blob: dca50cd069b011da7f8a57b78f3b71f745d9f1d0 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
danielk1977cfe9a692004-06-16 12:00:29 +000012** $Id: btree.c,v 1.171 2004/06/16 12:00:29 danielk1977 Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
15** For a detailed discussion of BTrees, refer to
16**
17** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
18** "Sorting And Searching", pages 473-480. Addison-Wesley
19** Publishing Company, Reading, Massachusetts.
20**
21** The basic idea is that each page of the file contains N database
22** entries and N+1 pointers to subpages.
23**
24** ----------------------------------------------------------------
25** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
26** ----------------------------------------------------------------
27**
28** All of the keys on the page that Ptr(0) points to have values less
29** than Key(0). All of the keys on page Ptr(1) and its subpages have
30** values greater than Key(0) and less than Key(1). All of the keys
31** on Ptr(N+1) and its subpages have values greater than Key(N). And
32** so forth.
33**
drh5e00f6c2001-09-13 13:46:56 +000034** Finding a particular key requires reading O(log(M)) pages from the
35** disk where M is the number of entries in the tree.
drh8b2f49b2001-06-08 00:21:52 +000036**
37** In this implementation, a single file can hold one or more separate
38** BTrees. Each BTree is identified by the index of its root page. The
drh9e572e62004-04-23 23:43:10 +000039** key and data for any entry are combined to form the "payload". A
40** fixed amount of payload can be carried directly on the database
41** page. If the payload is larger than the preset amount then surplus
42** bytes are stored on overflow pages. The payload for an entry
43** and the preceding pointer are combined to form a "Cell". Each
44** page has a small header which contains the Ptr(N+1) pointer and other
45** information such as the size of key and data.
drh8b2f49b2001-06-08 00:21:52 +000046**
drh9e572e62004-04-23 23:43:10 +000047** FORMAT DETAILS
48**
49** The file is divided into pages. The first page is called page 1,
50** the second is page 2, and so forth. A page number of zero indicates
51** "no such page". The page size can be anything between 512 and 65536.
52** Each page can be either a btree page, a freelist page or an overflow
53** page.
54**
55** The first page is always a btree page. The first 100 bytes of the first
drh271efa52004-05-30 19:19:05 +000056** page contain a special header (the "file header") that describes the file.
57** The format of the file header is as follows:
drh9e572e62004-04-23 23:43:10 +000058**
59** OFFSET SIZE DESCRIPTION
drhde647132004-05-07 17:57:49 +000060** 0 16 Header string: "SQLite format 3\000"
drh9e572e62004-04-23 23:43:10 +000061** 16 2 Page size in bytes.
62** 18 1 File format write version
63** 19 1 File format read version
drh6f11bef2004-05-13 01:12:56 +000064** 20 1 Bytes of unused space at the end of each page
65** 21 1 Max embedded payload fraction
66** 22 1 Min embedded payload fraction
67** 23 1 Min leaf payload fraction
68** 24 4 File change counter
69** 28 4 Reserved for future use
drh9e572e62004-04-23 23:43:10 +000070** 32 4 First freelist page
71** 36 4 Number of freelist pages in the file
72** 40 60 15 4-byte meta values passed to higher layers
73**
74** All of the integer values are big-endian (most significant byte first).
drh6f11bef2004-05-13 01:12:56 +000075**
drhab01f612004-05-22 02:55:23 +000076** The file change counter is incremented when the database is changed more
drh6f11bef2004-05-13 01:12:56 +000077** than once within the same second. This counter, together with the
78** modification time of the file, allows other processes to know
79** when the file has changed and thus when they need to flush their
80** cache.
81**
82** The max embedded payload fraction is the amount of the total usable
83** space in a page that can be consumed by a single cell for standard
84** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
85** is to limit the maximum cell size so that at least 4 cells will fit
drhab01f612004-05-22 02:55:23 +000086** on one page. Thus the default max embedded payload fraction is 64.
drh6f11bef2004-05-13 01:12:56 +000087**
88** If the payload for a cell is larger than the max payload, then extra
89** payload is spilled to overflow pages. Once an overflow page is allocated,
90** as many bytes as possible are moved into the overflow pages without letting
91** the cell size drop below the min embedded payload fraction.
92**
93** The min leaf payload fraction is like the min embedded payload fraction
94** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
95** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
96** not specified in the header.
drh9e572e62004-04-23 23:43:10 +000097**
drh43605152004-05-29 21:46:49 +000098** Each btree pages is divided into three sections: The header, the
99** cell pointer array, and the cell area area. Page 1 also has a 100-byte
drh271efa52004-05-30 19:19:05 +0000100** file header that occurs before the page header.
101**
102** |----------------|
103** | file header | 100 bytes. Page 1 only.
