blob: f57f13275454187e95082e6f7427148150320b87 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
drhe53831d2007-08-17 01:14:38 +000046#ifndef SQLITE_OMIT_SHARED_CACHE
47/*
danielk1977502b4e02008-09-02 14:07:24 +000048** A list of BtShared objects that are eligible for participation
49** in shared cache. This variable has file scope during normal builds,
50** but the test harness needs to access it so we make it global for
51** test builds.
drh7555d8e2009-03-20 13:15:30 +000052**
53** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000054*/
55#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000056BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000057#else
drh78f82d12008-09-02 00:52:52 +000058static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000059#endif
drhe53831d2007-08-17 01:14:38 +000060#endif /* SQLITE_OMIT_SHARED_CACHE */
61
62#ifndef SQLITE_OMIT_SHARED_CACHE
63/*
64** Enable or disable the shared pager and schema features.
65**
66** This routine has no effect on existing database connections.
67** The shared cache setting effects only future calls to
68** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
69*/
70int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000071 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000072 return SQLITE_OK;
73}
74#endif
75
drhd677b3d2007-08-20 22:48:41 +000076
danielk1977aef0bf62005-12-30 16:28:01 +000077
78#ifdef SQLITE_OMIT_SHARED_CACHE
79 /*
drhc25eabe2009-02-24 18:57:31 +000080 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
81 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000082 ** manipulate entries in the BtShared.pLock linked list used to store
83 ** shared-cache table level locks. If the library is compiled with the
84 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000085 ** of each BtShared structure and so this locking is not necessary.
86 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000087 */
drhc25eabe2009-02-24 18:57:31 +000088 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
89 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
90 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000091 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000092 #define hasSharedCacheTableLock(a,b,c,d) 1
93 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000094#endif
danielk1977aef0bf62005-12-30 16:28:01 +000095
drhe53831d2007-08-17 01:14:38 +000096#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000097
98#ifdef SQLITE_DEBUG
99/*
drh0ee3dbe2009-10-16 15:05:18 +0000100**** This function is only used as part of an assert() statement. ***
101**
102** Check to see if pBtree holds the required locks to read or write to the
103** table with root page iRoot. Return 1 if it does and 0 if not.
104**
105** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000106** Btree connection pBtree:
107**
108** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
109**
drh0ee3dbe2009-10-16 15:05:18 +0000110** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000111** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000112** the corresponding table. This makes things a bit more complicated,
113** as this module treats each table as a separate structure. To determine
114** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000115** function has to search through the database schema.
116**
drh0ee3dbe2009-10-16 15:05:18 +0000117** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000118** hold a write-lock on the schema table (root page 1). This is also
119** acceptable.
120*/
121static int hasSharedCacheTableLock(
122 Btree *pBtree, /* Handle that must hold lock */
123 Pgno iRoot, /* Root page of b-tree */
124 int isIndex, /* True if iRoot is the root of an index b-tree */
125 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
126){
127 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
128 Pgno iTab = 0;
129 BtLock *pLock;
130
drh0ee3dbe2009-10-16 15:05:18 +0000131 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000132 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000133 ** Return true immediately.
134 */
danielk197796d48e92009-06-29 06:00:37 +0000135 if( (pBtree->sharable==0)
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000137 ){
138 return 1;
139 }
140
drh0ee3dbe2009-10-16 15:05:18 +0000141 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow.
145 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
147 return 1;
148 }
149
danielk197796d48e92009-06-29 06:00:37 +0000150 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated
153 ** table. */
154 if( isIndex ){
155 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
157 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000158 if( pIdx->tnum==(int)iRoot ){
159 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000160 }
161 }
162 }else{
163 iTab = iRoot;
164 }
165
166 /* Search for the required lock. Either a write-lock on root-page iTab, a
167 ** write-lock on the schema table, or (if the client is reading) a
168 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
169 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
170 if( pLock->pBtree==pBtree
171 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
172 && pLock->eLock>=eLockType
173 ){
174 return 1;
175 }
176 }
177
178 /* Failed to find the required lock. */
179 return 0;
180}
drh0ee3dbe2009-10-16 15:05:18 +0000181#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000182
drh0ee3dbe2009-10-16 15:05:18 +0000183#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000184/*
drh0ee3dbe2009-10-16 15:05:18 +0000185**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000186**
drh0ee3dbe2009-10-16 15:05:18 +0000187** Return true if it would be illegal for pBtree to write into the
188** table or index rooted at iRoot because other shared connections are
189** simultaneously reading that same table or index.
190**
191** It is illegal for pBtree to write if some other Btree object that
192** shares the same BtShared object is currently reading or writing
193** the iRoot table. Except, if the other Btree object has the
194** read-uncommitted flag set, then it is OK for the other object to
195** have a read cursor.
196**
197** For example, before writing to any part of the table or index
198** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000199**
200** assert( !hasReadConflicts(pBtree, iRoot) );
201*/
202static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
203 BtCursor *p;
204 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
205 if( p->pgnoRoot==iRoot
206 && p->pBtree!=pBtree
207 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
208 ){
209 return 1;
210 }
211 }
212 return 0;
213}
214#endif /* #ifdef SQLITE_DEBUG */
215
danielk1977da184232006-01-05 11:34:32 +0000216/*
drh0ee3dbe2009-10-16 15:05:18 +0000217** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000218** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000219** SQLITE_OK if the lock may be obtained (by calling
220** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000221*/
drhc25eabe2009-02-24 18:57:31 +0000222static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000223 BtShared *pBt = p->pBt;
224 BtLock *pIter;
225
drh1fee73e2007-08-29 04:00:57 +0000226 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000227 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
228 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000229 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000230
danielk19775b413d72009-04-01 09:41:54 +0000231 /* If requesting a write-lock, then the Btree must have an open write
232 ** transaction on this file. And, obviously, for this to be so there
233 ** must be an open write transaction on the file itself.
234 */
235 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237
drh0ee3dbe2009-10-16 15:05:18 +0000238 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000239 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000240 return SQLITE_OK;
241 }
242
danielk1977641b0f42007-12-21 04:47:25 +0000243 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained.
245 */
danielk1977404ca072009-03-16 13:19:36 +0000246 if( pBt->pWriter!=p && pBt->isExclusive ){
247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000249 }
250
danielk1977e0d9e6f2009-07-03 16:25:06 +0000251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of:
254 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer).
260 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter );
267 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000268 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000269 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000270 }
271 }
272 return SQLITE_OK;
273}
drhe53831d2007-08-17 01:14:38 +0000274#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000275
drhe53831d2007-08-17 01:14:38 +0000276#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000277/*
278** Add a lock on the table with root-page iTable to the shared-btree used
279** by Btree handle p. Parameter eLock must be either READ_LOCK or
280** WRITE_LOCK.
281**
danielk19779d104862009-07-09 08:27:14 +0000282** This function assumes the following:
283**
drh0ee3dbe2009-10-16 15:05:18 +0000284** (a) The specified Btree object p is connected to a sharable
285** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000286**
drh0ee3dbe2009-10-16 15:05:18 +0000287** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000288** with the requested lock (i.e. querySharedCacheTableLock() has
289** already been called and returned SQLITE_OK).
290**
291** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
292** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000293*/
drhc25eabe2009-02-24 18:57:31 +0000294static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000295 BtShared *pBt = p->pBt;
296 BtLock *pLock = 0;
297 BtLock *pIter;
298
drh1fee73e2007-08-29 04:00:57 +0000299 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000300 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
301 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000302
danielk1977e0d9e6f2009-07-03 16:25:06 +0000303 /* A connection with the read-uncommitted flag set will never try to
304 ** obtain a read-lock using this function. The only read-lock obtained
305 ** by a connection in read-uncommitted mode is on the sqlite_master
306 ** table, and that lock is obtained in BtreeBeginTrans(). */
307 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
308
danielk19779d104862009-07-09 08:27:14 +0000309 /* This function should only be called on a sharable b-tree after it
310 ** has been determined that no other b-tree holds a conflicting lock. */
311 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000312 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 /* First search the list for an existing lock on this table. */
315 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
316 if( pIter->iTable==iTable && pIter->pBtree==p ){
317 pLock = pIter;
318 break;
319 }
320 }
321
322 /* If the above search did not find a BtLock struct associating Btree p
323 ** with table iTable, allocate one and link it into the list.
324 */
325 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000326 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000327 if( !pLock ){
328 return SQLITE_NOMEM;
329 }
330 pLock->iTable = iTable;
331 pLock->pBtree = p;
332 pLock->pNext = pBt->pLock;
333 pBt->pLock = pLock;
334 }
335
336 /* Set the BtLock.eLock variable to the maximum of the current lock
337 ** and the requested lock. This means if a write-lock was already held
338 ** and a read-lock requested, we don't incorrectly downgrade the lock.
339 */
340 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000341 if( eLock>pLock->eLock ){
342 pLock->eLock = eLock;
343 }
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 return SQLITE_OK;
346}
drhe53831d2007-08-17 01:14:38 +0000347#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000348
drhe53831d2007-08-17 01:14:38 +0000349#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000350/*
drhc25eabe2009-02-24 18:57:31 +0000351** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000352** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000353**
drh0ee3dbe2009-10-16 15:05:18 +0000354** This function assumes that Btree p has an open read or write
danielk1977fa542f12009-04-02 18:28:08 +0000355** transaction. If it does not, then the BtShared.isPending variable
356** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000357*/
drhc25eabe2009-02-24 18:57:31 +0000358static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000359 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000361
drh1fee73e2007-08-29 04:00:57 +0000362 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000363 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000364 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000365
danielk1977aef0bf62005-12-30 16:28:01 +0000366 while( *ppIter ){
367 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000368 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000369 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000370 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000372 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock);
375 }
danielk1977aef0bf62005-12-30 16:28:01 +0000376 }else{
377 ppIter = &pLock->pNext;
378 }
379 }
danielk1977641b0f42007-12-21 04:47:25 +0000380
danielk1977404ca072009-03-16 13:19:36 +0000381 assert( pBt->isPending==0 || pBt->pWriter );
382 if( pBt->pWriter==p ){
383 pBt->pWriter = 0;
384 pBt->isExclusive = 0;
385 pBt->isPending = 0;
386 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000387 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000388 ** transaction. If there currently exists a writer, and p is not
389 ** that writer, then the number of locks held by connections other
390 ** than the writer must be about to drop to zero. In this case
391 ** set the isPending flag to 0.
392 **
393 ** If there is not currently a writer, then BtShared.isPending must
394 ** be zero already. So this next line is harmless in that case.
395 */
396 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000397 }
danielk1977aef0bf62005-12-30 16:28:01 +0000398}
danielk197794b30732009-07-02 17:21:57 +0000399
danielk1977e0d9e6f2009-07-03 16:25:06 +0000400/*
drh0ee3dbe2009-10-16 15:05:18 +0000401** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000402*/
danielk197794b30732009-07-02 17:21:57 +0000403static void downgradeAllSharedCacheTableLocks(Btree *p){
404 BtShared *pBt = p->pBt;
405 if( pBt->pWriter==p ){
406 BtLock *pLock;
407 pBt->pWriter = 0;
408 pBt->isExclusive = 0;
409 pBt->isPending = 0;
410 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
411 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
412 pLock->eLock = READ_LOCK;
413 }
414 }
415}
416
danielk1977aef0bf62005-12-30 16:28:01 +0000417#endif /* SQLITE_OMIT_SHARED_CACHE */
418
drh980b1a72006-08-16 16:42:48 +0000419static void releasePage(MemPage *pPage); /* Forward reference */
420
drh1fee73e2007-08-29 04:00:57 +0000421/*
drh0ee3dbe2009-10-16 15:05:18 +0000422***** This routine is used inside of assert() only ****
423**
424** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000425*/
drh0ee3dbe2009-10-16 15:05:18 +0000426#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000427static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000428 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000429}
430#endif
431
432
danielk197792d4d7a2007-05-04 12:05:56 +0000433#ifndef SQLITE_OMIT_INCRBLOB
434/*
435** Invalidate the overflow page-list cache for cursor pCur, if any.
436*/
437static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000438 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000439 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000440 pCur->aOverflow = 0;
441}
442
443/*
444** Invalidate the overflow page-list cache for all cursors opened
445** on the shared btree structure pBt.
446*/
447static void invalidateAllOverflowCache(BtShared *pBt){
448 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000449 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000450 for(p=pBt->pCursor; p; p=p->pNext){
451 invalidateOverflowCache(p);
452 }
453}
danielk197796d48e92009-06-29 06:00:37 +0000454
455/*
456** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000457** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000458** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000459**
460** If argument isClearTable is true, then the entire contents of the
461** table is about to be deleted. In this case invalidate all incrblob
462** cursors open on any row within the table with root-page pgnoRoot.
463**
464** Otherwise, if argument isClearTable is false, then the row with
465** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000466** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000467*/
468static void invalidateIncrblobCursors(
469 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000470 i64 iRow, /* The rowid that might be changing */
471 int isClearTable /* True if all rows are being deleted */
472){
473 BtCursor *p;
474 BtShared *pBt = pBtree->pBt;
475 assert( sqlite3BtreeHoldsMutex(pBtree) );
476 for(p=pBt->pCursor; p; p=p->pNext){
477 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
478 p->eState = CURSOR_INVALID;
479 }
480 }
481}
482
danielk197792d4d7a2007-05-04 12:05:56 +0000483#else
drh0ee3dbe2009-10-16 15:05:18 +0000484 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000485 #define invalidateOverflowCache(x)
486 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000487 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000488#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000489
drh980b1a72006-08-16 16:42:48 +0000490/*
danielk1977bea2a942009-01-20 17:06:27 +0000491** Set bit pgno of the BtShared.pHasContent bitvec. This is called
492** when a page that previously contained data becomes a free-list leaf
493** page.
494**
495** The BtShared.pHasContent bitvec exists to work around an obscure
496** bug caused by the interaction of two useful IO optimizations surrounding
497** free-list leaf pages:
498**
499** 1) When all data is deleted from a page and the page becomes
500** a free-list leaf page, the page is not written to the database
501** (as free-list leaf pages contain no meaningful data). Sometimes
502** such a page is not even journalled (as it will not be modified,
503** why bother journalling it?).
504**
505** 2) When a free-list leaf page is reused, its content is not read
506** from the database or written to the journal file (why should it
507** be, if it is not at all meaningful?).
508**
509** By themselves, these optimizations work fine and provide a handy
510** performance boost to bulk delete or insert operations. However, if
511** a page is moved to the free-list and then reused within the same
512** transaction, a problem comes up. If the page is not journalled when
513** it is moved to the free-list and it is also not journalled when it
514** is extracted from the free-list and reused, then the original data
515** may be lost. In the event of a rollback, it may not be possible
516** to restore the database to its original configuration.
517**
518** The solution is the BtShared.pHasContent bitvec. Whenever a page is
519** moved to become a free-list leaf page, the corresponding bit is
520** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000521** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000522** set in BtShared.pHasContent. The contents of the bitvec are cleared
523** at the end of every transaction.
524*/
525static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
526 int rc = SQLITE_OK;
527 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000528 assert( pgno<=pBt->nPage );
529 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000530 if( !pBt->pHasContent ){
531 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000532 }
533 }
534 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
535 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
536 }
537 return rc;
538}
539
540/*
541** Query the BtShared.pHasContent vector.
542**
543** This function is called when a free-list leaf page is removed from the
544** free-list for reuse. It returns false if it is safe to retrieve the
545** page from the pager layer with the 'no-content' flag set. True otherwise.
546*/
547static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
548 Bitvec *p = pBt->pHasContent;
549 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
550}
551
552/*
553** Clear (destroy) the BtShared.pHasContent bitvec. This should be
554** invoked at the conclusion of each write-transaction.
555*/
556static void btreeClearHasContent(BtShared *pBt){
557 sqlite3BitvecDestroy(pBt->pHasContent);
558 pBt->pHasContent = 0;
559}
560
561/*
drh980b1a72006-08-16 16:42:48 +0000562** Save the current cursor position in the variables BtCursor.nKey
563** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000564**
565** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
566** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000567*/
568static int saveCursorPosition(BtCursor *pCur){
569 int rc;
570
571 assert( CURSOR_VALID==pCur->eState );
572 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000573 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000574
575 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000576 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000577
578 /* If this is an intKey table, then the above call to BtreeKeySize()
579 ** stores the integer key in pCur->nKey. In this case this value is
580 ** all that is required. Otherwise, if pCur is not open on an intKey
581 ** table, then malloc space for and store the pCur->nKey bytes of key
582 ** data.
583 */
drh4c301aa2009-07-15 17:25:45 +0000584 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000585 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000586 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000587 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000588 if( rc==SQLITE_OK ){
589 pCur->pKey = pKey;
590 }else{
drh17435752007-08-16 04:30:38 +0000591 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000592 }
593 }else{
594 rc = SQLITE_NOMEM;
595 }
596 }
danielk197771d5d2c2008-09-29 11:49:47 +0000597 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000598
599 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000600 int i;
601 for(i=0; i<=pCur->iPage; i++){
602 releasePage(pCur->apPage[i]);
603 pCur->apPage[i] = 0;
604 }
605 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000606 pCur->eState = CURSOR_REQUIRESEEK;
607 }
608
danielk197792d4d7a2007-05-04 12:05:56 +0000609 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000610 return rc;
611}
612
613/*
drh0ee3dbe2009-10-16 15:05:18 +0000614** Save the positions of all cursors (except pExcept) that are open on
615** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000616** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
617*/
618static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
619 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000620 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000621 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000622 for(p=pBt->pCursor; p; p=p->pNext){
623 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
624 p->eState==CURSOR_VALID ){
625 int rc = saveCursorPosition(p);
626 if( SQLITE_OK!=rc ){
627 return rc;
628 }
629 }
630 }
631 return SQLITE_OK;
632}
633
634/*
drhbf700f32007-03-31 02:36:44 +0000635** Clear the current cursor position.
636*/
danielk1977be51a652008-10-08 17:58:48 +0000637void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000638 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000639 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000640 pCur->pKey = 0;
641 pCur->eState = CURSOR_INVALID;
642}
643
644/*
danielk19773509a652009-07-06 18:56:13 +0000645** In this version of BtreeMoveto, pKey is a packed index record
646** such as is generated by the OP_MakeRecord opcode. Unpack the
647** record and then call BtreeMovetoUnpacked() to do the work.
648*/
649static int btreeMoveto(
650 BtCursor *pCur, /* Cursor open on the btree to be searched */
651 const void *pKey, /* Packed key if the btree is an index */
652 i64 nKey, /* Integer key for tables. Size of pKey for indices */
653 int bias, /* Bias search to the high end */
654 int *pRes /* Write search results here */
655){
656 int rc; /* Status code */
657 UnpackedRecord *pIdxKey; /* Unpacked index key */
658 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
659
660 if( pKey ){
661 assert( nKey==(i64)(int)nKey );
662 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
663 aSpace, sizeof(aSpace));
664 if( pIdxKey==0 ) return SQLITE_NOMEM;
665 }else{
666 pIdxKey = 0;
667 }
668 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
669 if( pKey ){
670 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
671 }
672 return rc;
673}
674
675/*
drh980b1a72006-08-16 16:42:48 +0000676** Restore the cursor to the position it was in (or as close to as possible)
677** when saveCursorPosition() was called. Note that this call deletes the
678** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000679** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000680** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000681*/
danielk197730548662009-07-09 05:07:37 +0000682static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000683 int rc;
drh1fee73e2007-08-29 04:00:57 +0000684 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000685 assert( pCur->eState>=CURSOR_REQUIRESEEK );
686 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000687 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000688 }
drh980b1a72006-08-16 16:42:48 +0000689 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000690 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000691 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000692 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000693 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000694 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000695 }
696 return rc;
697}
698
drha3460582008-07-11 21:02:53 +0000699#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000700 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000701 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000702 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000703
drha3460582008-07-11 21:02:53 +0000704/*
705** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000706** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000707** at is deleted out from under them.
708**
709** This routine returns an error code if something goes wrong. The
710** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
711*/
712int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
713 int rc;
714
715 rc = restoreCursorPosition(pCur);
716 if( rc ){
717 *pHasMoved = 1;
718 return rc;
719 }
drh4c301aa2009-07-15 17:25:45 +0000720 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000721 *pHasMoved = 1;
722 }else{
723 *pHasMoved = 0;
724 }
725 return SQLITE_OK;
726}
727
danielk1977599fcba2004-11-08 07:13:13 +0000728#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000729/*
drha3152892007-05-05 11:48:52 +0000730** Given a page number of a regular database page, return the page
731** number for the pointer-map page that contains the entry for the
732** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000733**
734** Return 0 (not a valid page) for pgno==1 since there is
735** no pointer map associated with page 1. The integrity_check logic
736** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000737*/
danielk1977266664d2006-02-10 08:24:21 +0000738static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000739 int nPagesPerMapPage;
740 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000741 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000742 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000743 nPagesPerMapPage = (pBt->usableSize/5)+1;
744 iPtrMap = (pgno-2)/nPagesPerMapPage;
745 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000746 if( ret==PENDING_BYTE_PAGE(pBt) ){
747 ret++;
748 }
749 return ret;
750}
danielk1977a19df672004-11-03 11:37:07 +0000751
danielk1977afcdd022004-10-31 16:25:42 +0000752/*
danielk1977afcdd022004-10-31 16:25:42 +0000753** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000754**
755** This routine updates the pointer map entry for page number 'key'
756** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000757**
758** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
759** a no-op. If an error occurs, the appropriate error code is written
760** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000761*/
drh98add2e2009-07-20 17:11:49 +0000762static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000763 DbPage *pDbPage; /* The pointer map page */
764 u8 *pPtrmap; /* The pointer map data */
765 Pgno iPtrmap; /* The pointer map page number */
766 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000767 int rc; /* Return code from subfunctions */
768
769 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000770
drh1fee73e2007-08-29 04:00:57 +0000771 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000772 /* The master-journal page number must never be used as a pointer map page */
773 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
774
danielk1977ac11ee62005-01-15 12:45:51 +0000775 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000776 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000777 *pRC = SQLITE_CORRUPT_BKPT;
778 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000779 }
danielk1977266664d2006-02-10 08:24:21 +0000780 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000781 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000782 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000783 *pRC = rc;
784 return;
danielk1977afcdd022004-10-31 16:25:42 +0000785 }
danielk19778c666b12008-07-18 09:34:57 +0000786 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000787 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000788 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000789 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000790 }
danielk19773b8a05f2007-03-19 17:44:26 +0000791 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000792
drh615ae552005-01-16 23:21:00 +0000793 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
794 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000795 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000796 if( rc==SQLITE_OK ){
797 pPtrmap[offset] = eType;
798 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000799 }
danielk1977afcdd022004-10-31 16:25:42 +0000800 }
801
drh4925a552009-07-07 11:39:58 +0000802ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000803 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000804}
805
806/*
807** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000808**
809** This routine retrieves the pointer map entry for page 'key', writing
810** the type and parent page number to *pEType and *pPgno respectively.
811** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000812*/
danielk1977aef0bf62005-12-30 16:28:01 +0000813static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000814 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000815 int iPtrmap; /* Pointer map page index */
816 u8 *pPtrmap; /* Pointer map page data */
817 int offset; /* Offset of entry in pointer map */
818 int rc;
819
drh1fee73e2007-08-29 04:00:57 +0000820 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000821
danielk1977266664d2006-02-10 08:24:21 +0000822 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000823 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000824 if( rc!=0 ){
825 return rc;
826 }
danielk19773b8a05f2007-03-19 17:44:26 +0000827 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000828
danielk19778c666b12008-07-18 09:34:57 +0000829 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000830 assert( pEType!=0 );
831 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000832 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000833
danielk19773b8a05f2007-03-19 17:44:26 +0000834 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000835 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000836 return SQLITE_OK;
837}
838
danielk197785d90ca2008-07-19 14:25:15 +0000839#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000840 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000841 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000842 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000843#endif
danielk1977afcdd022004-10-31 16:25:42 +0000844
drh0d316a42002-08-11 20:10:47 +0000845/*
drh271efa52004-05-30 19:19:05 +0000846** Given a btree page and a cell index (0 means the first cell on
847** the page, 1 means the second cell, and so forth) return a pointer
848** to the cell content.
849**
850** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000851*/
drh1688c862008-07-18 02:44:17 +0000852#define findCell(P,I) \
853 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000854
855/*
drh93a960a2008-07-10 00:32:42 +0000856** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000857** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000858*/
859static u8 *findOverflowCell(MemPage *pPage, int iCell){
860 int i;
drh1fee73e2007-08-29 04:00:57 +0000861 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000862 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000863 int k;
864 struct _OvflCell *pOvfl;
865 pOvfl = &pPage->aOvfl[i];
866 k = pOvfl->idx;
867 if( k<=iCell ){
868 if( k==iCell ){
869 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000870 }
871 iCell--;
872 }
873 }
danielk19771cc5ed82007-05-16 17:28:43 +0000874 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000875}
876
877/*
878** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000879** are two versions of this function. btreeParseCell() takes a
880** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000881** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000882**
883** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000884** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000885*/
danielk197730548662009-07-09 05:07:37 +0000886static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000887 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000888 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000889 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000890){
drhf49661a2008-12-10 16:45:50 +0000891 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000892 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000893
drh1fee73e2007-08-29 04:00:57 +0000894 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000895
drh43605152004-05-29 21:46:49 +0000896 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000897 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000898 n = pPage->childPtrSize;
899 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000900 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000901 if( pPage->hasData ){
902 n += getVarint32(&pCell[n], nPayload);
903 }else{
904 nPayload = 0;
905 }
drh1bd10f82008-12-10 21:19:56 +0000906 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000907 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000908 }else{
drh79df1f42008-07-18 00:57:33 +0000909 pInfo->nData = 0;
910 n += getVarint32(&pCell[n], nPayload);
911 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000912 }
drh72365832007-03-06 15:53:44 +0000913 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000914 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000915 testcase( nPayload==pPage->maxLocal );
916 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000917 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000918 /* This is the (easy) common case where the entire payload fits
919 ** on the local page. No overflow is required.
920 */
921 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000922 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000923 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000924 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000925 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000926 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000927 }
drh1bd10f82008-12-10 21:19:56 +0000928 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000929 }else{
drh271efa52004-05-30 19:19:05 +0000930 /* If the payload will not fit completely on the local page, we have
931 ** to decide how much to store locally and how much to spill onto
932 ** overflow pages. The strategy is to minimize the amount of unused
933 ** space on overflow pages while keeping the amount of local storage
934 ** in between minLocal and maxLocal.
935 **
936 ** Warning: changing the way overflow payload is distributed in any
937 ** way will result in an incompatible file format.
938 */
939 int minLocal; /* Minimum amount of payload held locally */
940 int maxLocal; /* Maximum amount of payload held locally */
941 int surplus; /* Overflow payload available for local storage */
942
943 minLocal = pPage->minLocal;
944 maxLocal = pPage->maxLocal;
945 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000946 testcase( surplus==maxLocal );
947 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000948 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000949 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000950 }else{
drhf49661a2008-12-10 16:45:50 +0000951 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000952 }
drhf49661a2008-12-10 16:45:50 +0000953 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000954 pInfo->nSize = pInfo->iOverflow + 4;
955 }
drh3aac2dd2004-04-26 14:10:20 +0000956}
danielk19771cc5ed82007-05-16 17:28:43 +0000957#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000958 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
959static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000960 MemPage *pPage, /* Page containing the cell */
961 int iCell, /* The cell index. First cell is 0 */
962 CellInfo *pInfo /* Fill in this structure */
963){
danielk19771cc5ed82007-05-16 17:28:43 +0000964 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000965}
drh3aac2dd2004-04-26 14:10:20 +0000966
967/*
drh43605152004-05-29 21:46:49 +0000968** Compute the total number of bytes that a Cell needs in the cell
969** data area of the btree-page. The return number includes the cell
970** data header and the local payload, but not any overflow page or
971** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000972*/
danielk1977ae5558b2009-04-29 11:31:47 +0000973static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
974 u8 *pIter = &pCell[pPage->childPtrSize];
975 u32 nSize;
976
977#ifdef SQLITE_DEBUG
978 /* The value returned by this function should always be the same as
979 ** the (CellInfo.nSize) value found by doing a full parse of the
980 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
981 ** this function verifies that this invariant is not violated. */
982 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000983 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000984#endif
985
986 if( pPage->intKey ){
987 u8 *pEnd;
988 if( pPage->hasData ){
989 pIter += getVarint32(pIter, nSize);
990 }else{
991 nSize = 0;
992 }
993
994 /* pIter now points at the 64-bit integer key value, a variable length
995 ** integer. The following block moves pIter to point at the first byte
996 ** past the end of the key value. */
997 pEnd = &pIter[9];
998 while( (*pIter++)&0x80 && pIter<pEnd );
999 }else{
1000 pIter += getVarint32(pIter, nSize);
1001 }
1002
drh0a45c272009-07-08 01:49:11 +00001003 testcase( nSize==pPage->maxLocal );
1004 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001005 if( nSize>pPage->maxLocal ){
1006 int minLocal = pPage->minLocal;
1007 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001008 testcase( nSize==pPage->maxLocal );
1009 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001010 if( nSize>pPage->maxLocal ){
1011 nSize = minLocal;
1012 }
1013 nSize += 4;
1014 }
shane75ac1de2009-06-09 18:58:52 +00001015 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001016
1017 /* The minimum size of any cell is 4 bytes. */
1018 if( nSize<4 ){
1019 nSize = 4;
1020 }
1021
1022 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001023 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001024}
drh0ee3dbe2009-10-16 15:05:18 +00001025
1026#ifdef SQLITE_DEBUG
1027/* This variation on cellSizePtr() is used inside of assert() statements
1028** only. */
drha9121e42008-02-19 14:59:35 +00001029static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001030 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001031}
danielk1977bc6ada42004-06-30 08:20:16 +00001032#endif
drh3b7511c2001-05-26 13:15:44 +00001033
danielk197779a40da2005-01-16 08:00:01 +00001034#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001035/*
danielk197726836652005-01-17 01:33:13 +00001036** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001037** to an overflow page, insert an entry into the pointer-map
1038** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001039*/
drh98add2e2009-07-20 17:11:49 +00001040static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001041 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001042 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001043 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001044 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001045 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001046 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001047 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001048 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001049 }
danielk1977ac11ee62005-01-15 12:45:51 +00001050}
danielk197779a40da2005-01-16 08:00:01 +00001051#endif
1052
danielk1977ac11ee62005-01-15 12:45:51 +00001053
drhda200cc2004-05-09 11:51:38 +00001054/*
drh72f82862001-05-24 21:06:34 +00001055** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001056** end of the page and all free space is collected into one
1057** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001058** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001059*/
shane0af3f892008-11-12 04:55:34 +00001060static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001061 int i; /* Loop counter */
1062 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001063 int hdr; /* Offset to the page header */
1064 int size; /* Size of a cell */
1065 int usableSize; /* Number of usable bytes on a page */
1066 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001067 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001068 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001069 unsigned char *data; /* The page data */
1070 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001071 int iCellFirst; /* First allowable cell index */
1072 int iCellLast; /* Last possible cell index */
1073
drh2af926b2001-05-15 00:39:25 +00001074
danielk19773b8a05f2007-03-19 17:44:26 +00001075 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001076 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001077 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001078 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001079 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001080 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001081 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001082 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001083 cellOffset = pPage->cellOffset;
1084 nCell = pPage->nCell;
1085 assert( nCell==get2byte(&data[hdr+3]) );
1086 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001087 cbrk = get2byte(&data[hdr+5]);
1088 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1089 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001090 iCellFirst = cellOffset + 2*nCell;
1091 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001092 for(i=0; i<nCell; i++){
1093 u8 *pAddr; /* The i-th cell pointer */
1094 pAddr = &data[cellOffset + i*2];
1095 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001096 testcase( pc==iCellFirst );
1097 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001098#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001099 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001100 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1101 */
1102 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001103 return SQLITE_CORRUPT_BKPT;
1104 }
drh17146622009-07-07 17:38:38 +00001105#endif
1106 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001107 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001108 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001109#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1110 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001111 return SQLITE_CORRUPT_BKPT;
1112 }
drh17146622009-07-07 17:38:38 +00001113#else
1114 if( cbrk<iCellFirst || pc+size>usableSize ){
1115 return SQLITE_CORRUPT_BKPT;
1116 }
1117#endif
drh7157e1d2009-07-09 13:25:32 +00001118 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001119 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001120 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001121 memcpy(&data[cbrk], &temp[pc], size);
1122 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001123 }
drh17146622009-07-07 17:38:38 +00001124 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001125 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001126 data[hdr+1] = 0;
1127 data[hdr+2] = 0;
1128 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001129 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001130 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001131 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001132 return SQLITE_CORRUPT_BKPT;
1133 }
shane0af3f892008-11-12 04:55:34 +00001134 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001135}
1136
drha059ad02001-04-17 20:09:11 +00001137/*
danielk19776011a752009-04-01 16:25:32 +00001138** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001139** as the first argument. Write into *pIdx the index into pPage->aData[]
1140** of the first byte of allocated space. Return either SQLITE_OK or
1141** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001142**
drh0a45c272009-07-08 01:49:11 +00001143** The caller guarantees that there is sufficient space to make the
1144** allocation. This routine might need to defragment in order to bring
1145** all the space together, however. This routine will avoid using
1146** the first two bytes past the cell pointer area since presumably this
1147** allocation is being made in order to insert a new cell, so we will
1148** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001149*/
drh0a45c272009-07-08 01:49:11 +00001150static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001151 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1152 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1153 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001154 int top; /* First byte of cell content area */
1155 int gap; /* First byte of gap between cell pointers and cell content */
1156 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001157 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001158
danielk19773b8a05f2007-03-19 17:44:26 +00001159 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001160 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001161 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001162 assert( nByte>=0 ); /* Minimum cell size is 4 */
1163 assert( pPage->nFree>=nByte );
1164 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001165 usableSize = pPage->pBt->usableSize;
1166 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001167
1168 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001169 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1170 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001171 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001172 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001173 testcase( gap+2==top );
1174 testcase( gap+1==top );
1175 testcase( gap==top );
1176
danielk19776011a752009-04-01 16:25:32 +00001177 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001178 /* Always defragment highly fragmented pages */
1179 rc = defragmentPage(pPage);
1180 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001181 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001182 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001183 /* Search the freelist looking for a free slot big enough to satisfy
1184 ** the request. The allocation is made from the first free slot in
1185 ** the list that is large enough to accomadate it.
