blob: 4c38882ea21a2ae37a369801ca71e9632cc14458 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
danielk19774152e672007-09-12 17:01:45 +000012** $Id: btree.c,v 1.426 2007/09/12 17:01:45 danielk1977 Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000015** See the header comment on "btreeInt.h" for additional information.
16** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000017*/
drha3152892007-05-05 11:48:52 +000018#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000019
drh8c42ca92001-06-22 19:15:00 +000020/*
drha3152892007-05-05 11:48:52 +000021** The header string that appears at the beginning of every
22** SQLite database.
drh556b2a22005-06-14 16:04:05 +000023*/
drh556b2a22005-06-14 16:04:05 +000024static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000025
drh8c42ca92001-06-22 19:15:00 +000026/*
drha3152892007-05-05 11:48:52 +000027** Set this global variable to 1 to enable tracing using the TRACE
28** macro.
drh615ae552005-01-16 23:21:00 +000029*/
30#if SQLITE_TEST
drh0f7eb612006-08-08 13:51:43 +000031int sqlite3_btree_trace=0; /* True to enable tracing */
drh615ae552005-01-16 23:21:00 +000032#endif
drh615ae552005-01-16 23:21:00 +000033
drh86f8c192007-08-22 00:39:19 +000034
35
drhe53831d2007-08-17 01:14:38 +000036#ifndef SQLITE_OMIT_SHARED_CACHE
37/*
38** A flag to indicate whether or not shared cache is enabled. Also,
39** a list of BtShared objects that are eligible for participation
drhd677b3d2007-08-20 22:48:41 +000040** in shared cache. The variables have file scope during normal builds,
drh86f8c192007-08-22 00:39:19 +000041** but the test harness needs to access these variables so we make them
drhd677b3d2007-08-20 22:48:41 +000042** global for test builds.
drhe53831d2007-08-17 01:14:38 +000043*/
44#ifdef SQLITE_TEST
45BtShared *sqlite3SharedCacheList = 0;
46int sqlite3SharedCacheEnabled = 0;
47#else
48static BtShared *sqlite3SharedCacheList = 0;
49static int sqlite3SharedCacheEnabled = 0;
50#endif
drhe53831d2007-08-17 01:14:38 +000051#endif /* SQLITE_OMIT_SHARED_CACHE */
52
53#ifndef SQLITE_OMIT_SHARED_CACHE
54/*
55** Enable or disable the shared pager and schema features.
56**
57** This routine has no effect on existing database connections.
58** The shared cache setting effects only future calls to
59** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
60*/
61int sqlite3_enable_shared_cache(int enable){
62 sqlite3SharedCacheEnabled = enable;
63 return SQLITE_OK;
64}
65#endif
66
drhd677b3d2007-08-20 22:48:41 +000067
drh615ae552005-01-16 23:21:00 +000068/*
drh66cbd152004-09-01 16:12:25 +000069** Forward declaration
70*/
drh980b1a72006-08-16 16:42:48 +000071static int checkReadLocks(Btree*,Pgno,BtCursor*);
drh66cbd152004-09-01 16:12:25 +000072
danielk1977aef0bf62005-12-30 16:28:01 +000073
74#ifdef SQLITE_OMIT_SHARED_CACHE
75 /*
76 ** The functions queryTableLock(), lockTable() and unlockAllTables()
77 ** manipulate entries in the BtShared.pLock linked list used to store
78 ** shared-cache table level locks. If the library is compiled with the
79 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000080 ** of each BtShared structure and so this locking is not necessary.
81 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000082 */
83 #define queryTableLock(a,b,c) SQLITE_OK
84 #define lockTable(a,b,c) SQLITE_OK
danielk1977da184232006-01-05 11:34:32 +000085 #define unlockAllTables(a)
drhe53831d2007-08-17 01:14:38 +000086#endif
danielk1977aef0bf62005-12-30 16:28:01 +000087
drhe53831d2007-08-17 01:14:38 +000088#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977da184232006-01-05 11:34:32 +000089/*
danielk1977aef0bf62005-12-30 16:28:01 +000090** Query to see if btree handle p may obtain a lock of type eLock
91** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
92** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
danielk1977c87d34d2006-01-06 13:00:28 +000093** SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +000094*/
95static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
96 BtShared *pBt = p->pBt;
97 BtLock *pIter;
98
drh1fee73e2007-08-29 04:00:57 +000099 assert( sqlite3BtreeHoldsMutex(p) );
drhd677b3d2007-08-20 22:48:41 +0000100
danielk1977da184232006-01-05 11:34:32 +0000101 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000102 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000103 return SQLITE_OK;
104 }
105
106 /* This (along with lockTable()) is where the ReadUncommitted flag is
107 ** dealt with. If the caller is querying for a read-lock and the flag is
108 ** set, it is unconditionally granted - even if there are write-locks
109 ** on the table. If a write-lock is requested, the ReadUncommitted flag
110 ** is not considered.
111 **
112 ** In function lockTable(), if a read-lock is demanded and the
113 ** ReadUncommitted flag is set, no entry is added to the locks list
114 ** (BtShared.pLock).
115 **
116 ** To summarize: If the ReadUncommitted flag is set, then read cursors do
117 ** not create or respect table locks. The locking procedure for a
118 ** write-cursor does not change.
119 */
120 if(
121 !p->pSqlite ||
122 0==(p->pSqlite->flags&SQLITE_ReadUncommitted) ||
123 eLock==WRITE_LOCK ||
drh47ded162006-01-06 01:42:58 +0000124 iTab==MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000125 ){
126 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
127 if( pIter->pBtree!=p && pIter->iTable==iTab &&
128 (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
danielk1977c87d34d2006-01-06 13:00:28 +0000129 return SQLITE_LOCKED;
danielk1977da184232006-01-05 11:34:32 +0000130 }
danielk1977aef0bf62005-12-30 16:28:01 +0000131 }
132 }
133 return SQLITE_OK;
134}
drhe53831d2007-08-17 01:14:38 +0000135#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000136
drhe53831d2007-08-17 01:14:38 +0000137#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000138/*
139** Add a lock on the table with root-page iTable to the shared-btree used
140** by Btree handle p. Parameter eLock must be either READ_LOCK or
141** WRITE_LOCK.
142**
143** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
144** SQLITE_NOMEM may also be returned.
145*/
146static int lockTable(Btree *p, Pgno iTable, u8 eLock){
147 BtShared *pBt = p->pBt;
148 BtLock *pLock = 0;
149 BtLock *pIter;
150
drh1fee73e2007-08-29 04:00:57 +0000151 assert( sqlite3BtreeHoldsMutex(p) );
drhd677b3d2007-08-20 22:48:41 +0000152
danielk1977da184232006-01-05 11:34:32 +0000153 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000154 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000155 return SQLITE_OK;
156 }
157
danielk1977aef0bf62005-12-30 16:28:01 +0000158 assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
159
danielk1977da184232006-01-05 11:34:32 +0000160 /* If the read-uncommitted flag is set and a read-lock is requested,
161 ** return early without adding an entry to the BtShared.pLock list. See
162 ** comment in function queryTableLock() for more info on handling
163 ** the ReadUncommitted flag.
164 */
165 if(
166 (p->pSqlite) &&
167 (p->pSqlite->flags&SQLITE_ReadUncommitted) &&
168 (eLock==READ_LOCK) &&
drh47ded162006-01-06 01:42:58 +0000169 iTable!=MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000170 ){
171 return SQLITE_OK;
172 }
173
danielk1977aef0bf62005-12-30 16:28:01 +0000174 /* First search the list for an existing lock on this table. */
175 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
176 if( pIter->iTable==iTable && pIter->pBtree==p ){
177 pLock = pIter;
178 break;
179 }
180 }
181
182 /* If the above search did not find a BtLock struct associating Btree p
183 ** with table iTable, allocate one and link it into the list.
184 */
185 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000186 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000187 if( !pLock ){
188 return SQLITE_NOMEM;
189 }
190 pLock->iTable = iTable;
191 pLock->pBtree = p;
192 pLock->pNext = pBt->pLock;
193 pBt->pLock = pLock;
194 }
195
196 /* Set the BtLock.eLock variable to the maximum of the current lock
197 ** and the requested lock. This means if a write-lock was already held
198 ** and a read-lock requested, we don't incorrectly downgrade the lock.
199 */
200 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000201 if( eLock>pLock->eLock ){
202 pLock->eLock = eLock;
203 }
danielk1977aef0bf62005-12-30 16:28:01 +0000204
205 return SQLITE_OK;
206}
drhe53831d2007-08-17 01:14:38 +0000207#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000208
drhe53831d2007-08-17 01:14:38 +0000209#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000210/*
211** Release all the table locks (locks obtained via calls to the lockTable()
212** procedure) held by Btree handle p.
213*/
214static void unlockAllTables(Btree *p){
215 BtLock **ppIter = &p->pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000216
drh1fee73e2007-08-29 04:00:57 +0000217 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000218 assert( p->sharable || 0==*ppIter );
danielk1977da184232006-01-05 11:34:32 +0000219
danielk1977aef0bf62005-12-30 16:28:01 +0000220 while( *ppIter ){
221 BtLock *pLock = *ppIter;
222 if( pLock->pBtree==p ){
223 *ppIter = pLock->pNext;
drh17435752007-08-16 04:30:38 +0000224 sqlite3_free(pLock);
danielk1977aef0bf62005-12-30 16:28:01 +0000225 }else{
226 ppIter = &pLock->pNext;
227 }
228 }
229}
230#endif /* SQLITE_OMIT_SHARED_CACHE */
231
drh980b1a72006-08-16 16:42:48 +0000232static void releasePage(MemPage *pPage); /* Forward reference */
233
drh1fee73e2007-08-29 04:00:57 +0000234/*
235** Verify that the cursor holds a mutex on the BtShared
236*/
237#ifndef NDEBUG
238static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000239 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000240}
241#endif
242
243
danielk197792d4d7a2007-05-04 12:05:56 +0000244#ifndef SQLITE_OMIT_INCRBLOB
245/*
246** Invalidate the overflow page-list cache for cursor pCur, if any.
247*/
248static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000249 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000250 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000251 pCur->aOverflow = 0;
252}
253
254/*
255** Invalidate the overflow page-list cache for all cursors opened
256** on the shared btree structure pBt.
257*/
258static void invalidateAllOverflowCache(BtShared *pBt){
259 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000260 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000261 for(p=pBt->pCursor; p; p=p->pNext){
262 invalidateOverflowCache(p);
263 }
264}
265#else
266 #define invalidateOverflowCache(x)
267 #define invalidateAllOverflowCache(x)
268#endif
269
drh980b1a72006-08-16 16:42:48 +0000270/*
271** Save the current cursor position in the variables BtCursor.nKey
272** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
273*/
274static int saveCursorPosition(BtCursor *pCur){
275 int rc;
276
277 assert( CURSOR_VALID==pCur->eState );
278 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000279 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000280
281 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
282
283 /* If this is an intKey table, then the above call to BtreeKeySize()
284 ** stores the integer key in pCur->nKey. In this case this value is
285 ** all that is required. Otherwise, if pCur is not open on an intKey
286 ** table, then malloc space for and store the pCur->nKey bytes of key
287 ** data.
288 */
289 if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
drh17435752007-08-16 04:30:38 +0000290 void *pKey = sqlite3_malloc(pCur->nKey);
drh980b1a72006-08-16 16:42:48 +0000291 if( pKey ){
292 rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
293 if( rc==SQLITE_OK ){
294 pCur->pKey = pKey;
295 }else{
drh17435752007-08-16 04:30:38 +0000296 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000297 }
298 }else{
299 rc = SQLITE_NOMEM;
300 }
301 }
302 assert( !pCur->pPage->intKey || !pCur->pKey );
303
304 if( rc==SQLITE_OK ){
305 releasePage(pCur->pPage);
306 pCur->pPage = 0;
307 pCur->eState = CURSOR_REQUIRESEEK;
308 }
309
danielk197792d4d7a2007-05-04 12:05:56 +0000310 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000311 return rc;
312}
313
314/*
315** Save the positions of all cursors except pExcept open on the table
316** with root-page iRoot. Usually, this is called just before cursor
317** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
318*/
319static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
320 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000321 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000322 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000323 for(p=pBt->pCursor; p; p=p->pNext){
324 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
325 p->eState==CURSOR_VALID ){
326 int rc = saveCursorPosition(p);
327 if( SQLITE_OK!=rc ){
328 return rc;
329 }
330 }
331 }
332 return SQLITE_OK;
333}
334
335/*
drhbf700f32007-03-31 02:36:44 +0000336** Clear the current cursor position.
337*/
338static void clearCursorPosition(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000339 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000340 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000341 pCur->pKey = 0;
342 pCur->eState = CURSOR_INVALID;
343}
344
345/*
drh980b1a72006-08-16 16:42:48 +0000346** Restore the cursor to the position it was in (or as close to as possible)
347** when saveCursorPosition() was called. Note that this call deletes the
348** saved position info stored by saveCursorPosition(), so there can be
349** at most one effective restoreOrClearCursorPosition() call after each
350** saveCursorPosition().
351**
352** If the second argument argument - doSeek - is false, then instead of
353** returning the cursor to it's saved position, any saved position is deleted
354** and the cursor state set to CURSOR_INVALID.
355*/
drh16a9b832007-05-05 18:39:25 +0000356int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000357 int rc;
drh1fee73e2007-08-29 04:00:57 +0000358 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000359 assert( pCur->eState>=CURSOR_REQUIRESEEK );
360 if( pCur->eState==CURSOR_FAULT ){
361 return pCur->skip;
362 }
danielk197732a0d8b2007-05-04 19:03:02 +0000363#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +0000364 if( pCur->isIncrblobHandle ){
365 return SQLITE_ABORT;
366 }
danielk197732a0d8b2007-05-04 19:03:02 +0000367#endif
drh980b1a72006-08-16 16:42:48 +0000368 pCur->eState = CURSOR_INVALID;
drhbf700f32007-03-31 02:36:44 +0000369 rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
drh980b1a72006-08-16 16:42:48 +0000370 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000371 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000372 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000373 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000374 }
375 return rc;
376}
377
drhbf700f32007-03-31 02:36:44 +0000378#define restoreOrClearCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000379 (p->eState>=CURSOR_REQUIRESEEK ? \
drh16a9b832007-05-05 18:39:25 +0000380 sqlite3BtreeRestoreOrClearCursorPosition(p) : \
381 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000382
danielk1977599fcba2004-11-08 07:13:13 +0000383#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000384/*
drha3152892007-05-05 11:48:52 +0000385** Given a page number of a regular database page, return the page
386** number for the pointer-map page that contains the entry for the
387** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000388*/
danielk1977266664d2006-02-10 08:24:21 +0000389static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
drhd677b3d2007-08-20 22:48:41 +0000390 int nPagesPerMapPage, iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000391 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000392 nPagesPerMapPage = (pBt->usableSize/5)+1;
393 iPtrMap = (pgno-2)/nPagesPerMapPage;
394 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000395 if( ret==PENDING_BYTE_PAGE(pBt) ){
396 ret++;
397 }
398 return ret;
399}
danielk1977a19df672004-11-03 11:37:07 +0000400
danielk1977afcdd022004-10-31 16:25:42 +0000401/*
danielk1977afcdd022004-10-31 16:25:42 +0000402** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000403**
404** This routine updates the pointer map entry for page number 'key'
405** so that it maps to type 'eType' and parent page number 'pgno'.
406** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000407*/
danielk1977aef0bf62005-12-30 16:28:01 +0000408static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000409 DbPage *pDbPage; /* The pointer map page */
410 u8 *pPtrmap; /* The pointer map data */
411 Pgno iPtrmap; /* The pointer map page number */
412 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000413 int rc;
414
drh1fee73e2007-08-29 04:00:57 +0000415 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000416 /* The master-journal page number must never be used as a pointer map page */
417 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
418
danielk1977ac11ee62005-01-15 12:45:51 +0000419 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000420 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000421 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000422 }
danielk1977266664d2006-02-10 08:24:21 +0000423 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000424 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000425 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000426 return rc;
427 }
danielk1977266664d2006-02-10 08:24:21 +0000428 offset = PTRMAP_PTROFFSET(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000429 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000430
drh615ae552005-01-16 23:21:00 +0000431 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
432 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000433 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000434 if( rc==SQLITE_OK ){
435 pPtrmap[offset] = eType;
436 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000437 }
danielk1977afcdd022004-10-31 16:25:42 +0000438 }
439
danielk19773b8a05f2007-03-19 17:44:26 +0000440 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000441 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000442}
443
444/*
445** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000446**
447** This routine retrieves the pointer map entry for page 'key', writing
448** the type and parent page number to *pEType and *pPgno respectively.
449** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000450*/
danielk1977aef0bf62005-12-30 16:28:01 +0000451static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000452 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000453 int iPtrmap; /* Pointer map page index */
454 u8 *pPtrmap; /* Pointer map page data */
455 int offset; /* Offset of entry in pointer map */
456 int rc;
457
drh1fee73e2007-08-29 04:00:57 +0000458 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000459
danielk1977266664d2006-02-10 08:24:21 +0000460 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000461 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000462 if( rc!=0 ){
463 return rc;
464 }
danielk19773b8a05f2007-03-19 17:44:26 +0000465 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000466
danielk1977266664d2006-02-10 08:24:21 +0000467 offset = PTRMAP_PTROFFSET(pBt, key);
drh43617e92006-03-06 20:55:46 +0000468 assert( pEType!=0 );
469 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000470 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000471
danielk19773b8a05f2007-03-19 17:44:26 +0000472 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000473 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000474 return SQLITE_OK;
475}
476
477#endif /* SQLITE_OMIT_AUTOVACUUM */
478
drh0d316a42002-08-11 20:10:47 +0000479/*
drh271efa52004-05-30 19:19:05 +0000480** Given a btree page and a cell index (0 means the first cell on
481** the page, 1 means the second cell, and so forth) return a pointer
482** to the cell content.
483**
484** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000485*/
danielk19771cc5ed82007-05-16 17:28:43 +0000486#define findCell(pPage, iCell) \
487 ((pPage)->aData + get2byte(&(pPage)->aData[(pPage)->cellOffset+2*(iCell)]))
drhe6e4d6b2007-08-05 23:52:05 +0000488#ifdef SQLITE_TEST
drh16a9b832007-05-05 18:39:25 +0000489u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell){
drh43605152004-05-29 21:46:49 +0000490 assert( iCell>=0 );
drh029f3f82007-06-20 15:14:10 +0000491 assert( iCell<get2byte(&pPage->aData[pPage->hdrOffset+3]) );
danielk19771cc5ed82007-05-16 17:28:43 +0000492 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000493}
drhe6e4d6b2007-08-05 23:52:05 +0000494#endif
drh43605152004-05-29 21:46:49 +0000495
496/*
drh16a9b832007-05-05 18:39:25 +0000497** This a more complex version of sqlite3BtreeFindCell() that works for
drh43605152004-05-29 21:46:49 +0000498** pages that do contain overflow cells. See insert
499*/
500static u8 *findOverflowCell(MemPage *pPage, int iCell){
501 int i;
drh1fee73e2007-08-29 04:00:57 +0000502 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000503 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000504 int k;
505 struct _OvflCell *pOvfl;
506 pOvfl = &pPage->aOvfl[i];
507 k = pOvfl->idx;
508 if( k<=iCell ){
509 if( k==iCell ){
510 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000511 }
512 iCell--;
513 }
514 }
danielk19771cc5ed82007-05-16 17:28:43 +0000515 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000516}
517
518/*
519** Parse a cell content block and fill in the CellInfo structure. There
drh16a9b832007-05-05 18:39:25 +0000520** are two versions of this function. sqlite3BtreeParseCell() takes a
521** cell index as the second argument and sqlite3BtreeParseCellPtr()
522** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000523**
524** Within this file, the parseCell() macro can be called instead of
525** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000526*/
drh16a9b832007-05-05 18:39:25 +0000527void sqlite3BtreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000528 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000529 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000530 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000531){
drh271efa52004-05-30 19:19:05 +0000532 int n; /* Number bytes in cell content header */
533 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000534
drh1fee73e2007-08-29 04:00:57 +0000535 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000536
drh43605152004-05-29 21:46:49 +0000537 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000538 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000539 n = pPage->childPtrSize;
540 assert( n==4-4*pPage->leaf );
drh8b18dd42004-05-12 19:18:15 +0000541 if( pPage->hasData ){
drh271efa52004-05-30 19:19:05 +0000542 n += getVarint32(&pCell[n], &nPayload);
drh8b18dd42004-05-12 19:18:15 +0000543 }else{
drh271efa52004-05-30 19:19:05 +0000544 nPayload = 0;
drh3aac2dd2004-04-26 14:10:20 +0000545 }
drh271efa52004-05-30 19:19:05 +0000546 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000547 if( pPage->intKey ){
548 n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
549 }else{
550 u32 x;
551 n += getVarint32(&pCell[n], &x);
552 pInfo->nKey = x;
553 nPayload += x;
drh6f11bef2004-05-13 01:12:56 +0000554 }
drh72365832007-03-06 15:53:44 +0000555 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000556 pInfo->nHeader = n;
drh271efa52004-05-30 19:19:05 +0000557 if( nPayload<=pPage->maxLocal ){
558 /* This is the (easy) common case where the entire payload fits
559 ** on the local page. No overflow is required.
560 */
561 int nSize; /* Total size of cell content in bytes */
drh6f11bef2004-05-13 01:12:56 +0000562 pInfo->nLocal = nPayload;
563 pInfo->iOverflow = 0;
drh271efa52004-05-30 19:19:05 +0000564 nSize = nPayload + n;
565 if( nSize<4 ){
566 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000567 }
drh271efa52004-05-30 19:19:05 +0000568 pInfo->nSize = nSize;
drh6f11bef2004-05-13 01:12:56 +0000569 }else{
drh271efa52004-05-30 19:19:05 +0000570 /* If the payload will not fit completely on the local page, we have
571 ** to decide how much to store locally and how much to spill onto
572 ** overflow pages. The strategy is to minimize the amount of unused
573 ** space on overflow pages while keeping the amount of local storage
574 ** in between minLocal and maxLocal.
575 **
576 ** Warning: changing the way overflow payload is distributed in any
577 ** way will result in an incompatible file format.
578 */
579 int minLocal; /* Minimum amount of payload held locally */
580 int maxLocal; /* Maximum amount of payload held locally */
581 int surplus; /* Overflow payload available for local storage */
582
583 minLocal = pPage->minLocal;
584 maxLocal = pPage->maxLocal;
585 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000586 if( surplus <= maxLocal ){
587 pInfo->nLocal = surplus;
588 }else{
589 pInfo->nLocal = minLocal;
590 }
591 pInfo->iOverflow = pInfo->nLocal + n;
592 pInfo->nSize = pInfo->iOverflow + 4;
593 }
drh3aac2dd2004-04-26 14:10:20 +0000594}
danielk19771cc5ed82007-05-16 17:28:43 +0000595#define parseCell(pPage, iCell, pInfo) \
596 sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
drh16a9b832007-05-05 18:39:25 +0000597void sqlite3BtreeParseCell(
drh43605152004-05-29 21:46:49 +0000598 MemPage *pPage, /* Page containing the cell */
599 int iCell, /* The cell index. First cell is 0 */
600 CellInfo *pInfo /* Fill in this structure */
601){
danielk19771cc5ed82007-05-16 17:28:43 +0000602 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000603}
drh3aac2dd2004-04-26 14:10:20 +0000604
605/*
drh43605152004-05-29 21:46:49 +0000606** Compute the total number of bytes that a Cell needs in the cell
607** data area of the btree-page. The return number includes the cell
608** data header and the local payload, but not any overflow page or
609** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000610*/
danielk1977bc6ada42004-06-30 08:20:16 +0000611#ifndef NDEBUG
drh43605152004-05-29 21:46:49 +0000612static int cellSize(MemPage *pPage, int iCell){
drh6f11bef2004-05-13 01:12:56 +0000613 CellInfo info;
drh16a9b832007-05-05 18:39:25 +0000614 sqlite3BtreeParseCell(pPage, iCell, &info);
drh43605152004-05-29 21:46:49 +0000615 return info.nSize;
616}
danielk1977bc6ada42004-06-30 08:20:16 +0000617#endif
drh43605152004-05-29 21:46:49 +0000618static int cellSizePtr(MemPage *pPage, u8 *pCell){
619 CellInfo info;
drh16a9b832007-05-05 18:39:25 +0000620 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +0000621 return info.nSize;
drh3b7511c2001-05-26 13:15:44 +0000622}
623
danielk197779a40da2005-01-16 08:00:01 +0000624#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000625/*
danielk197726836652005-01-17 01:33:13 +0000626** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +0000627** to an overflow page, insert an entry into the pointer-map
628** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +0000629*/
danielk197726836652005-01-17 01:33:13 +0000630static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
danielk197779a40da2005-01-16 08:00:01 +0000631 if( pCell ){
632 CellInfo info;
drh16a9b832007-05-05 18:39:25 +0000633 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh72365832007-03-06 15:53:44 +0000634 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk197779a40da2005-01-16 08:00:01 +0000635 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
636 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
637 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
638 }
danielk1977ac11ee62005-01-15 12:45:51 +0000639 }
danielk197779a40da2005-01-16 08:00:01 +0000640 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +0000641}
danielk197726836652005-01-17 01:33:13 +0000642/*
643** If the cell with index iCell on page pPage contains a pointer
644** to an overflow page, insert an entry into the pointer-map
645** for the overflow page.
646*/
647static int ptrmapPutOvfl(MemPage *pPage, int iCell){
648 u8 *pCell;
drh1fee73e2007-08-29 04:00:57 +0000649 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197726836652005-01-17 01:33:13 +0000650 pCell = findOverflowCell(pPage, iCell);
651 return ptrmapPutOvflPtr(pPage, pCell);
652}
danielk197779a40da2005-01-16 08:00:01 +0000653#endif
654
danielk1977ac11ee62005-01-15 12:45:51 +0000655
drhda200cc2004-05-09 11:51:38 +0000656/*
drh72f82862001-05-24 21:06:34 +0000657** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +0000658** end of the page and all free space is collected into one
659** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +0000660** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +0000661*/
drh2e38c322004-09-03 18:38:44 +0000662static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +0000663 int i; /* Loop counter */
664 int pc; /* Address of a i-th cell */
665 int addr; /* Offset of first byte after cell pointer array */
666 int hdr; /* Offset to the page header */
667 int size; /* Size of a cell */
668 int usableSize; /* Number of usable bytes on a page */
669 int cellOffset; /* Offset to the cell pointer array */
670 int brk; /* Offset to the cell content area */
671 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +0000672 unsigned char *data; /* The page data */
673 unsigned char *temp; /* Temp area for cell content */
drh2af926b2001-05-15 00:39:25 +0000674
danielk19773b8a05f2007-03-19 17:44:26 +0000675 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000676 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +0000677 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +0000678 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +0000679 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh17435752007-08-16 04:30:38 +0000680 temp = sqlite3_malloc( pPage->pBt->pageSize );
drh2e38c322004-09-03 18:38:44 +0000681 if( temp==0 ) return SQLITE_NOMEM;
drh43605152004-05-29 21:46:49 +0000682 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +0000683 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000684 cellOffset = pPage->cellOffset;
685 nCell = pPage->nCell;
686 assert( nCell==get2byte(&data[hdr+3]) );
687 usableSize = pPage->pBt->usableSize;
688 brk = get2byte(&data[hdr+5]);
689 memcpy(&temp[brk], &data[brk], usableSize - brk);
690 brk = usableSize;
691 for(i=0; i<nCell; i++){
692 u8 *pAddr; /* The i-th cell pointer */
693 pAddr = &data[cellOffset + i*2];
694 pc = get2byte(pAddr);
695 assert( pc<pPage->pBt->usableSize );
696 size = cellSizePtr(pPage, &temp[pc]);
697 brk -= size;
698 memcpy(&data[brk], &temp[pc], size);
699 put2byte(pAddr, brk);
drh2af926b2001-05-15 00:39:25 +0000700 }
drh43605152004-05-29 21:46:49 +0000701 assert( brk>=cellOffset+2*nCell );
702 put2byte(&data[hdr+5], brk);
703 data[hdr+1] = 0;
704 data[hdr+2] = 0;
705 data[hdr+7] = 0;
706 addr = cellOffset+2*nCell;
707 memset(&data[addr], 0, brk-addr);
drh17435752007-08-16 04:30:38 +0000708 sqlite3_free(temp);
drh2e38c322004-09-03 18:38:44 +0000709 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +0000710}
711
drha059ad02001-04-17 20:09:11 +0000712/*
drh43605152004-05-29 21:46:49 +0000713** Allocate nByte bytes of space on a page.
drhbd03cae2001-06-02 02:40:57 +0000714**
drh9e572e62004-04-23 23:43:10 +0000715** Return the index into pPage->aData[] of the first byte of
drhbd03cae2001-06-02 02:40:57 +0000716** the new allocation. Or return 0 if there is not enough free
717** space on the page to satisfy the allocation request.
drh2af926b2001-05-15 00:39:25 +0000718**
drh72f82862001-05-24 21:06:34 +0000719** If the page contains nBytes of free space but does not contain
drh8b2f49b2001-06-08 00:21:52 +0000720** nBytes of contiguous free space, then this routine automatically
721** calls defragementPage() to consolidate all free space before
722** allocating the new chunk.
drh7e3b0a02001-04-28 16:52:40 +0000723*/
drh9e572e62004-04-23 23:43:10 +0000724static int allocateSpace(MemPage *pPage, int nByte){
drh3aac2dd2004-04-26 14:10:20 +0000725 int addr, pc, hdr;
drh9e572e62004-04-23 23:43:10 +0000726 int size;
drh24cd67e2004-05-10 16:18:47 +0000727 int nFrag;
drh43605152004-05-29 21:46:49 +0000728 int top;
729 int nCell;
730 int cellOffset;
drh9e572e62004-04-23 23:43:10 +0000731 unsigned char *data;
drh43605152004-05-29 21:46:49 +0000732
drh9e572e62004-04-23 23:43:10 +0000733 data = pPage->aData;
danielk19773b8a05f2007-03-19 17:44:26 +0000734 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000735 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +0000736 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh9e572e62004-04-23 23:43:10 +0000737 if( nByte<4 ) nByte = 4;
drh43605152004-05-29 21:46:49 +0000738 if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
739 pPage->nFree -= nByte;
drh9e572e62004-04-23 23:43:10 +0000740 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000741
742 nFrag = data[hdr+7];
743 if( nFrag<60 ){
744 /* Search the freelist looking for a slot big enough to satisfy the
745 ** space request. */
746 addr = hdr+1;
747 while( (pc = get2byte(&data[addr]))>0 ){
748 size = get2byte(&data[pc+2]);
749 if( size>=nByte ){
750 if( size<nByte+4 ){
751 memcpy(&data[addr], &data[pc], 2);
752 data[hdr+7] = nFrag + size - nByte;
753 return pc;
754 }else{
755 put2byte(&data[pc+2], size-nByte);
756 return pc + size - nByte;
757 }
758 }
759 addr = pc;
drh9e572e62004-04-23 23:43:10 +0000760 }
761 }
drh43605152004-05-29 21:46:49 +0000762
763 /* Allocate memory from the gap in between the cell pointer array
764 ** and the cell content area.
765 */
766 top = get2byte(&data[hdr+5]);
767 nCell = get2byte(&data[hdr+3]);
768 cellOffset = pPage->cellOffset;
769 if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
drh2e38c322004-09-03 18:38:44 +0000770 if( defragmentPage(pPage) ) return 0;
drh43605152004-05-29 21:46:49 +0000771 top = get2byte(&data[hdr+5]);
drh2af926b2001-05-15 00:39:25 +0000772 }
drh43605152004-05-29 21:46:49 +0000773 top -= nByte;
774 assert( cellOffset + 2*nCell <= top );
775 put2byte(&data[hdr+5], top);
776 return top;
drh7e3b0a02001-04-28 16:52:40 +0000777}
778
779/*
drh9e572e62004-04-23 23:43:10 +0000780** Return a section of the pPage->aData to the freelist.
781** The first byte of the new free block is pPage->aDisk[start]
782** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +0000783**
784** Most of the effort here is involved in coalesing adjacent
785** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000786*/
drh9e572e62004-04-23 23:43:10 +0000787static void freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +0000788 int addr, pbegin, hdr;
drh9e572e62004-04-23 23:43:10 +0000789 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +0000790
drh9e572e62004-04-23 23:43:10 +0000791 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +0000792 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000793 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +0000794 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +0000795 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh9e572e62004-04-23 23:43:10 +0000796 if( size<4 ) size = 4;
797
drhfcce93f2006-02-22 03:08:32 +0000798#ifdef SQLITE_SECURE_DELETE
799 /* Overwrite deleted information with zeros when the SECURE_DELETE
800 ** option is enabled at compile-time */
801 memset(&data[start], 0, size);
802#endif
803
drh9e572e62004-04-23 23:43:10 +0000804 /* Add the space back into the linked list of freeblocks */
drh43605152004-05-29 21:46:49 +0000805 hdr = pPage->hdrOffset;
806 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +0000807 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +0000808 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000809 assert( pbegin>addr );
810 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +0000811 }
drhb6f41482004-05-14 01:58:11 +0000812 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000813 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +0000814 put2byte(&data[addr], start);
815 put2byte(&data[start], pbegin);
816 put2byte(&data[start+2], size);
drh2af926b2001-05-15 00:39:25 +0000817 pPage->nFree += size;
drh9e572e62004-04-23 23:43:10 +0000818
819 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +0000820 addr = pPage->hdrOffset + 1;
821 while( (pbegin = get2byte(&data[addr]))>0 ){
drh9e572e62004-04-23 23:43:10 +0000822 int pnext, psize;
drh3aac2dd2004-04-26 14:10:20 +0000823 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +0000824 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +0000825 pnext = get2byte(&data[pbegin]);
826 psize = get2byte(&data[pbegin+2]);
827 if( pbegin + psize + 3 >= pnext && pnext>0 ){
828 int frag = pnext - (pbegin+psize);
drh43605152004-05-29 21:46:49 +0000829 assert( frag<=data[pPage->hdrOffset+7] );
830 data[pPage->hdrOffset+7] -= frag;
drh9e572e62004-04-23 23:43:10 +0000831 put2byte(&data[pbegin], get2byte(&data[pnext]));
832 put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
833 }else{
drh3aac2dd2004-04-26 14:10:20 +0000834 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +0000835 }
836 }
drh7e3b0a02001-04-28 16:52:40 +0000837
drh43605152004-05-29 21:46:49 +0000838 /* If the cell content area begins with a freeblock, remove it. */
839 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
840 int top;
841 pbegin = get2byte(&data[hdr+1]);
842 memcpy(&data[hdr+1], &data[pbegin], 2);
843 top = get2byte(&data[hdr+5]);
844 put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
drh4b70f112004-05-02 21:12:19 +0000845 }
drh4b70f112004-05-02 21:12:19 +0000846}
847
848/*
drh271efa52004-05-30 19:19:05 +0000849** Decode the flags byte (the first byte of the header) for a page
850** and initialize fields of the MemPage structure accordingly.