104** |----------------|
105** | page header | 8 bytes for leaves. 12 bytes for interior nodes
106** |----------------|
107** | cell pointer | | 2 bytes per cell. Sorted order.
108** | array | | Grows downward
109** | | v
110** |----------------|
111** | unallocated |
112** | space |
113** |----------------| ^ Grows upwards
114** | cell content | | Arbitrary order interspersed with freeblocks.
115** | area | | and free space fragments.
116** |----------------|
drh43605152004-05-29 21:46:49 +0000117**
118** The page headers looks like this:
drh9e572e62004-04-23 23:43:10 +0000119**
120** OFFSET SIZE DESCRIPTION
drh6f11bef2004-05-13 01:12:56 +0000121** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
drh9e572e62004-04-23 23:43:10 +0000122** 1 2 byte offset to the first freeblock
drh43605152004-05-29 21:46:49 +0000123** 3 2 number of cells on this page
drh271efa52004-05-30 19:19:05 +0000124** 5 2 first byte of the cell content area
drh43605152004-05-29 21:46:49 +0000125** 7 1 number of fragmented free bytes
drh271efa52004-05-30 19:19:05 +0000126** 8 4 Right child (the Ptr(N+1) value). Omitted on leaves.
drh9e572e62004-04-23 23:43:10 +0000127**
128** The flags define the format of this btree page. The leaf flag means that
129** this page has no children. The zerodata flag means that this page carries
130** only keys and no data. The intkey flag means that the key is a single
131** variable length integer at the beginning of the payload.
132**
drh43605152004-05-29 21:46:49 +0000133** The cell pointer array begins on the first byte after the page header.
134** The cell pointer array contains zero or more 2-byte numbers which are
135** offsets from the beginning of the page to the cell content in the cell
136** content area. The cell pointers occur in sorted order. The system strives
137** to keep free space after the last cell pointer so that new cells can
138** be easily added without have to defragment the page.
139**
140** Cell content is stored at the very end of the page and grows toward the
141** beginning of the page.
142**
143** Unused space within the cell content area is collected into a linked list of
144** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
145** to the first freeblock is given in the header. Freeblocks occur in
146** increasing order. Because a freeblock must be at least 4 bytes in size,
147** any group of 3 or fewer unused bytes in the cell content area cannot
148** exist on the freeblock chain. A group of 3 or fewer free bytes is called
149** a fragment. The total number of bytes in all fragments is recorded.
150** in the page header at offset 7.
151**
152** SIZE DESCRIPTION
153** 2 Byte offset of the next freeblock
154** 2 Bytes in this freeblock
155**
156** Cells are of variable length. Cells are stored in the cell content area at
157** the end of the page. Pointers to the cells are in the cell pointer array
158** that immediately follows the page header. Cells is not necessarily
159** contiguous or in order, but cell pointers are contiguous and in order.
160**
161** Cell content makes use of variable length integers. A variable
162** length integer is 1 to 9 bytes where the lower 7 bits of each
drh9e572e62004-04-23 23:43:10 +0000163** byte are used. The integer consists of all bytes that have bit 8 set and
drh6f11bef2004-05-13 01:12:56 +0000164** the first byte with bit 8 clear. The most significant byte of the integer
drhab01f612004-05-22 02:55:23 +0000165** appears first. A variable-length integer may not be more than 9 bytes long.
166** As a special case, all 8 bytes of the 9th byte are used as data. This
167** allows a 64-bit integer to be encoded in 9 bytes.
drh9e572e62004-04-23 23:43:10 +0000168**
169** 0x00 becomes 0x00000000
drh6f11bef2004-05-13 01:12:56 +0000170** 0x7f becomes 0x0000007f
171** 0x81 0x00 becomes 0x00000080
172** 0x82 0x00 becomes 0x00000100
173** 0x80 0x7f becomes 0x0000007f
174** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
drh9e572e62004-04-23 23:43:10 +0000175** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
176**
177** Variable length integers are used for rowids and to hold the number of
178** bytes of key and data in a btree cell.
179**
drh43605152004-05-29 21:46:49 +0000180** The content of a cell looks like this:
drh9e572e62004-04-23 23:43:10 +0000181**
182** SIZE DESCRIPTION
drh3aac2dd2004-04-26 14:10:20 +0000183** 4 Page number of the left child. Omitted if leaf flag is set.
184** var Number of bytes of data. Omitted if the zerodata flag is set.
185** var Number of bytes of key. Or the key itself if intkey flag is set.
drh9e572e62004-04-23 23:43:10 +0000186** * Payload
187** 4 First page of the overflow chain. Omitted if no overflow
188**
189** Overflow pages form a linked list. Each page except the last is completely
190** filled with data (pagesize - 4 bytes). The last page can have as little
191** as 1 byte of data.