1186 */
1187 int pc, addr;
1188 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001189 int size; /* Size of the free slot */
1190 if( pc>usableSize-4 || pc<addr+4 ){
1191 return SQLITE_CORRUPT_BKPT;
1192 }
1193 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001194 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001195 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001196 testcase( x==4 );
1197 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001198 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001199 /* Remove the slot from the free-list. Update the number of
1200 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001201 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001202 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001203 }else if( size+pc > usableSize ){
1204 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001205 }else{
danielk1977fad91942009-04-29 17:49:59 +00001206 /* The slot remains on the free-list. Reduce its size to account
1207 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001208 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001209 }
drh0a45c272009-07-08 01:49:11 +00001210 *pIdx = pc + x;
1211 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001212 }
drh9e572e62004-04-23 23:43:10 +00001213 }
1214 }
drh43605152004-05-29 21:46:49 +00001215
drh0a45c272009-07-08 01:49:11 +00001216 /* Check to make sure there is enough space in the gap to satisfy
1217 ** the allocation. If not, defragment.
1218 */
1219 testcase( gap+2+nByte==top );
1220 if( gap+2+nByte>top ){
1221 rc = defragmentPage(pPage);
1222 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001223 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001224 assert( gap+nByte<=top );
1225 }
1226
1227
drh43605152004-05-29 21:46:49 +00001228 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001229 ** and the cell content area. The btreeInitPage() call has already
1230 ** validated the freelist. Given that the freelist is valid, there
1231 ** is no way that the allocation can extend off the end of the page.
1232 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001233 */
drh0a45c272009-07-08 01:49:11 +00001234 top -= nByte;
drh43605152004-05-29 21:46:49 +00001235 put2byte(&data[hdr+5], top);
drhc314dc72009-07-21 11:52:34 +00001236 assert( top+nByte <= pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001237 *pIdx = top;
1238 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001239}
1240
1241/*
drh9e572e62004-04-23 23:43:10 +00001242** Return a section of the pPage->aData to the freelist.
1243** The first byte of the new free block is pPage->aDisk[start]
1244** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001245**
1246** Most of the effort here is involved in coalesing adjacent
1247** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001248*/
shanedcc50b72008-11-13 18:29:50 +00001249static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001250 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001251 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001252 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001253
drh9e572e62004-04-23 23:43:10 +00001254 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001255 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001256 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
danielk1977bc6ada42004-06-30 08:20:16 +00001257 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001258 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001259 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001260
drh5b47efa2010-02-12 18:18:39 +00001261 if( pPage->pBt->secureDelete ){
1262 /* Overwrite deleted information with zeros when the secure_delete
1263 ** option is enabled */
1264 memset(&data[start], 0, size);
1265 }
drhfcce93f2006-02-22 03:08:32 +00001266
drh0a45c272009-07-08 01:49:11 +00001267 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001268 ** even though the freeblock list was checked by btreeInitPage(),
1269 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001270 ** freeblocks that overlapped cells. Nor does it detect when the
1271 ** cell content area exceeds the value in the page header. If these
1272 ** situations arise, then subsequent insert operations might corrupt
1273 ** the freelist. So we do need to check for corruption while scanning
1274 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001275 */
drh43605152004-05-29 21:46:49 +00001276 hdr = pPage->hdrOffset;
1277 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001278 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001279 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001280 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001281 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001282 return SQLITE_CORRUPT_BKPT;
1283 }
drh3aac2dd2004-04-26 14:10:20 +00001284 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001285 }
drh0a45c272009-07-08 01:49:11 +00001286 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001287 return SQLITE_CORRUPT_BKPT;
1288 }
drh3aac2dd2004-04-26 14:10:20 +00001289 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001290 put2byte(&data[addr], start);
1291 put2byte(&data[start], pbegin);
1292 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001293 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001294
1295 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001296 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001297 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001298 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001299 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001300 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001301 pnext = get2byte(&data[pbegin]);
1302 psize = get2byte(&data[pbegin+2]);
1303 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1304 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001305 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001306 return SQLITE_CORRUPT_BKPT;
1307 }
drh0a45c272009-07-08 01:49:11 +00001308 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001309 x = get2byte(&data[pnext]);
1310 put2byte(&data[pbegin], x);
1311 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1312 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001313 }else{
drh3aac2dd2004-04-26 14:10:20 +00001314 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001315 }
1316 }
drh7e3b0a02001-04-28 16:52:40 +00001317
drh43605152004-05-29 21:46:49 +00001318 /* If the cell content area begins with a freeblock, remove it. */
1319 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1320 int top;
1321 pbegin = get2byte(&data[hdr+1]);
1322 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001323 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1324 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001325 }
drhc5053fb2008-11-27 02:22:10 +00001326 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001327 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001328}
1329
1330/*
drh271efa52004-05-30 19:19:05 +00001331** Decode the flags byte (the first byte of the header) for a page
1332** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001333**
1334** Only the following combinations are supported. Anything different
1335** indicates a corrupt database files:
1336**
1337** PTF_ZERODATA
1338** PTF_ZERODATA | PTF_LEAF
1339** PTF_LEAFDATA | PTF_INTKEY
1340** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001341*/
drh44845222008-07-17 18:39:57 +00001342static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001343 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001344
1345 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001346 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001347 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001348 flagByte &= ~PTF_LEAF;
1349 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001350 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001351 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1352 pPage->intKey = 1;
1353 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001354 pPage->maxLocal = pBt->maxLeaf;
1355 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001356 }else if( flagByte==PTF_ZERODATA ){
1357 pPage->intKey = 0;
1358 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001359 pPage->maxLocal = pBt->maxLocal;
1360 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001361 }else{
1362 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001363 }
drh44845222008-07-17 18:39:57 +00001364 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001365}
1366
1367/*
drh7e3b0a02001-04-28 16:52:40 +00001368** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001369**
1370** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001371** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001372** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1373** guarantee that the page is well-formed. It only shows that
1374** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001375*/
danielk197730548662009-07-09 05:07:37 +00001376static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001377
danielk197771d5d2c2008-09-29 11:49:47 +00001378 assert( pPage->pBt!=0 );
1379 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001380 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001381 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1382 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001383
1384 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001385 u16 pc; /* Address of a freeblock within pPage->aData[] */
1386 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001387 u8 *data; /* Equal to pPage->aData */
1388 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001389 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001390 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001391 int nFree; /* Number of unused bytes on the page */
1392 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001393 int iCellFirst; /* First allowable cell or freeblock offset */
1394 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001395
1396 pBt = pPage->pBt;
1397
danielk1977eaa06f62008-09-18 17:34:44 +00001398 hdr = pPage->hdrOffset;
1399 data = pPage->aData;
1400 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001401 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1402 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001403 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001404 usableSize = pBt->usableSize;
1405 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh5d433ce2010-08-14 16:02:52 +00001406 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001407 pPage->nCell = get2byte(&data[hdr+3]);
1408 if( pPage->nCell>MX_CELL(pBt) ){
1409 /* To many cells for a single page. The page must be corrupt */
1410 return SQLITE_CORRUPT_BKPT;
1411 }
drhb908d762009-07-08 16:54:40 +00001412 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001413
shane5eff7cf2009-08-10 03:57:58 +00001414 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001415 ** of page when parsing a cell.
1416 **
1417 ** The following block of code checks early to see if a cell extends
1418 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1419 ** returned if it does.
1420 */
drh0a45c272009-07-08 01:49:11 +00001421 iCellFirst = cellOffset + 2*pPage->nCell;
1422 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001423#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001424 {
drh69e931e2009-06-03 21:04:35 +00001425 int i; /* Index into the cell pointer array */
1426 int sz; /* Size of a cell */
1427
drh69e931e2009-06-03 21:04:35 +00001428 if( !pPage->leaf ) iCellLast--;
1429 for(i=0; i<pPage->nCell; i++){
1430 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001431 testcase( pc==iCellFirst );
1432 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001433 if( pc<iCellFirst || pc>iCellLast ){
1434 return SQLITE_CORRUPT_BKPT;
1435 }
1436 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001437 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001438 if( pc+sz>usableSize ){
1439 return SQLITE_CORRUPT_BKPT;
1440 }
1441 }
drh0a45c272009-07-08 01:49:11 +00001442 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001443 }
1444#endif
1445
danielk1977eaa06f62008-09-18 17:34:44 +00001446 /* Compute the total free space on the page */
1447 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001448 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001449 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001450 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001451 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001452 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001453 return SQLITE_CORRUPT_BKPT;
1454 }
1455 next = get2byte(&data[pc]);
1456 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001457 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1458 /* Free blocks must be in ascending order. And the last byte of
1459 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001460 return SQLITE_CORRUPT_BKPT;
1461 }
shane85095702009-06-15 16:27:08 +00001462 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001463 pc = next;
1464 }
danielk197793c829c2009-06-03 17:26:17 +00001465
1466 /* At this point, nFree contains the sum of the offset to the start
1467 ** of the cell-content area plus the number of free bytes within
1468 ** the cell-content area. If this is greater than the usable-size
1469 ** of the page, then the page must be corrupted. This check also
1470 ** serves to verify that the offset to the start of the cell-content
1471 ** area, according to the page header, lies within the page.
1472 */
1473 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001474 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001475 }
shane5eff7cf2009-08-10 03:57:58 +00001476 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001477 pPage->isInit = 1;
1478 }
drh9e572e62004-04-23 23:43:10 +00001479 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001480}
1481
1482/*
drh8b2f49b2001-06-08 00:21:52 +00001483** Set up a raw page so that it looks like a database page holding
1484** no entries.
drhbd03cae2001-06-02 02:40:57 +00001485*/
drh9e572e62004-04-23 23:43:10 +00001486static void zeroPage(MemPage *pPage, int flags){
1487 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001488 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001489 u8 hdr = pPage->hdrOffset;
1490 u16 first;
drh9e572e62004-04-23 23:43:10 +00001491
danielk19773b8a05f2007-03-19 17:44:26 +00001492 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001493 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1494 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001495 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001496 assert( sqlite3_mutex_held(pBt->mutex) );
drh5b47efa2010-02-12 18:18:39 +00001497 if( pBt->secureDelete ){
1498 memset(&data[hdr], 0, pBt->usableSize - hdr);
1499 }
drh1bd10f82008-12-10 21:19:56 +00001500 data[hdr] = (char)flags;
1501 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001502 memset(&data[hdr+1], 0, 4);
1503 data[hdr+7] = 0;
1504 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001505 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001506 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001507 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001508 pPage->cellOffset = first;
1509 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001510 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1511 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001512 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001513 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001514}
1515
drh897a8202008-09-18 01:08:15 +00001516
1517/*
1518** Convert a DbPage obtained from the pager into a MemPage used by
1519** the btree layer.
1520*/
1521static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1522 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1523 pPage->aData = sqlite3PagerGetData(pDbPage);
1524 pPage->pDbPage = pDbPage;
1525 pPage->pBt = pBt;
1526 pPage->pgno = pgno;
1527 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1528 return pPage;
1529}
1530
drhbd03cae2001-06-02 02:40:57 +00001531/*
drh3aac2dd2004-04-26 14:10:20 +00001532** Get a page from the pager. Initialize the MemPage.pBt and
1533** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001534**
1535** If the noContent flag is set, it means that we do not care about
1536** the content of the page at this time. So do not go to the disk
1537** to fetch the content. Just fill in the content with zeros for now.
1538** If in the future we call sqlite3PagerWrite() on this page, that
1539** means we have started to be concerned about content and the disk
1540** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001541*/
danielk197730548662009-07-09 05:07:37 +00001542static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001543 BtShared *pBt, /* The btree */
1544 Pgno pgno, /* Number of the page to fetch */
1545 MemPage **ppPage, /* Return the page in this parameter */
1546 int noContent /* Do not load page content if true */
1547){
drh3aac2dd2004-04-26 14:10:20 +00001548 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001549 DbPage *pDbPage;
1550
drh1fee73e2007-08-29 04:00:57 +00001551 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001552 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001553 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001554 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001555 return SQLITE_OK;
1556}
1557
1558/*
danielk1977bea2a942009-01-20 17:06:27 +00001559** Retrieve a page from the pager cache. If the requested page is not
1560** already in the pager cache return NULL. Initialize the MemPage.pBt and
1561** MemPage.aData elements if needed.
1562*/
1563static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1564 DbPage *pDbPage;
1565 assert( sqlite3_mutex_held(pBt->mutex) );
1566 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1567 if( pDbPage ){
1568 return btreePageFromDbPage(pDbPage, pgno, pBt);
1569 }
1570 return 0;
1571}
1572
1573/*
danielk197789d40042008-11-17 14:20:56 +00001574** Return the size of the database file in pages. If there is any kind of
1575** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001576*/
drhb1299152010-03-30 22:58:33 +00001577static Pgno btreePagecount(BtShared *pBt){
1578 return pBt->nPage;
1579}
1580u32 sqlite3BtreeLastPage(Btree *p){
1581 assert( sqlite3BtreeHoldsMutex(p) );
1582 assert( ((p->pBt->nPage)&0x8000000)==0 );
1583 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001584}
1585
1586/*
danielk197789bc4bc2009-07-21 19:25:24 +00001587** Get a page from the pager and initialize it. This routine is just a
1588** convenience wrapper around separate calls to btreeGetPage() and
1589** btreeInitPage().
1590**
1591** If an error occurs, then the value *ppPage is set to is undefined. It
1592** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001593*/
1594static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001595 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001596 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001597 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001598){
1599 int rc;
drh1fee73e2007-08-29 04:00:57 +00001600 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001601
danba3cbf32010-06-30 04:29:03 +00001602 if( pgno>btreePagecount(pBt) ){
1603 rc = SQLITE_CORRUPT_BKPT;
1604 }else{
1605 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1606 if( rc==SQLITE_OK ){
1607 rc = btreeInitPage(*ppPage);
1608 if( rc!=SQLITE_OK ){
1609 releasePage(*ppPage);
1610 }
danielk197789bc4bc2009-07-21 19:25:24 +00001611 }
drhee696e22004-08-30 16:52:17 +00001612 }
danba3cbf32010-06-30 04:29:03 +00001613
1614 testcase( pgno==0 );
1615 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001616 return rc;
1617}
1618
1619/*
drh3aac2dd2004-04-26 14:10:20 +00001620** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001621** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001622*/
drh4b70f112004-05-02 21:12:19 +00001623static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001624 if( pPage ){
1625 assert( pPage->aData );
1626 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001627 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1628 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001629 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001630 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001631 }
1632}
1633
1634/*
drha6abd042004-06-09 17:37:22 +00001635** During a rollback, when the pager reloads information into the cache
1636** so that the cache is restored to its original state at the start of
1637** the transaction, for each page restored this routine is called.
1638**
1639** This routine needs to reset the extra data section at the end of the
1640** page to agree with the restored data.
1641*/
danielk1977eaa06f62008-09-18 17:34:44 +00001642static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001643 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001644 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001645 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001646 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001647 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001648 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001649 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001650 /* pPage might not be a btree page; it might be an overflow page
1651 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001652 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001653 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001654 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001655 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001656 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001657 }
drha6abd042004-06-09 17:37:22 +00001658 }
1659}
1660
1661/*
drhe5fe6902007-12-07 18:55:28 +00001662** Invoke the busy handler for a btree.
1663*/
danielk19771ceedd32008-11-19 10:22:33 +00001664static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001665 BtShared *pBt = (BtShared*)pArg;
1666 assert( pBt->db );
1667 assert( sqlite3_mutex_held(pBt->db->mutex) );
1668 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1669}
1670
1671/*
drhad3e0102004-09-03 23:32:18 +00001672** Open a database file.
1673**
drh382c0242001-10-06 16:33:02 +00001674** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001675** then an ephemeral database is created. The ephemeral database might
1676** be exclusively in memory, or it might use a disk-based memory cache.
1677** Either way, the ephemeral database will be automatically deleted
1678** when sqlite3BtreeClose() is called.
1679**
drhe53831d2007-08-17 01:14:38 +00001680** If zFilename is ":memory:" then an in-memory database is created
1681** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001682**
drh75c014c2010-08-30 15:02:28 +00001683** The "flags" parameter is a bitmask that might contain bits
1684** BTREE_OMIT_JOURNAL and/or BTREE_NO_READLOCK. The BTREE_NO_READLOCK
1685** bit is also set if the SQLITE_NoReadlock flags is set in db->flags.
1686** These flags are passed through into sqlite3PagerOpen() and must
1687** be the same values as PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK.
1688**
drhc47fd8e2009-04-30 13:30:32 +00001689** If the database is already opened in the same database connection
1690** and we are in shared cache mode, then the open will fail with an
1691** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1692** objects in the same database connection since doing so will lead
1693** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001694*/
drh23e11ca2004-05-04 17:27:28 +00001695int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001696 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001697 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001698 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001699 int flags, /* Options */
1700 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001701){
drh7555d8e2009-03-20 13:15:30 +00001702 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1703 BtShared *pBt = 0; /* Shared part of btree structure */
1704 Btree *p; /* Handle to return */
1705 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1706 int rc = SQLITE_OK; /* Result code from this function */
1707 u8 nReserve; /* Byte of unused space on each page */
1708 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001709
drh75c014c2010-08-30 15:02:28 +00001710 /* True if opening an ephemeral, temporary database */
1711 const int isTempDb = zFilename==0 || zFilename[0]==0;
1712
danielk1977aef0bf62005-12-30 16:28:01 +00001713 /* Set the variable isMemdb to true for an in-memory database, or
1714 ** false for a file-based database. This symbol is only required if
1715 ** either of the shared-data or autovacuum features are compiled
1716 ** into the library.
1717 */
1718#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1719 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001720 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001721 #else
drh75c014c2010-08-30 15:02:28 +00001722 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
1723 || (isTempDb && sqlite3TempInMemory(db));
danielk1977aef0bf62005-12-30 16:28:01 +00001724 #endif
1725#endif
1726
drhe5fe6902007-12-07 18:55:28 +00001727 assert( db!=0 );
1728 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001729 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1730
1731 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1732 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1733
1734 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1735 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001736
drh75c014c2010-08-30 15:02:28 +00001737 if( db->flags & SQLITE_NoReadlock ){
1738 flags |= BTREE_NO_READLOCK;
1739 }
1740 if( isMemdb ){
1741 flags |= BTREE_MEMORY;
1742 }
1743 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1744 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1745 }
drhe5fe6902007-12-07 18:55:28 +00001746 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001747 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001748 if( !p ){
1749 return SQLITE_NOMEM;
1750 }
1751 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001752 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001753#ifndef SQLITE_OMIT_SHARED_CACHE
1754 p->lock.pBtree = p;
1755 p->lock.iTable = 1;
1756#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001757
drh198bf392006-01-06 21:52:49 +00001758#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001759 /*
1760 ** If this Btree is a candidate for shared cache, try to find an
1761 ** existing BtShared object that we can share with
1762 */
drh75c014c2010-08-30 15:02:28 +00001763 if( isMemdb==0 && isTempDb==0 ){
drhf1f12682009-09-09 14:17:52 +00001764 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001765 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001766 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001767 sqlite3_mutex *mutexShared;
1768 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001769 if( !zFullPathname ){
1770 sqlite3_free(p);
1771 return SQLITE_NOMEM;
1772 }
danielk1977adfb9b02007-09-17 07:02:56 +00001773 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001774 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1775 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001776 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001777 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001778 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001779 assert( pBt->nRef>0 );
1780 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1781 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001782 int iDb;
1783 for(iDb=db->nDb-1; iDb>=0; iDb--){
1784 Btree *pExisting = db->aDb[iDb].pBt;
1785 if( pExisting && pExisting->pBt==pBt ){
1786 sqlite3_mutex_leave(mutexShared);
1787 sqlite3_mutex_leave(mutexOpen);
1788 sqlite3_free(zFullPathname);
1789 sqlite3_free(p);
1790 return SQLITE_CONSTRAINT;
1791 }
1792 }
drhff0587c2007-08-29 17:43:19 +00001793 p->pBt = pBt;
1794 pBt->nRef++;
1795 break;
1796 }
1797 }
1798 sqlite3_mutex_leave(mutexShared);
1799 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001800 }
drhff0587c2007-08-29 17:43:19 +00001801#ifdef SQLITE_DEBUG
1802 else{
1803 /* In debug mode, we mark all persistent databases as sharable
1804 ** even when they are not. This exercises the locking code and
1805 ** gives more opportunity for asserts(sqlite3_mutex_held())
1806 ** statements to find locking problems.
1807 */
1808 p->sharable = 1;
1809 }
1810#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001811 }
1812#endif
drha059ad02001-04-17 20:09:11 +00001813 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001814 /*
1815 ** The following asserts make sure that structures used by the btree are
1816 ** the right size. This is to guard against size changes that result
1817 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001818 */
drhe53831d2007-08-17 01:14:38 +00001819 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1820 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1821 assert( sizeof(u32)==4 );
1822 assert( sizeof(u16)==2 );
1823 assert( sizeof(Pgno)==4 );
1824
1825 pBt = sqlite3MallocZero( sizeof(*pBt) );
1826 if( pBt==0 ){
1827 rc = SQLITE_NOMEM;
1828 goto btree_open_out;
1829 }
danielk197771d5d2c2008-09-29 11:49:47 +00001830 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001831 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001832 if( rc==SQLITE_OK ){
1833 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1834 }
1835 if( rc!=SQLITE_OK ){
1836 goto btree_open_out;
1837 }
shanehbd2aaf92010-09-01 02:38:21 +00001838 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001839 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001840 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001841 p->pBt = pBt;
1842
drhe53831d2007-08-17 01:14:38 +00001843 pBt->pCursor = 0;
1844 pBt->pPage1 = 0;
1845 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
drh5b47efa2010-02-12 18:18:39 +00001846#ifdef SQLITE_SECURE_DELETE
1847 pBt->secureDelete = 1;
1848#endif
drhb2eced52010-08-12 02:41:12 +00001849 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001850 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1851 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001852 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001853#ifndef SQLITE_OMIT_AUTOVACUUM
1854 /* If the magic name ":memory:" will create an in-memory database, then
1855 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1856 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1857 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1858 ** regular file-name. In this case the auto-vacuum applies as per normal.
1859 */
1860 if( zFilename && !isMemdb ){
1861 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1862 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1863 }
1864#endif
1865 nReserve = 0;
1866 }else{
1867 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001868 pBt->pageSizeFixed = 1;
1869#ifndef SQLITE_OMIT_AUTOVACUUM
1870 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1871 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1872#endif
1873 }
drhfa9601a2009-06-18 17:22:39 +00001874 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001875 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001876 pBt->usableSize = pBt->pageSize - nReserve;
1877 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001878
1879#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1880 /* Add the new BtShared object to the linked list sharable BtShareds.
1881 */
1882 if( p->sharable ){
1883 sqlite3_mutex *mutexShared;
1884 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001885 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001886 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001887 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001888 if( pBt->mutex==0 ){
1889 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001890 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001891 goto btree_open_out;
1892 }
drhff0587c2007-08-29 17:43:19 +00001893 }
drhe53831d2007-08-17 01:14:38 +00001894 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001895 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1896 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001897 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001898 }
drheee46cf2004-11-06 00:02:48 +00001899#endif
drh90f5ecb2004-07-22 01:19:35 +00001900 }
danielk1977aef0bf62005-12-30 16:28:01 +00001901
drhcfed7bc2006-03-13 14:28:05 +00001902#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001903 /* If the new Btree uses a sharable pBtShared, then link the new
1904 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001905 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001906 */
drhe53831d2007-08-17 01:14:38 +00001907 if( p->sharable ){
1908 int i;
1909 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001910 for(i=0; i<db->nDb; i++){
1911 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001912 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1913 if( p->pBt<pSib->pBt ){
1914 p->pNext = pSib;
1915 p->pPrev = 0;
1916 pSib->pPrev = p;
1917 }else{
drhabddb0c2007-08-20 13:14:28 +00001918 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001919 pSib = pSib->pNext;
1920 }
1921 p->pNext = pSib->pNext;
1922 p->pPrev = pSib;
1923 if( p->pNext ){
1924 p->pNext->pPrev = p;
1925 }
1926 pSib->pNext = p;
1927 }
1928 break;
1929 }
1930 }
danielk1977aef0bf62005-12-30 16:28:01 +00001931 }
danielk1977aef0bf62005-12-30 16:28:01 +00001932#endif
1933 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001934
1935btree_open_out:
1936 if( rc!=SQLITE_OK ){
1937 if( pBt && pBt->pPager ){
1938 sqlite3PagerClose(pBt->pPager);
1939 }
drh17435752007-08-16 04:30:38 +00001940 sqlite3_free(pBt);
1941 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001942 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001943 }else{
1944 /* If the B-Tree was successfully opened, set the pager-cache size to the
1945 ** default value. Except, when opening on an existing shared pager-cache,
1946 ** do not change the pager-cache size.
1947 */
1948 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1949 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1950 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001951 }
drh7555d8e2009-03-20 13:15:30 +00001952 if( mutexOpen ){
1953 assert( sqlite3_mutex_held(mutexOpen) );
1954 sqlite3_mutex_leave(mutexOpen);
1955 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001956 return rc;
drha059ad02001-04-17 20:09:11 +00001957}
1958
1959/*
drhe53831d2007-08-17 01:14:38 +00001960** Decrement the BtShared.nRef counter. When it reaches zero,
1961** remove the BtShared structure from the sharing list. Return
1962** true if the BtShared.nRef counter reaches zero and return
1963** false if it is still positive.
1964*/
1965static int removeFromSharingList(BtShared *pBt){
1966#ifndef SQLITE_OMIT_SHARED_CACHE
1967 sqlite3_mutex *pMaster;
1968 BtShared *pList;
1969 int removed = 0;
1970
drhd677b3d2007-08-20 22:48:41 +00001971 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001972 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001973 sqlite3_mutex_enter(pMaster);
1974 pBt->nRef--;
1975 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001976 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1977 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001978 }else{
drh78f82d12008-09-02 00:52:52 +00001979 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001980 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001981 pList=pList->pNext;
1982 }
drh34004ce2008-07-11 16:15:17 +00001983 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001984 pList->pNext = pBt->pNext;
1985 }
1986 }
drh3285db22007-09-03 22:00:39 +00001987 if( SQLITE_THREADSAFE ){
1988 sqlite3_mutex_free(pBt->mutex);
1989 }
drhe53831d2007-08-17 01:14:38 +00001990 removed = 1;
1991 }
1992 sqlite3_mutex_leave(pMaster);
1993 return removed;
1994#else
1995 return 1;
1996#endif
1997}
1998
1999/*
drhf7141992008-06-19 00:16:08 +00002000** Make sure pBt->pTmpSpace points to an allocation of
2001** MX_CELL_SIZE(pBt) bytes.
2002*/
2003static void allocateTempSpace(BtShared *pBt){
2004 if( !pBt->pTmpSpace ){
2005 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2006 }
2007}
2008
2009/*
2010** Free the pBt->pTmpSpace allocation
2011*/
2012static void freeTempSpace(BtShared *pBt){
2013 sqlite3PageFree( pBt->pTmpSpace);
2014 pBt->pTmpSpace = 0;
2015}
2016
2017/*
drha059ad02001-04-17 20:09:11 +00002018** Close an open database and invalidate all cursors.
2019*/
danielk1977aef0bf62005-12-30 16:28:01 +00002020int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002021 BtShared *pBt = p->pBt;
2022 BtCursor *pCur;
2023
danielk1977aef0bf62005-12-30 16:28:01 +00002024 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002025 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002026 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002027 pCur = pBt->pCursor;
2028 while( pCur ){
2029 BtCursor *pTmp = pCur;
2030 pCur = pCur->pNext;
2031 if( pTmp->pBtree==p ){
2032 sqlite3BtreeCloseCursor(pTmp);
2033 }
drha059ad02001-04-17 20:09:11 +00002034 }
danielk1977aef0bf62005-12-30 16:28:01 +00002035
danielk19778d34dfd2006-01-24 16:37:57 +00002036 /* Rollback any active transaction and free the handle structure.
2037 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2038 ** this handle.
2039 */
danielk1977b597f742006-01-15 11:39:18 +00002040 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00002041 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002042
danielk1977aef0bf62005-12-30 16:28:01 +00002043 /* If there are still other outstanding references to the shared-btree
2044 ** structure, return now. The remainder of this procedure cleans
2045 ** up the shared-btree.
2046 */
drhe53831d2007-08-17 01:14:38 +00002047 assert( p->wantToLock==0 && p->locked==0 );
2048 if( !p->sharable || removeFromSharingList(pBt) ){
2049 /* The pBt is no longer on the sharing list, so we can access
2050 ** it without having to hold the mutex.
2051 **
2052 ** Clean out and delete the BtShared object.
2053 */
2054 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002055 sqlite3PagerClose(pBt->pPager);
2056 if( pBt->xFreeSchema && pBt->pSchema ){
2057 pBt->xFreeSchema(pBt->pSchema);
2058 }
drhb9755982010-07-24 16:34:37 +00002059 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002060 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002061 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002062 }
2063
drhe53831d2007-08-17 01:14:38 +00002064#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002065 assert( p->wantToLock==0 );
2066 assert( p->locked==0 );
2067 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2068 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002069#endif
2070
drhe53831d2007-08-17 01:14:38 +00002071 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002072 return SQLITE_OK;
2073}
2074
2075/*
drhda47d772002-12-02 04:25:19 +00002076** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002077**
2078** The maximum number of cache pages is set to the absolute
2079** value of mxPage. If mxPage is negative, the pager will
2080** operate asynchronously - it will not stop to do fsync()s
2081** to insure data is written to the disk surface before
2082** continuing. Transactions still work if synchronous is off,
2083** and the database cannot be corrupted if this program
2084** crashes. But if the operating system crashes or there is
2085** an abrupt power failure when synchronous is off, the database
2086** could be left in an inconsistent and unrecoverable state.
2087** Synchronous is on by default so database corruption is not
2088** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002089*/
danielk1977aef0bf62005-12-30 16:28:01 +00002090int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2091 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002092 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002093 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002094 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002095 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002096 return SQLITE_OK;
2097}
2098
2099/*
drh973b6e32003-02-12 14:09:42 +00002100** Change the way data is synced to disk in order to increase or decrease
2101** how well the database resists damage due to OS crashes and power
2102** failures. Level 1 is the same as asynchronous (no syncs() occur and
2103** there is a high probability of damage) Level 2 is the default. There
2104** is a very low but non-zero probability of damage. Level 3 reduces the
2105** probability of damage to near zero but with a write performance reduction.
2106*/
danielk197793758c82005-01-21 08:13:14 +00002107#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002108int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002109 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002110 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002111 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002112 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002113 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002114 return SQLITE_OK;
2115}
danielk197793758c82005-01-21 08:13:14 +00002116#endif
drh973b6e32003-02-12 14:09:42 +00002117
drh2c8997b2005-08-27 16:36:48 +00002118/*
2119** Return TRUE if the given btree is set to safety level 1. In other
2120** words, return TRUE if no sync() occurs on the disk files.
