 02:01:49 +00002511 }
2512 }
2513
danielk1977bd434552009-03-18 10:33:00 +00002514 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002515 unlockBtreeIfUnused(pBt);
2516 }
danielk1977aef0bf62005-12-30 16:28:01 +00002517 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002518 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002519
2520 if( rc==SQLITE_OK ){
2521 if( p->inTrans==TRANS_NONE ){
2522 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002523#ifndef SQLITE_OMIT_SHARED_CACHE
2524 if( p->sharable ){
2525 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2526 p->lock.eLock = READ_LOCK;
2527 p->lock.pNext = pBt->pLock;
2528 pBt->pLock = &p->lock;
2529 }
2530#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002531 }
2532 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2533 if( p->inTrans>pBt->inTransaction ){
2534 pBt->inTransaction = p->inTrans;
2535 }
danielk1977641b0f42007-12-21 04:47:25 +00002536#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002537 if( wrflag ){
2538 assert( !pBt->pWriter );
2539 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002540 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002541 }
2542#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002543 }
2544
drhd677b3d2007-08-20 22:48:41 +00002545
2546trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002547 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002548 /* This call makes sure that the pager has the correct number of
2549 ** open savepoints. If the second parameter is greater than 0 and
2550 ** the sub-journal is not already open, then it will be opened here.
2551 */
danielk1977fd7f0452008-12-17 17:30:26 +00002552 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2553 }
danielk197712dd5492008-12-18 15:45:07 +00002554
danielk1977aef0bf62005-12-30 16:28:01 +00002555 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002556 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002557 return rc;
drha059ad02001-04-17 20:09:11 +00002558}
2559
danielk1977687566d2004-11-02 12:56:41 +00002560#ifndef SQLITE_OMIT_AUTOVACUUM
2561
2562/*
2563** Set the pointer-map entries for all children of page pPage. Also, if
2564** pPage contains cells that point to overflow pages, set the pointer
2565** map entries for the overflow pages as well.
2566*/
2567static int setChildPtrmaps(MemPage *pPage){
2568 int i; /* Counter variable */
2569 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002570 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002571 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002572 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002573 Pgno pgno = pPage->pgno;
2574
drh1fee73e2007-08-29 04:00:57 +00002575 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002576 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002577 if( rc!=SQLITE_OK ){
2578 goto set_child_ptrmaps_out;
2579 }
danielk1977687566d2004-11-02 12:56:41 +00002580 nCell = pPage->nCell;
2581
2582 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002583 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002584
drh98add2e2009-07-20 17:11:49 +00002585 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002586
danielk1977687566d2004-11-02 12:56:41 +00002587 if( !pPage->leaf ){
2588 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002589 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002590 }
2591 }
2592
2593 if( !pPage->leaf ){
2594 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002595 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002596 }
2597
2598set_child_ptrmaps_out:
2599 pPage->isInit = isInitOrig;
2600 return rc;
2601}
2602
2603/*
drhf3aed592009-07-08 18:12:49 +00002604** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2605** that it points to iTo. Parameter eType describes the type of pointer to
2606** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002607**
2608** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2609** page of pPage.
2610**
2611** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2612** page pointed to by one of the cells on pPage.
2613**
2614** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2615** overflow page in the list.
2616*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002617static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002618 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002619 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002620 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002621 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002622 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002623 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002624 }
danielk1977f78fc082004-11-02 14:40:32 +00002625 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002626 }else{
drhf49661a2008-12-10 16:45:50 +00002627 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002628 int i;
2629 int nCell;
2630
danielk197730548662009-07-09 05:07:37 +00002631 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002632 nCell = pPage->nCell;
2633
danielk1977687566d2004-11-02 12:56:41 +00002634 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002635 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002636 if( eType==PTRMAP_OVERFLOW1 ){
2637 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002638 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002639 if( info.iOverflow ){
2640 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2641 put4byte(&pCell[info.iOverflow], iTo);
2642 break;
2643 }
2644 }
2645 }else{
2646 if( get4byte(pCell)==iFrom ){
2647 put4byte(pCell, iTo);
2648 break;
2649 }
2650 }
2651 }
2652
2653 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002654 if( eType!=PTRMAP_BTREE ||
2655 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002656 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002657 }
danielk1977687566d2004-11-02 12:56:41 +00002658 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2659 }
2660
2661 pPage->isInit = isInitOrig;
2662 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002663 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002664}
2665
danielk1977003ba062004-11-04 02:57:33 +00002666
danielk19777701e812005-01-10 12:59:51 +00002667/*
2668** Move the open database page pDbPage to location iFreePage in the
2669** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002670**
2671** The isCommit flag indicates that there is no need to remember that
2672** the journal needs to be sync()ed before database page pDbPage->pgno
2673** can be written to. The caller has already promised not to write to that
2674** page.
danielk19777701e812005-01-10 12:59:51 +00002675*/
danielk1977003ba062004-11-04 02:57:33 +00002676static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002677 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002678 MemPage *pDbPage, /* Open page to move */
2679 u8 eType, /* Pointer map 'type' entry for pDbPage */
2680 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002681 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002682 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002683){
2684 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2685 Pgno iDbPage = pDbPage->pgno;
2686 Pager *pPager = pBt->pPager;
2687 int rc;
2688
danielk1977a0bf2652004-11-04 14:30:04 +00002689 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2690 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002691 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002692 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002693
drh85b623f2007-12-13 21:54:09 +00002694 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002695 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2696 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002697 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002698 if( rc!=SQLITE_OK ){
2699 return rc;
2700 }
2701 pDbPage->pgno = iFreePage;
2702
2703 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2704 ** that point to overflow pages. The pointer map entries for all these
2705 ** pages need to be changed.
2706 **
2707 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2708 ** pointer to a subsequent overflow page. If this is the case, then
2709 ** the pointer map needs to be updated for the subsequent overflow page.
2710 */
danielk1977a0bf2652004-11-04 14:30:04 +00002711 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002712 rc = setChildPtrmaps(pDbPage);
2713 if( rc!=SQLITE_OK ){
2714 return rc;
2715 }
2716 }else{
2717 Pgno nextOvfl = get4byte(pDbPage->aData);
2718 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002719 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002720 if( rc!=SQLITE_OK ){
2721 return rc;
2722 }
2723 }
2724 }
2725
2726 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2727 ** that it points at iFreePage. Also fix the pointer map entry for
2728 ** iPtrPage.
2729 */
danielk1977a0bf2652004-11-04 14:30:04 +00002730 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002731 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002732 if( rc!=SQLITE_OK ){
2733 return rc;
2734 }
danielk19773b8a05f2007-03-19 17:44:26 +00002735 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002736 if( rc!=SQLITE_OK ){
2737 releasePage(pPtrPage);
2738 return rc;
2739 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002740 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002741 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002742 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002743 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002744 }
danielk1977003ba062004-11-04 02:57:33 +00002745 }
danielk1977003ba062004-11-04 02:57:33 +00002746 return rc;
2747}
2748
danielk1977dddbcdc2007-04-26 14:42:34 +00002749/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002750static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002751
2752/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002753** Perform a single step of an incremental-vacuum. If successful,
2754** return SQLITE_OK. If there is no work to do (and therefore no
2755** point in calling this function again), return SQLITE_DONE.
2756**
2757** More specificly, this function attempts to re-organize the
2758** database so that the last page of the file currently in use
2759** is no longer in use.
2760**
drhea8ffdf2009-07-22 00:35:23 +00002761** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002762** that the caller will keep calling incrVacuumStep() until
2763** it returns SQLITE_DONE or an error, and that nFin is the
2764** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002765** process is complete. If nFin is zero, it is assumed that
2766** incrVacuumStep() will be called a finite amount of times
2767** which may or may not empty the freelist. A full autovacuum
2768** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002769*/
danielk19773460d192008-12-27 15:23:13 +00002770static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002771 Pgno nFreeList; /* Number of pages still on the free-list */
2772
drh1fee73e2007-08-29 04:00:57 +00002773 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002774 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002775
2776 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2777 int rc;
2778 u8 eType;
2779 Pgno iPtrPage;
2780
2781 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002782 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002783 return SQLITE_DONE;
2784 }
2785
2786 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2787 if( rc!=SQLITE_OK ){
2788 return rc;
2789 }
2790 if( eType==PTRMAP_ROOTPAGE ){
2791 return SQLITE_CORRUPT_BKPT;
2792 }
2793
2794 if( eType==PTRMAP_FREEPAGE ){
2795 if( nFin==0 ){
2796 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002797 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002798 ** truncated to zero after this function returns, so it doesn't
2799 ** matter if it still contains some garbage entries.
2800 */
2801 Pgno iFreePg;
2802 MemPage *pFreePg;
2803 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2804 if( rc!=SQLITE_OK ){
2805 return rc;
2806 }
2807 assert( iFreePg==iLastPg );
2808 releasePage(pFreePg);
2809 }
2810 } else {
2811 Pgno iFreePg; /* Index of free page to move pLastPg to */
2812 MemPage *pLastPg;
2813
danielk197730548662009-07-09 05:07:37 +00002814 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002815 if( rc!=SQLITE_OK ){
2816 return rc;
2817 }
2818
danielk1977b4626a32007-04-28 15:47:43 +00002819 /* If nFin is zero, this loop runs exactly once and page pLastPg
2820 ** is swapped with the first free page pulled off the free list.
2821 **
2822 ** On the other hand, if nFin is greater than zero, then keep
2823 ** looping until a free-page located within the first nFin pages
2824 ** of the file is found.
2825 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002826 do {
2827 MemPage *pFreePg;
2828 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2829 if( rc!=SQLITE_OK ){
2830 releasePage(pLastPg);
2831 return rc;
2832 }
2833 releasePage(pFreePg);
2834 }while( nFin!=0 && iFreePg>nFin );
2835 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002836
2837 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002838 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002839 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002840 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002841 releasePage(pLastPg);
2842 if( rc!=SQLITE_OK ){
2843 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002844 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002845 }
2846 }
2847
danielk19773460d192008-12-27 15:23:13 +00002848 if( nFin==0 ){
2849 iLastPg--;
2850 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002851 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2852 MemPage *pPg;
danielk197730548662009-07-09 05:07:37 +00002853 int rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002854 if( rc!=SQLITE_OK ){
2855 return rc;
2856 }
2857 rc = sqlite3PagerWrite(pPg->pDbPage);
2858 releasePage(pPg);
2859 if( rc!=SQLITE_OK ){
2860 return rc;
2861 }
2862 }
danielk19773460d192008-12-27 15:23:13 +00002863 iLastPg--;
2864 }
2865 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002866 }
2867 return SQLITE_OK;
2868}
2869
2870/*
2871** A write-transaction must be opened before calling this function.
2872** It performs a single unit of work towards an incremental vacuum.
2873**
2874** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002875** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002876** SQLITE_OK is returned. Otherwise an SQLite error code.
2877*/
2878int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002879 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002880 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002881
2882 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002883 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2884 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002885 rc = SQLITE_DONE;
2886 }else{
2887 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002888 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002889 }
drhd677b3d2007-08-20 22:48:41 +00002890 sqlite3BtreeLeave(p);
2891 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002892}
2893
2894/*
danielk19773b8a05f2007-03-19 17:44:26 +00002895** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002896** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002897**
2898** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2899** the database file should be truncated to during the commit process.
2900** i.e. the database has been reorganized so that only the first *pnTrunc
2901** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002902*/
danielk19773460d192008-12-27 15:23:13 +00002903static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002904 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002905 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002906 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002907
drh1fee73e2007-08-29 04:00:57 +00002908 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002909 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002910 assert(pBt->autoVacuum);
2911 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00002912 Pgno nFin; /* Number of pages in database after autovacuuming */
2913 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00002914 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
2915 Pgno iFree; /* The next page to be freed */
2916 int nEntry; /* Number of entries on one ptrmap page */
2917 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00002918
drh41d628c2009-07-11 17:04:08 +00002919 nOrig = pagerPagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00002920 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2921 /* It is not possible to create a database for which the final page
2922 ** is either a pointer-map page or the pending-byte page. If one
2923 ** is encountered, this indicates corruption.
2924 */
danielk19773460d192008-12-27 15:23:13 +00002925 return SQLITE_CORRUPT_BKPT;
2926 }
danielk1977ef165ce2009-04-06 17:50:03 +00002927
danielk19773460d192008-12-27 15:23:13 +00002928 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00002929 nEntry = pBt->usableSize/5;
2930 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00002931 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002932 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002933 nFin--;
2934 }
2935 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2936 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002937 }
drhc5e47ac2009-06-04 00:11:56 +00002938 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002939
danielk19773460d192008-12-27 15:23:13 +00002940 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2941 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002942 }
danielk19773460d192008-12-27 15:23:13 +00002943 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002944 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002945 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2946 put4byte(&pBt->pPage1->aData[32], 0);
2947 put4byte(&pBt->pPage1->aData[36], 0);
2948 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002949 }
2950 if( rc!=SQLITE_OK ){
2951 sqlite3PagerRollback(pPager);
2952 }
danielk1977687566d2004-11-02 12:56:41 +00002953 }
2954
danielk19773b8a05f2007-03-19 17:44:26 +00002955 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002956 return rc;
2957}
danielk1977dddbcdc2007-04-26 14:42:34 +00002958
danielk1977a50d9aa2009-06-08 14:49:45 +00002959#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2960# define setChildPtrmaps(x) SQLITE_OK
2961#endif
danielk1977687566d2004-11-02 12:56:41 +00002962
2963/*
drh80e35f42007-03-30 14:06:34 +00002964** This routine does the first phase of a two-phase commit. This routine
2965** causes a rollback journal to be created (if it does not already exist)
2966** and populated with enough information so that if a power loss occurs
2967** the database can be restored to its original state by playing back
2968** the journal. Then the contents of the journal are flushed out to
2969** the disk. After the journal is safely on oxide, the changes to the
2970** database are written into the database file and flushed to oxide.
2971** At the end of this call, the rollback journal still exists on the
2972** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002973** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002974** commit process.
2975**
2976** This call is a no-op if no write-transaction is currently active on pBt.
2977**
2978** Otherwise, sync the database file for the btree pBt. zMaster points to
2979** the name of a master journal file that should be written into the
2980** individual journal file, or is NULL, indicating no master journal file
2981** (single database transaction).
2982**
2983** When this is called, the master journal should already have been
2984** created, populated with this journal pointer and synced to disk.
2985**
2986** Once this is routine has returned, the only thing required to commit
2987** the write-transaction for this database file is to delete the journal.
2988*/
2989int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2990 int rc = SQLITE_OK;
2991 if( p->inTrans==TRANS_WRITE ){
2992 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002993 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002994#ifndef SQLITE_OMIT_AUTOVACUUM
2995 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002996 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002997 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002998 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002999 return rc;
3000 }
3001 }
3002#endif
drh49b9d332009-01-02 18:10:42 +00003003 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003004 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003005 }
3006 return rc;
3007}
3008
3009/*
danielk197794b30732009-07-02 17:21:57 +00003010** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3011** at the conclusion of a transaction.
3012*/
3013static void btreeEndTransaction(Btree *p){
3014 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003015 assert( sqlite3BtreeHoldsMutex(p) );
3016
danielk197794b30732009-07-02 17:21:57 +00003017 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003018 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3019 /* If there are other active statements that belong to this database
3020 ** handle, downgrade to a read-only transaction. The other statements
3021 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003022 downgradeAllSharedCacheTableLocks(p);
3023 p->inTrans = TRANS_READ;
3024 }else{
3025 /* If the handle had any kind of transaction open, decrement the
3026 ** transaction count of the shared btree. If the transaction count
3027 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3028 ** call below will unlock the pager. */
3029 if( p->inTrans!=TRANS_NONE ){
3030 clearAllSharedCacheTableLocks(p);
3031 pBt->nTransaction--;
3032 if( 0==pBt->nTransaction ){
3033 pBt->inTransaction = TRANS_NONE;
3034 }
3035 }
3036
3037 /* Set the current transaction state to TRANS_NONE and unlock the
3038 ** pager if this call closed the only read or write transaction. */
3039 p->inTrans = TRANS_NONE;
3040 unlockBtreeIfUnused(pBt);
3041 }
3042
3043 btreeIntegrity(p);
3044}
3045
3046/*
drh2aa679f2001-06-25 02:11:07 +00003047** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003048**
drh6e345992007-03-30 11:12:08 +00003049** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003050** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3051** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3052** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003053** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003054** routine has to do is delete or truncate or zero the header in the
3055** the rollback journal (which causes the transaction to commit) and
3056** drop locks.
drh6e345992007-03-30 11:12:08 +00003057**
drh5e00f6c2001-09-13 13:46:56 +00003058** This will release the write lock on the database file. If there
3059** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003060*/
drh80e35f42007-03-30 14:06:34 +00003061int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003062 BtShared *pBt = p->pBt;
3063
drhd677b3d2007-08-20 22:48:41 +00003064 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003065 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003066
3067 /* If the handle has a write-transaction open, commit the shared-btrees
3068 ** transaction and set the shared state to TRANS_READ.
3069 */
3070 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003071 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003072 assert( pBt->inTransaction==TRANS_WRITE );
3073 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003074 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003075 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003076 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003077 return rc;
3078 }
danielk1977aef0bf62005-12-30 16:28:01 +00003079 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003080 }
danielk1977aef0bf62005-12-30 16:28:01 +00003081
danielk197794b30732009-07-02 17:21:57 +00003082 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003083 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003084 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003085}
3086
drh80e35f42007-03-30 14:06:34 +00003087/*
3088** Do both phases of a commit.
3089*/
3090int sqlite3BtreeCommit(Btree *p){
3091 int rc;
drhd677b3d2007-08-20 22:48:41 +00003092 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003093 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3094 if( rc==SQLITE_OK ){
3095 rc = sqlite3BtreeCommitPhaseTwo(p);
3096 }
drhd677b3d2007-08-20 22:48:41 +00003097 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003098 return rc;
3099}
3100
danielk1977fbcd5852004-06-15 02:44:18 +00003101#ifndef NDEBUG
3102/*
3103** Return the number of write-cursors open on this handle. This is for use
3104** in assert() expressions, so it is only compiled if NDEBUG is not
3105** defined.
drhfb982642007-08-30 01:19:59 +00003106**
3107** For the purposes of this routine, a write-cursor is any cursor that
3108** is capable of writing to the databse. That means the cursor was
3109** originally opened for writing and the cursor has not be disabled
3110** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003111*/
danielk1977aef0bf62005-12-30 16:28:01 +00003112static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003113 BtCursor *pCur;
3114 int r = 0;
3115 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003116 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003117 }
3118 return r;
3119}
3120#endif
3121
drhc39e0002004-05-07 23:50:57 +00003122/*
drhfb982642007-08-30 01:19:59 +00003123** This routine sets the state to CURSOR_FAULT and the error
3124** code to errCode for every cursor on BtShared that pBtree
3125** references.
3126**
3127** Every cursor is tripped, including cursors that belong
3128** to other database connections that happen to be sharing
3129** the cache with pBtree.
3130**
3131** This routine gets called when a rollback occurs.
3132** All cursors using the same cache must be tripped
3133** to prevent them from trying to use the btree after
3134** the rollback. The rollback may have deleted tables
3135** or moved root pages, so it is not sufficient to
3136** save the state of the cursor. The cursor must be
3137** invalidated.
3138*/
3139void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3140 BtCursor *p;
3141 sqlite3BtreeEnter(pBtree);
3142 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003143 int i;
danielk1977be51a652008-10-08 17:58:48 +00003144 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003145 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003146 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003147 for(i=0; i<=p->iPage; i++){
3148 releasePage(p->apPage[i]);
3149 p->apPage[i] = 0;
3150 }
drhfb982642007-08-30 01:19:59 +00003151 }
3152 sqlite3BtreeLeave(pBtree);
3153}
3154
3155/*
drhecdc7532001-09-23 02:35:53 +00003156** Rollback the transaction in progress. All cursors will be
3157** invalided by this operation. Any attempt to use a cursor
3158** that was open at the beginning of this operation will result
3159** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003160**
3161** This will release the write lock on the database file. If there
3162** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003163*/
danielk1977aef0bf62005-12-30 16:28:01 +00003164int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003165 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003166 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003167 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003168
drhd677b3d2007-08-20 22:48:41 +00003169 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003170 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003171#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003172 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003173 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003174 ** trying to save cursor positions. If this is an automatic rollback (as
3175 ** the result of a constraint, malloc() failure or IO error) then
3176 ** the cache may be internally inconsistent (not contain valid trees) so
3177 ** we cannot simply return the error to the caller. Instead, abort
3178 ** all queries that may be using any of the cursors that failed to save.
3179 */
drhfb982642007-08-30 01:19:59 +00003180 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003181 }
danielk19778d34dfd2006-01-24 16:37:57 +00003182#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003183 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003184
3185 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003186 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003187
danielk19778d34dfd2006-01-24 16:37:57 +00003188 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003189 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003190 if( rc2!=SQLITE_OK ){
3191 rc = rc2;
3192 }
3193
drh24cd67e2004-05-10 16:18:47 +00003194 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003195 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003196 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003197 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00003198 releasePage(pPage1);
3199 }
danielk1977fbcd5852004-06-15 02:44:18 +00003200 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003201 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003202 }
danielk1977aef0bf62005-12-30 16:28:01 +00003203
danielk197794b30732009-07-02 17:21:57 +00003204 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003205 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003206 return rc;
3207}
3208
3209/*
danielk1977bd434552009-03-18 10:33:00 +00003210** Start a statement subtransaction. The subtransaction can can be rolled
3211** back independently of the main transaction. You must start a transaction
3212** before starting a subtransaction. The subtransaction is ended automatically
3213** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003214**
3215** Statement subtransactions are used around individual SQL statements
3216** that are contained within a BEGIN...COMMIT block. If a constraint
3217** error occurs within the statement, the effect of that one statement
3218** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003219**
3220** A statement sub-transaction is implemented as an anonymous savepoint. The
3221** value passed as the second parameter is the total number of savepoints,
3222** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3223** are no active savepoints and no other statement-transactions open,
3224** iStatement is 1. This anonymous savepoint can be released or rolled back
3225** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003226*/
danielk1977bd434552009-03-18 10:33:00 +00003227int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003228 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003229 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003230 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003231 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003232 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003233 assert( iStatement>0 );
3234 assert( iStatement>p->db->nSavepoint );
3235 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00003236 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00003237 }else{
3238 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003239 /* At the pager level, a statement transaction is a savepoint with
3240 ** an index greater than all savepoints created explicitly using
3241 ** SQL statements. It is illegal to open, release or rollback any
3242 ** such savepoints while the statement transaction savepoint is active.