192**
193** SIZE DESCRIPTION
194** 4 Page number of next overflow page
195** * Data
196**
197** Freelist pages come in two subtypes: trunk pages and leaf pages. The
198** file header points to first in a linked list of trunk page. Each trunk
199** page points to multiple leaf pages. The content of a leaf page is
200** unspecified. A trunk page looks like this:
201**
202** SIZE DESCRIPTION
203** 4 Page number of next trunk page
204** 4 Number of leaf pointers on this page
205** * zero or more pages numbers of leaves
drha059ad02001-04-17 20:09:11 +0000206*/
207#include "sqliteInt.h"
208#include "pager.h"
209#include "btree.h"
drh1f595712004-06-15 01:40:29 +0000210#include "os.h"
drha059ad02001-04-17 20:09:11 +0000211#include <assert.h>
212
drh4b70f112004-05-02 21:12:19 +0000213
214/* Maximum page size. The upper bound on this value is 65536 (a limit
drh43605152004-05-29 21:46:49 +0000215** imposed by the 2-byte size of cell array pointers.) The
drh4b70f112004-05-02 21:12:19 +0000216** maximum page size determines the amount of stack space allocated
217** by many of the routines in this module. On embedded architectures
218** or any machine where memory and especially stack memory is limited,
219** one may wish to chose a smaller value for the maximum page size.
220*/
221#ifndef MX_PAGE_SIZE
222# define MX_PAGE_SIZE 1024
223#endif
224
drh4b70f112004-05-02 21:12:19 +0000225/* The following value is the maximum cell size assuming a maximum page
226** size give above.
227*/
drh43605152004-05-29 21:46:49 +0000228#define MX_CELL_SIZE (MX_PAGE_SIZE-8)
drh4b70f112004-05-02 21:12:19 +0000229
230/* The maximum number of cells on a single page of the database. This
231** assumes a minimum cell size of 3 bytes. Such small cells will be
232** exceedingly rare, but they are possible.
233*/
drh43605152004-05-29 21:46:49 +0000234#define MX_CELL ((MX_PAGE_SIZE-8)/3)
drh4b70f112004-05-02 21:12:19 +0000235
paulb95a8862003-04-01 21:16:41 +0000236/* Forward declarations */
drh3aac2dd2004-04-26 14:10:20 +0000237typedef struct MemPage MemPage;
paulb95a8862003-04-01 21:16:41 +0000238
drh8c42ca92001-06-22 19:15:00 +0000239/*
drhbd03cae2001-06-02 02:40:57 +0000240** This is a magic string that appears at the beginning of every
drh8c42ca92001-06-22 19:15:00 +0000241** SQLite database in order to identify the file as a real database.
drhde647132004-05-07 17:57:49 +0000242** 123456789 123456 */
243static const char zMagicHeader[] = "SQLite format 3";
drh08ed44e2001-04-29 23:32:55 +0000244
245/*
drh4b70f112004-05-02 21:12:19 +0000246** Page type flags. An ORed combination of these flags appear as the
247** first byte of every BTree page.
drh8c42ca92001-06-22 19:15:00 +0000248*/
drhde647132004-05-07 17:57:49 +0000249#define PTF_INTKEY 0x01
drh9e572e62004-04-23 23:43:10 +0000250#define PTF_ZERODATA 0x02
drh8b18dd42004-05-12 19:18:15 +0000251#define PTF_LEAFDATA 0x04
252#define PTF_LEAF 0x08
drh8c42ca92001-06-22 19:15:00 +0000253
254/*
drh9e572e62004-04-23 23:43:10 +0000255** As each page of the file is loaded into memory, an instance of the following
256** structure is appended and initialized to zero. This structure stores
257** information about the page that is decoded from the raw file page.
drh14acc042001-06-10 19:56:58 +0000258**
drh72f82862001-05-24 21:06:34 +0000259** The pParent field points back to the parent page. This allows us to
260** walk up the BTree from any leaf to the root. Care must be taken to
261** unref() the parent page pointer when this page is no longer referenced.
drhbd03cae2001-06-02 02:40:57 +0000262** The pageDestructor() routine handles that chore.