2121*/
danielk1977aef0bf62005-12-30 16:28:01 +00002122int sqlite3BtreeSyncDisabled(Btree *p){
2123 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002124 int rc;
drhe5fe6902007-12-07 18:55:28 +00002125 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002126 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002127 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002128 rc = sqlite3PagerNosync(pBt->pPager);
2129 sqlite3BtreeLeave(p);
2130 return rc;
drh2c8997b2005-08-27 16:36:48 +00002131}
2132
danielk1977576ec6b2005-01-21 11:55:25 +00002133#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002134/*
drh90f5ecb2004-07-22 01:19:35 +00002135** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002136** Or, if the page size has already been fixed, return SQLITE_READONLY
2137** without changing anything.
drh06f50212004-11-02 14:24:33 +00002138**
2139** The page size must be a power of 2 between 512 and 65536. If the page
2140** size supplied does not meet this constraint then the page size is not
2141** changed.
2142**
2143** Page sizes are constrained to be a power of two so that the region
2144** of the database file used for locking (beginning at PENDING_BYTE,
2145** the first byte past the 1GB boundary, 0x40000000) needs to occur
2146** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002147**
2148** If parameter nReserve is less than zero, then the number of reserved
2149** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002150**
2151** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2152** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002153*/
drhce4869f2009-04-02 20:16:58 +00002154int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002155 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002156 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002157 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002158 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002159 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002160 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002161 return SQLITE_READONLY;
2162 }
2163 if( nReserve<0 ){
2164 nReserve = pBt->pageSize - pBt->usableSize;
2165 }
drhf49661a2008-12-10 16:45:50 +00002166 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002167 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2168 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002169 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002170 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002171 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002172 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002173 }
drhfa9601a2009-06-18 17:22:39 +00002174 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002175 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002176 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002177 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002178 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002179}
2180
2181/*
2182** Return the currently defined page size
2183*/
danielk1977aef0bf62005-12-30 16:28:01 +00002184int sqlite3BtreeGetPageSize(Btree *p){
2185 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002186}
drh7f751222009-03-17 22:33:00 +00002187
2188/*
2189** Return the number of bytes of space at the end of every page that
2190** are intentually left unused. This is the "reserved" space that is
2191** sometimes used by extensions.
2192*/
danielk1977aef0bf62005-12-30 16:28:01 +00002193int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002194 int n;
2195 sqlite3BtreeEnter(p);
2196 n = p->pBt->pageSize - p->pBt->usableSize;
2197 sqlite3BtreeLeave(p);
2198 return n;
drh2011d5f2004-07-22 02:40:37 +00002199}
drhf8e632b2007-05-08 14:51:36 +00002200
2201/*
2202** Set the maximum page count for a database if mxPage is positive.
2203** No changes are made if mxPage is 0 or negative.
2204** Regardless of the value of mxPage, return the maximum page count.
2205*/
2206int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002207 int n;
2208 sqlite3BtreeEnter(p);
2209 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2210 sqlite3BtreeLeave(p);
2211 return n;
drhf8e632b2007-05-08 14:51:36 +00002212}
drh5b47efa2010-02-12 18:18:39 +00002213
2214/*
2215** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1,
2216** then make no changes. Always return the value of the secureDelete
2217** setting after the change.
2218*/
2219int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2220 int b;
drhaf034ed2010-02-12 19:46:26 +00002221 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002222 sqlite3BtreeEnter(p);
2223 if( newFlag>=0 ){
2224 p->pBt->secureDelete = (newFlag!=0) ? 1 : 0;
2225 }
2226 b = p->pBt->secureDelete;
2227 sqlite3BtreeLeave(p);
2228 return b;
2229}
danielk1977576ec6b2005-01-21 11:55:25 +00002230#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002231
2232/*
danielk1977951af802004-11-05 15:45:09 +00002233** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2234** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2235** is disabled. The default value for the auto-vacuum property is
2236** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2237*/
danielk1977aef0bf62005-12-30 16:28:01 +00002238int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002239#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002240 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002241#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002242 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002243 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002244 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002245
2246 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002247 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002248 rc = SQLITE_READONLY;
2249 }else{
drh076d4662009-02-18 20:31:18 +00002250 pBt->autoVacuum = av ?1:0;
2251 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002252 }
drhd677b3d2007-08-20 22:48:41 +00002253 sqlite3BtreeLeave(p);
2254 return rc;
danielk1977951af802004-11-05 15:45:09 +00002255#endif
2256}
2257
2258/*
2259** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2260** enabled 1 is returned. Otherwise 0.
2261*/
danielk1977aef0bf62005-12-30 16:28:01 +00002262int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002263#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002264 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002265#else
drhd677b3d2007-08-20 22:48:41 +00002266 int rc;
2267 sqlite3BtreeEnter(p);
2268 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002269 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2270 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2271 BTREE_AUTOVACUUM_INCR
2272 );
drhd677b3d2007-08-20 22:48:41 +00002273 sqlite3BtreeLeave(p);
2274 return rc;
danielk1977951af802004-11-05 15:45:09 +00002275#endif
2276}
2277
2278
2279/*
drha34b6762004-05-07 13:30:42 +00002280** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002281** also acquire a readlock on that file.
2282**
2283** SQLITE_OK is returned on success. If the file is not a
2284** well-formed database file, then SQLITE_CORRUPT is returned.
2285** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002286** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002287*/
danielk1977aef0bf62005-12-30 16:28:01 +00002288static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002289 int rc; /* Result code from subfunctions */
2290 MemPage *pPage1; /* Page 1 of the database file */
2291 int nPage; /* Number of pages in the database */
2292 int nPageFile = 0; /* Number of pages in the database file */
2293 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002294
drh1fee73e2007-08-29 04:00:57 +00002295 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002296 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002297 rc = sqlite3PagerSharedLock(pBt->pPager);
2298 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002299 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002300 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002301
2302 /* Do some checking to help insure the file we opened really is
2303 ** a valid database file.
2304 */
drhc2a4bab2010-04-02 12:46:45 +00002305 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002306 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002307 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002308 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002309 }
2310 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002311 u32 pageSize;
2312 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002313 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002314 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002315 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002316 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002317 }
dan5cf53532010-05-01 16:40:20 +00002318
2319#ifdef SQLITE_OMIT_WAL
2320 if( page1[18]>1 ){
2321 pBt->readOnly = 1;
2322 }
2323 if( page1[19]>1 ){
2324 goto page1_init_failed;
2325 }
2326#else
dane04dc882010-04-20 18:53:15 +00002327 if( page1[18]>2 ){
drh309169a2007-04-24 17:27:51 +00002328 pBt->readOnly = 1;
2329 }
dane04dc882010-04-20 18:53:15 +00002330 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002331 goto page1_init_failed;
2332 }
drhe5ae5732008-06-15 02:51:47 +00002333
dana470aeb2010-04-21 11:43:38 +00002334 /* If the write version is set to 2, this database should be accessed
2335 ** in WAL mode. If the log is not already open, open it now. Then
2336 ** return SQLITE_OK and return without populating BtShared.pPage1.
2337 ** The caller detects this and calls this function again. This is
2338 ** required as the version of page 1 currently in the page1 buffer
2339 ** may not be the latest version - there may be a newer one in the log
2340 ** file.
2341 */
danb9780022010-04-21 18:37:57 +00002342 if( page1[19]==2 && pBt->doNotUseWAL==0 ){
dane04dc882010-04-20 18:53:15 +00002343 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002344 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002345 if( rc!=SQLITE_OK ){
2346 goto page1_init_failed;
2347 }else if( isOpen==0 ){
2348 releasePage(pPage1);
2349 return SQLITE_OK;
2350 }
dan8b5444b2010-04-27 14:37:47 +00002351 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002352 }
dan5cf53532010-05-01 16:40:20 +00002353#endif
dane04dc882010-04-20 18:53:15 +00002354
drhe5ae5732008-06-15 02:51:47 +00002355 /* The maximum embedded fraction must be exactly 25%. And the minimum
2356 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2357 ** The original design allowed these amounts to vary, but as of
2358 ** version 3.6.0, we require them to be fixed.
2359 */
2360 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2361 goto page1_init_failed;
2362 }
drhb2eced52010-08-12 02:41:12 +00002363 pageSize = (page1[16]<<8) | (page1[17]<<16);
2364 if( ((pageSize-1)&pageSize)!=0
2365 || pageSize>SQLITE_MAX_PAGE_SIZE
2366 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002367 ){
drh07d183d2005-05-01 22:52:42 +00002368 goto page1_init_failed;
2369 }
2370 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002371 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002372 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002373 /* After reading the first page of the database assuming a page size
2374 ** of BtShared.pageSize, we have discovered that the page-size is
2375 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2376 ** zero and return SQLITE_OK. The caller will call this function
2377 ** again with the correct page-size.
2378 */
2379 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002380 pBt->usableSize = usableSize;
2381 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002382 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002383 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2384 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002385 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002386 }
drhc2a4bab2010-04-02 12:46:45 +00002387 if( nPageHeader>nPageFile ){
2388 rc = SQLITE_CORRUPT_BKPT;
2389 goto page1_init_failed;
2390 }
drhb33e1b92009-06-18 11:29:20 +00002391 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002392 goto page1_init_failed;
2393 }
drh43b18e12010-08-17 19:40:08 +00002394 pBt->pageSize = pageSize;
2395 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002396#ifndef SQLITE_OMIT_AUTOVACUUM
2397 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002398 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002399#endif
drh306dc212001-05-21 13:45:10 +00002400 }
drhb6f41482004-05-14 01:58:11 +00002401
2402 /* maxLocal is the maximum amount of payload to store locally for
2403 ** a cell. Make sure it is small enough so that at least minFanout
2404 ** cells can will fit on one page. We assume a 10-byte page header.
2405 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002406 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002407 ** 4-byte child pointer
2408 ** 9-byte nKey value
2409 ** 4-byte nData value
2410 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002411 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002412 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2413 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002414 */
shaneh1df2db72010-08-18 02:28:48 +00002415 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2416 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2417 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2418 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drh2e38c322004-09-03 18:38:44 +00002419 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002420 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002421 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002422 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002423
drh72f82862001-05-24 21:06:34 +00002424page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002425 releasePage(pPage1);
2426 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002427 return rc;
drh306dc212001-05-21 13:45:10 +00002428}
2429
2430/*
drhb8ca3072001-12-05 00:21:20 +00002431** If there are no outstanding cursors and we are not in the middle
2432** of a transaction but there is a read lock on the database, then
2433** this routine unrefs the first page of the database file which
2434** has the effect of releasing the read lock.
2435**
drhb8ca3072001-12-05 00:21:20 +00002436** If there is a transaction in progress, this routine is a no-op.
2437*/
danielk1977aef0bf62005-12-30 16:28:01 +00002438static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002439 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002440 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2441 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002442 assert( pBt->pPage1->aData );
2443 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2444 assert( pBt->pPage1->aData );
2445 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002446 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002447 }
2448}
2449
2450/*
drhe39f2f92009-07-23 01:43:59 +00002451** If pBt points to an empty file then convert that empty file
2452** into a new empty database by initializing the first page of
2453** the database.
drh8b2f49b2001-06-08 00:21:52 +00002454*/
danielk1977aef0bf62005-12-30 16:28:01 +00002455static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002456 MemPage *pP1;
2457 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002458 int rc;
drhd677b3d2007-08-20 22:48:41 +00002459
drh1fee73e2007-08-29 04:00:57 +00002460 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002461 if( pBt->nPage>0 ){
2462 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002463 }
drh3aac2dd2004-04-26 14:10:20 +00002464 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002465 assert( pP1!=0 );
2466 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002467 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002468 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002469 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2470 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002471 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2472 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002473 data[18] = 1;
2474 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002475 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2476 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002477 data[21] = 64;
2478 data[22] = 32;
2479 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002480 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002481 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002482 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002483#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002484 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002485 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002486 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002487 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002488#endif
drhdd3cd972010-03-27 17:12:36 +00002489 pBt->nPage = 1;
2490 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002491 return SQLITE_OK;
2492}
2493
2494/*
danielk1977ee5741e2004-05-31 10:01:34 +00002495** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002496** is started if the second argument is nonzero, otherwise a read-
2497** transaction. If the second argument is 2 or more and exclusive
2498** transaction is started, meaning that no other process is allowed
2499** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002500** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002501** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002502**
danielk1977ee5741e2004-05-31 10:01:34 +00002503** A write-transaction must be started before attempting any
2504** changes to the database. None of the following routines
2505** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002506**
drh23e11ca2004-05-04 17:27:28 +00002507** sqlite3BtreeCreateTable()
2508** sqlite3BtreeCreateIndex()
2509** sqlite3BtreeClearTable()
2510** sqlite3BtreeDropTable()
2511** sqlite3BtreeInsert()
2512** sqlite3BtreeDelete()
2513** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002514**
drhb8ef32c2005-03-14 02:01:49 +00002515** If an initial attempt to acquire the lock fails because of lock contention
2516** and the database was previously unlocked, then invoke the busy handler
2517** if there is one. But if there was previously a read-lock, do not
2518** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2519** returned when there is already a read-lock in order to avoid a deadlock.
2520**
2521** Suppose there are two processes A and B. A has a read lock and B has
2522** a reserved lock. B tries to promote to exclusive but is blocked because
2523** of A's read lock. A tries to promote to reserved but is blocked by B.
2524** One or the other of the two processes must give way or there can be
2525** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2526** when A already has a read lock, we encourage A to give up and let B
2527** proceed.
drha059ad02001-04-17 20:09:11 +00002528*/
danielk1977aef0bf62005-12-30 16:28:01 +00002529int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002530 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002531 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002532 int rc = SQLITE_OK;
2533
drhd677b3d2007-08-20 22:48:41 +00002534 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002535 btreeIntegrity(p);
2536
danielk1977ee5741e2004-05-31 10:01:34 +00002537 /* If the btree is already in a write-transaction, or it
2538 ** is already in a read-transaction and a read-transaction
2539 ** is requested, this is a no-op.
2540 */
danielk1977aef0bf62005-12-30 16:28:01 +00002541 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002542 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002543 }
drhb8ef32c2005-03-14 02:01:49 +00002544
2545 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002546 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002547 rc = SQLITE_READONLY;
2548 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002549 }
2550
danielk1977404ca072009-03-16 13:19:36 +00002551#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002552 /* If another database handle has already opened a write transaction
2553 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002554 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002555 */
danielk1977404ca072009-03-16 13:19:36 +00002556 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2557 pBlock = pBt->pWriter->db;
2558 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002559 BtLock *pIter;
2560 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2561 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002562 pBlock = pIter->pBtree->db;
2563 break;
danielk1977641b0f42007-12-21 04:47:25 +00002564 }
2565 }
2566 }
danielk1977404ca072009-03-16 13:19:36 +00002567 if( pBlock ){
2568 sqlite3ConnectionBlocked(p->db, pBlock);
2569 rc = SQLITE_LOCKED_SHAREDCACHE;
2570 goto trans_begun;
2571 }
danielk1977641b0f42007-12-21 04:47:25 +00002572#endif
2573
danielk1977602b4662009-07-02 07:47:33 +00002574 /* Any read-only or read-write transaction implies a read-lock on
2575 ** page 1. So if some other shared-cache client already has a write-lock
2576 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002577 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2578 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002579
shaneh5eba1f62010-07-02 17:05:03 +00002580 pBt->initiallyEmpty = (u8)(pBt->nPage==0);
drhb8ef32c2005-03-14 02:01:49 +00002581 do {
danielk1977295dc102009-04-01 19:07:03 +00002582 /* Call lockBtree() until either pBt->pPage1 is populated or
2583 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2584 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2585 ** reading page 1 it discovers that the page-size of the database
2586 ** file is not pBt->pageSize. In this case lockBtree() will update
2587 ** pBt->pageSize to the page-size of the file on disk.
2588 */
2589 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002590
drhb8ef32c2005-03-14 02:01:49 +00002591 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002592 if( pBt->readOnly ){
2593 rc = SQLITE_READONLY;
2594 }else{
danielk1977d8293352009-04-30 09:10:37 +00002595 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002596 if( rc==SQLITE_OK ){
2597 rc = newDatabase(pBt);
2598 }
drhb8ef32c2005-03-14 02:01:49 +00002599 }
2600 }
2601
danielk1977bd434552009-03-18 10:33:00 +00002602 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002603 unlockBtreeIfUnused(pBt);
2604 }
danf9b76712010-06-01 14:12:45 +00002605 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002606 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002607
2608 if( rc==SQLITE_OK ){
2609 if( p->inTrans==TRANS_NONE ){
2610 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002611#ifndef SQLITE_OMIT_SHARED_CACHE
2612 if( p->sharable ){
2613 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2614 p->lock.eLock = READ_LOCK;
2615 p->lock.pNext = pBt->pLock;
2616 pBt->pLock = &p->lock;
2617 }
2618#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002619 }
2620 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2621 if( p->inTrans>pBt->inTransaction ){
2622 pBt->inTransaction = p->inTrans;
2623 }
danielk1977404ca072009-03-16 13:19:36 +00002624 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002625 MemPage *pPage1 = pBt->pPage1;
2626#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002627 assert( !pBt->pWriter );
2628 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002629 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002630#endif
dan59257dc2010-08-04 11:34:31 +00002631
2632 /* If the db-size header field is incorrect (as it may be if an old
2633 ** client has been writing the database file), update it now. Doing
2634 ** this sooner rather than later means the database size can safely
2635 ** re-read the database size from page 1 if a savepoint or transaction
2636 ** rollback occurs within the transaction.
2637 */
2638 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2639 rc = sqlite3PagerWrite(pPage1->pDbPage);
2640 if( rc==SQLITE_OK ){
2641 put4byte(&pPage1->aData[28], pBt->nPage);
2642 }
2643 }
2644 }
danielk1977aef0bf62005-12-30 16:28:01 +00002645 }
2646
drhd677b3d2007-08-20 22:48:41 +00002647
2648trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002649 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002650 /* This call makes sure that the pager has the correct number of
2651 ** open savepoints. If the second parameter is greater than 0 and
2652 ** the sub-journal is not already open, then it will be opened here.
2653 */
danielk1977fd7f0452008-12-17 17:30:26 +00002654 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2655 }
danielk197712dd5492008-12-18 15:45:07 +00002656
danielk1977aef0bf62005-12-30 16:28:01 +00002657 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002658 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002659 return rc;
drha059ad02001-04-17 20:09:11 +00002660}
2661
danielk1977687566d2004-11-02 12:56:41 +00002662#ifndef SQLITE_OMIT_AUTOVACUUM
2663
2664/*
2665** Set the pointer-map entries for all children of page pPage. Also, if
2666** pPage contains cells that point to overflow pages, set the pointer
2667** map entries for the overflow pages as well.
2668*/
2669static int setChildPtrmaps(MemPage *pPage){
2670 int i; /* Counter variable */
2671 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002672 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002673 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002674 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002675 Pgno pgno = pPage->pgno;
2676
drh1fee73e2007-08-29 04:00:57 +00002677 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002678 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002679 if( rc!=SQLITE_OK ){
2680 goto set_child_ptrmaps_out;
2681 }
danielk1977687566d2004-11-02 12:56:41 +00002682 nCell = pPage->nCell;
2683
2684 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002685 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002686
drh98add2e2009-07-20 17:11:49 +00002687 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002688
danielk1977687566d2004-11-02 12:56:41 +00002689 if( !pPage->leaf ){
2690 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002691 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002692 }
2693 }
2694
2695 if( !pPage->leaf ){
2696 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002697 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002698 }
2699
2700set_child_ptrmaps_out:
2701 pPage->isInit = isInitOrig;
2702 return rc;
2703}
2704
2705/*
drhf3aed592009-07-08 18:12:49 +00002706** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2707** that it points to iTo. Parameter eType describes the type of pointer to
2708** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002709**
2710** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2711** page of pPage.
2712**
2713** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2714** page pointed to by one of the cells on pPage.
2715**
2716** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2717** overflow page in the list.
2718*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002719static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002720 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002721 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002722 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002723 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002724 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002725 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002726 }
danielk1977f78fc082004-11-02 14:40:32 +00002727 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002728 }else{
drhf49661a2008-12-10 16:45:50 +00002729 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002730 int i;
2731 int nCell;
2732
danielk197730548662009-07-09 05:07:37 +00002733 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002734 nCell = pPage->nCell;
2735
danielk1977687566d2004-11-02 12:56:41 +00002736 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002737 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002738 if( eType==PTRMAP_OVERFLOW1 ){
2739 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002740 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002741 if( info.iOverflow ){
2742 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2743 put4byte(&pCell[info.iOverflow], iTo);
2744 break;
2745 }
2746 }
2747 }else{
2748 if( get4byte(pCell)==iFrom ){
2749 put4byte(pCell, iTo);
2750 break;
2751 }
2752 }
2753 }
2754
2755 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002756 if( eType!=PTRMAP_BTREE ||
2757 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002758 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002759 }
danielk1977687566d2004-11-02 12:56:41 +00002760 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2761 }
2762
2763 pPage->isInit = isInitOrig;
2764 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002765 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002766}
2767
danielk1977003ba062004-11-04 02:57:33 +00002768
danielk19777701e812005-01-10 12:59:51 +00002769/*
2770** Move the open database page pDbPage to location iFreePage in the
2771** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002772**
2773** The isCommit flag indicates that there is no need to remember that
2774** the journal needs to be sync()ed before database page pDbPage->pgno
2775** can be written to. The caller has already promised not to write to that
2776** page.
danielk19777701e812005-01-10 12:59:51 +00002777*/
danielk1977003ba062004-11-04 02:57:33 +00002778static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002779 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002780 MemPage *pDbPage, /* Open page to move */
2781 u8 eType, /* Pointer map 'type' entry for pDbPage */
2782 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002783 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002784 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002785){
2786 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2787 Pgno iDbPage = pDbPage->pgno;
2788 Pager *pPager = pBt->pPager;
2789 int rc;
2790
danielk1977a0bf2652004-11-04 14:30:04 +00002791 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2792 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002793 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002794 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002795
drh85b623f2007-12-13 21:54:09 +00002796 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002797 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2798 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002799 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002800 if( rc!=SQLITE_OK ){
2801 return rc;
2802 }
2803 pDbPage->pgno = iFreePage;
2804
2805 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2806 ** that point to overflow pages. The pointer map entries for all these
2807 ** pages need to be changed.
2808 **
2809 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2810 ** pointer to a subsequent overflow page. If this is the case, then
2811 ** the pointer map needs to be updated for the subsequent overflow page.
2812 */
danielk1977a0bf2652004-11-04 14:30:04 +00002813 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002814 rc = setChildPtrmaps(pDbPage);
2815 if( rc!=SQLITE_OK ){
2816 return rc;
2817 }
2818 }else{
2819 Pgno nextOvfl = get4byte(pDbPage->aData);
2820 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002821 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002822 if( rc!=SQLITE_OK ){
2823 return rc;
2824 }
2825 }
2826 }
2827
2828 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2829 ** that it points at iFreePage. Also fix the pointer map entry for
2830 ** iPtrPage.
2831 */
danielk1977a0bf2652004-11-04 14:30:04 +00002832 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002833 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002834 if( rc!=SQLITE_OK ){
2835 return rc;
2836 }
danielk19773b8a05f2007-03-19 17:44:26 +00002837 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002838 if( rc!=SQLITE_OK ){
2839 releasePage(pPtrPage);
2840 return rc;
2841 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002842 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002843 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002844 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002845 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002846 }
danielk1977003ba062004-11-04 02:57:33 +00002847 }
danielk1977003ba062004-11-04 02:57:33 +00002848 return rc;
2849}
2850
danielk1977dddbcdc2007-04-26 14:42:34 +00002851/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002852static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002853
2854/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002855** Perform a single step of an incremental-vacuum. If successful,
2856** return SQLITE_OK. If there is no work to do (and therefore no
2857** point in calling this function again), return SQLITE_DONE.
2858**
2859** More specificly, this function attempts to re-organize the
2860** database so that the last page of the file currently in use
2861** is no longer in use.
2862**
drhea8ffdf2009-07-22 00:35:23 +00002863** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002864** that the caller will keep calling incrVacuumStep() until
2865** it returns SQLITE_DONE or an error, and that nFin is the
2866** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002867** process is complete. If nFin is zero, it is assumed that
2868** incrVacuumStep() will be called a finite amount of times
2869** which may or may not empty the freelist. A full autovacuum
2870** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002871*/
danielk19773460d192008-12-27 15:23:13 +00002872static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002873 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002874 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002875
drh1fee73e2007-08-29 04:00:57 +00002876 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002877 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002878
2879 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002880 u8 eType;
2881 Pgno iPtrPage;
2882
2883 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002884 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002885 return SQLITE_DONE;
2886 }
2887
2888 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2889 if( rc!=SQLITE_OK ){
2890 return rc;
2891 }
2892 if( eType==PTRMAP_ROOTPAGE ){
2893 return SQLITE_CORRUPT_BKPT;
2894 }
2895
2896 if( eType==PTRMAP_FREEPAGE ){
2897 if( nFin==0 ){
2898 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002899 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002900 ** truncated to zero after this function returns, so it doesn't
2901 ** matter if it still contains some garbage entries.
2902 */
2903 Pgno iFreePg;
2904 MemPage *pFreePg;
2905 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2906 if( rc!=SQLITE_OK ){
2907 return rc;
2908 }
2909 assert( iFreePg==iLastPg );
2910 releasePage(pFreePg);
2911 }
2912 } else {
2913 Pgno iFreePg; /* Index of free page to move pLastPg to */
2914 MemPage *pLastPg;
2915
danielk197730548662009-07-09 05:07:37 +00002916 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002917 if( rc!=SQLITE_OK ){
2918 return rc;
2919 }
2920
danielk1977b4626a32007-04-28 15:47:43 +00002921 /* If nFin is zero, this loop runs exactly once and page pLastPg
2922 ** is swapped with the first free page pulled off the free list.
2923 **
2924 ** On the other hand, if nFin is greater than zero, then keep
2925 ** looping until a free-page located within the first nFin pages
2926 ** of the file is found.
2927 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002928 do {
2929 MemPage *pFreePg;
2930 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2931 if( rc!=SQLITE_OK ){
2932 releasePage(pLastPg);
2933 return rc;
2934 }
2935 releasePage(pFreePg);
2936 }while( nFin!=0 && iFreePg>nFin );
2937 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002938
2939 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002940 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002941 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002942 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002943 releasePage(pLastPg);
2944 if( rc!=SQLITE_OK ){
2945 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002946 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002947 }
2948 }
2949
danielk19773460d192008-12-27 15:23:13 +00002950 if( nFin==0 ){
2951 iLastPg--;
2952 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002953 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2954 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002955 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002956 if( rc!=SQLITE_OK ){
2957 return rc;
2958 }
2959 rc = sqlite3PagerWrite(pPg->pDbPage);
2960 releasePage(pPg);
2961 if( rc!=SQLITE_OK ){
2962 return rc;
2963 }
2964 }
danielk19773460d192008-12-27 15:23:13 +00002965 iLastPg--;
2966 }
2967 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002968 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002969 }
2970 return SQLITE_OK;
2971}
2972
2973/*
2974** A write-transaction must be opened before calling this function.
2975** It performs a single unit of work towards an incremental vacuum.
2976**
2977** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002978** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002979** SQLITE_OK is returned. Otherwise an SQLite error code.
2980*/
2981int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002982 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002983 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002984
2985 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002986 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2987 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002988 rc = SQLITE_DONE;
2989 }else{
2990 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00002991 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00002992 if( rc==SQLITE_OK ){
2993 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2994 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
2995 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002996 }
drhd677b3d2007-08-20 22:48:41 +00002997 sqlite3BtreeLeave(p);
2998 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002999}
3000
3001/*
danielk19773b8a05f2007-03-19 17:44:26 +00003002** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003003** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003004**
3005** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3006** the database file should be truncated to during the commit process.
3007** i.e. the database has been reorganized so that only the first *pnTrunc
3008** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003009*/
danielk19773460d192008-12-27 15:23:13 +00003010static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003011 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003012 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003013 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003014
drh1fee73e2007-08-29 04:00:57 +00003015 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003016 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003017 assert(pBt->autoVacuum);
3018 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003019 Pgno nFin; /* Number of pages in database after autovacuuming */
3020 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003021 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3022 Pgno iFree; /* The next page to be freed */
3023 int nEntry; /* Number of entries on one ptrmap page */
3024 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003025
drhb1299152010-03-30 22:58:33 +00003026 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003027 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3028 /* It is not possible to create a database for which the final page
3029 ** is either a pointer-map page or the pending-byte page. If one
3030 ** is encountered, this indicates corruption.
3031 */
danielk19773460d192008-12-27 15:23:13 +00003032 return SQLITE_CORRUPT_BKPT;
3033 }
danielk1977ef165ce2009-04-06 17:50:03 +00003034
danielk19773460d192008-12-27 15:23:13 +00003035 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00003036 nEntry = pBt->usableSize/5;
3037 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00003038 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00003039 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00003040 nFin--;
3041 }
3042 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3043 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00003044 }
drhc5e47ac2009-06-04 00:11:56 +00003045 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003046
danielk19773460d192008-12-27 15:23:13 +00003047 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3048 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00003049 }
danielk19773460d192008-12-27 15:23:13 +00003050 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003051 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3052 put4byte(&pBt->pPage1->aData[32], 0);
3053 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003054 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00003055 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00003056 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003057 }
3058 if( rc!=SQLITE_OK ){
3059 sqlite3PagerRollback(pPager);
3060 }
danielk1977687566d2004-11-02 12:56:41 +00003061 }
3062
danielk19773b8a05f2007-03-19 17:44:26 +00003063 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003064 return rc;
3065}
danielk1977dddbcdc2007-04-26 14:42:34 +00003066
danielk1977a50d9aa2009-06-08 14:49:45 +00003067#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3068# define setChildPtrmaps(x) SQLITE_OK
3069#endif
danielk1977687566d2004-11-02 12:56:41 +00003070
3071/*
drh80e35f42007-03-30 14:06:34 +00003072** This routine does the first phase of a two-phase commit. This routine
3073** causes a rollback journal to be created (if it does not already exist)
3074** and populated with enough information so that if a power loss occurs
3075** the database can be restored to its original state by playing back
3076** the journal. Then the contents of the journal are flushed out to
3077** the disk. After the journal is safely on oxide, the changes to the
3078** database are written into the database file and flushed to oxide.
3079** At the end of this call, the rollback journal still exists on the
3080** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003081** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003082** commit process.
3083**
3084** This call is a no-op if no write-transaction is currently active on pBt.
3085**
3086** Otherwise, sync the database file for the btree pBt. zMaster points to
3087** the name of a master journal file that should be written into the
3088** individual journal file, or is NULL, indicating no master journal file
3089** (single database transaction).
3090**
3091** When this is called, the master journal should already have been
3092** created, populated with this journal pointer and synced to disk.
3093**
3094** Once this is routine has returned, the only thing required to commit
3095** the write-transaction for this database file is to delete the journal.
3096*/
3097int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3098 int rc = SQLITE_OK;
3099 if( p->inTrans==TRANS_WRITE ){
3100 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003101 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003102#ifndef SQLITE_OMIT_AUTOVACUUM
3103 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003104 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003105 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003106 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003107 return rc;
3108 }
3109 }
3110#endif
drh49b9d332009-01-02 18:10:42 +00003111 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003112 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003113 }
3114 return rc;
3115}
3116
3117/*
danielk197794b30732009-07-02 17:21:57 +00003118** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3119** at the conclusion of a transaction.
3120*/
3121static void btreeEndTransaction(Btree *p){
3122 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003123 assert( sqlite3BtreeHoldsMutex(p) );
3124
danielk197794b30732009-07-02 17:21:57 +00003125 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003126 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3127 /* If there are other active statements that belong to this database
3128 ** handle, downgrade to a read-only transaction. The other statements
3129 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003130 downgradeAllSharedCacheTableLocks(p);
3131 p->inTrans = TRANS_READ;
3132 }else{
3133 /* If the handle had any kind of transaction open, decrement the
3134 ** transaction count of the shared btree. If the transaction count
3135 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3136 ** call below will unlock the pager. */
3137 if( p->inTrans!=TRANS_NONE ){
3138 clearAllSharedCacheTableLocks(p);
3139 pBt->nTransaction--;
3140 if( 0==pBt->nTransaction ){
3141 pBt->inTransaction = TRANS_NONE;
3142 }
3143 }
3144
3145 /* Set the current transaction state to TRANS_NONE and unlock the
3146 ** pager if this call closed the only read or write transaction. */
3147 p->inTrans = TRANS_NONE;
3148 unlockBtreeIfUnused(pBt);
3149 }
3150
3151 btreeIntegrity(p);
3152}
3153
3154/*
drh2aa679f2001-06-25 02:11:07 +00003155** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003156**
drh6e345992007-03-30 11:12:08 +00003157** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003158** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3159** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3160** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003161** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003162** routine has to do is delete or truncate or zero the header in the
3163** the rollback journal (which causes the transaction to commit) and
3164** drop locks.
drh6e345992007-03-30 11:12:08 +00003165**
drh5e00f6c2001-09-13 13:46:56 +00003166** This will release the write lock on the database file. If there
3167** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003168*/
drh80e35f42007-03-30 14:06:34 +00003169int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003170 BtShared *pBt = p->pBt;
3171
drhd677b3d2007-08-20 22:48:41 +00003172 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003173 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003174
3175 /* If the handle has a write-transaction open, commit the shared-btrees
3176 ** transaction and set the shared state to TRANS_READ.