3243 */
danielk1977bd434552009-03-18 10:33:00 +00003244 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00003245 }
drhd677b3d2007-08-20 22:48:41 +00003246 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003247 return rc;
3248}
3249
3250/*
danielk1977fd7f0452008-12-17 17:30:26 +00003251** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3252** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003253** savepoint identified by parameter iSavepoint, depending on the value
3254** of op.
3255**
3256** Normally, iSavepoint is greater than or equal to zero. However, if op is
3257** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3258** contents of the entire transaction are rolled back. This is different
3259** from a normal transaction rollback, as no locks are released and the
3260** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003261*/
3262int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3263 int rc = SQLITE_OK;
3264 if( p && p->inTrans==TRANS_WRITE ){
3265 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003266 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3267 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3268 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003269 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003270 if( rc==SQLITE_OK ){
3271 rc = newDatabase(pBt);
3272 }
danielk1977fd7f0452008-12-17 17:30:26 +00003273 sqlite3BtreeLeave(p);
3274 }
3275 return rc;
3276}
3277
3278/*
drh8b2f49b2001-06-08 00:21:52 +00003279** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003280** iTable. If a read-only cursor is requested, it is assumed that
3281** the caller already has at least a read-only transaction open
3282** on the database already. If a write-cursor is requested, then
3283** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003284**
3285** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003286** If wrFlag==1, then the cursor can be used for reading or for
3287** writing if other conditions for writing are also met. These
3288** are the conditions that must be met in order for writing to
3289** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003290**
drhf74b8d92002-09-01 23:20:45 +00003291** 1: The cursor must have been opened with wrFlag==1
3292**
drhfe5d71d2007-03-19 11:54:10 +00003293** 2: Other database connections that share the same pager cache
3294** but which are not in the READ_UNCOMMITTED state may not have
3295** cursors open with wrFlag==0 on the same table. Otherwise
3296** the changes made by this write cursor would be visible to
3297** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003298**
3299** 3: The database must be writable (not on read-only media)
3300**
3301** 4: There must be an active transaction.
3302**
drh6446c4d2001-12-15 14:22:18 +00003303** No checking is done to make sure that page iTable really is the
3304** root page of a b-tree. If it is not, then the cursor acquired
3305** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003306**
drhf25a5072009-11-18 23:01:25 +00003307** It is assumed that the sqlite3BtreeCursorZero() has been called
3308** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003309*/
drhd677b3d2007-08-20 22:48:41 +00003310static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003311 Btree *p, /* The btree */
3312 int iTable, /* Root page of table to open */
3313 int wrFlag, /* 1 to write. 0 read-only */
3314 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3315 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003316){
danielk19773e8add92009-07-04 17:16:00 +00003317 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003318
drh1fee73e2007-08-29 04:00:57 +00003319 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003320 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003321
danielk1977602b4662009-07-02 07:47:33 +00003322 /* The following assert statements verify that if this is a sharable
3323 ** b-tree database, the connection is holding the required table locks,
3324 ** and that no other connection has any open cursor that conflicts with
3325 ** this lock. */
3326 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003327 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3328
danielk19773e8add92009-07-04 17:16:00 +00003329 /* Assert that the caller has opened the required transaction. */
3330 assert( p->inTrans>TRANS_NONE );
3331 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3332 assert( pBt->pPage1 && pBt->pPage1->aData );
3333
danielk197796d48e92009-06-29 06:00:37 +00003334 if( NEVER(wrFlag && pBt->readOnly) ){
3335 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003336 }
danielk19773e8add92009-07-04 17:16:00 +00003337 if( iTable==1 && pagerPagecount(pBt)==0 ){
3338 return SQLITE_EMPTY;
3339 }
danielk1977aef0bf62005-12-30 16:28:01 +00003340
danielk1977aef0bf62005-12-30 16:28:01 +00003341 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003342 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003343 pCur->pgnoRoot = (Pgno)iTable;
3344 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003345 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003346 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003347 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003348 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003349 pCur->pNext = pBt->pCursor;
3350 if( pCur->pNext ){
3351 pCur->pNext->pPrev = pCur;
3352 }
3353 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003354 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003355 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003356 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003357}
drhd677b3d2007-08-20 22:48:41 +00003358int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003359 Btree *p, /* The btree */
3360 int iTable, /* Root page of table to open */
3361 int wrFlag, /* 1 to write. 0 read-only */
3362 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3363 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003364){
3365 int rc;
3366 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003367 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003368 sqlite3BtreeLeave(p);
3369 return rc;
3370}
drh7f751222009-03-17 22:33:00 +00003371
3372/*
3373** Return the size of a BtCursor object in bytes.
3374**
3375** This interfaces is needed so that users of cursors can preallocate
3376** sufficient storage to hold a cursor. The BtCursor object is opaque
3377** to users so they cannot do the sizeof() themselves - they must call
3378** this routine.
3379*/
3380int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003381 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003382}
3383
drh7f751222009-03-17 22:33:00 +00003384/*
drhf25a5072009-11-18 23:01:25 +00003385** Initialize memory that will be converted into a BtCursor object.
3386**
3387** The simple approach here would be to memset() the entire object
3388** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3389** do not need to be zeroed and they are large, so we can save a lot
3390** of run-time by skipping the initialization of those elements.
3391*/
3392void sqlite3BtreeCursorZero(BtCursor *p){
3393 memset(p, 0, offsetof(BtCursor, iPage));
3394}
3395
3396/*
drh7f751222009-03-17 22:33:00 +00003397** Set the cached rowid value of every cursor in the same database file
3398** as pCur and having the same root page number as pCur. The value is
3399** set to iRowid.
3400**
3401** Only positive rowid values are considered valid for this cache.
3402** The cache is initialized to zero, indicating an invalid cache.
3403** A btree will work fine with zero or negative rowids. We just cannot
3404** cache zero or negative rowids, which means tables that use zero or
3405** negative rowids might run a little slower. But in practice, zero
3406** or negative rowids are very uncommon so this should not be a problem.
3407*/
3408void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3409 BtCursor *p;
3410 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3411 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3412 }
3413 assert( pCur->cachedRowid==iRowid );
3414}
drhd677b3d2007-08-20 22:48:41 +00003415
drh7f751222009-03-17 22:33:00 +00003416/*
3417** Return the cached rowid for the given cursor. A negative or zero
3418** return value indicates that the rowid cache is invalid and should be
3419** ignored. If the rowid cache has never before been set, then a
3420** zero is returned.
3421*/
3422sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3423 return pCur->cachedRowid;
3424}
drha059ad02001-04-17 20:09:11 +00003425
3426/*
drh5e00f6c2001-09-13 13:46:56 +00003427** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003428** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003429*/
drh3aac2dd2004-04-26 14:10:20 +00003430int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003431 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003432 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003433 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003434 BtShared *pBt = pCur->pBt;
3435 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003436 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003437 if( pCur->pPrev ){
3438 pCur->pPrev->pNext = pCur->pNext;
3439 }else{
3440 pBt->pCursor = pCur->pNext;
3441 }
3442 if( pCur->pNext ){
3443 pCur->pNext->pPrev = pCur->pPrev;
3444 }
danielk197771d5d2c2008-09-29 11:49:47 +00003445 for(i=0; i<=pCur->iPage; i++){
3446 releasePage(pCur->apPage[i]);
3447 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003448 unlockBtreeIfUnused(pBt);
3449 invalidateOverflowCache(pCur);
3450 /* sqlite3_free(pCur); */
3451 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003452 }
drh8c42ca92001-06-22 19:15:00 +00003453 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003454}
3455
drh5e2f8b92001-05-28 00:41:15 +00003456/*
drh86057612007-06-26 01:04:48 +00003457** Make sure the BtCursor* given in the argument has a valid
3458** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003459** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003460**
3461** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003462** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003463**
3464** 2007-06-25: There is a bug in some versions of MSVC that cause the
3465** compiler to crash when getCellInfo() is implemented as a macro.
3466** But there is a measureable speed advantage to using the macro on gcc
3467** (when less compiler optimizations like -Os or -O0 are used and the
3468** compiler is not doing agressive inlining.) So we use a real function
3469** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003470*/
drh9188b382004-05-14 21:12:22 +00003471#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003472 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003473 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003474 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003475 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003476 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003477 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003478 }
danielk19771cc5ed82007-05-16 17:28:43 +00003479#else
3480 #define assertCellInfo(x)
3481#endif
drh86057612007-06-26 01:04:48 +00003482#ifdef _MSC_VER
3483 /* Use a real function in MSVC to work around bugs in that compiler. */
3484 static void getCellInfo(BtCursor *pCur){
3485 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003486 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003487 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003488 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003489 }else{
3490 assertCellInfo(pCur);
3491 }
3492 }
3493#else /* if not _MSC_VER */
3494 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003495#define getCellInfo(pCur) \
3496 if( pCur->info.nSize==0 ){ \
3497 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003498 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003499 pCur->validNKey = 1; \
3500 }else{ \
3501 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003502 }
3503#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003504
drhea8ffdf2009-07-22 00:35:23 +00003505#ifndef NDEBUG /* The next routine used only within assert() statements */
3506/*
3507** Return true if the given BtCursor is valid. A valid cursor is one
3508** that is currently pointing to a row in a (non-empty) table.
3509** This is a verification routine is used only within assert() statements.
3510*/
3511int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3512 return pCur && pCur->eState==CURSOR_VALID;
3513}
3514#endif /* NDEBUG */
3515
drh9188b382004-05-14 21:12:22 +00003516/*
drh3aac2dd2004-04-26 14:10:20 +00003517** Set *pSize to the size of the buffer needed to hold the value of
3518** the key for the current entry. If the cursor is not pointing
3519** to a valid entry, *pSize is set to 0.
3520**
drh4b70f112004-05-02 21:12:19 +00003521** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003522** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003523**
3524** The caller must position the cursor prior to invoking this routine.
3525**
3526** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003527*/
drh4a1c3802004-05-12 15:15:47 +00003528int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003529 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003530 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3531 if( pCur->eState!=CURSOR_VALID ){
3532 *pSize = 0;
3533 }else{
3534 getCellInfo(pCur);
3535 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003536 }
drhea8ffdf2009-07-22 00:35:23 +00003537 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003538}
drh2af926b2001-05-15 00:39:25 +00003539
drh72f82862001-05-24 21:06:34 +00003540/*
drh0e1c19e2004-05-11 00:58:56 +00003541** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003542** cursor currently points to.
3543**
3544** The caller must guarantee that the cursor is pointing to a non-NULL
3545** valid entry. In other words, the calling procedure must guarantee
3546** that the cursor has Cursor.eState==CURSOR_VALID.
3547**
3548** Failure is not possible. This function always returns SQLITE_OK.
3549** It might just as well be a procedure (returning void) but we continue
3550** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003551*/
3552int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003553 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003554 assert( pCur->eState==CURSOR_VALID );
3555 getCellInfo(pCur);
3556 *pSize = pCur->info.nData;
3557 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003558}
3559
3560/*
danielk1977d04417962007-05-02 13:16:30 +00003561** Given the page number of an overflow page in the database (parameter
3562** ovfl), this function finds the page number of the next page in the
3563** linked list of overflow pages. If possible, it uses the auto-vacuum
3564** pointer-map data instead of reading the content of page ovfl to do so.
3565**
3566** If an error occurs an SQLite error code is returned. Otherwise:
3567**
danielk1977bea2a942009-01-20 17:06:27 +00003568** The page number of the next overflow page in the linked list is
3569** written to *pPgnoNext. If page ovfl is the last page in its linked
3570** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003571**
danielk1977bea2a942009-01-20 17:06:27 +00003572** If ppPage is not NULL, and a reference to the MemPage object corresponding
3573** to page number pOvfl was obtained, then *ppPage is set to point to that
3574** reference. It is the responsibility of the caller to call releasePage()
3575** on *ppPage to free the reference. In no reference was obtained (because
3576** the pointer-map was used to obtain the value for *pPgnoNext), then
3577** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003578*/
3579static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003580 BtShared *pBt, /* The database file */
3581 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003582 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003583 Pgno *pPgnoNext /* OUT: Next overflow page number */
3584){
3585 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003586 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003587 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003588
drh1fee73e2007-08-29 04:00:57 +00003589 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003590 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003591
3592#ifndef SQLITE_OMIT_AUTOVACUUM
3593 /* Try to find the next page in the overflow list using the
3594 ** autovacuum pointer-map pages. Guess that the next page in
3595 ** the overflow list is page number (ovfl+1). If that guess turns
3596 ** out to be wrong, fall back to loading the data of page
3597 ** number ovfl to determine the next page number.
3598 */
3599 if( pBt->autoVacuum ){
3600 Pgno pgno;
3601 Pgno iGuess = ovfl+1;
3602 u8 eType;
3603
3604 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3605 iGuess++;
3606 }
3607
danielk197789d40042008-11-17 14:20:56 +00003608 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003609 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003610 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003611 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003612 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003613 }
3614 }
3615 }
3616#endif
3617
danielk1977d8a3f3d2009-07-11 11:45:23 +00003618 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003619 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003620 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003621 assert( rc==SQLITE_OK || pPage==0 );
3622 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003623 next = get4byte(pPage->aData);
3624 }
danielk1977443c0592009-01-16 15:21:05 +00003625 }
danielk197745d68822009-01-16 16:23:38 +00003626
danielk1977bea2a942009-01-20 17:06:27 +00003627 *pPgnoNext = next;
3628 if( ppPage ){
3629 *ppPage = pPage;
3630 }else{
3631 releasePage(pPage);
3632 }
3633 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003634}
3635
danielk1977da107192007-05-04 08:32:13 +00003636/*
3637** Copy data from a buffer to a page, or from a page to a buffer.
3638**
3639** pPayload is a pointer to data stored on database page pDbPage.
3640** If argument eOp is false, then nByte bytes of data are copied
3641** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3642** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3643** of data are copied from the buffer pBuf to pPayload.
3644**
3645** SQLITE_OK is returned on success, otherwise an error code.
3646*/
3647static int copyPayload(
3648 void *pPayload, /* Pointer to page data */
3649 void *pBuf, /* Pointer to buffer */
3650 int nByte, /* Number of bytes to copy */
3651 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3652 DbPage *pDbPage /* Page containing pPayload */
3653){
3654 if( eOp ){
3655 /* Copy data from buffer to page (a write operation) */
3656 int rc = sqlite3PagerWrite(pDbPage);
3657 if( rc!=SQLITE_OK ){
3658 return rc;
3659 }
3660 memcpy(pPayload, pBuf, nByte);
3661 }else{
3662 /* Copy data from page to buffer (a read operation) */
3663 memcpy(pBuf, pPayload, nByte);
3664 }
3665 return SQLITE_OK;
3666}
danielk1977d04417962007-05-02 13:16:30 +00003667
3668/*
danielk19779f8d6402007-05-02 17:48:45 +00003669** This function is used to read or overwrite payload information
3670** for the entry that the pCur cursor is pointing to. If the eOp
3671** parameter is 0, this is a read operation (data copied into
3672** buffer pBuf). If it is non-zero, a write (data copied from
3673** buffer pBuf).
3674**
3675** A total of "amt" bytes are read or written beginning at "offset".
3676** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003677**
drh3bcdfd22009-07-12 02:32:21 +00003678** The content being read or written might appear on the main page
3679** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003680**
danielk1977dcbb5d32007-05-04 18:36:44 +00003681** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003682** cursor entry uses one or more overflow pages, this function
3683** allocates space for and lazily popluates the overflow page-list
3684** cache array (BtCursor.aOverflow). Subsequent calls use this
3685** cache to make seeking to the supplied offset more efficient.
3686**
3687** Once an overflow page-list cache has been allocated, it may be
3688** invalidated if some other cursor writes to the same table, or if
3689** the cursor is moved to a different row. Additionally, in auto-vacuum
3690** mode, the following events may invalidate an overflow page-list cache.
3691**
3692** * An incremental vacuum,
3693** * A commit in auto_vacuum="full" mode,
3694** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003695*/
danielk19779f8d6402007-05-02 17:48:45 +00003696static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003697 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003698 u32 offset, /* Begin reading this far into payload */
3699 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003700 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003701 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003702){
3703 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003704 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003705 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003706 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003707 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003708 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003709
danielk1977da107192007-05-04 08:32:13 +00003710 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003711 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003712 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003713 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003714
drh86057612007-06-26 01:04:48 +00003715 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003716 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003717 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003718
drh3bcdfd22009-07-12 02:32:21 +00003719 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003720 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3721 ){
danielk1977da107192007-05-04 08:32:13 +00003722 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003723 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003724 }
danielk1977da107192007-05-04 08:32:13 +00003725
3726 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003727 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003728 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003729 if( a+offset>pCur->info.nLocal ){
3730 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003731 }
danielk1977da107192007-05-04 08:32:13 +00003732 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003733 offset = 0;
drha34b6762004-05-07 13:30:42 +00003734 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003735 amt -= a;
drhdd793422001-06-28 01:54:48 +00003736 }else{
drhfa1a98a2004-05-14 19:08:17 +00003737 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003738 }
danielk1977da107192007-05-04 08:32:13 +00003739
3740 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003741 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003742 Pgno nextPage;
3743
drhfa1a98a2004-05-14 19:08:17 +00003744 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003745
danielk19772dec9702007-05-02 16:48:37 +00003746#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003747 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003748 ** has not been allocated, allocate it now. The array is sized at
3749 ** one entry for each overflow page in the overflow chain. The
3750 ** page number of the first overflow page is stored in aOverflow[0],
3751 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3752 ** (the cache is lazily populated).
3753 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003754 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003755 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003756 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003757 /* nOvfl is always positive. If it were zero, fetchPayload would have
3758 ** been used instead of this routine. */
3759 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003760 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003761 }
3762 }
danielk1977da107192007-05-04 08:32:13 +00003763
3764 /* If the overflow page-list cache has been allocated and the
3765 ** entry for the first required overflow page is valid, skip
3766 ** directly to it.
3767 */
danielk19772dec9702007-05-02 16:48:37 +00003768 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3769 iIdx = (offset/ovflSize);
3770 nextPage = pCur->aOverflow[iIdx];
3771 offset = (offset%ovflSize);
3772 }
3773#endif
danielk1977da107192007-05-04 08:32:13 +00003774
3775 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3776
3777#ifndef SQLITE_OMIT_INCRBLOB
3778 /* If required, populate the overflow page-list cache. */
3779 if( pCur->aOverflow ){
3780 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3781 pCur->aOverflow[iIdx] = nextPage;
3782 }
3783#endif
3784
danielk1977d04417962007-05-02 13:16:30 +00003785 if( offset>=ovflSize ){
3786 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003787 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003788 ** data is not required. So first try to lookup the overflow
3789 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003790 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003791 */
danielk19772dec9702007-05-02 16:48:37 +00003792#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003793 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3794 nextPage = pCur->aOverflow[iIdx+1];
3795 } else
danielk19772dec9702007-05-02 16:48:37 +00003796#endif
danielk1977da107192007-05-04 08:32:13 +00003797 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003798 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003799 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003800 /* Need to read this page properly. It contains some of the
3801 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003802 */
3803 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003804 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003805 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003806 if( rc==SQLITE_OK ){
3807 aPayload = sqlite3PagerGetData(pDbPage);
3808 nextPage = get4byte(aPayload);
3809 if( a + offset > ovflSize ){
3810 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003811 }
danielk1977da107192007-05-04 08:32:13 +00003812 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3813 sqlite3PagerUnref(pDbPage);
3814 offset = 0;
3815 amt -= a;
3816 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003817 }
danielk1977cfe9a692004-06-16 12:00:29 +00003818 }
drh2af926b2001-05-15 00:39:25 +00003819 }
drh2af926b2001-05-15 00:39:25 +00003820 }
danielk1977cfe9a692004-06-16 12:00:29 +00003821
danielk1977da107192007-05-04 08:32:13 +00003822 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003823 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003824 }
danielk1977da107192007-05-04 08:32:13 +00003825 return rc;
drh2af926b2001-05-15 00:39:25 +00003826}
3827
drh72f82862001-05-24 21:06:34 +00003828/*
drh3aac2dd2004-04-26 14:10:20 +00003829** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003830** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003831** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003832**
drh5d1a8722009-07-22 18:07:40 +00003833** The caller must ensure that pCur is pointing to a valid row
3834** in the table.
3835**
drh3aac2dd2004-04-26 14:10:20 +00003836** Return SQLITE_OK on success or an error code if anything goes
3837** wrong. An error is returned if "offset+amt" is larger than
3838** the available payload.
drh72f82862001-05-24 21:06:34 +00003839*/
drha34b6762004-05-07 13:30:42 +00003840int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00003841 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00003842 assert( pCur->eState==CURSOR_VALID );
3843 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3844 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
3845 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00003846}
3847
3848/*
drh3aac2dd2004-04-26 14:10:20 +00003849** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003850** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003851** begins at "offset".