drh7e3b0a02001-04-28 16:52:40 +0000263*/
264struct MemPage {
drha6abd042004-06-09 17:37:22 +0000265 u8 isInit; /* True if previously initialized. MUST BE FIRST! */
drh43605152004-05-29 21:46:49 +0000266 u8 idxShift; /* True if Cell indices have changed */
267 u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
268 u8 intKey; /* True if intkey flag is set */
269 u8 leaf; /* True if leaf flag is set */
270 u8 zeroData; /* True if table stores keys only */
271 u8 leafData; /* True if tables stores data on leaves only */
272 u8 hasData; /* True if this page stores data */
273 u8 hdrOffset; /* 100 for page 1. 0 otherwise */
drh271efa52004-05-30 19:19:05 +0000274 u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
drha2fce642004-06-05 00:01:44 +0000275 u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */
276 u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */
drh43605152004-05-29 21:46:49 +0000277 u16 cellOffset; /* Index in aData of first cell pointer */
278 u16 idxParent; /* Index in parent of this node */
279 u16 nFree; /* Number of free bytes on the page */
280 u16 nCell; /* Number of cells on this page, local and ovfl */
281 struct _OvflCell { /* Cells that will not fit on aData[] */
282 u8 *pCell; /* Pointers to the body of the overflow cell */
283 u16 idx; /* Insert this cell before idx-th non-overflow cell */
drha2fce642004-06-05 00:01:44 +0000284 } aOvfl[5];
drh43605152004-05-29 21:46:49 +0000285 struct Btree *pBt; /* Pointer back to BTree structure */
286 u8 *aData; /* Pointer back to the start of the page */
287 Pgno pgno; /* Page number for this page */
288 MemPage *pParent; /* The parent of this page. NULL for root */
drh8c42ca92001-06-22 19:15:00 +0000289};
drh7e3b0a02001-04-28 16:52:40 +0000290
291/*
drh3b7511c2001-05-26 13:15:44 +0000292** The in-memory image of a disk page has the auxiliary information appended
293** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
294** that extra information.
295*/
drh3aac2dd2004-04-26 14:10:20 +0000296#define EXTRA_SIZE sizeof(MemPage)
drh3b7511c2001-05-26 13:15:44 +0000297
298/*
drha059ad02001-04-17 20:09:11 +0000299** Everything we need to know about an open database
300*/
301struct Btree {
302 Pager *pPager; /* The page cache */
drh306dc212001-05-21 13:45:10 +0000303 BtCursor *pCursor; /* A list of all open cursors */
drh3aac2dd2004-04-26 14:10:20 +0000304 MemPage *pPage1; /* First page of the database */
drh663fc632002-02-02 18:49:19 +0000305 u8 inTrans; /* True if a transaction is in progress */
drhab01f612004-05-22 02:55:23 +0000306 u8 inStmt; /* True if we are in a statement subtransaction */
drh5df72a52002-06-06 23:16:05 +0000307 u8 readOnly; /* True if the underlying file is readonly */
drhab01f612004-05-22 02:55:23 +0000308 u8 maxEmbedFrac; /* Maximum payload as % of total page size */
309 u8 minEmbedFrac; /* Minimum payload as % of total page size */
310 u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
drha2fce642004-06-05 00:01:44 +0000311 u16 pageSize; /* Total number of bytes on a page */
312 u16 usableSize; /* Number of usable bytes on each page */
drh6f11bef2004-05-13 01:12:56 +0000313 int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
314 int minLocal; /* Minimum local payload in non-LEAFDATA tables */
315 int maxLeaf; /* Maximum local payload in a LEAFDATA table */
316 int minLeaf; /* Minimum local payload in a LEAFDATA table */
drha059ad02001-04-17 20:09:11 +0000317};
318typedef Btree Bt;
319
drh365d68f2001-05-11 11:02:46 +0000320/*
danielk1977ee5741e2004-05-31 10:01:34 +0000321** Btree.inTrans may take one of the following values.
322*/
323#define TRANS_NONE 0
324#define TRANS_READ 1
325#define TRANS_WRITE 2
326
327/*
drhfa1a98a2004-05-14 19:08:17 +0000328** An instance of the following structure is used to hold information
drh271efa52004-05-30 19:19:05 +0000329** about a cell. The parseCellPtr() function fills in this structure
drhab01f612004-05-22 02:55:23 +0000330** based on information extract from the raw disk page.
drhfa1a98a2004-05-14 19:08:17 +0000331*/
332typedef struct CellInfo CellInfo;
333struct CellInfo {
drh43605152004-05-29 21:46:49 +0000334 u8 *pCell; /* Pointer to the start of cell content */
drhfa1a98a2004-05-14 19:08:17 +0000335 i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
336 u32 nData; /* Number of bytes of data */
drh271efa52004-05-30 19:19:05 +0000337 u16 nHeader; /* Size of the cell content header in bytes */
drhfa1a98a2004-05-14 19:08:17 +0000338 u16 nLocal; /* Amount of payload held locally */
drhab01f612004-05-22 02:55:23 +0000339 u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
drh271efa52004-05-30 19:19:05 +0000340 u16 nSize; /* Size of the cell content on the main b-tree page */
drhfa1a98a2004-05-14 19:08:17 +0000341};
342
343/*
drh365d68f2001-05-11 11:02:46 +0000344** A cursor is a pointer to a particular entry in the BTree.