3177 */
3178 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003179 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003180 assert( pBt->inTransaction==TRANS_WRITE );
3181 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003182 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003183 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003184 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003185 return rc;
3186 }
danielk1977aef0bf62005-12-30 16:28:01 +00003187 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003188 }
danielk1977aef0bf62005-12-30 16:28:01 +00003189
danielk197794b30732009-07-02 17:21:57 +00003190 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003191 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003192 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003193}
3194
drh80e35f42007-03-30 14:06:34 +00003195/*
3196** Do both phases of a commit.
3197*/
3198int sqlite3BtreeCommit(Btree *p){
3199 int rc;
drhd677b3d2007-08-20 22:48:41 +00003200 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003201 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3202 if( rc==SQLITE_OK ){
3203 rc = sqlite3BtreeCommitPhaseTwo(p);
3204 }
drhd677b3d2007-08-20 22:48:41 +00003205 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003206 return rc;
3207}
3208
danielk1977fbcd5852004-06-15 02:44:18 +00003209#ifndef NDEBUG
3210/*
3211** Return the number of write-cursors open on this handle. This is for use
3212** in assert() expressions, so it is only compiled if NDEBUG is not
3213** defined.
drhfb982642007-08-30 01:19:59 +00003214**
3215** For the purposes of this routine, a write-cursor is any cursor that
3216** is capable of writing to the databse. That means the cursor was
3217** originally opened for writing and the cursor has not be disabled
3218** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003219*/
danielk1977aef0bf62005-12-30 16:28:01 +00003220static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003221 BtCursor *pCur;
3222 int r = 0;
3223 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003224 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003225 }
3226 return r;
3227}
3228#endif
3229
drhc39e0002004-05-07 23:50:57 +00003230/*
drhfb982642007-08-30 01:19:59 +00003231** This routine sets the state to CURSOR_FAULT and the error
3232** code to errCode for every cursor on BtShared that pBtree
3233** references.
3234**
3235** Every cursor is tripped, including cursors that belong
3236** to other database connections that happen to be sharing
3237** the cache with pBtree.
3238**
3239** This routine gets called when a rollback occurs.
3240** All cursors using the same cache must be tripped
3241** to prevent them from trying to use the btree after
3242** the rollback. The rollback may have deleted tables
3243** or moved root pages, so it is not sufficient to
3244** save the state of the cursor. The cursor must be
3245** invalidated.
3246*/
3247void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3248 BtCursor *p;
3249 sqlite3BtreeEnter(pBtree);
3250 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003251 int i;
danielk1977be51a652008-10-08 17:58:48 +00003252 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003253 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003254 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003255 for(i=0; i<=p->iPage; i++){
3256 releasePage(p->apPage[i]);
3257 p->apPage[i] = 0;
3258 }
drhfb982642007-08-30 01:19:59 +00003259 }
3260 sqlite3BtreeLeave(pBtree);
3261}
3262
3263/*
drhecdc7532001-09-23 02:35:53 +00003264** Rollback the transaction in progress. All cursors will be
3265** invalided by this operation. Any attempt to use a cursor
3266** that was open at the beginning of this operation will result
3267** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003268**
3269** This will release the write lock on the database file. If there
3270** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003271*/
danielk1977aef0bf62005-12-30 16:28:01 +00003272int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003273 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003274 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003275 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003276
drhd677b3d2007-08-20 22:48:41 +00003277 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003278 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003279#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003280 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003281 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003282 ** trying to save cursor positions. If this is an automatic rollback (as
3283 ** the result of a constraint, malloc() failure or IO error) then
3284 ** the cache may be internally inconsistent (not contain valid trees) so
3285 ** we cannot simply return the error to the caller. Instead, abort
3286 ** all queries that may be using any of the cursors that failed to save.
3287 */
drhfb982642007-08-30 01:19:59 +00003288 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003289 }
danielk19778d34dfd2006-01-24 16:37:57 +00003290#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003291 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003292
3293 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003294 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003295
danielk19778d34dfd2006-01-24 16:37:57 +00003296 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003297 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003298 if( rc2!=SQLITE_OK ){
3299 rc = rc2;
3300 }
3301
drh24cd67e2004-05-10 16:18:47 +00003302 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003303 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003304 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003305 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003306 int nPage = get4byte(28+(u8*)pPage1->aData);
3307 testcase( nPage==0 );
3308 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3309 testcase( pBt->nPage!=nPage );
3310 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003311 releasePage(pPage1);
3312 }
danielk1977fbcd5852004-06-15 02:44:18 +00003313 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003314 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003315 }
danielk1977aef0bf62005-12-30 16:28:01 +00003316
danielk197794b30732009-07-02 17:21:57 +00003317 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003318 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003319 return rc;
3320}
3321
3322/*
danielk1977bd434552009-03-18 10:33:00 +00003323** Start a statement subtransaction. The subtransaction can can be rolled
3324** back independently of the main transaction. You must start a transaction
3325** before starting a subtransaction. The subtransaction is ended automatically
3326** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003327**
3328** Statement subtransactions are used around individual SQL statements
3329** that are contained within a BEGIN...COMMIT block. If a constraint
3330** error occurs within the statement, the effect of that one statement
3331** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003332**
3333** A statement sub-transaction is implemented as an anonymous savepoint. The
3334** value passed as the second parameter is the total number of savepoints,
3335** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3336** are no active savepoints and no other statement-transactions open,
3337** iStatement is 1. This anonymous savepoint can be released or rolled back
3338** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003339*/
danielk1977bd434552009-03-18 10:33:00 +00003340int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003341 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003342 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003343 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003344 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003345 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003346 assert( iStatement>0 );
3347 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003348 assert( pBt->inTransaction==TRANS_WRITE );
3349 /* At the pager level, a statement transaction is a savepoint with
3350 ** an index greater than all savepoints created explicitly using
3351 ** SQL statements. It is illegal to open, release or rollback any
3352 ** such savepoints while the statement transaction savepoint is active.
3353 */
3354 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003355 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003356 return rc;
3357}
3358
3359/*
danielk1977fd7f0452008-12-17 17:30:26 +00003360** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3361** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003362** savepoint identified by parameter iSavepoint, depending on the value
3363** of op.
3364**
3365** Normally, iSavepoint is greater than or equal to zero. However, if op is
3366** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3367** contents of the entire transaction are rolled back. This is different
3368** from a normal transaction rollback, as no locks are released and the
3369** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003370*/
3371int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3372 int rc = SQLITE_OK;
3373 if( p && p->inTrans==TRANS_WRITE ){
3374 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003375 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3376 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3377 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003378 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003379 if( rc==SQLITE_OK ){
drh25a80ad2010-03-29 21:13:12 +00003380 if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0;
drh9f0bbf92009-01-02 21:08:09 +00003381 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003382 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003383
3384 /* The database size was written into the offset 28 of the header
3385 ** when the transaction started, so we know that the value at offset
3386 ** 28 is nonzero. */
3387 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003388 }
danielk1977fd7f0452008-12-17 17:30:26 +00003389 sqlite3BtreeLeave(p);
3390 }
3391 return rc;
3392}
3393
3394/*
drh8b2f49b2001-06-08 00:21:52 +00003395** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003396** iTable. If a read-only cursor is requested, it is assumed that
3397** the caller already has at least a read-only transaction open
3398** on the database already. If a write-cursor is requested, then
3399** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003400**
3401** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003402** If wrFlag==1, then the cursor can be used for reading or for
3403** writing if other conditions for writing are also met. These
3404** are the conditions that must be met in order for writing to
3405** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003406**
drhf74b8d92002-09-01 23:20:45 +00003407** 1: The cursor must have been opened with wrFlag==1
3408**
drhfe5d71d2007-03-19 11:54:10 +00003409** 2: Other database connections that share the same pager cache
3410** but which are not in the READ_UNCOMMITTED state may not have
3411** cursors open with wrFlag==0 on the same table. Otherwise
3412** the changes made by this write cursor would be visible to
3413** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003414**
3415** 3: The database must be writable (not on read-only media)
3416**
3417** 4: There must be an active transaction.
3418**
drh6446c4d2001-12-15 14:22:18 +00003419** No checking is done to make sure that page iTable really is the
3420** root page of a b-tree. If it is not, then the cursor acquired
3421** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003422**
drhf25a5072009-11-18 23:01:25 +00003423** It is assumed that the sqlite3BtreeCursorZero() has been called
3424** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003425*/
drhd677b3d2007-08-20 22:48:41 +00003426static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003427 Btree *p, /* The btree */
3428 int iTable, /* Root page of table to open */
3429 int wrFlag, /* 1 to write. 0 read-only */
3430 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3431 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003432){
danielk19773e8add92009-07-04 17:16:00 +00003433 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003434
drh1fee73e2007-08-29 04:00:57 +00003435 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003436 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003437
danielk1977602b4662009-07-02 07:47:33 +00003438 /* The following assert statements verify that if this is a sharable
3439 ** b-tree database, the connection is holding the required table locks,
3440 ** and that no other connection has any open cursor that conflicts with
3441 ** this lock. */
3442 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003443 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3444
danielk19773e8add92009-07-04 17:16:00 +00003445 /* Assert that the caller has opened the required transaction. */
3446 assert( p->inTrans>TRANS_NONE );
3447 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3448 assert( pBt->pPage1 && pBt->pPage1->aData );
3449
danielk197796d48e92009-06-29 06:00:37 +00003450 if( NEVER(wrFlag && pBt->readOnly) ){
3451 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003452 }
drhb1299152010-03-30 22:58:33 +00003453 if( iTable==1 && btreePagecount(pBt)==0 ){
danielk19773e8add92009-07-04 17:16:00 +00003454 return SQLITE_EMPTY;
3455 }
danielk1977aef0bf62005-12-30 16:28:01 +00003456
danielk1977aef0bf62005-12-30 16:28:01 +00003457 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003458 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003459 pCur->pgnoRoot = (Pgno)iTable;
3460 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003461 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003462 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003463 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003464 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003465 pCur->pNext = pBt->pCursor;
3466 if( pCur->pNext ){
3467 pCur->pNext->pPrev = pCur;
3468 }
3469 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003470 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003471 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003472 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003473}
drhd677b3d2007-08-20 22:48:41 +00003474int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003475 Btree *p, /* The btree */
3476 int iTable, /* Root page of table to open */
3477 int wrFlag, /* 1 to write. 0 read-only */
3478 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3479 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003480){
3481 int rc;
3482 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003483 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003484 sqlite3BtreeLeave(p);
3485 return rc;
3486}
drh7f751222009-03-17 22:33:00 +00003487
3488/*
3489** Return the size of a BtCursor object in bytes.
3490**
3491** This interfaces is needed so that users of cursors can preallocate
3492** sufficient storage to hold a cursor. The BtCursor object is opaque
3493** to users so they cannot do the sizeof() themselves - they must call
3494** this routine.
3495*/
3496int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003497 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003498}
3499
drh7f751222009-03-17 22:33:00 +00003500/*
drhf25a5072009-11-18 23:01:25 +00003501** Initialize memory that will be converted into a BtCursor object.
3502**
3503** The simple approach here would be to memset() the entire object
3504** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3505** do not need to be zeroed and they are large, so we can save a lot
3506** of run-time by skipping the initialization of those elements.
3507*/
3508void sqlite3BtreeCursorZero(BtCursor *p){
3509 memset(p, 0, offsetof(BtCursor, iPage));
3510}
3511
3512/*
drh7f751222009-03-17 22:33:00 +00003513** Set the cached rowid value of every cursor in the same database file
3514** as pCur and having the same root page number as pCur. The value is
3515** set to iRowid.
3516**
3517** Only positive rowid values are considered valid for this cache.
3518** The cache is initialized to zero, indicating an invalid cache.
3519** A btree will work fine with zero or negative rowids. We just cannot
3520** cache zero or negative rowids, which means tables that use zero or
3521** negative rowids might run a little slower. But in practice, zero
3522** or negative rowids are very uncommon so this should not be a problem.
3523*/
3524void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3525 BtCursor *p;
3526 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3527 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3528 }
3529 assert( pCur->cachedRowid==iRowid );
3530}
drhd677b3d2007-08-20 22:48:41 +00003531
drh7f751222009-03-17 22:33:00 +00003532/*
3533** Return the cached rowid for the given cursor. A negative or zero
3534** return value indicates that the rowid cache is invalid and should be
3535** ignored. If the rowid cache has never before been set, then a
3536** zero is returned.
3537*/
3538sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3539 return pCur->cachedRowid;
3540}
drha059ad02001-04-17 20:09:11 +00003541
3542/*
drh5e00f6c2001-09-13 13:46:56 +00003543** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003544** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003545*/
drh3aac2dd2004-04-26 14:10:20 +00003546int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003547 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003548 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003549 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003550 BtShared *pBt = pCur->pBt;
3551 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003552 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003553 if( pCur->pPrev ){
3554 pCur->pPrev->pNext = pCur->pNext;
3555 }else{
3556 pBt->pCursor = pCur->pNext;
3557 }
3558 if( pCur->pNext ){
3559 pCur->pNext->pPrev = pCur->pPrev;
3560 }
danielk197771d5d2c2008-09-29 11:49:47 +00003561 for(i=0; i<=pCur->iPage; i++){
3562 releasePage(pCur->apPage[i]);
3563 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003564 unlockBtreeIfUnused(pBt);
3565 invalidateOverflowCache(pCur);
3566 /* sqlite3_free(pCur); */
3567 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003568 }
drh8c42ca92001-06-22 19:15:00 +00003569 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003570}
3571
drh5e2f8b92001-05-28 00:41:15 +00003572/*
drh86057612007-06-26 01:04:48 +00003573** Make sure the BtCursor* given in the argument has a valid
3574** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003575** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003576**
3577** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003578** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003579**
3580** 2007-06-25: There is a bug in some versions of MSVC that cause the
3581** compiler to crash when getCellInfo() is implemented as a macro.
3582** But there is a measureable speed advantage to using the macro on gcc
3583** (when less compiler optimizations like -Os or -O0 are used and the
3584** compiler is not doing agressive inlining.) So we use a real function
3585** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003586*/
drh9188b382004-05-14 21:12:22 +00003587#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003588 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003589 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003590 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003591 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003592 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003593 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003594 }
danielk19771cc5ed82007-05-16 17:28:43 +00003595#else
3596 #define assertCellInfo(x)
3597#endif
drh86057612007-06-26 01:04:48 +00003598#ifdef _MSC_VER
3599 /* Use a real function in MSVC to work around bugs in that compiler. */
3600 static void getCellInfo(BtCursor *pCur){
3601 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003602 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003603 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003604 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003605 }else{
3606 assertCellInfo(pCur);
3607 }
3608 }
3609#else /* if not _MSC_VER */
3610 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003611#define getCellInfo(pCur) \
3612 if( pCur->info.nSize==0 ){ \
3613 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003614 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003615 pCur->validNKey = 1; \
3616 }else{ \
3617 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003618 }
3619#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003620
drhea8ffdf2009-07-22 00:35:23 +00003621#ifndef NDEBUG /* The next routine used only within assert() statements */
3622/*
3623** Return true if the given BtCursor is valid. A valid cursor is one
3624** that is currently pointing to a row in a (non-empty) table.
3625** This is a verification routine is used only within assert() statements.
3626*/
3627int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3628 return pCur && pCur->eState==CURSOR_VALID;
3629}
3630#endif /* NDEBUG */
3631
drh9188b382004-05-14 21:12:22 +00003632/*
drh3aac2dd2004-04-26 14:10:20 +00003633** Set *pSize to the size of the buffer needed to hold the value of
3634** the key for the current entry. If the cursor is not pointing
3635** to a valid entry, *pSize is set to 0.
3636**
drh4b70f112004-05-02 21:12:19 +00003637** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003638** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003639**
3640** The caller must position the cursor prior to invoking this routine.
3641**
3642** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003643*/
drh4a1c3802004-05-12 15:15:47 +00003644int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003645 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003646 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3647 if( pCur->eState!=CURSOR_VALID ){
3648 *pSize = 0;
3649 }else{
3650 getCellInfo(pCur);
3651 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003652 }
drhea8ffdf2009-07-22 00:35:23 +00003653 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003654}
drh2af926b2001-05-15 00:39:25 +00003655
drh72f82862001-05-24 21:06:34 +00003656/*
drh0e1c19e2004-05-11 00:58:56 +00003657** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003658** cursor currently points to.
3659**
3660** The caller must guarantee that the cursor is pointing to a non-NULL
3661** valid entry. In other words, the calling procedure must guarantee
3662** that the cursor has Cursor.eState==CURSOR_VALID.
3663**
3664** Failure is not possible. This function always returns SQLITE_OK.
3665** It might just as well be a procedure (returning void) but we continue
3666** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003667*/
3668int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003669 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003670 assert( pCur->eState==CURSOR_VALID );
3671 getCellInfo(pCur);
3672 *pSize = pCur->info.nData;
3673 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003674}
3675
3676/*
danielk1977d04417962007-05-02 13:16:30 +00003677** Given the page number of an overflow page in the database (parameter
3678** ovfl), this function finds the page number of the next page in the
3679** linked list of overflow pages. If possible, it uses the auto-vacuum
3680** pointer-map data instead of reading the content of page ovfl to do so.
3681**
3682** If an error occurs an SQLite error code is returned. Otherwise:
3683**
danielk1977bea2a942009-01-20 17:06:27 +00003684** The page number of the next overflow page in the linked list is
3685** written to *pPgnoNext. If page ovfl is the last page in its linked
3686** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003687**
danielk1977bea2a942009-01-20 17:06:27 +00003688** If ppPage is not NULL, and a reference to the MemPage object corresponding
3689** to page number pOvfl was obtained, then *ppPage is set to point to that
3690** reference. It is the responsibility of the caller to call releasePage()
3691** on *ppPage to free the reference. In no reference was obtained (because
3692** the pointer-map was used to obtain the value for *pPgnoNext), then
3693** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003694*/
3695static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003696 BtShared *pBt, /* The database file */
3697 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003698 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003699 Pgno *pPgnoNext /* OUT: Next overflow page number */
3700){
3701 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003702 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003703 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003704
drh1fee73e2007-08-29 04:00:57 +00003705 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003706 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003707
3708#ifndef SQLITE_OMIT_AUTOVACUUM
3709 /* Try to find the next page in the overflow list using the
3710 ** autovacuum pointer-map pages. Guess that the next page in
3711 ** the overflow list is page number (ovfl+1). If that guess turns
3712 ** out to be wrong, fall back to loading the data of page
3713 ** number ovfl to determine the next page number.
3714 */
3715 if( pBt->autoVacuum ){
3716 Pgno pgno;
3717 Pgno iGuess = ovfl+1;
3718 u8 eType;
3719
3720 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3721 iGuess++;
3722 }
3723
drhb1299152010-03-30 22:58:33 +00003724 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003725 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003726 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003727 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003728 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003729 }
3730 }
3731 }
3732#endif
3733
danielk1977d8a3f3d2009-07-11 11:45:23 +00003734 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003735 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003736 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003737 assert( rc==SQLITE_OK || pPage==0 );
3738 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003739 next = get4byte(pPage->aData);
3740 }
danielk1977443c0592009-01-16 15:21:05 +00003741 }
danielk197745d68822009-01-16 16:23:38 +00003742
danielk1977bea2a942009-01-20 17:06:27 +00003743 *pPgnoNext = next;
3744 if( ppPage ){
3745 *ppPage = pPage;
3746 }else{
3747 releasePage(pPage);
3748 }
3749 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003750}
3751
danielk1977da107192007-05-04 08:32:13 +00003752/*
3753** Copy data from a buffer to a page, or from a page to a buffer.
3754**
3755** pPayload is a pointer to data stored on database page pDbPage.
3756** If argument eOp is false, then nByte bytes of data are copied
3757** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3758** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3759** of data are copied from the buffer pBuf to pPayload.
3760**
3761** SQLITE_OK is returned on success, otherwise an error code.
3762*/
3763static int copyPayload(
3764 void *pPayload, /* Pointer to page data */
3765 void *pBuf, /* Pointer to buffer */
3766 int nByte, /* Number of bytes to copy */
3767 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3768 DbPage *pDbPage /* Page containing pPayload */
3769){
3770 if( eOp ){
3771 /* Copy data from buffer to page (a write operation) */
3772 int rc = sqlite3PagerWrite(pDbPage);
3773 if( rc!=SQLITE_OK ){
3774 return rc;
3775 }
3776 memcpy(pPayload, pBuf, nByte);
3777 }else{
3778 /* Copy data from page to buffer (a read operation) */
3779 memcpy(pBuf, pPayload, nByte);
3780 }
3781 return SQLITE_OK;
3782}
danielk1977d04417962007-05-02 13:16:30 +00003783
3784/*
danielk19779f8d6402007-05-02 17:48:45 +00003785** This function is used to read or overwrite payload information
3786** for the entry that the pCur cursor is pointing to. If the eOp
3787** parameter is 0, this is a read operation (data copied into
3788** buffer pBuf). If it is non-zero, a write (data copied from
3789** buffer pBuf).
3790**
3791** A total of "amt" bytes are read or written beginning at "offset".
3792** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003793**
drh3bcdfd22009-07-12 02:32:21 +00003794** The content being read or written might appear on the main page
3795** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003796**
danielk1977dcbb5d32007-05-04 18:36:44 +00003797** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003798** cursor entry uses one or more overflow pages, this function
3799** allocates space for and lazily popluates the overflow page-list
3800** cache array (BtCursor.aOverflow). Subsequent calls use this
3801** cache to make seeking to the supplied offset more efficient.
3802**
3803** Once an overflow page-list cache has been allocated, it may be
3804** invalidated if some other cursor writes to the same table, or if
3805** the cursor is moved to a different row. Additionally, in auto-vacuum
3806** mode, the following events may invalidate an overflow page-list cache.
3807**
3808** * An incremental vacuum,
3809** * A commit in auto_vacuum="full" mode,
3810** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003811*/
danielk19779f8d6402007-05-02 17:48:45 +00003812static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003813 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003814 u32 offset, /* Begin reading this far into payload */
3815 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003816 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003817 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003818){
3819 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003820 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003821 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003822 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003823 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003824 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003825
danielk1977da107192007-05-04 08:32:13 +00003826 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003827 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003828 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003829 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003830
drh86057612007-06-26 01:04:48 +00003831 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003832 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003833 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003834
drh3bcdfd22009-07-12 02:32:21 +00003835 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003836 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3837 ){
danielk1977da107192007-05-04 08:32:13 +00003838 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003839 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003840 }
danielk1977da107192007-05-04 08:32:13 +00003841
3842 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003843 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003844 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003845 if( a+offset>pCur->info.nLocal ){
3846 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003847 }
danielk1977da107192007-05-04 08:32:13 +00003848 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003849 offset = 0;
drha34b6762004-05-07 13:30:42 +00003850 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003851 amt -= a;
drhdd793422001-06-28 01:54:48 +00003852 }else{
drhfa1a98a2004-05-14 19:08:17 +00003853 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003854 }
danielk1977da107192007-05-04 08:32:13 +00003855
3856 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003857 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003858 Pgno nextPage;
3859
drhfa1a98a2004-05-14 19:08:17 +00003860 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003861
danielk19772dec9702007-05-02 16:48:37 +00003862#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003863 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003864 ** has not been allocated, allocate it now. The array is sized at
3865 ** one entry for each overflow page in the overflow chain. The
3866 ** page number of the first overflow page is stored in aOverflow[0],
3867 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3868 ** (the cache is lazily populated).
3869 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003870 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003871 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003872 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003873 /* nOvfl is always positive. If it were zero, fetchPayload would have
3874 ** been used instead of this routine. */
3875 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003876 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003877 }
3878 }
danielk1977da107192007-05-04 08:32:13 +00003879
3880 /* If the overflow page-list cache has been allocated and the
3881 ** entry for the first required overflow page is valid, skip
3882 ** directly to it.
3883 */
danielk19772dec9702007-05-02 16:48:37 +00003884 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3885 iIdx = (offset/ovflSize);
3886 nextPage = pCur->aOverflow[iIdx];
3887 offset = (offset%ovflSize);
3888 }
3889#endif
danielk1977da107192007-05-04 08:32:13 +00003890
3891 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3892
3893#ifndef SQLITE_OMIT_INCRBLOB
3894 /* If required, populate the overflow page-list cache. */
3895 if( pCur->aOverflow ){
3896 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3897 pCur->aOverflow[iIdx] = nextPage;
3898 }
3899#endif
3900
danielk1977d04417962007-05-02 13:16:30 +00003901 if( offset>=ovflSize ){
3902 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003903 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003904 ** data is not required. So first try to lookup the overflow
3905 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003906 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003907 */
danielk19772dec9702007-05-02 16:48:37 +00003908#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003909 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3910 nextPage = pCur->aOverflow[iIdx+1];
3911 } else
danielk19772dec9702007-05-02 16:48:37 +00003912#endif
danielk1977da107192007-05-04 08:32:13 +00003913 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003914 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003915 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003916 /* Need to read this page properly. It contains some of the
3917 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003918 */
3919 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003920 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003921 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003922 if( rc==SQLITE_OK ){
3923 aPayload = sqlite3PagerGetData(pDbPage);
3924 nextPage = get4byte(aPayload);
3925 if( a + offset > ovflSize ){
3926 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003927 }
danielk1977da107192007-05-04 08:32:13 +00003928 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3929 sqlite3PagerUnref(pDbPage);
3930 offset = 0;
3931 amt -= a;
3932 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003933 }
danielk1977cfe9a692004-06-16 12:00:29 +00003934 }
drh2af926b2001-05-15 00:39:25 +00003935 }
drh2af926b2001-05-15 00:39:25 +00003936 }
danielk1977cfe9a692004-06-16 12:00:29 +00003937
danielk1977da107192007-05-04 08:32:13 +00003938 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003939 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003940 }
danielk1977da107192007-05-04 08:32:13 +00003941 return rc;
drh2af926b2001-05-15 00:39:25 +00003942}
3943
drh72f82862001-05-24 21:06:34 +00003944/*
drh3aac2dd2004-04-26 14:10:20 +00003945** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003946** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003947** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003948**
drh5d1a8722009-07-22 18:07:40 +00003949** The caller must ensure that pCur is pointing to a valid row
3950** in the table.
3951**
drh3aac2dd2004-04-26 14:10:20 +00003952** Return SQLITE_OK on success or an error code if anything goes
3953** wrong. An error is returned if "offset+amt" is larger than
3954** the available payload.
drh72f82862001-05-24 21:06:34 +00003955*/
drha34b6762004-05-07 13:30:42 +00003956int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00003957 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00003958 assert( pCur->eState==CURSOR_VALID );
3959 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3960 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
3961 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00003962}
3963
3964/*
drh3aac2dd2004-04-26 14:10:20 +00003965** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003966** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003967** begins at "offset".
3968**
3969** Return SQLITE_OK on success or an error code if anything goes
3970** wrong. An error is returned if "offset+amt" is larger than
3971** the available payload.
drh72f82862001-05-24 21:06:34 +00003972*/
drh3aac2dd2004-04-26 14:10:20 +00003973int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003974 int rc;
3975
danielk19773588ceb2008-06-10 17:30:26 +00003976#ifndef SQLITE_OMIT_INCRBLOB
3977 if ( pCur->eState==CURSOR_INVALID ){
3978 return SQLITE_ABORT;
3979 }
3980#endif
3981
drh1fee73e2007-08-29 04:00:57 +00003982 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003983 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003984 if( rc==SQLITE_OK ){
3985 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003986 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3987 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003988 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00003989 }
3990 return rc;
drh2af926b2001-05-15 00:39:25 +00003991}
3992
drh72f82862001-05-24 21:06:34 +00003993/*
drh0e1c19e2004-05-11 00:58:56 +00003994** Return a pointer to payload information from the entry that the
3995** pCur cursor is pointing to. The pointer is to the beginning of
3996** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003997** skipKey==1. The number of bytes of available key/data is written
3998** into *pAmt. If *pAmt==0, then the value returned will not be
3999** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004000**
4001** This routine is an optimization. It is common for the entire key
4002** and data to fit on the local page and for there to be no overflow
4003** pages. When that is so, this routine can be used to access the
4004** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004005** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004006** the key/data and copy it into a preallocated buffer.
4007**
4008** The pointer returned by this routine looks directly into the cached
4009** page of the database. The data might change or move the next time
4010** any btree routine is called.
4011*/
4012static const unsigned char *fetchPayload(
4013 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004014 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004015 int skipKey /* read beginning at data if this is true */
4016){
4017 unsigned char *aPayload;
4018 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004019 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004020 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004021
danielk197771d5d2c2008-09-29 11:49:47 +00004022 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004023 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004024 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004025 pPage = pCur->apPage[pCur->iPage];
4026 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004027 if( NEVER(pCur->info.nSize==0) ){
4028 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4029 &pCur->info);
4030 }
drh43605152004-05-29 21:46:49 +00004031 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004032 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004033 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004034 nKey = 0;
4035 }else{
drhf49661a2008-12-10 16:45:50 +00004036 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004037 }
drh0e1c19e2004-05-11 00:58:56 +00004038 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004039 aPayload += nKey;
4040 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004041 }else{
drhfa1a98a2004-05-14 19:08:17 +00004042 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004043 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004044 }
drhe51c44f2004-05-30 20:46:09 +00004045 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004046 return aPayload;
4047}
4048
4049
4050/*
drhe51c44f2004-05-30 20:46:09 +00004051** For the entry that cursor pCur is point to, return as
4052** many bytes of the key or data as are available on the local
4053** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004054**
4055** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004056** or be destroyed on the next call to any Btree routine,
4057** including calls from other threads against the same cache.
4058** Hence, a mutex on the BtShared should be held prior to calling
4059** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004060**
4061** These routines is used to get quick access to key and data
4062** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004063*/
drhe51c44f2004-05-30 20:46:09 +00004064const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004065 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004066 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004067 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004068 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4069 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004070 }
drhfe3313f2009-07-21 19:02:20 +00004071 return p;
drh0e1c19e2004-05-11 00:58:56 +00004072}
drhe51c44f2004-05-30 20:46:09 +00004073const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004074 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004075 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004076 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004077 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4078 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004079 }
drhfe3313f2009-07-21 19:02:20 +00004080 return p;
drh0e1c19e2004-05-11 00:58:56 +00004081}
4082
4083
4084/*
drh8178a752003-01-05 21:41:40 +00004085** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004086** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004087**
4088** This function returns SQLITE_CORRUPT if the page-header flags field of
4089** the new child page does not match the flags field of the parent (i.e.
4090** if an intkey page appears to be the parent of a non-intkey page, or
4091** vice-versa).
drh72f82862001-05-24 21:06:34 +00004092*/
drh3aac2dd2004-04-26 14:10:20 +00004093static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004094 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004095 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004096 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004097 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004098
drh1fee73e2007-08-29 04:00:57 +00004099 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004100 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004101 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4102 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4103 return SQLITE_CORRUPT_BKPT;
4104 }
4105 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004106 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004107 pCur->apPage[i+1] = pNewPage;
4108 pCur->aiIdx[i+1] = 0;
4109 pCur->iPage++;
4110
drh271efa52004-05-30 19:19:05 +00004111 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004112 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004113 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004114 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004115 }
drh72f82862001-05-24 21:06:34 +00004116 return SQLITE_OK;
4117}
4118
danielk1977bf93c562008-09-29 15:53:25 +00004119#ifndef NDEBUG
4120/*
4121** Page pParent is an internal (non-leaf) tree page. This function
4122** asserts that page number iChild is the left-child if the iIdx'th
4123** cell in page pParent. Or, if iIdx is equal to the total number of
4124** cells in pParent, that page number iChild is the right-child of
4125** the page.