3852**
3853** Return SQLITE_OK on success or an error code if anything goes
3854** wrong. An error is returned if "offset+amt" is larger than
3855** the available payload.
drh72f82862001-05-24 21:06:34 +00003856*/
drh3aac2dd2004-04-26 14:10:20 +00003857int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003858 int rc;
3859
danielk19773588ceb2008-06-10 17:30:26 +00003860#ifndef SQLITE_OMIT_INCRBLOB
3861 if ( pCur->eState==CURSOR_INVALID ){
3862 return SQLITE_ABORT;
3863 }
3864#endif
3865
drh1fee73e2007-08-29 04:00:57 +00003866 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003867 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003868 if( rc==SQLITE_OK ){
3869 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003870 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3871 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003872 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00003873 }
3874 return rc;
drh2af926b2001-05-15 00:39:25 +00003875}
3876
drh72f82862001-05-24 21:06:34 +00003877/*
drh0e1c19e2004-05-11 00:58:56 +00003878** Return a pointer to payload information from the entry that the
3879** pCur cursor is pointing to. The pointer is to the beginning of
3880** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003881** skipKey==1. The number of bytes of available key/data is written
3882** into *pAmt. If *pAmt==0, then the value returned will not be
3883** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003884**
3885** This routine is an optimization. It is common for the entire key
3886** and data to fit on the local page and for there to be no overflow
3887** pages. When that is so, this routine can be used to access the
3888** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003889** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003890** the key/data and copy it into a preallocated buffer.
3891**
3892** The pointer returned by this routine looks directly into the cached
3893** page of the database. The data might change or move the next time
3894** any btree routine is called.
3895*/
3896static const unsigned char *fetchPayload(
3897 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003898 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003899 int skipKey /* read beginning at data if this is true */
3900){
3901 unsigned char *aPayload;
3902 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003903 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003904 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003905
danielk197771d5d2c2008-09-29 11:49:47 +00003906 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003907 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003908 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003909 pPage = pCur->apPage[pCur->iPage];
3910 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00003911 if( NEVER(pCur->info.nSize==0) ){
3912 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
3913 &pCur->info);
3914 }
drh43605152004-05-29 21:46:49 +00003915 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003916 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003917 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003918 nKey = 0;
3919 }else{
drhf49661a2008-12-10 16:45:50 +00003920 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003921 }
drh0e1c19e2004-05-11 00:58:56 +00003922 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003923 aPayload += nKey;
3924 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003925 }else{
drhfa1a98a2004-05-14 19:08:17 +00003926 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00003927 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00003928 }
drhe51c44f2004-05-30 20:46:09 +00003929 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003930 return aPayload;
3931}
3932
3933
3934/*
drhe51c44f2004-05-30 20:46:09 +00003935** For the entry that cursor pCur is point to, return as
3936** many bytes of the key or data as are available on the local
3937** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003938**
3939** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003940** or be destroyed on the next call to any Btree routine,
3941** including calls from other threads against the same cache.
3942** Hence, a mutex on the BtShared should be held prior to calling
3943** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003944**
3945** These routines is used to get quick access to key and data
3946** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003947*/
drhe51c44f2004-05-30 20:46:09 +00003948const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00003949 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00003950 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003951 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00003952 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
3953 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00003954 }
drhfe3313f2009-07-21 19:02:20 +00003955 return p;
drh0e1c19e2004-05-11 00:58:56 +00003956}
drhe51c44f2004-05-30 20:46:09 +00003957const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00003958 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00003959 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003960 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00003961 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
3962 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00003963 }
drhfe3313f2009-07-21 19:02:20 +00003964 return p;
drh0e1c19e2004-05-11 00:58:56 +00003965}
3966
3967
3968/*
drh8178a752003-01-05 21:41:40 +00003969** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003970** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00003971**
3972** This function returns SQLITE_CORRUPT if the page-header flags field of
3973** the new child page does not match the flags field of the parent (i.e.
3974** if an intkey page appears to be the parent of a non-intkey page, or
3975** vice-versa).
drh72f82862001-05-24 21:06:34 +00003976*/
drh3aac2dd2004-04-26 14:10:20 +00003977static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003978 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003979 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003980 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003981 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003982
drh1fee73e2007-08-29 04:00:57 +00003983 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003984 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003985 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3986 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3987 return SQLITE_CORRUPT_BKPT;
3988 }
3989 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003990 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003991 pCur->apPage[i+1] = pNewPage;
3992 pCur->aiIdx[i+1] = 0;
3993 pCur->iPage++;
3994
drh271efa52004-05-30 19:19:05 +00003995 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003996 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00003997 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00003998 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003999 }
drh72f82862001-05-24 21:06:34 +00004000 return SQLITE_OK;
4001}
4002
danielk1977bf93c562008-09-29 15:53:25 +00004003#ifndef NDEBUG
4004/*
4005** Page pParent is an internal (non-leaf) tree page. This function
4006** asserts that page number iChild is the left-child if the iIdx'th
4007** cell in page pParent. Or, if iIdx is equal to the total number of
4008** cells in pParent, that page number iChild is the right-child of
4009** the page.
4010*/
4011static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4012 assert( iIdx<=pParent->nCell );
4013 if( iIdx==pParent->nCell ){
4014 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4015 }else{
4016 assert( get4byte(findCell(pParent, iIdx))==iChild );
4017 }
4018}
4019#else
4020# define assertParentIndex(x,y,z)
4021#endif
4022
drh72f82862001-05-24 21:06:34 +00004023/*
drh5e2f8b92001-05-28 00:41:15 +00004024** Move the cursor up to the parent page.
4025**
4026** pCur->idx is set to the cell index that contains the pointer
4027** to the page we are coming from. If we are coming from the
4028** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004029** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004030*/
danielk197730548662009-07-09 05:07:37 +00004031static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004032 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004033 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004034 assert( pCur->iPage>0 );
4035 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004036 assertParentIndex(
4037 pCur->apPage[pCur->iPage-1],
4038 pCur->aiIdx[pCur->iPage-1],
4039 pCur->apPage[pCur->iPage]->pgno
4040 );
danielk197771d5d2c2008-09-29 11:49:47 +00004041 releasePage(pCur->apPage[pCur->iPage]);
4042 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004043 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004044 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004045}
4046
4047/*
danielk19778f880a82009-07-13 09:41:45 +00004048** Move the cursor to point to the root page of its b-tree structure.
4049**
4050** If the table has a virtual root page, then the cursor is moved to point
4051** to the virtual root page instead of the actual root page. A table has a
4052** virtual root page when the actual root page contains no cells and a
4053** single child page. This can only happen with the table rooted at page 1.
4054**
4055** If the b-tree structure is empty, the cursor state is set to
4056** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4057** cell located on the root (or virtual root) page and the cursor state
4058** is set to CURSOR_VALID.
4059**
4060** If this function returns successfully, it may be assumed that the
4061** page-header flags indicate that the [virtual] root-page is the expected
4062** kind of b-tree page (i.e. if when opening the cursor the caller did not
4063** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4064** indicating a table b-tree, or if the caller did specify a KeyInfo
4065** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4066** b-tree).
drh72f82862001-05-24 21:06:34 +00004067*/
drh5e2f8b92001-05-28 00:41:15 +00004068static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004069 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004070 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004071 Btree *p = pCur->pBtree;
4072 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004073
drh1fee73e2007-08-29 04:00:57 +00004074 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004075 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4076 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4077 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4078 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4079 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004080 assert( pCur->skipNext!=SQLITE_OK );
4081 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004082 }
danielk1977be51a652008-10-08 17:58:48 +00004083 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004084 }
danielk197771d5d2c2008-09-29 11:49:47 +00004085
4086 if( pCur->iPage>=0 ){
4087 int i;
4088 for(i=1; i<=pCur->iPage; i++){
4089 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004090 }
danielk1977172114a2009-07-07 15:47:12 +00004091 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004092 }else{
drh4c301aa2009-07-15 17:25:45 +00004093 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4094 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004095 pCur->eState = CURSOR_INVALID;
4096 return rc;
4097 }
danielk1977172114a2009-07-07 15:47:12 +00004098 pCur->iPage = 0;
4099
4100 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4101 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4102 ** NULL, the caller expects a table b-tree. If this is not the case,
4103 ** return an SQLITE_CORRUPT error. */
4104 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4105 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4106 return SQLITE_CORRUPT_BKPT;
4107 }
drhc39e0002004-05-07 23:50:57 +00004108 }
danielk197771d5d2c2008-09-29 11:49:47 +00004109
danielk19778f880a82009-07-13 09:41:45 +00004110 /* Assert that the root page is of the correct type. This must be the
4111 ** case as the call to this function that loaded the root-page (either
4112 ** this call or a previous invocation) would have detected corruption
4113 ** if the assumption were not true, and it is not possible for the flags
4114 ** byte to have been modified while this cursor is holding a reference
4115 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004116 pRoot = pCur->apPage[0];
4117 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004118 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4119
danielk197771d5d2c2008-09-29 11:49:47 +00004120 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004121 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004122 pCur->atLast = 0;
4123 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004124
drh8856d6a2004-04-29 14:42:46 +00004125 if( pRoot->nCell==0 && !pRoot->leaf ){
4126 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004127 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004128 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004129 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004130 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004131 }else{
4132 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004133 }
4134 return rc;
drh72f82862001-05-24 21:06:34 +00004135}
drh2af926b2001-05-15 00:39:25 +00004136
drh5e2f8b92001-05-28 00:41:15 +00004137/*
4138** Move the cursor down to the left-most leaf entry beneath the
4139** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004140**
4141** The left-most leaf is the one with the smallest key - the first
4142** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004143*/
4144static int moveToLeftmost(BtCursor *pCur){
4145 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004146 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004147 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004148
drh1fee73e2007-08-29 04:00:57 +00004149 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004150 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004151 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4152 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4153 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004154 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004155 }
drhd677b3d2007-08-20 22:48:41 +00004156 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004157}
4158
drh2dcc9aa2002-12-04 13:40:25 +00004159/*
4160** Move the cursor down to the right-most leaf entry beneath the
4161** page to which it is currently pointing. Notice the difference
4162** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4163** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4164** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004165**
4166** The right-most entry is the one with the largest key - the last
4167** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004168*/
4169static int moveToRightmost(BtCursor *pCur){
4170 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004171 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004172 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004173
drh1fee73e2007-08-29 04:00:57 +00004174 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004175 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004176 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004177 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004178 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004179 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004180 }
drhd677b3d2007-08-20 22:48:41 +00004181 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004182 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004183 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004184 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004185 }
danielk1977518002e2008-09-05 05:02:46 +00004186 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004187}
4188
drh5e00f6c2001-09-13 13:46:56 +00004189/* Move the cursor to the first entry in the table. Return SQLITE_OK
4190** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004191** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004192*/
drh3aac2dd2004-04-26 14:10:20 +00004193int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004194 int rc;
drhd677b3d2007-08-20 22:48:41 +00004195
drh1fee73e2007-08-29 04:00:57 +00004196 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004197 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004198 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004199 if( rc==SQLITE_OK ){
4200 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004201 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004202 *pRes = 1;
4203 rc = SQLITE_OK;
4204 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004205 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004206 *pRes = 0;
4207 rc = moveToLeftmost(pCur);
4208 }
drh5e00f6c2001-09-13 13:46:56 +00004209 }
drh5e00f6c2001-09-13 13:46:56 +00004210 return rc;
4211}
drh5e2f8b92001-05-28 00:41:15 +00004212
drh9562b552002-02-19 15:00:07 +00004213/* Move the cursor to the last entry in the table. Return SQLITE_OK
4214** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004215** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004216*/
drh3aac2dd2004-04-26 14:10:20 +00004217int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004218 int rc;
drhd677b3d2007-08-20 22:48:41 +00004219
drh1fee73e2007-08-29 04:00:57 +00004220 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004221 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004222
4223 /* If the cursor already points to the last entry, this is a no-op. */
4224 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4225#ifdef SQLITE_DEBUG
4226 /* This block serves to assert() that the cursor really does point
4227 ** to the last entry in the b-tree. */
4228 int ii;
4229 for(ii=0; ii<pCur->iPage; ii++){
4230 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4231 }
4232 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4233 assert( pCur->apPage[pCur->iPage]->leaf );
4234#endif
4235 return SQLITE_OK;
4236 }
4237
drh9562b552002-02-19 15:00:07 +00004238 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004239 if( rc==SQLITE_OK ){
4240 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004241 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004242 *pRes = 1;
4243 }else{
4244 assert( pCur->eState==CURSOR_VALID );
4245 *pRes = 0;
4246 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004247 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004248 }
drh9562b552002-02-19 15:00:07 +00004249 }
drh9562b552002-02-19 15:00:07 +00004250 return rc;
4251}
4252
drhe14006d2008-03-25 17:23:32 +00004253/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004254** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004255**
drhe63d9992008-08-13 19:11:48 +00004256** For INTKEY tables, the intKey parameter is used. pIdxKey
4257** must be NULL. For index tables, pIdxKey is used and intKey
4258** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004259**
drh5e2f8b92001-05-28 00:41:15 +00004260** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004261** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004262** were present. The cursor might point to an entry that comes
4263** before or after the key.
4264**
drh64022502009-01-09 14:11:04 +00004265** An integer is written into *pRes which is the result of
4266** comparing the key with the entry to which the cursor is
4267** pointing. The meaning of the integer written into
4268** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004269**
4270** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004271** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004272** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004273**
4274** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004275** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004276**
4277** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004278** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004279**
drha059ad02001-04-17 20:09:11 +00004280*/
drhe63d9992008-08-13 19:11:48 +00004281int sqlite3BtreeMovetoUnpacked(
4282 BtCursor *pCur, /* The cursor to be moved */
4283 UnpackedRecord *pIdxKey, /* Unpacked index key */
4284 i64 intKey, /* The table key */
4285 int biasRight, /* If true, bias the search to the high end */
4286 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004287){
drh72f82862001-05-24 21:06:34 +00004288 int rc;
drhd677b3d2007-08-20 22:48:41 +00004289
drh1fee73e2007-08-29 04:00:57 +00004290 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004291 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004292 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004293 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004294
4295 /* If the cursor is already positioned at the point we are trying
4296 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004297 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4298 && pCur->apPage[0]->intKey
4299 ){
drhe63d9992008-08-13 19:11:48 +00004300 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004301 *pRes = 0;
4302 return SQLITE_OK;
4303 }
drhe63d9992008-08-13 19:11:48 +00004304 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004305 *pRes = -1;
4306 return SQLITE_OK;
4307 }
4308 }
4309
drh5e2f8b92001-05-28 00:41:15 +00004310 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004311 if( rc ){
4312 return rc;
4313 }
danielk197771d5d2c2008-09-29 11:49:47 +00004314 assert( pCur->apPage[pCur->iPage] );
4315 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004316 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004317 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004318 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004319 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004320 return SQLITE_OK;
4321 }
danielk197771d5d2c2008-09-29 11:49:47 +00004322 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004323 for(;;){
drh72f82862001-05-24 21:06:34 +00004324 int lwr, upr;
4325 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004326 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004327 int c;
4328
4329 /* pPage->nCell must be greater than zero. If this is the root-page
4330 ** the cursor would have been INVALID above and this for(;;) loop
4331 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004332 ** would have already detected db corruption. Similarly, pPage must
4333 ** be the right kind (index or table) of b-tree page. Otherwise
4334 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004335 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004336 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004337 lwr = 0;
4338 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004339 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004340 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004341 }else{
drhf49661a2008-12-10 16:45:50 +00004342 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004343 }
drh64022502009-01-09 14:11:04 +00004344 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004345 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4346 u8 *pCell; /* Pointer to current cell in pPage */
4347
drh366fda62006-01-13 02:35:09 +00004348 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004349 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004350 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004351 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004352 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004353 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004354 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004355 }
drha2c20e42008-03-29 16:01:04 +00004356 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004357 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004358 c = 0;
drhe63d9992008-08-13 19:11:48 +00004359 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004360 c = -1;
4361 }else{
drhe63d9992008-08-13 19:11:48 +00004362 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004363 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004364 }
danielk197711c327a2009-05-04 19:01:26 +00004365 pCur->validNKey = 1;
4366 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004367 }else{
danielk197711c327a2009-05-04 19:01:26 +00004368 /* The maximum supported page-size is 32768 bytes. This means that
4369 ** the maximum number of record bytes stored on an index B-Tree
4370 ** page is at most 8198 bytes, which may be stored as a 2-byte
4371 ** varint. This information is used to attempt to avoid parsing
4372 ** the entire cell by checking for the cases where the record is
4373 ** stored entirely within the b-tree page by inspecting the first
4374 ** 2 bytes of the cell.
4375 */
4376 int nCell = pCell[0];
4377 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4378 /* This branch runs if the record-size field of the cell is a
4379 ** single byte varint and the record fits entirely on the main
4380 ** b-tree page. */
4381 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4382 }else if( !(pCell[1] & 0x80)
4383 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4384 ){
4385 /* The record-size field is a 2 byte varint and the record
4386 ** fits entirely on the main b-tree page. */
4387 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004388 }else{
danielk197711c327a2009-05-04 19:01:26 +00004389 /* The record flows over onto one or more overflow pages. In
4390 ** this case the whole cell needs to be parsed, a buffer allocated
4391 ** and accessPayload() used to retrieve the record into the
4392 ** buffer before VdbeRecordCompare() can be called. */
4393 void *pCellKey;
4394 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004395 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004396 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004397 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004398 if( pCellKey==0 ){
4399 rc = SQLITE_NOMEM;
4400 goto moveto_finish;
4401 }
drhfb192682009-07-11 18:26:28 +00004402 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004403 if( rc ){
4404 sqlite3_free(pCellKey);
4405 goto moveto_finish;
4406 }
danielk197711c327a2009-05-04 19:01:26 +00004407 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004408 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004409 }
drh3aac2dd2004-04-26 14:10:20 +00004410 }
drh72f82862001-05-24 21:06:34 +00004411 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004412 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004413 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004414 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004415 break;
4416 }else{
drh64022502009-01-09 14:11:04 +00004417 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004418 rc = SQLITE_OK;
4419 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004420 }
drh72f82862001-05-24 21:06:34 +00004421 }
4422 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004423 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004424 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004425 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004426 }
drhf1d68b32007-03-29 04:43:26 +00004427 if( lwr>upr ){
4428 break;
4429 }
drhf49661a2008-12-10 16:45:50 +00004430 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004431 }
4432 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004433 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004434 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004435 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004436 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004437 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004438 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004439 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004440 }
4441 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004442 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004443 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004444 rc = SQLITE_OK;
4445 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004446 }
drhf49661a2008-12-10 16:45:50 +00004447 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004448 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004449 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004450 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004451 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004452 }
drh1e968a02008-03-25 00:22:21 +00004453moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004454 return rc;
4455}
4456
drhd677b3d2007-08-20 22:48:41 +00004457
drh72f82862001-05-24 21:06:34 +00004458/*
drhc39e0002004-05-07 23:50:57 +00004459** Return TRUE if the cursor is not pointing at an entry of the table.
4460**
4461** TRUE will be returned after a call to sqlite3BtreeNext() moves
4462** past the last entry in the table or sqlite3BtreePrev() moves past
4463** the first entry. TRUE is also returned if the table is empty.
4464*/
4465int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004466 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4467 ** have been deleted? This API will need to change to return an error code
4468 ** as well as the boolean result value.
4469 */
4470 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004471}
4472
4473/*
drhbd03cae2001-06-02 02:40:57 +00004474** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004475** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004476** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004477** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004478*/
drhd094db12008-04-03 21:46:57 +00004479int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004480 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004481 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004482 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004483
drh1fee73e2007-08-29 04:00:57 +00004484 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004485 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004486 if( rc!=SQLITE_OK ){
4487 return rc;
4488 }
drh8c4d3a62007-04-06 01:03:32 +00004489 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004490 if( CURSOR_INVALID==pCur->eState ){
4491 *pRes = 1;
4492 return SQLITE_OK;
4493 }
drh4c301aa2009-07-15 17:25:45 +00004494 if( pCur->skipNext>0 ){
4495 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004496 *pRes = 0;
4497 return SQLITE_OK;
4498 }
drh4c301aa2009-07-15 17:25:45 +00004499 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004500
danielk197771d5d2c2008-09-29 11:49:47 +00004501 pPage = pCur->apPage[pCur->iPage];
4502 idx = ++pCur->aiIdx[pCur->iPage];
4503 assert( pPage->isInit );
4504 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004505
drh271efa52004-05-30 19:19:05 +00004506 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004507 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004508 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004509 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004510 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004511 if( rc ) return rc;
4512 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004513 *pRes = 0;
4514 return rc;
drh72f82862001-05-24 21:06:34 +00004515 }
drh5e2f8b92001-05-28 00:41:15 +00004516 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004517 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004518 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004519 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004520 return SQLITE_OK;
4521 }
danielk197730548662009-07-09 05:07:37 +00004522 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004523 pPage = pCur->apPage[pCur->iPage];
4524 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004525 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004526 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004527 rc = sqlite3BtreeNext(pCur, pRes);
4528 }else{
4529 rc = SQLITE_OK;
4530 }
4531 return rc;
drh8178a752003-01-05 21:41:40 +00004532 }
4533 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004534 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004535 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004536 }
drh5e2f8b92001-05-28 00:41:15 +00004537 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004538 return rc;
drh72f82862001-05-24 21:06:34 +00004539}
drhd677b3d2007-08-20 22:48:41 +00004540
drh72f82862001-05-24 21:06:34 +00004541
drh3b7511c2001-05-26 13:15:44 +00004542/*
drh2dcc9aa2002-12-04 13:40:25 +00004543** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004544** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004545** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004546** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004547*/
drhd094db12008-04-03 21:46:57 +00004548int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004549 int rc;
drh8178a752003-01-05 21:41:40 +00004550 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004551
drh1fee73e2007-08-29 04:00:57 +00004552 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004553 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004554 if( rc!=SQLITE_OK ){
4555 return rc;
4556 }
drha2c20e42008-03-29 16:01:04 +00004557 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004558 if( CURSOR_INVALID==pCur->eState ){
4559 *pRes = 1;
4560 return SQLITE_OK;
4561 }
drh4c301aa2009-07-15 17:25:45 +00004562 if( pCur->skipNext<0 ){
4563 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004564 *pRes = 0;
4565 return SQLITE_OK;
4566 }
drh4c301aa2009-07-15 17:25:45 +00004567 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004568
danielk197771d5d2c2008-09-29 11:49:47 +00004569 pPage = pCur->apPage[pCur->iPage];
4570 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004571 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004572 int idx = pCur->aiIdx[pCur->iPage];
4573 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004574 if( rc ){
4575 return rc;
4576 }
drh2dcc9aa2002-12-04 13:40:25 +00004577 rc = moveToRightmost(pCur);
4578 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004579 while( pCur->aiIdx[pCur->iPage]==0 ){
4580 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004581 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004582 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004583 return SQLITE_OK;
4584 }
danielk197730548662009-07-09 05:07:37 +00004585 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004586 }
drh271efa52004-05-30 19:19:05 +00004587 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004588 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004589
4590 pCur->aiIdx[pCur->iPage]--;
4591 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004592 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004593 rc = sqlite3BtreePrevious(pCur, pRes);
4594 }else{
4595 rc = SQLITE_OK;
4596 }
drh2dcc9aa2002-12-04 13:40:25 +00004597 }
drh8178a752003-01-05 21:41:40 +00004598 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004599 return rc;
4600}
4601
4602/*
drh3b7511c2001-05-26 13:15:44 +00004603** Allocate a new page from the database file.