851*/
852static void decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +0000853 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +0000854
855 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +0000856 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh271efa52004-05-30 19:19:05 +0000857 pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
858 pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
859 pPage->leaf = (flagByte & PTF_LEAF)!=0;
860 pPage->childPtrSize = 4*(pPage->leaf==0);
861 pBt = pPage->pBt;
862 if( flagByte & PTF_LEAFDATA ){
863 pPage->leafData = 1;
864 pPage->maxLocal = pBt->maxLeaf;
865 pPage->minLocal = pBt->minLeaf;
866 }else{
867 pPage->leafData = 0;
868 pPage->maxLocal = pBt->maxLocal;
869 pPage->minLocal = pBt->minLocal;
870 }
871 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
872}
873
874/*
drh7e3b0a02001-04-28 16:52:40 +0000875** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +0000876**
drhbd03cae2001-06-02 02:40:57 +0000877** The pParent parameter must be a pointer to the MemPage which
drh9e572e62004-04-23 23:43:10 +0000878** is the parent of the page being initialized. The root of a
879** BTree has no parent and so for that page, pParent==NULL.
drh5e2f8b92001-05-28 00:41:15 +0000880**
drh72f82862001-05-24 21:06:34 +0000881** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +0000882** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +0000883** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
884** guarantee that the page is well-formed. It only shows that
885** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +0000886*/
drh16a9b832007-05-05 18:39:25 +0000887int sqlite3BtreeInitPage(
drh3aac2dd2004-04-26 14:10:20 +0000888 MemPage *pPage, /* The page to be initialized */
drh9e572e62004-04-23 23:43:10 +0000889 MemPage *pParent /* The parent. Might be NULL */
890){
drh271efa52004-05-30 19:19:05 +0000891 int pc; /* Address of a freeblock within pPage->aData[] */
drh271efa52004-05-30 19:19:05 +0000892 int hdr; /* Offset to beginning of page header */
893 u8 *data; /* Equal to pPage->aData */
danielk1977aef0bf62005-12-30 16:28:01 +0000894 BtShared *pBt; /* The main btree structure */
drh271efa52004-05-30 19:19:05 +0000895 int usableSize; /* Amount of usable space on each page */
896 int cellOffset; /* Offset from start of page to first cell pointer */
897 int nFree; /* Number of unused bytes on the page */
898 int top; /* First byte of the cell content area */
drh2af926b2001-05-15 00:39:25 +0000899
drh2e38c322004-09-03 18:38:44 +0000900 pBt = pPage->pBt;
901 assert( pBt!=0 );
902 assert( pParent==0 || pParent->pBt==pBt );
drh1fee73e2007-08-29 04:00:57 +0000903 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +0000904 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +0000905 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
906 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhee696e22004-08-30 16:52:17 +0000907 if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
908 /* The parent page should never change unless the file is corrupt */
drh49285702005-09-17 15:20:26 +0000909 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +0000910 }
drh10617cd2004-05-14 15:27:27 +0000911 if( pPage->isInit ) return SQLITE_OK;
drhda200cc2004-05-09 11:51:38 +0000912 if( pPage->pParent==0 && pParent!=0 ){
913 pPage->pParent = pParent;
danielk19773b8a05f2007-03-19 17:44:26 +0000914 sqlite3PagerRef(pParent->pDbPage);
drh5e2f8b92001-05-28 00:41:15 +0000915 }
drhde647132004-05-07 17:57:49 +0000916 hdr = pPage->hdrOffset;
drha34b6762004-05-07 13:30:42 +0000917 data = pPage->aData;
drh271efa52004-05-30 19:19:05 +0000918 decodeFlags(pPage, data[hdr]);
drh43605152004-05-29 21:46:49 +0000919 pPage->nOverflow = 0;
drhc8629a12004-05-08 20:07:40 +0000920 pPage->idxShift = 0;
drh2e38c322004-09-03 18:38:44 +0000921 usableSize = pBt->usableSize;
drh43605152004-05-29 21:46:49 +0000922 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
923 top = get2byte(&data[hdr+5]);
924 pPage->nCell = get2byte(&data[hdr+3]);
drh2e38c322004-09-03 18:38:44 +0000925 if( pPage->nCell>MX_CELL(pBt) ){
drhee696e22004-08-30 16:52:17 +0000926 /* To many cells for a single page. The page must be corrupt */
drh49285702005-09-17 15:20:26 +0000927 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +0000928 }
929 if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
930 /* All pages must have at least one cell, except for root pages */
drh49285702005-09-17 15:20:26 +0000931 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +0000932 }
drh9e572e62004-04-23 23:43:10 +0000933
934 /* Compute the total free space on the page */
drh9e572e62004-04-23 23:43:10 +0000935 pc = get2byte(&data[hdr+1]);
drh43605152004-05-29 21:46:49 +0000936 nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
drh9e572e62004-04-23 23:43:10 +0000937 while( pc>0 ){
938 int next, size;
drhee696e22004-08-30 16:52:17 +0000939 if( pc>usableSize-4 ){
940 /* Free block is off the page */
drh49285702005-09-17 15:20:26 +0000941 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +0000942 }
drh9e572e62004-04-23 23:43:10 +0000943 next = get2byte(&data[pc]);
944 size = get2byte(&data[pc+2]);
drhee696e22004-08-30 16:52:17 +0000945 if( next>0 && next<=pc+size+3 ){
946 /* Free blocks must be in accending order */
drh49285702005-09-17 15:20:26 +0000947 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +0000948 }
drh3add3672004-05-15 00:29:24 +0000949 nFree += size;
drh9e572e62004-04-23 23:43:10 +0000950 pc = next;
951 }
drh3add3672004-05-15 00:29:24 +0000952 pPage->nFree = nFree;
drhee696e22004-08-30 16:52:17 +0000953 if( nFree>=usableSize ){
954 /* Free space cannot exceed total page size */
drh49285702005-09-17 15:20:26 +0000955 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +0000956 }
drh9e572e62004-04-23 23:43:10 +0000957
drhde647132004-05-07 17:57:49 +0000958 pPage->isInit = 1;
drh9e572e62004-04-23 23:43:10 +0000959 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +0000960}
961
962/*
drh8b2f49b2001-06-08 00:21:52 +0000963** Set up a raw page so that it looks like a database page holding
964** no entries.
drhbd03cae2001-06-02 02:40:57 +0000965*/
drh9e572e62004-04-23 23:43:10 +0000966static void zeroPage(MemPage *pPage, int flags){
967 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +0000968 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +0000969 int hdr = pPage->hdrOffset;
drh9e572e62004-04-23 23:43:10 +0000970 int first;
971
danielk19773b8a05f2007-03-19 17:44:26 +0000972 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +0000973 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
974 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +0000975 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +0000976 assert( sqlite3_mutex_held(pBt->mutex) );
drhb6f41482004-05-14 01:58:11 +0000977 memset(&data[hdr], 0, pBt->usableSize - hdr);
drh9e572e62004-04-23 23:43:10 +0000978 data[hdr] = flags;
drh43605152004-05-29 21:46:49 +0000979 first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
980 memset(&data[hdr+1], 0, 4);
981 data[hdr+7] = 0;
982 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +0000983 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +0000984 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +0000985 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +0000986 pPage->cellOffset = first;
987 pPage->nOverflow = 0;
drhda200cc2004-05-09 11:51:38 +0000988 pPage->idxShift = 0;
drh43605152004-05-29 21:46:49 +0000989 pPage->nCell = 0;
drhda200cc2004-05-09 11:51:38 +0000990 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +0000991}
992
993/*
drh3aac2dd2004-04-26 14:10:20 +0000994** Get a page from the pager. Initialize the MemPage.pBt and
995** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +0000996**
997** If the noContent flag is set, it means that we do not care about
998** the content of the page at this time. So do not go to the disk
999** to fetch the content. Just fill in the content with zeros for now.
1000** If in the future we call sqlite3PagerWrite() on this page, that
1001** means we have started to be concerned about content and the disk
1002** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001003*/
drh16a9b832007-05-05 18:39:25 +00001004int sqlite3BtreeGetPage(
1005 BtShared *pBt, /* The btree */
1006 Pgno pgno, /* Number of the page to fetch */
1007 MemPage **ppPage, /* Return the page in this parameter */
1008 int noContent /* Do not load page content if true */
1009){
drh3aac2dd2004-04-26 14:10:20 +00001010 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001011 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001012 DbPage *pDbPage;
1013
drh1fee73e2007-08-29 04:00:57 +00001014 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001015 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001016 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001017 pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
1018 pPage->aData = sqlite3PagerGetData(pDbPage);
1019 pPage->pDbPage = pDbPage;
drh3aac2dd2004-04-26 14:10:20 +00001020 pPage->pBt = pBt;
1021 pPage->pgno = pgno;
drhde647132004-05-07 17:57:49 +00001022 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
drh3aac2dd2004-04-26 14:10:20 +00001023 *ppPage = pPage;
1024 return SQLITE_OK;
1025}
1026
1027/*
drhde647132004-05-07 17:57:49 +00001028** Get a page from the pager and initialize it. This routine
1029** is just a convenience wrapper around separate calls to
drh16a9b832007-05-05 18:39:25 +00001030** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
drhde647132004-05-07 17:57:49 +00001031*/
1032static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001033 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001034 Pgno pgno, /* Number of the page to get */
1035 MemPage **ppPage, /* Write the page pointer here */
1036 MemPage *pParent /* Parent of the page */
1037){
1038 int rc;
drh1fee73e2007-08-29 04:00:57 +00001039 assert( sqlite3_mutex_held(pBt->mutex) );
drhee696e22004-08-30 16:52:17 +00001040 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001041 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001042 }
drh16a9b832007-05-05 18:39:25 +00001043 rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
drh10617cd2004-05-14 15:27:27 +00001044 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
drh16a9b832007-05-05 18:39:25 +00001045 rc = sqlite3BtreeInitPage(*ppPage, pParent);
drhde647132004-05-07 17:57:49 +00001046 }
1047 return rc;
1048}
1049
1050/*
drh3aac2dd2004-04-26 14:10:20 +00001051** Release a MemPage. This should be called once for each prior
drh16a9b832007-05-05 18:39:25 +00001052** call to sqlite3BtreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001053*/
drh4b70f112004-05-02 21:12:19 +00001054static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001055 if( pPage ){
1056 assert( pPage->aData );
1057 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001058 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1059 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001060 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001061 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001062 }
1063}
1064
1065/*
drh72f82862001-05-24 21:06:34 +00001066** This routine is called when the reference count for a page
1067** reaches zero. We need to unref the pParent pointer when that
1068** happens.
1069*/
danielk19773b8a05f2007-03-19 17:44:26 +00001070static void pageDestructor(DbPage *pData, int pageSize){
drh07d183d2005-05-01 22:52:42 +00001071 MemPage *pPage;
1072 assert( (pageSize & 7)==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001073 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
drh1fee73e2007-08-29 04:00:57 +00001074 assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) );
drh72f82862001-05-24 21:06:34 +00001075 if( pPage->pParent ){
1076 MemPage *pParent = pPage->pParent;
drhd0679ed2007-08-28 22:24:34 +00001077 assert( pParent->pBt==pPage->pBt );
drh72f82862001-05-24 21:06:34 +00001078 pPage->pParent = 0;
drha34b6762004-05-07 13:30:42 +00001079 releasePage(pParent);
drh72f82862001-05-24 21:06:34 +00001080 }
drh3aac2dd2004-04-26 14:10:20 +00001081 pPage->isInit = 0;
drh72f82862001-05-24 21:06:34 +00001082}
1083
1084/*
drha6abd042004-06-09 17:37:22 +00001085** During a rollback, when the pager reloads information into the cache
1086** so that the cache is restored to its original state at the start of
1087** the transaction, for each page restored this routine is called.
1088**
1089** This routine needs to reset the extra data section at the end of the
1090** page to agree with the restored data.
1091*/
danielk19773b8a05f2007-03-19 17:44:26 +00001092static void pageReinit(DbPage *pData, int pageSize){
drh07d183d2005-05-01 22:52:42 +00001093 MemPage *pPage;
1094 assert( (pageSize & 7)==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001095 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
drha6abd042004-06-09 17:37:22 +00001096 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001097 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001098 pPage->isInit = 0;
drh16a9b832007-05-05 18:39:25 +00001099 sqlite3BtreeInitPage(pPage, pPage->pParent);
drha6abd042004-06-09 17:37:22 +00001100 }
1101}
1102
1103/*
drhad3e0102004-09-03 23:32:18 +00001104** Open a database file.
1105**
drh382c0242001-10-06 16:33:02 +00001106** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001107** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001108** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001109** If zFilename is ":memory:" then an in-memory database is created
1110** that is automatically destroyed when it is closed.
drha059ad02001-04-17 20:09:11 +00001111*/
drh23e11ca2004-05-04 17:27:28 +00001112int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001113 const char *zFilename, /* Name of the file containing the BTree database */
danielk1977aef0bf62005-12-30 16:28:01 +00001114 sqlite3 *pSqlite, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001115 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001116 int flags, /* Options */
1117 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001118){
drhd677b3d2007-08-20 22:48:41 +00001119 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
drhe53831d2007-08-17 01:14:38 +00001120 BtShared *pBt = 0; /* Shared part of btree structure */
danielk1977aef0bf62005-12-30 16:28:01 +00001121 Btree *p; /* Handle to return */
danielk1977dddbcdc2007-04-26 14:42:34 +00001122 int rc = SQLITE_OK;
drh90f5ecb2004-07-22 01:19:35 +00001123 int nReserve;
1124 unsigned char zDbHeader[100];
danielk1977aef0bf62005-12-30 16:28:01 +00001125
1126 /* Set the variable isMemdb to true for an in-memory database, or
1127 ** false for a file-based database. This symbol is only required if
1128 ** either of the shared-data or autovacuum features are compiled
1129 ** into the library.
1130 */
1131#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1132 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001133 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001134 #else
drh980b1a72006-08-16 16:42:48 +00001135 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001136 #endif
1137#endif
1138
drhd0679ed2007-08-28 22:24:34 +00001139 assert( pSqlite!=0 );
1140 assert( sqlite3_mutex_held(pSqlite->mutex) );
drh153c62c2007-08-24 03:51:33 +00001141
drhd0679ed2007-08-28 22:24:34 +00001142 pVfs = pSqlite->pVfs;
drh17435752007-08-16 04:30:38 +00001143 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001144 if( !p ){
1145 return SQLITE_NOMEM;
1146 }
1147 p->inTrans = TRANS_NONE;
1148 p->pSqlite = pSqlite;
1149
drh198bf392006-01-06 21:52:49 +00001150#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001151 /*
1152 ** If this Btree is a candidate for shared cache, try to find an
1153 ** existing BtShared object that we can share with
1154 */
1155 if( (flags & BTREE_PRIVATE)==0
1156 && isMemdb==0
drhd0679ed2007-08-28 22:24:34 +00001157 && (pSqlite->flags & SQLITE_Vtab)==0
drhe53831d2007-08-17 01:14:38 +00001158 && zFilename && zFilename[0]
drhe53831d2007-08-17 01:14:38 +00001159 ){
drhff0587c2007-08-29 17:43:19 +00001160 if( sqlite3SharedCacheEnabled ){
1161 char *zFullPathname = (char *)sqlite3_malloc(pVfs->mxPathname);
1162 sqlite3_mutex *mutexShared;
1163 p->sharable = 1;
1164 if( pSqlite ){
1165 pSqlite->flags |= SQLITE_SharedCache;
danielk1977aef0bf62005-12-30 16:28:01 +00001166 }
drhff0587c2007-08-29 17:43:19 +00001167 if( !zFullPathname ){
1168 sqlite3_free(p);
1169 return SQLITE_NOMEM;
1170 }
1171 sqlite3OsFullPathname(pVfs, zFilename, zFullPathname);
1172 mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
1173 sqlite3_mutex_enter(mutexShared);
1174 for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
1175 assert( pBt->nRef>0 );
1176 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1177 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
1178 p->pBt = pBt;
1179 pBt->nRef++;
1180 break;
1181 }
1182 }
1183 sqlite3_mutex_leave(mutexShared);
1184 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001185 }
drhff0587c2007-08-29 17:43:19 +00001186#ifdef SQLITE_DEBUG
1187 else{
1188 /* In debug mode, we mark all persistent databases as sharable
1189 ** even when they are not. This exercises the locking code and
1190 ** gives more opportunity for asserts(sqlite3_mutex_held())
1191 ** statements to find locking problems.
1192 */
1193 p->sharable = 1;
1194 }
1195#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001196 }
1197#endif
drha059ad02001-04-17 20:09:11 +00001198 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001199 /*
1200 ** The following asserts make sure that structures used by the btree are
1201 ** the right size. This is to guard against size changes that result
1202 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001203 */
drhe53831d2007-08-17 01:14:38 +00001204 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1205 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1206 assert( sizeof(u32)==4 );
1207 assert( sizeof(u16)==2 );
1208 assert( sizeof(Pgno)==4 );
1209
1210 pBt = sqlite3MallocZero( sizeof(*pBt) );
1211 if( pBt==0 ){
1212 rc = SQLITE_NOMEM;
1213 goto btree_open_out;
1214 }
drh33f4e022007-09-03 15:19:34 +00001215 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
1216 EXTRA_SIZE, flags, vfsFlags);
drhe53831d2007-08-17 01:14:38 +00001217 if( rc==SQLITE_OK ){
1218 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1219 }
1220 if( rc!=SQLITE_OK ){
1221 goto btree_open_out;
1222 }
1223 p->pBt = pBt;
1224
1225 sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
1226 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
1227 pBt->pCursor = 0;
1228 pBt->pPage1 = 0;
1229 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1230 pBt->pageSize = get2byte(&zDbHeader[16]);
1231 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1232 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001233 pBt->pageSize = 0;
1234 sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
drhe53831d2007-08-17 01:14:38 +00001235 pBt->maxEmbedFrac = 64; /* 25% */
1236 pBt->minEmbedFrac = 32; /* 12.5% */
1237 pBt->minLeafFrac = 32; /* 12.5% */
1238#ifndef SQLITE_OMIT_AUTOVACUUM
1239 /* If the magic name ":memory:" will create an in-memory database, then
1240 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1241 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1242 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1243 ** regular file-name. In this case the auto-vacuum applies as per normal.
1244 */
1245 if( zFilename && !isMemdb ){
1246 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1247 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1248 }
1249#endif
1250 nReserve = 0;
1251 }else{
1252 nReserve = zDbHeader[20];
1253 pBt->maxEmbedFrac = zDbHeader[21];
1254 pBt->minEmbedFrac = zDbHeader[22];
1255 pBt->minLeafFrac = zDbHeader[23];
1256 pBt->pageSizeFixed = 1;
1257#ifndef SQLITE_OMIT_AUTOVACUUM
1258 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1259 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1260#endif
1261 }
1262 pBt->usableSize = pBt->pageSize - nReserve;
1263 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
danielk1977a1644fd2007-08-29 12:31:25 +00001264 sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
drhe53831d2007-08-17 01:14:38 +00001265
1266#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1267 /* Add the new BtShared object to the linked list sharable BtShareds.
1268 */
1269 if( p->sharable ){
1270 sqlite3_mutex *mutexShared;
1271 pBt->nRef = 1;
1272 mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
drh3285db22007-09-03 22:00:39 +00001273 if( SQLITE_THREADSAFE ){
1274 pBt->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
1275 if( pBt->mutex==0 ){
1276 rc = SQLITE_NOMEM;
1277 pSqlite->mallocFailed = 0;
1278 goto btree_open_out;
1279 }
drhff0587c2007-08-29 17:43:19 +00001280 }
drhe53831d2007-08-17 01:14:38 +00001281 sqlite3_mutex_enter(mutexShared);
1282 pBt->pNext = sqlite3SharedCacheList;
1283 sqlite3SharedCacheList = pBt;
1284 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001285 }
drheee46cf2004-11-06 00:02:48 +00001286#endif
drh90f5ecb2004-07-22 01:19:35 +00001287 }
danielk1977aef0bf62005-12-30 16:28:01 +00001288
drhcfed7bc2006-03-13 14:28:05 +00001289#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001290 /* If the new Btree uses a sharable pBtShared, then link the new
1291 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001292 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001293 */
drhe53831d2007-08-17 01:14:38 +00001294 if( p->sharable ){
1295 int i;
1296 Btree *pSib;
1297 for(i=0; i<pSqlite->nDb; i++){
1298 if( (pSib = pSqlite->aDb[i].pBt)!=0 && pSib->sharable ){
1299 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1300 if( p->pBt<pSib->pBt ){
1301 p->pNext = pSib;
1302 p->pPrev = 0;
1303 pSib->pPrev = p;
1304 }else{
drhabddb0c2007-08-20 13:14:28 +00001305 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001306 pSib = pSib->pNext;
1307 }
1308 p->pNext = pSib->pNext;
1309 p->pPrev = pSib;
1310 if( p->pNext ){
1311 p->pNext->pPrev = p;
1312 }
1313 pSib->pNext = p;
1314 }
1315 break;
1316 }
1317 }
danielk1977aef0bf62005-12-30 16:28:01 +00001318 }
danielk1977aef0bf62005-12-30 16:28:01 +00001319#endif
1320 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001321
1322btree_open_out:
1323 if( rc!=SQLITE_OK ){
1324 if( pBt && pBt->pPager ){
1325 sqlite3PagerClose(pBt->pPager);
1326 }
drh17435752007-08-16 04:30:38 +00001327 sqlite3_free(pBt);
1328 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001329 *ppBtree = 0;
1330 }
1331 return rc;
drha059ad02001-04-17 20:09:11 +00001332}
1333
1334/*
drhe53831d2007-08-17 01:14:38 +00001335** Decrement the BtShared.nRef counter. When it reaches zero,
1336** remove the BtShared structure from the sharing list. Return
1337** true if the BtShared.nRef counter reaches zero and return
1338** false if it is still positive.
1339*/
1340static int removeFromSharingList(BtShared *pBt){
1341#ifndef SQLITE_OMIT_SHARED_CACHE
1342 sqlite3_mutex *pMaster;
1343 BtShared *pList;
1344 int removed = 0;
1345
drhd677b3d2007-08-20 22:48:41 +00001346 assert( sqlite3_mutex_notheld(pBt->mutex) );
drhe53831d2007-08-17 01:14:38 +00001347 pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
1348 sqlite3_mutex_enter(pMaster);
1349 pBt->nRef--;
1350 if( pBt->nRef<=0 ){
1351 if( sqlite3SharedCacheList==pBt ){
1352 sqlite3SharedCacheList = pBt->pNext;
1353 }else{
1354 pList = sqlite3SharedCacheList;
1355 while( pList && pList->pNext!=pBt ){
1356 pList=pList->pNext;
1357 }
1358 if( pList ){
1359 pList->pNext = pBt->pNext;
1360 }
1361 }
drh3285db22007-09-03 22:00:39 +00001362 if( SQLITE_THREADSAFE ){
1363 sqlite3_mutex_free(pBt->mutex);
1364 }
drhe53831d2007-08-17 01:14:38 +00001365 removed = 1;
1366 }
1367 sqlite3_mutex_leave(pMaster);
1368 return removed;
1369#else
1370 return 1;
1371#endif
1372}
1373
1374/*
drha059ad02001-04-17 20:09:11 +00001375** Close an open database and invalidate all cursors.
1376*/
danielk1977aef0bf62005-12-30 16:28:01 +00001377int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001378 BtShared *pBt = p->pBt;
1379 BtCursor *pCur;
1380
danielk1977aef0bf62005-12-30 16:28:01 +00001381 /* Close all cursors opened via this handle. */
drhd0679ed2007-08-28 22:24:34 +00001382 assert( sqlite3_mutex_held(p->pSqlite->mutex) );
drhe53831d2007-08-17 01:14:38 +00001383 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001384 pCur = pBt->pCursor;
1385 while( pCur ){
1386 BtCursor *pTmp = pCur;
1387 pCur = pCur->pNext;
1388 if( pTmp->pBtree==p ){
1389 sqlite3BtreeCloseCursor(pTmp);
1390 }
drha059ad02001-04-17 20:09:11 +00001391 }
danielk1977aef0bf62005-12-30 16:28:01 +00001392
danielk19778d34dfd2006-01-24 16:37:57 +00001393 /* Rollback any active transaction and free the handle structure.
1394 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1395 ** this handle.
1396 */
danielk1977b597f742006-01-15 11:39:18 +00001397 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001398 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001399
danielk1977aef0bf62005-12-30 16:28:01 +00001400 /* If there are still other outstanding references to the shared-btree
1401 ** structure, return now. The remainder of this procedure cleans
1402 ** up the shared-btree.
1403 */
drhe53831d2007-08-17 01:14:38 +00001404 assert( p->wantToLock==0 && p->locked==0 );
1405 if( !p->sharable || removeFromSharingList(pBt) ){
1406 /* The pBt is no longer on the sharing list, so we can access
1407 ** it without having to hold the mutex.
1408 **
1409 ** Clean out and delete the BtShared object.
1410 */
1411 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001412 sqlite3PagerClose(pBt->pPager);
1413 if( pBt->xFreeSchema && pBt->pSchema ){
1414 pBt->xFreeSchema(pBt->pSchema);
1415 }
1416 sqlite3_free(pBt->pSchema);
1417 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001418 }
1419
drhe53831d2007-08-17 01:14:38 +00001420#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00001421 assert( p->wantToLock==0 );
1422 assert( p->locked==0 );
1423 if( p->pPrev ) p->pPrev->pNext = p->pNext;
1424 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00001425#endif
1426
drhe53831d2007-08-17 01:14:38 +00001427 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00001428 return SQLITE_OK;
1429}
1430
1431/*
drh90f5ecb2004-07-22 01:19:35 +00001432** Change the busy handler callback function.
1433*/
danielk1977aef0bf62005-12-30 16:28:01 +00001434int sqlite3BtreeSetBusyHandler(Btree *p, BusyHandler *pHandler){
1435 BtShared *pBt = p->pBt;
drhd0679ed2007-08-28 22:24:34 +00001436 assert( sqlite3_mutex_held(p->pSqlite->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001437 sqlite3BtreeEnter(p);
drhb8ef32c2005-03-14 02:01:49 +00001438 pBt->pBusyHandler = pHandler;
danielk19773b8a05f2007-03-19 17:44:26 +00001439 sqlite3PagerSetBusyhandler(pBt->pPager, pHandler);
drhd677b3d2007-08-20 22:48:41 +00001440 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00001441 return SQLITE_OK;
1442}
1443
1444/*
drhda47d772002-12-02 04:25:19 +00001445** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001446**
1447** The maximum number of cache pages is set to the absolute
1448** value of mxPage. If mxPage is negative, the pager will
1449** operate asynchronously - it will not stop to do fsync()s
1450** to insure data is written to the disk surface before
1451** continuing. Transactions still work if synchronous is off,
1452** and the database cannot be corrupted if this program
1453** crashes. But if the operating system crashes or there is
1454** an abrupt power failure when synchronous is off, the database
1455** could be left in an inconsistent and unrecoverable state.
1456** Synchronous is on by default so database corruption is not
1457** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001458*/
danielk1977aef0bf62005-12-30 16:28:01 +00001459int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
1460 BtShared *pBt = p->pBt;
drhd0679ed2007-08-28 22:24:34 +00001461 assert( sqlite3_mutex_held(p->pSqlite->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001462 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001463 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00001464 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00001465 return SQLITE_OK;
1466}
1467
1468/*
drh973b6e32003-02-12 14:09:42 +00001469** Change the way data is synced to disk in order to increase or decrease
1470** how well the database resists damage due to OS crashes and power
1471** failures. Level 1 is the same as asynchronous (no syncs() occur and
1472** there is a high probability of damage) Level 2 is the default. There
1473** is a very low but non-zero probability of damage. Level 3 reduces the
1474** probability of damage to near zero but with a write performance reduction.
1475*/
danielk197793758c82005-01-21 08:13:14 +00001476#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00001477int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00001478 BtShared *pBt = p->pBt;
drhd0679ed2007-08-28 22:24:34 +00001479 assert( sqlite3_mutex_held(p->pSqlite->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001480 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001481 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00001482 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00001483 return SQLITE_OK;
1484}
danielk197793758c82005-01-21 08:13:14 +00001485#endif
drh973b6e32003-02-12 14:09:42 +00001486
drh2c8997b2005-08-27 16:36:48 +00001487/*
1488** Return TRUE if the given btree is set to safety level 1. In other
1489** words, return TRUE if no sync() occurs on the disk files.
1490*/
danielk1977aef0bf62005-12-30 16:28:01 +00001491int sqlite3BtreeSyncDisabled(Btree *p){
1492 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001493 int rc;
drhd0679ed2007-08-28 22:24:34 +00001494 assert( sqlite3_mutex_held(p->pSqlite->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001495 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00001496 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00001497 rc = sqlite3PagerNosync(pBt->pPager);
1498 sqlite3BtreeLeave(p);
1499 return rc;
drh2c8997b2005-08-27 16:36:48 +00001500}
1501
danielk1977576ec6b2005-01-21 11:55:25 +00001502#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00001503/*
drh90f5ecb2004-07-22 01:19:35 +00001504** Change the default pages size and the number of reserved bytes per page.
drh06f50212004-11-02 14:24:33 +00001505**
1506** The page size must be a power of 2 between 512 and 65536. If the page
1507** size supplied does not meet this constraint then the page size is not
1508** changed.
1509**
1510** Page sizes are constrained to be a power of two so that the region
1511** of the database file used for locking (beginning at PENDING_BYTE,
1512** the first byte past the 1GB boundary, 0x40000000) needs to occur
1513** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00001514**
1515** If parameter nReserve is less than zero, then the number of reserved
1516** bytes per page is left unchanged.
drh90f5ecb2004-07-22 01:19:35 +00001517*/
danielk1977aef0bf62005-12-30 16:28:01 +00001518int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
danielk1977a1644fd2007-08-29 12:31:25 +00001519 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00001520 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001521 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00001522 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00001523 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00001524 return SQLITE_READONLY;
1525 }
1526 if( nReserve<0 ){
1527 nReserve = pBt->pageSize - pBt->usableSize;
1528 }
drh06f50212004-11-02 14:24:33 +00001529 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
1530 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00001531 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00001532 assert( !pBt->pPage1 && !pBt->pCursor );
danielk1977a1644fd2007-08-29 12:31:25 +00001533 pBt->pageSize = pageSize;
1534 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
drh90f5ecb2004-07-22 01:19:35 +00001535 }
1536 pBt->usableSize = pBt->pageSize - nReserve;
drhd677b3d2007-08-20 22:48:41 +00001537 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00001538 return rc;
drh90f5ecb2004-07-22 01:19:35 +00001539}
1540
1541/*
1542** Return the currently defined page size
1543*/
danielk1977aef0bf62005-12-30 16:28:01 +00001544int sqlite3BtreeGetPageSize(Btree *p){
1545 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00001546}
danielk1977aef0bf62005-12-30 16:28:01 +00001547int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00001548 int n;
1549 sqlite3BtreeEnter(p);
1550 n = p->pBt->pageSize - p->pBt->usableSize;
1551 sqlite3BtreeLeave(p);
1552 return n;
drh2011d5f2004-07-22 02:40:37 +00001553}
drhf8e632b2007-05-08 14:51:36 +00001554
1555/*
1556** Set the maximum page count for a database if mxPage is positive.
1557** No changes are made if mxPage is 0 or negative.
1558** Regardless of the value of mxPage, return the maximum page count.
1559*/
1560int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00001561 int n;
1562 sqlite3BtreeEnter(p);
1563 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
1564 sqlite3BtreeLeave(p);
1565 return n;
drhf8e632b2007-05-08 14:51:36 +00001566}
danielk1977576ec6b2005-01-21 11:55:25 +00001567#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00001568
1569/*
danielk1977951af802004-11-05 15:45:09 +00001570** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
1571** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
1572** is disabled. The default value for the auto-vacuum property is
1573** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
1574*/
danielk1977aef0bf62005-12-30 16:28:01 +00001575int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00001576#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00001577 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00001578#else
danielk1977dddbcdc2007-04-26 14:42:34 +00001579 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001580 int rc = SQLITE_OK;
danielk1977dddbcdc2007-04-26 14:42:34 +00001581 int av = (autoVacuum?1:0);
drhd677b3d2007-08-20 22:48:41 +00001582
1583 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001584 if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00001585 rc = SQLITE_READONLY;
1586 }else{
1587 pBt->autoVacuum = av;
danielk1977951af802004-11-05 15:45:09 +00001588 }
drhd677b3d2007-08-20 22:48:41 +00001589 sqlite3BtreeLeave(p);
1590 return rc;
danielk1977951af802004-11-05 15:45:09 +00001591#endif
1592}
1593
1594/*
1595** Return the value of the 'auto-vacuum' property. If auto-vacuum is
1596** enabled 1 is returned. Otherwise 0.
1597*/
danielk1977aef0bf62005-12-30 16:28:01 +00001598int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00001599#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00001600 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00001601#else
drhd677b3d2007-08-20 22:48:41 +00001602 int rc;
1603 sqlite3BtreeEnter(p);
1604 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00001605 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
1606 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
1607 BTREE_AUTOVACUUM_INCR
1608 );
drhd677b3d2007-08-20 22:48:41 +00001609 sqlite3BtreeLeave(p);
1610 return rc;
danielk1977951af802004-11-05 15:45:09 +00001611#endif
1612}
1613
1614
1615/*
drha34b6762004-05-07 13:30:42 +00001616** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00001617** also acquire a readlock on that file.
1618**
1619** SQLITE_OK is returned on success. If the file is not a
1620** well-formed database file, then SQLITE_CORRUPT is returned.
1621** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00001622** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00001623*/
danielk1977aef0bf62005-12-30 16:28:01 +00001624static int lockBtree(BtShared *pBt){
drh07d183d2005-05-01 22:52:42 +00001625 int rc, pageSize;
drh3aac2dd2004-04-26 14:10:20 +00001626 MemPage *pPage1;
drhd677b3d2007-08-20 22:48:41 +00001627
drh1fee73e2007-08-29 04:00:57 +00001628 assert( sqlite3_mutex_held(pBt->mutex) );
drha34b6762004-05-07 13:30:42 +00001629 if( pBt->pPage1 ) return SQLITE_OK;
drh16a9b832007-05-05 18:39:25 +00001630 rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00001631 if( rc!=SQLITE_OK ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00001632
drh306dc212001-05-21 13:45:10 +00001633
1634 /* Do some checking to help insure the file we opened really is
1635 ** a valid database file.
1636 */
drhb6f41482004-05-14 01:58:11 +00001637 rc = SQLITE_NOTADB;
danielk19773b8a05f2007-03-19 17:44:26 +00001638 if( sqlite3PagerPagecount(pBt->pPager)>0 ){
drhb6f41482004-05-14 01:58:11 +00001639 u8 *page1 = pPage1->aData;
1640 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00001641 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00001642 }
drh309169a2007-04-24 17:27:51 +00001643 if( page1[18]>1 ){
1644 pBt->readOnly = 1;
1645 }
1646 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00001647 goto page1_init_failed;
1648 }
drh07d183d2005-05-01 22:52:42 +00001649 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00001650 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
1651 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
1652 ){
drh07d183d2005-05-01 22:52:42 +00001653 goto page1_init_failed;
1654 }
1655 assert( (pageSize & 7)==0 );
1656 pBt->pageSize = pageSize;
1657 pBt->usableSize = pageSize - page1[20];
drhb6f41482004-05-14 01:58:11 +00001658 if( pBt->usableSize<500 ){
1659 goto page1_init_failed;
1660 }
1661 pBt->maxEmbedFrac = page1[21];
1662 pBt->minEmbedFrac = page1[22];
1663 pBt->minLeafFrac = page1[23];
drh057cd3a2005-02-15 16:23:02 +00001664#ifndef SQLITE_OMIT_AUTOVACUUM
1665 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00001666 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00001667#endif
drh306dc212001-05-21 13:45:10 +00001668 }
drhb6f41482004-05-14 01:58:11 +00001669
1670 /* maxLocal is the maximum amount of payload to store locally for
1671 ** a cell. Make sure it is small enough so that at least minFanout
1672 ** cells can will fit on one page. We assume a 10-byte page header.
1673 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00001674 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00001675 ** 4-byte child pointer
1676 ** 9-byte nKey value
1677 ** 4-byte nData value
1678 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00001679 ** So a cell consists of a 2-byte poiner, a header which is as much as
1680 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
1681 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00001682 */
drh43605152004-05-29 21:46:49 +00001683 pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
1684 pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
1685 pBt->maxLeaf = pBt->usableSize - 35;
1686 pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
drhb6f41482004-05-14 01:58:11 +00001687 if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
1688 goto page1_init_failed;
1689 }
drh2e38c322004-09-03 18:38:44 +00001690 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00001691 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00001692 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00001693
drh72f82862001-05-24 21:06:34 +00001694page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00001695 releasePage(pPage1);
1696 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00001697 return rc;
drh306dc212001-05-21 13:45:10 +00001698}
1699
1700/*
drhb8ef32c2005-03-14 02:01:49 +00001701** This routine works like lockBtree() except that it also invokes the
1702** busy callback if there is lock contention.
1703*/
danielk1977aef0bf62005-12-30 16:28:01 +00001704static int lockBtreeWithRetry(Btree *pRef){
drhb8ef32c2005-03-14 02:01:49 +00001705 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00001706
drh1fee73e2007-08-29 04:00:57 +00001707 assert( sqlite3BtreeHoldsMutex(pRef) );
danielk1977aef0bf62005-12-30 16:28:01 +00001708 if( pRef->inTrans==TRANS_NONE ){
1709 u8 inTransaction = pRef->pBt->inTransaction;
1710 btreeIntegrity(pRef);
1711 rc = sqlite3BtreeBeginTrans(pRef, 0);
1712 pRef->pBt->inTransaction = inTransaction;
1713 pRef->inTrans = TRANS_NONE;
1714 if( rc==SQLITE_OK ){
1715 pRef->pBt->nTransaction--;
1716 }
1717 btreeIntegrity(pRef);
drhb8ef32c2005-03-14 02:01:49 +00001718 }
1719 return rc;
1720}
1721
1722
1723/*
drhb8ca3072001-12-05 00:21:20 +00001724** If there are no outstanding cursors and we are not in the middle
1725** of a transaction but there is a read lock on the database, then
1726** this routine unrefs the first page of the database file which
1727** has the effect of releasing the read lock.
1728**
1729** If there are any outstanding cursors, this routine is a no-op.
1730**
1731** If there is a transaction in progress, this routine is a no-op.
1732*/
danielk1977aef0bf62005-12-30 16:28:01 +00001733static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00001734 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00001735 if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00001736 if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
drh24c9a2e2007-01-05 02:00:47 +00001737 if( pBt->pPage1->aData==0 ){
1738 MemPage *pPage = pBt->pPage1;
drhbf4bca52007-09-06 22:19:14 +00001739 pPage->aData = sqlite3PagerGetData(pPage->pDbPage);
drh24c9a2e2007-01-05 02:00:47 +00001740 pPage->pBt = pBt;
1741 pPage->pgno = 1;
1742 }
1743 releasePage(pBt->pPage1);
drh51c6d962004-06-06 00:42:25 +00001744 }
drh3aac2dd2004-04-26 14:10:20 +00001745 pBt->pPage1 = 0;
drh3aac2dd2004-04-26 14:10:20 +00001746 pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001747 }
1748}
1749
1750/*
drh9e572e62004-04-23 23:43:10 +00001751** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00001752** file.
drh8b2f49b2001-06-08 00:21:52 +00001753*/
danielk1977aef0bf62005-12-30 16:28:01 +00001754static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00001755 MemPage *pP1;
1756 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00001757 int rc;
drhd677b3d2007-08-20 22:48:41 +00001758
drh1fee73e2007-08-29 04:00:57 +00001759 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001760 if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001761 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00001762 assert( pP1!=0 );
1763 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00001764 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00001765 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00001766 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
1767 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00001768 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00001769 data[18] = 1;
1770 data[19] = 1;
drhb6f41482004-05-14 01:58:11 +00001771 data[20] = pBt->pageSize - pBt->usableSize;
1772 data[21] = pBt->maxEmbedFrac;
1773 data[22] = pBt->minEmbedFrac;
1774 data[23] = pBt->minLeafFrac;
1775 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00001776 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00001777 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00001778#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00001779 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00001780 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00001781 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00001782 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00001783#endif
drh8b2f49b2001-06-08 00:21:52 +00001784 return SQLITE_OK;
1785}
1786
1787/*
danielk1977ee5741e2004-05-31 10:01:34 +00001788** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00001789** is started if the second argument is nonzero, otherwise a read-
1790** transaction. If the second argument is 2 or more and exclusive
1791** transaction is started, meaning that no other process is allowed
1792** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00001793** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00001794** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00001795**
danielk1977ee5741e2004-05-31 10:01:34 +00001796** A write-transaction must be started before attempting any
1797** changes to the database. None of the following routines
1798** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00001799**
drh23e11ca2004-05-04 17:27:28 +00001800** sqlite3BtreeCreateTable()
1801** sqlite3BtreeCreateIndex()
1802** sqlite3BtreeClearTable()
1803** sqlite3BtreeDropTable()
1804** sqlite3BtreeInsert()
1805** sqlite3BtreeDelete()
1806** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00001807**
drhb8ef32c2005-03-14 02:01:49 +00001808** If an initial attempt to acquire the lock fails because of lock contention
1809** and the database was previously unlocked, then invoke the busy handler
1810** if there is one. But if there was previously a read-lock, do not
1811** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
1812** returned when there is already a read-lock in order to avoid a deadlock.