4126*/
4127static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4128 assert( iIdx<=pParent->nCell );
4129 if( iIdx==pParent->nCell ){
4130 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4131 }else{
4132 assert( get4byte(findCell(pParent, iIdx))==iChild );
4133 }
4134}
4135#else
4136# define assertParentIndex(x,y,z)
4137#endif
4138
drh72f82862001-05-24 21:06:34 +00004139/*
drh5e2f8b92001-05-28 00:41:15 +00004140** Move the cursor up to the parent page.
4141**
4142** pCur->idx is set to the cell index that contains the pointer
4143** to the page we are coming from. If we are coming from the
4144** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004145** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004146*/
danielk197730548662009-07-09 05:07:37 +00004147static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004148 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004149 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004150 assert( pCur->iPage>0 );
4151 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004152 assertParentIndex(
4153 pCur->apPage[pCur->iPage-1],
4154 pCur->aiIdx[pCur->iPage-1],
4155 pCur->apPage[pCur->iPage]->pgno
4156 );
danielk197771d5d2c2008-09-29 11:49:47 +00004157 releasePage(pCur->apPage[pCur->iPage]);
4158 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004159 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004160 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004161}
4162
4163/*
danielk19778f880a82009-07-13 09:41:45 +00004164** Move the cursor to point to the root page of its b-tree structure.
4165**
4166** If the table has a virtual root page, then the cursor is moved to point
4167** to the virtual root page instead of the actual root page. A table has a
4168** virtual root page when the actual root page contains no cells and a
4169** single child page. This can only happen with the table rooted at page 1.
4170**
4171** If the b-tree structure is empty, the cursor state is set to
4172** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4173** cell located on the root (or virtual root) page and the cursor state
4174** is set to CURSOR_VALID.
4175**
4176** If this function returns successfully, it may be assumed that the
4177** page-header flags indicate that the [virtual] root-page is the expected
4178** kind of b-tree page (i.e. if when opening the cursor the caller did not
4179** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4180** indicating a table b-tree, or if the caller did specify a KeyInfo
4181** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4182** b-tree).
drh72f82862001-05-24 21:06:34 +00004183*/
drh5e2f8b92001-05-28 00:41:15 +00004184static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004185 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004186 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004187 Btree *p = pCur->pBtree;
4188 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004189
drh1fee73e2007-08-29 04:00:57 +00004190 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004191 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4192 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4193 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4194 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4195 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004196 assert( pCur->skipNext!=SQLITE_OK );
4197 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004198 }
danielk1977be51a652008-10-08 17:58:48 +00004199 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004200 }
danielk197771d5d2c2008-09-29 11:49:47 +00004201
4202 if( pCur->iPage>=0 ){
4203 int i;
4204 for(i=1; i<=pCur->iPage; i++){
4205 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004206 }
danielk1977172114a2009-07-07 15:47:12 +00004207 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004208 }else{
drh4c301aa2009-07-15 17:25:45 +00004209 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4210 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004211 pCur->eState = CURSOR_INVALID;
4212 return rc;
4213 }
danielk1977172114a2009-07-07 15:47:12 +00004214 pCur->iPage = 0;
4215
4216 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4217 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4218 ** NULL, the caller expects a table b-tree. If this is not the case,
4219 ** return an SQLITE_CORRUPT error. */
4220 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4221 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4222 return SQLITE_CORRUPT_BKPT;
4223 }
drhc39e0002004-05-07 23:50:57 +00004224 }
danielk197771d5d2c2008-09-29 11:49:47 +00004225
danielk19778f880a82009-07-13 09:41:45 +00004226 /* Assert that the root page is of the correct type. This must be the
4227 ** case as the call to this function that loaded the root-page (either
4228 ** this call or a previous invocation) would have detected corruption
4229 ** if the assumption were not true, and it is not possible for the flags
4230 ** byte to have been modified while this cursor is holding a reference
4231 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004232 pRoot = pCur->apPage[0];
4233 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004234 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4235
danielk197771d5d2c2008-09-29 11:49:47 +00004236 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004237 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004238 pCur->atLast = 0;
4239 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004240
drh8856d6a2004-04-29 14:42:46 +00004241 if( pRoot->nCell==0 && !pRoot->leaf ){
4242 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004243 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004244 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004245 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004246 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004247 }else{
4248 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004249 }
4250 return rc;
drh72f82862001-05-24 21:06:34 +00004251}
drh2af926b2001-05-15 00:39:25 +00004252
drh5e2f8b92001-05-28 00:41:15 +00004253/*
4254** Move the cursor down to the left-most leaf entry beneath the
4255** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004256**
4257** The left-most leaf is the one with the smallest key - the first
4258** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004259*/
4260static int moveToLeftmost(BtCursor *pCur){
4261 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004262 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004263 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004264
drh1fee73e2007-08-29 04:00:57 +00004265 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004266 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004267 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4268 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4269 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004270 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004271 }
drhd677b3d2007-08-20 22:48:41 +00004272 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004273}
4274
drh2dcc9aa2002-12-04 13:40:25 +00004275/*
4276** Move the cursor down to the right-most leaf entry beneath the
4277** page to which it is currently pointing. Notice the difference
4278** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4279** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4280** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004281**
4282** The right-most entry is the one with the largest key - the last
4283** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004284*/
4285static int moveToRightmost(BtCursor *pCur){
4286 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004287 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004288 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004289
drh1fee73e2007-08-29 04:00:57 +00004290 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004291 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004292 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004293 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004294 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004295 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004296 }
drhd677b3d2007-08-20 22:48:41 +00004297 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004298 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004299 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004300 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004301 }
danielk1977518002e2008-09-05 05:02:46 +00004302 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004303}
4304
drh5e00f6c2001-09-13 13:46:56 +00004305/* Move the cursor to the first entry in the table. Return SQLITE_OK
4306** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004307** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004308*/
drh3aac2dd2004-04-26 14:10:20 +00004309int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004310 int rc;
drhd677b3d2007-08-20 22:48:41 +00004311
drh1fee73e2007-08-29 04:00:57 +00004312 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004313 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004314 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004315 if( rc==SQLITE_OK ){
4316 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004317 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004318 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004319 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004320 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004321 *pRes = 0;
4322 rc = moveToLeftmost(pCur);
4323 }
drh5e00f6c2001-09-13 13:46:56 +00004324 }
drh5e00f6c2001-09-13 13:46:56 +00004325 return rc;
4326}
drh5e2f8b92001-05-28 00:41:15 +00004327
drh9562b552002-02-19 15:00:07 +00004328/* Move the cursor to the last entry in the table. Return SQLITE_OK
4329** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004330** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004331*/
drh3aac2dd2004-04-26 14:10:20 +00004332int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004333 int rc;
drhd677b3d2007-08-20 22:48:41 +00004334
drh1fee73e2007-08-29 04:00:57 +00004335 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004336 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004337
4338 /* If the cursor already points to the last entry, this is a no-op. */
4339 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4340#ifdef SQLITE_DEBUG
4341 /* This block serves to assert() that the cursor really does point
4342 ** to the last entry in the b-tree. */
4343 int ii;
4344 for(ii=0; ii<pCur->iPage; ii++){
4345 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4346 }
4347 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4348 assert( pCur->apPage[pCur->iPage]->leaf );
4349#endif
4350 return SQLITE_OK;
4351 }
4352
drh9562b552002-02-19 15:00:07 +00004353 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004354 if( rc==SQLITE_OK ){
4355 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004356 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004357 *pRes = 1;
4358 }else{
4359 assert( pCur->eState==CURSOR_VALID );
4360 *pRes = 0;
4361 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004362 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004363 }
drh9562b552002-02-19 15:00:07 +00004364 }
drh9562b552002-02-19 15:00:07 +00004365 return rc;
4366}
4367
drhe14006d2008-03-25 17:23:32 +00004368/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004369** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004370**
drhe63d9992008-08-13 19:11:48 +00004371** For INTKEY tables, the intKey parameter is used. pIdxKey
4372** must be NULL. For index tables, pIdxKey is used and intKey
4373** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004374**
drh5e2f8b92001-05-28 00:41:15 +00004375** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004376** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004377** were present. The cursor might point to an entry that comes
4378** before or after the key.
4379**
drh64022502009-01-09 14:11:04 +00004380** An integer is written into *pRes which is the result of
4381** comparing the key with the entry to which the cursor is
4382** pointing. The meaning of the integer written into
4383** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004384**
4385** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004386** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004387** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004388**
4389** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004390** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004391**
4392** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004393** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004394**
drha059ad02001-04-17 20:09:11 +00004395*/
drhe63d9992008-08-13 19:11:48 +00004396int sqlite3BtreeMovetoUnpacked(
4397 BtCursor *pCur, /* The cursor to be moved */
4398 UnpackedRecord *pIdxKey, /* Unpacked index key */
4399 i64 intKey, /* The table key */
4400 int biasRight, /* If true, bias the search to the high end */
4401 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004402){
drh72f82862001-05-24 21:06:34 +00004403 int rc;
drhd677b3d2007-08-20 22:48:41 +00004404
drh1fee73e2007-08-29 04:00:57 +00004405 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004406 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004407 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004408 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004409
4410 /* If the cursor is already positioned at the point we are trying
4411 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004412 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4413 && pCur->apPage[0]->intKey
4414 ){
drhe63d9992008-08-13 19:11:48 +00004415 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004416 *pRes = 0;
4417 return SQLITE_OK;
4418 }
drhe63d9992008-08-13 19:11:48 +00004419 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004420 *pRes = -1;
4421 return SQLITE_OK;
4422 }
4423 }
4424
drh5e2f8b92001-05-28 00:41:15 +00004425 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004426 if( rc ){
4427 return rc;
4428 }
danielk197771d5d2c2008-09-29 11:49:47 +00004429 assert( pCur->apPage[pCur->iPage] );
4430 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004431 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004432 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004433 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004434 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004435 return SQLITE_OK;
4436 }
danielk197771d5d2c2008-09-29 11:49:47 +00004437 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004438 for(;;){
drh72f82862001-05-24 21:06:34 +00004439 int lwr, upr;
4440 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004441 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004442 int c;
4443
4444 /* pPage->nCell must be greater than zero. If this is the root-page
4445 ** the cursor would have been INVALID above and this for(;;) loop
4446 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004447 ** would have already detected db corruption. Similarly, pPage must
4448 ** be the right kind (index or table) of b-tree page. Otherwise
4449 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004450 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004451 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004452 lwr = 0;
4453 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004454 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004455 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004456 }else{
drhf49661a2008-12-10 16:45:50 +00004457 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004458 }
drh64022502009-01-09 14:11:04 +00004459 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004460 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4461 u8 *pCell; /* Pointer to current cell in pPage */
4462
drh366fda62006-01-13 02:35:09 +00004463 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004464 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004465 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004466 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004467 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004468 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004469 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004470 }
drha2c20e42008-03-29 16:01:04 +00004471 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004472 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004473 c = 0;
drhe63d9992008-08-13 19:11:48 +00004474 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004475 c = -1;
4476 }else{
drhe63d9992008-08-13 19:11:48 +00004477 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004478 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004479 }
danielk197711c327a2009-05-04 19:01:26 +00004480 pCur->validNKey = 1;
4481 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004482 }else{
drhb2eced52010-08-12 02:41:12 +00004483 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004484 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004485 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004486 ** varint. This information is used to attempt to avoid parsing
4487 ** the entire cell by checking for the cases where the record is
4488 ** stored entirely within the b-tree page by inspecting the first
4489 ** 2 bytes of the cell.
4490 */
4491 int nCell = pCell[0];
4492 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4493 /* This branch runs if the record-size field of the cell is a
4494 ** single byte varint and the record fits entirely on the main
4495 ** b-tree page. */
4496 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4497 }else if( !(pCell[1] & 0x80)
4498 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4499 ){
4500 /* The record-size field is a 2 byte varint and the record
4501 ** fits entirely on the main b-tree page. */
4502 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004503 }else{
danielk197711c327a2009-05-04 19:01:26 +00004504 /* The record flows over onto one or more overflow pages. In
4505 ** this case the whole cell needs to be parsed, a buffer allocated
4506 ** and accessPayload() used to retrieve the record into the
4507 ** buffer before VdbeRecordCompare() can be called. */
4508 void *pCellKey;
4509 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004510 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004511 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004512 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004513 if( pCellKey==0 ){
4514 rc = SQLITE_NOMEM;
4515 goto moveto_finish;
4516 }
drhfb192682009-07-11 18:26:28 +00004517 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004518 if( rc ){
4519 sqlite3_free(pCellKey);
4520 goto moveto_finish;
4521 }
danielk197711c327a2009-05-04 19:01:26 +00004522 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004523 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004524 }
drh3aac2dd2004-04-26 14:10:20 +00004525 }
drh72f82862001-05-24 21:06:34 +00004526 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004527 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004528 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004529 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004530 break;
4531 }else{
drh64022502009-01-09 14:11:04 +00004532 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004533 rc = SQLITE_OK;
4534 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004535 }
drh72f82862001-05-24 21:06:34 +00004536 }
4537 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004538 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004539 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004540 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004541 }
drhf1d68b32007-03-29 04:43:26 +00004542 if( lwr>upr ){
4543 break;
4544 }
drhf49661a2008-12-10 16:45:50 +00004545 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004546 }
4547 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004548 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004549 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004550 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004551 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004552 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004553 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004554 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004555 }
4556 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004557 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004558 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004559 rc = SQLITE_OK;
4560 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004561 }
drhf49661a2008-12-10 16:45:50 +00004562 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004563 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004564 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004565 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004566 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004567 }
drh1e968a02008-03-25 00:22:21 +00004568moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004569 return rc;
4570}
4571
drhd677b3d2007-08-20 22:48:41 +00004572
drh72f82862001-05-24 21:06:34 +00004573/*
drhc39e0002004-05-07 23:50:57 +00004574** Return TRUE if the cursor is not pointing at an entry of the table.
4575**
4576** TRUE will be returned after a call to sqlite3BtreeNext() moves
4577** past the last entry in the table or sqlite3BtreePrev() moves past
4578** the first entry. TRUE is also returned if the table is empty.
4579*/
4580int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004581 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4582 ** have been deleted? This API will need to change to return an error code
4583 ** as well as the boolean result value.
4584 */
4585 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004586}
4587
4588/*
drhbd03cae2001-06-02 02:40:57 +00004589** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004590** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004591** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004592** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004593*/
drhd094db12008-04-03 21:46:57 +00004594int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004595 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004596 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004597 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004598
drh1fee73e2007-08-29 04:00:57 +00004599 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004600 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004601 if( rc!=SQLITE_OK ){
4602 return rc;
4603 }
drh8c4d3a62007-04-06 01:03:32 +00004604 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004605 if( CURSOR_INVALID==pCur->eState ){
4606 *pRes = 1;
4607 return SQLITE_OK;
4608 }
drh4c301aa2009-07-15 17:25:45 +00004609 if( pCur->skipNext>0 ){
4610 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004611 *pRes = 0;
4612 return SQLITE_OK;
4613 }
drh4c301aa2009-07-15 17:25:45 +00004614 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004615
danielk197771d5d2c2008-09-29 11:49:47 +00004616 pPage = pCur->apPage[pCur->iPage];
4617 idx = ++pCur->aiIdx[pCur->iPage];
4618 assert( pPage->isInit );
4619 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004620
drh271efa52004-05-30 19:19:05 +00004621 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004622 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004623 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004624 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004625 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004626 if( rc ) return rc;
4627 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004628 *pRes = 0;
4629 return rc;
drh72f82862001-05-24 21:06:34 +00004630 }
drh5e2f8b92001-05-28 00:41:15 +00004631 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004632 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004633 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004634 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004635 return SQLITE_OK;
4636 }
danielk197730548662009-07-09 05:07:37 +00004637 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004638 pPage = pCur->apPage[pCur->iPage];
4639 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004640 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004641 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004642 rc = sqlite3BtreeNext(pCur, pRes);
4643 }else{
4644 rc = SQLITE_OK;
4645 }
4646 return rc;
drh8178a752003-01-05 21:41:40 +00004647 }
4648 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004649 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004650 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004651 }
drh5e2f8b92001-05-28 00:41:15 +00004652 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004653 return rc;
drh72f82862001-05-24 21:06:34 +00004654}
drhd677b3d2007-08-20 22:48:41 +00004655
drh72f82862001-05-24 21:06:34 +00004656
drh3b7511c2001-05-26 13:15:44 +00004657/*
drh2dcc9aa2002-12-04 13:40:25 +00004658** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004659** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004660** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004661** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004662*/
drhd094db12008-04-03 21:46:57 +00004663int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004664 int rc;
drh8178a752003-01-05 21:41:40 +00004665 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004666
drh1fee73e2007-08-29 04:00:57 +00004667 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004668 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004669 if( rc!=SQLITE_OK ){
4670 return rc;
4671 }
drha2c20e42008-03-29 16:01:04 +00004672 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004673 if( CURSOR_INVALID==pCur->eState ){
4674 *pRes = 1;
4675 return SQLITE_OK;
4676 }
drh4c301aa2009-07-15 17:25:45 +00004677 if( pCur->skipNext<0 ){
4678 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004679 *pRes = 0;
4680 return SQLITE_OK;
4681 }
drh4c301aa2009-07-15 17:25:45 +00004682 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004683
danielk197771d5d2c2008-09-29 11:49:47 +00004684 pPage = pCur->apPage[pCur->iPage];
4685 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004686 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004687 int idx = pCur->aiIdx[pCur->iPage];
4688 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004689 if( rc ){
4690 return rc;
4691 }
drh2dcc9aa2002-12-04 13:40:25 +00004692 rc = moveToRightmost(pCur);
4693 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004694 while( pCur->aiIdx[pCur->iPage]==0 ){
4695 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004696 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004697 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004698 return SQLITE_OK;
4699 }
danielk197730548662009-07-09 05:07:37 +00004700 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004701 }
drh271efa52004-05-30 19:19:05 +00004702 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004703 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004704
4705 pCur->aiIdx[pCur->iPage]--;
4706 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004707 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004708 rc = sqlite3BtreePrevious(pCur, pRes);
4709 }else{
4710 rc = SQLITE_OK;
4711 }
drh2dcc9aa2002-12-04 13:40:25 +00004712 }
drh8178a752003-01-05 21:41:40 +00004713 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004714 return rc;
4715}
4716
4717/*
drh3b7511c2001-05-26 13:15:44 +00004718** Allocate a new page from the database file.
4719**
danielk19773b8a05f2007-03-19 17:44:26 +00004720** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004721** has already been called on the new page.) The new page has also
4722** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004723** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004724**
4725** SQLITE_OK is returned on success. Any other return value indicates
4726** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004727** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004728**
drh199e3cf2002-07-18 11:01:47 +00004729** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4730** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004731** attempt to keep related pages close to each other in the database file,
4732** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004733**
4734** If the "exact" parameter is not 0, and the page-number nearby exists
4735** anywhere on the free-list, then it is guarenteed to be returned. This
4736** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004737*/
drh4f0c5872007-03-26 22:05:01 +00004738static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004739 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004740 MemPage **ppPage,
4741 Pgno *pPgno,
4742 Pgno nearby,
4743 u8 exact
4744){
drh3aac2dd2004-04-26 14:10:20 +00004745 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004746 int rc;
drh35cd6432009-06-05 14:17:21 +00004747 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004748 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004749 MemPage *pTrunk = 0;
4750 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004751 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004752
drh1fee73e2007-08-29 04:00:57 +00004753 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004754 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004755 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004756 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004757 testcase( n==mxPage-1 );
4758 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004759 return SQLITE_CORRUPT_BKPT;
4760 }
drh3aac2dd2004-04-26 14:10:20 +00004761 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004762 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004763 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004764 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4765
4766 /* If the 'exact' parameter was true and a query of the pointer-map
4767 ** shows that the page 'nearby' is somewhere on the free-list, then
4768 ** the entire-list will be searched for that page.
4769 */
4770#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004771 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004772 u8 eType;
4773 assert( nearby>0 );
4774 assert( pBt->autoVacuum );
4775 rc = ptrmapGet(pBt, nearby, &eType, 0);
4776 if( rc ) return rc;
4777 if( eType==PTRMAP_FREEPAGE ){
4778 searchList = 1;
4779 }
4780 *pPgno = nearby;
4781 }
4782#endif
4783
4784 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4785 ** first free-list trunk page. iPrevTrunk is initially 1.
4786 */
danielk19773b8a05f2007-03-19 17:44:26 +00004787 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004788 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004789 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004790
4791 /* The code within this loop is run only once if the 'searchList' variable
4792 ** is not true. Otherwise, it runs once for each trunk-page on the
4793 ** free-list until the page 'nearby' is located.
4794 */
4795 do {
4796 pPrevTrunk = pTrunk;
4797 if( pPrevTrunk ){
4798 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004799 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004800 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004801 }
drhdf35a082009-07-09 02:24:35 +00004802 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004803 if( iTrunk>mxPage ){
4804 rc = SQLITE_CORRUPT_BKPT;
4805 }else{
danielk197730548662009-07-09 05:07:37 +00004806 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004807 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004808 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004809 pTrunk = 0;
4810 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004811 }
4812
4813 k = get4byte(&pTrunk->aData[4]);
4814 if( k==0 && !searchList ){
4815 /* The trunk has no leaves and the list is not being searched.
4816 ** So extract the trunk page itself and use it as the newly
4817 ** allocated page */
4818 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004819 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004820 if( rc ){
4821 goto end_allocate_page;
4822 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004823 *pPgno = iTrunk;
4824 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4825 *ppPage = pTrunk;
4826 pTrunk = 0;
4827 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004828 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004829 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004830 rc = SQLITE_CORRUPT_BKPT;
4831 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004832#ifndef SQLITE_OMIT_AUTOVACUUM
4833 }else if( searchList && nearby==iTrunk ){
4834 /* The list is being searched and this trunk page is the page
4835 ** to allocate, regardless of whether it has leaves.
4836 */
4837 assert( *pPgno==iTrunk );
4838 *ppPage = pTrunk;
4839 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004840 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004841 if( rc ){
4842 goto end_allocate_page;
4843 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004844 if( k==0 ){
4845 if( !pPrevTrunk ){
4846 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4847 }else{
danf48c3552010-08-23 15:41:24 +00004848 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
4849 if( rc!=SQLITE_OK ){
4850 goto end_allocate_page;
4851 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004852 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4853 }
4854 }else{
4855 /* The trunk page is required by the caller but it contains
4856 ** pointers to free-list leaves. The first leaf becomes a trunk
4857 ** page in this case.
4858 */
4859 MemPage *pNewTrunk;
4860 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004861 if( iNewTrunk>mxPage ){
4862 rc = SQLITE_CORRUPT_BKPT;
4863 goto end_allocate_page;
4864 }
drhdf35a082009-07-09 02:24:35 +00004865 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004866 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004867 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004868 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004869 }
danielk19773b8a05f2007-03-19 17:44:26 +00004870 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004871 if( rc!=SQLITE_OK ){
4872 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004873 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004874 }
4875 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4876 put4byte(&pNewTrunk->aData[4], k-1);
4877 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004878 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004879 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004880 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004881 put4byte(&pPage1->aData[32], iNewTrunk);
4882 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004883 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004884 if( rc ){
4885 goto end_allocate_page;
4886 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004887 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4888 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004889 }
4890 pTrunk = 0;
4891 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4892#endif
danielk1977e5765212009-06-17 11:13:28 +00004893 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004894 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004895 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004896 Pgno iPage;
4897 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004898 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004899 if( rc ){
4900 goto end_allocate_page;
4901 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004902 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004903 u32 i;
4904 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004905 closest = 0;
4906 dist = get4byte(&aData[8]) - nearby;
4907 if( dist<0 ) dist = -dist;
4908 for(i=1; i<k; i++){
4909 int d2 = get4byte(&aData[8+i*4]) - nearby;
4910 if( d2<0 ) d2 = -d2;
4911 if( d2<dist ){
4912 closest = i;
4913 dist = d2;
4914 }
4915 }
4916 }else{
4917 closest = 0;
4918 }
4919
4920 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004921 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004922 if( iPage>mxPage ){
4923 rc = SQLITE_CORRUPT_BKPT;
4924 goto end_allocate_page;
4925 }
drhdf35a082009-07-09 02:24:35 +00004926 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004927 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004928 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004929 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004930 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4931 ": %d more free pages\n",
4932 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4933 if( closest<k-1 ){
4934 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4935 }
4936 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004937 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004938 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004939 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004940 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004941 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004942 if( rc!=SQLITE_OK ){
4943 releasePage(*ppPage);
4944 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004945 }
4946 searchList = 0;
4947 }
drhee696e22004-08-30 16:52:17 +00004948 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004949 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004950 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004951 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004952 }else{
drh3aac2dd2004-04-26 14:10:20 +00004953 /* There are no pages on the freelist, so create a new page at the
4954 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00004955 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4956 if( rc ) return rc;
4957 pBt->nPage++;
4958 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00004959
danielk1977afcdd022004-10-31 16:25:42 +00004960#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00004961 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00004962 /* If *pPgno refers to a pointer-map page, allocate two new pages
4963 ** at the end of the file instead of one. The first allocated page
4964 ** becomes a new pointer-map page, the second is used by the caller.
4965 */
danielk1977ac861692009-03-28 10:54:22 +00004966 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00004967 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
4968 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004969 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00004970 if( rc==SQLITE_OK ){
4971 rc = sqlite3PagerWrite(pPg->pDbPage);
4972 releasePage(pPg);
4973 }
4974 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00004975 pBt->nPage++;
4976 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00004977 }
4978#endif
drhdd3cd972010-03-27 17:12:36 +00004979 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
4980 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00004981
danielk1977599fcba2004-11-08 07:13:13 +00004982 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004983 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00004984 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004985 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004986 if( rc!=SQLITE_OK ){
4987 releasePage(*ppPage);
4988 }
drh3a4c1412004-05-09 20:40:11 +00004989 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004990 }
danielk1977599fcba2004-11-08 07:13:13 +00004991
4992 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004993
4994end_allocate_page:
4995 releasePage(pTrunk);
4996 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004997 if( rc==SQLITE_OK ){
4998 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4999 releasePage(*ppPage);
5000 return SQLITE_CORRUPT_BKPT;
5001 }
5002 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005003 }else{
5004 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005005 }
drh3b7511c2001-05-26 13:15:44 +00005006 return rc;
5007}
5008
5009/*
danielk1977bea2a942009-01-20 17:06:27 +00005010** This function is used to add page iPage to the database file free-list.
5011** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005012**
danielk1977bea2a942009-01-20 17:06:27 +00005013** The value passed as the second argument to this function is optional.
5014** If the caller happens to have a pointer to the MemPage object
5015** corresponding to page iPage handy, it may pass it as the second value.
5016** Otherwise, it may pass NULL.
5017**
5018** If a pointer to a MemPage object is passed as the second argument,
5019** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005020*/
danielk1977bea2a942009-01-20 17:06:27 +00005021static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5022 MemPage *pTrunk = 0; /* Free-list trunk page */
5023 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5024 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5025 MemPage *pPage; /* Page being freed. May be NULL. */
5026 int rc; /* Return Code */
5027 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005028
danielk1977bea2a942009-01-20 17:06:27 +00005029 assert( sqlite3_mutex_held(pBt->mutex) );
5030 assert( iPage>1 );
5031 assert( !pMemPage || pMemPage->pgno==iPage );
5032
5033 if( pMemPage ){
5034 pPage = pMemPage;
5035 sqlite3PagerRef(pPage->pDbPage);
5036 }else{
5037 pPage = btreePageLookup(pBt, iPage);
5038 }
drh3aac2dd2004-04-26 14:10:20 +00005039
drha34b6762004-05-07 13:30:42 +00005040 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005041 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005042 if( rc ) goto freepage_out;
5043 nFree = get4byte(&pPage1->aData[36]);
5044 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005045
drh5b47efa2010-02-12 18:18:39 +00005046 if( pBt->secureDelete ){
5047 /* If the secure_delete option is enabled, then
5048 ** always fully overwrite deleted information with zeros.
5049 */
shaneh84f4b2f2010-02-26 01:46:54 +00005050 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5051 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005052 ){
5053 goto freepage_out;
5054 }
5055 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005056 }
drhfcce93f2006-02-22 03:08:32 +00005057
danielk1977687566d2004-11-02 12:56:41 +00005058 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005059 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005060 */
danielk197785d90ca2008-07-19 14:25:15 +00005061 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005062 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005063 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005064 }
danielk1977687566d2004-11-02 12:56:41 +00005065
danielk1977bea2a942009-01-20 17:06:27 +00005066 /* Now manipulate the actual database free-list structure. There are two
5067 ** possibilities. If the free-list is currently empty, or if the first
5068 ** trunk page in the free-list is full, then this page will become a
5069 ** new free-list trunk page. Otherwise, it will become a leaf of the
5070 ** first trunk page in the current free-list. This block tests if it
5071 ** is possible to add the page as a new free-list leaf.
5072 */
5073 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005074 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005075
5076 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005077 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005078 if( rc!=SQLITE_OK ){
5079 goto freepage_out;
5080 }
5081
5082 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005083 assert( pBt->usableSize>32 );
5084 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005085 rc = SQLITE_CORRUPT_BKPT;
5086 goto freepage_out;
5087 }
drheeb844a2009-08-08 18:01:07 +00005088 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005089 /* In this case there is room on the trunk page to insert the page
5090 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005091 **
5092 ** Note that the trunk page is not really full until it contains
5093 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5094 ** coded. But due to a coding error in versions of SQLite prior to
5095 ** 3.6.0, databases with freelist trunk pages holding more than
5096 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5097 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005098 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005099 ** for now. At some point in the future (once everyone has upgraded
5100 ** to 3.6.0 or later) we should consider fixing the conditional above
5101 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5102 */
danielk19773b8a05f2007-03-19 17:44:26 +00005103 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005104 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005105 put4byte(&pTrunk->aData[4], nLeaf+1);
5106 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drh5b47efa2010-02-12 18:18:39 +00005107 if( pPage && !pBt->secureDelete ){
danielk1977bea2a942009-01-20 17:06:27 +00005108 sqlite3PagerDontWrite(pPage->pDbPage);
5109 }
danielk1977bea2a942009-01-20 17:06:27 +00005110 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005111 }
drh3a4c1412004-05-09 20:40:11 +00005112 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005113 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005114 }
drh3b7511c2001-05-26 13:15:44 +00005115 }
danielk1977bea2a942009-01-20 17:06:27 +00005116
5117 /* If control flows to this point, then it was not possible to add the
5118 ** the page being freed as a leaf page of the first trunk in the free-list.
5119 ** Possibly because the free-list is empty, or possibly because the
5120 ** first trunk in the free-list is full. Either way, the page being freed
5121 ** will become the new first trunk page in the free-list.
5122 */
drhc046e3e2009-07-15 11:26:44 +00005123 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5124 goto freepage_out;
5125 }
5126 rc = sqlite3PagerWrite(pPage->pDbPage);
5127 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005128 goto freepage_out;
5129 }
5130 put4byte(pPage->aData, iTrunk);
5131 put4byte(&pPage->aData[4], 0);
5132 put4byte(&pPage1->aData[32], iPage);
5133 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5134
5135freepage_out:
5136 if( pPage ){
5137 pPage->isInit = 0;
5138 }
5139 releasePage(pPage);
5140 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005141 return rc;
5142}
drhc314dc72009-07-21 11:52:34 +00005143static void freePage(MemPage *pPage, int *pRC){
5144 if( (*pRC)==SQLITE_OK ){
5145 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5146 }
danielk1977bea2a942009-01-20 17:06:27 +00005147}
drh3b7511c2001-05-26 13:15:44 +00005148
5149/*
drh3aac2dd2004-04-26 14:10:20 +00005150** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005151*/
drh3aac2dd2004-04-26 14:10:20 +00005152static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005153 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005154 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005155 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005156 int rc;
drh94440812007-03-06 11:42:19 +00005157 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005158 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005159
drh1fee73e2007-08-29 04:00:57 +00005160 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005161 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005162 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005163 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005164 }
drh6f11bef2004-05-13 01:12:56 +00005165 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005166 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005167 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005168 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5169 assert( ovflPgno==0 || nOvfl>0 );
5170 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005171 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005172 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005173 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005174 /* 0 is not a legal page number and page 1 cannot be an
5175 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5176 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005177 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005178 }
danielk1977bea2a942009-01-20 17:06:27 +00005179 if( nOvfl ){
5180 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5181 if( rc ) return rc;
5182 }
dan887d4b22010-02-25 12:09:16 +00005183
shaneh1da207e2010-03-09 14:41:12 +00005184 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005185 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5186 ){
5187 /* There is no reason any cursor should have an outstanding reference
5188 ** to an overflow page belonging to a cell that is being deleted/updated.