4604**
danielk19773b8a05f2007-03-19 17:44:26 +00004605** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004606** has already been called on the new page.) The new page has also
4607** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004608** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004609**
4610** SQLITE_OK is returned on success. Any other return value indicates
4611** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004612** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004613**
drh199e3cf2002-07-18 11:01:47 +00004614** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4615** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004616** attempt to keep related pages close to each other in the database file,
4617** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004618**
4619** If the "exact" parameter is not 0, and the page-number nearby exists
4620** anywhere on the free-list, then it is guarenteed to be returned. This
4621** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004622*/
drh4f0c5872007-03-26 22:05:01 +00004623static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004624 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004625 MemPage **ppPage,
4626 Pgno *pPgno,
4627 Pgno nearby,
4628 u8 exact
4629){
drh3aac2dd2004-04-26 14:10:20 +00004630 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004631 int rc;
drh35cd6432009-06-05 14:17:21 +00004632 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004633 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004634 MemPage *pTrunk = 0;
4635 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004636 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004637
drh1fee73e2007-08-29 04:00:57 +00004638 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004639 pPage1 = pBt->pPage1;
drh1662b5a2009-06-04 19:06:09 +00004640 mxPage = pagerPagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004641 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004642 testcase( n==mxPage-1 );
4643 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004644 return SQLITE_CORRUPT_BKPT;
4645 }
drh3aac2dd2004-04-26 14:10:20 +00004646 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004647 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004648 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004649 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4650
4651 /* If the 'exact' parameter was true and a query of the pointer-map
4652 ** shows that the page 'nearby' is somewhere on the free-list, then
4653 ** the entire-list will be searched for that page.
4654 */
4655#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004656 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004657 u8 eType;
4658 assert( nearby>0 );
4659 assert( pBt->autoVacuum );
4660 rc = ptrmapGet(pBt, nearby, &eType, 0);
4661 if( rc ) return rc;
4662 if( eType==PTRMAP_FREEPAGE ){
4663 searchList = 1;
4664 }
4665 *pPgno = nearby;
4666 }
4667#endif
4668
4669 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4670 ** first free-list trunk page. iPrevTrunk is initially 1.
4671 */
danielk19773b8a05f2007-03-19 17:44:26 +00004672 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004673 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004674 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004675
4676 /* The code within this loop is run only once if the 'searchList' variable
4677 ** is not true. Otherwise, it runs once for each trunk-page on the
4678 ** free-list until the page 'nearby' is located.
4679 */
4680 do {
4681 pPrevTrunk = pTrunk;
4682 if( pPrevTrunk ){
4683 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004684 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004685 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004686 }
drhdf35a082009-07-09 02:24:35 +00004687 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004688 if( iTrunk>mxPage ){
4689 rc = SQLITE_CORRUPT_BKPT;
4690 }else{
danielk197730548662009-07-09 05:07:37 +00004691 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004692 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004693 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004694 pTrunk = 0;
4695 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004696 }
4697
4698 k = get4byte(&pTrunk->aData[4]);
4699 if( k==0 && !searchList ){
4700 /* The trunk has no leaves and the list is not being searched.
4701 ** So extract the trunk page itself and use it as the newly
4702 ** allocated page */
4703 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004704 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004705 if( rc ){
4706 goto end_allocate_page;
4707 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004708 *pPgno = iTrunk;
4709 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4710 *ppPage = pTrunk;
4711 pTrunk = 0;
4712 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004713 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004714 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004715 rc = SQLITE_CORRUPT_BKPT;
4716 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004717#ifndef SQLITE_OMIT_AUTOVACUUM
4718 }else if( searchList && nearby==iTrunk ){
4719 /* The list is being searched and this trunk page is the page
4720 ** to allocate, regardless of whether it has leaves.
4721 */
4722 assert( *pPgno==iTrunk );
4723 *ppPage = pTrunk;
4724 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004725 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004726 if( rc ){
4727 goto end_allocate_page;
4728 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004729 if( k==0 ){
4730 if( !pPrevTrunk ){
4731 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4732 }else{
4733 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4734 }
4735 }else{
4736 /* The trunk page is required by the caller but it contains
4737 ** pointers to free-list leaves. The first leaf becomes a trunk
4738 ** page in this case.
4739 */
4740 MemPage *pNewTrunk;
4741 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004742 if( iNewTrunk>mxPage ){
4743 rc = SQLITE_CORRUPT_BKPT;
4744 goto end_allocate_page;
4745 }
drhdf35a082009-07-09 02:24:35 +00004746 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004747 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004748 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004749 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004750 }
danielk19773b8a05f2007-03-19 17:44:26 +00004751 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004752 if( rc!=SQLITE_OK ){
4753 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004754 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004755 }
4756 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4757 put4byte(&pNewTrunk->aData[4], k-1);
4758 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004759 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004760 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004761 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004762 put4byte(&pPage1->aData[32], iNewTrunk);
4763 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004764 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004765 if( rc ){
4766 goto end_allocate_page;
4767 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004768 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4769 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004770 }
4771 pTrunk = 0;
4772 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4773#endif
danielk1977e5765212009-06-17 11:13:28 +00004774 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004775 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004776 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004777 Pgno iPage;
4778 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004779 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004780 if( rc ){
4781 goto end_allocate_page;
4782 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004783 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004784 u32 i;
4785 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004786 closest = 0;
4787 dist = get4byte(&aData[8]) - nearby;
4788 if( dist<0 ) dist = -dist;
4789 for(i=1; i<k; i++){
4790 int d2 = get4byte(&aData[8+i*4]) - nearby;
4791 if( d2<0 ) d2 = -d2;
4792 if( d2<dist ){
4793 closest = i;
4794 dist = d2;
4795 }
4796 }
4797 }else{
4798 closest = 0;
4799 }
4800
4801 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004802 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004803 if( iPage>mxPage ){
4804 rc = SQLITE_CORRUPT_BKPT;
4805 goto end_allocate_page;
4806 }
drhdf35a082009-07-09 02:24:35 +00004807 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004808 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004809 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004810 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004811 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4812 ": %d more free pages\n",
4813 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4814 if( closest<k-1 ){
4815 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4816 }
4817 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004818 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004819 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004820 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004821 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004822 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004823 if( rc!=SQLITE_OK ){
4824 releasePage(*ppPage);
4825 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004826 }
4827 searchList = 0;
4828 }
drhee696e22004-08-30 16:52:17 +00004829 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004830 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004831 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004832 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004833 }else{
drh3aac2dd2004-04-26 14:10:20 +00004834 /* There are no pages on the freelist, so create a new page at the
4835 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004836 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004837 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004838
danielk1977bea2a942009-01-20 17:06:27 +00004839 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4840 (*pPgno)++;
4841 }
4842
danielk1977afcdd022004-10-31 16:25:42 +00004843#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004844 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004845 /* If *pPgno refers to a pointer-map page, allocate two new pages
4846 ** at the end of the file instead of one. The first allocated page
4847 ** becomes a new pointer-map page, the second is used by the caller.
4848 */
danielk1977ac861692009-03-28 10:54:22 +00004849 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004850 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004851 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk197730548662009-07-09 05:07:37 +00004852 rc = btreeGetPage(pBt, *pPgno, &pPg, 0);
danielk1977ac861692009-03-28 10:54:22 +00004853 if( rc==SQLITE_OK ){
4854 rc = sqlite3PagerWrite(pPg->pDbPage);
4855 releasePage(pPg);
4856 }
4857 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004858 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004859 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004860 }
4861#endif
4862
danielk1977599fcba2004-11-08 07:13:13 +00004863 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk197730548662009-07-09 05:07:37 +00004864 rc = btreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004865 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004866 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004867 if( rc!=SQLITE_OK ){
4868 releasePage(*ppPage);
4869 }
drh3a4c1412004-05-09 20:40:11 +00004870 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004871 }
danielk1977599fcba2004-11-08 07:13:13 +00004872
4873 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004874
4875end_allocate_page:
4876 releasePage(pTrunk);
4877 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004878 if( rc==SQLITE_OK ){
4879 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4880 releasePage(*ppPage);
4881 return SQLITE_CORRUPT_BKPT;
4882 }
4883 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004884 }else{
4885 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004886 }
drh3b7511c2001-05-26 13:15:44 +00004887 return rc;
4888}
4889
4890/*
danielk1977bea2a942009-01-20 17:06:27 +00004891** This function is used to add page iPage to the database file free-list.
4892** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004893**
danielk1977bea2a942009-01-20 17:06:27 +00004894** The value passed as the second argument to this function is optional.
4895** If the caller happens to have a pointer to the MemPage object
4896** corresponding to page iPage handy, it may pass it as the second value.
4897** Otherwise, it may pass NULL.
4898**
4899** If a pointer to a MemPage object is passed as the second argument,
4900** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004901*/
danielk1977bea2a942009-01-20 17:06:27 +00004902static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4903 MemPage *pTrunk = 0; /* Free-list trunk page */
4904 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4905 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4906 MemPage *pPage; /* Page being freed. May be NULL. */
4907 int rc; /* Return Code */
4908 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004909
danielk1977bea2a942009-01-20 17:06:27 +00004910 assert( sqlite3_mutex_held(pBt->mutex) );
4911 assert( iPage>1 );
4912 assert( !pMemPage || pMemPage->pgno==iPage );
4913
4914 if( pMemPage ){
4915 pPage = pMemPage;
4916 sqlite3PagerRef(pPage->pDbPage);
4917 }else{
4918 pPage = btreePageLookup(pBt, iPage);
4919 }
drh3aac2dd2004-04-26 14:10:20 +00004920
drha34b6762004-05-07 13:30:42 +00004921 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004922 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004923 if( rc ) goto freepage_out;
4924 nFree = get4byte(&pPage1->aData[36]);
4925 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004926
drh5b47efa2010-02-12 18:18:39 +00004927 if( pBt->secureDelete ){
4928 /* If the secure_delete option is enabled, then
4929 ** always fully overwrite deleted information with zeros.
4930 */
4931 if( (!pPage && (rc = btreeGetPage(pBt, iPage, &pPage, 0)))
4932 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4933 ){
4934 goto freepage_out;
4935 }
4936 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00004937 }
drhfcce93f2006-02-22 03:08:32 +00004938
danielk1977687566d2004-11-02 12:56:41 +00004939 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004940 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004941 */
danielk197785d90ca2008-07-19 14:25:15 +00004942 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00004943 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00004944 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004945 }
danielk1977687566d2004-11-02 12:56:41 +00004946
danielk1977bea2a942009-01-20 17:06:27 +00004947 /* Now manipulate the actual database free-list structure. There are two
4948 ** possibilities. If the free-list is currently empty, or if the first
4949 ** trunk page in the free-list is full, then this page will become a
4950 ** new free-list trunk page. Otherwise, it will become a leaf of the
4951 ** first trunk page in the current free-list. This block tests if it
4952 ** is possible to add the page as a new free-list leaf.
4953 */
4954 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00004955 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00004956
4957 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00004958 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00004959 if( rc!=SQLITE_OK ){
4960 goto freepage_out;
4961 }
4962
4963 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00004964 assert( pBt->usableSize>32 );
4965 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00004966 rc = SQLITE_CORRUPT_BKPT;
4967 goto freepage_out;
4968 }
drheeb844a2009-08-08 18:01:07 +00004969 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00004970 /* In this case there is room on the trunk page to insert the page
4971 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004972 **
4973 ** Note that the trunk page is not really full until it contains
4974 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4975 ** coded. But due to a coding error in versions of SQLite prior to
4976 ** 3.6.0, databases with freelist trunk pages holding more than
4977 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4978 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00004979 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00004980 ** for now. At some point in the future (once everyone has upgraded
4981 ** to 3.6.0 or later) we should consider fixing the conditional above
4982 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4983 */
danielk19773b8a05f2007-03-19 17:44:26 +00004984 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004985 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004986 put4byte(&pTrunk->aData[4], nLeaf+1);
4987 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drh5b47efa2010-02-12 18:18:39 +00004988 if( pPage && !pBt->secureDelete ){
danielk1977bea2a942009-01-20 17:06:27 +00004989 sqlite3PagerDontWrite(pPage->pDbPage);
4990 }
danielk1977bea2a942009-01-20 17:06:27 +00004991 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004992 }
drh3a4c1412004-05-09 20:40:11 +00004993 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004994 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004995 }
drh3b7511c2001-05-26 13:15:44 +00004996 }
danielk1977bea2a942009-01-20 17:06:27 +00004997
4998 /* If control flows to this point, then it was not possible to add the
4999 ** the page being freed as a leaf page of the first trunk in the free-list.
5000 ** Possibly because the free-list is empty, or possibly because the
5001 ** first trunk in the free-list is full. Either way, the page being freed
5002 ** will become the new first trunk page in the free-list.
5003 */
drhc046e3e2009-07-15 11:26:44 +00005004 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5005 goto freepage_out;
5006 }
5007 rc = sqlite3PagerWrite(pPage->pDbPage);
5008 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005009 goto freepage_out;
5010 }
5011 put4byte(pPage->aData, iTrunk);
5012 put4byte(&pPage->aData[4], 0);
5013 put4byte(&pPage1->aData[32], iPage);
5014 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5015
5016freepage_out:
5017 if( pPage ){
5018 pPage->isInit = 0;
5019 }
5020 releasePage(pPage);
5021 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005022 return rc;
5023}
drhc314dc72009-07-21 11:52:34 +00005024static void freePage(MemPage *pPage, int *pRC){
5025 if( (*pRC)==SQLITE_OK ){
5026 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5027 }
danielk1977bea2a942009-01-20 17:06:27 +00005028}
drh3b7511c2001-05-26 13:15:44 +00005029
5030/*
drh3aac2dd2004-04-26 14:10:20 +00005031** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005032*/
drh3aac2dd2004-04-26 14:10:20 +00005033static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005034 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005035 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005036 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005037 int rc;
drh94440812007-03-06 11:42:19 +00005038 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00005039 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005040
drh1fee73e2007-08-29 04:00:57 +00005041 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005042 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005043 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005044 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005045 }
drh6f11bef2004-05-13 01:12:56 +00005046 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005047 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005048 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005049 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5050 assert( ovflPgno==0 || nOvfl>0 );
5051 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005052 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005053 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00005054 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
5055 /* 0 is not a legal page number and page 1 cannot be an
5056 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5057 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005058 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005059 }
danielk1977bea2a942009-01-20 17:06:27 +00005060 if( nOvfl ){
5061 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5062 if( rc ) return rc;
5063 }
5064 rc = freePage2(pBt, pOvfl, ovflPgno);
5065 if( pOvfl ){
5066 sqlite3PagerUnref(pOvfl->pDbPage);
5067 }
drh3b7511c2001-05-26 13:15:44 +00005068 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005069 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005070 }
drh5e2f8b92001-05-28 00:41:15 +00005071 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005072}
5073
5074/*
drh91025292004-05-03 19:49:32 +00005075** Create the byte sequence used to represent a cell on page pPage
5076** and write that byte sequence into pCell[]. Overflow pages are
5077** allocated and filled in as necessary. The calling procedure
5078** is responsible for making sure sufficient space has been allocated
5079** for pCell[].
5080**
5081** Note that pCell does not necessary need to point to the pPage->aData
5082** area. pCell might point to some temporary storage. The cell will
5083** be constructed in this temporary area then copied into pPage->aData
5084** later.
drh3b7511c2001-05-26 13:15:44 +00005085*/
5086static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005087 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005088 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005089 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005090 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005091 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005092 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005093){
drh3b7511c2001-05-26 13:15:44 +00005094 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005095 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005096 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005097 int spaceLeft;
5098 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005099 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005100 unsigned char *pPrior;
5101 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005102 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005103 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005104 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005105 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005106
drh1fee73e2007-08-29 04:00:57 +00005107 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005108
drhc5053fb2008-11-27 02:22:10 +00005109 /* pPage is not necessarily writeable since pCell might be auxiliary
5110 ** buffer space that is separate from the pPage buffer area */
5111 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5112 || sqlite3PagerIswriteable(pPage->pDbPage) );
5113
drh91025292004-05-03 19:49:32 +00005114 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005115 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005116 if( !pPage->leaf ){
5117 nHeader += 4;
5118 }
drh8b18dd42004-05-12 19:18:15 +00005119 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005120 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005121 }else{
drhb026e052007-05-02 01:34:31 +00005122 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005123 }
drh6f11bef2004-05-13 01:12:56 +00005124 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005125 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005126 assert( info.nHeader==nHeader );
5127 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005128 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005129
5130 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005131 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005132 if( pPage->intKey ){
5133 pSrc = pData;
5134 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005135 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005136 }else{
danielk197731d31b82009-07-13 13:18:07 +00005137 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5138 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005139 }
drhf49661a2008-12-10 16:45:50 +00005140 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005141 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005142 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005143 }
drh6f11bef2004-05-13 01:12:56 +00005144 *pnSize = info.nSize;
5145 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005146 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005147 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005148
drh3b7511c2001-05-26 13:15:44 +00005149 while( nPayload>0 ){
5150 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005151#ifndef SQLITE_OMIT_AUTOVACUUM
5152 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005153 if( pBt->autoVacuum ){
5154 do{
5155 pgnoOvfl++;
5156 } while(
5157 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5158 );
danielk1977b39f70b2007-05-17 18:28:11 +00005159 }
danielk1977afcdd022004-10-31 16:25:42 +00005160#endif
drhf49661a2008-12-10 16:45:50 +00005161 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005162#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005163 /* If the database supports auto-vacuum, and the second or subsequent
5164 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005165 ** for that page now.
5166 **
5167 ** If this is the first overflow page, then write a partial entry
5168 ** to the pointer-map. If we write nothing to this pointer-map slot,
5169 ** then the optimistic overflow chain processing in clearCell()
5170 ** may misinterpret the uninitialised values and delete the
5171 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005172 */
danielk19774ef24492007-05-23 09:52:41 +00005173 if( pBt->autoVacuum && rc==SQLITE_OK ){
5174 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005175 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005176 if( rc ){
5177 releasePage(pOvfl);
5178 }
danielk1977afcdd022004-10-31 16:25:42 +00005179 }
5180#endif
drh3b7511c2001-05-26 13:15:44 +00005181 if( rc ){
drh9b171272004-05-08 02:03:22 +00005182 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005183 return rc;
5184 }
drhc5053fb2008-11-27 02:22:10 +00005185
5186 /* If pToRelease is not zero than pPrior points into the data area
5187 ** of pToRelease. Make sure pToRelease is still writeable. */
5188 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5189
5190 /* If pPrior is part of the data area of pPage, then make sure pPage
5191 ** is still writeable */
5192 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5193 || sqlite3PagerIswriteable(pPage->pDbPage) );
5194
drh3aac2dd2004-04-26 14:10:20 +00005195 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005196 releasePage(pToRelease);
5197 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005198 pPrior = pOvfl->aData;
5199 put4byte(pPrior, 0);
5200 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005201 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005202 }
5203 n = nPayload;
5204 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005205
5206 /* If pToRelease is not zero than pPayload points into the data area
5207 ** of pToRelease. Make sure pToRelease is still writeable. */
5208 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5209
5210 /* If pPayload is part of the data area of pPage, then make sure pPage
5211 ** is still writeable */
5212 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5213 || sqlite3PagerIswriteable(pPage->pDbPage) );
5214
drhb026e052007-05-02 01:34:31 +00005215 if( nSrc>0 ){
5216 if( n>nSrc ) n = nSrc;
5217 assert( pSrc );
5218 memcpy(pPayload, pSrc, n);
5219 }else{
5220 memset(pPayload, 0, n);
5221 }
drh3b7511c2001-05-26 13:15:44 +00005222 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005223 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005224 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005225 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005226 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005227 if( nSrc==0 ){
5228 nSrc = nData;
5229 pSrc = pData;
5230 }
drhdd793422001-06-28 01:54:48 +00005231 }
drh9b171272004-05-08 02:03:22 +00005232 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005233 return SQLITE_OK;
5234}
5235
drh14acc042001-06-10 19:56:58 +00005236/*
5237** Remove the i-th cell from pPage. This routine effects pPage only.
5238** The cell content is not freed or deallocated. It is assumed that
5239** the cell content has been copied someplace else. This routine just
5240** removes the reference to the cell from pPage.
5241**
5242** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005243*/
drh98add2e2009-07-20 17:11:49 +00005244static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43605152004-05-29 21:46:49 +00005245 int i; /* Loop counter */
5246 int pc; /* Offset to cell content of cell being deleted */
5247 u8 *data; /* pPage->aData */
5248 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005249 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005250 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005251
drh98add2e2009-07-20 17:11:49 +00005252 if( *pRC ) return;
5253
drh8c42ca92001-06-22 19:15:00 +00005254 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005255 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005256 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005257 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005258 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005259 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005260 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005261 hdr = pPage->hdrOffset;
5262 testcase( pc==get2byte(&data[hdr+5]) );
5263 testcase( pc+sz==pPage->pBt->usableSize );
5264 if( pc < get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005265 *pRC = SQLITE_CORRUPT_BKPT;
5266 return;
shane0af3f892008-11-12 04:55:34 +00005267 }
shanedcc50b72008-11-13 18:29:50 +00005268 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005269 if( rc ){
5270 *pRC = rc;
5271 return;
shanedcc50b72008-11-13 18:29:50 +00005272 }
drh43605152004-05-29 21:46:49 +00005273 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5274 ptr[0] = ptr[2];
5275 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005276 }
5277 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005278 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005279 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005280}
5281
5282/*
5283** Insert a new cell on pPage at cell index "i". pCell points to the
5284** content of the cell.