345** The entry is identified by its MemPage and the index in
drha34b6762004-05-07 13:30:42 +0000346** MemPage.aCell[] of the entry.
drh365d68f2001-05-11 11:02:46 +0000347*/
drh72f82862001-05-24 21:06:34 +0000348struct BtCursor {
drh5e2f8b92001-05-28 00:41:15 +0000349 Btree *pBt; /* The Btree to which this cursor belongs */
drh14acc042001-06-10 19:56:58 +0000350 BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
drhf74b8d92002-09-01 23:20:45 +0000351 BtCursor *pShared; /* Loop of cursors with the same root page */
drh3aac2dd2004-04-26 14:10:20 +0000352 int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
353 void *pArg; /* First arg to xCompare() */
drh8b2f49b2001-06-08 00:21:52 +0000354 Pgno pgnoRoot; /* The root page of this tree */
drh5e2f8b92001-05-28 00:41:15 +0000355 MemPage *pPage; /* Page that contains the entry */
drh3aac2dd2004-04-26 14:10:20 +0000356 int idx; /* Index of the entry in pPage->aCell[] */
drhfa1a98a2004-05-14 19:08:17 +0000357 CellInfo info; /* A parse of the cell we are pointing at */
drhecdc7532001-09-23 02:35:53 +0000358 u8 wrFlag; /* True if writable */
drhc39e0002004-05-07 23:50:57 +0000359 u8 isValid; /* TRUE if points to a valid entry */
360 u8 status; /* Set to SQLITE_ABORT if cursors is invalidated */
drh365d68f2001-05-11 11:02:46 +0000361};
drh7e3b0a02001-04-28 16:52:40 +0000362
drha059ad02001-04-17 20:09:11 +0000363/*
drhab01f612004-05-22 02:55:23 +0000364** Read or write a two- and four-byte big-endian integer values.
drh0d316a42002-08-11 20:10:47 +0000365*/
drh9e572e62004-04-23 23:43:10 +0000366static u32 get2byte(unsigned char *p){
367 return (p[0]<<8) | p[1];
drh0d316a42002-08-11 20:10:47 +0000368}
drh9e572e62004-04-23 23:43:10 +0000369static u32 get4byte(unsigned char *p){
370 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
371}
drh9e572e62004-04-23 23:43:10 +0000372static void put2byte(unsigned char *p, u32 v){
373 p[0] = v>>8;
374 p[1] = v;
375}
376static void put4byte(unsigned char *p, u32 v){
377 p[0] = v>>24;
378 p[1] = v>>16;
379 p[2] = v>>8;
380 p[3] = v;
381}
drh6f11bef2004-05-13 01:12:56 +0000382
drh9e572e62004-04-23 23:43:10 +0000383/*
drhab01f612004-05-22 02:55:23 +0000384** Routines to read and write variable-length integers. These used to
385** be defined locally, but now we use the varint routines in the util.c
386** file.
drh9e572e62004-04-23 23:43:10 +0000387*/
drh6d2fb152004-05-14 16:50:06 +0000388#define getVarint sqlite3GetVarint
389#define getVarint32 sqlite3GetVarint32
390#define putVarint sqlite3PutVarint
drh0d316a42002-08-11 20:10:47 +0000391
392/*
drh271efa52004-05-30 19:19:05 +0000393** Given a btree page and a cell index (0 means the first cell on
394** the page, 1 means the second cell, and so forth) return a pointer
395** to the cell content.
396**
397** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000398*/
drh43605152004-05-29 21:46:49 +0000399static u8 *findCell(MemPage *pPage, int iCell){
400 u8 *data = pPage->aData;
401 assert( iCell>=0 );
402 assert( iCell<get2byte(&data[pPage->hdrOffset+3]) );
403 return data + get2byte(&data[pPage->cellOffset+2*iCell]);
404}
405
406/*
407** This a more complex version of findCell() that works for
408** pages that do contain overflow cells. See insert
409*/
410static u8 *findOverflowCell(MemPage *pPage, int iCell){
411 int i;
412 for(i=pPage->nOverflow-1; i>=0; i--){
413 if( pPage->aOvfl[i].idx<=iCell ){
414 if( pPage->aOvfl[i].idx==iCell ){
415 return pPage->aOvfl[i].pCell;
416 }
417 iCell--;
418 }
419 }
420 return findCell(pPage, iCell);
421}
422
423/*
424** Parse a cell content block and fill in the CellInfo structure. There
425** are two versions of this function. parseCell() takes a cell index
426** as the second argument and parseCellPtr() takes a pointer to the
427** body of the cell as its second argument.