5189 ** So if there exists more than one reference to this page, then it
5190 ** must not really be an overflow page and the database must be corrupt.
5191 ** It is helpful to detect this before calling freePage2(), as
5192 ** freePage2() may zero the page contents if secure-delete mode is
5193 ** enabled. If this 'overflow' page happens to be a page that the
5194 ** caller is iterating through or using in some other way, this
5195 ** can be problematic.
5196 */
5197 rc = SQLITE_CORRUPT_BKPT;
5198 }else{
5199 rc = freePage2(pBt, pOvfl, ovflPgno);
5200 }
5201
danielk1977bea2a942009-01-20 17:06:27 +00005202 if( pOvfl ){
5203 sqlite3PagerUnref(pOvfl->pDbPage);
5204 }
drh3b7511c2001-05-26 13:15:44 +00005205 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005206 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005207 }
drh5e2f8b92001-05-28 00:41:15 +00005208 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005209}
5210
5211/*
drh91025292004-05-03 19:49:32 +00005212** Create the byte sequence used to represent a cell on page pPage
5213** and write that byte sequence into pCell[]. Overflow pages are
5214** allocated and filled in as necessary. The calling procedure
5215** is responsible for making sure sufficient space has been allocated
5216** for pCell[].
5217**
5218** Note that pCell does not necessary need to point to the pPage->aData
5219** area. pCell might point to some temporary storage. The cell will
5220** be constructed in this temporary area then copied into pPage->aData
5221** later.
drh3b7511c2001-05-26 13:15:44 +00005222*/
5223static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005224 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005225 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005226 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005227 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005228 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005229 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005230){
drh3b7511c2001-05-26 13:15:44 +00005231 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005232 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005233 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005234 int spaceLeft;
5235 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005236 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005237 unsigned char *pPrior;
5238 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005239 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005240 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005241 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005242 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005243
drh1fee73e2007-08-29 04:00:57 +00005244 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005245
drhc5053fb2008-11-27 02:22:10 +00005246 /* pPage is not necessarily writeable since pCell might be auxiliary
5247 ** buffer space that is separate from the pPage buffer area */
5248 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5249 || sqlite3PagerIswriteable(pPage->pDbPage) );
5250
drh91025292004-05-03 19:49:32 +00005251 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005252 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005253 if( !pPage->leaf ){
5254 nHeader += 4;
5255 }
drh8b18dd42004-05-12 19:18:15 +00005256 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005257 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005258 }else{
drhb026e052007-05-02 01:34:31 +00005259 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005260 }
drh6f11bef2004-05-13 01:12:56 +00005261 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005262 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005263 assert( info.nHeader==nHeader );
5264 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005265 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005266
5267 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005268 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005269 if( pPage->intKey ){
5270 pSrc = pData;
5271 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005272 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005273 }else{
danielk197731d31b82009-07-13 13:18:07 +00005274 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5275 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005276 }
drhf49661a2008-12-10 16:45:50 +00005277 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005278 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005279 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005280 }
drh6f11bef2004-05-13 01:12:56 +00005281 *pnSize = info.nSize;
5282 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005283 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005284 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005285
drh3b7511c2001-05-26 13:15:44 +00005286 while( nPayload>0 ){
5287 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005288#ifndef SQLITE_OMIT_AUTOVACUUM
5289 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005290 if( pBt->autoVacuum ){
5291 do{
5292 pgnoOvfl++;
5293 } while(
5294 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5295 );
danielk1977b39f70b2007-05-17 18:28:11 +00005296 }
danielk1977afcdd022004-10-31 16:25:42 +00005297#endif
drhf49661a2008-12-10 16:45:50 +00005298 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005299#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005300 /* If the database supports auto-vacuum, and the second or subsequent
5301 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005302 ** for that page now.
5303 **
5304 ** If this is the first overflow page, then write a partial entry
5305 ** to the pointer-map. If we write nothing to this pointer-map slot,
5306 ** then the optimistic overflow chain processing in clearCell()
5307 ** may misinterpret the uninitialised values and delete the
5308 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005309 */
danielk19774ef24492007-05-23 09:52:41 +00005310 if( pBt->autoVacuum && rc==SQLITE_OK ){
5311 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005312 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005313 if( rc ){
5314 releasePage(pOvfl);
5315 }
danielk1977afcdd022004-10-31 16:25:42 +00005316 }
5317#endif
drh3b7511c2001-05-26 13:15:44 +00005318 if( rc ){
drh9b171272004-05-08 02:03:22 +00005319 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005320 return rc;
5321 }
drhc5053fb2008-11-27 02:22:10 +00005322
5323 /* If pToRelease is not zero than pPrior points into the data area
5324 ** of pToRelease. Make sure pToRelease is still writeable. */
5325 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5326
5327 /* If pPrior is part of the data area of pPage, then make sure pPage
5328 ** is still writeable */
5329 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5330 || sqlite3PagerIswriteable(pPage->pDbPage) );
5331
drh3aac2dd2004-04-26 14:10:20 +00005332 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005333 releasePage(pToRelease);
5334 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005335 pPrior = pOvfl->aData;
5336 put4byte(pPrior, 0);
5337 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005338 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005339 }
5340 n = nPayload;
5341 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005342
5343 /* If pToRelease is not zero than pPayload points into the data area
5344 ** of pToRelease. Make sure pToRelease is still writeable. */
5345 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5346
5347 /* If pPayload is part of the data area of pPage, then make sure pPage
5348 ** is still writeable */
5349 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5350 || sqlite3PagerIswriteable(pPage->pDbPage) );
5351
drhb026e052007-05-02 01:34:31 +00005352 if( nSrc>0 ){
5353 if( n>nSrc ) n = nSrc;
5354 assert( pSrc );
5355 memcpy(pPayload, pSrc, n);
5356 }else{
5357 memset(pPayload, 0, n);
5358 }
drh3b7511c2001-05-26 13:15:44 +00005359 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005360 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005361 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005362 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005363 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005364 if( nSrc==0 ){
5365 nSrc = nData;
5366 pSrc = pData;
5367 }
drhdd793422001-06-28 01:54:48 +00005368 }
drh9b171272004-05-08 02:03:22 +00005369 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005370 return SQLITE_OK;
5371}
5372
drh14acc042001-06-10 19:56:58 +00005373/*
5374** Remove the i-th cell from pPage. This routine effects pPage only.
5375** The cell content is not freed or deallocated. It is assumed that
5376** the cell content has been copied someplace else. This routine just
5377** removes the reference to the cell from pPage.
5378**
5379** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005380*/
drh98add2e2009-07-20 17:11:49 +00005381static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43605152004-05-29 21:46:49 +00005382 int i; /* Loop counter */
drh43b18e12010-08-17 19:40:08 +00005383 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005384 u8 *data; /* pPage->aData */
5385 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005386 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005387 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005388
drh98add2e2009-07-20 17:11:49 +00005389 if( *pRC ) return;
5390
drh8c42ca92001-06-22 19:15:00 +00005391 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005392 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005393 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005394 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005395 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005396 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005397 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005398 hdr = pPage->hdrOffset;
5399 testcase( pc==get2byte(&data[hdr+5]) );
5400 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005401 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005402 *pRC = SQLITE_CORRUPT_BKPT;
5403 return;
shane0af3f892008-11-12 04:55:34 +00005404 }
shanedcc50b72008-11-13 18:29:50 +00005405 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005406 if( rc ){
5407 *pRC = rc;
5408 return;
shanedcc50b72008-11-13 18:29:50 +00005409 }
drh43605152004-05-29 21:46:49 +00005410 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5411 ptr[0] = ptr[2];
5412 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005413 }
5414 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005415 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005416 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005417}
5418
5419/*
5420** Insert a new cell on pPage at cell index "i". pCell points to the
5421** content of the cell.
5422**
5423** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005424** will not fit, then make a copy of the cell content into pTemp if
5425** pTemp is not null. Regardless of pTemp, allocate a new entry
5426** in pPage->aOvfl[] and make it point to the cell content (either
5427** in pTemp or the original pCell) and also record its index.
5428** Allocating a new entry in pPage->aCell[] implies that
5429** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005430**
5431** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5432** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005433** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005434** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005435*/
drh98add2e2009-07-20 17:11:49 +00005436static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005437 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005438 int i, /* New cell becomes the i-th cell of the page */
5439 u8 *pCell, /* Content of the new cell */
5440 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005441 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005442 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5443 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005444){
drh383d30f2010-02-26 13:07:37 +00005445 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005446 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005447 int end; /* First byte past the last cell pointer in data[] */
5448 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005449 int cellOffset; /* Address of first cell pointer in data[] */
5450 u8 *data; /* The content of the whole page */
5451 u8 *ptr; /* Used for moving information around in data[] */
5452
danielk19774dbaa892009-06-16 16:50:22 +00005453 int nSkip = (iChild ? 4 : 0);
5454
drh98add2e2009-07-20 17:11:49 +00005455 if( *pRC ) return;
5456
drh43605152004-05-29 21:46:49 +00005457 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005458 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drhf49661a2008-12-10 16:45:50 +00005459 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005460 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005461 /* The cell should normally be sized correctly. However, when moving a
5462 ** malformed cell from a leaf page to an interior page, if the cell size
5463 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5464 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5465 ** the term after the || in the following assert(). */
5466 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005467 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005468 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005469 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005470 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005471 }
danielk19774dbaa892009-06-16 16:50:22 +00005472 if( iChild ){
5473 put4byte(pCell, iChild);
5474 }
drh43605152004-05-29 21:46:49 +00005475 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005476 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005477 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005478 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005479 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005480 int rc = sqlite3PagerWrite(pPage->pDbPage);
5481 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005482 *pRC = rc;
5483 return;
danielk19776e465eb2007-08-21 13:11:00 +00005484 }
5485 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005486 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005487 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005488 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005489 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005490 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005491 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005492 /* The allocateSpace() routine guarantees the following two properties
5493 ** if it returns success */
5494 assert( idx >= end+2 );
5495 assert( idx+sz <= pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005496 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005497 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005498 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005499 if( iChild ){
5500 put4byte(&data[idx], iChild);
5501 }
drh0a45c272009-07-08 01:49:11 +00005502 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005503 ptr[0] = ptr[-2];
5504 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005505 }
drh43605152004-05-29 21:46:49 +00005506 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005507 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005508#ifndef SQLITE_OMIT_AUTOVACUUM
5509 if( pPage->pBt->autoVacuum ){
5510 /* The cell may contain a pointer to an overflow page. If so, write
5511 ** the entry for the overflow page into the pointer map.
5512 */
drh98add2e2009-07-20 17:11:49 +00005513 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005514 }
5515#endif
drh14acc042001-06-10 19:56:58 +00005516 }
5517}
5518
5519/*
drhfa1a98a2004-05-14 19:08:17 +00005520** Add a list of cells to a page. The page should be initially empty.
5521** The cells are guaranteed to fit on the page.
5522*/
5523static void assemblePage(
5524 MemPage *pPage, /* The page to be assemblied */
5525 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005526 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005527 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005528){
5529 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005530 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005531 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005532 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5533 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5534 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005535
drh43605152004-05-29 21:46:49 +00005536 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005537 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb2eced52010-08-12 02:41:12 +00005538 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005539 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005540
5541 /* Check that the page has just been zeroed by zeroPage() */
5542 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005543 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005544
5545 pCellptr = &data[pPage->cellOffset + nCell*2];
5546 cellbody = nUsable;
5547 for(i=nCell-1; i>=0; i--){
5548 pCellptr -= 2;
5549 cellbody -= aSize[i];
5550 put2byte(pCellptr, cellbody);
5551 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005552 }
danielk1977fad91942009-04-29 17:49:59 +00005553 put2byte(&data[hdr+3], nCell);
5554 put2byte(&data[hdr+5], cellbody);
5555 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005556 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005557}
5558
drh14acc042001-06-10 19:56:58 +00005559/*
drhc3b70572003-01-04 19:44:07 +00005560** The following parameters determine how many adjacent pages get involved
5561** in a balancing operation. NN is the number of neighbors on either side
5562** of the page that participate in the balancing operation. NB is the
5563** total number of pages that participate, including the target page and
5564** NN neighbors on either side.
5565**
5566** The minimum value of NN is 1 (of course). Increasing NN above 1
5567** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5568** in exchange for a larger degradation in INSERT and UPDATE performance.
5569** The value of NN appears to give the best results overall.
5570*/
5571#define NN 1 /* Number of neighbors on either side of pPage */
5572#define NB (NN*2+1) /* Total pages involved in the balance */
5573
danielk1977ac245ec2005-01-14 13:50:11 +00005574
drh615ae552005-01-16 23:21:00 +00005575#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005576/*
5577** This version of balance() handles the common special case where
5578** a new entry is being inserted on the extreme right-end of the
5579** tree, in other words, when the new entry will become the largest
5580** entry in the tree.
5581**
drhc314dc72009-07-21 11:52:34 +00005582** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005583** a new page to the right-hand side and put the one new entry in
5584** that page. This leaves the right side of the tree somewhat
5585** unbalanced. But odds are that we will be inserting new entries
5586** at the end soon afterwards so the nearly empty page will quickly
5587** fill up. On average.
5588**
5589** pPage is the leaf page which is the right-most page in the tree.
5590** pParent is its parent. pPage must have a single overflow entry
5591** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005592**
5593** The pSpace buffer is used to store a temporary copy of the divider
5594** cell that will be inserted into pParent. Such a cell consists of a 4
5595** byte page number followed by a variable length integer. In other
5596** words, at most 13 bytes. Hence the pSpace buffer must be at
5597** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005598*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005599static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5600 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005601 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005602 int rc; /* Return Code */
5603 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005604
drh1fee73e2007-08-29 04:00:57 +00005605 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005606 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005607 assert( pPage->nOverflow==1 );
5608
drh5d433ce2010-08-14 16:02:52 +00005609 /* This error condition is now caught prior to reaching this function */
drh6b47fca2010-08-19 14:22:42 +00005610 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005611
danielk1977a50d9aa2009-06-08 14:49:45 +00005612 /* Allocate a new page. This page will become the right-sibling of
5613 ** pPage. Make the parent page writable, so that the new divider cell
5614 ** may be inserted. If both these operations are successful, proceed.
5615 */
drh4f0c5872007-03-26 22:05:01 +00005616 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005617
danielk1977eaa06f62008-09-18 17:34:44 +00005618 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005619
5620 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005621 u8 *pCell = pPage->aOvfl[0].pCell;
5622 u16 szCell = cellSizePtr(pPage, pCell);
5623 u8 *pStop;
5624
drhc5053fb2008-11-27 02:22:10 +00005625 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005626 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5627 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005628 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005629
5630 /* If this is an auto-vacuum database, update the pointer map
5631 ** with entries for the new page, and any pointer from the
5632 ** cell on the page to an overflow page. If either of these
5633 ** operations fails, the return code is set, but the contents
5634 ** of the parent page are still manipulated by thh code below.
5635 ** That is Ok, at this point the parent page is guaranteed to
5636 ** be marked as dirty. Returning an error code will cause a
5637 ** rollback, undoing any changes made to the parent page.
5638 */
5639 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005640 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5641 if( szCell>pNew->minLocal ){
5642 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005643 }
5644 }
danielk1977eaa06f62008-09-18 17:34:44 +00005645
danielk19776f235cc2009-06-04 14:46:08 +00005646 /* Create a divider cell to insert into pParent. The divider cell
5647 ** consists of a 4-byte page number (the page number of pPage) and
5648 ** a variable length key value (which must be the same value as the
5649 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005650 **
danielk19776f235cc2009-06-04 14:46:08 +00005651 ** To find the largest key value on pPage, first find the right-most
5652 ** cell on pPage. The first two fields of this cell are the
5653 ** record-length (a variable length integer at most 32-bits in size)
5654 ** and the key value (a variable length integer, may have any value).
5655 ** The first of the while(...) loops below skips over the record-length
5656 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005657 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005658 */
danielk1977eaa06f62008-09-18 17:34:44 +00005659 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005660 pStop = &pCell[9];
5661 while( (*(pCell++)&0x80) && pCell<pStop );
5662 pStop = &pCell[9];
5663 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5664
danielk19774dbaa892009-06-16 16:50:22 +00005665 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005666 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5667 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005668
5669 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005670 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5671
danielk1977e08a3c42008-09-18 18:17:03 +00005672 /* Release the reference to the new page. */
5673 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005674 }
5675
danielk1977eaa06f62008-09-18 17:34:44 +00005676 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005677}
drh615ae552005-01-16 23:21:00 +00005678#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005679
danielk19774dbaa892009-06-16 16:50:22 +00005680#if 0
drhc3b70572003-01-04 19:44:07 +00005681/*
danielk19774dbaa892009-06-16 16:50:22 +00005682** This function does not contribute anything to the operation of SQLite.
5683** it is sometimes activated temporarily while debugging code responsible
5684** for setting pointer-map entries.
5685*/
5686static int ptrmapCheckPages(MemPage **apPage, int nPage){
5687 int i, j;
5688 for(i=0; i<nPage; i++){
5689 Pgno n;
5690 u8 e;
5691 MemPage *pPage = apPage[i];
5692 BtShared *pBt = pPage->pBt;
5693 assert( pPage->isInit );
5694
5695 for(j=0; j<pPage->nCell; j++){
5696 CellInfo info;
5697 u8 *z;
5698
5699 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005700 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005701 if( info.iOverflow ){
5702 Pgno ovfl = get4byte(&z[info.iOverflow]);
5703 ptrmapGet(pBt, ovfl, &e, &n);
5704 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5705 }
5706 if( !pPage->leaf ){
5707 Pgno child = get4byte(z);
5708 ptrmapGet(pBt, child, &e, &n);
5709 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5710 }
5711 }
5712 if( !pPage->leaf ){
5713 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5714 ptrmapGet(pBt, child, &e, &n);
5715 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5716 }
5717 }
5718 return 1;
5719}
5720#endif
5721
danielk1977cd581a72009-06-23 15:43:39 +00005722/*
5723** This function is used to copy the contents of the b-tree node stored
5724** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5725** the pointer-map entries for each child page are updated so that the
5726** parent page stored in the pointer map is page pTo. If pFrom contained
5727** any cells with overflow page pointers, then the corresponding pointer
5728** map entries are also updated so that the parent page is page pTo.
5729**
5730** If pFrom is currently carrying any overflow cells (entries in the
5731** MemPage.aOvfl[] array), they are not copied to pTo.
5732**
danielk197730548662009-07-09 05:07:37 +00005733** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005734**
5735** The performance of this function is not critical. It is only used by
5736** the balance_shallower() and balance_deeper() procedures, neither of
5737** which are called often under normal circumstances.
5738*/
drhc314dc72009-07-21 11:52:34 +00005739static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5740 if( (*pRC)==SQLITE_OK ){
5741 BtShared * const pBt = pFrom->pBt;
5742 u8 * const aFrom = pFrom->aData;
5743 u8 * const aTo = pTo->aData;
5744 int const iFromHdr = pFrom->hdrOffset;
5745 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005746 int rc;
drhc314dc72009-07-21 11:52:34 +00005747 int iData;
5748
5749
5750 assert( pFrom->isInit );
5751 assert( pFrom->nFree>=iToHdr );
5752 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5753
5754 /* Copy the b-tree node content from page pFrom to page pTo. */
5755 iData = get2byte(&aFrom[iFromHdr+5]);
5756 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5757 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5758
5759 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005760 ** match the new data. The initialization of pTo can actually fail under
5761 ** fairly obscure circumstances, even though it is a copy of initialized
5762 ** page pFrom.
5763 */
drhc314dc72009-07-21 11:52:34 +00005764 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005765 rc = btreeInitPage(pTo);
5766 if( rc!=SQLITE_OK ){
5767 *pRC = rc;
5768 return;
5769 }
drhc314dc72009-07-21 11:52:34 +00005770
5771 /* If this is an auto-vacuum database, update the pointer-map entries
5772 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5773 */
5774 if( ISAUTOVACUUM ){
5775 *pRC = setChildPtrmaps(pTo);
5776 }
danielk1977cd581a72009-06-23 15:43:39 +00005777 }
danielk1977cd581a72009-06-23 15:43:39 +00005778}
5779
5780/*
danielk19774dbaa892009-06-16 16:50:22 +00005781** This routine redistributes cells on the iParentIdx'th child of pParent
5782** (hereafter "the page") and up to 2 siblings so that all pages have about the
5783** same amount of free space. Usually a single sibling on either side of the
5784** page are used in the balancing, though both siblings might come from one
5785** side if the page is the first or last child of its parent. If the page
5786** has fewer than 2 siblings (something which can only happen if the page
5787** is a root page or a child of a root page) then all available siblings
5788** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005789**
danielk19774dbaa892009-06-16 16:50:22 +00005790** The number of siblings of the page might be increased or decreased by
5791** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005792**
danielk19774dbaa892009-06-16 16:50:22 +00005793** Note that when this routine is called, some of the cells on the page
5794** might not actually be stored in MemPage.aData[]. This can happen
5795** if the page is overfull. This routine ensures that all cells allocated
5796** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005797**
danielk19774dbaa892009-06-16 16:50:22 +00005798** In the course of balancing the page and its siblings, cells may be
5799** inserted into or removed from the parent page (pParent). Doing so
5800** may cause the parent page to become overfull or underfull. If this
5801** happens, it is the responsibility of the caller to invoke the correct
5802** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005803**
drh5e00f6c2001-09-13 13:46:56 +00005804** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005805** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005806** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005807**
5808** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005809** buffer big enough to hold one page. If while inserting cells into the parent
5810** page (pParent) the parent page becomes overfull, this buffer is
5811** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005812** a maximum of four divider cells into the parent page, and the maximum
5813** size of a cell stored within an internal node is always less than 1/4
5814** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5815** enough for all overflow cells.
5816**
5817** If aOvflSpace is set to a null pointer, this function returns
5818** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005819*/
danielk19774dbaa892009-06-16 16:50:22 +00005820static int balance_nonroot(
5821 MemPage *pParent, /* Parent page of siblings being balanced */
5822 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005823 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5824 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005825){
drh16a9b832007-05-05 18:39:25 +00005826 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005827 int nCell = 0; /* Number of cells in apCell[] */
5828 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005829 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005830 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005831 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005832 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005833 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005834 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005835 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005836 int usableSpace; /* Bytes in pPage beyond the header */
5837 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005838 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005839 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005840 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005841 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005842 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005843 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005844 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005845 u8 *pRight; /* Location in parent of right-sibling pointer */
5846 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005847 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5848 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005849 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005850 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005851 u8 *aSpace1; /* Space for copies of dividers cells */
5852 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005853
danielk1977a50d9aa2009-06-08 14:49:45 +00005854 pBt = pParent->pBt;
5855 assert( sqlite3_mutex_held(pBt->mutex) );
5856 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005857
danielk1977e5765212009-06-17 11:13:28 +00005858#if 0
drh43605152004-05-29 21:46:49 +00005859 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005860#endif
drh2e38c322004-09-03 18:38:44 +00005861
danielk19774dbaa892009-06-16 16:50:22 +00005862 /* At this point pParent may have at most one overflow cell. And if
5863 ** this overflow cell is present, it must be the cell with
5864 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005865 ** is called (indirectly) from sqlite3BtreeDelete().
5866 */
danielk19774dbaa892009-06-16 16:50:22 +00005867 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5868 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5869
danielk197711a8a862009-06-17 11:49:52 +00005870 if( !aOvflSpace ){
5871 return SQLITE_NOMEM;
5872 }
5873
danielk1977a50d9aa2009-06-08 14:49:45 +00005874 /* Find the sibling pages to balance. Also locate the cells in pParent
5875 ** that divide the siblings. An attempt is made to find NN siblings on
5876 ** either side of pPage. More siblings are taken from one side, however,
5877 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005878 ** has NB or fewer children then all children of pParent are taken.
5879 **
5880 ** This loop also drops the divider cells from the parent page. This
5881 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005882 ** overflow cells in the parent page, since if any existed they will
5883 ** have already been removed.
5884 */
danielk19774dbaa892009-06-16 16:50:22 +00005885 i = pParent->nOverflow + pParent->nCell;
5886 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005887 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005888 nOld = i+1;
5889 }else{
5890 nOld = 3;
5891 if( iParentIdx==0 ){
5892 nxDiv = 0;
5893 }else if( iParentIdx==i ){
5894 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005895 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005896 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005897 }
danielk19774dbaa892009-06-16 16:50:22 +00005898 i = 2;
5899 }
5900 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5901 pRight = &pParent->aData[pParent->hdrOffset+8];
5902 }else{
5903 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5904 }
5905 pgno = get4byte(pRight);
5906 while( 1 ){
5907 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5908 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00005909 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00005910 goto balance_cleanup;
5911 }
danielk1977634f2982005-03-28 08:44:07 +00005912 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005913 if( (i--)==0 ) break;
5914
drhcd09c532009-07-20 19:30:00 +00005915 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00005916 apDiv[i] = pParent->aOvfl[0].pCell;
5917 pgno = get4byte(apDiv[i]);
5918 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5919 pParent->nOverflow = 0;
5920 }else{
5921 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5922 pgno = get4byte(apDiv[i]);
5923 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5924
5925 /* Drop the cell from the parent page. apDiv[i] still points to
5926 ** the cell within the parent, even though it has been dropped.
5927 ** This is safe because dropping a cell only overwrites the first
5928 ** four bytes of it, and this function does not need the first
5929 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005930 ** later on.
5931 **
5932 ** Unless SQLite is compiled in secure-delete mode. In this case,
5933 ** the dropCell() routine will overwrite the entire cell with zeroes.
5934 ** In this case, temporarily copy the cell into the aOvflSpace[]
5935 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5936 ** is allocated. */
drh5b47efa2010-02-12 18:18:39 +00005937 if( pBt->secureDelete ){
shaneh1da207e2010-03-09 14:41:12 +00005938 int iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00005939 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00005940 rc = SQLITE_CORRUPT_BKPT;
5941 memset(apOld, 0, (i+1)*sizeof(MemPage*));
5942 goto balance_cleanup;
5943 }else{
5944 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
5945 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5946 }
drh5b47efa2010-02-12 18:18:39 +00005947 }
drh98add2e2009-07-20 17:11:49 +00005948 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005949 }
drh8b2f49b2001-06-08 00:21:52 +00005950 }
5951
drha9121e42008-02-19 14:59:35 +00005952 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005953 ** alignment */
drha9121e42008-02-19 14:59:35 +00005954 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005955
drh8b2f49b2001-06-08 00:21:52 +00005956 /*
danielk1977634f2982005-03-28 08:44:07 +00005957 ** Allocate space for memory structures
5958 */
danielk19774dbaa892009-06-16 16:50:22 +00005959 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005960 szScratch =
drha9121e42008-02-19 14:59:35 +00005961 nMaxCells*sizeof(u8*) /* apCell */
5962 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005963 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005964 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005965 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005966 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005967 rc = SQLITE_NOMEM;
5968 goto balance_cleanup;
5969 }
drha9121e42008-02-19 14:59:35 +00005970 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005971 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005972 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005973
5974 /*
5975 ** Load pointers to all cells on sibling pages and the divider cells
5976 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005977 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005978 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005979 **
5980 ** If the siblings are on leaf pages, then the child pointers of the
5981 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005982 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005983 ** child pointers. If siblings are not leaves, then all cell in
5984 ** apCell[] include child pointers. Either way, all cells in apCell[]
5985 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005986 **
5987 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5988 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005989 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005990 leafCorrection = apOld[0]->leaf*4;
5991 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005992 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005993 int limit;
5994
5995 /* Before doing anything else, take a copy of the i'th original sibling
5996 ** The rest of this function will use data from the copies rather
5997 ** that the original pages since the original pages will be in the
5998 ** process of being overwritten. */
5999 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6000 memcpy(pOld, apOld[i], sizeof(MemPage));
6001 pOld->aData = (void*)&pOld[1];
6002 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6003
6004 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00006005 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00006006 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00006007 apCell[nCell] = findOverflowCell(pOld, j);
6008 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00006009 nCell++;
6010 }
6011 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006012 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006013 u8 *pTemp;
6014 assert( nCell<nMaxCells );
6015 szCell[nCell] = sz;
6016 pTemp = &aSpace1[iSpace1];
6017 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006018 assert( sz<=pBt->maxLocal+23 );
danielk19774dbaa892009-06-16 16:50:22 +00006019 assert( iSpace1<=pBt->pageSize );
6020 memcpy(pTemp, apDiv[i], sz);
6021 apCell[nCell] = pTemp+leafCorrection;
6022 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006023 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006024 if( !pOld->leaf ){
6025 assert( leafCorrection==0 );
6026 assert( pOld->hdrOffset==0 );
6027 /* The right pointer of the child page pOld becomes the left
6028 ** pointer of the divider cell */
6029 memcpy(apCell[nCell], &pOld->aData[8], 4);
6030 }else{
6031 assert( leafCorrection==4 );
6032 if( szCell[nCell]<4 ){
6033 /* Do not allow any cells smaller than 4 bytes. */
6034 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006035 }
6036 }
drh14acc042001-06-10 19:56:58 +00006037 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006038 }
drh8b2f49b2001-06-08 00:21:52 +00006039 }
6040
6041 /*
drh6019e162001-07-02 17:51:45 +00006042 ** Figure out the number of pages needed to hold all nCell cells.
6043 ** Store this number in "k". Also compute szNew[] which is the total
6044 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006045 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006046 ** cntNew[k] should equal nCell.
6047 **
drh96f5b762004-05-16 16:24:36 +00006048 ** Values computed by this block:
6049 **
6050 ** k: The total number of sibling pages
6051 ** szNew[i]: Spaced used on the i-th sibling page.
6052 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6053 ** the right of the i-th sibling page.
6054 ** usableSpace: Number of bytes of space available on each sibling.
6055 **
drh8b2f49b2001-06-08 00:21:52 +00006056 */
drh43605152004-05-29 21:46:49 +00006057 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006058 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006059 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006060 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006061 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006062 szNew[k] = subtotal - szCell[i];
6063 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006064 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006065 subtotal = 0;
6066 k++;
drh9978c972010-02-23 17:36:32 +00006067 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006068 }
6069 }
6070 szNew[k] = subtotal;
6071 cntNew[k] = nCell;
6072 k++;
drh96f5b762004-05-16 16:24:36 +00006073
6074 /*
6075 ** The packing computed by the previous block is biased toward the siblings
6076 ** on the left side. The left siblings are always nearly full, while the
6077 ** right-most sibling might be nearly empty. This block of code attempts
6078 ** to adjust the packing of siblings to get a better balance.
6079 **
6080 ** This adjustment is more than an optimization. The packing above might
6081 ** be so out of balance as to be illegal. For example, the right-most
6082 ** sibling might be completely empty. This adjustment is not optional.
6083 */
drh6019e162001-07-02 17:51:45 +00006084 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006085 int szRight = szNew[i]; /* Size of sibling on the right */
6086 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6087 int r; /* Index of right-most cell in left sibling */
6088 int d; /* Index of first cell to the left of right sibling */
6089
6090 r = cntNew[i-1] - 1;
6091 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006092 assert( d<nMaxCells );
6093 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00006094 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
6095 szRight += szCell[d] + 2;
6096 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006097 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006098 r = cntNew[i-1] - 1;
6099 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006100 }
drh96f5b762004-05-16 16:24:36 +00006101 szNew[i] = szRight;
6102 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006103 }
drh09d0deb2005-08-02 17:13:09 +00006104
danielk19776f235cc2009-06-04 14:46:08 +00006105 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006106 ** a virtual root page. A virtual root page is when the real root
6107 ** page is page 1 and we are the only child of that page.
6108 */
6109 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00006110
danielk1977e5765212009-06-17 11:13:28 +00006111 TRACE(("BALANCE: old: %d %d %d ",
6112 apOld[0]->pgno,
6113 nOld>=2 ? apOld[1]->pgno : 0,
6114 nOld>=3 ? apOld[2]->pgno : 0
6115 ));
6116
drh8b2f49b2001-06-08 00:21:52 +00006117 /*
drh6b308672002-07-08 02:16:37 +00006118 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006119 */
drheac74422009-06-14 12:47:11 +00006120 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006121 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006122 goto balance_cleanup;
6123 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006124 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006125 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006126 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006127 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006128 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006129 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006130 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006131 nNew++;
danielk197728129562005-01-11 10:25:06 +00006132 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006133 }else{
drh7aa8f852006-03-28 00:24:44 +00006134 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006135 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006136 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006137 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006138 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006139
6140 /* Set the pointer-map entry for the new sibling page. */
6141 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006142 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006143 if( rc!=SQLITE_OK ){
6144 goto balance_cleanup;
6145 }
6146 }
drh6b308672002-07-08 02:16:37 +00006147 }
drh8b2f49b2001-06-08 00:21:52 +00006148 }
6149
danielk1977299b1872004-11-22 10:02:10 +00006150 /* Free any old pages that were not reused as new pages.