1813**
1814** Suppose there are two processes A and B. A has a read lock and B has
1815** a reserved lock. B tries to promote to exclusive but is blocked because
1816** of A's read lock. A tries to promote to reserved but is blocked by B.
1817** One or the other of the two processes must give way or there can be
1818** no progress. By returning SQLITE_BUSY and not invoking the busy callback
1819** when A already has a read lock, we encourage A to give up and let B
1820** proceed.
drha059ad02001-04-17 20:09:11 +00001821*/
danielk1977aef0bf62005-12-30 16:28:01 +00001822int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
1823 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00001824 int rc = SQLITE_OK;
1825
drhd677b3d2007-08-20 22:48:41 +00001826 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001827 btreeIntegrity(p);
1828
danielk1977ee5741e2004-05-31 10:01:34 +00001829 /* If the btree is already in a write-transaction, or it
1830 ** is already in a read-transaction and a read-transaction
1831 ** is requested, this is a no-op.
1832 */
danielk1977aef0bf62005-12-30 16:28:01 +00001833 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00001834 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00001835 }
drhb8ef32c2005-03-14 02:01:49 +00001836
1837 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00001838 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00001839 rc = SQLITE_READONLY;
1840 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00001841 }
1842
danielk1977aef0bf62005-12-30 16:28:01 +00001843 /* If another database handle has already opened a write transaction
1844 ** on this shared-btree structure and a second write transaction is
1845 ** requested, return SQLITE_BUSY.
1846 */
1847 if( pBt->inTransaction==TRANS_WRITE && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00001848 rc = SQLITE_BUSY;
1849 goto trans_begun;
danielk1977aef0bf62005-12-30 16:28:01 +00001850 }
1851
drhb8ef32c2005-03-14 02:01:49 +00001852 do {
1853 if( pBt->pPage1==0 ){
1854 rc = lockBtree(pBt);
drh8c42ca92001-06-22 19:15:00 +00001855 }
drh309169a2007-04-24 17:27:51 +00001856
drhb8ef32c2005-03-14 02:01:49 +00001857 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00001858 if( pBt->readOnly ){
1859 rc = SQLITE_READONLY;
1860 }else{
1861 rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
1862 if( rc==SQLITE_OK ){
1863 rc = newDatabase(pBt);
1864 }
drhb8ef32c2005-03-14 02:01:49 +00001865 }
1866 }
1867
1868 if( rc==SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00001869 if( wrflag ) pBt->inStmt = 0;
1870 }else{
1871 unlockBtreeIfUnused(pBt);
1872 }
danielk1977aef0bf62005-12-30 16:28:01 +00001873 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
drha4afb652005-07-09 02:16:02 +00001874 sqlite3InvokeBusyHandler(pBt->pBusyHandler) );
danielk1977aef0bf62005-12-30 16:28:01 +00001875
1876 if( rc==SQLITE_OK ){
1877 if( p->inTrans==TRANS_NONE ){
1878 pBt->nTransaction++;
1879 }
1880 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
1881 if( p->inTrans>pBt->inTransaction ){
1882 pBt->inTransaction = p->inTrans;
1883 }
1884 }
1885
drhd677b3d2007-08-20 22:48:41 +00001886
1887trans_begun:
danielk1977aef0bf62005-12-30 16:28:01 +00001888 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00001889 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00001890 return rc;
drha059ad02001-04-17 20:09:11 +00001891}
1892
danielk1977687566d2004-11-02 12:56:41 +00001893#ifndef SQLITE_OMIT_AUTOVACUUM
1894
1895/*
1896** Set the pointer-map entries for all children of page pPage. Also, if
1897** pPage contains cells that point to overflow pages, set the pointer
1898** map entries for the overflow pages as well.
1899*/
1900static int setChildPtrmaps(MemPage *pPage){
1901 int i; /* Counter variable */
1902 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00001903 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00001904 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00001905 int isInitOrig = pPage->isInit;
1906 Pgno pgno = pPage->pgno;
1907
drh1fee73e2007-08-29 04:00:57 +00001908 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19772df71c72007-05-24 07:22:42 +00001909 rc = sqlite3BtreeInitPage(pPage, pPage->pParent);
1910 if( rc!=SQLITE_OK ){
1911 goto set_child_ptrmaps_out;
1912 }
danielk1977687566d2004-11-02 12:56:41 +00001913 nCell = pPage->nCell;
1914
1915 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00001916 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00001917
danielk197726836652005-01-17 01:33:13 +00001918 rc = ptrmapPutOvflPtr(pPage, pCell);
1919 if( rc!=SQLITE_OK ){
1920 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00001921 }
danielk197726836652005-01-17 01:33:13 +00001922
danielk1977687566d2004-11-02 12:56:41 +00001923 if( !pPage->leaf ){
1924 Pgno childPgno = get4byte(pCell);
1925 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
1926 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
1927 }
1928 }
1929
1930 if( !pPage->leaf ){
1931 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
1932 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
1933 }
1934
1935set_child_ptrmaps_out:
1936 pPage->isInit = isInitOrig;
1937 return rc;
1938}
1939
1940/*
1941** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
1942** page, is a pointer to page iFrom. Modify this pointer so that it points to
1943** iTo. Parameter eType describes the type of pointer to be modified, as
1944** follows:
1945**
1946** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
1947** page of pPage.
1948**
1949** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
1950** page pointed to by one of the cells on pPage.
1951**
1952** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
1953** overflow page in the list.
1954*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00001955static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00001956 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977687566d2004-11-02 12:56:41 +00001957 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00001958 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00001959 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00001960 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00001961 }
danielk1977f78fc082004-11-02 14:40:32 +00001962 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00001963 }else{
1964 int isInitOrig = pPage->isInit;
1965 int i;
1966 int nCell;
1967
drh16a9b832007-05-05 18:39:25 +00001968 sqlite3BtreeInitPage(pPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00001969 nCell = pPage->nCell;
1970
danielk1977687566d2004-11-02 12:56:41 +00001971 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00001972 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00001973 if( eType==PTRMAP_OVERFLOW1 ){
1974 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00001975 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00001976 if( info.iOverflow ){
1977 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
1978 put4byte(&pCell[info.iOverflow], iTo);
1979 break;
1980 }
1981 }
1982 }else{
1983 if( get4byte(pCell)==iFrom ){
1984 put4byte(pCell, iTo);
1985 break;
1986 }
1987 }
1988 }
1989
1990 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00001991 if( eType!=PTRMAP_BTREE ||
1992 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00001993 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00001994 }
danielk1977687566d2004-11-02 12:56:41 +00001995 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
1996 }
1997
1998 pPage->isInit = isInitOrig;
1999 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002000 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002001}
2002
danielk1977003ba062004-11-04 02:57:33 +00002003
danielk19777701e812005-01-10 12:59:51 +00002004/*
2005** Move the open database page pDbPage to location iFreePage in the
2006** database. The pDbPage reference remains valid.
2007*/
danielk1977003ba062004-11-04 02:57:33 +00002008static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002009 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002010 MemPage *pDbPage, /* Open page to move */
2011 u8 eType, /* Pointer map 'type' entry for pDbPage */
2012 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
2013 Pgno iFreePage /* The location to move pDbPage to */
danielk1977003ba062004-11-04 02:57:33 +00002014){
2015 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2016 Pgno iDbPage = pDbPage->pgno;
2017 Pager *pPager = pBt->pPager;
2018 int rc;
2019
danielk1977a0bf2652004-11-04 14:30:04 +00002020 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2021 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002022 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002023 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002024
2025 /* Move page iDbPage from it's current location to page number iFreePage */
2026 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2027 iDbPage, iFreePage, iPtrPage, eType));
danielk19773b8a05f2007-03-19 17:44:26 +00002028 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
danielk1977003ba062004-11-04 02:57:33 +00002029 if( rc!=SQLITE_OK ){
2030 return rc;
2031 }
2032 pDbPage->pgno = iFreePage;
2033
2034 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2035 ** that point to overflow pages. The pointer map entries for all these
2036 ** pages need to be changed.
2037 **
2038 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2039 ** pointer to a subsequent overflow page. If this is the case, then
2040 ** the pointer map needs to be updated for the subsequent overflow page.
2041 */
danielk1977a0bf2652004-11-04 14:30:04 +00002042 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002043 rc = setChildPtrmaps(pDbPage);
2044 if( rc!=SQLITE_OK ){
2045 return rc;
2046 }
2047 }else{
2048 Pgno nextOvfl = get4byte(pDbPage->aData);
2049 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002050 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2051 if( rc!=SQLITE_OK ){
2052 return rc;
2053 }
2054 }
2055 }
2056
2057 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2058 ** that it points at iFreePage. Also fix the pointer map entry for
2059 ** iPtrPage.
2060 */
danielk1977a0bf2652004-11-04 14:30:04 +00002061 if( eType!=PTRMAP_ROOTPAGE ){
drh16a9b832007-05-05 18:39:25 +00002062 rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002063 if( rc!=SQLITE_OK ){
2064 return rc;
2065 }
danielk19773b8a05f2007-03-19 17:44:26 +00002066 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002067 if( rc!=SQLITE_OK ){
2068 releasePage(pPtrPage);
2069 return rc;
2070 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002071 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002072 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002073 if( rc==SQLITE_OK ){
2074 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2075 }
danielk1977003ba062004-11-04 02:57:33 +00002076 }
danielk1977003ba062004-11-04 02:57:33 +00002077 return rc;
2078}
2079
danielk1977dddbcdc2007-04-26 14:42:34 +00002080/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002081static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002082
2083/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002084** Perform a single step of an incremental-vacuum. If successful,
2085** return SQLITE_OK. If there is no work to do (and therefore no
2086** point in calling this function again), return SQLITE_DONE.
2087**
2088** More specificly, this function attempts to re-organize the
2089** database so that the last page of the file currently in use
2090** is no longer in use.
2091**
2092** If the nFin parameter is non-zero, the implementation assumes
2093** that the caller will keep calling incrVacuumStep() until
2094** it returns SQLITE_DONE or an error, and that nFin is the
2095** number of pages the database file will contain after this
2096** process is complete.
2097*/
2098static int incrVacuumStep(BtShared *pBt, Pgno nFin){
2099 Pgno iLastPg; /* Last page in the database */
2100 Pgno nFreeList; /* Number of pages still on the free-list */
2101
drh1fee73e2007-08-29 04:00:57 +00002102 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977dddbcdc2007-04-26 14:42:34 +00002103 iLastPg = pBt->nTrunc;
2104 if( iLastPg==0 ){
2105 iLastPg = sqlite3PagerPagecount(pBt->pPager);
2106 }
2107
2108 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2109 int rc;
2110 u8 eType;
2111 Pgno iPtrPage;
2112
2113 nFreeList = get4byte(&pBt->pPage1->aData[36]);
2114 if( nFreeList==0 || nFin==iLastPg ){
2115 return SQLITE_DONE;
2116 }
2117
2118 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2119 if( rc!=SQLITE_OK ){
2120 return rc;
2121 }
2122 if( eType==PTRMAP_ROOTPAGE ){
2123 return SQLITE_CORRUPT_BKPT;
2124 }
2125
2126 if( eType==PTRMAP_FREEPAGE ){
2127 if( nFin==0 ){
2128 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002129 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002130 ** truncated to zero after this function returns, so it doesn't
2131 ** matter if it still contains some garbage entries.
2132 */
2133 Pgno iFreePg;
2134 MemPage *pFreePg;
2135 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2136 if( rc!=SQLITE_OK ){
2137 return rc;
2138 }
2139 assert( iFreePg==iLastPg );
2140 releasePage(pFreePg);
2141 }
2142 } else {
2143 Pgno iFreePg; /* Index of free page to move pLastPg to */
2144 MemPage *pLastPg;
2145
drh16a9b832007-05-05 18:39:25 +00002146 rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002147 if( rc!=SQLITE_OK ){
2148 return rc;
2149 }
2150
danielk1977b4626a32007-04-28 15:47:43 +00002151 /* If nFin is zero, this loop runs exactly once and page pLastPg
2152 ** is swapped with the first free page pulled off the free list.
2153 **
2154 ** On the other hand, if nFin is greater than zero, then keep
2155 ** looping until a free-page located within the first nFin pages
2156 ** of the file is found.
2157 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002158 do {
2159 MemPage *pFreePg;
2160 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2161 if( rc!=SQLITE_OK ){
2162 releasePage(pLastPg);
2163 return rc;
2164 }
2165 releasePage(pFreePg);
2166 }while( nFin!=0 && iFreePg>nFin );
2167 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002168
2169 rc = sqlite3PagerWrite(pLastPg->pDbPage);
2170 if( rc!=SQLITE_OK ){
2171 return rc;
2172 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002173 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg);
2174 releasePage(pLastPg);
2175 if( rc!=SQLITE_OK ){
2176 return rc;
2177 }
2178 }
2179 }
2180
2181 pBt->nTrunc = iLastPg - 1;
2182 while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){
2183 pBt->nTrunc--;
2184 }
2185 return SQLITE_OK;
2186}
2187
2188/*
2189** A write-transaction must be opened before calling this function.
2190** It performs a single unit of work towards an incremental vacuum.
2191**
2192** If the incremental vacuum is finished after this function has run,
2193** SQLITE_DONE is returned. If it is not finished, but no error occured,
2194** SQLITE_OK is returned. Otherwise an SQLite error code.
2195*/
2196int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002197 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002198 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002199
2200 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002201 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2202 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002203 rc = SQLITE_DONE;
2204 }else{
2205 invalidateAllOverflowCache(pBt);
2206 rc = incrVacuumStep(pBt, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002207 }
drhd677b3d2007-08-20 22:48:41 +00002208 sqlite3BtreeLeave(p);
2209 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002210}
2211
2212/*
danielk19773b8a05f2007-03-19 17:44:26 +00002213** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002214** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002215**
2216** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2217** the database file should be truncated to during the commit process.
2218** i.e. the database has been reorganized so that only the first *pnTrunc
2219** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002220*/
danielk197724168722007-04-02 05:07:47 +00002221static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
danielk1977dddbcdc2007-04-26 14:42:34 +00002222 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002223 Pager *pPager = pBt->pPager;
danielk1977687566d2004-11-02 12:56:41 +00002224#ifndef NDEBUG
danielk19773b8a05f2007-03-19 17:44:26 +00002225 int nRef = sqlite3PagerRefcount(pPager);
danielk1977687566d2004-11-02 12:56:41 +00002226#endif
2227
drh1fee73e2007-08-29 04:00:57 +00002228 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002229 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002230 assert(pBt->autoVacuum);
2231 if( !pBt->incrVacuum ){
2232 Pgno nFin = 0;
danielk1977687566d2004-11-02 12:56:41 +00002233
danielk1977dddbcdc2007-04-26 14:42:34 +00002234 if( pBt->nTrunc==0 ){
2235 Pgno nFree;
2236 Pgno nPtrmap;
2237 const int pgsz = pBt->pageSize;
2238 Pgno nOrig = sqlite3PagerPagecount(pBt->pPager);
danielk1977e5321f02007-04-27 07:05:44 +00002239
2240 if( PTRMAP_ISPAGE(pBt, nOrig) ){
2241 return SQLITE_CORRUPT_BKPT;
2242 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002243 if( nOrig==PENDING_BYTE_PAGE(pBt) ){
2244 nOrig--;
danielk1977687566d2004-11-02 12:56:41 +00002245 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002246 nFree = get4byte(&pBt->pPage1->aData[36]);
2247 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
2248 nFin = nOrig - nFree - nPtrmap;
2249 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
2250 nFin--;
danielk1977ac11ee62005-01-15 12:45:51 +00002251 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002252 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2253 nFin--;
2254 }
2255 }
danielk1977687566d2004-11-02 12:56:41 +00002256
danielk1977dddbcdc2007-04-26 14:42:34 +00002257 while( rc==SQLITE_OK ){
2258 rc = incrVacuumStep(pBt, nFin);
2259 }
2260 if( rc==SQLITE_DONE ){
2261 assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc);
2262 rc = SQLITE_OK;
2263 if( pBt->nTrunc ){
drh67f80b62007-07-23 19:26:17 +00002264 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
danielk1977dddbcdc2007-04-26 14:42:34 +00002265 put4byte(&pBt->pPage1->aData[32], 0);
2266 put4byte(&pBt->pPage1->aData[36], 0);
2267 pBt->nTrunc = nFin;
2268 }
2269 }
2270 if( rc!=SQLITE_OK ){
2271 sqlite3PagerRollback(pPager);
2272 }
danielk1977687566d2004-11-02 12:56:41 +00002273 }
2274
danielk1977dddbcdc2007-04-26 14:42:34 +00002275 if( rc==SQLITE_OK ){
2276 *pnTrunc = pBt->nTrunc;
2277 pBt->nTrunc = 0;
2278 }
danielk19773b8a05f2007-03-19 17:44:26 +00002279 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002280 return rc;
2281}
danielk1977dddbcdc2007-04-26 14:42:34 +00002282
danielk1977687566d2004-11-02 12:56:41 +00002283#endif
2284
2285/*
drh80e35f42007-03-30 14:06:34 +00002286** This routine does the first phase of a two-phase commit. This routine
2287** causes a rollback journal to be created (if it does not already exist)
2288** and populated with enough information so that if a power loss occurs
2289** the database can be restored to its original state by playing back
2290** the journal. Then the contents of the journal are flushed out to
2291** the disk. After the journal is safely on oxide, the changes to the
2292** database are written into the database file and flushed to oxide.
2293** At the end of this call, the rollback journal still exists on the
2294** disk and we are still holding all locks, so the transaction has not
2295** committed. See sqlite3BtreeCommit() for the second phase of the
2296** commit process.
2297**
2298** This call is a no-op if no write-transaction is currently active on pBt.
2299**
2300** Otherwise, sync the database file for the btree pBt. zMaster points to
2301** the name of a master journal file that should be written into the
2302** individual journal file, or is NULL, indicating no master journal file
2303** (single database transaction).
2304**
2305** When this is called, the master journal should already have been
2306** created, populated with this journal pointer and synced to disk.
2307**
2308** Once this is routine has returned, the only thing required to commit
2309** the write-transaction for this database file is to delete the journal.
2310*/
2311int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2312 int rc = SQLITE_OK;
2313 if( p->inTrans==TRANS_WRITE ){
2314 BtShared *pBt = p->pBt;
2315 Pgno nTrunc = 0;
drhd677b3d2007-08-20 22:48:41 +00002316 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002317#ifndef SQLITE_OMIT_AUTOVACUUM
2318 if( pBt->autoVacuum ){
2319 rc = autoVacuumCommit(pBt, &nTrunc);
2320 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002321 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002322 return rc;
2323 }
2324 }
2325#endif
2326 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc);
drhd677b3d2007-08-20 22:48:41 +00002327 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002328 }
2329 return rc;
2330}
2331
2332/*
drh2aa679f2001-06-25 02:11:07 +00002333** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002334**
drh6e345992007-03-30 11:12:08 +00002335** This routine implements the second phase of a 2-phase commit. The
2336** sqlite3BtreeSync() routine does the first phase and should be invoked
2337** prior to calling this routine. The sqlite3BtreeSync() routine did
2338** all the work of writing information out to disk and flushing the
2339** contents so that they are written onto the disk platter. All this
2340** routine has to do is delete or truncate the rollback journal
2341** (which causes the transaction to commit) and drop locks.
2342**
drh5e00f6c2001-09-13 13:46:56 +00002343** This will release the write lock on the database file. If there
2344** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002345*/
drh80e35f42007-03-30 14:06:34 +00002346int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002347 BtShared *pBt = p->pBt;
2348
drhd677b3d2007-08-20 22:48:41 +00002349 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002350 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002351
2352 /* If the handle has a write-transaction open, commit the shared-btrees
2353 ** transaction and set the shared state to TRANS_READ.
2354 */
2355 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00002356 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002357 assert( pBt->inTransaction==TRANS_WRITE );
2358 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00002359 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00002360 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002361 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002362 return rc;
2363 }
danielk1977aef0bf62005-12-30 16:28:01 +00002364 pBt->inTransaction = TRANS_READ;
2365 pBt->inStmt = 0;
danielk1977ee5741e2004-05-31 10:01:34 +00002366 }
danielk19777f7bc662006-01-23 13:47:47 +00002367 unlockAllTables(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002368
2369 /* If the handle has any kind of transaction open, decrement the transaction
2370 ** count of the shared btree. If the transaction count reaches 0, set
2371 ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
2372 ** will unlock the pager.
2373 */
2374 if( p->inTrans!=TRANS_NONE ){
2375 pBt->nTransaction--;
2376 if( 0==pBt->nTransaction ){
2377 pBt->inTransaction = TRANS_NONE;
2378 }
2379 }
2380
2381 /* Set the handles current transaction state to TRANS_NONE and unlock
2382 ** the pager if this call closed the only read or write transaction.
2383 */
2384 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002385 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002386
2387 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002388 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002389 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002390}
2391
drh80e35f42007-03-30 14:06:34 +00002392/*
2393** Do both phases of a commit.
2394*/
2395int sqlite3BtreeCommit(Btree *p){
2396 int rc;
drhd677b3d2007-08-20 22:48:41 +00002397 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002398 rc = sqlite3BtreeCommitPhaseOne(p, 0);
2399 if( rc==SQLITE_OK ){
2400 rc = sqlite3BtreeCommitPhaseTwo(p);
2401 }
drhd677b3d2007-08-20 22:48:41 +00002402 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002403 return rc;
2404}
2405
danielk1977fbcd5852004-06-15 02:44:18 +00002406#ifndef NDEBUG
2407/*
2408** Return the number of write-cursors open on this handle. This is for use
2409** in assert() expressions, so it is only compiled if NDEBUG is not
2410** defined.
drhfb982642007-08-30 01:19:59 +00002411**
2412** For the purposes of this routine, a write-cursor is any cursor that
2413** is capable of writing to the databse. That means the cursor was
2414** originally opened for writing and the cursor has not be disabled
2415** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00002416*/
danielk1977aef0bf62005-12-30 16:28:01 +00002417static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00002418 BtCursor *pCur;
2419 int r = 0;
2420 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00002421 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00002422 }
2423 return r;
2424}
2425#endif
2426
drhc39e0002004-05-07 23:50:57 +00002427/*
drhfb982642007-08-30 01:19:59 +00002428** This routine sets the state to CURSOR_FAULT and the error
2429** code to errCode for every cursor on BtShared that pBtree
2430** references.
2431**
2432** Every cursor is tripped, including cursors that belong
2433** to other database connections that happen to be sharing
2434** the cache with pBtree.
2435**
2436** This routine gets called when a rollback occurs.
2437** All cursors using the same cache must be tripped
2438** to prevent them from trying to use the btree after
2439** the rollback. The rollback may have deleted tables
2440** or moved root pages, so it is not sufficient to
2441** save the state of the cursor. The cursor must be
2442** invalidated.
2443*/
2444void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
2445 BtCursor *p;
2446 sqlite3BtreeEnter(pBtree);
2447 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
2448 clearCursorPosition(p);
2449 p->eState = CURSOR_FAULT;
2450 p->skip = errCode;
2451 }
2452 sqlite3BtreeLeave(pBtree);
2453}
2454
2455/*
drhecdc7532001-09-23 02:35:53 +00002456** Rollback the transaction in progress. All cursors will be
2457** invalided by this operation. Any attempt to use a cursor
2458** that was open at the beginning of this operation will result
2459** in an error.
drh5e00f6c2001-09-13 13:46:56 +00002460**
2461** This will release the write lock on the database file. If there
2462** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002463*/
danielk1977aef0bf62005-12-30 16:28:01 +00002464int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00002465 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002466 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00002467 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00002468
drhd677b3d2007-08-20 22:48:41 +00002469 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00002470 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00002471#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00002472 if( rc!=SQLITE_OK ){
danielk19778d34dfd2006-01-24 16:37:57 +00002473 /* This is a horrible situation. An IO or malloc() error occured whilst
2474 ** trying to save cursor positions. If this is an automatic rollback (as
2475 ** the result of a constraint, malloc() failure or IO error) then
2476 ** the cache may be internally inconsistent (not contain valid trees) so
2477 ** we cannot simply return the error to the caller. Instead, abort
2478 ** all queries that may be using any of the cursors that failed to save.
2479 */
drhfb982642007-08-30 01:19:59 +00002480 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00002481 }
danielk19778d34dfd2006-01-24 16:37:57 +00002482#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002483 btreeIntegrity(p);
2484 unlockAllTables(p);
2485
2486 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00002487 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00002488
danielk1977dddbcdc2007-04-26 14:42:34 +00002489#ifndef SQLITE_OMIT_AUTOVACUUM
2490 pBt->nTrunc = 0;
2491#endif
2492
danielk19778d34dfd2006-01-24 16:37:57 +00002493 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00002494 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00002495 if( rc2!=SQLITE_OK ){
2496 rc = rc2;
2497 }
2498
drh24cd67e2004-05-10 16:18:47 +00002499 /* The rollback may have destroyed the pPage1->aData value. So
drh16a9b832007-05-05 18:39:25 +00002500 ** call sqlite3BtreeGetPage() on page 1 again to make
2501 ** sure pPage1->aData is set correctly. */
2502 if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00002503 releasePage(pPage1);
2504 }
danielk1977fbcd5852004-06-15 02:44:18 +00002505 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002506 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00002507 }
danielk1977aef0bf62005-12-30 16:28:01 +00002508
2509 if( p->inTrans!=TRANS_NONE ){
2510 assert( pBt->nTransaction>0 );
2511 pBt->nTransaction--;
2512 if( 0==pBt->nTransaction ){
2513 pBt->inTransaction = TRANS_NONE;
2514 }
2515 }
2516
2517 p->inTrans = TRANS_NONE;
danielk1977ee5741e2004-05-31 10:01:34 +00002518 pBt->inStmt = 0;
drh5e00f6c2001-09-13 13:46:56 +00002519 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002520
2521 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002522 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00002523 return rc;
2524}
2525
2526/*
drhab01f612004-05-22 02:55:23 +00002527** Start a statement subtransaction. The subtransaction can
2528** can be rolled back independently of the main transaction.
2529** You must start a transaction before starting a subtransaction.
2530** The subtransaction is ended automatically if the main transaction
drh663fc632002-02-02 18:49:19 +00002531** commits or rolls back.
2532**
drhab01f612004-05-22 02:55:23 +00002533** Only one subtransaction may be active at a time. It is an error to try
2534** to start a new subtransaction if another subtransaction is already active.
2535**
2536** Statement subtransactions are used around individual SQL statements
2537** that are contained within a BEGIN...COMMIT block. If a constraint
2538** error occurs within the statement, the effect of that one statement
2539** can be rolled back without having to rollback the entire transaction.
drh663fc632002-02-02 18:49:19 +00002540*/
danielk1977aef0bf62005-12-30 16:28:01 +00002541int sqlite3BtreeBeginStmt(Btree *p){
drh663fc632002-02-02 18:49:19 +00002542 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002543 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002544 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002545 if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
drhd677b3d2007-08-20 22:48:41 +00002546 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
2547 }else{
2548 assert( pBt->inTransaction==TRANS_WRITE );
2549 rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
2550 pBt->inStmt = 1;
drh0d65dc02002-02-03 00:56:09 +00002551 }
drhd677b3d2007-08-20 22:48:41 +00002552 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00002553 return rc;
2554}
2555
2556
2557/*
drhab01f612004-05-22 02:55:23 +00002558** Commit the statment subtransaction currently in progress. If no
2559** subtransaction is active, this is a no-op.
drh663fc632002-02-02 18:49:19 +00002560*/
danielk1977aef0bf62005-12-30 16:28:01 +00002561int sqlite3BtreeCommitStmt(Btree *p){
drh663fc632002-02-02 18:49:19 +00002562 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002563 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002564 sqlite3BtreeEnter(p);
drh3aac2dd2004-04-26 14:10:20 +00002565 if( pBt->inStmt && !pBt->readOnly ){
danielk19773b8a05f2007-03-19 17:44:26 +00002566 rc = sqlite3PagerStmtCommit(pBt->pPager);
drh663fc632002-02-02 18:49:19 +00002567 }else{
2568 rc = SQLITE_OK;
2569 }
drh3aac2dd2004-04-26 14:10:20 +00002570 pBt->inStmt = 0;
drhd677b3d2007-08-20 22:48:41 +00002571 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00002572 return rc;
2573}
2574
2575/*
drhab01f612004-05-22 02:55:23 +00002576** Rollback the active statement subtransaction. If no subtransaction
2577** is active this routine is a no-op.
drh663fc632002-02-02 18:49:19 +00002578**
drhab01f612004-05-22 02:55:23 +00002579** All cursors will be invalidated by this operation. Any attempt
drh663fc632002-02-02 18:49:19 +00002580** to use a cursor that was open at the beginning of this operation
2581** will result in an error.
2582*/
danielk1977aef0bf62005-12-30 16:28:01 +00002583int sqlite3BtreeRollbackStmt(Btree *p){
danielk197797a227c2006-01-20 16:32:04 +00002584 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002585 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002586 sqlite3BtreeEnter(p);
danielk197797a227c2006-01-20 16:32:04 +00002587 sqlite3MallocDisallow();
2588 if( pBt->inStmt && !pBt->readOnly ){
danielk19773b8a05f2007-03-19 17:44:26 +00002589 rc = sqlite3PagerStmtRollback(pBt->pPager);
danielk197797a227c2006-01-20 16:32:04 +00002590 assert( countWriteCursors(pBt)==0 );
2591 pBt->inStmt = 0;
2592 }
2593 sqlite3MallocAllow();
drhd677b3d2007-08-20 22:48:41 +00002594 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00002595 return rc;
2596}
2597
2598/*
drh3aac2dd2004-04-26 14:10:20 +00002599** Default key comparison function to be used if no comparison function
2600** is specified on the sqlite3BtreeCursor() call.
2601*/
2602static int dfltCompare(
2603 void *NotUsed, /* User data is not used */
2604 int n1, const void *p1, /* First key to compare */
2605 int n2, const void *p2 /* Second key to compare */
2606){
2607 int c;
2608 c = memcmp(p1, p2, n1<n2 ? n1 : n2);
2609 if( c==0 ){
2610 c = n1 - n2;
2611 }
2612 return c;
2613}
2614
2615/*
drh8b2f49b2001-06-08 00:21:52 +00002616** Create a new cursor for the BTree whose root is on the page
2617** iTable. The act of acquiring a cursor gets a read lock on
2618** the database file.
drh1bee3d72001-10-15 00:44:35 +00002619**
2620** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00002621** If wrFlag==1, then the cursor can be used for reading or for
2622** writing if other conditions for writing are also met. These
2623** are the conditions that must be met in order for writing to
2624** be allowed:
drh6446c4d2001-12-15 14:22:18 +00002625**
drhf74b8d92002-09-01 23:20:45 +00002626** 1: The cursor must have been opened with wrFlag==1
2627**
drhfe5d71d2007-03-19 11:54:10 +00002628** 2: Other database connections that share the same pager cache
2629** but which are not in the READ_UNCOMMITTED state may not have
2630** cursors open with wrFlag==0 on the same table. Otherwise
2631** the changes made by this write cursor would be visible to
2632** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00002633**
2634** 3: The database must be writable (not on read-only media)
2635**
2636** 4: There must be an active transaction.
2637**
drh6446c4d2001-12-15 14:22:18 +00002638** No checking is done to make sure that page iTable really is the
2639** root page of a b-tree. If it is not, then the cursor acquired
2640** will not work correctly.
drh3aac2dd2004-04-26 14:10:20 +00002641**
2642** The comparison function must be logically the same for every cursor
2643** on a particular table. Changing the comparison function will result
2644** in incorrect operations. If the comparison function is NULL, a
2645** default comparison function is used. The comparison function is
2646** always ignored for INTKEY tables.
drha059ad02001-04-17 20:09:11 +00002647*/
drhd677b3d2007-08-20 22:48:41 +00002648static int btreeCursor(
danielk1977aef0bf62005-12-30 16:28:01 +00002649 Btree *p, /* The btree */
drh3aac2dd2004-04-26 14:10:20 +00002650 int iTable, /* Root page of table to open */
2651 int wrFlag, /* 1 to write. 0 read-only */
2652 int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
2653 void *pArg, /* First arg to xCompare() */
2654 BtCursor **ppCur /* Write new cursor here */
2655){
drha059ad02001-04-17 20:09:11 +00002656 int rc;
drh8dcd7ca2004-08-08 19:43:29 +00002657 BtCursor *pCur;
danielk1977aef0bf62005-12-30 16:28:01 +00002658 BtShared *pBt = p->pBt;
drhecdc7532001-09-23 02:35:53 +00002659
drh1fee73e2007-08-29 04:00:57 +00002660 assert( sqlite3BtreeHoldsMutex(p) );
drh8dcd7ca2004-08-08 19:43:29 +00002661 *ppCur = 0;
2662 if( wrFlag ){
drh8dcd7ca2004-08-08 19:43:29 +00002663 if( pBt->readOnly ){
2664 return SQLITE_READONLY;
2665 }
drh980b1a72006-08-16 16:42:48 +00002666 if( checkReadLocks(p, iTable, 0) ){
drh8dcd7ca2004-08-08 19:43:29 +00002667 return SQLITE_LOCKED;
2668 }
drha0c9a112004-03-10 13:42:37 +00002669 }
danielk1977aef0bf62005-12-30 16:28:01 +00002670
drh4b70f112004-05-02 21:12:19 +00002671 if( pBt->pPage1==0 ){
danielk1977aef0bf62005-12-30 16:28:01 +00002672 rc = lockBtreeWithRetry(p);
drha059ad02001-04-17 20:09:11 +00002673 if( rc!=SQLITE_OK ){
drha059ad02001-04-17 20:09:11 +00002674 return rc;
2675 }
drh1831f182007-04-24 17:35:59 +00002676 if( pBt->readOnly && wrFlag ){
2677 return SQLITE_READONLY;
2678 }
drha059ad02001-04-17 20:09:11 +00002679 }
drh17435752007-08-16 04:30:38 +00002680 pCur = sqlite3MallocZero( sizeof(*pCur) );
drha059ad02001-04-17 20:09:11 +00002681 if( pCur==0 ){
drhbd03cae2001-06-02 02:40:57 +00002682 rc = SQLITE_NOMEM;
2683 goto create_cursor_exception;
2684 }
drh8b2f49b2001-06-08 00:21:52 +00002685 pCur->pgnoRoot = (Pgno)iTable;
danielk19773b8a05f2007-03-19 17:44:26 +00002686 if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){
drh24cd67e2004-05-10 16:18:47 +00002687 rc = SQLITE_EMPTY;
2688 goto create_cursor_exception;
2689 }
drhde647132004-05-07 17:57:49 +00002690 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
drhbd03cae2001-06-02 02:40:57 +00002691 if( rc!=SQLITE_OK ){
2692 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00002693 }
danielk1977aef0bf62005-12-30 16:28:01 +00002694
danielk1977aef0bf62005-12-30 16:28:01 +00002695 /* Now that no other errors can occur, finish filling in the BtCursor
2696 ** variables, link the cursor into the BtShared list and set *ppCur (the
2697 ** output argument to this function).
2698 */
drh3aac2dd2004-04-26 14:10:20 +00002699 pCur->xCompare = xCmp ? xCmp : dfltCompare;
2700 pCur->pArg = pArg;
danielk1977aef0bf62005-12-30 16:28:01 +00002701 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00002702 pCur->pBt = pBt;
drhecdc7532001-09-23 02:35:53 +00002703 pCur->wrFlag = wrFlag;
drha059ad02001-04-17 20:09:11 +00002704 pCur->pNext = pBt->pCursor;
2705 if( pCur->pNext ){
2706 pCur->pNext->pPrev = pCur;
2707 }
2708 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00002709 pCur->eState = CURSOR_INVALID;
drh2af926b2001-05-15 00:39:25 +00002710 *ppCur = pCur;
drhbd03cae2001-06-02 02:40:57 +00002711
danielk1977aef0bf62005-12-30 16:28:01 +00002712 return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00002713
drhbd03cae2001-06-02 02:40:57 +00002714create_cursor_exception:
drhbd03cae2001-06-02 02:40:57 +00002715 if( pCur ){
drh3aac2dd2004-04-26 14:10:20 +00002716 releasePage(pCur->pPage);
drh17435752007-08-16 04:30:38 +00002717 sqlite3_free(pCur);
drhbd03cae2001-06-02 02:40:57 +00002718 }
drh5e00f6c2001-09-13 13:46:56 +00002719 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00002720 return rc;
drha059ad02001-04-17 20:09:11 +00002721}
drhd677b3d2007-08-20 22:48:41 +00002722int sqlite3BtreeCursor(
2723 Btree *p, /* The btree */
2724 int iTable, /* Root page of table to open */
2725 int wrFlag, /* 1 to write. 0 read-only */
2726 int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
2727 void *pArg, /* First arg to xCompare() */
2728 BtCursor **ppCur /* Write new cursor here */
2729){
2730 int rc;
2731 sqlite3BtreeEnter(p);
2732 rc = btreeCursor(p, iTable, wrFlag, xCmp, pArg, ppCur);
2733 sqlite3BtreeLeave(p);
2734 return rc;
2735}
2736
drha059ad02001-04-17 20:09:11 +00002737
2738/*
drh5e00f6c2001-09-13 13:46:56 +00002739** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00002740** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00002741*/
drh3aac2dd2004-04-26 14:10:20 +00002742int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhd0679ed2007-08-28 22:24:34 +00002743 BtShared *pBt = pCur->pBt;
drhff0587c2007-08-29 17:43:19 +00002744 Btree *pBtree = pCur->pBtree;
drhd677b3d2007-08-20 22:48:41 +00002745
drhff0587c2007-08-29 17:43:19 +00002746 sqlite3BtreeEnter(pBtree);
drhbf700f32007-03-31 02:36:44 +00002747 clearCursorPosition(pCur);
drha059ad02001-04-17 20:09:11 +00002748 if( pCur->pPrev ){
2749 pCur->pPrev->pNext = pCur->pNext;
2750 }else{
2751 pBt->pCursor = pCur->pNext;
2752 }
2753 if( pCur->pNext ){
2754 pCur->pNext->pPrev = pCur->pPrev;
2755 }
drh3aac2dd2004-04-26 14:10:20 +00002756 releasePage(pCur->pPage);
drh5e00f6c2001-09-13 13:46:56 +00002757 unlockBtreeIfUnused(pBt);
danielk197792d4d7a2007-05-04 12:05:56 +00002758 invalidateOverflowCache(pCur);
drh17435752007-08-16 04:30:38 +00002759 sqlite3_free(pCur);
drhff0587c2007-08-29 17:43:19 +00002760 sqlite3BtreeLeave(pBtree);
drh8c42ca92001-06-22 19:15:00 +00002761 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002762}
2763
drh7e3b0a02001-04-28 16:52:40 +00002764/*
drh5e2f8b92001-05-28 00:41:15 +00002765** Make a temporary cursor by filling in the fields of pTempCur.