5285**
5286** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005287** will not fit, then make a copy of the cell content into pTemp if
5288** pTemp is not null. Regardless of pTemp, allocate a new entry
5289** in pPage->aOvfl[] and make it point to the cell content (either
5290** in pTemp or the original pCell) and also record its index.
5291** Allocating a new entry in pPage->aCell[] implies that
5292** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005293**
5294** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5295** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005296** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005297** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005298*/
drh98add2e2009-07-20 17:11:49 +00005299static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005300 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005301 int i, /* New cell becomes the i-th cell of the page */
5302 u8 *pCell, /* Content of the new cell */
5303 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005304 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005305 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5306 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005307){
drh43605152004-05-29 21:46:49 +00005308 int idx; /* Where to write new cell content in data[] */
5309 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005310 int end; /* First byte past the last cell pointer in data[] */
5311 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005312 int cellOffset; /* Address of first cell pointer in data[] */
5313 u8 *data; /* The content of the whole page */
5314 u8 *ptr; /* Used for moving information around in data[] */
5315
danielk19774dbaa892009-06-16 16:50:22 +00005316 int nSkip = (iChild ? 4 : 0);
5317
drh98add2e2009-07-20 17:11:49 +00005318 if( *pRC ) return;
5319
drh43605152004-05-29 21:46:49 +00005320 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005321 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5322 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005323 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005324 /* The cell should normally be sized correctly. However, when moving a
5325 ** malformed cell from a leaf page to an interior page, if the cell size
5326 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5327 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5328 ** the term after the || in the following assert(). */
5329 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005330 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005331 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005332 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005333 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005334 }
danielk19774dbaa892009-06-16 16:50:22 +00005335 if( iChild ){
5336 put4byte(pCell, iChild);
5337 }
drh43605152004-05-29 21:46:49 +00005338 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005339 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005340 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005341 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005342 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005343 int rc = sqlite3PagerWrite(pPage->pDbPage);
5344 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005345 *pRC = rc;
5346 return;
danielk19776e465eb2007-08-21 13:11:00 +00005347 }
5348 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005349 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005350 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005351 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005352 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005353 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005354 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005355 /* The allocateSpace() routine guarantees the following two properties
5356 ** if it returns success */
5357 assert( idx >= end+2 );
5358 assert( idx+sz <= pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005359 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005360 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005361 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005362 if( iChild ){
5363 put4byte(&data[idx], iChild);
5364 }
drh0a45c272009-07-08 01:49:11 +00005365 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005366 ptr[0] = ptr[-2];
5367 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005368 }
drh43605152004-05-29 21:46:49 +00005369 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005370 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005371#ifndef SQLITE_OMIT_AUTOVACUUM
5372 if( pPage->pBt->autoVacuum ){
5373 /* The cell may contain a pointer to an overflow page. If so, write
5374 ** the entry for the overflow page into the pointer map.
5375 */
drh98add2e2009-07-20 17:11:49 +00005376 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005377 }
5378#endif
drh14acc042001-06-10 19:56:58 +00005379 }
5380}
5381
5382/*
drhfa1a98a2004-05-14 19:08:17 +00005383** Add a list of cells to a page. The page should be initially empty.
5384** The cells are guaranteed to fit on the page.
5385*/
5386static void assemblePage(
5387 MemPage *pPage, /* The page to be assemblied */
5388 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005389 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005390 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005391){
5392 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005393 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005394 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005395 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5396 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5397 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005398
drh43605152004-05-29 21:46:49 +00005399 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005400 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005401 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005402 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005403
5404 /* Check that the page has just been zeroed by zeroPage() */
5405 assert( pPage->nCell==0 );
5406 assert( get2byte(&data[hdr+5])==nUsable );
5407
5408 pCellptr = &data[pPage->cellOffset + nCell*2];
5409 cellbody = nUsable;
5410 for(i=nCell-1; i>=0; i--){
5411 pCellptr -= 2;
5412 cellbody -= aSize[i];
5413 put2byte(pCellptr, cellbody);
5414 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005415 }
danielk1977fad91942009-04-29 17:49:59 +00005416 put2byte(&data[hdr+3], nCell);
5417 put2byte(&data[hdr+5], cellbody);
5418 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005419 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005420}
5421
drh14acc042001-06-10 19:56:58 +00005422/*
drhc3b70572003-01-04 19:44:07 +00005423** The following parameters determine how many adjacent pages get involved
5424** in a balancing operation. NN is the number of neighbors on either side
5425** of the page that participate in the balancing operation. NB is the
5426** total number of pages that participate, including the target page and
5427** NN neighbors on either side.
5428**
5429** The minimum value of NN is 1 (of course). Increasing NN above 1
5430** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5431** in exchange for a larger degradation in INSERT and UPDATE performance.
5432** The value of NN appears to give the best results overall.
5433*/
5434#define NN 1 /* Number of neighbors on either side of pPage */
5435#define NB (NN*2+1) /* Total pages involved in the balance */
5436
danielk1977ac245ec2005-01-14 13:50:11 +00005437
drh615ae552005-01-16 23:21:00 +00005438#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005439/*
5440** This version of balance() handles the common special case where
5441** a new entry is being inserted on the extreme right-end of the
5442** tree, in other words, when the new entry will become the largest
5443** entry in the tree.
5444**
drhc314dc72009-07-21 11:52:34 +00005445** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005446** a new page to the right-hand side and put the one new entry in
5447** that page. This leaves the right side of the tree somewhat
5448** unbalanced. But odds are that we will be inserting new entries
5449** at the end soon afterwards so the nearly empty page will quickly
5450** fill up. On average.
5451**
5452** pPage is the leaf page which is the right-most page in the tree.
5453** pParent is its parent. pPage must have a single overflow entry
5454** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005455**
5456** The pSpace buffer is used to store a temporary copy of the divider
5457** cell that will be inserted into pParent. Such a cell consists of a 4
5458** byte page number followed by a variable length integer. In other
5459** words, at most 13 bytes. Hence the pSpace buffer must be at
5460** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005461*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005462static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5463 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005464 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005465 int rc; /* Return Code */
5466 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005467
drh1fee73e2007-08-29 04:00:57 +00005468 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005469 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005470 assert( pPage->nOverflow==1 );
5471
drh5d1a8722009-07-22 18:07:40 +00005472 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005473
danielk1977a50d9aa2009-06-08 14:49:45 +00005474 /* Allocate a new page. This page will become the right-sibling of
5475 ** pPage. Make the parent page writable, so that the new divider cell
5476 ** may be inserted. If both these operations are successful, proceed.
5477 */
drh4f0c5872007-03-26 22:05:01 +00005478 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005479
danielk1977eaa06f62008-09-18 17:34:44 +00005480 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005481
5482 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005483 u8 *pCell = pPage->aOvfl[0].pCell;
5484 u16 szCell = cellSizePtr(pPage, pCell);
5485 u8 *pStop;
5486
drhc5053fb2008-11-27 02:22:10 +00005487 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005488 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5489 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005490 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005491
5492 /* If this is an auto-vacuum database, update the pointer map
5493 ** with entries for the new page, and any pointer from the
5494 ** cell on the page to an overflow page. If either of these
5495 ** operations fails, the return code is set, but the contents
5496 ** of the parent page are still manipulated by thh code below.
5497 ** That is Ok, at this point the parent page is guaranteed to
5498 ** be marked as dirty. Returning an error code will cause a
5499 ** rollback, undoing any changes made to the parent page.
5500 */
5501 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005502 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5503 if( szCell>pNew->minLocal ){
5504 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005505 }
5506 }
danielk1977eaa06f62008-09-18 17:34:44 +00005507
danielk19776f235cc2009-06-04 14:46:08 +00005508 /* Create a divider cell to insert into pParent. The divider cell
5509 ** consists of a 4-byte page number (the page number of pPage) and
5510 ** a variable length key value (which must be the same value as the
5511 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005512 **
danielk19776f235cc2009-06-04 14:46:08 +00005513 ** To find the largest key value on pPage, first find the right-most
5514 ** cell on pPage. The first two fields of this cell are the
5515 ** record-length (a variable length integer at most 32-bits in size)
5516 ** and the key value (a variable length integer, may have any value).
5517 ** The first of the while(...) loops below skips over the record-length
5518 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005519 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005520 */
danielk1977eaa06f62008-09-18 17:34:44 +00005521 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005522 pStop = &pCell[9];
5523 while( (*(pCell++)&0x80) && pCell<pStop );
5524 pStop = &pCell[9];
5525 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5526
danielk19774dbaa892009-06-16 16:50:22 +00005527 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005528 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5529 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005530
5531 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005532 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5533
danielk1977e08a3c42008-09-18 18:17:03 +00005534 /* Release the reference to the new page. */
5535 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005536 }
5537
danielk1977eaa06f62008-09-18 17:34:44 +00005538 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005539}
drh615ae552005-01-16 23:21:00 +00005540#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005541
danielk19774dbaa892009-06-16 16:50:22 +00005542#if 0
drhc3b70572003-01-04 19:44:07 +00005543/*
danielk19774dbaa892009-06-16 16:50:22 +00005544** This function does not contribute anything to the operation of SQLite.
5545** it is sometimes activated temporarily while debugging code responsible
5546** for setting pointer-map entries.
5547*/
5548static int ptrmapCheckPages(MemPage **apPage, int nPage){
5549 int i, j;
5550 for(i=0; i<nPage; i++){
5551 Pgno n;
5552 u8 e;
5553 MemPage *pPage = apPage[i];
5554 BtShared *pBt = pPage->pBt;
5555 assert( pPage->isInit );
5556
5557 for(j=0; j<pPage->nCell; j++){
5558 CellInfo info;
5559 u8 *z;
5560
5561 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005562 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005563 if( info.iOverflow ){
5564 Pgno ovfl = get4byte(&z[info.iOverflow]);
5565 ptrmapGet(pBt, ovfl, &e, &n);
5566 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5567 }
5568 if( !pPage->leaf ){
5569 Pgno child = get4byte(z);
5570 ptrmapGet(pBt, child, &e, &n);
5571 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5572 }
5573 }
5574 if( !pPage->leaf ){
5575 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5576 ptrmapGet(pBt, child, &e, &n);
5577 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5578 }
5579 }
5580 return 1;
5581}
5582#endif
5583
danielk1977cd581a72009-06-23 15:43:39 +00005584/*
5585** This function is used to copy the contents of the b-tree node stored
5586** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5587** the pointer-map entries for each child page are updated so that the
5588** parent page stored in the pointer map is page pTo. If pFrom contained
5589** any cells with overflow page pointers, then the corresponding pointer
5590** map entries are also updated so that the parent page is page pTo.
5591**
5592** If pFrom is currently carrying any overflow cells (entries in the
5593** MemPage.aOvfl[] array), they are not copied to pTo.
5594**
danielk197730548662009-07-09 05:07:37 +00005595** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005596**
5597** The performance of this function is not critical. It is only used by
5598** the balance_shallower() and balance_deeper() procedures, neither of
5599** which are called often under normal circumstances.
5600*/
drhc314dc72009-07-21 11:52:34 +00005601static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5602 if( (*pRC)==SQLITE_OK ){
5603 BtShared * const pBt = pFrom->pBt;
5604 u8 * const aFrom = pFrom->aData;
5605 u8 * const aTo = pTo->aData;
5606 int const iFromHdr = pFrom->hdrOffset;
5607 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005608 int rc;
drhc314dc72009-07-21 11:52:34 +00005609 int iData;
5610
5611
5612 assert( pFrom->isInit );
5613 assert( pFrom->nFree>=iToHdr );
5614 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5615
5616 /* Copy the b-tree node content from page pFrom to page pTo. */
5617 iData = get2byte(&aFrom[iFromHdr+5]);
5618 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5619 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5620
5621 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005622 ** match the new data. The initialization of pTo can actually fail under
5623 ** fairly obscure circumstances, even though it is a copy of initialized
5624 ** page pFrom.
5625 */
drhc314dc72009-07-21 11:52:34 +00005626 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005627 rc = btreeInitPage(pTo);
5628 if( rc!=SQLITE_OK ){
5629 *pRC = rc;
5630 return;
5631 }
drhc314dc72009-07-21 11:52:34 +00005632
5633 /* If this is an auto-vacuum database, update the pointer-map entries
5634 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5635 */
5636 if( ISAUTOVACUUM ){
5637 *pRC = setChildPtrmaps(pTo);
5638 }
danielk1977cd581a72009-06-23 15:43:39 +00005639 }
danielk1977cd581a72009-06-23 15:43:39 +00005640}
5641
5642/*
danielk19774dbaa892009-06-16 16:50:22 +00005643** This routine redistributes cells on the iParentIdx'th child of pParent
5644** (hereafter "the page") and up to 2 siblings so that all pages have about the
5645** same amount of free space. Usually a single sibling on either side of the
5646** page are used in the balancing, though both siblings might come from one
5647** side if the page is the first or last child of its parent. If the page
5648** has fewer than 2 siblings (something which can only happen if the page
5649** is a root page or a child of a root page) then all available siblings
5650** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005651**
danielk19774dbaa892009-06-16 16:50:22 +00005652** The number of siblings of the page might be increased or decreased by
5653** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005654**
danielk19774dbaa892009-06-16 16:50:22 +00005655** Note that when this routine is called, some of the cells on the page
5656** might not actually be stored in MemPage.aData[]. This can happen
5657** if the page is overfull. This routine ensures that all cells allocated
5658** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005659**
danielk19774dbaa892009-06-16 16:50:22 +00005660** In the course of balancing the page and its siblings, cells may be
5661** inserted into or removed from the parent page (pParent). Doing so
5662** may cause the parent page to become overfull or underfull. If this
5663** happens, it is the responsibility of the caller to invoke the correct
5664** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005665**
drh5e00f6c2001-09-13 13:46:56 +00005666** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005667** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005668** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005669**
5670** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005671** buffer big enough to hold one page. If while inserting cells into the parent
5672** page (pParent) the parent page becomes overfull, this buffer is
5673** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005674** a maximum of four divider cells into the parent page, and the maximum
5675** size of a cell stored within an internal node is always less than 1/4
5676** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5677** enough for all overflow cells.
5678**
5679** If aOvflSpace is set to a null pointer, this function returns
5680** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005681*/
danielk19774dbaa892009-06-16 16:50:22 +00005682static int balance_nonroot(
5683 MemPage *pParent, /* Parent page of siblings being balanced */
5684 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005685 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5686 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005687){
drh16a9b832007-05-05 18:39:25 +00005688 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005689 int nCell = 0; /* Number of cells in apCell[] */
5690 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005691 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005692 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005693 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005694 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005695 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005696 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005697 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005698 int usableSpace; /* Bytes in pPage beyond the header */
5699 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005700 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005701 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005702 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005703 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005704 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005705 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005706 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005707 u8 *pRight; /* Location in parent of right-sibling pointer */
5708 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005709 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5710 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005711 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005712 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005713 u8 *aSpace1; /* Space for copies of dividers cells */
5714 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005715
danielk1977a50d9aa2009-06-08 14:49:45 +00005716 pBt = pParent->pBt;
5717 assert( sqlite3_mutex_held(pBt->mutex) );
5718 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005719
danielk1977e5765212009-06-17 11:13:28 +00005720#if 0
drh43605152004-05-29 21:46:49 +00005721 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005722#endif
drh2e38c322004-09-03 18:38:44 +00005723
danielk19774dbaa892009-06-16 16:50:22 +00005724 /* At this point pParent may have at most one overflow cell. And if
5725 ** this overflow cell is present, it must be the cell with
5726 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005727 ** is called (indirectly) from sqlite3BtreeDelete().
5728 */
danielk19774dbaa892009-06-16 16:50:22 +00005729 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5730 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5731
danielk197711a8a862009-06-17 11:49:52 +00005732 if( !aOvflSpace ){
5733 return SQLITE_NOMEM;
5734 }
5735
danielk1977a50d9aa2009-06-08 14:49:45 +00005736 /* Find the sibling pages to balance. Also locate the cells in pParent
5737 ** that divide the siblings. An attempt is made to find NN siblings on
5738 ** either side of pPage. More siblings are taken from one side, however,
5739 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005740 ** has NB or fewer children then all children of pParent are taken.
5741 **
5742 ** This loop also drops the divider cells from the parent page. This
5743 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005744 ** overflow cells in the parent page, since if any existed they will
5745 ** have already been removed.
5746 */
danielk19774dbaa892009-06-16 16:50:22 +00005747 i = pParent->nOverflow + pParent->nCell;
5748 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005749 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005750 nOld = i+1;
5751 }else{
5752 nOld = 3;
5753 if( iParentIdx==0 ){
5754 nxDiv = 0;
5755 }else if( iParentIdx==i ){
5756 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005757 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005758 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005759 }
danielk19774dbaa892009-06-16 16:50:22 +00005760 i = 2;
5761 }
5762 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5763 pRight = &pParent->aData[pParent->hdrOffset+8];
5764 }else{
5765 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5766 }
5767 pgno = get4byte(pRight);
5768 while( 1 ){
5769 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5770 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00005771 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00005772 goto balance_cleanup;
5773 }
danielk1977634f2982005-03-28 08:44:07 +00005774 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005775 if( (i--)==0 ) break;
5776
drhcd09c532009-07-20 19:30:00 +00005777 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00005778 apDiv[i] = pParent->aOvfl[0].pCell;
5779 pgno = get4byte(apDiv[i]);
5780 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5781 pParent->nOverflow = 0;
5782 }else{
5783 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5784 pgno = get4byte(apDiv[i]);
5785 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5786
5787 /* Drop the cell from the parent page. apDiv[i] still points to
5788 ** the cell within the parent, even though it has been dropped.
5789 ** This is safe because dropping a cell only overwrites the first
5790 ** four bytes of it, and this function does not need the first
5791 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005792 ** later on.
5793 **
5794 ** Unless SQLite is compiled in secure-delete mode. In this case,
5795 ** the dropCell() routine will overwrite the entire cell with zeroes.
5796 ** In this case, temporarily copy the cell into the aOvflSpace[]
5797 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5798 ** is allocated. */
drh5b47efa2010-02-12 18:18:39 +00005799 if( pBt->secureDelete ){
5800 memcpy(&aOvflSpace[apDiv[i]-pParent->aData], apDiv[i], szNew[i]);
5801 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5802 }
drh98add2e2009-07-20 17:11:49 +00005803 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005804 }
drh8b2f49b2001-06-08 00:21:52 +00005805 }
5806
drha9121e42008-02-19 14:59:35 +00005807 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005808 ** alignment */
drha9121e42008-02-19 14:59:35 +00005809 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005810
drh8b2f49b2001-06-08 00:21:52 +00005811 /*
danielk1977634f2982005-03-28 08:44:07 +00005812 ** Allocate space for memory structures
5813 */
danielk19774dbaa892009-06-16 16:50:22 +00005814 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005815 szScratch =
drha9121e42008-02-19 14:59:35 +00005816 nMaxCells*sizeof(u8*) /* apCell */
5817 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005818 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005819 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005820 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005821 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005822 rc = SQLITE_NOMEM;
5823 goto balance_cleanup;
5824 }
drha9121e42008-02-19 14:59:35 +00005825 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005826 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005827 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005828
5829 /*
5830 ** Load pointers to all cells on sibling pages and the divider cells
5831 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005832 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005833 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005834 **
5835 ** If the siblings are on leaf pages, then the child pointers of the
5836 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005837 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005838 ** child pointers. If siblings are not leaves, then all cell in
5839 ** apCell[] include child pointers. Either way, all cells in apCell[]
5840 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005841 **
5842 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5843 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005844 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005845 leafCorrection = apOld[0]->leaf*4;
5846 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005847 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005848 int limit;
5849
5850 /* Before doing anything else, take a copy of the i'th original sibling
5851 ** The rest of this function will use data from the copies rather
5852 ** that the original pages since the original pages will be in the
5853 ** process of being overwritten. */
5854 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5855 memcpy(pOld, apOld[i], sizeof(MemPage));
5856 pOld->aData = (void*)&pOld[1];
5857 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5858
5859 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005860 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005861 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005862 apCell[nCell] = findOverflowCell(pOld, j);
5863 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005864 nCell++;
5865 }
5866 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005867 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005868 u8 *pTemp;
5869 assert( nCell<nMaxCells );
5870 szCell[nCell] = sz;
5871 pTemp = &aSpace1[iSpace1];
5872 iSpace1 += sz;
5873 assert( sz<=pBt->pageSize/4 );
5874 assert( iSpace1<=pBt->pageSize );
5875 memcpy(pTemp, apDiv[i], sz);
5876 apCell[nCell] = pTemp+leafCorrection;
5877 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005878 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005879 if( !pOld->leaf ){
5880 assert( leafCorrection==0 );
5881 assert( pOld->hdrOffset==0 );
5882 /* The right pointer of the child page pOld becomes the left
5883 ** pointer of the divider cell */
5884 memcpy(apCell[nCell], &pOld->aData[8], 4);
5885 }else{
5886 assert( leafCorrection==4 );
5887 if( szCell[nCell]<4 ){
5888 /* Do not allow any cells smaller than 4 bytes. */
5889 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005890 }
5891 }
drh14acc042001-06-10 19:56:58 +00005892 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005893 }
drh8b2f49b2001-06-08 00:21:52 +00005894 }
5895
5896 /*
drh6019e162001-07-02 17:51:45 +00005897 ** Figure out the number of pages needed to hold all nCell cells.
5898 ** Store this number in "k". Also compute szNew[] which is the total
5899 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005900 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005901 ** cntNew[k] should equal nCell.
5902 **
drh96f5b762004-05-16 16:24:36 +00005903 ** Values computed by this block:
5904 **
5905 ** k: The total number of sibling pages
5906 ** szNew[i]: Spaced used on the i-th sibling page.