6151 */
6152 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006153 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006154 if( rc ) goto balance_cleanup;
6155 releasePage(apOld[i]);
6156 apOld[i] = 0;
6157 i++;
6158 }
6159
drh8b2f49b2001-06-08 00:21:52 +00006160 /*
drhf9ffac92002-03-02 19:00:31 +00006161 ** Put the new pages in accending order. This helps to
6162 ** keep entries in the disk file in order so that a scan
6163 ** of the table is a linear scan through the file. That
6164 ** in turn helps the operating system to deliver pages
6165 ** from the disk more rapidly.
6166 **
6167 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006168 ** n is never more than NB (a small constant), that should
6169 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006170 **
drhc3b70572003-01-04 19:44:07 +00006171 ** When NB==3, this one optimization makes the database
6172 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006173 */
6174 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006175 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006176 int minI = i;
6177 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006178 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006179 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006180 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006181 }
6182 }
6183 if( minI>i ){
6184 int t;
6185 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00006186 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006187 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006188 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006189 apNew[minI] = pT;
6190 }
6191 }
danielk1977e5765212009-06-17 11:13:28 +00006192 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006193 apNew[0]->pgno, szNew[0],
6194 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6195 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6196 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6197 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6198
6199 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6200 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006201
drhf9ffac92002-03-02 19:00:31 +00006202 /*
drh14acc042001-06-10 19:56:58 +00006203 ** Evenly distribute the data in apCell[] across the new pages.
6204 ** Insert divider cells into pParent as necessary.
6205 */
6206 j = 0;
6207 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006208 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006209 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006210 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006211 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006212 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006213 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006214 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006215
danielk1977ac11ee62005-01-15 12:45:51 +00006216 j = cntNew[i];
6217
6218 /* If the sibling page assembled above was not the right-most sibling,
6219 ** insert a divider cell into the parent page.
6220 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006221 assert( i<nNew-1 || j==nCell );
6222 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006223 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006224 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006225 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006226
6227 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006228 pCell = apCell[j];
6229 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006230 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006231 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006232 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006233 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006234 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006235 ** then there is no divider cell in apCell[]. Instead, the divider
6236 ** cell consists of the integer key for the right-most cell of
6237 ** the sibling-page assembled above only.
6238 */
drh6f11bef2004-05-13 01:12:56 +00006239 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006240 j--;
danielk197730548662009-07-09 05:07:37 +00006241 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006242 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006243 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006244 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006245 }else{
6246 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006247 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006248 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006249 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006250 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006251 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006252 ** insertCell(), so reparse the cell now.
6253 **
6254 ** Note that this can never happen in an SQLite data file, as all
6255 ** cells are at least 4 bytes. It only happens in b-trees used
6256 ** to evaluate "IN (SELECT ...)" and similar clauses.
6257 */
6258 if( szCell[j]==4 ){
6259 assert(leafCorrection==4);
6260 sz = cellSizePtr(pParent, pCell);
6261 }
drh4b70f112004-05-02 21:12:19 +00006262 }
danielk19776067a9b2009-06-09 09:41:00 +00006263 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006264 assert( sz<=pBt->maxLocal+23 );
danielk19776067a9b2009-06-09 09:41:00 +00006265 assert( iOvflSpace<=pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006266 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006267 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006268 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006269
drh14acc042001-06-10 19:56:58 +00006270 j++;
6271 nxDiv++;
6272 }
6273 }
drh6019e162001-07-02 17:51:45 +00006274 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006275 assert( nOld>0 );
6276 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006277 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006278 u8 *zChild = &apCopy[nOld-1]->aData[8];
6279 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006280 }
6281
danielk197713bd99f2009-06-24 05:40:34 +00006282 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6283 /* The root page of the b-tree now contains no cells. The only sibling
6284 ** page is the right-child of the parent. Copy the contents of the
6285 ** child page into the parent, decreasing the overall height of the
6286 ** b-tree structure by one. This is described as the "balance-shallower"
6287 ** sub-algorithm in some documentation.
6288 **
6289 ** If this is an auto-vacuum database, the call to copyNodeContent()
6290 ** sets all pointer-map entries corresponding to database image pages
6291 ** for which the pointer is stored within the content being copied.
6292 **
6293 ** The second assert below verifies that the child page is defragmented
6294 ** (it must be, as it was just reconstructed using assemblePage()). This
6295 ** is important if the parent page happens to be page 1 of the database
6296 ** image. */
6297 assert( nNew==1 );
6298 assert( apNew[0]->nFree ==
6299 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6300 );
drhc314dc72009-07-21 11:52:34 +00006301 copyNodeContent(apNew[0], pParent, &rc);
6302 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006303 }else if( ISAUTOVACUUM ){
6304 /* Fix the pointer-map entries for all the cells that were shifted around.
6305 ** There are several different types of pointer-map entries that need to
6306 ** be dealt with by this routine. Some of these have been set already, but
6307 ** many have not. The following is a summary:
6308 **
6309 ** 1) The entries associated with new sibling pages that were not
6310 ** siblings when this function was called. These have already
6311 ** been set. We don't need to worry about old siblings that were
6312 ** moved to the free-list - the freePage() code has taken care
6313 ** of those.
6314 **
6315 ** 2) The pointer-map entries associated with the first overflow
6316 ** page in any overflow chains used by new divider cells. These
6317 ** have also already been taken care of by the insertCell() code.
6318 **
6319 ** 3) If the sibling pages are not leaves, then the child pages of
6320 ** cells stored on the sibling pages may need to be updated.
6321 **
6322 ** 4) If the sibling pages are not internal intkey nodes, then any
6323 ** overflow pages used by these cells may need to be updated
6324 ** (internal intkey nodes never contain pointers to overflow pages).
6325 **
6326 ** 5) If the sibling pages are not leaves, then the pointer-map
6327 ** entries for the right-child pages of each sibling may need
6328 ** to be updated.
6329 **
6330 ** Cases 1 and 2 are dealt with above by other code. The next
6331 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6332 ** setting a pointer map entry is a relatively expensive operation, this
6333 ** code only sets pointer map entries for child or overflow pages that have
6334 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006335 MemPage *pNew = apNew[0];
6336 MemPage *pOld = apCopy[0];
6337 int nOverflow = pOld->nOverflow;
6338 int iNextOld = pOld->nCell + nOverflow;
6339 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6340 j = 0; /* Current 'old' sibling page */
6341 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006342 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006343 int isDivider = 0;
6344 while( i==iNextOld ){
6345 /* Cell i is the cell immediately following the last cell on old
6346 ** sibling page j. If the siblings are not leaf pages of an
6347 ** intkey b-tree, then cell i was a divider cell. */
6348 pOld = apCopy[++j];
6349 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6350 if( pOld->nOverflow ){
6351 nOverflow = pOld->nOverflow;
6352 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6353 }
6354 isDivider = !leafData;
6355 }
6356
6357 assert(nOverflow>0 || iOverflow<i );
6358 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6359 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6360 if( i==iOverflow ){
6361 isDivider = 1;
6362 if( (--nOverflow)>0 ){
6363 iOverflow++;
6364 }
6365 }
6366
6367 if( i==cntNew[k] ){
6368 /* Cell i is the cell immediately following the last cell on new
6369 ** sibling page k. If the siblings are not leaf pages of an
6370 ** intkey b-tree, then cell i is a divider cell. */
6371 pNew = apNew[++k];
6372 if( !leafData ) continue;
6373 }
danielk19774dbaa892009-06-16 16:50:22 +00006374 assert( j<nOld );
6375 assert( k<nNew );
6376
6377 /* If the cell was originally divider cell (and is not now) or
6378 ** an overflow cell, or if the cell was located on a different sibling
6379 ** page before the balancing, then the pointer map entries associated
6380 ** with any child or overflow pages need to be updated. */
6381 if( isDivider || pOld->pgno!=pNew->pgno ){
6382 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006383 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006384 }
drh98add2e2009-07-20 17:11:49 +00006385 if( szCell[i]>pNew->minLocal ){
6386 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006387 }
6388 }
6389 }
6390
6391 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006392 for(i=0; i<nNew; i++){
6393 u32 key = get4byte(&apNew[i]->aData[8]);
6394 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006395 }
6396 }
6397
6398#if 0
6399 /* The ptrmapCheckPages() contains assert() statements that verify that
6400 ** all pointer map pages are set correctly. This is helpful while
6401 ** debugging. This is usually disabled because a corrupt database may
6402 ** cause an assert() statement to fail. */
6403 ptrmapCheckPages(apNew, nNew);
6404 ptrmapCheckPages(&pParent, 1);
6405#endif
6406 }
6407
danielk197771d5d2c2008-09-29 11:49:47 +00006408 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006409 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6410 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006411
drh8b2f49b2001-06-08 00:21:52 +00006412 /*
drh14acc042001-06-10 19:56:58 +00006413 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006414 */
drh14acc042001-06-10 19:56:58 +00006415balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006416 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006417 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006418 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006419 }
drh14acc042001-06-10 19:56:58 +00006420 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006421 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006422 }
danielk1977eaa06f62008-09-18 17:34:44 +00006423
drh8b2f49b2001-06-08 00:21:52 +00006424 return rc;
6425}
6426
drh43605152004-05-29 21:46:49 +00006427
6428/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006429** This function is called when the root page of a b-tree structure is
6430** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006431**
danielk1977a50d9aa2009-06-08 14:49:45 +00006432** A new child page is allocated and the contents of the current root
6433** page, including overflow cells, are copied into the child. The root
6434** page is then overwritten to make it an empty page with the right-child
6435** pointer pointing to the new page.
6436**
6437** Before returning, all pointer-map entries corresponding to pages
6438** that the new child-page now contains pointers to are updated. The
6439** entry corresponding to the new right-child pointer of the root
6440** page is also updated.
6441**
6442** If successful, *ppChild is set to contain a reference to the child
6443** page and SQLITE_OK is returned. In this case the caller is required
6444** to call releasePage() on *ppChild exactly once. If an error occurs,
6445** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006446*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006447static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6448 int rc; /* Return value from subprocedures */
6449 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006450 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006451 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006452
danielk1977a50d9aa2009-06-08 14:49:45 +00006453 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006454 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006455
danielk1977a50d9aa2009-06-08 14:49:45 +00006456 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6457 ** page that will become the new right-child of pPage. Copy the contents
6458 ** of the node stored on pRoot into the new child page.
6459 */
drh98add2e2009-07-20 17:11:49 +00006460 rc = sqlite3PagerWrite(pRoot->pDbPage);
6461 if( rc==SQLITE_OK ){
6462 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006463 copyNodeContent(pRoot, pChild, &rc);
6464 if( ISAUTOVACUUM ){
6465 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006466 }
6467 }
6468 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006469 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006470 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006471 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006472 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006473 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6474 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6475 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006476
danielk1977a50d9aa2009-06-08 14:49:45 +00006477 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6478
6479 /* Copy the overflow cells from pRoot to pChild */
6480 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6481 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006482
6483 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6484 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6485 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6486
6487 *ppChild = pChild;
6488 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006489}
6490
6491/*
danielk197771d5d2c2008-09-29 11:49:47 +00006492** The page that pCur currently points to has just been modified in
6493** some way. This function figures out if this modification means the
6494** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006495** routine. Balancing routines are:
6496**
6497** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006498** balance_deeper()
6499** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006500*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006501static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006502 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006503 const int nMin = pCur->pBt->usableSize * 2 / 3;
6504 u8 aBalanceQuickSpace[13];
6505 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006506
shane75ac1de2009-06-09 18:58:52 +00006507 TESTONLY( int balance_quick_called = 0 );
6508 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006509
6510 do {
6511 int iPage = pCur->iPage;
6512 MemPage *pPage = pCur->apPage[iPage];
6513
6514 if( iPage==0 ){
6515 if( pPage->nOverflow ){
6516 /* The root page of the b-tree is overfull. In this case call the
6517 ** balance_deeper() function to create a new child for the root-page
6518 ** and copy the current contents of the root-page to it. The
6519 ** next iteration of the do-loop will balance the child page.
6520 */
6521 assert( (balance_deeper_called++)==0 );
6522 rc = balance_deeper(pPage, &pCur->apPage[1]);
6523 if( rc==SQLITE_OK ){
6524 pCur->iPage = 1;
6525 pCur->aiIdx[0] = 0;
6526 pCur->aiIdx[1] = 0;
6527 assert( pCur->apPage[1]->nOverflow );
6528 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006529 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006530 break;
6531 }
6532 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6533 break;
6534 }else{
6535 MemPage * const pParent = pCur->apPage[iPage-1];
6536 int const iIdx = pCur->aiIdx[iPage-1];
6537
6538 rc = sqlite3PagerWrite(pParent->pDbPage);
6539 if( rc==SQLITE_OK ){
6540#ifndef SQLITE_OMIT_QUICKBALANCE
6541 if( pPage->hasData
6542 && pPage->nOverflow==1
6543 && pPage->aOvfl[0].idx==pPage->nCell
6544 && pParent->pgno!=1
6545 && pParent->nCell==iIdx
6546 ){
6547 /* Call balance_quick() to create a new sibling of pPage on which
6548 ** to store the overflow cell. balance_quick() inserts a new cell
6549 ** into pParent, which may cause pParent overflow. If this
6550 ** happens, the next interation of the do-loop will balance pParent
6551 ** use either balance_nonroot() or balance_deeper(). Until this
6552 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6553 ** buffer.
6554 **
6555 ** The purpose of the following assert() is to check that only a
6556 ** single call to balance_quick() is made for each call to this
6557 ** function. If this were not verified, a subtle bug involving reuse
6558 ** of the aBalanceQuickSpace[] might sneak in.
6559 */
6560 assert( (balance_quick_called++)==0 );
6561 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6562 }else
6563#endif
6564 {
6565 /* In this case, call balance_nonroot() to redistribute cells
6566 ** between pPage and up to 2 of its sibling pages. This involves
6567 ** modifying the contents of pParent, which may cause pParent to
6568 ** become overfull or underfull. The next iteration of the do-loop
6569 ** will balance the parent page to correct this.
6570 **
6571 ** If the parent page becomes overfull, the overflow cell or cells
6572 ** are stored in the pSpace buffer allocated immediately below.
6573 ** A subsequent iteration of the do-loop will deal with this by
6574 ** calling balance_nonroot() (balance_deeper() may be called first,
6575 ** but it doesn't deal with overflow cells - just moves them to a
6576 ** different page). Once this subsequent call to balance_nonroot()
6577 ** has completed, it is safe to release the pSpace buffer used by
6578 ** the previous call, as the overflow cell data will have been
6579 ** copied either into the body of a database page or into the new
6580 ** pSpace buffer passed to the latter call to balance_nonroot().
6581 */
6582 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006583 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006584 if( pFree ){
6585 /* If pFree is not NULL, it points to the pSpace buffer used
6586 ** by a previous call to balance_nonroot(). Its contents are
6587 ** now stored either on real database pages or within the
6588 ** new pSpace buffer, so it may be safely freed here. */
6589 sqlite3PageFree(pFree);
6590 }
6591
danielk19774dbaa892009-06-16 16:50:22 +00006592 /* The pSpace buffer will be freed after the next call to
6593 ** balance_nonroot(), or just before this function returns, whichever
6594 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006595 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006596 }
6597 }
6598
6599 pPage->nOverflow = 0;
6600
6601 /* The next iteration of the do-loop balances the parent page. */
6602 releasePage(pPage);
6603 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006604 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006605 }while( rc==SQLITE_OK );
6606
6607 if( pFree ){
6608 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006609 }
6610 return rc;
6611}
6612
drhf74b8d92002-09-01 23:20:45 +00006613
6614/*
drh3b7511c2001-05-26 13:15:44 +00006615** Insert a new record into the BTree. The key is given by (pKey,nKey)
6616** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006617** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006618** is left pointing at a random location.
6619**
6620** For an INTKEY table, only the nKey value of the key is used. pKey is
6621** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006622**
6623** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006624** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006625** been performed. seekResult is the search result returned (a negative
6626** number if pCur points at an entry that is smaller than (pKey, nKey), or
6627** a positive value if pCur points at an etry that is larger than
6628** (pKey, nKey)).
6629**
drh3e9ca092009-09-08 01:14:48 +00006630** If the seekResult parameter is non-zero, then the caller guarantees that
6631** cursor pCur is pointing at the existing copy of a row that is to be
6632** overwritten. If the seekResult parameter is 0, then cursor pCur may
6633** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006634** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006635*/
drh3aac2dd2004-04-26 14:10:20 +00006636int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006637 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006638 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006639 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006640 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006641 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006642 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006643){
drh3b7511c2001-05-26 13:15:44 +00006644 int rc;
drh3e9ca092009-09-08 01:14:48 +00006645 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006646 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006647 int idx;
drh3b7511c2001-05-26 13:15:44 +00006648 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006649 Btree *p = pCur->pBtree;
6650 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006651 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006652 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006653
drh98add2e2009-07-20 17:11:49 +00006654 if( pCur->eState==CURSOR_FAULT ){
6655 assert( pCur->skipNext!=SQLITE_OK );
6656 return pCur->skipNext;
6657 }
6658
drh1fee73e2007-08-29 04:00:57 +00006659 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006660 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006661 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6662
danielk197731d31b82009-07-13 13:18:07 +00006663 /* Assert that the caller has been consistent. If this cursor was opened
6664 ** expecting an index b-tree, then the caller should be inserting blob
6665 ** keys with no associated data. If the cursor was opened expecting an
6666 ** intkey table, the caller should be inserting integer keys with a
6667 ** blob of associated data. */
6668 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6669
danielk197796d48e92009-06-29 06:00:37 +00006670 /* If this is an insert into a table b-tree, invalidate any incrblob
6671 ** cursors open on the row being replaced (assuming this is a replace
6672 ** operation - if it is not, the following is a no-op). */
6673 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006674 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006675 }
danielk197796d48e92009-06-29 06:00:37 +00006676
danielk19779c3acf32009-05-02 07:36:49 +00006677 /* Save the positions of any other cursors open on this table.
6678 **
danielk19773509a652009-07-06 18:56:13 +00006679 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006680 ** example, when inserting data into a table with auto-generated integer
6681 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6682 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006683 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006684 ** that the cursor is already where it needs to be and returns without
6685 ** doing any work. To avoid thwarting these optimizations, it is important
6686 ** not to clear the cursor here.
6687 */
drh4c301aa2009-07-15 17:25:45 +00006688 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6689 if( rc ) return rc;
6690 if( !loc ){
6691 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6692 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006693 }
danielk1977b980d2212009-06-22 18:03:51 +00006694 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006695
danielk197771d5d2c2008-09-29 11:49:47 +00006696 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006697 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006698 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006699
drh3a4c1412004-05-09 20:40:11 +00006700 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6701 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6702 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006703 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006704 allocateTempSpace(pBt);
6705 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006706 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006707 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006708 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006709 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006710 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006711 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006712 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006713 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006714 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006715 rc = sqlite3PagerWrite(pPage->pDbPage);
6716 if( rc ){
6717 goto end_insert;
6718 }
danielk197771d5d2c2008-09-29 11:49:47 +00006719 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006720 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006721 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006722 }
drh43605152004-05-29 21:46:49 +00006723 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006724 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006725 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006726 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006727 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006728 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006729 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006730 }else{
drh4b70f112004-05-02 21:12:19 +00006731 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006732 }
drh98add2e2009-07-20 17:11:49 +00006733 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006734 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006735
danielk1977a50d9aa2009-06-08 14:49:45 +00006736 /* If no error has occured and pPage has an overflow cell, call balance()
6737 ** to redistribute the cells within the tree. Since balance() may move
6738 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6739 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006740 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006741 ** Previous versions of SQLite called moveToRoot() to move the cursor
6742 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006743 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6744 ** set the cursor state to "invalid". This makes common insert operations
6745 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006746 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006747 ** There is a subtle but important optimization here too. When inserting
6748 ** multiple records into an intkey b-tree using a single cursor (as can
6749 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6750 ** is advantageous to leave the cursor pointing to the last entry in
6751 ** the b-tree if possible. If the cursor is left pointing to the last
6752 ** entry in the table, and the next row inserted has an integer key
6753 ** larger than the largest existing key, it is possible to insert the
6754 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006755 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006756 pCur->info.nSize = 0;
6757 pCur->validNKey = 0;
6758 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006759 rc = balance(pCur);
6760
6761 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006762 ** fails. Internal data structure corruption will result otherwise.
6763 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6764 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006765 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006766 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006767 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006768 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006769
drh2e38c322004-09-03 18:38:44 +00006770end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006771 return rc;
6772}
6773
6774/*
drh4b70f112004-05-02 21:12:19 +00006775** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006776** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006777*/
drh3aac2dd2004-04-26 14:10:20 +00006778int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006779 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006780 BtShared *pBt = p->pBt;
6781 int rc; /* Return code */
6782 MemPage *pPage; /* Page to delete cell from */
6783 unsigned char *pCell; /* Pointer to cell to delete */
6784 int iCellIdx; /* Index of cell to delete */
6785 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006786
drh1fee73e2007-08-29 04:00:57 +00006787 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006788 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006789 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006790 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006791 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6792 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6793
danielk19774dbaa892009-06-16 16:50:22 +00006794 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6795 || NEVER(pCur->eState!=CURSOR_VALID)
6796 ){
6797 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006798 }
danielk1977da184232006-01-05 11:34:32 +00006799
danielk197796d48e92009-06-29 06:00:37 +00006800 /* If this is a delete operation to remove a row from a table b-tree,
6801 ** invalidate any incrblob cursors open on the row being deleted. */
6802 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006803 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006804 }
6805
6806 iCellDepth = pCur->iPage;
6807 iCellIdx = pCur->aiIdx[iCellDepth];
6808 pPage = pCur->apPage[iCellDepth];
6809 pCell = findCell(pPage, iCellIdx);
6810
6811 /* If the page containing the entry to delete is not a leaf page, move
6812 ** the cursor to the largest entry in the tree that is smaller than
6813 ** the entry being deleted. This cell will replace the cell being deleted
6814 ** from the internal node. The 'previous' entry is used for this instead
6815 ** of the 'next' entry, as the previous entry is always a part of the
6816 ** sub-tree headed by the child page of the cell being deleted. This makes
6817 ** balancing the tree following the delete operation easier. */
6818 if( !pPage->leaf ){
6819 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006820 rc = sqlite3BtreePrevious(pCur, &notUsed);
6821 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006822 }
6823
6824 /* Save the positions of any other cursors open on this table before
6825 ** making any modifications. Make the page containing the entry to be
6826 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006827 ** entry and finally remove the cell itself from within the page.
6828 */
6829 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6830 if( rc ) return rc;
6831 rc = sqlite3PagerWrite(pPage->pDbPage);
6832 if( rc ) return rc;
6833 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006834 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006835 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006836
danielk19774dbaa892009-06-16 16:50:22 +00006837 /* If the cell deleted was not located on a leaf page, then the cursor
6838 ** is currently pointing to the largest entry in the sub-tree headed
6839 ** by the child-page of the cell that was just deleted from an internal
6840 ** node. The cell from the leaf node needs to be moved to the internal
6841 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006842 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006843 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6844 int nCell;
6845 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6846 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006847
danielk19774dbaa892009-06-16 16:50:22 +00006848 pCell = findCell(pLeaf, pLeaf->nCell-1);
6849 nCell = cellSizePtr(pLeaf, pCell);
6850 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006851
danielk19774dbaa892009-06-16 16:50:22 +00006852 allocateTempSpace(pBt);
6853 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006854
drha4ec1d42009-07-11 13:13:11 +00006855 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006856 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6857 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006858 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006859 }
danielk19774dbaa892009-06-16 16:50:22 +00006860
6861 /* Balance the tree. If the entry deleted was located on a leaf page,
6862 ** then the cursor still points to that page. In this case the first
6863 ** call to balance() repairs the tree, and the if(...) condition is
6864 ** never true.
6865 **
6866 ** Otherwise, if the entry deleted was on an internal node page, then
6867 ** pCur is pointing to the leaf page from which a cell was removed to
6868 ** replace the cell deleted from the internal node. This is slightly
6869 ** tricky as the leaf node may be underfull, and the internal node may
6870 ** be either under or overfull. In this case run the balancing algorithm
6871 ** on the leaf node first. If the balance proceeds far enough up the
6872 ** tree that we can be sure that any problem in the internal node has
6873 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6874 ** walk the cursor up the tree to the internal node and balance it as
6875 ** well. */
6876 rc = balance(pCur);
6877 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6878 while( pCur->iPage>iCellDepth ){
6879 releasePage(pCur->apPage[pCur->iPage--]);
6880 }
6881 rc = balance(pCur);
6882 }
6883
danielk19776b456a22005-03-21 04:04:02 +00006884 if( rc==SQLITE_OK ){
6885 moveToRoot(pCur);
6886 }
drh5e2f8b92001-05-28 00:41:15 +00006887 return rc;
drh3b7511c2001-05-26 13:15:44 +00006888}
drh8b2f49b2001-06-08 00:21:52 +00006889
6890/*
drhc6b52df2002-01-04 03:09:29 +00006891** Create a new BTree table. Write into *piTable the page
6892** number for the root page of the new table.
6893**
drhab01f612004-05-22 02:55:23 +00006894** The type of type is determined by the flags parameter. Only the
6895** following values of flags are currently in use. Other values for
6896** flags might not work:
6897**
6898** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6899** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006900*/
drhd4187c72010-08-30 22:15:45 +00006901static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00006902 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006903 MemPage *pRoot;
6904 Pgno pgnoRoot;
6905 int rc;
drhd4187c72010-08-30 22:15:45 +00006906 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00006907
drh1fee73e2007-08-29 04:00:57 +00006908 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006909 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006910 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006911
danielk1977003ba062004-11-04 02:57:33 +00006912#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006913 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006914 if( rc ){
6915 return rc;
6916 }
danielk1977003ba062004-11-04 02:57:33 +00006917#else
danielk1977687566d2004-11-02 12:56:41 +00006918 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006919 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6920 MemPage *pPageMove; /* The page to move to. */
6921
danielk197720713f32007-05-03 11:43:33 +00006922 /* Creating a new table may probably require moving an existing database
6923 ** to make room for the new tables root page. In case this page turns
6924 ** out to be an overflow page, delete all overflow page-map caches
6925 ** held by open cursors.
6926 */
danielk197792d4d7a2007-05-04 12:05:56 +00006927 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006928
danielk1977003ba062004-11-04 02:57:33 +00006929 /* Read the value of meta[3] from the database to determine where the
6930 ** root page of the new table should go. meta[3] is the largest root-page
6931 ** created so far, so the new root-page is (meta[3]+1).
6932 */
danielk1977602b4662009-07-02 07:47:33 +00006933 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006934 pgnoRoot++;
6935
danielk1977599fcba2004-11-08 07:13:13 +00006936 /* The new root-page may not be allocated on a pointer-map page, or the
6937 ** PENDING_BYTE page.
6938 */
drh72190432008-01-31 14:54:43 +00006939 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006940 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006941 pgnoRoot++;
6942 }
6943 assert( pgnoRoot>=3 );
6944
6945 /* Allocate a page. The page that currently resides at pgnoRoot will
6946 ** be moved to the allocated page (unless the allocated page happens
6947 ** to reside at pgnoRoot).
6948 */
drh4f0c5872007-03-26 22:05:01 +00006949 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006950 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006951 return rc;
6952 }
danielk1977003ba062004-11-04 02:57:33 +00006953
6954 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006955 /* pgnoRoot is the page that will be used for the root-page of
6956 ** the new table (assuming an error did not occur). But we were
6957 ** allocated pgnoMove. If required (i.e. if it was not allocated
6958 ** by extending the file), the current page at position pgnoMove
6959 ** is already journaled.
6960 */
drheeb844a2009-08-08 18:01:07 +00006961 u8 eType = 0;
6962 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00006963
6964 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006965
6966 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006967 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006968 if( rc!=SQLITE_OK ){
6969 return rc;
6970 }
6971 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006972 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6973 rc = SQLITE_CORRUPT_BKPT;
6974 }
6975 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006976 releasePage(pRoot);
6977 return rc;
6978 }
drhccae6022005-02-26 17:31:26 +00006979 assert( eType!=PTRMAP_ROOTPAGE );
6980 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006981 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006982 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006983
6984 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006985 if( rc!=SQLITE_OK ){
6986 return rc;
6987 }
danielk197730548662009-07-09 05:07:37 +00006988 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006989 if( rc!=SQLITE_OK ){
6990 return rc;
6991 }
danielk19773b8a05f2007-03-19 17:44:26 +00006992 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006993 if( rc!=SQLITE_OK ){
6994 releasePage(pRoot);
6995 return rc;
6996 }
6997 }else{
6998 pRoot = pPageMove;
6999 }
7000
danielk197742741be2005-01-08 12:42:39 +00007001 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007002 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007003 if( rc ){
7004 releasePage(pRoot);
7005 return rc;
7006 }
drhbf592832010-03-30 15:51:12 +00007007
7008 /* When the new root page was allocated, page 1 was made writable in
7009 ** order either to increase the database filesize, or to decrement the
7010 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7011 */
7012 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007013 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007014 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007015 releasePage(pRoot);
7016 return rc;
7017 }
danielk197742741be2005-01-08 12:42:39 +00007018
danielk1977003ba062004-11-04 02:57:33 +00007019 }else{
drh4f0c5872007-03-26 22:05:01 +00007020 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007021 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007022 }
7023#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007024 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007025 if( createTabFlags & BTREE_INTKEY ){
7026 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7027 }else{
7028 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7029 }
7030 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007031 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007032 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007033 *piTable = (int)pgnoRoot;
7034 return SQLITE_OK;
7035}
drhd677b3d2007-08-20 22:48:41 +00007036int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7037 int rc;
7038 sqlite3BtreeEnter(p);
7039 rc = btreeCreateTable(p, piTable, flags);
7040 sqlite3BtreeLeave(p);
7041 return rc;
7042}
drh8b2f49b2001-06-08 00:21:52 +00007043
7044/*
7045** Erase the given database page and all its children. Return
7046** the page to the freelist.
7047*/
drh4b70f112004-05-02 21:12:19 +00007048static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007049 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007050 Pgno pgno, /* Page number to clear */
7051 int freePageFlag, /* Deallocate page if true */
7052 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007053){
danielk1977146ba992009-07-22 14:08:13 +00007054 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007055 int rc;
drh4b70f112004-05-02 21:12:19 +00007056 unsigned char *pCell;
7057 int i;
drh8b2f49b2001-06-08 00:21:52 +00007058
drh1fee73e2007-08-29 04:00:57 +00007059 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007060 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007061 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007062 }
7063
danielk197771d5d2c2008-09-29 11:49:47 +00007064 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007065 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007066 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007067 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007068 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007069 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007070 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007071 }
drh4b70f112004-05-02 21:12:19 +00007072 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007073 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007074 }
drha34b6762004-05-07 13:30:42 +00007075 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007076 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007077 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007078 }else if( pnChange ){
7079 assert( pPage->intKey );
7080 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007081 }
7082 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007083 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007084 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007085 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007086 }
danielk19776b456a22005-03-21 04:04:02 +00007087
7088cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007089 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007090 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007091}
7092
7093/*
drhab01f612004-05-22 02:55:23 +00007094** Delete all information from a single table in the database. iTable is
7095** the page number of the root of the table. After this routine returns,
7096** the root page is empty, but still exists.
7097**
7098** This routine will fail with SQLITE_LOCKED if there are any open
7099** read cursors on the table. Open write cursors are moved to the
7100** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007101**
7102** If pnChange is not NULL, then table iTable must be an intkey table. The
7103** integer value pointed to by pnChange is incremented by the number of
7104** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007105*/
danielk1977c7af4842008-10-27 13:59:33 +00007106int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007107 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007108 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007109 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007110 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007111
7112 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7113 ** is the root of a table b-tree - if it is not, the following call is
7114 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00007115 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00007116
drhc046e3e2009-07-15 11:26:44 +00007117 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7118 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00007119 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007120 }
drhd677b3d2007-08-20 22:48:41 +00007121 sqlite3BtreeLeave(p);
7122 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007123}
7124
7125/*
7126** Erase all information in a table and add the root of the table to
7127** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007128** page 1) is never added to the freelist.