2766** The temporary cursor is not on the cursor list for the Btree.
2767*/
drh16a9b832007-05-05 18:39:25 +00002768void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
drh1fee73e2007-08-29 04:00:57 +00002769 assert( cursorHoldsMutex(pCur) );
drh5e2f8b92001-05-28 00:41:15 +00002770 memcpy(pTempCur, pCur, sizeof(*pCur));
2771 pTempCur->pNext = 0;
2772 pTempCur->pPrev = 0;
drhecdc7532001-09-23 02:35:53 +00002773 if( pTempCur->pPage ){
danielk19773b8a05f2007-03-19 17:44:26 +00002774 sqlite3PagerRef(pTempCur->pPage->pDbPage);
drhecdc7532001-09-23 02:35:53 +00002775 }
drh5e2f8b92001-05-28 00:41:15 +00002776}
2777
2778/*
drhbd03cae2001-06-02 02:40:57 +00002779** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00002780** function above.
2781*/
drh16a9b832007-05-05 18:39:25 +00002782void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00002783 assert( cursorHoldsMutex(pCur) );
drhecdc7532001-09-23 02:35:53 +00002784 if( pCur->pPage ){
danielk19773b8a05f2007-03-19 17:44:26 +00002785 sqlite3PagerUnref(pCur->pPage->pDbPage);
drhecdc7532001-09-23 02:35:53 +00002786 }
drh5e2f8b92001-05-28 00:41:15 +00002787}
2788
2789/*
drh86057612007-06-26 01:04:48 +00002790** Make sure the BtCursor* given in the argument has a valid
2791** BtCursor.info structure. If it is not already valid, call
danielk19771cc5ed82007-05-16 17:28:43 +00002792** sqlite3BtreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00002793**
2794** BtCursor.info is a cache of the information in the current cell.
drh16a9b832007-05-05 18:39:25 +00002795** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
drh86057612007-06-26 01:04:48 +00002796**
2797** 2007-06-25: There is a bug in some versions of MSVC that cause the
2798** compiler to crash when getCellInfo() is implemented as a macro.
2799** But there is a measureable speed advantage to using the macro on gcc
2800** (when less compiler optimizations like -Os or -O0 are used and the
2801** compiler is not doing agressive inlining.) So we use a real function
2802** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00002803*/
drh9188b382004-05-14 21:12:22 +00002804#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00002805 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00002806 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00002807 memset(&info, 0, sizeof(info));
drh16a9b832007-05-05 18:39:25 +00002808 sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info);
drh9188b382004-05-14 21:12:22 +00002809 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00002810 }
danielk19771cc5ed82007-05-16 17:28:43 +00002811#else
2812 #define assertCellInfo(x)
2813#endif
drh86057612007-06-26 01:04:48 +00002814#ifdef _MSC_VER
2815 /* Use a real function in MSVC to work around bugs in that compiler. */
2816 static void getCellInfo(BtCursor *pCur){
2817 if( pCur->info.nSize==0 ){
2818 sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);
2819 }else{
2820 assertCellInfo(pCur);
2821 }
2822 }
2823#else /* if not _MSC_VER */
2824 /* Use a macro in all other compilers so that the function is inlined */
2825#define getCellInfo(pCur) \
2826 if( pCur->info.nSize==0 ){ \
danielk19771cc5ed82007-05-16 17:28:43 +00002827 sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info); \
drh86057612007-06-26 01:04:48 +00002828 }else{ \
2829 assertCellInfo(pCur); \
2830 }
2831#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00002832
2833/*
drh3aac2dd2004-04-26 14:10:20 +00002834** Set *pSize to the size of the buffer needed to hold the value of
2835** the key for the current entry. If the cursor is not pointing
2836** to a valid entry, *pSize is set to 0.
2837**
drh4b70f112004-05-02 21:12:19 +00002838** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00002839** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00002840*/
drh4a1c3802004-05-12 15:15:47 +00002841int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhd677b3d2007-08-20 22:48:41 +00002842 int rc;
2843
drh1fee73e2007-08-29 04:00:57 +00002844 assert( cursorHoldsMutex(pCur) );
drhd677b3d2007-08-20 22:48:41 +00002845 rc = restoreOrClearCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00002846 if( rc==SQLITE_OK ){
2847 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
2848 if( pCur->eState==CURSOR_INVALID ){
2849 *pSize = 0;
2850 }else{
drh86057612007-06-26 01:04:48 +00002851 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00002852 *pSize = pCur->info.nKey;
2853 }
drh72f82862001-05-24 21:06:34 +00002854 }
danielk1977da184232006-01-05 11:34:32 +00002855 return rc;
drha059ad02001-04-17 20:09:11 +00002856}
drh2af926b2001-05-15 00:39:25 +00002857
drh72f82862001-05-24 21:06:34 +00002858/*
drh0e1c19e2004-05-11 00:58:56 +00002859** Set *pSize to the number of bytes of data in the entry the
2860** cursor currently points to. Always return SQLITE_OK.
2861** Failure is not possible. If the cursor is not currently
2862** pointing to an entry (which can happen, for example, if
2863** the database is empty) then *pSize is set to 0.
2864*/
2865int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drhd677b3d2007-08-20 22:48:41 +00002866 int rc;
2867
drh1fee73e2007-08-29 04:00:57 +00002868 assert( cursorHoldsMutex(pCur) );
drhd677b3d2007-08-20 22:48:41 +00002869 rc = restoreOrClearCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00002870 if( rc==SQLITE_OK ){
2871 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
2872 if( pCur->eState==CURSOR_INVALID ){
2873 /* Not pointing at a valid entry - set *pSize to 0. */
2874 *pSize = 0;
2875 }else{
drh86057612007-06-26 01:04:48 +00002876 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00002877 *pSize = pCur->info.nData;
2878 }
drh0e1c19e2004-05-11 00:58:56 +00002879 }
danielk1977da184232006-01-05 11:34:32 +00002880 return rc;
drh0e1c19e2004-05-11 00:58:56 +00002881}
2882
2883/*
danielk1977d04417962007-05-02 13:16:30 +00002884** Given the page number of an overflow page in the database (parameter
2885** ovfl), this function finds the page number of the next page in the
2886** linked list of overflow pages. If possible, it uses the auto-vacuum
2887** pointer-map data instead of reading the content of page ovfl to do so.
2888**
2889** If an error occurs an SQLite error code is returned. Otherwise:
2890**
2891** Unless pPgnoNext is NULL, the page number of the next overflow
2892** page in the linked list is written to *pPgnoNext. If page ovfl
2893** is the last page in it's linked list, *pPgnoNext is set to zero.
2894**
2895** If ppPage is not NULL, *ppPage is set to the MemPage* handle
2896** for page ovfl. The underlying pager page may have been requested
2897** with the noContent flag set, so the page data accessable via
2898** this handle may not be trusted.
2899*/
2900static int getOverflowPage(
2901 BtShared *pBt,
2902 Pgno ovfl, /* Overflow page */
2903 MemPage **ppPage, /* OUT: MemPage handle */
2904 Pgno *pPgnoNext /* OUT: Next overflow page number */
2905){
2906 Pgno next = 0;
2907 int rc;
2908
drh1fee73e2007-08-29 04:00:57 +00002909 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977d04417962007-05-02 13:16:30 +00002910 /* One of these must not be NULL. Otherwise, why call this function? */
2911 assert(ppPage || pPgnoNext);
2912
2913 /* If pPgnoNext is NULL, then this function is being called to obtain
2914 ** a MemPage* reference only. No page-data is required in this case.
2915 */
2916 if( !pPgnoNext ){
drh16a9b832007-05-05 18:39:25 +00002917 return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
danielk1977d04417962007-05-02 13:16:30 +00002918 }
2919
2920#ifndef SQLITE_OMIT_AUTOVACUUM
2921 /* Try to find the next page in the overflow list using the
2922 ** autovacuum pointer-map pages. Guess that the next page in
2923 ** the overflow list is page number (ovfl+1). If that guess turns
2924 ** out to be wrong, fall back to loading the data of page
2925 ** number ovfl to determine the next page number.
2926 */
2927 if( pBt->autoVacuum ){
2928 Pgno pgno;
2929 Pgno iGuess = ovfl+1;
2930 u8 eType;
2931
2932 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
2933 iGuess++;
2934 }
2935
danielk197720713f32007-05-03 11:43:33 +00002936 if( iGuess<=sqlite3PagerPagecount(pBt->pPager) ){
danielk1977d04417962007-05-02 13:16:30 +00002937 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
2938 if( rc!=SQLITE_OK ){
2939 return rc;
2940 }
2941 if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
2942 next = iGuess;
2943 }
2944 }
2945 }
2946#endif
2947
2948 if( next==0 || ppPage ){
2949 MemPage *pPage = 0;
2950
drh16a9b832007-05-05 18:39:25 +00002951 rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0);
danielk1977d04417962007-05-02 13:16:30 +00002952 assert(rc==SQLITE_OK || pPage==0);
2953 if( next==0 && rc==SQLITE_OK ){
2954 next = get4byte(pPage->aData);
2955 }
2956
2957 if( ppPage ){
2958 *ppPage = pPage;
2959 }else{
2960 releasePage(pPage);
2961 }
2962 }
2963 *pPgnoNext = next;
2964
2965 return rc;
2966}
2967
danielk1977da107192007-05-04 08:32:13 +00002968/*
2969** Copy data from a buffer to a page, or from a page to a buffer.
2970**
2971** pPayload is a pointer to data stored on database page pDbPage.
2972** If argument eOp is false, then nByte bytes of data are copied
2973** from pPayload to the buffer pointed at by pBuf. If eOp is true,
2974** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
2975** of data are copied from the buffer pBuf to pPayload.
2976**
2977** SQLITE_OK is returned on success, otherwise an error code.
2978*/
2979static int copyPayload(
2980 void *pPayload, /* Pointer to page data */
2981 void *pBuf, /* Pointer to buffer */
2982 int nByte, /* Number of bytes to copy */
2983 int eOp, /* 0 -> copy from page, 1 -> copy to page */
2984 DbPage *pDbPage /* Page containing pPayload */
2985){
2986 if( eOp ){
2987 /* Copy data from buffer to page (a write operation) */
2988 int rc = sqlite3PagerWrite(pDbPage);
2989 if( rc!=SQLITE_OK ){
2990 return rc;
2991 }
2992 memcpy(pPayload, pBuf, nByte);
2993 }else{
2994 /* Copy data from page to buffer (a read operation) */
2995 memcpy(pBuf, pPayload, nByte);
2996 }
2997 return SQLITE_OK;
2998}
danielk1977d04417962007-05-02 13:16:30 +00002999
3000/*
danielk19779f8d6402007-05-02 17:48:45 +00003001** This function is used to read or overwrite payload information
3002** for the entry that the pCur cursor is pointing to. If the eOp
3003** parameter is 0, this is a read operation (data copied into
3004** buffer pBuf). If it is non-zero, a write (data copied from
3005** buffer pBuf).
3006**
3007** A total of "amt" bytes are read or written beginning at "offset".
3008** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003009**
3010** This routine does not make a distinction between key and data.
danielk19779f8d6402007-05-02 17:48:45 +00003011** It just reads or writes bytes from the payload area. Data might
3012** appear on the main page or be scattered out on multiple overflow
3013** pages.
danielk1977da107192007-05-04 08:32:13 +00003014**
danielk1977dcbb5d32007-05-04 18:36:44 +00003015** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003016** cursor entry uses one or more overflow pages, this function
3017** allocates space for and lazily popluates the overflow page-list
3018** cache array (BtCursor.aOverflow). Subsequent calls use this
3019** cache to make seeking to the supplied offset more efficient.
3020**
3021** Once an overflow page-list cache has been allocated, it may be
3022** invalidated if some other cursor writes to the same table, or if
3023** the cursor is moved to a different row. Additionally, in auto-vacuum
3024** mode, the following events may invalidate an overflow page-list cache.
3025**
3026** * An incremental vacuum,
3027** * A commit in auto_vacuum="full" mode,
3028** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003029*/
danielk19779f8d6402007-05-02 17:48:45 +00003030static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003031 BtCursor *pCur, /* Cursor pointing to entry to read from */
3032 int offset, /* Begin reading this far into payload */
3033 int amt, /* Read this many bytes */
3034 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003035 int skipKey, /* offset begins at data if this is true */
3036 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003037){
3038 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003039 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003040 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003041 int iIdx = 0;
drhd0679ed2007-08-28 22:24:34 +00003042 MemPage *pPage = pCur->pPage; /* Btree page of current cursor entry */
3043 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003044
danielk1977da107192007-05-04 08:32:13 +00003045 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003046 assert( pCur->eState==CURSOR_VALID );
drh3aac2dd2004-04-26 14:10:20 +00003047 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
danielk1977da107192007-05-04 08:32:13 +00003048 assert( offset>=0 );
drh1fee73e2007-08-29 04:00:57 +00003049 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003050
drh86057612007-06-26 01:04:48 +00003051 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003052 aPayload = pCur->info.pCell + pCur->info.nHeader;
danielk1977da107192007-05-04 08:32:13 +00003053 nKey = (pPage->intKey ? 0 : pCur->info.nKey);
3054
drh3aac2dd2004-04-26 14:10:20 +00003055 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003056 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00003057 }
drhfa1a98a2004-05-14 19:08:17 +00003058 if( offset+amt > nKey+pCur->info.nData ){
danielk1977da107192007-05-04 08:32:13 +00003059 /* Trying to read or write past the end of the data is an error */
drha34b6762004-05-07 13:30:42 +00003060 return SQLITE_ERROR;
drh3aac2dd2004-04-26 14:10:20 +00003061 }
danielk1977da107192007-05-04 08:32:13 +00003062
3063 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003064 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003065 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003066 if( a+offset>pCur->info.nLocal ){
3067 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003068 }
danielk1977da107192007-05-04 08:32:13 +00003069 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003070 offset = 0;
drha34b6762004-05-07 13:30:42 +00003071 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003072 amt -= a;
drhdd793422001-06-28 01:54:48 +00003073 }else{
drhfa1a98a2004-05-14 19:08:17 +00003074 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003075 }
danielk1977da107192007-05-04 08:32:13 +00003076
3077 if( rc==SQLITE_OK && amt>0 ){
3078 const int ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
3079 Pgno nextPage;
3080
drhfa1a98a2004-05-14 19:08:17 +00003081 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003082
danielk19772dec9702007-05-02 16:48:37 +00003083#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003084 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003085 ** has not been allocated, allocate it now. The array is sized at
3086 ** one entry for each overflow page in the overflow chain. The
3087 ** page number of the first overflow page is stored in aOverflow[0],
3088 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3089 ** (the cache is lazily populated).
3090 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003091 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003092 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003093 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
danielk19772dec9702007-05-02 16:48:37 +00003094 if( nOvfl && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003095 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003096 }
3097 }
danielk1977da107192007-05-04 08:32:13 +00003098
3099 /* If the overflow page-list cache has been allocated and the
3100 ** entry for the first required overflow page is valid, skip
3101 ** directly to it.
3102 */
danielk19772dec9702007-05-02 16:48:37 +00003103 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3104 iIdx = (offset/ovflSize);
3105 nextPage = pCur->aOverflow[iIdx];
3106 offset = (offset%ovflSize);
3107 }
3108#endif
danielk1977da107192007-05-04 08:32:13 +00003109
3110 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3111
3112#ifndef SQLITE_OMIT_INCRBLOB
3113 /* If required, populate the overflow page-list cache. */
3114 if( pCur->aOverflow ){
3115 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3116 pCur->aOverflow[iIdx] = nextPage;
3117 }
3118#endif
3119
danielk1977d04417962007-05-02 13:16:30 +00003120 if( offset>=ovflSize ){
3121 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003122 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003123 ** data is not required. So first try to lookup the overflow
3124 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003125 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003126 */
danielk19772dec9702007-05-02 16:48:37 +00003127#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003128 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3129 nextPage = pCur->aOverflow[iIdx+1];
3130 } else
danielk19772dec9702007-05-02 16:48:37 +00003131#endif
danielk1977da107192007-05-04 08:32:13 +00003132 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003133 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003134 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003135 /* Need to read this page properly. It contains some of the
3136 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003137 */
3138 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003139 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003140 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003141 if( rc==SQLITE_OK ){
3142 aPayload = sqlite3PagerGetData(pDbPage);
3143 nextPage = get4byte(aPayload);
3144 if( a + offset > ovflSize ){
3145 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003146 }
danielk1977da107192007-05-04 08:32:13 +00003147 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3148 sqlite3PagerUnref(pDbPage);
3149 offset = 0;
3150 amt -= a;
3151 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003152 }
danielk1977cfe9a692004-06-16 12:00:29 +00003153 }
drh2af926b2001-05-15 00:39:25 +00003154 }
drh2af926b2001-05-15 00:39:25 +00003155 }
danielk1977cfe9a692004-06-16 12:00:29 +00003156
danielk1977da107192007-05-04 08:32:13 +00003157 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003158 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003159 }
danielk1977da107192007-05-04 08:32:13 +00003160 return rc;
drh2af926b2001-05-15 00:39:25 +00003161}
3162
drh72f82862001-05-24 21:06:34 +00003163/*
drh3aac2dd2004-04-26 14:10:20 +00003164** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003165** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003166** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003167**
drh3aac2dd2004-04-26 14:10:20 +00003168** Return SQLITE_OK on success or an error code if anything goes
3169** wrong. An error is returned if "offset+amt" is larger than
3170** the available payload.
drh72f82862001-05-24 21:06:34 +00003171*/
drha34b6762004-05-07 13:30:42 +00003172int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003173 int rc;
3174
drh1fee73e2007-08-29 04:00:57 +00003175 assert( cursorHoldsMutex(pCur) );
drhd677b3d2007-08-20 22:48:41 +00003176 rc = restoreOrClearCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003177 if( rc==SQLITE_OK ){
3178 assert( pCur->eState==CURSOR_VALID );
3179 assert( pCur->pPage!=0 );
3180 if( pCur->pPage->intKey ){
3181 return SQLITE_CORRUPT_BKPT;
3182 }
3183 assert( pCur->pPage->intKey==0 );
3184 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh16a9b832007-05-05 18:39:25 +00003185 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
drh6575a222005-03-10 17:06:34 +00003186 }
danielk1977da184232006-01-05 11:34:32 +00003187 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003188}
3189
3190/*
drh3aac2dd2004-04-26 14:10:20 +00003191** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003192** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003193** begins at "offset".
3194**
3195** Return SQLITE_OK on success or an error code if anything goes
3196** wrong. An error is returned if "offset+amt" is larger than
3197** the available payload.
drh72f82862001-05-24 21:06:34 +00003198*/
drh3aac2dd2004-04-26 14:10:20 +00003199int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003200 int rc;
3201
drh1fee73e2007-08-29 04:00:57 +00003202 assert( cursorHoldsMutex(pCur) );
drhd677b3d2007-08-20 22:48:41 +00003203 rc = restoreOrClearCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003204 if( rc==SQLITE_OK ){
3205 assert( pCur->eState==CURSOR_VALID );
3206 assert( pCur->pPage!=0 );
3207 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh16a9b832007-05-05 18:39:25 +00003208 rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
danielk1977da184232006-01-05 11:34:32 +00003209 }
3210 return rc;
drh2af926b2001-05-15 00:39:25 +00003211}
3212
drh72f82862001-05-24 21:06:34 +00003213/*
drh0e1c19e2004-05-11 00:58:56 +00003214** Return a pointer to payload information from the entry that the
3215** pCur cursor is pointing to. The pointer is to the beginning of
3216** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003217** skipKey==1. The number of bytes of available key/data is written
3218** into *pAmt. If *pAmt==0, then the value returned will not be
3219** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003220**
3221** This routine is an optimization. It is common for the entire key
3222** and data to fit on the local page and for there to be no overflow
3223** pages. When that is so, this routine can be used to access the
3224** key and data without making a copy. If the key and/or data spills
drh16a9b832007-05-05 18:39:25 +00003225** onto overflow pages, then accessPayload() must be used to reassembly
drh0e1c19e2004-05-11 00:58:56 +00003226** the key/data and copy it into a preallocated buffer.
3227**
3228** The pointer returned by this routine looks directly into the cached
3229** page of the database. The data might change or move the next time
3230** any btree routine is called.
3231*/
3232static const unsigned char *fetchPayload(
3233 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003234 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003235 int skipKey /* read beginning at data if this is true */
3236){
3237 unsigned char *aPayload;
3238 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003239 u32 nKey;
3240 int nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003241
3242 assert( pCur!=0 && pCur->pPage!=0 );
danielk1977da184232006-01-05 11:34:32 +00003243 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003244 assert( cursorHoldsMutex(pCur) );
drh0e1c19e2004-05-11 00:58:56 +00003245 pPage = pCur->pPage;
drh0e1c19e2004-05-11 00:58:56 +00003246 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh86057612007-06-26 01:04:48 +00003247 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003248 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003249 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003250 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003251 nKey = 0;
3252 }else{
3253 nKey = pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003254 }
drh0e1c19e2004-05-11 00:58:56 +00003255 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003256 aPayload += nKey;
3257 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003258 }else{
drhfa1a98a2004-05-14 19:08:17 +00003259 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003260 if( nLocal>nKey ){
3261 nLocal = nKey;
3262 }
drh0e1c19e2004-05-11 00:58:56 +00003263 }
drhe51c44f2004-05-30 20:46:09 +00003264 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003265 return aPayload;
3266}
3267
3268
3269/*
drhe51c44f2004-05-30 20:46:09 +00003270** For the entry that cursor pCur is point to, return as
3271** many bytes of the key or data as are available on the local
3272** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003273**
3274** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003275** or be destroyed on the next call to any Btree routine,
3276** including calls from other threads against the same cache.
3277** Hence, a mutex on the BtShared should be held prior to calling
3278** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003279**
3280** These routines is used to get quick access to key and data
3281** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003282*/
drhe51c44f2004-05-30 20:46:09 +00003283const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drh1fee73e2007-08-29 04:00:57 +00003284 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003285 if( pCur->eState==CURSOR_VALID ){
3286 return (const void*)fetchPayload(pCur, pAmt, 0);
3287 }
3288 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003289}
drhe51c44f2004-05-30 20:46:09 +00003290const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drh1fee73e2007-08-29 04:00:57 +00003291 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003292 if( pCur->eState==CURSOR_VALID ){
3293 return (const void*)fetchPayload(pCur, pAmt, 1);
3294 }
3295 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003296}
3297
3298
3299/*
drh8178a752003-01-05 21:41:40 +00003300** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003301** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003302*/
drh3aac2dd2004-04-26 14:10:20 +00003303static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003304 int rc;
3305 MemPage *pNewPage;
drh3aac2dd2004-04-26 14:10:20 +00003306 MemPage *pOldPage;
drhd0679ed2007-08-28 22:24:34 +00003307 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003308
drh1fee73e2007-08-29 04:00:57 +00003309 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003310 assert( pCur->eState==CURSOR_VALID );
drhde647132004-05-07 17:57:49 +00003311 rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
drh6019e162001-07-02 17:51:45 +00003312 if( rc ) return rc;
drh428ae8c2003-01-04 16:48:09 +00003313 pNewPage->idxParent = pCur->idx;
drh3aac2dd2004-04-26 14:10:20 +00003314 pOldPage = pCur->pPage;
3315 pOldPage->idxShift = 0;
3316 releasePage(pOldPage);
drh72f82862001-05-24 21:06:34 +00003317 pCur->pPage = pNewPage;
3318 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00003319 pCur->info.nSize = 0;
drh4be295b2003-12-16 03:44:47 +00003320 if( pNewPage->nCell<1 ){
drh49285702005-09-17 15:20:26 +00003321 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003322 }
drh72f82862001-05-24 21:06:34 +00003323 return SQLITE_OK;
3324}
3325
3326/*
drh8856d6a2004-04-29 14:42:46 +00003327** Return true if the page is the virtual root of its table.
3328**
3329** The virtual root page is the root page for most tables. But
3330** for the table rooted on page 1, sometime the real root page
3331** is empty except for the right-pointer. In such cases the
3332** virtual root page is the page that the right-pointer of page
3333** 1 is pointing to.
3334*/
drh16a9b832007-05-05 18:39:25 +00003335int sqlite3BtreeIsRootPage(MemPage *pPage){
drhd677b3d2007-08-20 22:48:41 +00003336 MemPage *pParent;
3337
drh1fee73e2007-08-29 04:00:57 +00003338 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00003339 pParent = pPage->pParent;
drhda200cc2004-05-09 11:51:38 +00003340 if( pParent==0 ) return 1;
3341 if( pParent->pgno>1 ) return 0;
3342 if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
drh8856d6a2004-04-29 14:42:46 +00003343 return 0;
3344}
3345
3346/*
drh5e2f8b92001-05-28 00:41:15 +00003347** Move the cursor up to the parent page.
3348**
3349** pCur->idx is set to the cell index that contains the pointer
3350** to the page we are coming from. If we are coming from the
3351** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003352** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003353*/
drh16a9b832007-05-05 18:39:25 +00003354void sqlite3BtreeMoveToParent(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00003355 MemPage *pParent;
drh8178a752003-01-05 21:41:40 +00003356 MemPage *pPage;
drh428ae8c2003-01-04 16:48:09 +00003357 int idxParent;
drh3aac2dd2004-04-26 14:10:20 +00003358
drh1fee73e2007-08-29 04:00:57 +00003359 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003360 assert( pCur->eState==CURSOR_VALID );
drh8178a752003-01-05 21:41:40 +00003361 pPage = pCur->pPage;
3362 assert( pPage!=0 );
drh16a9b832007-05-05 18:39:25 +00003363 assert( !sqlite3BtreeIsRootPage(pPage) );
drh8178a752003-01-05 21:41:40 +00003364 pParent = pPage->pParent;
3365 assert( pParent!=0 );
3366 idxParent = pPage->idxParent;
danielk19773b8a05f2007-03-19 17:44:26 +00003367 sqlite3PagerRef(pParent->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00003368 releasePage(pPage);
drh72f82862001-05-24 21:06:34 +00003369 pCur->pPage = pParent;
drh271efa52004-05-30 19:19:05 +00003370 pCur->info.nSize = 0;
drh428ae8c2003-01-04 16:48:09 +00003371 assert( pParent->idxShift==0 );
drh43605152004-05-29 21:46:49 +00003372 pCur->idx = idxParent;
drh72f82862001-05-24 21:06:34 +00003373}
3374
3375/*
3376** Move the cursor to the root page
3377*/
drh5e2f8b92001-05-28 00:41:15 +00003378static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00003379 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00003380 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003381 Btree *p = pCur->pBtree;
3382 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00003383
drh1fee73e2007-08-29 04:00:57 +00003384 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00003385 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
3386 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
3387 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
3388 if( pCur->eState>=CURSOR_REQUIRESEEK ){
3389 if( pCur->eState==CURSOR_FAULT ){
3390 return pCur->skip;
3391 }
drhbf700f32007-03-31 02:36:44 +00003392 clearCursorPosition(pCur);
3393 }
drh777e4c42006-01-13 04:31:58 +00003394 pRoot = pCur->pPage;
danielk197797a227c2006-01-20 16:32:04 +00003395 if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
drh777e4c42006-01-13 04:31:58 +00003396 assert( pRoot->isInit );
3397 }else{
3398 if(
3399 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
3400 ){
3401 pCur->eState = CURSOR_INVALID;
3402 return rc;
3403 }
3404 releasePage(pCur->pPage);
drh777e4c42006-01-13 04:31:58 +00003405 pCur->pPage = pRoot;
drhc39e0002004-05-07 23:50:57 +00003406 }
drh72f82862001-05-24 21:06:34 +00003407 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00003408 pCur->info.nSize = 0;
drh8856d6a2004-04-29 14:42:46 +00003409 if( pRoot->nCell==0 && !pRoot->leaf ){
3410 Pgno subpage;
3411 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00003412 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00003413 assert( subpage>0 );
danielk1977da184232006-01-05 11:34:32 +00003414 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00003415 rc = moveToChild(pCur, subpage);
drh8856d6a2004-04-29 14:42:46 +00003416 }
danielk1977da184232006-01-05 11:34:32 +00003417 pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00003418 return rc;
drh72f82862001-05-24 21:06:34 +00003419}
drh2af926b2001-05-15 00:39:25 +00003420
drh5e2f8b92001-05-28 00:41:15 +00003421/*
3422** Move the cursor down to the left-most leaf entry beneath the
3423** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00003424**
3425** The left-most leaf is the one with the smallest key - the first
3426** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00003427*/
3428static int moveToLeftmost(BtCursor *pCur){
3429 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00003430 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00003431 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00003432
drh1fee73e2007-08-29 04:00:57 +00003433 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003434 assert( pCur->eState==CURSOR_VALID );
drhd677b3d2007-08-20 22:48:41 +00003435 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drha34b6762004-05-07 13:30:42 +00003436 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
danielk19771cc5ed82007-05-16 17:28:43 +00003437 pgno = get4byte(findCell(pPage, pCur->idx));
drh8178a752003-01-05 21:41:40 +00003438 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00003439 }
drhd677b3d2007-08-20 22:48:41 +00003440 return rc;
drh5e2f8b92001-05-28 00:41:15 +00003441}
3442
drh2dcc9aa2002-12-04 13:40:25 +00003443/*
3444** Move the cursor down to the right-most leaf entry beneath the
3445** page to which it is currently pointing. Notice the difference
3446** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
3447** finds the left-most entry beneath the *entry* whereas moveToRightmost()
3448** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00003449**
3450** The right-most entry is the one with the largest key - the last
3451** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00003452*/
3453static int moveToRightmost(BtCursor *pCur){
3454 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00003455 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00003456 MemPage *pPage;
drh2dcc9aa2002-12-04 13:40:25 +00003457
drh1fee73e2007-08-29 04:00:57 +00003458 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003459 assert( pCur->eState==CURSOR_VALID );
drhd677b3d2007-08-20 22:48:41 +00003460 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00003461 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh3aac2dd2004-04-26 14:10:20 +00003462 pCur->idx = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00003463 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00003464 }
drhd677b3d2007-08-20 22:48:41 +00003465 if( rc==SQLITE_OK ){
3466 pCur->idx = pPage->nCell - 1;
3467 pCur->info.nSize = 0;
3468 }
drh2dcc9aa2002-12-04 13:40:25 +00003469 return SQLITE_OK;
3470}
3471
drh5e00f6c2001-09-13 13:46:56 +00003472/* Move the cursor to the first entry in the table. Return SQLITE_OK
3473** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003474** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00003475*/
drh3aac2dd2004-04-26 14:10:20 +00003476int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00003477 int rc;
drhd677b3d2007-08-20 22:48:41 +00003478
drh1fee73e2007-08-29 04:00:57 +00003479 assert( cursorHoldsMutex(pCur) );
3480 assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00003481 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003482 if( rc==SQLITE_OK ){
3483 if( pCur->eState==CURSOR_INVALID ){
3484 assert( pCur->pPage->nCell==0 );
3485 *pRes = 1;
3486 rc = SQLITE_OK;
3487 }else{
3488 assert( pCur->pPage->nCell>0 );
3489 *pRes = 0;
3490 rc = moveToLeftmost(pCur);
3491 }
drh5e00f6c2001-09-13 13:46:56 +00003492 }
drh5e00f6c2001-09-13 13:46:56 +00003493 return rc;
3494}
drh5e2f8b92001-05-28 00:41:15 +00003495
drh9562b552002-02-19 15:00:07 +00003496/* Move the cursor to the last entry in the table. Return SQLITE_OK
3497** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003498** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00003499*/
drh3aac2dd2004-04-26 14:10:20 +00003500int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00003501 int rc;
drhd677b3d2007-08-20 22:48:41 +00003502
drh1fee73e2007-08-29 04:00:57 +00003503 assert( cursorHoldsMutex(pCur) );
3504 assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
drh9562b552002-02-19 15:00:07 +00003505 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003506 if( rc==SQLITE_OK ){
3507 if( CURSOR_INVALID==pCur->eState ){
3508 assert( pCur->pPage->nCell==0 );
3509 *pRes = 1;
3510 }else{
3511 assert( pCur->eState==CURSOR_VALID );
3512 *pRes = 0;
3513 rc = moveToRightmost(pCur);
3514 }
drh9562b552002-02-19 15:00:07 +00003515 }
drh9562b552002-02-19 15:00:07 +00003516 return rc;
3517}
3518
drh3aac2dd2004-04-26 14:10:20 +00003519/* Move the cursor so that it points to an entry near pKey/nKey.
drh72f82862001-05-24 21:06:34 +00003520** Return a success code.
3521**
drh3aac2dd2004-04-26 14:10:20 +00003522** For INTKEY tables, only the nKey parameter is used. pKey is
3523** ignored. For other tables, nKey is the number of bytes of data
drh0b2f3162005-12-21 18:36:45 +00003524** in pKey. The comparison function specified when the cursor was
drh3aac2dd2004-04-26 14:10:20 +00003525** created is used to compare keys.
3526**
drh5e2f8b92001-05-28 00:41:15 +00003527** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00003528** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00003529** were present. The cursor might point to an entry that comes
3530** before or after the key.
3531**
drhbd03cae2001-06-02 02:40:57 +00003532** The result of comparing the key with the entry to which the
drhab01f612004-05-22 02:55:23 +00003533** cursor is written to *pRes if pRes!=NULL. The meaning of
drhbd03cae2001-06-02 02:40:57 +00003534** this value is as follows:
3535**
3536** *pRes<0 The cursor is left pointing at an entry that
drh1a844c32002-12-04 22:29:28 +00003537** is smaller than pKey or if the table is empty
3538** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00003539**
3540** *pRes==0 The cursor is left pointing at an entry that
3541** exactly matches pKey.