5907 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5908 ** the right of the i-th sibling page.
5909 ** usableSpace: Number of bytes of space available on each sibling.
5910 **
drh8b2f49b2001-06-08 00:21:52 +00005911 */
drh43605152004-05-29 21:46:49 +00005912 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005913 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005914 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005915 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005916 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005917 szNew[k] = subtotal - szCell[i];
5918 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005919 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005920 subtotal = 0;
5921 k++;
drheac74422009-06-14 12:47:11 +00005922 if( k>NB+1 ){ rc = SQLITE_CORRUPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00005923 }
5924 }
5925 szNew[k] = subtotal;
5926 cntNew[k] = nCell;
5927 k++;
drh96f5b762004-05-16 16:24:36 +00005928
5929 /*
5930 ** The packing computed by the previous block is biased toward the siblings
5931 ** on the left side. The left siblings are always nearly full, while the
5932 ** right-most sibling might be nearly empty. This block of code attempts
5933 ** to adjust the packing of siblings to get a better balance.
5934 **
5935 ** This adjustment is more than an optimization. The packing above might
5936 ** be so out of balance as to be illegal. For example, the right-most
5937 ** sibling might be completely empty. This adjustment is not optional.
5938 */
drh6019e162001-07-02 17:51:45 +00005939 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005940 int szRight = szNew[i]; /* Size of sibling on the right */
5941 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5942 int r; /* Index of right-most cell in left sibling */
5943 int d; /* Index of first cell to the left of right sibling */
5944
5945 r = cntNew[i-1] - 1;
5946 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005947 assert( d<nMaxCells );
5948 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005949 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5950 szRight += szCell[d] + 2;
5951 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005952 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005953 r = cntNew[i-1] - 1;
5954 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005955 }
drh96f5b762004-05-16 16:24:36 +00005956 szNew[i] = szRight;
5957 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005958 }
drh09d0deb2005-08-02 17:13:09 +00005959
danielk19776f235cc2009-06-04 14:46:08 +00005960 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00005961 ** a virtual root page. A virtual root page is when the real root
5962 ** page is page 1 and we are the only child of that page.
5963 */
5964 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005965
danielk1977e5765212009-06-17 11:13:28 +00005966 TRACE(("BALANCE: old: %d %d %d ",
5967 apOld[0]->pgno,
5968 nOld>=2 ? apOld[1]->pgno : 0,
5969 nOld>=3 ? apOld[2]->pgno : 0
5970 ));
5971
drh8b2f49b2001-06-08 00:21:52 +00005972 /*
drh6b308672002-07-08 02:16:37 +00005973 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005974 */
drheac74422009-06-14 12:47:11 +00005975 if( apOld[0]->pgno<=1 ){
5976 rc = SQLITE_CORRUPT;
5977 goto balance_cleanup;
5978 }
danielk1977a50d9aa2009-06-08 14:49:45 +00005979 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00005980 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005981 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005982 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005983 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005984 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005985 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005986 nNew++;
danielk197728129562005-01-11 10:25:06 +00005987 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005988 }else{
drh7aa8f852006-03-28 00:24:44 +00005989 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00005990 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00005991 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005992 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005993 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00005994
5995 /* Set the pointer-map entry for the new sibling page. */
5996 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005997 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005998 if( rc!=SQLITE_OK ){
5999 goto balance_cleanup;
6000 }
6001 }
drh6b308672002-07-08 02:16:37 +00006002 }
drh8b2f49b2001-06-08 00:21:52 +00006003 }
6004
danielk1977299b1872004-11-22 10:02:10 +00006005 /* Free any old pages that were not reused as new pages.
6006 */
6007 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006008 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006009 if( rc ) goto balance_cleanup;
6010 releasePage(apOld[i]);
6011 apOld[i] = 0;
6012 i++;
6013 }
6014
drh8b2f49b2001-06-08 00:21:52 +00006015 /*
drhf9ffac92002-03-02 19:00:31 +00006016 ** Put the new pages in accending order. This helps to
6017 ** keep entries in the disk file in order so that a scan
6018 ** of the table is a linear scan through the file. That
6019 ** in turn helps the operating system to deliver pages
6020 ** from the disk more rapidly.
6021 **
6022 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006023 ** n is never more than NB (a small constant), that should
6024 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006025 **
drhc3b70572003-01-04 19:44:07 +00006026 ** When NB==3, this one optimization makes the database
6027 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006028 */
6029 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006030 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006031 int minI = i;
6032 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006033 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006034 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006035 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006036 }
6037 }
6038 if( minI>i ){
6039 int t;
6040 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00006041 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006042 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006043 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006044 apNew[minI] = pT;
6045 }
6046 }
danielk1977e5765212009-06-17 11:13:28 +00006047 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006048 apNew[0]->pgno, szNew[0],
6049 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6050 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6051 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6052 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6053
6054 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6055 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006056
drhf9ffac92002-03-02 19:00:31 +00006057 /*
drh14acc042001-06-10 19:56:58 +00006058 ** Evenly distribute the data in apCell[] across the new pages.
6059 ** Insert divider cells into pParent as necessary.
6060 */
6061 j = 0;
6062 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006063 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006064 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006065 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006066 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006067 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006068 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006069 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006070
danielk1977ac11ee62005-01-15 12:45:51 +00006071 j = cntNew[i];
6072
6073 /* If the sibling page assembled above was not the right-most sibling,
6074 ** insert a divider cell into the parent page.
6075 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006076 assert( i<nNew-1 || j==nCell );
6077 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006078 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006079 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006080 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006081
6082 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006083 pCell = apCell[j];
6084 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006085 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006086 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006087 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006088 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006089 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006090 ** then there is no divider cell in apCell[]. Instead, the divider
6091 ** cell consists of the integer key for the right-most cell of
6092 ** the sibling-page assembled above only.
6093 */
drh6f11bef2004-05-13 01:12:56 +00006094 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006095 j--;
danielk197730548662009-07-09 05:07:37 +00006096 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006097 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006098 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006099 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006100 }else{
6101 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006102 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006103 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006104 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006105 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006106 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006107 ** insertCell(), so reparse the cell now.
6108 **
6109 ** Note that this can never happen in an SQLite data file, as all
6110 ** cells are at least 4 bytes. It only happens in b-trees used
6111 ** to evaluate "IN (SELECT ...)" and similar clauses.
6112 */
6113 if( szCell[j]==4 ){
6114 assert(leafCorrection==4);
6115 sz = cellSizePtr(pParent, pCell);
6116 }
drh4b70f112004-05-02 21:12:19 +00006117 }
danielk19776067a9b2009-06-09 09:41:00 +00006118 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00006119 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006120 assert( iOvflSpace<=pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006121 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006122 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006123 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006124
drh14acc042001-06-10 19:56:58 +00006125 j++;
6126 nxDiv++;
6127 }
6128 }
drh6019e162001-07-02 17:51:45 +00006129 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006130 assert( nOld>0 );
6131 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006132 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006133 u8 *zChild = &apCopy[nOld-1]->aData[8];
6134 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006135 }
6136
danielk197713bd99f2009-06-24 05:40:34 +00006137 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6138 /* The root page of the b-tree now contains no cells. The only sibling
6139 ** page is the right-child of the parent. Copy the contents of the
6140 ** child page into the parent, decreasing the overall height of the
6141 ** b-tree structure by one. This is described as the "balance-shallower"
6142 ** sub-algorithm in some documentation.
6143 **
6144 ** If this is an auto-vacuum database, the call to copyNodeContent()
6145 ** sets all pointer-map entries corresponding to database image pages
6146 ** for which the pointer is stored within the content being copied.
6147 **
6148 ** The second assert below verifies that the child page is defragmented
6149 ** (it must be, as it was just reconstructed using assemblePage()). This
6150 ** is important if the parent page happens to be page 1 of the database
6151 ** image. */
6152 assert( nNew==1 );
6153 assert( apNew[0]->nFree ==
6154 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6155 );
drhc314dc72009-07-21 11:52:34 +00006156 copyNodeContent(apNew[0], pParent, &rc);
6157 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006158 }else if( ISAUTOVACUUM ){
6159 /* Fix the pointer-map entries for all the cells that were shifted around.
6160 ** There are several different types of pointer-map entries that need to
6161 ** be dealt with by this routine. Some of these have been set already, but
6162 ** many have not. The following is a summary:
6163 **
6164 ** 1) The entries associated with new sibling pages that were not
6165 ** siblings when this function was called. These have already
6166 ** been set. We don't need to worry about old siblings that were
6167 ** moved to the free-list - the freePage() code has taken care
6168 ** of those.
6169 **
6170 ** 2) The pointer-map entries associated with the first overflow
6171 ** page in any overflow chains used by new divider cells. These
6172 ** have also already been taken care of by the insertCell() code.
6173 **
6174 ** 3) If the sibling pages are not leaves, then the child pages of
6175 ** cells stored on the sibling pages may need to be updated.
6176 **
6177 ** 4) If the sibling pages are not internal intkey nodes, then any
6178 ** overflow pages used by these cells may need to be updated
6179 ** (internal intkey nodes never contain pointers to overflow pages).
6180 **
6181 ** 5) If the sibling pages are not leaves, then the pointer-map
6182 ** entries for the right-child pages of each sibling may need
6183 ** to be updated.
6184 **
6185 ** Cases 1 and 2 are dealt with above by other code. The next
6186 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6187 ** setting a pointer map entry is a relatively expensive operation, this
6188 ** code only sets pointer map entries for child or overflow pages that have
6189 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006190 MemPage *pNew = apNew[0];
6191 MemPage *pOld = apCopy[0];
6192 int nOverflow = pOld->nOverflow;
6193 int iNextOld = pOld->nCell + nOverflow;
6194 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6195 j = 0; /* Current 'old' sibling page */
6196 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006197 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006198 int isDivider = 0;
6199 while( i==iNextOld ){
6200 /* Cell i is the cell immediately following the last cell on old
6201 ** sibling page j. If the siblings are not leaf pages of an
6202 ** intkey b-tree, then cell i was a divider cell. */
6203 pOld = apCopy[++j];
6204 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6205 if( pOld->nOverflow ){
6206 nOverflow = pOld->nOverflow;
6207 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6208 }
6209 isDivider = !leafData;
6210 }
6211
6212 assert(nOverflow>0 || iOverflow<i );
6213 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6214 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6215 if( i==iOverflow ){
6216 isDivider = 1;
6217 if( (--nOverflow)>0 ){
6218 iOverflow++;
6219 }
6220 }
6221
6222 if( i==cntNew[k] ){
6223 /* Cell i is the cell immediately following the last cell on new
6224 ** sibling page k. If the siblings are not leaf pages of an
6225 ** intkey b-tree, then cell i is a divider cell. */
6226 pNew = apNew[++k];
6227 if( !leafData ) continue;
6228 }
danielk19774dbaa892009-06-16 16:50:22 +00006229 assert( j<nOld );
6230 assert( k<nNew );
6231
6232 /* If the cell was originally divider cell (and is not now) or
6233 ** an overflow cell, or if the cell was located on a different sibling
6234 ** page before the balancing, then the pointer map entries associated
6235 ** with any child or overflow pages need to be updated. */
6236 if( isDivider || pOld->pgno!=pNew->pgno ){
6237 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006238 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006239 }
drh98add2e2009-07-20 17:11:49 +00006240 if( szCell[i]>pNew->minLocal ){
6241 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006242 }
6243 }
6244 }
6245
6246 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006247 for(i=0; i<nNew; i++){
6248 u32 key = get4byte(&apNew[i]->aData[8]);
6249 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006250 }
6251 }
6252
6253#if 0
6254 /* The ptrmapCheckPages() contains assert() statements that verify that
6255 ** all pointer map pages are set correctly. This is helpful while
6256 ** debugging. This is usually disabled because a corrupt database may
6257 ** cause an assert() statement to fail. */
6258 ptrmapCheckPages(apNew, nNew);
6259 ptrmapCheckPages(&pParent, 1);
6260#endif
6261 }
6262
danielk197771d5d2c2008-09-29 11:49:47 +00006263 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006264 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6265 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006266
drh8b2f49b2001-06-08 00:21:52 +00006267 /*
drh14acc042001-06-10 19:56:58 +00006268 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006269 */
drh14acc042001-06-10 19:56:58 +00006270balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006271 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006272 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006273 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006274 }
drh14acc042001-06-10 19:56:58 +00006275 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006276 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006277 }
danielk1977eaa06f62008-09-18 17:34:44 +00006278
drh8b2f49b2001-06-08 00:21:52 +00006279 return rc;
6280}
6281
drh43605152004-05-29 21:46:49 +00006282
6283/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006284** This function is called when the root page of a b-tree structure is
6285** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006286**
danielk1977a50d9aa2009-06-08 14:49:45 +00006287** A new child page is allocated and the contents of the current root
6288** page, including overflow cells, are copied into the child. The root
6289** page is then overwritten to make it an empty page with the right-child
6290** pointer pointing to the new page.
6291**
6292** Before returning, all pointer-map entries corresponding to pages
6293** that the new child-page now contains pointers to are updated. The
6294** entry corresponding to the new right-child pointer of the root
6295** page is also updated.
6296**
6297** If successful, *ppChild is set to contain a reference to the child
6298** page and SQLITE_OK is returned. In this case the caller is required
6299** to call releasePage() on *ppChild exactly once. If an error occurs,
6300** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006301*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006302static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6303 int rc; /* Return value from subprocedures */
6304 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006305 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006306 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006307
danielk1977a50d9aa2009-06-08 14:49:45 +00006308 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006309 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006310
danielk1977a50d9aa2009-06-08 14:49:45 +00006311 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6312 ** page that will become the new right-child of pPage. Copy the contents
6313 ** of the node stored on pRoot into the new child page.
6314 */
drh98add2e2009-07-20 17:11:49 +00006315 rc = sqlite3PagerWrite(pRoot->pDbPage);
6316 if( rc==SQLITE_OK ){
6317 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006318 copyNodeContent(pRoot, pChild, &rc);
6319 if( ISAUTOVACUUM ){
6320 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006321 }
6322 }
6323 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006324 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006325 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006326 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006327 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006328 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6329 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6330 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006331
danielk1977a50d9aa2009-06-08 14:49:45 +00006332 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6333
6334 /* Copy the overflow cells from pRoot to pChild */
6335 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6336 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006337
6338 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6339 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6340 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6341
6342 *ppChild = pChild;
6343 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006344}
6345
6346/*
danielk197771d5d2c2008-09-29 11:49:47 +00006347** The page that pCur currently points to has just been modified in
6348** some way. This function figures out if this modification means the
6349** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006350** routine. Balancing routines are:
6351**
6352** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006353** balance_deeper()
6354** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006355*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006356static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006357 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006358 const int nMin = pCur->pBt->usableSize * 2 / 3;
6359 u8 aBalanceQuickSpace[13];
6360 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006361
shane75ac1de2009-06-09 18:58:52 +00006362 TESTONLY( int balance_quick_called = 0 );
6363 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006364
6365 do {
6366 int iPage = pCur->iPage;
6367 MemPage *pPage = pCur->apPage[iPage];
6368
6369 if( iPage==0 ){
6370 if( pPage->nOverflow ){
6371 /* The root page of the b-tree is overfull. In this case call the
6372 ** balance_deeper() function to create a new child for the root-page
6373 ** and copy the current contents of the root-page to it. The
6374 ** next iteration of the do-loop will balance the child page.
6375 */
6376 assert( (balance_deeper_called++)==0 );
6377 rc = balance_deeper(pPage, &pCur->apPage[1]);
6378 if( rc==SQLITE_OK ){
6379 pCur->iPage = 1;
6380 pCur->aiIdx[0] = 0;
6381 pCur->aiIdx[1] = 0;
6382 assert( pCur->apPage[1]->nOverflow );
6383 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006384 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006385 break;
6386 }
6387 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6388 break;
6389 }else{
6390 MemPage * const pParent = pCur->apPage[iPage-1];
6391 int const iIdx = pCur->aiIdx[iPage-1];
6392
6393 rc = sqlite3PagerWrite(pParent->pDbPage);
6394 if( rc==SQLITE_OK ){
6395#ifndef SQLITE_OMIT_QUICKBALANCE
6396 if( pPage->hasData
6397 && pPage->nOverflow==1
6398 && pPage->aOvfl[0].idx==pPage->nCell
6399 && pParent->pgno!=1
6400 && pParent->nCell==iIdx
6401 ){
6402 /* Call balance_quick() to create a new sibling of pPage on which
6403 ** to store the overflow cell. balance_quick() inserts a new cell
6404 ** into pParent, which may cause pParent overflow. If this
6405 ** happens, the next interation of the do-loop will balance pParent
6406 ** use either balance_nonroot() or balance_deeper(). Until this
6407 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6408 ** buffer.
6409 **
6410 ** The purpose of the following assert() is to check that only a
6411 ** single call to balance_quick() is made for each call to this
6412 ** function. If this were not verified, a subtle bug involving reuse
6413 ** of the aBalanceQuickSpace[] might sneak in.
6414 */
6415 assert( (balance_quick_called++)==0 );
6416 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6417 }else
6418#endif
6419 {
6420 /* In this case, call balance_nonroot() to redistribute cells
6421 ** between pPage and up to 2 of its sibling pages. This involves
6422 ** modifying the contents of pParent, which may cause pParent to
6423 ** become overfull or underfull. The next iteration of the do-loop
6424 ** will balance the parent page to correct this.
6425 **
6426 ** If the parent page becomes overfull, the overflow cell or cells
6427 ** are stored in the pSpace buffer allocated immediately below.
6428 ** A subsequent iteration of the do-loop will deal with this by
6429 ** calling balance_nonroot() (balance_deeper() may be called first,
6430 ** but it doesn't deal with overflow cells - just moves them to a
6431 ** different page). Once this subsequent call to balance_nonroot()
6432 ** has completed, it is safe to release the pSpace buffer used by
6433 ** the previous call, as the overflow cell data will have been
6434 ** copied either into the body of a database page or into the new
6435 ** pSpace buffer passed to the latter call to balance_nonroot().
6436 */
6437 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006438 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006439 if( pFree ){
6440 /* If pFree is not NULL, it points to the pSpace buffer used
6441 ** by a previous call to balance_nonroot(). Its contents are
6442 ** now stored either on real database pages or within the
6443 ** new pSpace buffer, so it may be safely freed here. */
6444 sqlite3PageFree(pFree);
6445 }
6446
danielk19774dbaa892009-06-16 16:50:22 +00006447 /* The pSpace buffer will be freed after the next call to
6448 ** balance_nonroot(), or just before this function returns, whichever
6449 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006450 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006451 }
6452 }
6453
6454 pPage->nOverflow = 0;
6455
6456 /* The next iteration of the do-loop balances the parent page. */
6457 releasePage(pPage);
6458 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006459 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006460 }while( rc==SQLITE_OK );
6461
6462 if( pFree ){
6463 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006464 }
6465 return rc;
6466}
6467
drhf74b8d92002-09-01 23:20:45 +00006468
6469/*
drh3b7511c2001-05-26 13:15:44 +00006470** Insert a new record into the BTree. The key is given by (pKey,nKey)
6471** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006472** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006473** is left pointing at a random location.
6474**
6475** For an INTKEY table, only the nKey value of the key is used. pKey is
6476** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006477**
6478** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006479** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006480** been performed. seekResult is the search result returned (a negative
6481** number if pCur points at an entry that is smaller than (pKey, nKey), or
6482** a positive value if pCur points at an etry that is larger than
6483** (pKey, nKey)).
6484**
drh3e9ca092009-09-08 01:14:48 +00006485** If the seekResult parameter is non-zero, then the caller guarantees that
6486** cursor pCur is pointing at the existing copy of a row that is to be
6487** overwritten. If the seekResult parameter is 0, then cursor pCur may
6488** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006489** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006490*/
drh3aac2dd2004-04-26 14:10:20 +00006491int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006492 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006493 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006494 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006495 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006496 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006497 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006498){
drh3b7511c2001-05-26 13:15:44 +00006499 int rc;
drh3e9ca092009-09-08 01:14:48 +00006500 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006501 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006502 int idx;
drh3b7511c2001-05-26 13:15:44 +00006503 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006504 Btree *p = pCur->pBtree;
6505 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006506 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006507 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006508
drh98add2e2009-07-20 17:11:49 +00006509 if( pCur->eState==CURSOR_FAULT ){
6510 assert( pCur->skipNext!=SQLITE_OK );
6511 return pCur->skipNext;
6512 }
6513
drh1fee73e2007-08-29 04:00:57 +00006514 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006515 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006516 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6517
danielk197731d31b82009-07-13 13:18:07 +00006518 /* Assert that the caller has been consistent. If this cursor was opened
6519 ** expecting an index b-tree, then the caller should be inserting blob
6520 ** keys with no associated data. If the cursor was opened expecting an
6521 ** intkey table, the caller should be inserting integer keys with a
6522 ** blob of associated data. */
6523 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6524
danielk197796d48e92009-06-29 06:00:37 +00006525 /* If this is an insert into a table b-tree, invalidate any incrblob
6526 ** cursors open on the row being replaced (assuming this is a replace
6527 ** operation - if it is not, the following is a no-op). */
6528 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006529 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006530 }
danielk197796d48e92009-06-29 06:00:37 +00006531
danielk19779c3acf32009-05-02 07:36:49 +00006532 /* Save the positions of any other cursors open on this table.
6533 **
danielk19773509a652009-07-06 18:56:13 +00006534 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006535 ** example, when inserting data into a table with auto-generated integer
6536 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6537 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006538 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006539 ** that the cursor is already where it needs to be and returns without
6540 ** doing any work. To avoid thwarting these optimizations, it is important
6541 ** not to clear the cursor here.