428*/
429static void parseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000430 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000431 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000432 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000433){
drh271efa52004-05-30 19:19:05 +0000434 int n; /* Number bytes in cell content header */
435 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000436
437 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000438 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000439 n = pPage->childPtrSize;
440 assert( n==4-4*pPage->leaf );
drh8b18dd42004-05-12 19:18:15 +0000441 if( pPage->hasData ){
drh271efa52004-05-30 19:19:05 +0000442 n += getVarint32(&pCell[n], &nPayload);
drh8b18dd42004-05-12 19:18:15 +0000443 }else{
drh271efa52004-05-30 19:19:05 +0000444 nPayload = 0;
drh3aac2dd2004-04-26 14:10:20 +0000445 }
drh6f11bef2004-05-13 01:12:56 +0000446 n += getVarint(&pCell[n], &pInfo->nKey);
447 pInfo->nHeader = n;
drh271efa52004-05-30 19:19:05 +0000448 pInfo->nData = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000449 if( !pPage->intKey ){
450 nPayload += pInfo->nKey;
451 }
drh271efa52004-05-30 19:19:05 +0000452 if( nPayload<=pPage->maxLocal ){
453 /* This is the (easy) common case where the entire payload fits
454 ** on the local page. No overflow is required.
455 */
456 int nSize; /* Total size of cell content in bytes */
drh6f11bef2004-05-13 01:12:56 +0000457 pInfo->nLocal = nPayload;
458 pInfo->iOverflow = 0;
drh271efa52004-05-30 19:19:05 +0000459 nSize = nPayload + n;
460 if( nSize<4 ){
461 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000462 }
drh271efa52004-05-30 19:19:05 +0000463 pInfo->nSize = nSize;
drh6f11bef2004-05-13 01:12:56 +0000464 }else{
drh271efa52004-05-30 19:19:05 +0000465 /* If the payload will not fit completely on the local page, we have
466 ** to decide how much to store locally and how much to spill onto
467 ** overflow pages. The strategy is to minimize the amount of unused
468 ** space on overflow pages while keeping the amount of local storage
469 ** in between minLocal and maxLocal.
470 **
471 ** Warning: changing the way overflow payload is distributed in any
472 ** way will result in an incompatible file format.
473 */
474 int minLocal; /* Minimum amount of payload held locally */
475 int maxLocal; /* Maximum amount of payload held locally */
476 int surplus; /* Overflow payload available for local storage */
477
478 minLocal = pPage->minLocal;
479 maxLocal = pPage->maxLocal;
480 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000481 if( surplus <= maxLocal ){
482 pInfo->nLocal = surplus;
483 }else{
484 pInfo->nLocal = minLocal;
485 }
486 pInfo->iOverflow = pInfo->nLocal + n;
487 pInfo->nSize = pInfo->iOverflow + 4;
488 }
drh3aac2dd2004-04-26 14:10:20 +0000489}
drh43605152004-05-29 21:46:49 +0000490static void parseCell(
491 MemPage *pPage, /* Page containing the cell */
492 int iCell, /* The cell index. First cell is 0 */
493 CellInfo *pInfo /* Fill in this structure */
494){
495 parseCellPtr(pPage, findCell(pPage, iCell), pInfo);
496}
drh3aac2dd2004-04-26 14:10:20 +0000497
498/*
drh43605152004-05-29 21:46:49 +0000499** Compute the total number of bytes that a Cell needs in the cell
500** data area of the btree-page. The return number includes the cell
501** data header and the local payload, but not any overflow page or
502** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000503*/
drh43605152004-05-29 21:46:49 +0000504static int cellSize(MemPage *pPage, int iCell){
drh6f11bef2004-05-13 01:12:56 +0000505 CellInfo info;
drh43605152004-05-29 21:46:49 +0000506 parseCell(pPage, iCell, &info);
507 return info.nSize;
508}
509static int cellSizePtr(MemPage *pPage, u8 *pCell){
510 CellInfo info;
511 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +0000512 return info.nSize;
drh3b7511c2001-05-26 13:15:44 +0000513}
514
515/*
drhda200cc2004-05-09 11:51:38 +0000516** Do sanity checking on a page. Throw an exception if anything is
517** not right.
518**
519** This routine is used for internal error checking only. It is omitted
520** from most builds.