3542**
3543** *pRes>0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00003544** is larger than pKey.
drhd677b3d2007-08-20 22:48:41 +00003545**
drha059ad02001-04-17 20:09:11 +00003546*/
drhe4d90812007-03-29 05:51:49 +00003547int sqlite3BtreeMoveto(
3548 BtCursor *pCur, /* The cursor to be moved */
3549 const void *pKey, /* The key content for indices. Not used by tables */
3550 i64 nKey, /* Size of pKey. Or the key for tables */
3551 int biasRight, /* If true, bias the search to the high end */
3552 int *pRes /* Search result flag */
3553){
drh72f82862001-05-24 21:06:34 +00003554 int rc;
drhd677b3d2007-08-20 22:48:41 +00003555
drh1fee73e2007-08-29 04:00:57 +00003556 assert( cursorHoldsMutex(pCur) );
3557 assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
drh5e2f8b92001-05-28 00:41:15 +00003558 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003559 if( rc ){
3560 return rc;
3561 }
drhc39e0002004-05-07 23:50:57 +00003562 assert( pCur->pPage );
3563 assert( pCur->pPage->isInit );
danielk1977da184232006-01-05 11:34:32 +00003564 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00003565 *pRes = -1;
drhc39e0002004-05-07 23:50:57 +00003566 assert( pCur->pPage->nCell==0 );
3567 return SQLITE_OK;
3568 }
drh14684382006-11-30 13:05:29 +00003569 for(;;){
drh72f82862001-05-24 21:06:34 +00003570 int lwr, upr;
3571 Pgno chldPg;
3572 MemPage *pPage = pCur->pPage;
drh1a844c32002-12-04 22:29:28 +00003573 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00003574 lwr = 0;
3575 upr = pPage->nCell-1;
drh4eec4c12005-01-21 00:22:37 +00003576 if( !pPage->intKey && pKey==0 ){
drh49285702005-09-17 15:20:26 +00003577 return SQLITE_CORRUPT_BKPT;
drh4eec4c12005-01-21 00:22:37 +00003578 }
drhe4d90812007-03-29 05:51:49 +00003579 if( biasRight ){
3580 pCur->idx = upr;
3581 }else{
3582 pCur->idx = (upr+lwr)/2;
3583 }
drhf1d68b32007-03-29 04:43:26 +00003584 if( lwr<=upr ) for(;;){
danielk197713adf8a2004-06-03 16:08:41 +00003585 void *pCellKey;
drh4a1c3802004-05-12 15:15:47 +00003586 i64 nCellKey;
drh366fda62006-01-13 02:35:09 +00003587 pCur->info.nSize = 0;
drh3aac2dd2004-04-26 14:10:20 +00003588 if( pPage->intKey ){
drh777e4c42006-01-13 04:31:58 +00003589 u8 *pCell;
danielk19771cc5ed82007-05-16 17:28:43 +00003590 pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
drhd172f862006-01-12 15:01:15 +00003591 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00003592 u32 dummy;
drhd172f862006-01-12 15:01:15 +00003593 pCell += getVarint32(pCell, &dummy);
3594 }
danielk1977bab45c62006-01-16 15:14:27 +00003595 getVarint(pCell, (u64 *)&nCellKey);
drh3aac2dd2004-04-26 14:10:20 +00003596 if( nCellKey<nKey ){
3597 c = -1;
3598 }else if( nCellKey>nKey ){
3599 c = +1;
3600 }else{
3601 c = 0;
3602 }
drh3aac2dd2004-04-26 14:10:20 +00003603 }else{
drhe51c44f2004-05-30 20:46:09 +00003604 int available;
danielk197713adf8a2004-06-03 16:08:41 +00003605 pCellKey = (void *)fetchPayload(pCur, &available, 0);
drh366fda62006-01-13 02:35:09 +00003606 nCellKey = pCur->info.nKey;
drhe51c44f2004-05-30 20:46:09 +00003607 if( available>=nCellKey ){
3608 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
3609 }else{
drh17435752007-08-16 04:30:38 +00003610 pCellKey = sqlite3_malloc( nCellKey );
drhe51c44f2004-05-30 20:46:09 +00003611 if( pCellKey==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00003612 rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
drhe51c44f2004-05-30 20:46:09 +00003613 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
drh17435752007-08-16 04:30:38 +00003614 sqlite3_free(pCellKey);
drhd677b3d2007-08-20 22:48:41 +00003615 if( rc ){
3616 return rc;
3617 }
drhe51c44f2004-05-30 20:46:09 +00003618 }
drh3aac2dd2004-04-26 14:10:20 +00003619 }
drh72f82862001-05-24 21:06:34 +00003620 if( c==0 ){
drh8b18dd42004-05-12 19:18:15 +00003621 if( pPage->leafData && !pPage->leaf ){
drhfc70e6f2004-05-12 21:11:27 +00003622 lwr = pCur->idx;
3623 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00003624 break;
3625 }else{
drh8b18dd42004-05-12 19:18:15 +00003626 if( pRes ) *pRes = 0;
3627 return SQLITE_OK;
3628 }
drh72f82862001-05-24 21:06:34 +00003629 }
3630 if( c<0 ){
3631 lwr = pCur->idx+1;
3632 }else{
3633 upr = pCur->idx-1;
3634 }
drhf1d68b32007-03-29 04:43:26 +00003635 if( lwr>upr ){
3636 break;
3637 }
3638 pCur->idx = (lwr+upr)/2;
drh72f82862001-05-24 21:06:34 +00003639 }
3640 assert( lwr==upr+1 );
drh7aa128d2002-06-21 13:09:16 +00003641 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00003642 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00003643 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00003644 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00003645 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00003646 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00003647 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00003648 }
3649 if( chldPg==0 ){
drhc39e0002004-05-07 23:50:57 +00003650 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh72f82862001-05-24 21:06:34 +00003651 if( pRes ) *pRes = c;
3652 return SQLITE_OK;
3653 }
drh428ae8c2003-01-04 16:48:09 +00003654 pCur->idx = lwr;
drh271efa52004-05-30 19:19:05 +00003655 pCur->info.nSize = 0;
drh8178a752003-01-05 21:41:40 +00003656 rc = moveToChild(pCur, chldPg);
drhc39e0002004-05-07 23:50:57 +00003657 if( rc ){
3658 return rc;
3659 }
drh72f82862001-05-24 21:06:34 +00003660 }
drhbd03cae2001-06-02 02:40:57 +00003661 /* NOT REACHED */
drh72f82862001-05-24 21:06:34 +00003662}
3663
drhd677b3d2007-08-20 22:48:41 +00003664
drh72f82862001-05-24 21:06:34 +00003665/*
drhc39e0002004-05-07 23:50:57 +00003666** Return TRUE if the cursor is not pointing at an entry of the table.
3667**
3668** TRUE will be returned after a call to sqlite3BtreeNext() moves
3669** past the last entry in the table or sqlite3BtreePrev() moves past
3670** the first entry. TRUE is also returned if the table is empty.
3671*/
3672int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00003673 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
3674 ** have been deleted? This API will need to change to return an error code
3675 ** as well as the boolean result value.
3676 */
3677 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00003678}
3679
3680/*
drhb21c8cd2007-08-21 19:33:56 +00003681** Return the database connection handle for a cursor.
3682*/
3683sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
drhd0679ed2007-08-28 22:24:34 +00003684 assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
drhb21c8cd2007-08-21 19:33:56 +00003685 return pCur->pBtree->pSqlite;
3686}
3687
3688/*
drhbd03cae2001-06-02 02:40:57 +00003689** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00003690** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00003691** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00003692** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00003693*/
drhd677b3d2007-08-20 22:48:41 +00003694static int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00003695 int rc;
danielk197797a227c2006-01-20 16:32:04 +00003696 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00003697
drh1fee73e2007-08-29 04:00:57 +00003698 assert( cursorHoldsMutex(pCur) );
drhbf700f32007-03-31 02:36:44 +00003699 rc = restoreOrClearCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003700 if( rc!=SQLITE_OK ){
3701 return rc;
3702 }
drh8c4d3a62007-04-06 01:03:32 +00003703 assert( pRes!=0 );
3704 pPage = pCur->pPage;
3705 if( CURSOR_INVALID==pCur->eState ){
3706 *pRes = 1;
3707 return SQLITE_OK;
3708 }
danielk1977da184232006-01-05 11:34:32 +00003709 if( pCur->skip>0 ){
3710 pCur->skip = 0;
3711 *pRes = 0;
3712 return SQLITE_OK;
3713 }
3714 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00003715
drh8178a752003-01-05 21:41:40 +00003716 assert( pPage->isInit );
drh8178a752003-01-05 21:41:40 +00003717 assert( pCur->idx<pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00003718
drh72f82862001-05-24 21:06:34 +00003719 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00003720 pCur->info.nSize = 0;
drh8178a752003-01-05 21:41:40 +00003721 if( pCur->idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00003722 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003723 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00003724 if( rc ) return rc;
3725 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00003726 *pRes = 0;
3727 return rc;
drh72f82862001-05-24 21:06:34 +00003728 }
drh5e2f8b92001-05-28 00:41:15 +00003729 do{
drh16a9b832007-05-05 18:39:25 +00003730 if( sqlite3BtreeIsRootPage(pPage) ){
drh8c1238a2003-01-02 14:43:55 +00003731 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00003732 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00003733 return SQLITE_OK;
3734 }
drh16a9b832007-05-05 18:39:25 +00003735 sqlite3BtreeMoveToParent(pCur);
drh8178a752003-01-05 21:41:40 +00003736 pPage = pCur->pPage;
3737 }while( pCur->idx>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00003738 *pRes = 0;
drh8b18dd42004-05-12 19:18:15 +00003739 if( pPage->leafData ){
3740 rc = sqlite3BtreeNext(pCur, pRes);
3741 }else{
3742 rc = SQLITE_OK;
3743 }
3744 return rc;
drh8178a752003-01-05 21:41:40 +00003745 }
3746 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00003747 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00003748 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00003749 }
drh5e2f8b92001-05-28 00:41:15 +00003750 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00003751 return rc;
drh72f82862001-05-24 21:06:34 +00003752}
drhd677b3d2007-08-20 22:48:41 +00003753int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
3754 int rc;
drh1fee73e2007-08-29 04:00:57 +00003755 assert( cursorHoldsMutex(pCur) );
drhd677b3d2007-08-20 22:48:41 +00003756 rc = btreeNext(pCur, pRes);
drhd677b3d2007-08-20 22:48:41 +00003757 return rc;
3758}
3759
drh72f82862001-05-24 21:06:34 +00003760
drh3b7511c2001-05-26 13:15:44 +00003761/*
drh2dcc9aa2002-12-04 13:40:25 +00003762** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00003763** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00003764** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00003765** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00003766*/
drhd677b3d2007-08-20 22:48:41 +00003767static int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00003768 int rc;
3769 Pgno pgno;
drh8178a752003-01-05 21:41:40 +00003770 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00003771
drh1fee73e2007-08-29 04:00:57 +00003772 assert( cursorHoldsMutex(pCur) );
drhbf700f32007-03-31 02:36:44 +00003773 rc = restoreOrClearCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003774 if( rc!=SQLITE_OK ){
3775 return rc;
3776 }
drh8c4d3a62007-04-06 01:03:32 +00003777 if( CURSOR_INVALID==pCur->eState ){
3778 *pRes = 1;
3779 return SQLITE_OK;
3780 }
danielk1977da184232006-01-05 11:34:32 +00003781 if( pCur->skip<0 ){
3782 pCur->skip = 0;
3783 *pRes = 0;
3784 return SQLITE_OK;
3785 }
3786 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00003787
drh8178a752003-01-05 21:41:40 +00003788 pPage = pCur->pPage;
drh8178a752003-01-05 21:41:40 +00003789 assert( pPage->isInit );
drh2dcc9aa2002-12-04 13:40:25 +00003790 assert( pCur->idx>=0 );
drha34b6762004-05-07 13:30:42 +00003791 if( !pPage->leaf ){
danielk19771cc5ed82007-05-16 17:28:43 +00003792 pgno = get4byte( findCell(pPage, pCur->idx) );
drh8178a752003-01-05 21:41:40 +00003793 rc = moveToChild(pCur, pgno);
drhd677b3d2007-08-20 22:48:41 +00003794 if( rc ){
3795 return rc;
3796 }
drh2dcc9aa2002-12-04 13:40:25 +00003797 rc = moveToRightmost(pCur);
3798 }else{
3799 while( pCur->idx==0 ){
drh16a9b832007-05-05 18:39:25 +00003800 if( sqlite3BtreeIsRootPage(pPage) ){
danielk1977da184232006-01-05 11:34:32 +00003801 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00003802 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00003803 return SQLITE_OK;
3804 }
drh16a9b832007-05-05 18:39:25 +00003805 sqlite3BtreeMoveToParent(pCur);
drh8178a752003-01-05 21:41:40 +00003806 pPage = pCur->pPage;
drh2dcc9aa2002-12-04 13:40:25 +00003807 }
3808 pCur->idx--;
drh271efa52004-05-30 19:19:05 +00003809 pCur->info.nSize = 0;
drh8237d452004-11-22 19:07:09 +00003810 if( pPage->leafData && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00003811 rc = sqlite3BtreePrevious(pCur, pRes);
3812 }else{
3813 rc = SQLITE_OK;
3814 }
drh2dcc9aa2002-12-04 13:40:25 +00003815 }
drh8178a752003-01-05 21:41:40 +00003816 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00003817 return rc;
3818}
drhd677b3d2007-08-20 22:48:41 +00003819int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
3820 int rc;
drh1fee73e2007-08-29 04:00:57 +00003821 assert( cursorHoldsMutex(pCur) );
drhd677b3d2007-08-20 22:48:41 +00003822 rc = btreePrevious(pCur, pRes);
drhd677b3d2007-08-20 22:48:41 +00003823 return rc;
3824}
drh2dcc9aa2002-12-04 13:40:25 +00003825
3826/*
drh3b7511c2001-05-26 13:15:44 +00003827** Allocate a new page from the database file.
3828**
danielk19773b8a05f2007-03-19 17:44:26 +00003829** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00003830** has already been called on the new page.) The new page has also
3831** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00003832** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00003833**
3834** SQLITE_OK is returned on success. Any other return value indicates
3835** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00003836** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00003837**
drh199e3cf2002-07-18 11:01:47 +00003838** If the "nearby" parameter is not 0, then a (feeble) effort is made to
3839** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00003840** attempt to keep related pages close to each other in the database file,
3841** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00003842**
3843** If the "exact" parameter is not 0, and the page-number nearby exists
3844** anywhere on the free-list, then it is guarenteed to be returned. This
3845** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00003846*/
drh4f0c5872007-03-26 22:05:01 +00003847static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003848 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00003849 MemPage **ppPage,
3850 Pgno *pPgno,
3851 Pgno nearby,
3852 u8 exact
3853){
drh3aac2dd2004-04-26 14:10:20 +00003854 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00003855 int rc;
drh3aac2dd2004-04-26 14:10:20 +00003856 int n; /* Number of pages on the freelist */
3857 int k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00003858 MemPage *pTrunk = 0;
3859 MemPage *pPrevTrunk = 0;
drh30e58752002-03-02 20:41:57 +00003860
drh1fee73e2007-08-29 04:00:57 +00003861 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00003862 pPage1 = pBt->pPage1;
3863 n = get4byte(&pPage1->aData[36]);
3864 if( n>0 ){
drh91025292004-05-03 19:49:32 +00003865 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00003866 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003867 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
3868
3869 /* If the 'exact' parameter was true and a query of the pointer-map
3870 ** shows that the page 'nearby' is somewhere on the free-list, then
3871 ** the entire-list will be searched for that page.
3872 */
3873#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19774ef24492007-05-23 09:52:41 +00003874 if( exact && nearby<=sqlite3PagerPagecount(pBt->pPager) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00003875 u8 eType;
3876 assert( nearby>0 );
3877 assert( pBt->autoVacuum );
3878 rc = ptrmapGet(pBt, nearby, &eType, 0);
3879 if( rc ) return rc;
3880 if( eType==PTRMAP_FREEPAGE ){
3881 searchList = 1;
3882 }
3883 *pPgno = nearby;
3884 }
3885#endif
3886
3887 /* Decrement the free-list count by 1. Set iTrunk to the index of the
3888 ** first free-list trunk page. iPrevTrunk is initially 1.
3889 */
danielk19773b8a05f2007-03-19 17:44:26 +00003890 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00003891 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003892 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00003893
3894 /* The code within this loop is run only once if the 'searchList' variable
3895 ** is not true. Otherwise, it runs once for each trunk-page on the
3896 ** free-list until the page 'nearby' is located.
3897 */
3898 do {
3899 pPrevTrunk = pTrunk;
3900 if( pPrevTrunk ){
3901 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00003902 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00003903 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00003904 }
drh16a9b832007-05-05 18:39:25 +00003905 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00003906 if( rc ){
drhd3627af2006-12-18 18:34:51 +00003907 pTrunk = 0;
3908 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003909 }
3910
3911 k = get4byte(&pTrunk->aData[4]);
3912 if( k==0 && !searchList ){
3913 /* The trunk has no leaves and the list is not being searched.
3914 ** So extract the trunk page itself and use it as the newly
3915 ** allocated page */
3916 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00003917 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00003918 if( rc ){
3919 goto end_allocate_page;
3920 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003921 *pPgno = iTrunk;
3922 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
3923 *ppPage = pTrunk;
3924 pTrunk = 0;
3925 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
3926 }else if( k>pBt->usableSize/4 - 8 ){
3927 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00003928 rc = SQLITE_CORRUPT_BKPT;
3929 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003930#ifndef SQLITE_OMIT_AUTOVACUUM
3931 }else if( searchList && nearby==iTrunk ){
3932 /* The list is being searched and this trunk page is the page
3933 ** to allocate, regardless of whether it has leaves.
3934 */
3935 assert( *pPgno==iTrunk );
3936 *ppPage = pTrunk;
3937 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00003938 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00003939 if( rc ){
3940 goto end_allocate_page;
3941 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003942 if( k==0 ){
3943 if( !pPrevTrunk ){
3944 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
3945 }else{
3946 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
3947 }
3948 }else{
3949 /* The trunk page is required by the caller but it contains
3950 ** pointers to free-list leaves. The first leaf becomes a trunk
3951 ** page in this case.
3952 */
3953 MemPage *pNewTrunk;
3954 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh16a9b832007-05-05 18:39:25 +00003955 rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00003956 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00003957 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003958 }
danielk19773b8a05f2007-03-19 17:44:26 +00003959 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00003960 if( rc!=SQLITE_OK ){
3961 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00003962 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003963 }
3964 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
3965 put4byte(&pNewTrunk->aData[4], k-1);
3966 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00003967 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00003968 if( !pPrevTrunk ){
3969 put4byte(&pPage1->aData[32], iNewTrunk);
3970 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00003971 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00003972 if( rc ){
3973 goto end_allocate_page;
3974 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003975 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
3976 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003977 }
3978 pTrunk = 0;
3979 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
3980#endif
3981 }else{
3982 /* Extract a leaf from the trunk */
3983 int closest;
3984 Pgno iPage;
3985 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003986 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00003987 if( rc ){
3988 goto end_allocate_page;
3989 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003990 if( nearby>0 ){
3991 int i, dist;
3992 closest = 0;
3993 dist = get4byte(&aData[8]) - nearby;
3994 if( dist<0 ) dist = -dist;
3995 for(i=1; i<k; i++){
3996 int d2 = get4byte(&aData[8+i*4]) - nearby;
3997 if( d2<0 ) d2 = -d2;
3998 if( d2<dist ){
3999 closest = i;
4000 dist = d2;
4001 }
4002 }
4003 }else{
4004 closest = 0;
4005 }
4006
4007 iPage = get4byte(&aData[8+closest*4]);
4008 if( !searchList || iPage==nearby ){
4009 *pPgno = iPage;
danielk19773b8a05f2007-03-19 17:44:26 +00004010 if( *pPgno>sqlite3PagerPagecount(pBt->pPager) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004011 /* Free page off the end of the file */
drh49285702005-09-17 15:20:26 +00004012 return SQLITE_CORRUPT_BKPT;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004013 }
4014 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4015 ": %d more free pages\n",
4016 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4017 if( closest<k-1 ){
4018 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4019 }
4020 put4byte(&aData[4], k-1);
drh16a9b832007-05-05 18:39:25 +00004021 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004022 if( rc==SQLITE_OK ){
drh538f5702007-04-13 02:14:30 +00004023 sqlite3PagerDontRollback((*ppPage)->pDbPage);
danielk19773b8a05f2007-03-19 17:44:26 +00004024 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004025 if( rc!=SQLITE_OK ){
4026 releasePage(*ppPage);
4027 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004028 }
4029 searchList = 0;
4030 }
drhee696e22004-08-30 16:52:17 +00004031 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004032 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004033 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004034 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004035 }else{
drh3aac2dd2004-04-26 14:10:20 +00004036 /* There are no pages on the freelist, so create a new page at the
4037 ** end of the file */
danielk19773b8a05f2007-03-19 17:44:26 +00004038 *pPgno = sqlite3PagerPagecount(pBt->pPager) + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004039
4040#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00004041 if( pBt->nTrunc ){
4042 /* An incr-vacuum has already run within this transaction. So the
4043 ** page to allocate is not from the physical end of the file, but
4044 ** at pBt->nTrunc.
4045 */
4046 *pPgno = pBt->nTrunc+1;
4047 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4048 (*pPgno)++;
4049 }
4050 }
danielk1977266664d2006-02-10 08:24:21 +00004051 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004052 /* If *pPgno refers to a pointer-map page, allocate two new pages
4053 ** at the end of the file instead of one. The first allocated page
4054 ** becomes a new pointer-map page, the second is used by the caller.
4055 */
4056 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004057 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk1977afcdd022004-10-31 16:25:42 +00004058 (*pPgno)++;
4059 }
danielk1977dddbcdc2007-04-26 14:42:34 +00004060 if( pBt->nTrunc ){
4061 pBt->nTrunc = *pPgno;
4062 }
danielk1977afcdd022004-10-31 16:25:42 +00004063#endif
4064
danielk1977599fcba2004-11-08 07:13:13 +00004065 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh16a9b832007-05-05 18:39:25 +00004066 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004067 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004068 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004069 if( rc!=SQLITE_OK ){
4070 releasePage(*ppPage);
4071 }
drh3a4c1412004-05-09 20:40:11 +00004072 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004073 }
danielk1977599fcba2004-11-08 07:13:13 +00004074
4075 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004076
4077end_allocate_page:
4078 releasePage(pTrunk);
4079 releasePage(pPrevTrunk);
drh3b7511c2001-05-26 13:15:44 +00004080 return rc;
4081}
4082
4083/*
drh3aac2dd2004-04-26 14:10:20 +00004084** Add a page of the database file to the freelist.
drh5e2f8b92001-05-28 00:41:15 +00004085**
danielk19773b8a05f2007-03-19 17:44:26 +00004086** sqlite3PagerUnref() is NOT called for pPage.
drh3b7511c2001-05-26 13:15:44 +00004087*/
drh3aac2dd2004-04-26 14:10:20 +00004088static int freePage(MemPage *pPage){
danielk1977aef0bf62005-12-30 16:28:01 +00004089 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00004090 MemPage *pPage1 = pBt->pPage1;
4091 int rc, n, k;
drh8b2f49b2001-06-08 00:21:52 +00004092
drh3aac2dd2004-04-26 14:10:20 +00004093 /* Prepare the page for freeing */
drh1fee73e2007-08-29 04:00:57 +00004094 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004095 assert( pPage->pgno>1 );
4096 pPage->isInit = 0;
4097 releasePage(pPage->pParent);
4098 pPage->pParent = 0;
4099
drha34b6762004-05-07 13:30:42 +00004100 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004101 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00004102 if( rc ) return rc;
4103 n = get4byte(&pPage1->aData[36]);
4104 put4byte(&pPage1->aData[36], n+1);
4105
drhfcce93f2006-02-22 03:08:32 +00004106#ifdef SQLITE_SECURE_DELETE
4107 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4108 ** always fully overwrite deleted information with zeros.
4109 */
danielk19773b8a05f2007-03-19 17:44:26 +00004110 rc = sqlite3PagerWrite(pPage->pDbPage);
drhfcce93f2006-02-22 03:08:32 +00004111 if( rc ) return rc;
4112 memset(pPage->aData, 0, pPage->pBt->pageSize);
4113#endif
4114
danielk1977687566d2004-11-02 12:56:41 +00004115#ifndef SQLITE_OMIT_AUTOVACUUM
4116 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004117 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004118 */
4119 if( pBt->autoVacuum ){
4120 rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
danielk1977a64a0352004-11-05 01:45:13 +00004121 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00004122 }
4123#endif
4124
drh3aac2dd2004-04-26 14:10:20 +00004125 if( n==0 ){
4126 /* This is the first free page */
danielk19773b8a05f2007-03-19 17:44:26 +00004127 rc = sqlite3PagerWrite(pPage->pDbPage);
drhda200cc2004-05-09 11:51:38 +00004128 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004129 memset(pPage->aData, 0, 8);
drha34b6762004-05-07 13:30:42 +00004130 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00004131 TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
drh3aac2dd2004-04-26 14:10:20 +00004132 }else{
4133 /* Other free pages already exist. Retrive the first trunk page
4134 ** of the freelist and find out how many leaves it has. */
drha34b6762004-05-07 13:30:42 +00004135 MemPage *pTrunk;
drh16a9b832007-05-05 18:39:25 +00004136 rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
drh3b7511c2001-05-26 13:15:44 +00004137 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004138 k = get4byte(&pTrunk->aData[4]);
drhee696e22004-08-30 16:52:17 +00004139 if( k>=pBt->usableSize/4 - 8 ){
drh3aac2dd2004-04-26 14:10:20 +00004140 /* The trunk is full. Turn the page being freed into a new
4141 ** trunk page with no leaves. */
danielk19773b8a05f2007-03-19 17:44:26 +00004142 rc = sqlite3PagerWrite(pPage->pDbPage);
drhb9ee4932007-09-07 14:32:06 +00004143 if( rc==SQLITE_OK ){
4144 put4byte(pPage->aData, pTrunk->pgno);
4145 put4byte(&pPage->aData[4], 0);
4146 put4byte(&pPage1->aData[32], pPage->pgno);
4147 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
4148 pPage->pgno, pTrunk->pgno));
4149 }
4150 }else if( k<0 ){
4151 rc = SQLITE_CORRUPT;
drh3aac2dd2004-04-26 14:10:20 +00004152 }else{
4153 /* Add the newly freed page as a leaf on the current trunk */
danielk19773b8a05f2007-03-19 17:44:26 +00004154 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004155 if( rc==SQLITE_OK ){
4156 put4byte(&pTrunk->aData[4], k+1);
4157 put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
drhfcce93f2006-02-22 03:08:32 +00004158#ifndef SQLITE_SECURE_DELETE
drh538f5702007-04-13 02:14:30 +00004159 sqlite3PagerDontWrite(pPage->pDbPage);
drhfcce93f2006-02-22 03:08:32 +00004160#endif
drhf5345442007-04-09 12:45:02 +00004161 }
drh3a4c1412004-05-09 20:40:11 +00004162 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00004163 }
4164 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004165 }
drh3b7511c2001-05-26 13:15:44 +00004166 return rc;
4167}
4168
4169/*
drh3aac2dd2004-04-26 14:10:20 +00004170** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00004171*/
drh3aac2dd2004-04-26 14:10:20 +00004172static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00004173 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00004174 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00004175 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00004176 int rc;
drh94440812007-03-06 11:42:19 +00004177 int nOvfl;
4178 int ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00004179
drh1fee73e2007-08-29 04:00:57 +00004180 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh16a9b832007-05-05 18:39:25 +00004181 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004182 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00004183 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00004184 }
drh6f11bef2004-05-13 01:12:56 +00004185 ovflPgno = get4byte(&pCell[info.iOverflow]);
drh94440812007-03-06 11:42:19 +00004186 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00004187 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
4188 assert( ovflPgno==0 || nOvfl>0 );
4189 while( nOvfl-- ){
drh3aac2dd2004-04-26 14:10:20 +00004190 MemPage *pOvfl;
danielk19773b8a05f2007-03-19 17:44:26 +00004191 if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){
drh49285702005-09-17 15:20:26 +00004192 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00004193 }
danielk19778c0a9592007-04-30 16:55:00 +00004194
4195 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno);
drh3b7511c2001-05-26 13:15:44 +00004196 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00004197 rc = freePage(pOvfl);
danielk19773b8a05f2007-03-19 17:44:26 +00004198 sqlite3PagerUnref(pOvfl->pDbPage);
danielk19776b456a22005-03-21 04:04:02 +00004199 if( rc ) return rc;
drh3b7511c2001-05-26 13:15:44 +00004200 }
drh5e2f8b92001-05-28 00:41:15 +00004201 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00004202}
4203
4204/*
drh91025292004-05-03 19:49:32 +00004205** Create the byte sequence used to represent a cell on page pPage
4206** and write that byte sequence into pCell[]. Overflow pages are
4207** allocated and filled in as necessary. The calling procedure
4208** is responsible for making sure sufficient space has been allocated
4209** for pCell[].
4210**
4211** Note that pCell does not necessary need to point to the pPage->aData
4212** area. pCell might point to some temporary storage. The cell will
4213** be constructed in this temporary area then copied into pPage->aData
4214** later.
drh3b7511c2001-05-26 13:15:44 +00004215*/
4216static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00004217 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00004218 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00004219 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00004220 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00004221 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00004222 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00004223){
drh3b7511c2001-05-26 13:15:44 +00004224 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00004225 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00004226 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00004227 int spaceLeft;
4228 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00004229 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00004230 unsigned char *pPrior;
4231 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00004232 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00004233 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00004234 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00004235 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00004236
drh1fee73e2007-08-29 04:00:57 +00004237 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00004238
drh91025292004-05-03 19:49:32 +00004239 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00004240 nHeader = 0;
drh91025292004-05-03 19:49:32 +00004241 if( !pPage->leaf ){
4242 nHeader += 4;
4243 }
drh8b18dd42004-05-12 19:18:15 +00004244 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00004245 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00004246 }else{
drhb026e052007-05-02 01:34:31 +00004247 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00004248 }
drh6f11bef2004-05-13 01:12:56 +00004249 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh16a9b832007-05-05 18:39:25 +00004250 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004251 assert( info.nHeader==nHeader );
4252 assert( info.nKey==nKey );
drhb026e052007-05-02 01:34:31 +00004253 assert( info.nData==nData+nZero );
drh6f11bef2004-05-13 01:12:56 +00004254
4255 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00004256 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00004257 if( pPage->intKey ){
4258 pSrc = pData;
4259 nSrc = nData;
drh91025292004-05-03 19:49:32 +00004260 nData = 0;
drh3aac2dd2004-04-26 14:10:20 +00004261 }else{
4262 nPayload += nKey;
4263 pSrc = pKey;
4264 nSrc = nKey;
4265 }
drh6f11bef2004-05-13 01:12:56 +00004266 *pnSize = info.nSize;
4267 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00004268 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00004269 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00004270
drh3b7511c2001-05-26 13:15:44 +00004271 while( nPayload>0 ){
4272 if( spaceLeft==0 ){
danielk1977b39f70b2007-05-17 18:28:11 +00004273 int isExact = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004274#ifndef SQLITE_OMIT_AUTOVACUUM
4275 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00004276 if( pBt->autoVacuum ){
4277 do{
4278 pgnoOvfl++;
4279 } while(
4280 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
4281 );
danielk197789a4be82007-05-23 13:34:32 +00004282 if( pgnoOvfl>1 ){
danielk1977b39f70b2007-05-17 18:28:11 +00004283 /* isExact = 1; */
4284 }
4285 }
danielk1977afcdd022004-10-31 16:25:42 +00004286#endif
danielk1977b39f70b2007-05-17 18:28:11 +00004287 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
danielk1977afcdd022004-10-31 16:25:42 +00004288#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00004289 /* If the database supports auto-vacuum, and the second or subsequent
4290 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00004291 ** for that page now.
4292 **
4293 ** If this is the first overflow page, then write a partial entry
4294 ** to the pointer-map. If we write nothing to this pointer-map slot,
4295 ** then the optimistic overflow chain processing in clearCell()
4296 ** may misinterpret the uninitialised values and delete the
4297 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00004298 */
danielk19774ef24492007-05-23 09:52:41 +00004299 if( pBt->autoVacuum && rc==SQLITE_OK ){
4300 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
4301 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
danielk197789a4be82007-05-23 13:34:32 +00004302 if( rc ){
4303 releasePage(pOvfl);
4304 }
danielk1977afcdd022004-10-31 16:25:42 +00004305 }
4306#endif
drh3b7511c2001-05-26 13:15:44 +00004307 if( rc ){
drh9b171272004-05-08 02:03:22 +00004308 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004309 return rc;
4310 }
drh3aac2dd2004-04-26 14:10:20 +00004311 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00004312 releasePage(pToRelease);
4313 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00004314 pPrior = pOvfl->aData;
4315 put4byte(pPrior, 0);
4316 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00004317 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00004318 }
4319 n = nPayload;
4320 if( n>spaceLeft ) n = spaceLeft;
drhb026e052007-05-02 01:34:31 +00004321 if( nSrc>0 ){
4322 if( n>nSrc ) n = nSrc;
4323 assert( pSrc );
4324 memcpy(pPayload, pSrc, n);
4325 }else{
4326 memset(pPayload, 0, n);
4327 }
drh3b7511c2001-05-26 13:15:44 +00004328 nPayload -= n;
drhde647132004-05-07 17:57:49 +00004329 pPayload += n;
drh9b171272004-05-08 02:03:22 +00004330 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00004331 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00004332 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00004333 if( nSrc==0 ){
4334 nSrc = nData;
4335 pSrc = pData;
4336 }
drhdd793422001-06-28 01:54:48 +00004337 }
drh9b171272004-05-08 02:03:22 +00004338 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004339 return SQLITE_OK;
4340}
4341
4342/*
drhbd03cae2001-06-02 02:40:57 +00004343** Change the MemPage.pParent pointer on the page whose number is
drh8b2f49b2001-06-08 00:21:52 +00004344** given in the second argument so that MemPage.pParent holds the
drhbd03cae2001-06-02 02:40:57 +00004345** pointer in the third argument.
4346*/
danielk1977aef0bf62005-12-30 16:28:01 +00004347static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){
drhbd03cae2001-06-02 02:40:57 +00004348 MemPage *pThis;
danielk19773b8a05f2007-03-19 17:44:26 +00004349 DbPage *pDbPage;
drhbd03cae2001-06-02 02:40:57 +00004350
drh1fee73e2007-08-29 04:00:57 +00004351 assert( sqlite3_mutex_held(pBt->mutex) );
drh43617e92006-03-06 20:55:46 +00004352 assert( pNewParent!=0 );
danielk1977afcdd022004-10-31 16:25:42 +00004353 if( pgno==0 ) return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00004354 assert( pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004355 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
4356 if( pDbPage ){
4357 pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
drhda200cc2004-05-09 11:51:38 +00004358 if( pThis->isInit ){
drhbf4bca52007-09-06 22:19:14 +00004359 assert( pThis->aData==sqlite3PagerGetData(pDbPage) );
drhda200cc2004-05-09 11:51:38 +00004360 if( pThis->pParent!=pNewParent ){
danielk19773b8a05f2007-03-19 17:44:26 +00004361 if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
drhda200cc2004-05-09 11:51:38 +00004362 pThis->pParent = pNewParent;
danielk19773b8a05f2007-03-19 17:44:26 +00004363 sqlite3PagerRef(pNewParent->pDbPage);
drhda200cc2004-05-09 11:51:38 +00004364 }
4365 pThis->idxParent = idx;
drhdd793422001-06-28 01:54:48 +00004366 }
danielk19773b8a05f2007-03-19 17:44:26 +00004367 sqlite3PagerUnref(pDbPage);
drhbd03cae2001-06-02 02:40:57 +00004368 }
danielk1977afcdd022004-10-31 16:25:42 +00004369
4370#ifndef SQLITE_OMIT_AUTOVACUUM
4371 if( pBt->autoVacuum ){
4372 return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
4373 }
4374#endif
4375 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004376}
4377
danielk1977ac11ee62005-01-15 12:45:51 +00004378
4379
drhbd03cae2001-06-02 02:40:57 +00004380/*
drh4b70f112004-05-02 21:12:19 +00004381** Change the pParent pointer of all children of pPage to point back
4382** to pPage.
4383**
drhbd03cae2001-06-02 02:40:57 +00004384** In other words, for every child of pPage, invoke reparentPage()
drh5e00f6c2001-09-13 13:46:56 +00004385** to make sure that each child knows that pPage is its parent.
drhbd03cae2001-06-02 02:40:57 +00004386**
4387** This routine gets called after you memcpy() one page into
4388** another.
4389*/
danielk1977afcdd022004-10-31 16:25:42 +00004390static int reparentChildPages(MemPage *pPage){
drhbd03cae2001-06-02 02:40:57 +00004391 int i;
danielk1977aef0bf62005-12-30 16:28:01 +00004392 BtShared *pBt = pPage->pBt;
danielk1977afcdd022004-10-31 16:25:42 +00004393 int rc = SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00004394
drh1fee73e2007-08-29 04:00:57 +00004395 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977afcdd022004-10-31 16:25:42 +00004396 if( pPage->leaf ) return SQLITE_OK;
danielk1977afcdd022004-10-31 16:25:42 +00004397
drhbd03cae2001-06-02 02:40:57 +00004398 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00004399 u8 *pCell = findCell(pPage, i);
danielk1977afcdd022004-10-31 16:25:42 +00004400 if( !pPage->leaf ){
4401 rc = reparentPage(pBt, get4byte(pCell), pPage, i);
4402 if( rc!=SQLITE_OK ) return rc;
4403 }
drhbd03cae2001-06-02 02:40:57 +00004404 }
danielk1977afcdd022004-10-31 16:25:42 +00004405 if( !pPage->leaf ){
4406 rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]),
4407 pPage, i);
4408 pPage->idxShift = 0;
4409 }
4410 return rc;
drh14acc042001-06-10 19:56:58 +00004411}
4412
4413/*
4414** Remove the i-th cell from pPage. This routine effects pPage only.
4415** The cell content is not freed or deallocated. It is assumed that
4416** the cell content has been copied someplace else. This routine just
4417** removes the reference to the cell from pPage.
4418**
4419** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00004420*/
drh4b70f112004-05-02 21:12:19 +00004421static void dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00004422 int i; /* Loop counter */
4423 int pc; /* Offset to cell content of cell being deleted */
4424 u8 *data; /* pPage->aData */
4425 u8 *ptr; /* Used to move bytes around within data[] */
4426
drh8c42ca92001-06-22 19:15:00 +00004427 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00004428 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00004429 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00004430 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00004431 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00004432 ptr = &data[pPage->cellOffset + 2*idx];
4433 pc = get2byte(ptr);
4434 assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
drhde647132004-05-07 17:57:49 +00004435 freeSpace(pPage, pc, sz);
drh43605152004-05-29 21:46:49 +00004436 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
4437 ptr[0] = ptr[2];
4438 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00004439 }
4440 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00004441 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
4442 pPage->nFree += 2;
drh428ae8c2003-01-04 16:48:09 +00004443 pPage->idxShift = 1;
drh14acc042001-06-10 19:56:58 +00004444}
4445
4446/*
4447** Insert a new cell on pPage at cell index "i". pCell points to the
4448** content of the cell.
4449**
4450** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00004451** will not fit, then make a copy of the cell content into pTemp if
4452** pTemp is not null. Regardless of pTemp, allocate a new entry
4453** in pPage->aOvfl[] and make it point to the cell content (either
4454** in pTemp or the original pCell) and also record its index.