6542 */
drh4c301aa2009-07-15 17:25:45 +00006543 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6544 if( rc ) return rc;
6545 if( !loc ){
6546 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6547 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006548 }
danielk1977b980d2212009-06-22 18:03:51 +00006549 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006550
danielk197771d5d2c2008-09-29 11:49:47 +00006551 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006552 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006553 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006554
drh3a4c1412004-05-09 20:40:11 +00006555 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6556 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6557 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006558 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006559 allocateTempSpace(pBt);
6560 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006561 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006562 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006563 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006564 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006565 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006566 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006567 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006568 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006569 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006570 rc = sqlite3PagerWrite(pPage->pDbPage);
6571 if( rc ){
6572 goto end_insert;
6573 }
danielk197771d5d2c2008-09-29 11:49:47 +00006574 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006575 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006576 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006577 }
drh43605152004-05-29 21:46:49 +00006578 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006579 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006580 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006581 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006582 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006583 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006584 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006585 }else{
drh4b70f112004-05-02 21:12:19 +00006586 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006587 }
drh98add2e2009-07-20 17:11:49 +00006588 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006589 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006590
danielk1977a50d9aa2009-06-08 14:49:45 +00006591 /* If no error has occured and pPage has an overflow cell, call balance()
6592 ** to redistribute the cells within the tree. Since balance() may move
6593 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6594 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006595 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006596 ** Previous versions of SQLite called moveToRoot() to move the cursor
6597 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006598 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6599 ** set the cursor state to "invalid". This makes common insert operations
6600 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006601 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006602 ** There is a subtle but important optimization here too. When inserting
6603 ** multiple records into an intkey b-tree using a single cursor (as can
6604 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6605 ** is advantageous to leave the cursor pointing to the last entry in
6606 ** the b-tree if possible. If the cursor is left pointing to the last
6607 ** entry in the table, and the next row inserted has an integer key
6608 ** larger than the largest existing key, it is possible to insert the
6609 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006610 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006611 pCur->info.nSize = 0;
6612 pCur->validNKey = 0;
6613 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006614 rc = balance(pCur);
6615
6616 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006617 ** fails. Internal data structure corruption will result otherwise.
6618 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6619 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006620 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006621 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006622 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006623 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006624
drh2e38c322004-09-03 18:38:44 +00006625end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006626 return rc;
6627}
6628
6629/*
drh4b70f112004-05-02 21:12:19 +00006630** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006631** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006632*/
drh3aac2dd2004-04-26 14:10:20 +00006633int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006634 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006635 BtShared *pBt = p->pBt;
6636 int rc; /* Return code */
6637 MemPage *pPage; /* Page to delete cell from */
6638 unsigned char *pCell; /* Pointer to cell to delete */
6639 int iCellIdx; /* Index of cell to delete */
6640 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006641
drh1fee73e2007-08-29 04:00:57 +00006642 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006643 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006644 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006645 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006646 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6647 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6648
danielk19774dbaa892009-06-16 16:50:22 +00006649 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6650 || NEVER(pCur->eState!=CURSOR_VALID)
6651 ){
6652 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006653 }
danielk1977da184232006-01-05 11:34:32 +00006654
danielk197796d48e92009-06-29 06:00:37 +00006655 /* If this is a delete operation to remove a row from a table b-tree,
6656 ** invalidate any incrblob cursors open on the row being deleted. */
6657 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006658 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006659 }
6660
6661 iCellDepth = pCur->iPage;
6662 iCellIdx = pCur->aiIdx[iCellDepth];
6663 pPage = pCur->apPage[iCellDepth];
6664 pCell = findCell(pPage, iCellIdx);
6665
6666 /* If the page containing the entry to delete is not a leaf page, move
6667 ** the cursor to the largest entry in the tree that is smaller than
6668 ** the entry being deleted. This cell will replace the cell being deleted
6669 ** from the internal node. The 'previous' entry is used for this instead
6670 ** of the 'next' entry, as the previous entry is always a part of the
6671 ** sub-tree headed by the child page of the cell being deleted. This makes
6672 ** balancing the tree following the delete operation easier. */
6673 if( !pPage->leaf ){
6674 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006675 rc = sqlite3BtreePrevious(pCur, &notUsed);
6676 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006677 }
6678
6679 /* Save the positions of any other cursors open on this table before
6680 ** making any modifications. Make the page containing the entry to be
6681 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006682 ** entry and finally remove the cell itself from within the page.
6683 */
6684 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6685 if( rc ) return rc;
6686 rc = sqlite3PagerWrite(pPage->pDbPage);
6687 if( rc ) return rc;
6688 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006689 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006690 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006691
danielk19774dbaa892009-06-16 16:50:22 +00006692 /* If the cell deleted was not located on a leaf page, then the cursor
6693 ** is currently pointing to the largest entry in the sub-tree headed
6694 ** by the child-page of the cell that was just deleted from an internal
6695 ** node. The cell from the leaf node needs to be moved to the internal
6696 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006697 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006698 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6699 int nCell;
6700 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6701 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006702
danielk19774dbaa892009-06-16 16:50:22 +00006703 pCell = findCell(pLeaf, pLeaf->nCell-1);
6704 nCell = cellSizePtr(pLeaf, pCell);
6705 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006706
danielk19774dbaa892009-06-16 16:50:22 +00006707 allocateTempSpace(pBt);
6708 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006709
drha4ec1d42009-07-11 13:13:11 +00006710 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006711 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6712 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006713 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006714 }
danielk19774dbaa892009-06-16 16:50:22 +00006715
6716 /* Balance the tree. If the entry deleted was located on a leaf page,
6717 ** then the cursor still points to that page. In this case the first
6718 ** call to balance() repairs the tree, and the if(...) condition is
6719 ** never true.
6720 **
6721 ** Otherwise, if the entry deleted was on an internal node page, then
6722 ** pCur is pointing to the leaf page from which a cell was removed to
6723 ** replace the cell deleted from the internal node. This is slightly
6724 ** tricky as the leaf node may be underfull, and the internal node may
6725 ** be either under or overfull. In this case run the balancing algorithm
6726 ** on the leaf node first. If the balance proceeds far enough up the
6727 ** tree that we can be sure that any problem in the internal node has
6728 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6729 ** walk the cursor up the tree to the internal node and balance it as
6730 ** well. */
6731 rc = balance(pCur);
6732 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6733 while( pCur->iPage>iCellDepth ){
6734 releasePage(pCur->apPage[pCur->iPage--]);
6735 }
6736 rc = balance(pCur);
6737 }
6738
danielk19776b456a22005-03-21 04:04:02 +00006739 if( rc==SQLITE_OK ){
6740 moveToRoot(pCur);
6741 }
drh5e2f8b92001-05-28 00:41:15 +00006742 return rc;
drh3b7511c2001-05-26 13:15:44 +00006743}
drh8b2f49b2001-06-08 00:21:52 +00006744
6745/*
drhc6b52df2002-01-04 03:09:29 +00006746** Create a new BTree table. Write into *piTable the page
6747** number for the root page of the new table.
6748**
drhab01f612004-05-22 02:55:23 +00006749** The type of type is determined by the flags parameter. Only the
6750** following values of flags are currently in use. Other values for
6751** flags might not work:
6752**
6753** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6754** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006755*/
drhd677b3d2007-08-20 22:48:41 +00006756static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006757 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006758 MemPage *pRoot;
6759 Pgno pgnoRoot;
6760 int rc;
drhd677b3d2007-08-20 22:48:41 +00006761
drh1fee73e2007-08-29 04:00:57 +00006762 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006763 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006764 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006765
danielk1977003ba062004-11-04 02:57:33 +00006766#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006767 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006768 if( rc ){
6769 return rc;
6770 }
danielk1977003ba062004-11-04 02:57:33 +00006771#else
danielk1977687566d2004-11-02 12:56:41 +00006772 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006773 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6774 MemPage *pPageMove; /* The page to move to. */
6775
danielk197720713f32007-05-03 11:43:33 +00006776 /* Creating a new table may probably require moving an existing database
6777 ** to make room for the new tables root page. In case this page turns
6778 ** out to be an overflow page, delete all overflow page-map caches
6779 ** held by open cursors.
6780 */
danielk197792d4d7a2007-05-04 12:05:56 +00006781 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006782
danielk1977003ba062004-11-04 02:57:33 +00006783 /* Read the value of meta[3] from the database to determine where the
6784 ** root page of the new table should go. meta[3] is the largest root-page
6785 ** created so far, so the new root-page is (meta[3]+1).
6786 */
danielk1977602b4662009-07-02 07:47:33 +00006787 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006788 pgnoRoot++;
6789
danielk1977599fcba2004-11-08 07:13:13 +00006790 /* The new root-page may not be allocated on a pointer-map page, or the
6791 ** PENDING_BYTE page.
6792 */
drh72190432008-01-31 14:54:43 +00006793 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006794 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006795 pgnoRoot++;
6796 }
6797 assert( pgnoRoot>=3 );
6798
6799 /* Allocate a page. The page that currently resides at pgnoRoot will
6800 ** be moved to the allocated page (unless the allocated page happens
6801 ** to reside at pgnoRoot).
6802 */
drh4f0c5872007-03-26 22:05:01 +00006803 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006804 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006805 return rc;
6806 }
danielk1977003ba062004-11-04 02:57:33 +00006807
6808 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006809 /* pgnoRoot is the page that will be used for the root-page of
6810 ** the new table (assuming an error did not occur). But we were
6811 ** allocated pgnoMove. If required (i.e. if it was not allocated
6812 ** by extending the file), the current page at position pgnoMove
6813 ** is already journaled.
6814 */
drheeb844a2009-08-08 18:01:07 +00006815 u8 eType = 0;
6816 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00006817
6818 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006819
6820 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006821 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006822 if( rc!=SQLITE_OK ){
6823 return rc;
6824 }
6825 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006826 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6827 rc = SQLITE_CORRUPT_BKPT;
6828 }
6829 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006830 releasePage(pRoot);
6831 return rc;
6832 }
drhccae6022005-02-26 17:31:26 +00006833 assert( eType!=PTRMAP_ROOTPAGE );
6834 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006835 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006836 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006837
6838 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006839 if( rc!=SQLITE_OK ){
6840 return rc;
6841 }
danielk197730548662009-07-09 05:07:37 +00006842 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006843 if( rc!=SQLITE_OK ){
6844 return rc;
6845 }
danielk19773b8a05f2007-03-19 17:44:26 +00006846 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006847 if( rc!=SQLITE_OK ){
6848 releasePage(pRoot);
6849 return rc;
6850 }
6851 }else{
6852 pRoot = pPageMove;
6853 }
6854
danielk197742741be2005-01-08 12:42:39 +00006855 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00006856 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00006857 if( rc ){
6858 releasePage(pRoot);
6859 return rc;
6860 }
danielk1977aef0bf62005-12-30 16:28:01 +00006861 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006862 if( rc ){
6863 releasePage(pRoot);
6864 return rc;
6865 }
danielk197742741be2005-01-08 12:42:39 +00006866
danielk1977003ba062004-11-04 02:57:33 +00006867 }else{
drh4f0c5872007-03-26 22:05:01 +00006868 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006869 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006870 }
6871#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006872 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006873 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006874 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006875 *piTable = (int)pgnoRoot;
6876 return SQLITE_OK;
6877}
drhd677b3d2007-08-20 22:48:41 +00006878int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6879 int rc;
6880 sqlite3BtreeEnter(p);
6881 rc = btreeCreateTable(p, piTable, flags);
6882 sqlite3BtreeLeave(p);
6883 return rc;
6884}
drh8b2f49b2001-06-08 00:21:52 +00006885
6886/*
6887** Erase the given database page and all its children. Return
6888** the page to the freelist.
6889*/
drh4b70f112004-05-02 21:12:19 +00006890static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006891 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00006892 Pgno pgno, /* Page number to clear */
6893 int freePageFlag, /* Deallocate page if true */
6894 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00006895){
danielk1977146ba992009-07-22 14:08:13 +00006896 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00006897 int rc;
drh4b70f112004-05-02 21:12:19 +00006898 unsigned char *pCell;
6899 int i;
drh8b2f49b2001-06-08 00:21:52 +00006900
drh1fee73e2007-08-29 04:00:57 +00006901 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006902 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006903 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006904 }
6905
danielk197771d5d2c2008-09-29 11:49:47 +00006906 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00006907 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00006908 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006909 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006910 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006911 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006912 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006913 }
drh4b70f112004-05-02 21:12:19 +00006914 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006915 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006916 }
drha34b6762004-05-07 13:30:42 +00006917 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006918 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006919 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006920 }else if( pnChange ){
6921 assert( pPage->intKey );
6922 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006923 }
6924 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00006925 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00006926 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006927 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006928 }
danielk19776b456a22005-03-21 04:04:02 +00006929
6930cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006931 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006932 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006933}
6934
6935/*
drhab01f612004-05-22 02:55:23 +00006936** Delete all information from a single table in the database. iTable is
6937** the page number of the root of the table. After this routine returns,
6938** the root page is empty, but still exists.
6939**
6940** This routine will fail with SQLITE_LOCKED if there are any open
6941** read cursors on the table. Open write cursors are moved to the
6942** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006943**
6944** If pnChange is not NULL, then table iTable must be an intkey table. The
6945** integer value pointed to by pnChange is incremented by the number of
6946** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006947*/
danielk1977c7af4842008-10-27 13:59:33 +00006948int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006949 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006950 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006951 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006952 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00006953
6954 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
6955 ** is the root of a table b-tree - if it is not, the following call is
6956 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00006957 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00006958
drhc046e3e2009-07-15 11:26:44 +00006959 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
6960 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00006961 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006962 }
drhd677b3d2007-08-20 22:48:41 +00006963 sqlite3BtreeLeave(p);
6964 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006965}
6966
6967/*
6968** Erase all information in a table and add the root of the table to
6969** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006970** page 1) is never added to the freelist.
6971**
6972** This routine will fail with SQLITE_LOCKED if there are any open
6973** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006974**
6975** If AUTOVACUUM is enabled and the page at iTable is not the last
6976** root page in the database file, then the last root page
6977** in the database file is moved into the slot formerly occupied by
6978** iTable and that last slot formerly occupied by the last root page
6979** is added to the freelist instead of iTable. In this say, all
6980** root pages are kept at the beginning of the database file, which
6981** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6982** page number that used to be the last root page in the file before
6983** the move. If no page gets moved, *piMoved is set to 0.
6984** The last root page is recorded in meta[3] and the value of
6985** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006986*/
danielk197789d40042008-11-17 14:20:56 +00006987static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006988 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006989 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006990 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006991
drh1fee73e2007-08-29 04:00:57 +00006992 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006993 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006994
danielk1977e6efa742004-11-10 11:55:10 +00006995 /* It is illegal to drop a table if any cursors are open on the
6996 ** database. This is because in auto-vacuum mode the backend may
6997 ** need to move another root-page to fill a gap left by the deleted
6998 ** root page. If an open cursor was using this page a problem would
6999 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007000 **
7001 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007002 */
drhc046e3e2009-07-15 11:26:44 +00007003 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007004 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7005 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007006 }
danielk1977a0bf2652004-11-04 14:30:04 +00007007
danielk197730548662009-07-09 05:07:37 +00007008 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007009 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007010 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007011 if( rc ){
7012 releasePage(pPage);
7013 return rc;
7014 }
danielk1977a0bf2652004-11-04 14:30:04 +00007015
drh205f48e2004-11-05 00:43:11 +00007016 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007017
drh4b70f112004-05-02 21:12:19 +00007018 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007019#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007020 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007021 releasePage(pPage);
7022#else
7023 if( pBt->autoVacuum ){
7024 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007025 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007026
7027 if( iTable==maxRootPgno ){
7028 /* If the table being dropped is the table with the largest root-page
7029 ** number in the database, put the root page on the free list.
7030 */
drhc314dc72009-07-21 11:52:34 +00007031 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007032 releasePage(pPage);
7033 if( rc!=SQLITE_OK ){
7034 return rc;
7035 }
7036 }else{
7037 /* The table being dropped does not have the largest root-page
7038 ** number in the database. So move the page that does into the
7039 ** gap left by the deleted root-page.
7040 */
7041 MemPage *pMove;
7042 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007043 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007044 if( rc!=SQLITE_OK ){
7045 return rc;
7046 }
danielk19774c999992008-07-16 18:17:55 +00007047 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007048 releasePage(pMove);
7049 if( rc!=SQLITE_OK ){
7050 return rc;
7051 }
drhfe3313f2009-07-21 19:02:20 +00007052 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007053 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007054 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007055 releasePage(pMove);
7056 if( rc!=SQLITE_OK ){
7057 return rc;
7058 }
7059 *piMoved = maxRootPgno;
7060 }
7061
danielk1977599fcba2004-11-08 07:13:13 +00007062 /* Set the new 'max-root-page' value in the database header. This
7063 ** is the old value less one, less one more if that happens to
7064 ** be a root-page number, less one again if that is the
7065 ** PENDING_BYTE_PAGE.
7066 */
danielk197787a6e732004-11-05 12:58:25 +00007067 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007068 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7069 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007070 maxRootPgno--;
7071 }
danielk1977599fcba2004-11-08 07:13:13 +00007072 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7073
danielk1977aef0bf62005-12-30 16:28:01 +00007074 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007075 }else{
drhc314dc72009-07-21 11:52:34 +00007076 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007077 releasePage(pPage);
7078 }
7079#endif
drh2aa679f2001-06-25 02:11:07 +00007080 }else{
drhc046e3e2009-07-15 11:26:44 +00007081 /* If sqlite3BtreeDropTable was called on page 1.
7082 ** This really never should happen except in a corrupt
7083 ** database.
7084 */
drha34b6762004-05-07 13:30:42 +00007085 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007086 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007087 }
drh8b2f49b2001-06-08 00:21:52 +00007088 return rc;
7089}
drhd677b3d2007-08-20 22:48:41 +00007090int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7091 int rc;
7092 sqlite3BtreeEnter(p);
7093 rc = btreeDropTable(p, iTable, piMoved);
7094 sqlite3BtreeLeave(p);
7095 return rc;
7096}
drh8b2f49b2001-06-08 00:21:52 +00007097
drh001bbcb2003-03-19 03:14:00 +00007098
drh8b2f49b2001-06-08 00:21:52 +00007099/*
danielk1977602b4662009-07-02 07:47:33 +00007100** This function may only be called if the b-tree connection already
7101** has a read or write transaction open on the database.
7102**
drh23e11ca2004-05-04 17:27:28 +00007103** Read the meta-information out of a database file. Meta[0]
7104** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007105** through meta[15] are available for use by higher layers. Meta[0]
7106** is read-only, the others are read/write.
7107**
7108** The schema layer numbers meta values differently. At the schema
7109** layer (and the SetCookie and ReadCookie opcodes) the number of
7110** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007111*/
danielk1977602b4662009-07-02 07:47:33 +00007112void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007113 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007114
drhd677b3d2007-08-20 22:48:41 +00007115 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007116 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007117 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007118 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007119 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007120
danielk1977602b4662009-07-02 07:47:33 +00007121 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007122
danielk1977602b4662009-07-02 07:47:33 +00007123 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7124 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007125#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007126 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007127#endif
drhae157872004-08-14 19:20:09 +00007128
drhd677b3d2007-08-20 22:48:41 +00007129 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007130}
7131
7132/*
drh23e11ca2004-05-04 17:27:28 +00007133** Write meta-information back into the database. Meta[0] is
7134** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007135*/
danielk1977aef0bf62005-12-30 16:28:01 +00007136int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7137 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007138 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007139 int rc;
drh23e11ca2004-05-04 17:27:28 +00007140 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007141 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007142 assert( p->inTrans==TRANS_WRITE );
7143 assert( pBt->pPage1!=0 );
7144 pP1 = pBt->pPage1->aData;
7145 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7146 if( rc==SQLITE_OK ){
7147 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007148#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007149 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007150 assert( pBt->autoVacuum || iMeta==0 );
7151 assert( iMeta==0 || iMeta==1 );
7152 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007153 }
drh64022502009-01-09 14:11:04 +00007154#endif
drh5df72a52002-06-06 23:16:05 +00007155 }
drhd677b3d2007-08-20 22:48:41 +00007156 sqlite3BtreeLeave(p);
7157 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007158}
drh8c42ca92001-06-22 19:15:00 +00007159
danielk1977a5533162009-02-24 10:01:51 +00007160#ifndef SQLITE_OMIT_BTREECOUNT
7161/*
7162** The first argument, pCur, is a cursor opened on some b-tree. Count the
7163** number of entries in the b-tree and write the result to *pnEntry.
7164**
7165** SQLITE_OK is returned if the operation is successfully executed.
7166** Otherwise, if an error is encountered (i.e. an IO error or database
7167** corruption) an SQLite error code is returned.
7168*/
7169int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7170 i64 nEntry = 0; /* Value to return in *pnEntry */
7171 int rc; /* Return code */
7172 rc = moveToRoot(pCur);
7173
7174 /* Unless an error occurs, the following loop runs one iteration for each
7175 ** page in the B-Tree structure (not including overflow pages).
7176 */
7177 while( rc==SQLITE_OK ){
7178 int iIdx; /* Index of child node in parent */
7179 MemPage *pPage; /* Current page of the b-tree */
7180
7181 /* If this is a leaf page or the tree is not an int-key tree, then
7182 ** this page contains countable entries. Increment the entry counter
7183 ** accordingly.
7184 */
7185 pPage = pCur->apPage[pCur->iPage];
7186 if( pPage->leaf || !pPage->intKey ){
7187 nEntry += pPage->nCell;
7188 }
7189
7190 /* pPage is a leaf node. This loop navigates the cursor so that it
7191 ** points to the first interior cell that it points to the parent of
7192 ** the next page in the tree that has not yet been visited. The
7193 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7194 ** of the page, or to the number of cells in the page if the next page
7195 ** to visit is the right-child of its parent.
7196 **
7197 ** If all pages in the tree have been visited, return SQLITE_OK to the
7198 ** caller.
7199 */
7200 if( pPage->leaf ){
7201 do {
7202 if( pCur->iPage==0 ){
7203 /* All pages of the b-tree have been visited. Return successfully. */
7204 *pnEntry = nEntry;
7205 return SQLITE_OK;
7206 }
danielk197730548662009-07-09 05:07:37 +00007207 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007208 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7209
7210 pCur->aiIdx[pCur->iPage]++;
7211 pPage = pCur->apPage[pCur->iPage];
7212 }
7213
7214 /* Descend to the child node of the cell that the cursor currently
7215 ** points at. This is the right-child if (iIdx==pPage->nCell).