7129**
7130** This routine will fail with SQLITE_LOCKED if there are any open
7131** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007132**
7133** If AUTOVACUUM is enabled and the page at iTable is not the last
7134** root page in the database file, then the last root page
7135** in the database file is moved into the slot formerly occupied by
7136** iTable and that last slot formerly occupied by the last root page
7137** is added to the freelist instead of iTable. In this say, all
7138** root pages are kept at the beginning of the database file, which
7139** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7140** page number that used to be the last root page in the file before
7141** the move. If no page gets moved, *piMoved is set to 0.
7142** The last root page is recorded in meta[3] and the value of
7143** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007144*/
danielk197789d40042008-11-17 14:20:56 +00007145static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007146 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007147 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007148 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007149
drh1fee73e2007-08-29 04:00:57 +00007150 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007151 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007152
danielk1977e6efa742004-11-10 11:55:10 +00007153 /* It is illegal to drop a table if any cursors are open on the
7154 ** database. This is because in auto-vacuum mode the backend may
7155 ** need to move another root-page to fill a gap left by the deleted
7156 ** root page. If an open cursor was using this page a problem would
7157 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007158 **
7159 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007160 */
drhc046e3e2009-07-15 11:26:44 +00007161 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007162 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7163 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007164 }
danielk1977a0bf2652004-11-04 14:30:04 +00007165
danielk197730548662009-07-09 05:07:37 +00007166 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007167 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007168 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007169 if( rc ){
7170 releasePage(pPage);
7171 return rc;
7172 }
danielk1977a0bf2652004-11-04 14:30:04 +00007173
drh205f48e2004-11-05 00:43:11 +00007174 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007175
drh4b70f112004-05-02 21:12:19 +00007176 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007177#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007178 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007179 releasePage(pPage);
7180#else
7181 if( pBt->autoVacuum ){
7182 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007183 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007184
7185 if( iTable==maxRootPgno ){
7186 /* If the table being dropped is the table with the largest root-page
7187 ** number in the database, put the root page on the free list.
7188 */
drhc314dc72009-07-21 11:52:34 +00007189 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007190 releasePage(pPage);
7191 if( rc!=SQLITE_OK ){
7192 return rc;
7193 }
7194 }else{
7195 /* The table being dropped does not have the largest root-page
7196 ** number in the database. So move the page that does into the
7197 ** gap left by the deleted root-page.
7198 */
7199 MemPage *pMove;
7200 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007201 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007202 if( rc!=SQLITE_OK ){
7203 return rc;
7204 }
danielk19774c999992008-07-16 18:17:55 +00007205 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007206 releasePage(pMove);
7207 if( rc!=SQLITE_OK ){
7208 return rc;
7209 }
drhfe3313f2009-07-21 19:02:20 +00007210 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007211 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007212 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007213 releasePage(pMove);
7214 if( rc!=SQLITE_OK ){
7215 return rc;
7216 }
7217 *piMoved = maxRootPgno;
7218 }
7219
danielk1977599fcba2004-11-08 07:13:13 +00007220 /* Set the new 'max-root-page' value in the database header. This
7221 ** is the old value less one, less one more if that happens to
7222 ** be a root-page number, less one again if that is the
7223 ** PENDING_BYTE_PAGE.
7224 */
danielk197787a6e732004-11-05 12:58:25 +00007225 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007226 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7227 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007228 maxRootPgno--;
7229 }
danielk1977599fcba2004-11-08 07:13:13 +00007230 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7231
danielk1977aef0bf62005-12-30 16:28:01 +00007232 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007233 }else{
drhc314dc72009-07-21 11:52:34 +00007234 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007235 releasePage(pPage);
7236 }
7237#endif
drh2aa679f2001-06-25 02:11:07 +00007238 }else{
drhc046e3e2009-07-15 11:26:44 +00007239 /* If sqlite3BtreeDropTable was called on page 1.
7240 ** This really never should happen except in a corrupt
7241 ** database.
7242 */
drha34b6762004-05-07 13:30:42 +00007243 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007244 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007245 }
drh8b2f49b2001-06-08 00:21:52 +00007246 return rc;
7247}
drhd677b3d2007-08-20 22:48:41 +00007248int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7249 int rc;
7250 sqlite3BtreeEnter(p);
7251 rc = btreeDropTable(p, iTable, piMoved);
7252 sqlite3BtreeLeave(p);
7253 return rc;
7254}
drh8b2f49b2001-06-08 00:21:52 +00007255
drh001bbcb2003-03-19 03:14:00 +00007256
drh8b2f49b2001-06-08 00:21:52 +00007257/*
danielk1977602b4662009-07-02 07:47:33 +00007258** This function may only be called if the b-tree connection already
7259** has a read or write transaction open on the database.
7260**
drh23e11ca2004-05-04 17:27:28 +00007261** Read the meta-information out of a database file. Meta[0]
7262** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007263** through meta[15] are available for use by higher layers. Meta[0]
7264** is read-only, the others are read/write.
7265**
7266** The schema layer numbers meta values differently. At the schema
7267** layer (and the SetCookie and ReadCookie opcodes) the number of
7268** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007269*/
danielk1977602b4662009-07-02 07:47:33 +00007270void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007271 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007272
drhd677b3d2007-08-20 22:48:41 +00007273 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007274 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007275 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007276 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007277 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007278
danielk1977602b4662009-07-02 07:47:33 +00007279 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007280
danielk1977602b4662009-07-02 07:47:33 +00007281 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7282 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007283#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007284 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007285#endif
drhae157872004-08-14 19:20:09 +00007286
drhd677b3d2007-08-20 22:48:41 +00007287 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007288}
7289
7290/*
drh23e11ca2004-05-04 17:27:28 +00007291** Write meta-information back into the database. Meta[0] is
7292** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007293*/
danielk1977aef0bf62005-12-30 16:28:01 +00007294int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7295 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007296 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007297 int rc;
drh23e11ca2004-05-04 17:27:28 +00007298 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007299 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007300 assert( p->inTrans==TRANS_WRITE );
7301 assert( pBt->pPage1!=0 );
7302 pP1 = pBt->pPage1->aData;
7303 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7304 if( rc==SQLITE_OK ){
7305 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007306#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007307 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007308 assert( pBt->autoVacuum || iMeta==0 );
7309 assert( iMeta==0 || iMeta==1 );
7310 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007311 }
drh64022502009-01-09 14:11:04 +00007312#endif
drh5df72a52002-06-06 23:16:05 +00007313 }
drhd677b3d2007-08-20 22:48:41 +00007314 sqlite3BtreeLeave(p);
7315 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007316}
drh8c42ca92001-06-22 19:15:00 +00007317
danielk1977a5533162009-02-24 10:01:51 +00007318#ifndef SQLITE_OMIT_BTREECOUNT
7319/*
7320** The first argument, pCur, is a cursor opened on some b-tree. Count the
7321** number of entries in the b-tree and write the result to *pnEntry.
7322**
7323** SQLITE_OK is returned if the operation is successfully executed.
7324** Otherwise, if an error is encountered (i.e. an IO error or database
7325** corruption) an SQLite error code is returned.
7326*/
7327int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7328 i64 nEntry = 0; /* Value to return in *pnEntry */
7329 int rc; /* Return code */
7330 rc = moveToRoot(pCur);
7331
7332 /* Unless an error occurs, the following loop runs one iteration for each
7333 ** page in the B-Tree structure (not including overflow pages).
7334 */
7335 while( rc==SQLITE_OK ){
7336 int iIdx; /* Index of child node in parent */
7337 MemPage *pPage; /* Current page of the b-tree */
7338
7339 /* If this is a leaf page or the tree is not an int-key tree, then
7340 ** this page contains countable entries. Increment the entry counter
7341 ** accordingly.
7342 */
7343 pPage = pCur->apPage[pCur->iPage];
7344 if( pPage->leaf || !pPage->intKey ){
7345 nEntry += pPage->nCell;
7346 }
7347
7348 /* pPage is a leaf node. This loop navigates the cursor so that it
7349 ** points to the first interior cell that it points to the parent of
7350 ** the next page in the tree that has not yet been visited. The
7351 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7352 ** of the page, or to the number of cells in the page if the next page
7353 ** to visit is the right-child of its parent.
7354 **
7355 ** If all pages in the tree have been visited, return SQLITE_OK to the
7356 ** caller.
7357 */
7358 if( pPage->leaf ){
7359 do {
7360 if( pCur->iPage==0 ){
7361 /* All pages of the b-tree have been visited. Return successfully. */
7362 *pnEntry = nEntry;
7363 return SQLITE_OK;
7364 }
danielk197730548662009-07-09 05:07:37 +00007365 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007366 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7367
7368 pCur->aiIdx[pCur->iPage]++;
7369 pPage = pCur->apPage[pCur->iPage];
7370 }
7371
7372 /* Descend to the child node of the cell that the cursor currently
7373 ** points at. This is the right-child if (iIdx==pPage->nCell).
7374 */
7375 iIdx = pCur->aiIdx[pCur->iPage];
7376 if( iIdx==pPage->nCell ){
7377 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7378 }else{
7379 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7380 }
7381 }
7382
shanebe217792009-03-05 04:20:31 +00007383 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007384 return rc;
7385}
7386#endif
drhdd793422001-06-28 01:54:48 +00007387
drhdd793422001-06-28 01:54:48 +00007388/*
drh5eddca62001-06-30 21:53:53 +00007389** Return the pager associated with a BTree. This routine is used for
7390** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007391*/
danielk1977aef0bf62005-12-30 16:28:01 +00007392Pager *sqlite3BtreePager(Btree *p){
7393 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007394}
drh5eddca62001-06-30 21:53:53 +00007395
drhb7f91642004-10-31 02:22:47 +00007396#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007397/*
7398** Append a message to the error message string.
7399*/
drh2e38c322004-09-03 18:38:44 +00007400static void checkAppendMsg(
7401 IntegrityCk *pCheck,
7402 char *zMsg1,
7403 const char *zFormat,
7404 ...
7405){
7406 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007407 if( !pCheck->mxErr ) return;
7408 pCheck->mxErr--;
7409 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007410 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007411 if( pCheck->errMsg.nChar ){
7412 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007413 }
drhf089aa42008-07-08 19:34:06 +00007414 if( zMsg1 ){
7415 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7416 }
7417 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7418 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007419 if( pCheck->errMsg.mallocFailed ){
7420 pCheck->mallocFailed = 1;
7421 }
drh5eddca62001-06-30 21:53:53 +00007422}
drhb7f91642004-10-31 02:22:47 +00007423#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007424
drhb7f91642004-10-31 02:22:47 +00007425#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007426/*
7427** Add 1 to the reference count for page iPage. If this is the second
7428** reference to the page, add an error message to pCheck->zErrMsg.
7429** Return 1 if there are 2 ore more references to the page and 0 if
7430** if this is the first reference to the page.
7431**
7432** Also check that the page number is in bounds.
7433*/
danielk197789d40042008-11-17 14:20:56 +00007434static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007435 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007436 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007437 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007438 return 1;
7439 }
7440 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007441 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007442 return 1;
7443 }
7444 return (pCheck->anRef[iPage]++)>1;
7445}
7446
danielk1977afcdd022004-10-31 16:25:42 +00007447#ifndef SQLITE_OMIT_AUTOVACUUM
7448/*
7449** Check that the entry in the pointer-map for page iChild maps to
7450** page iParent, pointer type ptrType. If not, append an error message
7451** to pCheck.
7452*/
7453static void checkPtrmap(
7454 IntegrityCk *pCheck, /* Integrity check context */
7455 Pgno iChild, /* Child page number */
7456 u8 eType, /* Expected pointer map type */
7457 Pgno iParent, /* Expected pointer map parent page number */
7458 char *zContext /* Context description (used for error msg) */
7459){
7460 int rc;
7461 u8 ePtrmapType;
7462 Pgno iPtrmapParent;
7463
7464 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7465 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007466 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007467 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7468 return;
7469 }
7470
7471 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7472 checkAppendMsg(pCheck, zContext,
7473 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7474 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7475 }
7476}
7477#endif
7478
drh5eddca62001-06-30 21:53:53 +00007479/*
7480** Check the integrity of the freelist or of an overflow page list.
7481** Verify that the number of pages on the list is N.
7482*/
drh30e58752002-03-02 20:41:57 +00007483static void checkList(
7484 IntegrityCk *pCheck, /* Integrity checking context */
7485 int isFreeList, /* True for a freelist. False for overflow page list */
7486 int iPage, /* Page number for first page in the list */
7487 int N, /* Expected number of pages in the list */
7488 char *zContext /* Context for error messages */
7489){
7490 int i;
drh3a4c1412004-05-09 20:40:11 +00007491 int expected = N;
7492 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007493 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007494 DbPage *pOvflPage;
7495 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007496 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007497 checkAppendMsg(pCheck, zContext,
7498 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007499 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007500 break;
7501 }
7502 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007503 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007504 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007505 break;
7506 }
danielk19773b8a05f2007-03-19 17:44:26 +00007507 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007508 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007509 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007510#ifndef SQLITE_OMIT_AUTOVACUUM
7511 if( pCheck->pBt->autoVacuum ){
7512 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7513 }
7514#endif
drh43b18e12010-08-17 19:40:08 +00007515 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007516 checkAppendMsg(pCheck, zContext,
7517 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007518 N--;
7519 }else{
7520 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007521 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007522#ifndef SQLITE_OMIT_AUTOVACUUM
7523 if( pCheck->pBt->autoVacuum ){
7524 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7525 }
7526#endif
7527 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007528 }
7529 N -= n;
drh30e58752002-03-02 20:41:57 +00007530 }
drh30e58752002-03-02 20:41:57 +00007531 }
danielk1977afcdd022004-10-31 16:25:42 +00007532#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007533 else{
7534 /* If this database supports auto-vacuum and iPage is not the last
7535 ** page in this overflow list, check that the pointer-map entry for
7536 ** the following page matches iPage.
7537 */
7538 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007539 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007540 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7541 }
danielk1977afcdd022004-10-31 16:25:42 +00007542 }
7543#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007544 iPage = get4byte(pOvflData);
7545 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007546 }
7547}
drhb7f91642004-10-31 02:22:47 +00007548#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007549
drhb7f91642004-10-31 02:22:47 +00007550#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007551/*
7552** Do various sanity checks on a single page of a tree. Return
7553** the tree depth. Root pages return 0. Parents of root pages
7554** return 1, and so forth.
7555**
7556** These checks are done:
7557**
7558** 1. Make sure that cells and freeblocks do not overlap
7559** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007560** NO 2. Make sure cell keys are in order.
7561** NO 3. Make sure no key is less than or equal to zLowerBound.
7562** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007563** 5. Check the integrity of overflow pages.
7564** 6. Recursively call checkTreePage on all children.
7565** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007566** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007567** the root of the tree.
7568*/
7569static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007570 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007571 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007572 char *zParentContext, /* Parent context */
7573 i64 *pnParentMinKey,
7574 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007575){
7576 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007577 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007578 int hdr, cellStart;
7579 int nCell;
drhda200cc2004-05-09 11:51:38 +00007580 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007581 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007582 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007583 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007584 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007585 i64 nMinKey = 0;
7586 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007587
drh5bb3eb92007-05-04 13:15:55 +00007588 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007589
drh5eddca62001-06-30 21:53:53 +00007590 /* Check that the page exists
7591 */
drhd9cb6ac2005-10-20 07:28:17 +00007592 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007593 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007594 if( iPage==0 ) return 0;
7595 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007596 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007597 checkAppendMsg(pCheck, zContext,
7598 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007599 return 0;
7600 }
danielk197793caf5a2009-07-11 06:55:33 +00007601
7602 /* Clear MemPage.isInit to make sure the corruption detection code in
7603 ** btreeInitPage() is executed. */
7604 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007605 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007606 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007607 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007608 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007609 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007610 return 0;
7611 }
7612
7613 /* Check out all the cells.
7614 */
7615 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007616 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007617 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007618 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007619 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007620
7621 /* Check payload overflow pages
7622 */
drh5bb3eb92007-05-04 13:15:55 +00007623 sqlite3_snprintf(sizeof(zContext), zContext,
7624 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007625 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007626 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007627 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007628 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007629 /* For intKey pages, check that the keys are in order.
7630 */
7631 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7632 else{
7633 if( info.nKey <= nMaxKey ){
7634 checkAppendMsg(pCheck, zContext,
7635 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7636 }
7637 nMaxKey = info.nKey;
7638 }
drh72365832007-03-06 15:53:44 +00007639 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007640 if( (sz>info.nLocal)
7641 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7642 ){
drhb6f41482004-05-14 01:58:11 +00007643 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007644 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7645#ifndef SQLITE_OMIT_AUTOVACUUM
7646 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007647 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007648 }
7649#endif
7650 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007651 }
7652
7653 /* Check sanity of left child page.
7654 */
drhda200cc2004-05-09 11:51:38 +00007655 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007656 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007657#ifndef SQLITE_OMIT_AUTOVACUUM
7658 if( pBt->autoVacuum ){
7659 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7660 }
7661#endif
shaneh195475d2010-02-19 04:28:08 +00007662 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007663 if( i>0 && d2!=depth ){
7664 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7665 }
7666 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007667 }
drh5eddca62001-06-30 21:53:53 +00007668 }
shaneh195475d2010-02-19 04:28:08 +00007669
drhda200cc2004-05-09 11:51:38 +00007670 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007671 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007672 sqlite3_snprintf(sizeof(zContext), zContext,
7673 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007674#ifndef SQLITE_OMIT_AUTOVACUUM
7675 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007676 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007677 }
7678#endif
shaneh195475d2010-02-19 04:28:08 +00007679 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007680 }
drh5eddca62001-06-30 21:53:53 +00007681
shaneh195475d2010-02-19 04:28:08 +00007682 /* For intKey leaf pages, check that the min/max keys are in order
7683 ** with any left/parent/right pages.
7684 */
7685 if( pPage->leaf && pPage->intKey ){
7686 /* if we are a left child page */
7687 if( pnParentMinKey ){
7688 /* if we are the left most child page */
7689 if( !pnParentMaxKey ){
7690 if( nMaxKey > *pnParentMinKey ){
7691 checkAppendMsg(pCheck, zContext,
7692 "Rowid %lld out of order (max larger than parent min of %lld)",
7693 nMaxKey, *pnParentMinKey);
7694 }
7695 }else{
7696 if( nMinKey <= *pnParentMinKey ){
7697 checkAppendMsg(pCheck, zContext,
7698 "Rowid %lld out of order (min less than parent min of %lld)",
7699 nMinKey, *pnParentMinKey);
7700 }
7701 if( nMaxKey > *pnParentMaxKey ){
7702 checkAppendMsg(pCheck, zContext,
7703 "Rowid %lld out of order (max larger than parent max of %lld)",
7704 nMaxKey, *pnParentMaxKey);
7705 }
7706 *pnParentMinKey = nMaxKey;
7707 }
7708 /* else if we're a right child page */
7709 } else if( pnParentMaxKey ){
7710 if( nMinKey <= *pnParentMaxKey ){
7711 checkAppendMsg(pCheck, zContext,
7712 "Rowid %lld out of order (min less than parent max of %lld)",
7713 nMinKey, *pnParentMaxKey);
7714 }
7715 }
7716 }
7717
drh5eddca62001-06-30 21:53:53 +00007718 /* Check for complete coverage of the page
7719 */
drhda200cc2004-05-09 11:51:38 +00007720 data = pPage->aData;
7721 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007722 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007723 if( hit==0 ){
7724 pCheck->mallocFailed = 1;
7725 }else{
drh5d433ce2010-08-14 16:02:52 +00007726 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007727 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007728 memset(hit+contentOffset, 0, usableSize-contentOffset);
7729 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007730 nCell = get2byte(&data[hdr+3]);
7731 cellStart = hdr + 12 - 4*pPage->leaf;
7732 for(i=0; i<nCell; i++){
7733 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00007734 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00007735 int j;
drh8c2bbb62009-07-10 02:52:20 +00007736 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007737 size = cellSizePtr(pPage, &data[pc]);
7738 }
drh43b18e12010-08-17 19:40:08 +00007739 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007740 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007741 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007742 }else{
7743 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7744 }
drh2e38c322004-09-03 18:38:44 +00007745 }
drh8c2bbb62009-07-10 02:52:20 +00007746 i = get2byte(&data[hdr+1]);
7747 while( i>0 ){
7748 int size, j;
7749 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7750 size = get2byte(&data[i+2]);
7751 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7752 for(j=i+size-1; j>=i; j--) hit[j]++;
7753 j = get2byte(&data[i]);
7754 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7755 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7756 i = j;
drh2e38c322004-09-03 18:38:44 +00007757 }
7758 for(i=cnt=0; i<usableSize; i++){
7759 if( hit[i]==0 ){
7760 cnt++;
7761 }else if( hit[i]>1 ){
7762 checkAppendMsg(pCheck, 0,
7763 "Multiple uses for byte %d of page %d", i, iPage);
7764 break;
7765 }
7766 }
7767 if( cnt!=data[hdr+7] ){
7768 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007769 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007770 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007771 }
7772 }
drh8c2bbb62009-07-10 02:52:20 +00007773 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007774 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007775 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007776}
drhb7f91642004-10-31 02:22:47 +00007777#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007778
drhb7f91642004-10-31 02:22:47 +00007779#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007780/*
7781** This routine does a complete check of the given BTree file. aRoot[] is
7782** an array of pages numbers were each page number is the root page of
7783** a table. nRoot is the number of entries in aRoot.
7784**
danielk19773509a652009-07-06 18:56:13 +00007785** A read-only or read-write transaction must be opened before calling
7786** this function.
7787**
drhc890fec2008-08-01 20:10:08 +00007788** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007789** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007790** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007791** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007792*/
drh1dcdbc02007-01-27 02:24:54 +00007793char *sqlite3BtreeIntegrityCheck(
7794 Btree *p, /* The btree to be checked */
7795 int *aRoot, /* An array of root pages numbers for individual trees */
7796 int nRoot, /* Number of entries in aRoot[] */
7797 int mxErr, /* Stop reporting errors after this many */
7798 int *pnErr /* Write number of errors seen to this variable */
7799){
danielk197789d40042008-11-17 14:20:56 +00007800 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007801 int nRef;
drhaaab5722002-02-19 13:39:21 +00007802 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007803 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007804 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007805
drhd677b3d2007-08-20 22:48:41 +00007806 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007807 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007808 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007809 sCheck.pBt = pBt;
7810 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007811 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007812 sCheck.mxErr = mxErr;
7813 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007814 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007815 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007816 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007817 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007818 return 0;
7819 }
drhe5ae5732008-06-15 02:51:47 +00007820 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007821 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007822 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007823 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007824 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007825 }
drhda200cc2004-05-09 11:51:38 +00007826 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007827 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007828 if( i<=sCheck.nPage ){
7829 sCheck.anRef[i] = 1;
7830 }
drhf089aa42008-07-08 19:34:06 +00007831 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drhb9755982010-07-24 16:34:37 +00007832 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00007833
7834 /* Check the integrity of the freelist
7835 */
drha34b6762004-05-07 13:30:42 +00007836 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7837 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007838
7839 /* Check all the tables.
7840 */
danielk197789d40042008-11-17 14:20:56 +00007841 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007842 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007843#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007844 if( pBt->autoVacuum && aRoot[i]>1 ){
7845 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7846 }
7847#endif
shaneh195475d2010-02-19 04:28:08 +00007848 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007849 }
7850
7851 /* Make sure every page in the file is referenced
7852 */
drh1dcdbc02007-01-27 02:24:54 +00007853 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007854#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007855 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007856 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007857 }
danielk1977afcdd022004-10-31 16:25:42 +00007858#else
7859 /* If the database supports auto-vacuum, make sure no tables contain
7860 ** references to pointer-map pages.
7861 */
7862 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007863 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007864 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7865 }
7866 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007867 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007868 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7869 }
7870#endif
drh5eddca62001-06-30 21:53:53 +00007871 }
7872
drh64022502009-01-09 14:11:04 +00007873 /* Make sure this analysis did not leave any unref() pages.
7874 ** This is an internal consistency check; an integrity check
7875 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007876 */
drh64022502009-01-09 14:11:04 +00007877 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007878 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007879 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007880 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007881 );
drh5eddca62001-06-30 21:53:53 +00007882 }
7883
7884 /* Clean up and report errors.
7885 */
drhd677b3d2007-08-20 22:48:41 +00007886 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007887 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007888 if( sCheck.mallocFailed ){
7889 sqlite3StrAccumReset(&sCheck.errMsg);
7890 *pnErr = sCheck.nErr+1;
7891 return 0;
7892 }
drh1dcdbc02007-01-27 02:24:54 +00007893 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007894 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7895 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007896}
drhb7f91642004-10-31 02:22:47 +00007897#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007898
drh73509ee2003-04-06 20:44:45 +00007899/*
7900** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007901**
7902** The pager filename is invariant as long as the pager is
7903** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007904*/
danielk1977aef0bf62005-12-30 16:28:01 +00007905const char *sqlite3BtreeGetFilename(Btree *p){
7906 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007907 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007908}
7909
7910/*
danielk19775865e3d2004-06-14 06:03:57 +00007911** Return the pathname of the journal file for this database. The return
7912** value of this routine is the same regardless of whether the journal file
7913** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007914**
7915** The pager journal filename is invariant as long as the pager is
7916** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007917*/
danielk1977aef0bf62005-12-30 16:28:01 +00007918const char *sqlite3BtreeGetJournalname(Btree *p){
7919 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007920 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007921}
7922
danielk19771d850a72004-05-31 08:26:49 +00007923/*
7924** Return non-zero if a transaction is active.
7925*/
danielk1977aef0bf62005-12-30 16:28:01 +00007926int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007927 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007928 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007929}
7930
dana550f2d2010-08-02 10:47:05 +00007931#ifndef SQLITE_OMIT_WAL
7932/*
7933** Run a checkpoint on the Btree passed as the first argument.
7934**
7935** Return SQLITE_LOCKED if this or any other connection has an open
7936** transaction on the shared-cache the argument Btree is connected to.
7937*/
7938int sqlite3BtreeCheckpoint(Btree *p){
7939 int rc = SQLITE_OK;
7940 if( p ){
7941 BtShared *pBt = p->pBt;
7942 sqlite3BtreeEnter(p);
7943 if( pBt->inTransaction!=TRANS_NONE ){
7944 rc = SQLITE_LOCKED;
7945 }else{
7946 rc = sqlite3PagerCheckpoint(pBt->pPager);
7947 }
7948 sqlite3BtreeLeave(p);
7949 }
7950 return rc;
7951}
7952#endif
7953
danielk19771d850a72004-05-31 08:26:49 +00007954/*
danielk19772372c2b2006-06-27 16:34:56 +00007955** Return non-zero if a read (or write) transaction is active.
7956*/
7957int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007958 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007959 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007960 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007961}
7962
danielk197704103022009-02-03 16:51:24 +00007963int sqlite3BtreeIsInBackup(Btree *p){
7964 assert( p );
7965 assert( sqlite3_mutex_held(p->db->mutex) );
7966 return p->nBackup!=0;
7967}
7968
danielk19772372c2b2006-06-27 16:34:56 +00007969/*
danielk1977da184232006-01-05 11:34:32 +00007970** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007971** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007972** purposes (for example, to store a high-level schema associated with
7973** the shared-btree). The btree layer manages reference counting issues.
7974**
7975** The first time this is called on a shared-btree, nBytes bytes of memory
7976** are allocated, zeroed, and returned to the caller. For each subsequent
7977** call the nBytes parameter is ignored and a pointer to the same blob
7978** of memory returned.
7979**
danielk1977171bfed2008-06-23 09:50:50 +00007980** If the nBytes parameter is 0 and the blob of memory has not yet been
7981** allocated, a null pointer is returned. If the blob has already been
7982** allocated, it is returned as normal.
7983**
danielk1977da184232006-01-05 11:34:32 +00007984** Just before the shared-btree is closed, the function passed as the
7985** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007986** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007987** on the memory, the btree layer does that.
7988*/
7989void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7990 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007991 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007992 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00007993 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00007994 pBt->xFreeSchema = xFree;
7995 }
drh27641702007-08-22 02:56:42 +00007996 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007997 return pBt->pSchema;
7998}
7999
danielk1977c87d34d2006-01-06 13:00:28 +00008000/*
danielk1977404ca072009-03-16 13:19:36 +00008001** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8002** btree as the argument handle holds an exclusive lock on the
8003** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008004*/
8005int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008006 int rc;
drhe5fe6902007-12-07 18:55:28 +00008007 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008008 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008009 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8010 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008011 sqlite3BtreeLeave(p);
8012 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008013}
8014
drha154dcd2006-03-22 22:10:07 +00008015
8016#ifndef SQLITE_OMIT_SHARED_CACHE
8017/*
8018** Obtain a lock on the table whose root page is iTab. The
8019** lock is a write lock if isWritelock is true or a read lock
8020** if it is false.
8021*/
danielk1977c00da102006-01-07 13:21:04 +00008022int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008023 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008024 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008025 if( p->sharable ){
8026 u8 lockType = READ_LOCK + isWriteLock;
8027 assert( READ_LOCK+1==WRITE_LOCK );
8028 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008029
drh6a9ad3d2008-04-02 16:29:30 +00008030 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008031 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008032 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008033 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008034 }
8035 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008036 }
8037 return rc;
8038}
drha154dcd2006-03-22 22:10:07 +00008039#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008040
danielk1977b4e9af92007-05-01 17:49:49 +00008041#ifndef SQLITE_OMIT_INCRBLOB
8042/*
8043** Argument pCsr must be a cursor opened for writing on an
8044** INTKEY table currently pointing at a valid table entry.
8045** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008046**
8047** Only the data content may only be modified, it is not possible to
8048** change the length of the data stored. If this function is called with
8049** parameters that attempt to write past the end of the existing data,
8050** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008051*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008052int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008053 int rc;
drh1fee73e2007-08-29 04:00:57 +00008054 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008055 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008056 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008057
danielk1977c9000e62009-07-08 13:55:28 +00008058 rc = restoreCursorPosition(pCsr);
8059 if( rc!=SQLITE_OK ){
8060 return rc;
8061 }
danielk19773588ceb2008-06-10 17:30:26 +00008062 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8063 if( pCsr->eState!=CURSOR_VALID ){
8064 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008065 }
8066
danielk1977c9000e62009-07-08 13:55:28 +00008067 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008068 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008069 ** (b) there is a read/write transaction open,
8070 ** (c) the connection holds a write-lock on the table (if required),
8071 ** (d) there are no conflicting read-locks, and
8072 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008073 */
danielk19774f029602009-07-08 18:45:37 +00008074 if( !pCsr->wrFlag ){
8075 return SQLITE_READONLY;
8076 }
danielk197796d48e92009-06-29 06:00:37 +00008077 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
8078 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8079 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008080 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008081
drhfb192682009-07-11 18:26:28 +00008082 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008083}
danielk19772dec9702007-05-02 16:48:37 +00008084
8085/*
8086** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008087** overflow list for the current row. This is used by cursors opened
8088** for incremental blob IO only.
8089**
8090** This function sets a flag only. The actual page location cache
8091** (stored in BtCursor.aOverflow[]) is allocated and used by function
8092** accessPayload() (the worker function for sqlite3BtreeData() and
8093** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008094*/
8095void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008096 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008097 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00008098 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00008099 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00008100 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008101}
danielk1977b4e9af92007-05-01 17:49:49 +00008102#endif
dane04dc882010-04-20 18:53:15 +00008103
8104/*
8105** Set both the "read version" (single byte at byte offset 18) and
8106** "write version" (single byte at byte offset 19) fields in the database
8107** header to iVersion.
8108*/
8109int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8110 BtShared *pBt = pBtree->pBt;
8111 int rc; /* Return code */
8112
danb9780022010-04-21 18:37:57 +00008113 assert( pBtree->inTrans==TRANS_NONE );
dane04dc882010-04-20 18:53:15 +00008114 assert( iVersion==1 || iVersion==2 );
8115
danb9780022010-04-21 18:37:57 +00008116 /* If setting the version fields to 1, do not automatically open the
8117 ** WAL connection, even if the version fields are currently set to 2.
8118 */
shaneh5eba1f62010-07-02 17:05:03 +00008119 pBt->doNotUseWAL = (u8)(iVersion==1);
danb9780022010-04-21 18:37:57 +00008120
8121 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008122 if( rc==SQLITE_OK ){
8123 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008124 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008125 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008126 if( rc==SQLITE_OK ){
8127 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8128 if( rc==SQLITE_OK ){
8129 aData[18] = (u8)iVersion;
8130 aData[19] = (u8)iVersion;
8131 }
8132 }
8133 }
dane04dc882010-04-20 18:53:15 +00008134 }
8135
danb9780022010-04-21 18:37:57 +00008136 pBt->doNotUseWAL = 0;
dane04dc882010-04-20 18:53:15 +00008137 return rc;
8138}