4455** Allocating a new entry in pPage->aCell[] implies that
4456** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00004457**
4458** If nSkip is non-zero, then do not copy the first nSkip bytes of the
4459** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00004460** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00004461** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00004462*/
danielk1977e80463b2004-11-03 03:01:16 +00004463static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00004464 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00004465 int i, /* New cell becomes the i-th cell of the page */
4466 u8 *pCell, /* Content of the new cell */
4467 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00004468 u8 *pTemp, /* Temp storage space for pCell, if needed */
4469 u8 nSkip /* Do not write the first nSkip bytes of the cell */
drh24cd67e2004-05-10 16:18:47 +00004470){
drh43605152004-05-29 21:46:49 +00004471 int idx; /* Where to write new cell content in data[] */
4472 int j; /* Loop counter */
4473 int top; /* First byte of content for any cell in data[] */
4474 int end; /* First byte past the last cell pointer in data[] */
4475 int ins; /* Index in data[] where new cell pointer is inserted */
4476 int hdr; /* Offset into data[] of the page header */
4477 int cellOffset; /* Address of first cell pointer in data[] */
4478 u8 *data; /* The content of the whole page */
4479 u8 *ptr; /* Used for moving information around in data[] */
4480
4481 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
4482 assert( sz==cellSizePtr(pPage, pCell) );
drh1fee73e2007-08-29 04:00:57 +00004483 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00004484 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00004485 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00004486 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00004487 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00004488 }
drh43605152004-05-29 21:46:49 +00004489 j = pPage->nOverflow++;
4490 assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
4491 pPage->aOvfl[j].pCell = pCell;
4492 pPage->aOvfl[j].idx = i;
4493 pPage->nFree = 0;
drh14acc042001-06-10 19:56:58 +00004494 }else{
danielk19776e465eb2007-08-21 13:11:00 +00004495 int rc = sqlite3PagerWrite(pPage->pDbPage);
4496 if( rc!=SQLITE_OK ){
4497 return rc;
4498 }
4499 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00004500 data = pPage->aData;
4501 hdr = pPage->hdrOffset;
4502 top = get2byte(&data[hdr+5]);
4503 cellOffset = pPage->cellOffset;
4504 end = cellOffset + 2*pPage->nCell + 2;
4505 ins = cellOffset + 2*i;
4506 if( end > top - sz ){
danielk19776e465eb2007-08-21 13:11:00 +00004507 rc = defragmentPage(pPage);
danielk19776b456a22005-03-21 04:04:02 +00004508 if( rc!=SQLITE_OK ) return rc;
drh43605152004-05-29 21:46:49 +00004509 top = get2byte(&data[hdr+5]);
4510 assert( end + sz <= top );
4511 }
4512 idx = allocateSpace(pPage, sz);
4513 assert( idx>0 );
4514 assert( end <= get2byte(&data[hdr+5]) );
4515 pPage->nCell++;
4516 pPage->nFree -= 2;
danielk1977a3ad5e72005-01-07 08:56:44 +00004517 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00004518 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
4519 ptr[0] = ptr[-2];
4520 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00004521 }
drh43605152004-05-29 21:46:49 +00004522 put2byte(&data[ins], idx);
4523 put2byte(&data[hdr+3], pPage->nCell);
4524 pPage->idxShift = 1;
danielk1977a19df672004-11-03 11:37:07 +00004525#ifndef SQLITE_OMIT_AUTOVACUUM
4526 if( pPage->pBt->autoVacuum ){
4527 /* The cell may contain a pointer to an overflow page. If so, write
4528 ** the entry for the overflow page into the pointer map.
4529 */
4530 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00004531 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh72365832007-03-06 15:53:44 +00004532 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk1977a19df672004-11-03 11:37:07 +00004533 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
4534 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
danielk19776e465eb2007-08-21 13:11:00 +00004535 rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977a19df672004-11-03 11:37:07 +00004536 if( rc!=SQLITE_OK ) return rc;
4537 }
4538 }
4539#endif
drh14acc042001-06-10 19:56:58 +00004540 }
danielk1977e80463b2004-11-03 03:01:16 +00004541
danielk1977e80463b2004-11-03 03:01:16 +00004542 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00004543}
4544
4545/*
drhfa1a98a2004-05-14 19:08:17 +00004546** Add a list of cells to a page. The page should be initially empty.
4547** The cells are guaranteed to fit on the page.
4548*/
4549static void assemblePage(
4550 MemPage *pPage, /* The page to be assemblied */
4551 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00004552 u8 **apCell, /* Pointers to cell bodies */
drhfa1a98a2004-05-14 19:08:17 +00004553 int *aSize /* Sizes of the cells */
4554){
4555 int i; /* Loop counter */
4556 int totalSize; /* Total size of all cells */
4557 int hdr; /* Index of page header */
drh43605152004-05-29 21:46:49 +00004558 int cellptr; /* Address of next cell pointer */
4559 int cellbody; /* Address of next cell body */
drhfa1a98a2004-05-14 19:08:17 +00004560 u8 *data; /* Data for the page */
4561
drh43605152004-05-29 21:46:49 +00004562 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00004563 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa1a98a2004-05-14 19:08:17 +00004564 totalSize = 0;
4565 for(i=0; i<nCell; i++){
4566 totalSize += aSize[i];
4567 }
drh43605152004-05-29 21:46:49 +00004568 assert( totalSize+2*nCell<=pPage->nFree );
drhfa1a98a2004-05-14 19:08:17 +00004569 assert( pPage->nCell==0 );
drh43605152004-05-29 21:46:49 +00004570 cellptr = pPage->cellOffset;
drhfa1a98a2004-05-14 19:08:17 +00004571 data = pPage->aData;
4572 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00004573 put2byte(&data[hdr+3], nCell);
drh09d0deb2005-08-02 17:13:09 +00004574 if( nCell ){
4575 cellbody = allocateSpace(pPage, totalSize);
4576 assert( cellbody>0 );
4577 assert( pPage->nFree >= 2*nCell );
4578 pPage->nFree -= 2*nCell;
4579 for(i=0; i<nCell; i++){
4580 put2byte(&data[cellptr], cellbody);
4581 memcpy(&data[cellbody], apCell[i], aSize[i]);
4582 cellptr += 2;
4583 cellbody += aSize[i];
4584 }
4585 assert( cellbody==pPage->pBt->usableSize );
drhfa1a98a2004-05-14 19:08:17 +00004586 }
4587 pPage->nCell = nCell;
drhfa1a98a2004-05-14 19:08:17 +00004588}
4589
drh14acc042001-06-10 19:56:58 +00004590/*
drhc3b70572003-01-04 19:44:07 +00004591** The following parameters determine how many adjacent pages get involved
4592** in a balancing operation. NN is the number of neighbors on either side
4593** of the page that participate in the balancing operation. NB is the
4594** total number of pages that participate, including the target page and
4595** NN neighbors on either side.
4596**
4597** The minimum value of NN is 1 (of course). Increasing NN above 1
4598** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
4599** in exchange for a larger degradation in INSERT and UPDATE performance.
4600** The value of NN appears to give the best results overall.
4601*/
4602#define NN 1 /* Number of neighbors on either side of pPage */
4603#define NB (NN*2+1) /* Total pages involved in the balance */
4604
drh43605152004-05-29 21:46:49 +00004605/* Forward reference */
danielk1977ac245ec2005-01-14 13:50:11 +00004606static int balance(MemPage*, int);
4607
drh615ae552005-01-16 23:21:00 +00004608#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00004609/*
4610** This version of balance() handles the common special case where
4611** a new entry is being inserted on the extreme right-end of the
4612** tree, in other words, when the new entry will become the largest
4613** entry in the tree.
4614**
4615** Instead of trying balance the 3 right-most leaf pages, just add
4616** a new page to the right-hand side and put the one new entry in
4617** that page. This leaves the right side of the tree somewhat
4618** unbalanced. But odds are that we will be inserting new entries
4619** at the end soon afterwards so the nearly empty page will quickly
4620** fill up. On average.
4621**
4622** pPage is the leaf page which is the right-most page in the tree.
4623** pParent is its parent. pPage must have a single overflow entry
4624** which is also the right-most entry on the page.
4625*/
danielk1977ac245ec2005-01-14 13:50:11 +00004626static int balance_quick(MemPage *pPage, MemPage *pParent){
4627 int rc;
4628 MemPage *pNew;
4629 Pgno pgnoNew;
4630 u8 *pCell;
4631 int szCell;
4632 CellInfo info;
danielk1977aef0bf62005-12-30 16:28:01 +00004633 BtShared *pBt = pPage->pBt;
danielk197779a40da2005-01-16 08:00:01 +00004634 int parentIdx = pParent->nCell; /* pParent new divider cell index */
4635 int parentSize; /* Size of new divider cell */
4636 u8 parentCell[64]; /* Space for the new divider cell */
danielk1977ac245ec2005-01-14 13:50:11 +00004637
drh1fee73e2007-08-29 04:00:57 +00004638 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00004639
danielk1977ac245ec2005-01-14 13:50:11 +00004640 /* Allocate a new page. Insert the overflow cell from pPage
4641 ** into it. Then remove the overflow cell from pPage.
4642 */
drh4f0c5872007-03-26 22:05:01 +00004643 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk1977ac245ec2005-01-14 13:50:11 +00004644 if( rc!=SQLITE_OK ){
4645 return rc;
4646 }
4647 pCell = pPage->aOvfl[0].pCell;
4648 szCell = cellSizePtr(pPage, pCell);
4649 zeroPage(pNew, pPage->aData[0]);
4650 assemblePage(pNew, 1, &pCell, &szCell);
4651 pPage->nOverflow = 0;
4652
danielk197779a40da2005-01-16 08:00:01 +00004653 /* Set the parent of the newly allocated page to pParent. */
4654 pNew->pParent = pParent;
danielk19773b8a05f2007-03-19 17:44:26 +00004655 sqlite3PagerRef(pParent->pDbPage);
danielk197779a40da2005-01-16 08:00:01 +00004656
danielk1977ac245ec2005-01-14 13:50:11 +00004657 /* pPage is currently the right-child of pParent. Change this
4658 ** so that the right-child is the new page allocated above and
danielk197779a40da2005-01-16 08:00:01 +00004659 ** pPage is the next-to-right child.
danielk1977ac245ec2005-01-14 13:50:11 +00004660 */
danielk1977ac11ee62005-01-15 12:45:51 +00004661 assert( pPage->nCell>0 );
danielk19771cc5ed82007-05-16 17:28:43 +00004662 pCell = findCell(pPage, pPage->nCell-1);
drh16a9b832007-05-05 18:39:25 +00004663 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drhb026e052007-05-02 01:34:31 +00004664 rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
danielk1977ac245ec2005-01-14 13:50:11 +00004665 if( rc!=SQLITE_OK ){
danielk197779a40da2005-01-16 08:00:01 +00004666 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00004667 }
4668 assert( parentSize<64 );
4669 rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
4670 if( rc!=SQLITE_OK ){
danielk197779a40da2005-01-16 08:00:01 +00004671 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00004672 }
4673 put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
4674 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
4675
danielk197779a40da2005-01-16 08:00:01 +00004676#ifndef SQLITE_OMIT_AUTOVACUUM
4677 /* If this is an auto-vacuum database, update the pointer map
4678 ** with entries for the new page, and any pointer from the
4679 ** cell on the page to an overflow page.
4680 */
danielk1977ac11ee62005-01-15 12:45:51 +00004681 if( pBt->autoVacuum ){
4682 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
danielk1977deb403e2007-05-24 09:20:16 +00004683 if( rc==SQLITE_OK ){
4684 rc = ptrmapPutOvfl(pNew, 0);
danielk1977ac11ee62005-01-15 12:45:51 +00004685 }
danielk197779a40da2005-01-16 08:00:01 +00004686 if( rc!=SQLITE_OK ){
danielk1977deb403e2007-05-24 09:20:16 +00004687 releasePage(pNew);
danielk197779a40da2005-01-16 08:00:01 +00004688 return rc;
danielk1977ac11ee62005-01-15 12:45:51 +00004689 }
4690 }
danielk197779a40da2005-01-16 08:00:01 +00004691#endif
danielk1977ac11ee62005-01-15 12:45:51 +00004692
danielk197779a40da2005-01-16 08:00:01 +00004693 /* Release the reference to the new page and balance the parent page,
4694 ** in case the divider cell inserted caused it to become overfull.
4695 */
danielk1977ac245ec2005-01-14 13:50:11 +00004696 releasePage(pNew);
4697 return balance(pParent, 0);
4698}
drh615ae552005-01-16 23:21:00 +00004699#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00004700
drhc3b70572003-01-04 19:44:07 +00004701/*
drhab01f612004-05-22 02:55:23 +00004702** This routine redistributes Cells on pPage and up to NN*2 siblings
drh8b2f49b2001-06-08 00:21:52 +00004703** of pPage so that all pages have about the same amount of free space.
drh0c6cc4e2004-06-15 02:13:26 +00004704** Usually NN siblings on either side of pPage is used in the balancing,
4705** though more siblings might come from one side if pPage is the first
drhab01f612004-05-22 02:55:23 +00004706** or last child of its parent. If pPage has fewer than 2*NN siblings
drh8b2f49b2001-06-08 00:21:52 +00004707** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00004708** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00004709**
drh0c6cc4e2004-06-15 02:13:26 +00004710** The number of siblings of pPage might be increased or decreased by one or
4711** two in an effort to keep pages nearly full but not over full. The root page
drhab01f612004-05-22 02:55:23 +00004712** is special and is allowed to be nearly empty. If pPage is
drh8c42ca92001-06-22 19:15:00 +00004713** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00004714** or decreased by one, as necessary, to keep the root page from being
drhab01f612004-05-22 02:55:23 +00004715** overfull or completely empty.
drh14acc042001-06-10 19:56:58 +00004716**
drh8b2f49b2001-06-08 00:21:52 +00004717** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00004718** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00004719** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00004720** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00004721**
drh8c42ca92001-06-22 19:15:00 +00004722** In the course of balancing the siblings of pPage, the parent of pPage
4723** might become overfull or underfull. If that happens, then this routine
4724** is called recursively on the parent.
4725**
drh5e00f6c2001-09-13 13:46:56 +00004726** If this routine fails for any reason, it might leave the database
4727** in a corrupted state. So if this routine fails, the database should
4728** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00004729*/
drh43605152004-05-29 21:46:49 +00004730static int balance_nonroot(MemPage *pPage){
drh8b2f49b2001-06-08 00:21:52 +00004731 MemPage *pParent; /* The parent of pPage */
drh16a9b832007-05-05 18:39:25 +00004732 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00004733 int nCell = 0; /* Number of cells in apCell[] */
4734 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
drh8b2f49b2001-06-08 00:21:52 +00004735 int nOld; /* Number of pages in apOld[] */
4736 int nNew; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00004737 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00004738 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00004739 int idx; /* Index of pPage in pParent->aCell[] */
4740 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00004741 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00004742 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00004743 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00004744 int usableSpace; /* Bytes in pPage beyond the header */
4745 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00004746 int subtotal; /* Subtotal of bytes in cells on one page */
drhb6f41482004-05-14 01:58:11 +00004747 int iSpace = 0; /* First unused byte of aSpace[] */
drhc3b70572003-01-04 19:44:07 +00004748 MemPage *apOld[NB]; /* pPage and up to two siblings */
4749 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00004750 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00004751 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
4752 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
drh4b70f112004-05-02 21:12:19 +00004753 u8 *apDiv[NB]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00004754 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
4755 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00004756 u8 **apCell = 0; /* All cells begin balanced */
drh2e38c322004-09-03 18:38:44 +00004757 int *szCell; /* Local size of all cells in apCell[] */
4758 u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
4759 u8 *aSpace; /* Space to hold copies of dividers cells */
danielk19774e17d142005-01-16 09:06:33 +00004760#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977ac11ee62005-01-15 12:45:51 +00004761 u8 *aFrom = 0;
4762#endif
drh8b2f49b2001-06-08 00:21:52 +00004763
drh1fee73e2007-08-29 04:00:57 +00004764 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00004765
drh14acc042001-06-10 19:56:58 +00004766 /*
drh43605152004-05-29 21:46:49 +00004767 ** Find the parent page.
drh8b2f49b2001-06-08 00:21:52 +00004768 */
drh3a4c1412004-05-09 20:40:11 +00004769 assert( pPage->isInit );
danielk19776e465eb2007-08-21 13:11:00 +00004770 assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
drh4b70f112004-05-02 21:12:19 +00004771 pBt = pPage->pBt;
drh14acc042001-06-10 19:56:58 +00004772 pParent = pPage->pParent;
drh43605152004-05-29 21:46:49 +00004773 assert( pParent );
danielk19773b8a05f2007-03-19 17:44:26 +00004774 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
danielk197707cb5602006-01-20 10:55:05 +00004775 return rc;
4776 }
drh43605152004-05-29 21:46:49 +00004777 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
drh2e38c322004-09-03 18:38:44 +00004778
drh615ae552005-01-16 23:21:00 +00004779#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00004780 /*
4781 ** A special case: If a new entry has just been inserted into a
4782 ** table (that is, a btree with integer keys and all data at the leaves)
drh09d0deb2005-08-02 17:13:09 +00004783 ** and the new entry is the right-most entry in the tree (it has the
drhf222e712005-01-14 22:55:49 +00004784 ** largest key) then use the special balance_quick() routine for
4785 ** balancing. balance_quick() is much faster and results in a tighter
4786 ** packing of data in the common case.
4787 */
danielk1977ac245ec2005-01-14 13:50:11 +00004788 if( pPage->leaf &&
4789 pPage->intKey &&
4790 pPage->leafData &&
4791 pPage->nOverflow==1 &&
4792 pPage->aOvfl[0].idx==pPage->nCell &&
danielk1977ac11ee62005-01-15 12:45:51 +00004793 pPage->pParent->pgno!=1 &&
danielk1977ac245ec2005-01-14 13:50:11 +00004794 get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
4795 ){
danielk1977ac11ee62005-01-15 12:45:51 +00004796 /*
4797 ** TODO: Check the siblings to the left of pPage. It may be that
4798 ** they are not full and no new page is required.
4799 */
danielk1977ac245ec2005-01-14 13:50:11 +00004800 return balance_quick(pPage, pParent);
4801 }
4802#endif
4803
danielk19776e465eb2007-08-21 13:11:00 +00004804 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
4805 return rc;
4806 }
4807
drh2e38c322004-09-03 18:38:44 +00004808 /*
drh4b70f112004-05-02 21:12:19 +00004809 ** Find the cell in the parent page whose left child points back
drh14acc042001-06-10 19:56:58 +00004810 ** to pPage. The "idx" variable is the index of that cell. If pPage
4811 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00004812 */
drhbb49aba2003-01-04 18:53:27 +00004813 if( pParent->idxShift ){
drha34b6762004-05-07 13:30:42 +00004814 Pgno pgno;
drh4b70f112004-05-02 21:12:19 +00004815 pgno = pPage->pgno;
danielk19773b8a05f2007-03-19 17:44:26 +00004816 assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbb49aba2003-01-04 18:53:27 +00004817 for(idx=0; idx<pParent->nCell; idx++){
danielk19771cc5ed82007-05-16 17:28:43 +00004818 if( get4byte(findCell(pParent, idx))==pgno ){
drhbb49aba2003-01-04 18:53:27 +00004819 break;
4820 }
drh8b2f49b2001-06-08 00:21:52 +00004821 }
drh4b70f112004-05-02 21:12:19 +00004822 assert( idx<pParent->nCell
drh43605152004-05-29 21:46:49 +00004823 || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
drhbb49aba2003-01-04 18:53:27 +00004824 }else{
4825 idx = pPage->idxParent;
drh8b2f49b2001-06-08 00:21:52 +00004826 }
drh8b2f49b2001-06-08 00:21:52 +00004827
4828 /*
drh14acc042001-06-10 19:56:58 +00004829 ** Initialize variables so that it will be safe to jump
drh5edc3122001-09-13 21:53:09 +00004830 ** directly to balance_cleanup at any moment.
drh8b2f49b2001-06-08 00:21:52 +00004831 */
drh14acc042001-06-10 19:56:58 +00004832 nOld = nNew = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004833 sqlite3PagerRef(pParent->pDbPage);
drh14acc042001-06-10 19:56:58 +00004834
4835 /*
drh4b70f112004-05-02 21:12:19 +00004836 ** Find sibling pages to pPage and the cells in pParent that divide
drhc3b70572003-01-04 19:44:07 +00004837 ** the siblings. An attempt is made to find NN siblings on either
4838 ** side of pPage. More siblings are taken from one side, however, if
4839 ** pPage there are fewer than NN siblings on the other side. If pParent
4840 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00004841 */
drhc3b70572003-01-04 19:44:07 +00004842 nxDiv = idx - NN;
4843 if( nxDiv + NB > pParent->nCell ){
4844 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00004845 }
drhc3b70572003-01-04 19:44:07 +00004846 if( nxDiv<0 ){
4847 nxDiv = 0;
4848 }
drh8b2f49b2001-06-08 00:21:52 +00004849 nDiv = 0;
drhc3b70572003-01-04 19:44:07 +00004850 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00004851 if( k<pParent->nCell ){
danielk19771cc5ed82007-05-16 17:28:43 +00004852 apDiv[i] = findCell(pParent, k);
drh8b2f49b2001-06-08 00:21:52 +00004853 nDiv++;
drha34b6762004-05-07 13:30:42 +00004854 assert( !pParent->leaf );
drh43605152004-05-29 21:46:49 +00004855 pgnoOld[i] = get4byte(apDiv[i]);
drh14acc042001-06-10 19:56:58 +00004856 }else if( k==pParent->nCell ){
drh43605152004-05-29 21:46:49 +00004857 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
drh14acc042001-06-10 19:56:58 +00004858 }else{
4859 break;
drh8b2f49b2001-06-08 00:21:52 +00004860 }
drhde647132004-05-07 17:57:49 +00004861 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
drh6019e162001-07-02 17:51:45 +00004862 if( rc ) goto balance_cleanup;
drh428ae8c2003-01-04 16:48:09 +00004863 apOld[i]->idxParent = k;
drh91025292004-05-03 19:49:32 +00004864 apCopy[i] = 0;
4865 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00004866 nOld++;
danielk1977634f2982005-03-28 08:44:07 +00004867 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
drh8b2f49b2001-06-08 00:21:52 +00004868 }
4869
drh8d97f1f2005-05-05 18:14:13 +00004870 /* Make nMaxCells a multiple of 2 in order to preserve 8-byte
4871 ** alignment */
4872 nMaxCells = (nMaxCells + 1)&~1;
4873
drh8b2f49b2001-06-08 00:21:52 +00004874 /*
danielk1977634f2982005-03-28 08:44:07 +00004875 ** Allocate space for memory structures
4876 */
drh17435752007-08-16 04:30:38 +00004877 apCell = sqlite3_malloc(
danielk1977634f2982005-03-28 08:44:07 +00004878 nMaxCells*sizeof(u8*) /* apCell */
4879 + nMaxCells*sizeof(int) /* szCell */
drhc96d8532005-05-03 12:30:33 +00004880 + ROUND8(sizeof(MemPage))*NB /* aCopy */
drh07d183d2005-05-01 22:52:42 +00004881 + pBt->pageSize*(5+NB) /* aSpace */
drhc96d8532005-05-03 12:30:33 +00004882 + (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */
danielk1977634f2982005-03-28 08:44:07 +00004883 );
4884 if( apCell==0 ){
4885 rc = SQLITE_NOMEM;
4886 goto balance_cleanup;
4887 }
4888 szCell = (int*)&apCell[nMaxCells];
4889 aCopy[0] = (u8*)&szCell[nMaxCells];
drhc96d8532005-05-03 12:30:33 +00004890 assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00004891 for(i=1; i<NB; i++){
drhc96d8532005-05-03 12:30:33 +00004892 aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
4893 assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00004894 }
drhc96d8532005-05-03 12:30:33 +00004895 aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
4896 assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00004897#ifndef SQLITE_OMIT_AUTOVACUUM
4898 if( pBt->autoVacuum ){
drh07d183d2005-05-01 22:52:42 +00004899 aFrom = &aSpace[5*pBt->pageSize];
danielk1977634f2982005-03-28 08:44:07 +00004900 }
4901#endif
4902
4903 /*
drh14acc042001-06-10 19:56:58 +00004904 ** Make copies of the content of pPage and its siblings into aOld[].
4905 ** The rest of this function will use data from the copies rather
4906 ** that the original pages since the original pages will be in the
4907 ** process of being overwritten.
4908 */
4909 for(i=0; i<nOld; i++){
drhbf4bca52007-09-06 22:19:14 +00004910 MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
4911 memcpy(p, apOld[i], sizeof(MemPage));
4912 p->aData = (void*)&p[1];
4913 memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
drh14acc042001-06-10 19:56:58 +00004914 }
4915
4916 /*
4917 ** Load pointers to all cells on sibling pages and the divider cells
4918 ** into the local apCell[] array. Make copies of the divider cells
drhb6f41482004-05-14 01:58:11 +00004919 ** into space obtained form aSpace[] and remove the the divider Cells
4920 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00004921 **
4922 ** If the siblings are on leaf pages, then the child pointers of the
4923 ** divider cells are stripped from the cells before they are copied
drh96f5b762004-05-16 16:24:36 +00004924 ** into aSpace[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00004925 ** child pointers. If siblings are not leaves, then all cell in
4926 ** apCell[] include child pointers. Either way, all cells in apCell[]
4927 ** are alike.
drh96f5b762004-05-16 16:24:36 +00004928 **
4929 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
4930 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00004931 */
4932 nCell = 0;
drh4b70f112004-05-02 21:12:19 +00004933 leafCorrection = pPage->leaf*4;
drh8b18dd42004-05-12 19:18:15 +00004934 leafData = pPage->leafData && pPage->leaf;
drh8b2f49b2001-06-08 00:21:52 +00004935 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00004936 MemPage *pOld = apCopy[i];
drh43605152004-05-29 21:46:49 +00004937 int limit = pOld->nCell+pOld->nOverflow;
4938 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00004939 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00004940 apCell[nCell] = findOverflowCell(pOld, j);
4941 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk1977ac11ee62005-01-15 12:45:51 +00004942#ifndef SQLITE_OMIT_AUTOVACUUM
4943 if( pBt->autoVacuum ){
4944 int a;
4945 aFrom[nCell] = i;
4946 for(a=0; a<pOld->nOverflow; a++){
4947 if( pOld->aOvfl[a].pCell==apCell[nCell] ){
4948 aFrom[nCell] = 0xFF;
4949 break;
4950 }
4951 }
4952 }
4953#endif
drh14acc042001-06-10 19:56:58 +00004954 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00004955 }
4956 if( i<nOld-1 ){
drh43605152004-05-29 21:46:49 +00004957 int sz = cellSizePtr(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00004958 if( leafData ){
drh96f5b762004-05-16 16:24:36 +00004959 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
4960 ** are duplicates of keys on the child pages. We need to remove
4961 ** the divider cells from pParent, but the dividers cells are not
4962 ** added to apCell[] because they are duplicates of child cells.
4963 */
drh8b18dd42004-05-12 19:18:15 +00004964 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00004965 }else{
drhb6f41482004-05-14 01:58:11 +00004966 u8 *pTemp;
danielk1977634f2982005-03-28 08:44:07 +00004967 assert( nCell<nMaxCells );
drhb6f41482004-05-14 01:58:11 +00004968 szCell[nCell] = sz;
4969 pTemp = &aSpace[iSpace];
4970 iSpace += sz;
drh07d183d2005-05-01 22:52:42 +00004971 assert( iSpace<=pBt->pageSize*5 );
drhb6f41482004-05-14 01:58:11 +00004972 memcpy(pTemp, apDiv[i], sz);
4973 apCell[nCell] = pTemp+leafCorrection;
danielk1977ac11ee62005-01-15 12:45:51 +00004974#ifndef SQLITE_OMIT_AUTOVACUUM
4975 if( pBt->autoVacuum ){
4976 aFrom[nCell] = 0xFF;
4977 }
4978#endif
drhb6f41482004-05-14 01:58:11 +00004979 dropCell(pParent, nxDiv, sz);
drh8b18dd42004-05-12 19:18:15 +00004980 szCell[nCell] -= leafCorrection;
drh43605152004-05-29 21:46:49 +00004981 assert( get4byte(pTemp)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00004982 if( !pOld->leaf ){
4983 assert( leafCorrection==0 );
4984 /* The right pointer of the child page pOld becomes the left
4985 ** pointer of the divider cell */
drh43605152004-05-29 21:46:49 +00004986 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
drh8b18dd42004-05-12 19:18:15 +00004987 }else{
4988 assert( leafCorrection==4 );
danielk197739c96042007-05-12 10:41:47 +00004989 if( szCell[nCell]<4 ){
4990 /* Do not allow any cells smaller than 4 bytes. */
4991 szCell[nCell] = 4;
4992 }
drh8b18dd42004-05-12 19:18:15 +00004993 }
4994 nCell++;
drh4b70f112004-05-02 21:12:19 +00004995 }
drh8b2f49b2001-06-08 00:21:52 +00004996 }
4997 }
4998
4999 /*
drh6019e162001-07-02 17:51:45 +00005000 ** Figure out the number of pages needed to hold all nCell cells.
5001 ** Store this number in "k". Also compute szNew[] which is the total
5002 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005003 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005004 ** cntNew[k] should equal nCell.
5005 **
drh96f5b762004-05-16 16:24:36 +00005006 ** Values computed by this block:
5007 **
5008 ** k: The total number of sibling pages
5009 ** szNew[i]: Spaced used on the i-th sibling page.
5010 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5011 ** the right of the i-th sibling page.
5012 ** usableSpace: Number of bytes of space available on each sibling.
5013 **
drh8b2f49b2001-06-08 00:21:52 +00005014 */
drh43605152004-05-29 21:46:49 +00005015 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005016 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005017 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005018 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005019 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005020 szNew[k] = subtotal - szCell[i];
5021 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005022 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005023 subtotal = 0;
5024 k++;
5025 }
5026 }
5027 szNew[k] = subtotal;
5028 cntNew[k] = nCell;
5029 k++;
drh96f5b762004-05-16 16:24:36 +00005030
5031 /*
5032 ** The packing computed by the previous block is biased toward the siblings
5033 ** on the left side. The left siblings are always nearly full, while the
5034 ** right-most sibling might be nearly empty. This block of code attempts
5035 ** to adjust the packing of siblings to get a better balance.
5036 **
5037 ** This adjustment is more than an optimization. The packing above might
5038 ** be so out of balance as to be illegal. For example, the right-most
5039 ** sibling might be completely empty. This adjustment is not optional.
5040 */
drh6019e162001-07-02 17:51:45 +00005041 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005042 int szRight = szNew[i]; /* Size of sibling on the right */
5043 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5044 int r; /* Index of right-most cell in left sibling */
5045 int d; /* Index of first cell to the left of right sibling */
5046
5047 r = cntNew[i-1] - 1;
5048 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005049 assert( d<nMaxCells );
5050 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005051 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5052 szRight += szCell[d] + 2;
5053 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005054 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005055 r = cntNew[i-1] - 1;
5056 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005057 }
drh96f5b762004-05-16 16:24:36 +00005058 szNew[i] = szRight;
5059 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005060 }
drh09d0deb2005-08-02 17:13:09 +00005061
5062 /* Either we found one or more cells (cntnew[0])>0) or we are the
5063 ** a virtual root page. A virtual root page is when the real root
5064 ** page is page 1 and we are the only child of that page.
5065 */
5066 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005067
5068 /*
drh6b308672002-07-08 02:16:37 +00005069 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005070 */
drh4b70f112004-05-02 21:12:19 +00005071 assert( pPage->pgno>1 );
5072 pageFlags = pPage->aData[0];
drh14acc042001-06-10 19:56:58 +00005073 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005074 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005075 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005076 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005077 pgnoNew[i] = pgnoOld[i];
5078 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005079 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005080 nNew++;
danielk197728129562005-01-11 10:25:06 +00005081 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005082 }else{
drh7aa8f852006-03-28 00:24:44 +00005083 assert( i>0 );
drh4f0c5872007-03-26 22:05:01 +00005084 rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
drh6b308672002-07-08 02:16:37 +00005085 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005086 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005087 nNew++;
drh6b308672002-07-08 02:16:37 +00005088 }
drhda200cc2004-05-09 11:51:38 +00005089 zeroPage(pNew, pageFlags);
drh8b2f49b2001-06-08 00:21:52 +00005090 }
5091
danielk1977299b1872004-11-22 10:02:10 +00005092 /* Free any old pages that were not reused as new pages.
5093 */
5094 while( i<nOld ){
5095 rc = freePage(apOld[i]);
5096 if( rc ) goto balance_cleanup;
5097 releasePage(apOld[i]);
5098 apOld[i] = 0;
5099 i++;
5100 }
5101
drh8b2f49b2001-06-08 00:21:52 +00005102 /*
drhf9ffac92002-03-02 19:00:31 +00005103 ** Put the new pages in accending order. This helps to
5104 ** keep entries in the disk file in order so that a scan
5105 ** of the table is a linear scan through the file. That
5106 ** in turn helps the operating system to deliver pages
5107 ** from the disk more rapidly.
5108 **
5109 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005110 ** n is never more than NB (a small constant), that should
5111 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005112 **
drhc3b70572003-01-04 19:44:07 +00005113 ** When NB==3, this one optimization makes the database
5114 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00005115 */
5116 for(i=0; i<k-1; i++){
5117 int minV = pgnoNew[i];
5118 int minI = i;
5119 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00005120 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00005121 minI = j;
5122 minV = pgnoNew[j];
5123 }
5124 }
5125 if( minI>i ){
5126 int t;
5127 MemPage *pT;
5128 t = pgnoNew[i];
5129 pT = apNew[i];
5130 pgnoNew[i] = pgnoNew[minI];
5131 apNew[i] = apNew[minI];
5132 pgnoNew[minI] = t;
5133 apNew[minI] = pT;
5134 }
5135 }
drha2fce642004-06-05 00:01:44 +00005136 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
drh24cd67e2004-05-10 16:18:47 +00005137 pgnoOld[0],
5138 nOld>=2 ? pgnoOld[1] : 0,
5139 nOld>=3 ? pgnoOld[2] : 0,
drh10c0fa62004-05-18 12:50:17 +00005140 pgnoNew[0], szNew[0],
5141 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
5142 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
drha2fce642004-06-05 00:01:44 +00005143 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
5144 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
drh24cd67e2004-05-10 16:18:47 +00005145
drhf9ffac92002-03-02 19:00:31 +00005146 /*
drh14acc042001-06-10 19:56:58 +00005147 ** Evenly distribute the data in apCell[] across the new pages.
5148 ** Insert divider cells into pParent as necessary.
5149 */
5150 j = 0;
5151 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00005152 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00005153 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00005154 assert( j<nMaxCells );
drh4b70f112004-05-02 21:12:19 +00005155 assert( pNew->pgno==pgnoNew[i] );
drhfa1a98a2004-05-14 19:08:17 +00005156 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00005157 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00005158 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00005159
5160#ifndef SQLITE_OMIT_AUTOVACUUM
5161 /* If this is an auto-vacuum database, update the pointer map entries
5162 ** that point to the siblings that were rearranged. These can be: left
5163 ** children of cells, the right-child of the page, or overflow pages
5164 ** pointed to by cells.
5165 */
5166 if( pBt->autoVacuum ){
5167 for(k=j; k<cntNew[i]; k++){
danielk1977634f2982005-03-28 08:44:07 +00005168 assert( k<nMaxCells );
danielk1977ac11ee62005-01-15 12:45:51 +00005169 if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
danielk197779a40da2005-01-16 08:00:01 +00005170 rc = ptrmapPutOvfl(pNew, k-j);
5171 if( rc!=SQLITE_OK ){
5172 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00005173 }
5174 }
5175 }
5176 }
5177#endif
5178
5179 j = cntNew[i];
5180
5181 /* If the sibling page assembled above was not the right-most sibling,
5182 ** insert a divider cell into the parent page.
5183 */
drh14acc042001-06-10 19:56:58 +00005184 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00005185 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00005186 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00005187 int sz;
danielk1977634f2982005-03-28 08:44:07 +00005188
5189 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00005190 pCell = apCell[j];
5191 sz = szCell[j] + leafCorrection;
drh4b70f112004-05-02 21:12:19 +00005192 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00005193 memcpy(&pNew->aData[8], pCell, 4);
drh24cd67e2004-05-10 16:18:47 +00005194 pTemp = 0;
drh8b18dd42004-05-12 19:18:15 +00005195 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00005196 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00005197 ** then there is no divider cell in apCell[]. Instead, the divider
5198 ** cell consists of the integer key for the right-most cell of
5199 ** the sibling-page assembled above only.
5200 */
drh6f11bef2004-05-13 01:12:56 +00005201 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00005202 j--;
drh16a9b832007-05-05 18:39:25 +00005203 sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
drhb6f41482004-05-14 01:58:11 +00005204 pCell = &aSpace[iSpace];
drhb026e052007-05-02 01:34:31 +00005205 fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
drhb6f41482004-05-14 01:58:11 +00005206 iSpace += sz;
drh07d183d2005-05-01 22:52:42 +00005207 assert( iSpace<=pBt->pageSize*5 );
drh8b18dd42004-05-12 19:18:15 +00005208 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00005209 }else{
5210 pCell -= 4;
drhb6f41482004-05-14 01:58:11 +00005211 pTemp = &aSpace[iSpace];
5212 iSpace += sz;
drh07d183d2005-05-01 22:52:42 +00005213 assert( iSpace<=pBt->pageSize*5 );
danielk19774aeff622007-05-12 09:30:47 +00005214 /* Obscure case for non-leaf-data trees: If the cell at pCell was
5215 ** previously stored on a leaf node, and it's reported size was 4
5216 ** bytes, then it may actually be smaller than this
5217 ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
5218 ** any cell). But it's important to pass the correct size to
5219 ** insertCell(), so reparse the cell now.
5220 **
5221 ** Note that this can never happen in an SQLite data file, as all
5222 ** cells are at least 4 bytes. It only happens in b-trees used
5223 ** to evaluate "IN (SELECT ...)" and similar clauses.
5224 */
5225 if( szCell[j]==4 ){
5226 assert(leafCorrection==4);
5227 sz = cellSizePtr(pParent, pCell);
5228 }
drh4b70f112004-05-02 21:12:19 +00005229 }
danielk1977a3ad5e72005-01-07 08:56:44 +00005230 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
danielk1977e80463b2004-11-03 03:01:16 +00005231 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00005232 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +00005233#ifndef SQLITE_OMIT_AUTOVACUUM
5234 /* If this is an auto-vacuum database, and not a leaf-data tree,
5235 ** then update the pointer map with an entry for the overflow page
5236 ** that the cell just inserted points to (if any).