521*/
522#if defined(BTREE_DEBUG) && !defined(NDEBUG) && 0
523static void _pageIntegrity(MemPage *pPage){
drhb6f41482004-05-14 01:58:11 +0000524 int usableSize;
drhda200cc2004-05-09 11:51:38 +0000525 u8 *data;
drh43605152004-05-29 21:46:49 +0000526 int i, j, idx, c, pc, hdr, nFree;
527 int cellOffset;
528 int nCell, cellLimit;
drhda200cc2004-05-09 11:51:38 +0000529 u8 used[MX_PAGE_SIZE];
530
drhb6f41482004-05-14 01:58:11 +0000531 usableSize = pPage->pBt->usableSize;
532 assert( pPage->aData==&((unsigned char*)pPage)[-pPage->pBt->pageSize] );
drhda200cc2004-05-09 11:51:38 +0000533 hdr = pPage->hdrOffset;
534 assert( hdr==(pPage->pgno==1 ? 100 : 0) );
535 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
536 c = pPage->aData[hdr];
537 if( pPage->isInit ){
538 assert( pPage->leaf == ((c & PTF_LEAF)!=0) );
539 assert( pPage->zeroData == ((c & PTF_ZERODATA)!=0) );
drh8b18dd42004-05-12 19:18:15 +0000540 assert( pPage->leafData == ((c & PTF_LEAFDATA)!=0) );
541 assert( pPage->intKey == ((c & (PTF_INTKEY|PTF_LEAFDATA))!=0) );
542 assert( pPage->hasData ==
543 !(pPage->zeroData || (!pPage->leaf && pPage->leafData)) );
drh43605152004-05-29 21:46:49 +0000544 assert( pPage->cellOffset==pPage->hdrOffset+12-4*pPage->leaf );
545 assert( pPage->nCell = get2byte(&pPage->aData[hdr+3]) );
drhda200cc2004-05-09 11:51:38 +0000546 }
547 data = pPage->aData;
drhb6f41482004-05-14 01:58:11 +0000548 memset(used, 0, usableSize);
drhda200cc2004-05-09 11:51:38 +0000549 for(i=0; i<hdr+10-pPage->leaf*4; i++) used[i] = 1;
550 nFree = 0;
551 pc = get2byte(&data[hdr+1]);
552 while( pc ){
553 int size;
drhb6f41482004-05-14 01:58:11 +0000554 assert( pc>0 && pc<usableSize-4 );
drhda200cc2004-05-09 11:51:38 +0000555 size = get2byte(&data[pc+2]);
drhb6f41482004-05-14 01:58:11 +0000556 assert( pc+size<=usableSize );
drhda200cc2004-05-09 11:51:38 +0000557 nFree += size;
558 for(i=pc; i<pc+size; i++){
559 assert( used[i]==0 );
560 used[i] = 1;
561 }
562 pc = get2byte(&data[pc]);
563 }
drhda200cc2004-05-09 11:51:38 +0000564 idx = 0;
drh43605152004-05-29 21:46:49 +0000565 nCell = get2byte(&data[hdr+3]);
566 cellLimit = get2byte(&data[hdr+5]);
567 assert( pPage->isInit==0
568 || pPage->nFree==nFree+data[hdr+7]+cellLimit-(cellOffset+2*nCell) );
569 cellOffset = pPage->cellOffset;
570 for(i=0; i<nCell; i++){
drhda200cc2004-05-09 11:51:38 +0000571 int size;
drh43605152004-05-29 21:46:49 +0000572 pc = get2byte(&data[cellOffset+2*i]);
drhb6f41482004-05-14 01:58:11 +0000573 assert( pc>0 && pc<usableSize-4 );
drhda200cc2004-05-09 11:51:38 +0000574 size = cellSize(pPage, &data[pc]);
drhb6f41482004-05-14 01:58:11 +0000575 assert( pc+size<=usableSize );
drh43605152004-05-29 21:46:49 +0000576 for(j=pc; j<pc+size; j++){
577 assert( used[j]==0 );
578 used[j] = 1;
drhda200cc2004-05-09 11:51:38 +0000579 }
drhda200cc2004-05-09 11:51:38 +0000580 }
drh43605152004-05-29 21:46:49 +0000581 for(i=cellOffset+2*nCell; i<cellimit; i++){
582 assert( used[i]==0 );
583 used[i] = 1;
584 }
drhda200cc2004-05-09 11:51:38 +0000585 nFree = 0;
drhb6f41482004-05-14 01:58:11 +0000586 for(i=0; i<usableSize; i++){
drhda200cc2004-05-09 11:51:38 +0000587 assert( used[i]<=1 );
588 if( used[i]==0 ) nFree++;
589 }
drh43605152004-05-29 21:46:49 +0000590 assert( nFree==data[hdr+7] );
drhda200cc2004-05-09 11:51:38 +0000591}
592#define pageIntegrity(X) _pageIntegrity(X)
593#else
594# define pageIntegrity(X)
595#endif
596
597/*
drh72f82862001-05-24 21:06:34 +0000598** Defragment the page given. All Cells are moved to the
599** beginning of the page and all free space is collected
600** into one big FreeBlk at the end of the page.