7216 */
7217 iIdx = pCur->aiIdx[pCur->iPage];
7218 if( iIdx==pPage->nCell ){
7219 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7220 }else{
7221 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7222 }
7223 }
7224
shanebe217792009-03-05 04:20:31 +00007225 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007226 return rc;
7227}
7228#endif
drhdd793422001-06-28 01:54:48 +00007229
drhdd793422001-06-28 01:54:48 +00007230/*
drh5eddca62001-06-30 21:53:53 +00007231** Return the pager associated with a BTree. This routine is used for
7232** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007233*/
danielk1977aef0bf62005-12-30 16:28:01 +00007234Pager *sqlite3BtreePager(Btree *p){
7235 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007236}
drh5eddca62001-06-30 21:53:53 +00007237
drhb7f91642004-10-31 02:22:47 +00007238#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007239/*
7240** Append a message to the error message string.
7241*/
drh2e38c322004-09-03 18:38:44 +00007242static void checkAppendMsg(
7243 IntegrityCk *pCheck,
7244 char *zMsg1,
7245 const char *zFormat,
7246 ...
7247){
7248 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007249 if( !pCheck->mxErr ) return;
7250 pCheck->mxErr--;
7251 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007252 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007253 if( pCheck->errMsg.nChar ){
7254 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007255 }
drhf089aa42008-07-08 19:34:06 +00007256 if( zMsg1 ){
7257 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7258 }
7259 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7260 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007261 if( pCheck->errMsg.mallocFailed ){
7262 pCheck->mallocFailed = 1;
7263 }
drh5eddca62001-06-30 21:53:53 +00007264}
drhb7f91642004-10-31 02:22:47 +00007265#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007266
drhb7f91642004-10-31 02:22:47 +00007267#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007268/*
7269** Add 1 to the reference count for page iPage. If this is the second
7270** reference to the page, add an error message to pCheck->zErrMsg.
7271** Return 1 if there are 2 ore more references to the page and 0 if
7272** if this is the first reference to the page.
7273**
7274** Also check that the page number is in bounds.
7275*/
danielk197789d40042008-11-17 14:20:56 +00007276static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007277 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007278 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007279 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007280 return 1;
7281 }
7282 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007283 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007284 return 1;
7285 }
7286 return (pCheck->anRef[iPage]++)>1;
7287}
7288
danielk1977afcdd022004-10-31 16:25:42 +00007289#ifndef SQLITE_OMIT_AUTOVACUUM
7290/*
7291** Check that the entry in the pointer-map for page iChild maps to
7292** page iParent, pointer type ptrType. If not, append an error message
7293** to pCheck.
7294*/
7295static void checkPtrmap(
7296 IntegrityCk *pCheck, /* Integrity check context */
7297 Pgno iChild, /* Child page number */
7298 u8 eType, /* Expected pointer map type */
7299 Pgno iParent, /* Expected pointer map parent page number */
7300 char *zContext /* Context description (used for error msg) */
7301){
7302 int rc;
7303 u8 ePtrmapType;
7304 Pgno iPtrmapParent;
7305
7306 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7307 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007308 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007309 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7310 return;
7311 }
7312
7313 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7314 checkAppendMsg(pCheck, zContext,
7315 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7316 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7317 }
7318}
7319#endif
7320
drh5eddca62001-06-30 21:53:53 +00007321/*
7322** Check the integrity of the freelist or of an overflow page list.
7323** Verify that the number of pages on the list is N.
7324*/
drh30e58752002-03-02 20:41:57 +00007325static void checkList(
7326 IntegrityCk *pCheck, /* Integrity checking context */
7327 int isFreeList, /* True for a freelist. False for overflow page list */
7328 int iPage, /* Page number for first page in the list */
7329 int N, /* Expected number of pages in the list */
7330 char *zContext /* Context for error messages */
7331){
7332 int i;
drh3a4c1412004-05-09 20:40:11 +00007333 int expected = N;
7334 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007335 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007336 DbPage *pOvflPage;
7337 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007338 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007339 checkAppendMsg(pCheck, zContext,
7340 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007341 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007342 break;
7343 }
7344 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007345 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007346 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007347 break;
7348 }
danielk19773b8a05f2007-03-19 17:44:26 +00007349 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007350 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007351 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007352#ifndef SQLITE_OMIT_AUTOVACUUM
7353 if( pCheck->pBt->autoVacuum ){
7354 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7355 }
7356#endif
drh45b1fac2008-07-04 17:52:42 +00007357 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007358 checkAppendMsg(pCheck, zContext,
7359 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007360 N--;
7361 }else{
7362 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007363 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007364#ifndef SQLITE_OMIT_AUTOVACUUM
7365 if( pCheck->pBt->autoVacuum ){
7366 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7367 }
7368#endif
7369 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007370 }
7371 N -= n;
drh30e58752002-03-02 20:41:57 +00007372 }
drh30e58752002-03-02 20:41:57 +00007373 }
danielk1977afcdd022004-10-31 16:25:42 +00007374#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007375 else{
7376 /* If this database supports auto-vacuum and iPage is not the last
7377 ** page in this overflow list, check that the pointer-map entry for
7378 ** the following page matches iPage.
7379 */
7380 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007381 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007382 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7383 }
danielk1977afcdd022004-10-31 16:25:42 +00007384 }
7385#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007386 iPage = get4byte(pOvflData);
7387 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007388 }
7389}
drhb7f91642004-10-31 02:22:47 +00007390#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007391
drhb7f91642004-10-31 02:22:47 +00007392#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007393/*
7394** Do various sanity checks on a single page of a tree. Return
7395** the tree depth. Root pages return 0. Parents of root pages
7396** return 1, and so forth.
7397**
7398** These checks are done:
7399**
7400** 1. Make sure that cells and freeblocks do not overlap
7401** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007402** NO 2. Make sure cell keys are in order.
7403** NO 3. Make sure no key is less than or equal to zLowerBound.
7404** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007405** 5. Check the integrity of overflow pages.
7406** 6. Recursively call checkTreePage on all children.
7407** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007408** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007409** the root of the tree.
7410*/
7411static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007412 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007413 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007414 char *zParentContext, /* Parent context */
7415 i64 *pnParentMinKey,
7416 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007417){
7418 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007419 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007420 int hdr, cellStart;
7421 int nCell;
drhda200cc2004-05-09 11:51:38 +00007422 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007423 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007424 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007425 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007426 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007427 i64 nMinKey = 0;
7428 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007429
drh5bb3eb92007-05-04 13:15:55 +00007430 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007431
drh5eddca62001-06-30 21:53:53 +00007432 /* Check that the page exists
7433 */
drhd9cb6ac2005-10-20 07:28:17 +00007434 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007435 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007436 if( iPage==0 ) return 0;
7437 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007438 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007439 checkAppendMsg(pCheck, zContext,
7440 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007441 return 0;
7442 }
danielk197793caf5a2009-07-11 06:55:33 +00007443
7444 /* Clear MemPage.isInit to make sure the corruption detection code in
7445 ** btreeInitPage() is executed. */
7446 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007447 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007448 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007449 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007450 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007451 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007452 return 0;
7453 }
7454
7455 /* Check out all the cells.
7456 */
7457 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007458 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007459 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007460 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007461 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007462
7463 /* Check payload overflow pages
7464 */
drh5bb3eb92007-05-04 13:15:55 +00007465 sqlite3_snprintf(sizeof(zContext), zContext,
7466 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007467 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007468 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007469 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007470 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007471 /* For intKey pages, check that the keys are in order.
7472 */
7473 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7474 else{
7475 if( info.nKey <= nMaxKey ){
7476 checkAppendMsg(pCheck, zContext,
7477 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7478 }
7479 nMaxKey = info.nKey;
7480 }
drh72365832007-03-06 15:53:44 +00007481 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007482 if( (sz>info.nLocal)
7483 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7484 ){
drhb6f41482004-05-14 01:58:11 +00007485 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007486 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7487#ifndef SQLITE_OMIT_AUTOVACUUM
7488 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007489 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007490 }
7491#endif
7492 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007493 }
7494
7495 /* Check sanity of left child page.
7496 */
drhda200cc2004-05-09 11:51:38 +00007497 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007498 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007499#ifndef SQLITE_OMIT_AUTOVACUUM
7500 if( pBt->autoVacuum ){
7501 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7502 }
7503#endif
shaneh195475d2010-02-19 04:28:08 +00007504 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007505 if( i>0 && d2!=depth ){
7506 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7507 }
7508 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007509 }
drh5eddca62001-06-30 21:53:53 +00007510 }
shaneh195475d2010-02-19 04:28:08 +00007511
drhda200cc2004-05-09 11:51:38 +00007512 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007513 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007514 sqlite3_snprintf(sizeof(zContext), zContext,
7515 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007516#ifndef SQLITE_OMIT_AUTOVACUUM
7517 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007518 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007519 }
7520#endif
shaneh195475d2010-02-19 04:28:08 +00007521 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007522 }
drh5eddca62001-06-30 21:53:53 +00007523
shaneh195475d2010-02-19 04:28:08 +00007524 /* For intKey leaf pages, check that the min/max keys are in order
7525 ** with any left/parent/right pages.
7526 */
7527 if( pPage->leaf && pPage->intKey ){
7528 /* if we are a left child page */
7529 if( pnParentMinKey ){
7530 /* if we are the left most child page */
7531 if( !pnParentMaxKey ){
7532 if( nMaxKey > *pnParentMinKey ){
7533 checkAppendMsg(pCheck, zContext,
7534 "Rowid %lld out of order (max larger than parent min of %lld)",
7535 nMaxKey, *pnParentMinKey);
7536 }
7537 }else{
7538 if( nMinKey <= *pnParentMinKey ){
7539 checkAppendMsg(pCheck, zContext,
7540 "Rowid %lld out of order (min less than parent min of %lld)",
7541 nMinKey, *pnParentMinKey);
7542 }
7543 if( nMaxKey > *pnParentMaxKey ){
7544 checkAppendMsg(pCheck, zContext,
7545 "Rowid %lld out of order (max larger than parent max of %lld)",
7546 nMaxKey, *pnParentMaxKey);
7547 }
7548 *pnParentMinKey = nMaxKey;
7549 }
7550 /* else if we're a right child page */
7551 } else if( pnParentMaxKey ){
7552 if( nMinKey <= *pnParentMaxKey ){
7553 checkAppendMsg(pCheck, zContext,
7554 "Rowid %lld out of order (min less than parent max of %lld)",
7555 nMinKey, *pnParentMaxKey);
7556 }
7557 }
7558 }
7559
drh5eddca62001-06-30 21:53:53 +00007560 /* Check for complete coverage of the page
7561 */
drhda200cc2004-05-09 11:51:38 +00007562 data = pPage->aData;
7563 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007564 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007565 if( hit==0 ){
7566 pCheck->mallocFailed = 1;
7567 }else{
shane5780ebd2008-11-11 17:36:30 +00007568 u16 contentOffset = get2byte(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007569 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007570 memset(hit+contentOffset, 0, usableSize-contentOffset);
7571 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007572 nCell = get2byte(&data[hdr+3]);
7573 cellStart = hdr + 12 - 4*pPage->leaf;
7574 for(i=0; i<nCell; i++){
7575 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007576 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007577 int j;
drh8c2bbb62009-07-10 02:52:20 +00007578 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007579 size = cellSizePtr(pPage, &data[pc]);
7580 }
drhd7c7ecd2009-07-14 17:48:06 +00007581 if( (pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007582 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007583 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007584 }else{
7585 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7586 }
drh2e38c322004-09-03 18:38:44 +00007587 }
drh8c2bbb62009-07-10 02:52:20 +00007588 i = get2byte(&data[hdr+1]);
7589 while( i>0 ){
7590 int size, j;
7591 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7592 size = get2byte(&data[i+2]);
7593 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7594 for(j=i+size-1; j>=i; j--) hit[j]++;
7595 j = get2byte(&data[i]);
7596 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7597 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7598 i = j;
drh2e38c322004-09-03 18:38:44 +00007599 }
7600 for(i=cnt=0; i<usableSize; i++){
7601 if( hit[i]==0 ){
7602 cnt++;
7603 }else if( hit[i]>1 ){
7604 checkAppendMsg(pCheck, 0,
7605 "Multiple uses for byte %d of page %d", i, iPage);
7606 break;
7607 }
7608 }
7609 if( cnt!=data[hdr+7] ){
7610 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007611 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007612 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007613 }
7614 }
drh8c2bbb62009-07-10 02:52:20 +00007615 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007616 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007617 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007618}
drhb7f91642004-10-31 02:22:47 +00007619#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007620
drhb7f91642004-10-31 02:22:47 +00007621#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007622/*
7623** This routine does a complete check of the given BTree file. aRoot[] is
7624** an array of pages numbers were each page number is the root page of
7625** a table. nRoot is the number of entries in aRoot.
7626**
danielk19773509a652009-07-06 18:56:13 +00007627** A read-only or read-write transaction must be opened before calling
7628** this function.
7629**
drhc890fec2008-08-01 20:10:08 +00007630** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007631** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007632** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007633** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007634*/
drh1dcdbc02007-01-27 02:24:54 +00007635char *sqlite3BtreeIntegrityCheck(
7636 Btree *p, /* The btree to be checked */
7637 int *aRoot, /* An array of root pages numbers for individual trees */
7638 int nRoot, /* Number of entries in aRoot[] */
7639 int mxErr, /* Stop reporting errors after this many */
7640 int *pnErr /* Write number of errors seen to this variable */
7641){
danielk197789d40042008-11-17 14:20:56 +00007642 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007643 int nRef;
drhaaab5722002-02-19 13:39:21 +00007644 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007645 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007646 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007647
drhd677b3d2007-08-20 22:48:41 +00007648 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007649 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007650 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007651 sCheck.pBt = pBt;
7652 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007653 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007654 sCheck.mxErr = mxErr;
7655 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007656 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007657 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007658 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007659 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007660 return 0;
7661 }
drhe5ae5732008-06-15 02:51:47 +00007662 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007663 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007664 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007665 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007666 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007667 }
drhda200cc2004-05-09 11:51:38 +00007668 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007669 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007670 if( i<=sCheck.nPage ){
7671 sCheck.anRef[i] = 1;
7672 }
drhf089aa42008-07-08 19:34:06 +00007673 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007674
7675 /* Check the integrity of the freelist
7676 */
drha34b6762004-05-07 13:30:42 +00007677 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7678 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007679
7680 /* Check all the tables.
7681 */
danielk197789d40042008-11-17 14:20:56 +00007682 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007683 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007684#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007685 if( pBt->autoVacuum && aRoot[i]>1 ){
7686 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7687 }
7688#endif
shaneh195475d2010-02-19 04:28:08 +00007689 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007690 }
7691
7692 /* Make sure every page in the file is referenced
7693 */
drh1dcdbc02007-01-27 02:24:54 +00007694 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007695#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007696 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007697 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007698 }
danielk1977afcdd022004-10-31 16:25:42 +00007699#else
7700 /* If the database supports auto-vacuum, make sure no tables contain
7701 ** references to pointer-map pages.
7702 */
7703 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007704 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007705 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7706 }
7707 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007708 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007709 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7710 }
7711#endif
drh5eddca62001-06-30 21:53:53 +00007712 }
7713
drh64022502009-01-09 14:11:04 +00007714 /* Make sure this analysis did not leave any unref() pages.
7715 ** This is an internal consistency check; an integrity check
7716 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007717 */
drh64022502009-01-09 14:11:04 +00007718 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007719 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007720 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007721 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007722 );
drh5eddca62001-06-30 21:53:53 +00007723 }
7724
7725 /* Clean up and report errors.
7726 */
drhd677b3d2007-08-20 22:48:41 +00007727 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007728 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007729 if( sCheck.mallocFailed ){
7730 sqlite3StrAccumReset(&sCheck.errMsg);
7731 *pnErr = sCheck.nErr+1;
7732 return 0;
7733 }
drh1dcdbc02007-01-27 02:24:54 +00007734 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007735 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7736 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007737}
drhb7f91642004-10-31 02:22:47 +00007738#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007739
drh73509ee2003-04-06 20:44:45 +00007740/*
7741** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007742**
7743** The pager filename is invariant as long as the pager is
7744** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007745*/
danielk1977aef0bf62005-12-30 16:28:01 +00007746const char *sqlite3BtreeGetFilename(Btree *p){
7747 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007748 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007749}
7750
7751/*
danielk19775865e3d2004-06-14 06:03:57 +00007752** Return the pathname of the journal file for this database. The return
7753** value of this routine is the same regardless of whether the journal file
7754** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007755**
7756** The pager journal filename is invariant as long as the pager is
7757** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007758*/
danielk1977aef0bf62005-12-30 16:28:01 +00007759const char *sqlite3BtreeGetJournalname(Btree *p){
7760 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007761 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007762}
7763
danielk19771d850a72004-05-31 08:26:49 +00007764/*
7765** Return non-zero if a transaction is active.
7766*/
danielk1977aef0bf62005-12-30 16:28:01 +00007767int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007768 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007769 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007770}
7771
7772/*
danielk19772372c2b2006-06-27 16:34:56 +00007773** Return non-zero if a read (or write) transaction is active.
7774*/
7775int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007776 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007777 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007778 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007779}
7780
danielk197704103022009-02-03 16:51:24 +00007781int sqlite3BtreeIsInBackup(Btree *p){
7782 assert( p );
7783 assert( sqlite3_mutex_held(p->db->mutex) );
7784 return p->nBackup!=0;
7785}
7786
danielk19772372c2b2006-06-27 16:34:56 +00007787/*
danielk1977da184232006-01-05 11:34:32 +00007788** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007789** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007790** purposes (for example, to store a high-level schema associated with
7791** the shared-btree). The btree layer manages reference counting issues.
7792**
7793** The first time this is called on a shared-btree, nBytes bytes of memory
7794** are allocated, zeroed, and returned to the caller. For each subsequent
7795** call the nBytes parameter is ignored and a pointer to the same blob
7796** of memory returned.
7797**
danielk1977171bfed2008-06-23 09:50:50 +00007798** If the nBytes parameter is 0 and the blob of memory has not yet been
7799** allocated, a null pointer is returned. If the blob has already been
7800** allocated, it is returned as normal.
7801**
danielk1977da184232006-01-05 11:34:32 +00007802** Just before the shared-btree is closed, the function passed as the
7803** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007804** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007805** on the memory, the btree layer does that.
7806*/
7807void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7808 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007809 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007810 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007811 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007812 pBt->xFreeSchema = xFree;
7813 }
drh27641702007-08-22 02:56:42 +00007814 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007815 return pBt->pSchema;
7816}
7817
danielk1977c87d34d2006-01-06 13:00:28 +00007818/*
danielk1977404ca072009-03-16 13:19:36 +00007819** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7820** btree as the argument handle holds an exclusive lock on the
7821** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007822*/
7823int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007824 int rc;
drhe5fe6902007-12-07 18:55:28 +00007825 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007826 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007827 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7828 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007829 sqlite3BtreeLeave(p);
7830 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007831}
7832
drha154dcd2006-03-22 22:10:07 +00007833
7834#ifndef SQLITE_OMIT_SHARED_CACHE
7835/*
7836** Obtain a lock on the table whose root page is iTab. The
7837** lock is a write lock if isWritelock is true or a read lock
7838** if it is false.
7839*/
danielk1977c00da102006-01-07 13:21:04 +00007840int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007841 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00007842 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00007843 if( p->sharable ){
7844 u8 lockType = READ_LOCK + isWriteLock;
7845 assert( READ_LOCK+1==WRITE_LOCK );
7846 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00007847
drh6a9ad3d2008-04-02 16:29:30 +00007848 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007849 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007850 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007851 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007852 }
7853 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007854 }
7855 return rc;
7856}
drha154dcd2006-03-22 22:10:07 +00007857#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007858
danielk1977b4e9af92007-05-01 17:49:49 +00007859#ifndef SQLITE_OMIT_INCRBLOB
7860/*
7861** Argument pCsr must be a cursor opened for writing on an
7862** INTKEY table currently pointing at a valid table entry.
7863** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00007864**
7865** Only the data content may only be modified, it is not possible to
7866** change the length of the data stored. If this function is called with
7867** parameters that attempt to write past the end of the existing data,
7868** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00007869*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007870int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00007871 int rc;
drh1fee73e2007-08-29 04:00:57 +00007872 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007873 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00007874 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00007875
danielk1977c9000e62009-07-08 13:55:28 +00007876 rc = restoreCursorPosition(pCsr);
7877 if( rc!=SQLITE_OK ){
7878 return rc;
7879 }
danielk19773588ceb2008-06-10 17:30:26 +00007880 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7881 if( pCsr->eState!=CURSOR_VALID ){
7882 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007883 }
7884
danielk1977c9000e62009-07-08 13:55:28 +00007885 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007886 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00007887 ** (b) there is a read/write transaction open,
7888 ** (c) the connection holds a write-lock on the table (if required),
7889 ** (d) there are no conflicting read-locks, and
7890 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007891 */
danielk19774f029602009-07-08 18:45:37 +00007892 if( !pCsr->wrFlag ){
7893 return SQLITE_READONLY;
7894 }
danielk197796d48e92009-06-29 06:00:37 +00007895 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
7896 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
7897 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00007898 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00007899
drhfb192682009-07-11 18:26:28 +00007900 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007901}
danielk19772dec9702007-05-02 16:48:37 +00007902
7903/*
7904** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007905** overflow list for the current row. This is used by cursors opened
7906** for incremental blob IO only.
7907**
7908** This function sets a flag only. The actual page location cache
7909** (stored in BtCursor.aOverflow[]) is allocated and used by function
7910** accessPayload() (the worker function for sqlite3BtreeData() and
7911** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007912*/
7913void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007914 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007915 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007916 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007917 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007918 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007919}
danielk1977b4e9af92007-05-01 17:49:49 +00007920#endif