5237 */
5238 if( pBt->autoVacuum && !leafData ){
danielk197779a40da2005-01-16 08:00:01 +00005239 rc = ptrmapPutOvfl(pParent, nxDiv);
5240 if( rc!=SQLITE_OK ){
5241 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00005242 }
5243 }
5244#endif
drh14acc042001-06-10 19:56:58 +00005245 j++;
5246 nxDiv++;
5247 }
5248 }
drh6019e162001-07-02 17:51:45 +00005249 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00005250 assert( nOld>0 );
5251 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00005252 if( (pageFlags & PTF_LEAF)==0 ){
drh43605152004-05-29 21:46:49 +00005253 memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
drh14acc042001-06-10 19:56:58 +00005254 }
drh43605152004-05-29 21:46:49 +00005255 if( nxDiv==pParent->nCell+pParent->nOverflow ){
drh4b70f112004-05-02 21:12:19 +00005256 /* Right-most sibling is the right-most child of pParent */
drh43605152004-05-29 21:46:49 +00005257 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
drh4b70f112004-05-02 21:12:19 +00005258 }else{
5259 /* Right-most sibling is the left child of the first entry in pParent
5260 ** past the right-most divider entry */
drh43605152004-05-29 21:46:49 +00005261 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00005262 }
5263
5264 /*
5265 ** Reparent children of all cells.
drh8b2f49b2001-06-08 00:21:52 +00005266 */
5267 for(i=0; i<nNew; i++){
danielk1977afcdd022004-10-31 16:25:42 +00005268 rc = reparentChildPages(apNew[i]);
5269 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh8b2f49b2001-06-08 00:21:52 +00005270 }
danielk1977afcdd022004-10-31 16:25:42 +00005271 rc = reparentChildPages(pParent);
5272 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh8b2f49b2001-06-08 00:21:52 +00005273
5274 /*
drh3a4c1412004-05-09 20:40:11 +00005275 ** Balance the parent page. Note that the current page (pPage) might
danielk1977ac11ee62005-01-15 12:45:51 +00005276 ** have been added to the freelist so it might no longer be initialized.
drh3a4c1412004-05-09 20:40:11 +00005277 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00005278 */
drhda200cc2004-05-09 11:51:38 +00005279 assert( pParent->isInit );
danielk1977ac245ec2005-01-14 13:50:11 +00005280 rc = balance(pParent, 0);
drhda200cc2004-05-09 11:51:38 +00005281
drh8b2f49b2001-06-08 00:21:52 +00005282 /*
drh14acc042001-06-10 19:56:58 +00005283 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00005284 */
drh14acc042001-06-10 19:56:58 +00005285balance_cleanup:
drh17435752007-08-16 04:30:38 +00005286 sqlite3_free(apCell);
drh8b2f49b2001-06-08 00:21:52 +00005287 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00005288 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00005289 }
drh14acc042001-06-10 19:56:58 +00005290 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00005291 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00005292 }
drh91025292004-05-03 19:49:32 +00005293 releasePage(pParent);
drh3a4c1412004-05-09 20:40:11 +00005294 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
5295 pPage->pgno, nOld, nNew, nCell));
drh8b2f49b2001-06-08 00:21:52 +00005296 return rc;
5297}
5298
5299/*
drh43605152004-05-29 21:46:49 +00005300** This routine is called for the root page of a btree when the root
5301** page contains no cells. This is an opportunity to make the tree
5302** shallower by one level.
5303*/
5304static int balance_shallower(MemPage *pPage){
5305 MemPage *pChild; /* The only child page of pPage */
5306 Pgno pgnoChild; /* Page number for pChild */
drh2e38c322004-09-03 18:38:44 +00005307 int rc = SQLITE_OK; /* Return code from subprocedures */
danielk1977aef0bf62005-12-30 16:28:01 +00005308 BtShared *pBt; /* The main BTree structure */
drh2e38c322004-09-03 18:38:44 +00005309 int mxCellPerPage; /* Maximum number of cells per page */
5310 u8 **apCell; /* All cells from pages being balanced */
5311 int *szCell; /* Local size of all cells */
drh43605152004-05-29 21:46:49 +00005312
5313 assert( pPage->pParent==0 );
5314 assert( pPage->nCell==0 );
drh1fee73e2007-08-29 04:00:57 +00005315 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh2e38c322004-09-03 18:38:44 +00005316 pBt = pPage->pBt;
5317 mxCellPerPage = MX_CELL(pBt);
drh17435752007-08-16 04:30:38 +00005318 apCell = sqlite3_malloc( mxCellPerPage*(sizeof(u8*)+sizeof(int)) );
drh2e38c322004-09-03 18:38:44 +00005319 if( apCell==0 ) return SQLITE_NOMEM;
5320 szCell = (int*)&apCell[mxCellPerPage];
drh43605152004-05-29 21:46:49 +00005321 if( pPage->leaf ){
5322 /* The table is completely empty */
5323 TRACE(("BALANCE: empty table %d\n", pPage->pgno));
5324 }else{
5325 /* The root page is empty but has one child. Transfer the
5326 ** information from that one child into the root page if it
5327 ** will fit. This reduces the depth of the tree by one.
5328 **
5329 ** If the root page is page 1, it has less space available than
5330 ** its child (due to the 100 byte header that occurs at the beginning
5331 ** of the database fle), so it might not be able to hold all of the
5332 ** information currently contained in the child. If this is the
5333 ** case, then do not do the transfer. Leave page 1 empty except
5334 ** for the right-pointer to the child page. The child page becomes
5335 ** the virtual root of the tree.
5336 */
5337 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5338 assert( pgnoChild>0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005339 assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) );
drh16a9b832007-05-05 18:39:25 +00005340 rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
drh2e38c322004-09-03 18:38:44 +00005341 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005342 if( pPage->pgno==1 ){
drh16a9b832007-05-05 18:39:25 +00005343 rc = sqlite3BtreeInitPage(pChild, pPage);
drh2e38c322004-09-03 18:38:44 +00005344 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005345 assert( pChild->nOverflow==0 );
5346 if( pChild->nFree>=100 ){
5347 /* The child information will fit on the root page, so do the
5348 ** copy */
5349 int i;
5350 zeroPage(pPage, pChild->aData[0]);
5351 for(i=0; i<pChild->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00005352 apCell[i] = findCell(pChild,i);
drh43605152004-05-29 21:46:49 +00005353 szCell[i] = cellSizePtr(pChild, apCell[i]);
5354 }
5355 assemblePage(pPage, pChild->nCell, apCell, szCell);
danielk1977ae825582004-11-23 09:06:55 +00005356 /* Copy the right-pointer of the child to the parent. */
5357 put4byte(&pPage->aData[pPage->hdrOffset+8],
5358 get4byte(&pChild->aData[pChild->hdrOffset+8]));
drh43605152004-05-29 21:46:49 +00005359 freePage(pChild);
5360 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
5361 }else{
5362 /* The child has more information that will fit on the root.
5363 ** The tree is already balanced. Do nothing. */
5364 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
5365 }
5366 }else{
5367 memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
5368 pPage->isInit = 0;
5369 pPage->pParent = 0;
drh16a9b832007-05-05 18:39:25 +00005370 rc = sqlite3BtreeInitPage(pPage, 0);
drh43605152004-05-29 21:46:49 +00005371 assert( rc==SQLITE_OK );
5372 freePage(pChild);
5373 TRACE(("BALANCE: transfer child %d into root %d\n",
5374 pChild->pgno, pPage->pgno));
5375 }
danielk1977afcdd022004-10-31 16:25:42 +00005376 rc = reparentChildPages(pPage);
danielk1977ac11ee62005-01-15 12:45:51 +00005377 assert( pPage->nOverflow==0 );
5378#ifndef SQLITE_OMIT_AUTOVACUUM
5379 if( pBt->autoVacuum ){
danielk1977aac0a382005-01-16 11:07:06 +00005380 int i;
danielk1977ac11ee62005-01-15 12:45:51 +00005381 for(i=0; i<pPage->nCell; i++){
danielk197779a40da2005-01-16 08:00:01 +00005382 rc = ptrmapPutOvfl(pPage, i);
5383 if( rc!=SQLITE_OK ){
5384 goto end_shallow_balance;
danielk1977ac11ee62005-01-15 12:45:51 +00005385 }
5386 }
5387 }
5388#endif
drh43605152004-05-29 21:46:49 +00005389 releasePage(pChild);
5390 }
drh2e38c322004-09-03 18:38:44 +00005391end_shallow_balance:
drh17435752007-08-16 04:30:38 +00005392 sqlite3_free(apCell);
drh2e38c322004-09-03 18:38:44 +00005393 return rc;
drh43605152004-05-29 21:46:49 +00005394}
5395
5396
5397/*
5398** The root page is overfull
5399**
5400** When this happens, Create a new child page and copy the
5401** contents of the root into the child. Then make the root
5402** page an empty page with rightChild pointing to the new
5403** child. Finally, call balance_internal() on the new child
5404** to cause it to split.
5405*/
5406static int balance_deeper(MemPage *pPage){
5407 int rc; /* Return value from subprocedures */
5408 MemPage *pChild; /* Pointer to a new child page */
5409 Pgno pgnoChild; /* Page number of the new child page */
danielk1977aef0bf62005-12-30 16:28:01 +00005410 BtShared *pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00005411 int usableSize; /* Total usable size of a page */
5412 u8 *data; /* Content of the parent page */
5413 u8 *cdata; /* Content of the child page */
5414 int hdr; /* Offset to page header in parent */
5415 int brk; /* Offset to content of first cell in parent */
5416
5417 assert( pPage->pParent==0 );
5418 assert( pPage->nOverflow>0 );
5419 pBt = pPage->pBt;
drh1fee73e2007-08-29 04:00:57 +00005420 assert( sqlite3_mutex_held(pBt->mutex) );
drh4f0c5872007-03-26 22:05:01 +00005421 rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
drh43605152004-05-29 21:46:49 +00005422 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005423 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
drh43605152004-05-29 21:46:49 +00005424 usableSize = pBt->usableSize;
5425 data = pPage->aData;
5426 hdr = pPage->hdrOffset;
5427 brk = get2byte(&data[hdr+5]);
5428 cdata = pChild->aData;
5429 memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
5430 memcpy(&cdata[brk], &data[brk], usableSize-brk);
danielk1977c7dc7532004-11-17 10:22:03 +00005431 assert( pChild->isInit==0 );
drh16a9b832007-05-05 18:39:25 +00005432 rc = sqlite3BtreeInitPage(pChild, pPage);
danielk19776b456a22005-03-21 04:04:02 +00005433 if( rc ) goto balancedeeper_out;
drh43605152004-05-29 21:46:49 +00005434 memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
5435 pChild->nOverflow = pPage->nOverflow;
5436 if( pChild->nOverflow ){
5437 pChild->nFree = 0;
5438 }
5439 assert( pChild->nCell==pPage->nCell );
5440 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
5441 put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
5442 TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
danielk19774e17d142005-01-16 09:06:33 +00005443#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977ac11ee62005-01-15 12:45:51 +00005444 if( pBt->autoVacuum ){
5445 int i;
5446 rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
danielk19776b456a22005-03-21 04:04:02 +00005447 if( rc ) goto balancedeeper_out;
danielk1977ac11ee62005-01-15 12:45:51 +00005448 for(i=0; i<pChild->nCell; i++){
danielk197779a40da2005-01-16 08:00:01 +00005449 rc = ptrmapPutOvfl(pChild, i);
5450 if( rc!=SQLITE_OK ){
5451 return rc;
danielk1977ac11ee62005-01-15 12:45:51 +00005452 }
5453 }
5454 }
danielk19774e17d142005-01-16 09:06:33 +00005455#endif
drh43605152004-05-29 21:46:49 +00005456 rc = balance_nonroot(pChild);
danielk19776b456a22005-03-21 04:04:02 +00005457
5458balancedeeper_out:
drh43605152004-05-29 21:46:49 +00005459 releasePage(pChild);
5460 return rc;
5461}
5462
5463/*
5464** Decide if the page pPage needs to be balanced. If balancing is
5465** required, call the appropriate balancing routine.
5466*/
danielk1977ac245ec2005-01-14 13:50:11 +00005467static int balance(MemPage *pPage, int insert){
drh43605152004-05-29 21:46:49 +00005468 int rc = SQLITE_OK;
drh1fee73e2007-08-29 04:00:57 +00005469 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00005470 if( pPage->pParent==0 ){
danielk19776e465eb2007-08-21 13:11:00 +00005471 rc = sqlite3PagerWrite(pPage->pDbPage);
5472 if( rc==SQLITE_OK && pPage->nOverflow>0 ){
drh43605152004-05-29 21:46:49 +00005473 rc = balance_deeper(pPage);
5474 }
danielk1977687566d2004-11-02 12:56:41 +00005475 if( rc==SQLITE_OK && pPage->nCell==0 ){
drh43605152004-05-29 21:46:49 +00005476 rc = balance_shallower(pPage);
5477 }
5478 }else{
danielk1977ac245ec2005-01-14 13:50:11 +00005479 if( pPage->nOverflow>0 ||
5480 (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
drh43605152004-05-29 21:46:49 +00005481 rc = balance_nonroot(pPage);
5482 }
5483 }
5484 return rc;
5485}
5486
5487/*
drh8dcd7ca2004-08-08 19:43:29 +00005488** This routine checks all cursors that point to table pgnoRoot.
drh980b1a72006-08-16 16:42:48 +00005489** If any of those cursors were opened with wrFlag==0 in a different
5490** database connection (a database connection that shares the pager
5491** cache with the current connection) and that other connection
5492** is not in the ReadUncommmitted state, then this routine returns
5493** SQLITE_LOCKED.
danielk1977299b1872004-11-22 10:02:10 +00005494**
5495** In addition to checking for read-locks (where a read-lock
5496** means a cursor opened with wrFlag==0) this routine also moves
drh16a9b832007-05-05 18:39:25 +00005497** all write cursors so that they are pointing to the
drh980b1a72006-08-16 16:42:48 +00005498** first Cell on the root page. This is necessary because an insert
danielk1977299b1872004-11-22 10:02:10 +00005499** or delete might change the number of cells on a page or delete
5500** a page entirely and we do not want to leave any cursors
5501** pointing to non-existant pages or cells.
drhf74b8d92002-09-01 23:20:45 +00005502*/
drh980b1a72006-08-16 16:42:48 +00005503static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
danielk1977299b1872004-11-22 10:02:10 +00005504 BtCursor *p;
drh980b1a72006-08-16 16:42:48 +00005505 BtShared *pBt = pBtree->pBt;
5506 sqlite3 *db = pBtree->pSqlite;
drh1fee73e2007-08-29 04:00:57 +00005507 assert( sqlite3BtreeHoldsMutex(pBtree) );
danielk1977299b1872004-11-22 10:02:10 +00005508 for(p=pBt->pCursor; p; p=p->pNext){
drh980b1a72006-08-16 16:42:48 +00005509 if( p==pExclude ) continue;
5510 if( p->eState!=CURSOR_VALID ) continue;
5511 if( p->pgnoRoot!=pgnoRoot ) continue;
5512 if( p->wrFlag==0 ){
5513 sqlite3 *dbOther = p->pBtree->pSqlite;
5514 if( dbOther==0 ||
5515 (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
5516 return SQLITE_LOCKED;
5517 }
5518 }else if( p->pPage->pgno!=p->pgnoRoot ){
danielk1977299b1872004-11-22 10:02:10 +00005519 moveToRoot(p);
5520 }
5521 }
drhf74b8d92002-09-01 23:20:45 +00005522 return SQLITE_OK;
5523}
5524
5525/*
drh3b7511c2001-05-26 13:15:44 +00005526** Insert a new record into the BTree. The key is given by (pKey,nKey)
5527** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00005528** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00005529** is left pointing at a random location.
5530**
5531** For an INTKEY table, only the nKey value of the key is used. pKey is
5532** ignored. For a ZERODATA table, the pData and nData are both ignored.
drh3b7511c2001-05-26 13:15:44 +00005533*/
drh3aac2dd2004-04-26 14:10:20 +00005534int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00005535 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00005536 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00005537 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00005538 int nZero, /* Number of extra 0 bytes to append to data */
drhe4d90812007-03-29 05:51:49 +00005539 int appendBias /* True if this is likely an append */
drh3b7511c2001-05-26 13:15:44 +00005540){
drh3b7511c2001-05-26 13:15:44 +00005541 int rc;
5542 int loc;
drh14acc042001-06-10 19:56:58 +00005543 int szNew;
drh3b7511c2001-05-26 13:15:44 +00005544 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00005545 Btree *p = pCur->pBtree;
5546 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00005547 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00005548 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00005549
drh1fee73e2007-08-29 04:00:57 +00005550 assert( cursorHoldsMutex(pCur) );
danielk1977aef0bf62005-12-30 16:28:01 +00005551 if( pBt->inTransaction!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005552 /* Must start a transaction before doing an insert */
drhd677b3d2007-08-20 22:48:41 +00005553 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drhd677b3d2007-08-20 22:48:41 +00005554 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005555 }
drhf74b8d92002-09-01 23:20:45 +00005556 assert( !pBt->readOnly );
drhecdc7532001-09-23 02:35:53 +00005557 if( !pCur->wrFlag ){
5558 return SQLITE_PERM; /* Cursor not open for writing */
5559 }
drh980b1a72006-08-16 16:42:48 +00005560 if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
drhf74b8d92002-09-01 23:20:45 +00005561 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
5562 }
drhfb982642007-08-30 01:19:59 +00005563 if( pCur->eState==CURSOR_FAULT ){
5564 return pCur->skip;
5565 }
danielk1977da184232006-01-05 11:34:32 +00005566
5567 /* Save the positions of any other cursors open on this table */
drhbf700f32007-03-31 02:36:44 +00005568 clearCursorPosition(pCur);
danielk19772e94d4d2006-01-09 05:36:27 +00005569 if(
danielk19772e94d4d2006-01-09 05:36:27 +00005570 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
drhe4d90812007-03-29 05:51:49 +00005571 SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
danielk19772e94d4d2006-01-09 05:36:27 +00005572 ){
danielk1977da184232006-01-05 11:34:32 +00005573 return rc;
5574 }
5575
drh14acc042001-06-10 19:56:58 +00005576 pPage = pCur->pPage;
drh4a1c3802004-05-12 15:15:47 +00005577 assert( pPage->intKey || nKey>=0 );
drh8b18dd42004-05-12 19:18:15 +00005578 assert( pPage->leaf || !pPage->leafData );
drh3a4c1412004-05-09 20:40:11 +00005579 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
5580 pCur->pgnoRoot, nKey, nData, pPage->pgno,
5581 loc==0 ? "overwrite" : "new entry"));
drh7aa128d2002-06-21 13:09:16 +00005582 assert( pPage->isInit );
drh17435752007-08-16 04:30:38 +00005583 newCell = sqlite3_malloc( MX_CELL_SIZE(pBt) );
drh2e38c322004-09-03 18:38:44 +00005584 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00005585 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00005586 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00005587 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00005588 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk1977da184232006-01-05 11:34:32 +00005589 if( loc==0 && CURSOR_VALID==pCur->eState ){
drha34b6762004-05-07 13:30:42 +00005590 int szOld;
5591 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00005592 rc = sqlite3PagerWrite(pPage->pDbPage);
5593 if( rc ){
5594 goto end_insert;
5595 }
danielk19771cc5ed82007-05-16 17:28:43 +00005596 oldCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00005597 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005598 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00005599 }
drh43605152004-05-29 21:46:49 +00005600 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00005601 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00005602 if( rc ) goto end_insert;
drh4b70f112004-05-02 21:12:19 +00005603 dropCell(pPage, pCur->idx, szOld);
drh7c717f72001-06-24 20:39:41 +00005604 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00005605 assert( pPage->leaf );
drh14acc042001-06-10 19:56:58 +00005606 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00005607 pCur->info.nSize = 0;
drh14acc042001-06-10 19:56:58 +00005608 }else{
drh4b70f112004-05-02 21:12:19 +00005609 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00005610 }
danielk1977a3ad5e72005-01-07 08:56:44 +00005611 rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
danielk1977e80463b2004-11-03 03:01:16 +00005612 if( rc!=SQLITE_OK ) goto end_insert;
danielk1977ac245ec2005-01-14 13:50:11 +00005613 rc = balance(pPage, 1);
drh23e11ca2004-05-04 17:27:28 +00005614 /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
drh3fc190c2001-09-14 03:24:23 +00005615 /* fflush(stdout); */
danielk1977299b1872004-11-22 10:02:10 +00005616 if( rc==SQLITE_OK ){
5617 moveToRoot(pCur);
5618 }
drh2e38c322004-09-03 18:38:44 +00005619end_insert:
drh17435752007-08-16 04:30:38 +00005620 sqlite3_free(newCell);
drh5e2f8b92001-05-28 00:41:15 +00005621 return rc;
5622}
5623
5624/*
drh4b70f112004-05-02 21:12:19 +00005625** Delete the entry that the cursor is pointing to. The cursor
5626** is left pointing at a random location.
drh3b7511c2001-05-26 13:15:44 +00005627*/
drh3aac2dd2004-04-26 14:10:20 +00005628int sqlite3BtreeDelete(BtCursor *pCur){
drh5e2f8b92001-05-28 00:41:15 +00005629 MemPage *pPage = pCur->pPage;
drh4b70f112004-05-02 21:12:19 +00005630 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00005631 int rc;
danielk1977cfe9a692004-06-16 12:00:29 +00005632 Pgno pgnoChild = 0;
drhd677b3d2007-08-20 22:48:41 +00005633 Btree *p = pCur->pBtree;
5634 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00005635
drh1fee73e2007-08-29 04:00:57 +00005636 assert( cursorHoldsMutex(pCur) );
drh7aa128d2002-06-21 13:09:16 +00005637 assert( pPage->isInit );
danielk1977aef0bf62005-12-30 16:28:01 +00005638 if( pBt->inTransaction!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005639 /* Must start a transaction before doing a delete */
drhd677b3d2007-08-20 22:48:41 +00005640 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drhd677b3d2007-08-20 22:48:41 +00005641 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005642 }
drhf74b8d92002-09-01 23:20:45 +00005643 assert( !pBt->readOnly );
drhfb982642007-08-30 01:19:59 +00005644 if( pCur->eState==CURSOR_FAULT ){
5645 return pCur->skip;
5646 }
drhbd03cae2001-06-02 02:40:57 +00005647 if( pCur->idx >= pPage->nCell ){
5648 return SQLITE_ERROR; /* The cursor is not pointing to anything */
5649 }
drhecdc7532001-09-23 02:35:53 +00005650 if( !pCur->wrFlag ){
5651 return SQLITE_PERM; /* Did not open this cursor for writing */
5652 }
drh980b1a72006-08-16 16:42:48 +00005653 if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
drhf74b8d92002-09-01 23:20:45 +00005654 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
5655 }
danielk1977da184232006-01-05 11:34:32 +00005656
5657 /* Restore the current cursor position (a no-op if the cursor is not in
5658 ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
danielk19773b8a05f2007-03-19 17:44:26 +00005659 ** open on the same table. Then call sqlite3PagerWrite() on the page
danielk1977da184232006-01-05 11:34:32 +00005660 ** that the entry will be deleted from.
5661 */
5662 if(
drhbf700f32007-03-31 02:36:44 +00005663 (rc = restoreOrClearCursorPosition(pCur))!=0 ||
drhd1167392006-01-23 13:00:35 +00005664 (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
danielk19773b8a05f2007-03-19 17:44:26 +00005665 (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
danielk1977da184232006-01-05 11:34:32 +00005666 ){
5667 return rc;
5668 }
danielk1977e6efa742004-11-10 11:55:10 +00005669
5670 /* Locate the cell within it's page and leave pCell pointing to the
5671 ** data. The clearCell() call frees any overflow pages associated with the
5672 ** cell. The cell itself is still intact.
5673 */
danielk19771cc5ed82007-05-16 17:28:43 +00005674 pCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00005675 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005676 pgnoChild = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00005677 }
danielk197728129562005-01-11 10:25:06 +00005678 rc = clearCell(pPage, pCell);
drhd677b3d2007-08-20 22:48:41 +00005679 if( rc ){
drhd677b3d2007-08-20 22:48:41 +00005680 return rc;
5681 }
danielk1977e6efa742004-11-10 11:55:10 +00005682
drh4b70f112004-05-02 21:12:19 +00005683 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00005684 /*
drh5e00f6c2001-09-13 13:46:56 +00005685 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00005686 ** do something we will leave a hole on an internal page.
5687 ** We have to fill the hole by moving in a cell from a leaf. The
5688 ** next Cell after the one to be deleted is guaranteed to exist and
danielk1977299b1872004-11-22 10:02:10 +00005689 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00005690 */
drh14acc042001-06-10 19:56:58 +00005691 BtCursor leafCur;
drh4b70f112004-05-02 21:12:19 +00005692 unsigned char *pNext;
drh02afc862006-01-20 18:10:57 +00005693 int szNext; /* The compiler warning is wrong: szNext is always
5694 ** initialized before use. Adding an extra initialization
5695 ** to silence the compiler slows down the code. */
danielk1977299b1872004-11-22 10:02:10 +00005696 int notUsed;
danielk19776b456a22005-03-21 04:04:02 +00005697 unsigned char *tempCell = 0;
drh8b18dd42004-05-12 19:18:15 +00005698 assert( !pPage->leafData );
drh16a9b832007-05-05 18:39:25 +00005699 sqlite3BtreeGetTempCursor(pCur, &leafCur);
danielk1977299b1872004-11-22 10:02:10 +00005700 rc = sqlite3BtreeNext(&leafCur, &notUsed);
danielk19776b456a22005-03-21 04:04:02 +00005701 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005702 rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
danielk19776b456a22005-03-21 04:04:02 +00005703 }
5704 if( rc==SQLITE_OK ){
5705 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
5706 pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
5707 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
danielk19771cc5ed82007-05-16 17:28:43 +00005708 pNext = findCell(leafCur.pPage, leafCur.idx);
danielk19776b456a22005-03-21 04:04:02 +00005709 szNext = cellSizePtr(leafCur.pPage, pNext);
5710 assert( MX_CELL_SIZE(pBt)>=szNext+4 );
drh17435752007-08-16 04:30:38 +00005711 tempCell = sqlite3_malloc( MX_CELL_SIZE(pBt) );
danielk19776b456a22005-03-21 04:04:02 +00005712 if( tempCell==0 ){
5713 rc = SQLITE_NOMEM;
5714 }
5715 }
5716 if( rc==SQLITE_OK ){
5717 rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
5718 }
5719 if( rc==SQLITE_OK ){
5720 put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
5721 rc = balance(pPage, 0);
5722 }
5723 if( rc==SQLITE_OK ){
5724 dropCell(leafCur.pPage, leafCur.idx, szNext);
5725 rc = balance(leafCur.pPage, 0);
5726 }
drh17435752007-08-16 04:30:38 +00005727 sqlite3_free(tempCell);
drh16a9b832007-05-05 18:39:25 +00005728 sqlite3BtreeReleaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00005729 }else{
danielk1977299b1872004-11-22 10:02:10 +00005730 TRACE(("DELETE: table=%d delete from leaf %d\n",
5731 pCur->pgnoRoot, pPage->pgno));
5732 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
danielk1977ac245ec2005-01-14 13:50:11 +00005733 rc = balance(pPage, 0);
drh5e2f8b92001-05-28 00:41:15 +00005734 }
danielk19776b456a22005-03-21 04:04:02 +00005735 if( rc==SQLITE_OK ){
5736 moveToRoot(pCur);
5737 }
drh5e2f8b92001-05-28 00:41:15 +00005738 return rc;
drh3b7511c2001-05-26 13:15:44 +00005739}
drh8b2f49b2001-06-08 00:21:52 +00005740
5741/*
drhc6b52df2002-01-04 03:09:29 +00005742** Create a new BTree table. Write into *piTable the page
5743** number for the root page of the new table.
5744**
drhab01f612004-05-22 02:55:23 +00005745** The type of type is determined by the flags parameter. Only the
5746** following values of flags are currently in use. Other values for
5747** flags might not work:
5748**
5749** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
5750** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00005751*/
drhd677b3d2007-08-20 22:48:41 +00005752static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00005753 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00005754 MemPage *pRoot;
5755 Pgno pgnoRoot;
5756 int rc;
drhd677b3d2007-08-20 22:48:41 +00005757
drh1fee73e2007-08-29 04:00:57 +00005758 assert( sqlite3BtreeHoldsMutex(p) );
danielk1977aef0bf62005-12-30 16:28:01 +00005759 if( pBt->inTransaction!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005760 /* Must start a transaction first */
drhd677b3d2007-08-20 22:48:41 +00005761 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
5762 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005763 }
danielk197728129562005-01-11 10:25:06 +00005764 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00005765
danielk1977003ba062004-11-04 02:57:33 +00005766#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00005767 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00005768 if( rc ){
5769 return rc;
5770 }
danielk1977003ba062004-11-04 02:57:33 +00005771#else
danielk1977687566d2004-11-02 12:56:41 +00005772 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00005773 Pgno pgnoMove; /* Move a page here to make room for the root-page */
5774 MemPage *pPageMove; /* The page to move to. */
5775
danielk197720713f32007-05-03 11:43:33 +00005776 /* Creating a new table may probably require moving an existing database
5777 ** to make room for the new tables root page. In case this page turns
5778 ** out to be an overflow page, delete all overflow page-map caches
5779 ** held by open cursors.
5780 */
danielk197792d4d7a2007-05-04 12:05:56 +00005781 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00005782
danielk1977003ba062004-11-04 02:57:33 +00005783 /* Read the value of meta[3] from the database to determine where the
5784 ** root page of the new table should go. meta[3] is the largest root-page
5785 ** created so far, so the new root-page is (meta[3]+1).
5786 */
danielk1977aef0bf62005-12-30 16:28:01 +00005787 rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
drhd677b3d2007-08-20 22:48:41 +00005788 if( rc!=SQLITE_OK ){
5789 return rc;
5790 }
danielk1977003ba062004-11-04 02:57:33 +00005791 pgnoRoot++;
5792
danielk1977599fcba2004-11-08 07:13:13 +00005793 /* The new root-page may not be allocated on a pointer-map page, or the
5794 ** PENDING_BYTE page.
5795 */
danielk1977266664d2006-02-10 08:24:21 +00005796 if( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00005797 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00005798 pgnoRoot++;
5799 }
5800 assert( pgnoRoot>=3 );
5801
5802 /* Allocate a page. The page that currently resides at pgnoRoot will
5803 ** be moved to the allocated page (unless the allocated page happens
5804 ** to reside at pgnoRoot).
5805 */
drh4f0c5872007-03-26 22:05:01 +00005806 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00005807 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00005808 return rc;
5809 }
danielk1977003ba062004-11-04 02:57:33 +00005810
5811 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00005812 /* pgnoRoot is the page that will be used for the root-page of
5813 ** the new table (assuming an error did not occur). But we were
5814 ** allocated pgnoMove. If required (i.e. if it was not allocated
5815 ** by extending the file), the current page at position pgnoMove
5816 ** is already journaled.
5817 */
danielk1977003ba062004-11-04 02:57:33 +00005818 u8 eType;
5819 Pgno iPtrPage;
5820
5821 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00005822
5823 /* Move the page currently at pgnoRoot to pgnoMove. */
drh16a9b832007-05-05 18:39:25 +00005824 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00005825 if( rc!=SQLITE_OK ){
5826 return rc;
5827 }
5828 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drhccae6022005-02-26 17:31:26 +00005829 if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00005830 releasePage(pRoot);
5831 return rc;
5832 }
drhccae6022005-02-26 17:31:26 +00005833 assert( eType!=PTRMAP_ROOTPAGE );
5834 assert( eType!=PTRMAP_FREEPAGE );
danielk19773b8a05f2007-03-19 17:44:26 +00005835 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk19775fd057a2005-03-09 13:09:43 +00005836 if( rc!=SQLITE_OK ){
5837 releasePage(pRoot);
5838 return rc;
5839 }
danielk1977003ba062004-11-04 02:57:33 +00005840 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
5841 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00005842
5843 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00005844 if( rc!=SQLITE_OK ){
5845 return rc;
5846 }
drh16a9b832007-05-05 18:39:25 +00005847 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00005848 if( rc!=SQLITE_OK ){
5849 return rc;
5850 }
danielk19773b8a05f2007-03-19 17:44:26 +00005851 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00005852 if( rc!=SQLITE_OK ){
5853 releasePage(pRoot);
5854 return rc;
5855 }
5856 }else{
5857 pRoot = pPageMove;
5858 }
5859
danielk197742741be2005-01-08 12:42:39 +00005860 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00005861 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
5862 if( rc ){
5863 releasePage(pRoot);
5864 return rc;
5865 }
danielk1977aef0bf62005-12-30 16:28:01 +00005866 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00005867 if( rc ){
5868 releasePage(pRoot);
5869 return rc;
5870 }
danielk197742741be2005-01-08 12:42:39 +00005871
danielk1977003ba062004-11-04 02:57:33 +00005872 }else{
drh4f0c5872007-03-26 22:05:01 +00005873 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00005874 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00005875 }
5876#endif
danielk19773b8a05f2007-03-19 17:44:26 +00005877 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00005878 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00005879 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00005880 *piTable = (int)pgnoRoot;
5881 return SQLITE_OK;
5882}
drhd677b3d2007-08-20 22:48:41 +00005883int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
5884 int rc;
5885 sqlite3BtreeEnter(p);
5886 rc = btreeCreateTable(p, piTable, flags);
5887 sqlite3BtreeLeave(p);
5888 return rc;
5889}
drh8b2f49b2001-06-08 00:21:52 +00005890
5891/*
5892** Erase the given database page and all its children. Return
5893** the page to the freelist.
5894*/
drh4b70f112004-05-02 21:12:19 +00005895static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00005896 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00005897 Pgno pgno, /* Page number to clear */
5898 MemPage *pParent, /* Parent page. NULL for the root */
5899 int freePageFlag /* Deallocate page if true */
5900){
danielk19776b456a22005-03-21 04:04:02 +00005901 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00005902 int rc;
drh4b70f112004-05-02 21:12:19 +00005903 unsigned char *pCell;
5904 int i;
drh8b2f49b2001-06-08 00:21:52 +00005905
drh1fee73e2007-08-29 04:00:57 +00005906 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00005907 if( pgno>sqlite3PagerPagecount(pBt->pPager) ){
drh49285702005-09-17 15:20:26 +00005908 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005909 }
5910
drhde647132004-05-07 17:57:49 +00005911 rc = getAndInitPage(pBt, pgno, &pPage, pParent);
danielk19776b456a22005-03-21 04:04:02 +00005912 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00005913 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00005914 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00005915 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005916 rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
danielk19776b456a22005-03-21 04:04:02 +00005917 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00005918 }
drh4b70f112004-05-02 21:12:19 +00005919 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00005920 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00005921 }
drha34b6762004-05-07 13:30:42 +00005922 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005923 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
danielk19776b456a22005-03-21 04:04:02 +00005924 if( rc ) goto cleardatabasepage_out;
drh2aa679f2001-06-25 02:11:07 +00005925 }
5926 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00005927 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00005928 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00005929 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00005930 }
danielk19776b456a22005-03-21 04:04:02 +00005931
5932cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00005933 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00005934 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005935}
5936
5937/*
drhab01f612004-05-22 02:55:23 +00005938** Delete all information from a single table in the database. iTable is
5939** the page number of the root of the table. After this routine returns,
5940** the root page is empty, but still exists.
5941**
5942** This routine will fail with SQLITE_LOCKED if there are any open
5943** read cursors on the table. Open write cursors are moved to the
5944** root of the table.
drh8b2f49b2001-06-08 00:21:52 +00005945*/
danielk1977aef0bf62005-12-30 16:28:01 +00005946int sqlite3BtreeClearTable(Btree *p, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00005947 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00005948 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00005949 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00005950 if( p->inTrans!=TRANS_WRITE ){
drhd677b3d2007-08-20 22:48:41 +00005951 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
5952 }else if( (rc = checkReadLocks(p, iTable, 0))!=SQLITE_OK ){
5953 /* nothing to do */
5954 }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
5955 /* nothing to do */
5956 }else{
5957 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
drh8b2f49b2001-06-08 00:21:52 +00005958 }
drhd677b3d2007-08-20 22:48:41 +00005959 sqlite3BtreeLeave(p);
5960 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005961}
5962
5963/*
5964** Erase all information in a table and add the root of the table to
5965** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00005966** page 1) is never added to the freelist.
5967**
5968** This routine will fail with SQLITE_LOCKED if there are any open
5969** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00005970**
5971** If AUTOVACUUM is enabled and the page at iTable is not the last
5972** root page in the database file, then the last root page
5973** in the database file is moved into the slot formerly occupied by
5974** iTable and that last slot formerly occupied by the last root page
5975** is added to the freelist instead of iTable. In this say, all
5976** root pages are kept at the beginning of the database file, which
5977** is necessary for AUTOVACUUM to work right. *piMoved is set to the
5978** page number that used to be the last root page in the file before
5979** the move. If no page gets moved, *piMoved is set to 0.
5980** The last root page is recorded in meta[3] and the value of
5981** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00005982*/
drhd677b3d2007-08-20 22:48:41 +00005983static int btreeDropTable(Btree *p, int iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00005984 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00005985 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00005986 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00005987
drh1fee73e2007-08-29 04:00:57 +00005988 assert( sqlite3BtreeHoldsMutex(p) );
danielk1977aef0bf62005-12-30 16:28:01 +00005989 if( p->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005990 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00005991 }
danielk1977a0bf2652004-11-04 14:30:04 +00005992
danielk1977e6efa742004-11-10 11:55:10 +00005993 /* It is illegal to drop a table if any cursors are open on the
5994 ** database. This is because in auto-vacuum mode the backend may
5995 ** need to move another root-page to fill a gap left by the deleted
5996 ** root page. If an open cursor was using this page a problem would
5997 ** occur.
5998 */
5999 if( pBt->pCursor ){
6000 return SQLITE_LOCKED;
drh5df72a52002-06-06 23:16:05 +00006001 }
danielk1977a0bf2652004-11-04 14:30:04 +00006002
drh16a9b832007-05-05 18:39:25 +00006003 rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006004 if( rc ) return rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006005 rc = sqlite3BtreeClearTable(p, iTable);
danielk19776b456a22005-03-21 04:04:02 +00006006 if( rc ){
6007 releasePage(pPage);
6008 return rc;
6009 }
danielk1977a0bf2652004-11-04 14:30:04 +00006010
drh205f48e2004-11-05 00:43:11 +00006011 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006012
drh4b70f112004-05-02 21:12:19 +00006013 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006014#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00006015 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00006016 releasePage(pPage);
6017#else
6018 if( pBt->autoVacuum ){
6019 Pgno maxRootPgno;
danielk1977aef0bf62005-12-30 16:28:01 +00006020 rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006021 if( rc!=SQLITE_OK ){
6022 releasePage(pPage);
6023 return rc;
6024 }
6025
6026 if( iTable==maxRootPgno ){
6027 /* If the table being dropped is the table with the largest root-page
6028 ** number in the database, put the root page on the free list.
6029 */
6030 rc = freePage(pPage);
6031 releasePage(pPage);
6032 if( rc!=SQLITE_OK ){
6033 return rc;
6034 }
6035 }else{
6036 /* The table being dropped does not have the largest root-page
6037 ** number in the database. So move the page that does into the
6038 ** gap left by the deleted root-page.
6039 */
6040 MemPage *pMove;
6041 releasePage(pPage);
drh16a9b832007-05-05 18:39:25 +00006042 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006043 if( rc!=SQLITE_OK ){
6044 return rc;
6045 }
6046 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
6047 releasePage(pMove);
6048 if( rc!=SQLITE_OK ){
6049 return rc;
6050 }
drh16a9b832007-05-05 18:39:25 +00006051 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006052 if( rc!=SQLITE_OK ){
6053 return rc;
6054 }
6055 rc = freePage(pMove);
6056 releasePage(pMove);
6057 if( rc!=SQLITE_OK ){
6058 return rc;
6059 }
6060 *piMoved = maxRootPgno;
6061 }
6062
danielk1977599fcba2004-11-08 07:13:13 +00006063 /* Set the new 'max-root-page' value in the database header. This
6064 ** is the old value less one, less one more if that happens to
6065 ** be a root-page number, less one again if that is the
6066 ** PENDING_BYTE_PAGE.
6067 */
danielk197787a6e732004-11-05 12:58:25 +00006068 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00006069 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
6070 maxRootPgno--;
6071 }
danielk1977266664d2006-02-10 08:24:21 +00006072 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00006073 maxRootPgno--;
6074 }
danielk1977599fcba2004-11-08 07:13:13 +00006075 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
6076
danielk1977aef0bf62005-12-30 16:28:01 +00006077 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006078 }else{
6079 rc = freePage(pPage);
6080 releasePage(pPage);
6081 }
6082#endif
drh2aa679f2001-06-25 02:11:07 +00006083 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00006084 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00006085 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00006086 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00006087 }
drh8b2f49b2001-06-08 00:21:52 +00006088 return rc;
6089}
drhd677b3d2007-08-20 22:48:41 +00006090int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
6091 int rc;
6092 sqlite3BtreeEnter(p);
6093 rc = btreeDropTable(p, iTable, piMoved);
6094 sqlite3BtreeLeave(p);
6095 return rc;
6096}
drh8b2f49b2001-06-08 00:21:52 +00006097
drh001bbcb2003-03-19 03:14:00 +00006098
drh8b2f49b2001-06-08 00:21:52 +00006099/*
drh23e11ca2004-05-04 17:27:28 +00006100** Read the meta-information out of a database file. Meta[0]
6101** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00006102** through meta[15] are available for use by higher layers. Meta[0]
6103** is read-only, the others are read/write.
6104**
6105** The schema layer numbers meta values differently. At the schema
6106** layer (and the SetCookie and ReadCookie opcodes) the number of
6107** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00006108*/
danielk1977aef0bf62005-12-30 16:28:01 +00006109int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk19773b8a05f2007-03-19 17:44:26 +00006110 DbPage *pDbPage;
drh8b2f49b2001-06-08 00:21:52 +00006111 int rc;
drh4b70f112004-05-02 21:12:19 +00006112 unsigned char *pP1;
danielk1977aef0bf62005-12-30 16:28:01 +00006113 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006114
drhd677b3d2007-08-20 22:48:41 +00006115 sqlite3BtreeEnter(p);
6116
danielk1977da184232006-01-05 11:34:32 +00006117 /* Reading a meta-data value requires a read-lock on page 1 (and hence
6118 ** the sqlite_master table. We grab this lock regardless of whether or
6119 ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
6120 ** 1 is treated as a special case by queryTableLock() and lockTable()).
6121 */
6122 rc = queryTableLock(p, 1, READ_LOCK);
6123 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00006124 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006125 return rc;
6126 }
6127
drh23e11ca2004-05-04 17:27:28 +00006128 assert( idx>=0 && idx<=15 );
danielk19773b8a05f2007-03-19 17:44:26 +00006129 rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
drhd677b3d2007-08-20 22:48:41 +00006130 if( rc ){
6131 sqlite3BtreeLeave(p);
6132 return rc;
6133 }
danielk19773b8a05f2007-03-19 17:44:26 +00006134 pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
drh23e11ca2004-05-04 17:27:28 +00006135 *pMeta = get4byte(&pP1[36 + idx*4]);
danielk19773b8a05f2007-03-19 17:44:26 +00006136 sqlite3PagerUnref(pDbPage);
drhae157872004-08-14 19:20:09 +00006137
danielk1977599fcba2004-11-08 07:13:13 +00006138 /* If autovacuumed is disabled in this build but we are trying to
6139 ** access an autovacuumed database, then make the database readonly.
6140 */
danielk1977003ba062004-11-04 02:57:33 +00006141#ifdef SQLITE_OMIT_AUTOVACUUM
drhae157872004-08-14 19:20:09 +00006142 if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00006143#endif
drhae157872004-08-14 19:20:09 +00006144
danielk1977da184232006-01-05 11:34:32 +00006145 /* Grab the read-lock on page 1. */
6146 rc = lockTable(p, 1, READ_LOCK);
drhd677b3d2007-08-20 22:48:41 +00006147 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006148 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006149}
6150
6151/*
drh23e11ca2004-05-04 17:27:28 +00006152** Write meta-information back into the database. Meta[0] is
6153** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00006154*/
danielk1977aef0bf62005-12-30 16:28:01 +00006155int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
6156 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00006157 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00006158 int rc;
drh23e11ca2004-05-04 17:27:28 +00006159 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00006160 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00006161 if( p->inTrans!=TRANS_WRITE ){
drhd677b3d2007-08-20 22:48:41 +00006162 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
6163 }else{
6164 assert( pBt->pPage1!=0 );
6165 pP1 = pBt->pPage1->aData;
6166 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6167 if( rc==SQLITE_OK ){
6168 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00006169#ifndef SQLITE_OMIT_AUTOVACUUM
drhd677b3d2007-08-20 22:48:41 +00006170 if( idx==7 ){
6171 assert( pBt->autoVacuum || iMeta==0 );
6172 assert( iMeta==0 || iMeta==1 );
6173 pBt->incrVacuum = iMeta;
6174 }
danielk19774152e672007-09-12 17:01:45 +00006175#endif
drhd677b3d2007-08-20 22:48:41 +00006176 }
drh5df72a52002-06-06 23:16:05 +00006177 }
drhd677b3d2007-08-20 22:48:41 +00006178 sqlite3BtreeLeave(p);
6179 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006180}
drh8c42ca92001-06-22 19:15:00 +00006181
drhf328bc82004-05-10 23:29:49 +00006182/*
6183** Return the flag byte at the beginning of the page that the cursor
6184** is currently pointing to.
6185*/
6186int sqlite3BtreeFlags(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00006187 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
drh777e4c42006-01-13 04:31:58 +00006188 ** restoreOrClearCursorPosition() here.
danielk1977da184232006-01-05 11:34:32 +00006189 */
drhf328bc82004-05-10 23:29:49 +00006190 MemPage *pPage = pCur->pPage;
drh1fee73e2007-08-29 04:00:57 +00006191 assert( cursorHoldsMutex(pCur) );
drhd0679ed2007-08-28 22:24:34 +00006192 assert( pPage->pBt==pCur->pBt );
drhf328bc82004-05-10 23:29:49 +00006193 return pPage ? pPage->aData[pPage->hdrOffset] : 0;
6194}
6195
drhdd793422001-06-28 01:54:48 +00006196
drhdd793422001-06-28 01:54:48 +00006197/*
drh5eddca62001-06-30 21:53:53 +00006198** Return the pager associated with a BTree. This routine is used for
6199** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00006200*/
danielk1977aef0bf62005-12-30 16:28:01 +00006201Pager *sqlite3BtreePager(Btree *p){
6202 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00006203}
drh5eddca62001-06-30 21:53:53 +00006204
drhb7f91642004-10-31 02:22:47 +00006205#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006206/*
6207** Append a message to the error message string.
6208*/
drh2e38c322004-09-03 18:38:44 +00006209static void checkAppendMsg(
6210 IntegrityCk *pCheck,
6211 char *zMsg1,
6212 const char *zFormat,
6213 ...
6214){
6215 va_list ap;
6216 char *zMsg2;
drh1dcdbc02007-01-27 02:24:54 +00006217 if( !pCheck->mxErr ) return;
6218 pCheck->mxErr--;
6219 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00006220 va_start(ap, zFormat);
danielk19771e536952007-08-16 10:09:01 +00006221 zMsg2 = sqlite3VMPrintf(0, zFormat, ap);
drh2e38c322004-09-03 18:38:44 +00006222 va_end(ap);
6223 if( zMsg1==0 ) zMsg1 = "";
drh5eddca62001-06-30 21:53:53 +00006224 if( pCheck->zErrMsg ){
6225 char *zOld = pCheck->zErrMsg;
6226 pCheck->zErrMsg = 0;
danielk19774adee202004-05-08 08:23:19 +00006227 sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
drh17435752007-08-16 04:30:38 +00006228 sqlite3_free(zOld);
drh5eddca62001-06-30 21:53:53 +00006229 }else{
danielk19774adee202004-05-08 08:23:19 +00006230 sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00006231 }
drh17435752007-08-16 04:30:38 +00006232 sqlite3_free(zMsg2);
drh5eddca62001-06-30 21:53:53 +00006233}
drhb7f91642004-10-31 02:22:47 +00006234#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00006235
drhb7f91642004-10-31 02:22:47 +00006236#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006237/*
6238** Add 1 to the reference count for page iPage. If this is the second
6239** reference to the page, add an error message to pCheck->zErrMsg.
6240** Return 1 if there are 2 ore more references to the page and 0 if
6241** if this is the first reference to the page.
6242**
6243** Also check that the page number is in bounds.
6244*/
drhaaab5722002-02-19 13:39:21 +00006245static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00006246 if( iPage==0 ) return 1;
drh0de8c112002-07-06 16:32:14 +00006247 if( iPage>pCheck->nPage || iPage<0 ){
drh2e38c322004-09-03 18:38:44 +00006248 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00006249 return 1;
6250 }
6251 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00006252 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00006253 return 1;
6254 }
6255 return (pCheck->anRef[iPage]++)>1;
6256}
6257
danielk1977afcdd022004-10-31 16:25:42 +00006258#ifndef SQLITE_OMIT_AUTOVACUUM
6259/*
6260** Check that the entry in the pointer-map for page iChild maps to
6261** page iParent, pointer type ptrType. If not, append an error message
6262** to pCheck.
6263*/
6264static void checkPtrmap(
6265 IntegrityCk *pCheck, /* Integrity check context */
6266 Pgno iChild, /* Child page number */
6267 u8 eType, /* Expected pointer map type */
6268 Pgno iParent, /* Expected pointer map parent page number */
6269 char *zContext /* Context description (used for error msg) */
6270){
6271 int rc;
6272 u8 ePtrmapType;
6273 Pgno iPtrmapParent;
6274
6275 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
6276 if( rc!=SQLITE_OK ){
6277 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
6278 return;
6279 }
6280
6281 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
6282 checkAppendMsg(pCheck, zContext,
6283 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
6284 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
6285 }
6286}
6287#endif
6288
drh5eddca62001-06-30 21:53:53 +00006289/*
6290** Check the integrity of the freelist or of an overflow page list.
6291** Verify that the number of pages on the list is N.
6292*/
drh30e58752002-03-02 20:41:57 +00006293static void checkList(
6294 IntegrityCk *pCheck, /* Integrity checking context */
6295 int isFreeList, /* True for a freelist. False for overflow page list */
6296 int iPage, /* Page number for first page in the list */
6297 int N, /* Expected number of pages in the list */
6298 char *zContext /* Context for error messages */
6299){
6300 int i;
drh3a4c1412004-05-09 20:40:11 +00006301 int expected = N;
6302 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00006303 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00006304 DbPage *pOvflPage;
6305 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00006306 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00006307 checkAppendMsg(pCheck, zContext,
6308 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00006309 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00006310 break;
6311 }
6312 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00006313 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00006314 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00006315 break;
6316 }
danielk19773b8a05f2007-03-19 17:44:26 +00006317 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00006318 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00006319 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00006320#ifndef SQLITE_OMIT_AUTOVACUUM
6321 if( pCheck->pBt->autoVacuum ){
6322 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
6323 }
6324#endif
drh855eb1c2004-08-31 13:45:11 +00006325 if( n>pCheck->pBt->usableSize/4-8 ){
drh2e38c322004-09-03 18:38:44 +00006326 checkAppendMsg(pCheck, zContext,
6327 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00006328 N--;
6329 }else{
6330 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00006331 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00006332#ifndef SQLITE_OMIT_AUTOVACUUM
6333 if( pCheck->pBt->autoVacuum ){
6334 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
6335 }
6336#endif
6337 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00006338 }
6339 N -= n;
drh30e58752002-03-02 20:41:57 +00006340 }
drh30e58752002-03-02 20:41:57 +00006341 }
danielk1977afcdd022004-10-31 16:25:42 +00006342#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00006343 else{
6344 /* If this database supports auto-vacuum and iPage is not the last
6345 ** page in this overflow list, check that the pointer-map entry for
6346 ** the following page matches iPage.
6347 */
6348 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00006349 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00006350 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
6351 }
danielk1977afcdd022004-10-31 16:25:42 +00006352 }
6353#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006354 iPage = get4byte(pOvflData);
6355 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00006356 }
6357}
drhb7f91642004-10-31 02:22:47 +00006358#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00006359
drhb7f91642004-10-31 02:22:47 +00006360#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006361/*
6362** Do various sanity checks on a single page of a tree. Return
6363** the tree depth. Root pages return 0. Parents of root pages
6364** return 1, and so forth.
6365**
6366** These checks are done:
6367**
6368** 1. Make sure that cells and freeblocks do not overlap
6369** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00006370** NO 2. Make sure cell keys are in order.
6371** NO 3. Make sure no key is less than or equal to zLowerBound.
6372** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00006373** 5. Check the integrity of overflow pages.
6374** 6. Recursively call checkTreePage on all children.
6375** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00006376** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00006377** the root of the tree.
6378*/
6379static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00006380 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00006381 int iPage, /* Page number of the page to check */
6382 MemPage *pParent, /* Parent page */
drh74161702006-02-24 02:53:49 +00006383 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00006384){
6385 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00006386 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00006387 int hdr, cellStart;
6388 int nCell;
drhda200cc2004-05-09 11:51:38 +00006389 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00006390 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00006391 int usableSize;
drh5eddca62001-06-30 21:53:53 +00006392 char zContext[100];
drh2e38c322004-09-03 18:38:44 +00006393 char *hit;
drh5eddca62001-06-30 21:53:53 +00006394
drh5bb3eb92007-05-04 13:15:55 +00006395 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00006396
drh5eddca62001-06-30 21:53:53 +00006397 /* Check that the page exists
6398 */
drhd9cb6ac2005-10-20 07:28:17 +00006399 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00006400 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00006401 if( iPage==0 ) return 0;
6402 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh16a9b832007-05-05 18:39:25 +00006403 if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00006404 checkAppendMsg(pCheck, zContext,
6405 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00006406 return 0;
6407 }
drh16a9b832007-05-05 18:39:25 +00006408 if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){
6409 checkAppendMsg(pCheck, zContext,
6410 "sqlite3BtreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00006411 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00006412 return 0;
6413 }
6414
6415 /* Check out all the cells.
6416 */
6417 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00006418 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00006419 u8 *pCell;
6420 int sz;
6421 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00006422
6423 /* Check payload overflow pages
6424 */
drh5bb3eb92007-05-04 13:15:55 +00006425 sqlite3_snprintf(sizeof(zContext), zContext,
6426 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00006427 pCell = findCell(pPage,i);
drh16a9b832007-05-05 18:39:25 +00006428 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00006429 sz = info.nData;
6430 if( !pPage->intKey ) sz += info.nKey;
drh72365832007-03-06 15:53:44 +00006431 assert( sz==info.nPayload );
drh6f11bef2004-05-13 01:12:56 +00006432 if( sz>info.nLocal ){
drhb6f41482004-05-14 01:58:11 +00006433 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00006434 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
6435#ifndef SQLITE_OMIT_AUTOVACUUM
6436 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00006437 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00006438 }
6439#endif
6440 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00006441 }
6442
6443 /* Check sanity of left child page.
6444 */
drhda200cc2004-05-09 11:51:38 +00006445 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006446 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00006447#ifndef SQLITE_OMIT_AUTOVACUUM
6448 if( pBt->autoVacuum ){
6449 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
6450 }
6451#endif
drh74161702006-02-24 02:53:49 +00006452 d2 = checkTreePage(pCheck,pgno,pPage,zContext);
drhda200cc2004-05-09 11:51:38 +00006453 if( i>0 && d2!=depth ){
6454 checkAppendMsg(pCheck, zContext, "Child page depth differs");
6455 }
6456 depth = d2;
drh5eddca62001-06-30 21:53:53 +00006457 }
drh5eddca62001-06-30 21:53:53 +00006458 }
drhda200cc2004-05-09 11:51:38 +00006459 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006460 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00006461 sqlite3_snprintf(sizeof(zContext), zContext,
6462 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00006463#ifndef SQLITE_OMIT_AUTOVACUUM
6464 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00006465 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006466 }
6467#endif
drh74161702006-02-24 02:53:49 +00006468 checkTreePage(pCheck, pgno, pPage, zContext);
drhda200cc2004-05-09 11:51:38 +00006469 }
drh5eddca62001-06-30 21:53:53 +00006470
6471 /* Check for complete coverage of the page
6472 */
drhda200cc2004-05-09 11:51:38 +00006473 data = pPage->aData;
6474 hdr = pPage->hdrOffset;
drh17435752007-08-16 04:30:38 +00006475 hit = sqlite3MallocZero( usableSize );
drh2e38c322004-09-03 18:38:44 +00006476 if( hit ){
6477 memset(hit, 1, get2byte(&data[hdr+5]));
6478 nCell = get2byte(&data[hdr+3]);
6479 cellStart = hdr + 12 - 4*pPage->leaf;
6480 for(i=0; i<nCell; i++){
6481 int pc = get2byte(&data[cellStart+i*2]);
6482 int size = cellSizePtr(pPage, &data[pc]);
6483 int j;
danielk19777701e812005-01-10 12:59:51 +00006484 if( (pc+size-1)>=usableSize || pc<0 ){
6485 checkAppendMsg(pCheck, 0,
6486 "Corruption detected in cell %d on page %d",i,iPage,0);
6487 }else{
6488 for(j=pc+size-1; j>=pc; j--) hit[j]++;
6489 }
drh2e38c322004-09-03 18:38:44 +00006490 }
6491 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
6492 cnt++){
6493 int size = get2byte(&data[i+2]);
6494 int j;
danielk19777701e812005-01-10 12:59:51 +00006495 if( (i+size-1)>=usableSize || i<0 ){
6496 checkAppendMsg(pCheck, 0,
6497 "Corruption detected in cell %d on page %d",i,iPage,0);
6498 }else{
6499 for(j=i+size-1; j>=i; j--) hit[j]++;
6500 }
drh2e38c322004-09-03 18:38:44 +00006501 i = get2byte(&data[i]);
6502 }
6503 for(i=cnt=0; i<usableSize; i++){
6504 if( hit[i]==0 ){
6505 cnt++;
6506 }else if( hit[i]>1 ){
6507 checkAppendMsg(pCheck, 0,
6508 "Multiple uses for byte %d of page %d", i, iPage);
6509 break;
6510 }
6511 }
6512 if( cnt!=data[hdr+7] ){
6513 checkAppendMsg(pCheck, 0,
6514 "Fragmented space is %d byte reported as %d on page %d",
6515 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00006516 }
6517 }
drh17435752007-08-16 04:30:38 +00006518 sqlite3_free(hit);
drh6019e162001-07-02 17:51:45 +00006519
drh4b70f112004-05-02 21:12:19 +00006520 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00006521 return depth+1;
drh5eddca62001-06-30 21:53:53 +00006522}
drhb7f91642004-10-31 02:22:47 +00006523#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00006524
drhb7f91642004-10-31 02:22:47 +00006525#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006526/*
6527** This routine does a complete check of the given BTree file. aRoot[] is
6528** an array of pages numbers were each page number is the root page of
6529** a table. nRoot is the number of entries in aRoot.
6530**
6531** If everything checks out, this routine returns NULL. If something is
6532** amiss, an error message is written into memory obtained from malloc()
6533** and a pointer to that error message is returned. The calling function
6534** is responsible for freeing the error message when it is done.
6535*/
drh1dcdbc02007-01-27 02:24:54 +00006536char *sqlite3BtreeIntegrityCheck(
6537 Btree *p, /* The btree to be checked */
6538 int *aRoot, /* An array of root pages numbers for individual trees */
6539 int nRoot, /* Number of entries in aRoot[] */
6540 int mxErr, /* Stop reporting errors after this many */
6541 int *pnErr /* Write number of errors seen to this variable */
6542){
drh5eddca62001-06-30 21:53:53 +00006543 int i;
6544 int nRef;
drhaaab5722002-02-19 13:39:21 +00006545 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00006546 BtShared *pBt = p->pBt;
drh5eddca62001-06-30 21:53:53 +00006547
drhd677b3d2007-08-20 22:48:41 +00006548 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00006549 nRef = sqlite3PagerRefcount(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00006550 if( lockBtreeWithRetry(p)!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00006551 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00006552 return sqlite3StrDup("Unable to acquire a read lock on the database");
drhefc251d2001-07-01 22:12:01 +00006553 }
drh5eddca62001-06-30 21:53:53 +00006554 sCheck.pBt = pBt;
6555 sCheck.pPager = pBt->pPager;
danielk19773b8a05f2007-03-19 17:44:26 +00006556 sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager);
drh1dcdbc02007-01-27 02:24:54 +00006557 sCheck.mxErr = mxErr;
6558 sCheck.nErr = 0;
6559 *pnErr = 0;
danielk1977e5321f02007-04-27 07:05:44 +00006560#ifndef SQLITE_OMIT_AUTOVACUUM
6561 if( pBt->nTrunc!=0 ){
6562 sCheck.nPage = pBt->nTrunc;
6563 }
6564#endif
drh0de8c112002-07-06 16:32:14 +00006565 if( sCheck.nPage==0 ){
6566 unlockBtreeIfUnused(pBt);
drhd677b3d2007-08-20 22:48:41 +00006567 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00006568 return 0;
6569 }
drh17435752007-08-16 04:30:38 +00006570 sCheck.anRef = sqlite3_malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00006571 if( !sCheck.anRef ){
6572 unlockBtreeIfUnused(pBt);
drh1dcdbc02007-01-27 02:24:54 +00006573 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00006574 sqlite3BtreeLeave(p);
danielk19771e536952007-08-16 10:09:01 +00006575 return sqlite3MPrintf(p->pSqlite, "Unable to malloc %d bytes",
danielk1977ac245ec2005-01-14 13:50:11 +00006576 (sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
6577 }
drhda200cc2004-05-09 11:51:38 +00006578 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00006579 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00006580 if( i<=sCheck.nPage ){
6581 sCheck.anRef[i] = 1;
6582 }
drh5eddca62001-06-30 21:53:53 +00006583 sCheck.zErrMsg = 0;
6584
6585 /* Check the integrity of the freelist
6586 */
drha34b6762004-05-07 13:30:42 +00006587 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
6588 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00006589
6590 /* Check all the tables.
6591 */
drh1dcdbc02007-01-27 02:24:54 +00006592 for(i=0; i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00006593 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00006594#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00006595 if( pBt->autoVacuum && aRoot[i]>1 ){
6596 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
6597 }
6598#endif
drh74161702006-02-24 02:53:49 +00006599 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00006600 }
6601
6602 /* Make sure every page in the file is referenced
6603 */
drh1dcdbc02007-01-27 02:24:54 +00006604 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00006605#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00006606 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00006607 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00006608 }
danielk1977afcdd022004-10-31 16:25:42 +00006609#else
6610 /* If the database supports auto-vacuum, make sure no tables contain
6611 ** references to pointer-map pages.
6612 */
6613 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00006614 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00006615 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
6616 }
6617 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00006618 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00006619 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
6620 }
6621#endif
drh5eddca62001-06-30 21:53:53 +00006622 }
6623
6624 /* Make sure this analysis did not leave any unref() pages
6625 */
drh5e00f6c2001-09-13 13:46:56 +00006626 unlockBtreeIfUnused(pBt);
danielk19773b8a05f2007-03-19 17:44:26 +00006627 if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
drh2e38c322004-09-03 18:38:44 +00006628 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00006629 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00006630 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00006631 );
drh5eddca62001-06-30 21:53:53 +00006632 }
6633
6634 /* Clean up and report errors.
6635 */
drhd677b3d2007-08-20 22:48:41 +00006636 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00006637 sqlite3_free(sCheck.anRef);
drh1dcdbc02007-01-27 02:24:54 +00006638 *pnErr = sCheck.nErr;
drh5eddca62001-06-30 21:53:53 +00006639 return sCheck.zErrMsg;
6640}
drhb7f91642004-10-31 02:22:47 +00006641#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00006642
drh73509ee2003-04-06 20:44:45 +00006643/*
6644** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00006645**
6646** The pager filename is invariant as long as the pager is
6647** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00006648*/
danielk1977aef0bf62005-12-30 16:28:01 +00006649const char *sqlite3BtreeGetFilename(Btree *p){
6650 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006651 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00006652}
6653
6654/*
danielk19775865e3d2004-06-14 06:03:57 +00006655** Return the pathname of the directory that contains the database file.
drhd0679ed2007-08-28 22:24:34 +00006656**
6657** The pager directory name is invariant as long as the pager is
6658** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00006659*/
danielk1977aef0bf62005-12-30 16:28:01 +00006660const char *sqlite3BtreeGetDirname(Btree *p){
6661 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006662 return sqlite3PagerDirname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00006663}
6664
6665/*
6666** Return the pathname of the journal file for this database. The return
6667** value of this routine is the same regardless of whether the journal file
6668** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00006669**
6670** The pager journal filename is invariant as long as the pager is
6671** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00006672*/
danielk1977aef0bf62005-12-30 16:28:01 +00006673const char *sqlite3BtreeGetJournalname(Btree *p){
6674 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006675 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00006676}
6677
drhb7f91642004-10-31 02:22:47 +00006678#ifndef SQLITE_OMIT_VACUUM
danielk19775865e3d2004-06-14 06:03:57 +00006679/*
drhf7c57532003-04-25 13:22:51 +00006680** Copy the complete content of pBtFrom into pBtTo. A transaction
6681** must be active for both files.
6682**
6683** The size of file pBtFrom may be reduced by this operation.
drh43605152004-05-29 21:46:49 +00006684** If anything goes wrong, the transaction on pBtFrom is rolled back.
drh73509ee2003-04-06 20:44:45 +00006685*/
drhd677b3d2007-08-20 22:48:41 +00006686static int btreeCopyFile(Btree *pTo, Btree *pFrom){
drhf7c57532003-04-25 13:22:51 +00006687 int rc = SQLITE_OK;
drh50f2f432005-09-16 11:32:18 +00006688 Pgno i, nPage, nToPage, iSkip;
drhf7c57532003-04-25 13:22:51 +00006689
danielk1977aef0bf62005-12-30 16:28:01 +00006690 BtShared *pBtTo = pTo->pBt;
6691 BtShared *pBtFrom = pFrom->pBt;
6692
6693 if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
danielk1977ee5741e2004-05-31 10:01:34 +00006694 return SQLITE_ERROR;
6695 }
drhf7c57532003-04-25 13:22:51 +00006696 if( pBtTo->pCursor ) return SQLITE_BUSY;
danielk19773b8a05f2007-03-19 17:44:26 +00006697 nToPage = sqlite3PagerPagecount(pBtTo->pPager);
6698 nPage = sqlite3PagerPagecount(pBtFrom->pPager);
drh50f2f432005-09-16 11:32:18 +00006699 iSkip = PENDING_BYTE_PAGE(pBtTo);
danielk1977369f27e2004-06-15 11:40:04 +00006700 for(i=1; rc==SQLITE_OK && i<=nPage; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00006701 DbPage *pDbPage;
drh50f2f432005-09-16 11:32:18 +00006702 if( i==iSkip ) continue;
danielk19773b8a05f2007-03-19 17:44:26 +00006703 rc = sqlite3PagerGet(pBtFrom->pPager, i, &pDbPage);
drhf7c57532003-04-25 13:22:51 +00006704 if( rc ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00006705 rc = sqlite3PagerOverwrite(pBtTo->pPager, i, sqlite3PagerGetData(pDbPage));
6706 sqlite3PagerUnref(pDbPage);
drhf7c57532003-04-25 13:22:51 +00006707 }
drh538f5702007-04-13 02:14:30 +00006708
6709 /* If the file is shrinking, journal the pages that are being truncated
6710 ** so that they can be rolled back if the commit fails.
6711 */
drh2e6d11b2003-04-25 15:37:57 +00006712 for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00006713 DbPage *pDbPage;
drh49285702005-09-17 15:20:26 +00006714 if( i==iSkip ) continue;
danielk19773b8a05f2007-03-19 17:44:26 +00006715 rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
drh2e6d11b2003-04-25 15:37:57 +00006716 if( rc ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00006717 rc = sqlite3PagerWrite(pDbPage);
drh538f5702007-04-13 02:14:30 +00006718 sqlite3PagerDontWrite(pDbPage);
6719 /* Yeah. It seems wierd to call DontWrite() right after Write(). But
6720 ** that is because the names of those procedures do not exactly
6721 ** represent what they do. Write() really means "put this page in the
6722 ** rollback journal and mark it as dirty so that it will be written
6723 ** to the database file later." DontWrite() undoes the second part of
6724 ** that and prevents the page from being written to the database. The
6725 ** page is still on the rollback journal, though. And that is the whole
6726 ** point of this loop: to put pages on the rollback journal. */
danielk19773b8a05f2007-03-19 17:44:26 +00006727 sqlite3PagerUnref(pDbPage);
drh2e6d11b2003-04-25 15:37:57 +00006728 }
6729 if( !rc && nPage<nToPage ){
danielk19773b8a05f2007-03-19 17:44:26 +00006730 rc = sqlite3PagerTruncate(pBtTo->pPager, nPage);
drh2e6d11b2003-04-25 15:37:57 +00006731 }
drh538f5702007-04-13 02:14:30 +00006732
drhf7c57532003-04-25 13:22:51 +00006733 if( rc ){
danielk1977aef0bf62005-12-30 16:28:01 +00006734 sqlite3BtreeRollback(pTo);
drhf7c57532003-04-25 13:22:51 +00006735 }
6736 return rc;
drh73509ee2003-04-06 20:44:45 +00006737}
drhd677b3d2007-08-20 22:48:41 +00006738int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
6739 int rc;
6740 sqlite3BtreeEnter(pTo);
6741 sqlite3BtreeEnter(pFrom);
6742 rc = btreeCopyFile(pTo, pFrom);
6743 sqlite3BtreeLeave(pFrom);
6744 sqlite3BtreeLeave(pTo);
6745 return rc;
6746}
6747
drhb7f91642004-10-31 02:22:47 +00006748#endif /* SQLITE_OMIT_VACUUM */
danielk19771d850a72004-05-31 08:26:49 +00006749
6750/*
6751** Return non-zero if a transaction is active.
6752*/
danielk1977aef0bf62005-12-30 16:28:01 +00006753int sqlite3BtreeIsInTrans(Btree *p){
drh1fee73e2007-08-29 04:00:57 +00006754 assert( p==0 || sqlite3_mutex_held(p->pSqlite->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00006755 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00006756}
6757
6758/*
6759** Return non-zero if a statement transaction is active.
6760*/
danielk1977aef0bf62005-12-30 16:28:01 +00006761int sqlite3BtreeIsInStmt(Btree *p){
drh1fee73e2007-08-29 04:00:57 +00006762 assert( sqlite3BtreeHoldsMutex(p) );
danielk1977aef0bf62005-12-30 16:28:01 +00006763 return (p->pBt && p->pBt->inStmt);
danielk19771d850a72004-05-31 08:26:49 +00006764}
danielk197713adf8a2004-06-03 16:08:41 +00006765
6766/*
danielk19772372c2b2006-06-27 16:34:56 +00006767** Return non-zero if a read (or write) transaction is active.
6768*/
6769int sqlite3BtreeIsInReadTrans(Btree *p){
drh1fee73e2007-08-29 04:00:57 +00006770 assert( sqlite3_mutex_held(p->pSqlite->mutex) );
danielk19772372c2b2006-06-27 16:34:56 +00006771 return (p && (p->inTrans!=TRANS_NONE));
6772}
6773
6774/*
danielk1977da184232006-01-05 11:34:32 +00006775** This function returns a pointer to a blob of memory associated with
6776** a single shared-btree. The memory is used by client code for it's own
6777** purposes (for example, to store a high-level schema associated with
6778** the shared-btree). The btree layer manages reference counting issues.
6779**
6780** The first time this is called on a shared-btree, nBytes bytes of memory
6781** are allocated, zeroed, and returned to the caller. For each subsequent
6782** call the nBytes parameter is ignored and a pointer to the same blob
6783** of memory returned.
6784**
6785** Just before the shared-btree is closed, the function passed as the
6786** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00006787** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00006788** on the memory, the btree layer does that.
6789*/
6790void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
6791 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00006792 sqlite3BtreeEnter(p);
danielk1977da184232006-01-05 11:34:32 +00006793 if( !pBt->pSchema ){
drh17435752007-08-16 04:30:38 +00006794 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00006795 pBt->xFreeSchema = xFree;
6796 }
drh27641702007-08-22 02:56:42 +00006797 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006798 return pBt->pSchema;
6799}
6800
danielk1977c87d34d2006-01-06 13:00:28 +00006801/*
6802** Return true if another user of the same shared btree as the argument
6803** handle holds an exclusive lock on the sqlite_master table.
6804*/
6805int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00006806 int rc;
drh1fee73e2007-08-29 04:00:57 +00006807 assert( sqlite3_mutex_held(p->pSqlite->mutex) );
drh27641702007-08-22 02:56:42 +00006808 sqlite3BtreeEnter(p);
6809 rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
6810 sqlite3BtreeLeave(p);
6811 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00006812}
6813
drha154dcd2006-03-22 22:10:07 +00006814
6815#ifndef SQLITE_OMIT_SHARED_CACHE
6816/*
6817** Obtain a lock on the table whose root page is iTab. The
6818** lock is a write lock if isWritelock is true or a read lock
6819** if it is false.
6820*/
danielk1977c00da102006-01-07 13:21:04 +00006821int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00006822 int rc = SQLITE_OK;
danielk1977c00da102006-01-07 13:21:04 +00006823 u8 lockType = (isWriteLock?WRITE_LOCK:READ_LOCK);
drhd677b3d2007-08-20 22:48:41 +00006824 sqlite3BtreeEnter(p);
danielk19772e94d4d2006-01-09 05:36:27 +00006825 rc = queryTableLock(p, iTab, lockType);
danielk1977c00da102006-01-07 13:21:04 +00006826 if( rc==SQLITE_OK ){
6827 rc = lockTable(p, iTab, lockType);
6828 }
drhd677b3d2007-08-20 22:48:41 +00006829 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00006830 return rc;
6831}
drha154dcd2006-03-22 22:10:07 +00006832#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00006833
danielk1977b4e9af92007-05-01 17:49:49 +00006834#ifndef SQLITE_OMIT_INCRBLOB
6835/*
6836** Argument pCsr must be a cursor opened for writing on an
6837** INTKEY table currently pointing at a valid table entry.
6838** This function modifies the data stored as part of that entry.
6839** Only the data content may only be modified, it is not possible
6840** to change the length of the data stored.
6841*/
danielk1977dcbb5d32007-05-04 18:36:44 +00006842int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
drh1fee73e2007-08-29 04:00:57 +00006843 assert( cursorHoldsMutex(pCsr) );
6844 assert( sqlite3_mutex_held(pCsr->pBtree->pSqlite->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00006845 assert(pCsr->isIncrblobHandle);
drhfb982642007-08-30 01:19:59 +00006846 if( pCsr->eState>=CURSOR_REQUIRESEEK ){
6847 if( pCsr->eState==CURSOR_FAULT ){
6848 return pCsr->skip;
6849 }else{
6850 return SQLITE_ABORT;
6851 }
danielk1977dcbb5d32007-05-04 18:36:44 +00006852 }
6853
danielk1977d04417962007-05-02 13:16:30 +00006854 /* Check some preconditions:
danielk1977dcbb5d32007-05-04 18:36:44 +00006855 ** (a) the cursor is open for writing,
6856 ** (b) there is no read-lock on the table being modified and
6857 ** (c) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00006858 */
danielk1977d04417962007-05-02 13:16:30 +00006859 if( !pCsr->wrFlag ){
danielk1977dcbb5d32007-05-04 18:36:44 +00006860 return SQLITE_READONLY;
danielk1977d04417962007-05-02 13:16:30 +00006861 }
drhd0679ed2007-08-28 22:24:34 +00006862 assert( !pCsr->pBt->readOnly
6863 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk1977d04417962007-05-02 13:16:30 +00006864 if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){
6865 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
6866 }
6867 if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
6868 return SQLITE_ERROR;
danielk1977b4e9af92007-05-01 17:49:49 +00006869 }
6870
danielk19779f8d6402007-05-02 17:48:45 +00006871 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00006872}
danielk19772dec9702007-05-02 16:48:37 +00006873
6874/*
6875** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00006876** overflow list for the current row. This is used by cursors opened
6877** for incremental blob IO only.
6878**
6879** This function sets a flag only. The actual page location cache
6880** (stored in BtCursor.aOverflow[]) is allocated and used by function
6881** accessPayload() (the worker function for sqlite3BtreeData() and
6882** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00006883*/
6884void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00006885 assert( cursorHoldsMutex(pCur) );
6886 assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00006887 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00006888 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00006889 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00006890}
danielk1977b4e9af92007-05-01 17:49:49 +00006891#endif