drh365d68f2001-05-11 11:02:46 +0000601*/
drh9e572e62004-04-23 23:43:10 +0000602static void defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +0000603 int i; /* Loop counter */
604 int pc; /* Address of a i-th cell */
605 int addr; /* Offset of first byte after cell pointer array */
606 int hdr; /* Offset to the page header */
607 int size; /* Size of a cell */
608 int usableSize; /* Number of usable bytes on a page */
609 int cellOffset; /* Offset to the cell pointer array */
610 int brk; /* Offset to the cell content area */
611 int nCell; /* Number of cells on the page */
612 unsigned char *data; /* The page data */
613 unsigned char temp[MX_PAGE_SIZE]; /* Temp holding area for cell content */
drh2af926b2001-05-15 00:39:25 +0000614
drha34b6762004-05-07 13:30:42 +0000615 assert( sqlite3pager_iswriteable(pPage->aData) );
drh9e572e62004-04-23 23:43:10 +0000616 assert( pPage->pBt!=0 );
drhb6f41482004-05-14 01:58:11 +0000617 assert( pPage->pBt->usableSize <= MX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +0000618 assert( pPage->nOverflow==0 );
619 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +0000620 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000621 cellOffset = pPage->cellOffset;
622 nCell = pPage->nCell;
623 assert( nCell==get2byte(&data[hdr+3]) );
624 usableSize = pPage->pBt->usableSize;
625 brk = get2byte(&data[hdr+5]);
626 memcpy(&temp[brk], &data[brk], usableSize - brk);
627 brk = usableSize;
628 for(i=0; i<nCell; i++){
629 u8 *pAddr; /* The i-th cell pointer */
630 pAddr = &data[cellOffset + i*2];
631 pc = get2byte(pAddr);
632 assert( pc<pPage->pBt->usableSize );
633 size = cellSizePtr(pPage, &temp[pc]);
634 brk -= size;
635 memcpy(&data[brk], &temp[pc], size);
636 put2byte(pAddr, brk);
drh2af926b2001-05-15 00:39:25 +0000637 }
drh43605152004-05-29 21:46:49 +0000638 assert( brk>=cellOffset+2*nCell );
639 put2byte(&data[hdr+5], brk);
640 data[hdr+1] = 0;
641 data[hdr+2] = 0;
642 data[hdr+7] = 0;
643 addr = cellOffset+2*nCell;
644 memset(&data[addr], 0, brk-addr);
drh365d68f2001-05-11 11:02:46 +0000645}
646
drha059ad02001-04-17 20:09:11 +0000647/*
drh43605152004-05-29 21:46:49 +0000648** Allocate nByte bytes of space on a page.
drhbd03cae2001-06-02 02:40:57 +0000649**
drh9e572e62004-04-23 23:43:10 +0000650** Return the index into pPage->aData[] of the first byte of
drhbd03cae2001-06-02 02:40:57 +0000651** the new allocation. Or return 0 if there is not enough free
652** space on the page to satisfy the allocation request.
drh2af926b2001-05-15 00:39:25 +0000653**
drh72f82862001-05-24 21:06:34 +0000654** If the page contains nBytes of free space but does not contain
drh8b2f49b2001-06-08 00:21:52 +0000655** nBytes of contiguous free space, then this routine automatically
656** calls defragementPage() to consolidate all free space before
657** allocating the new chunk.
drh7e3b0a02001-04-28 16:52:40 +0000658*/
drh9e572e62004-04-23 23:43:10 +0000659static int allocateSpace(MemPage *pPage, int nByte){
drh3aac2dd2004-04-26 14:10:20 +0000660 int addr, pc, hdr;
drh9e572e62004-04-23 23:43:10 +0000661 int size;
drh24cd67e2004-05-10 16:18:47 +0000662 int nFrag;
drh43605152004-05-29 21:46:49 +0000663 int top;
664 int nCell;
665 int cellOffset;
drh9e572e62004-04-23 23:43:10 +0000666 unsigned char *data;
drh43605152004-05-29 21:46:49 +0000667
drh9e572e62004-04-23 23:43:10 +0000668 data = pPage->aData;
drha34b6762004-05-07 13:30:42 +0000669 assert( sqlite3pager_iswriteable(data) );
drh9e572e62004-04-23 23:43:10 +0000670 assert( pPage->pBt );
671 if( nByte<4 ) nByte = 4;
drh43605152004-05-29 21:46:49 +0000672 if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
673 pPage->nFree -= nByte;
drh9e572e62004-04-23 23:43:10 +0000674 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000675
676 nFrag = data[hdr+7];
677 if( nFrag<60 ){
678 /* Search the freelist looking for a slot big enough to satisfy the
679 ** space request. */
680 addr = hdr+1;
681 while( (pc = get2byte(&data[addr]))>0 ){
682 size = get2byte(&data[pc+2]);
683 if( size>=nByte ){
684 if( size<nByte+4 ){
685 memcpy(&data[addr], &data[pc], 2);
686 data[hdr+7] = nFrag + size - nByte;
687 return pc;
688 }else{
689 put2byte(&data[pc+2], size-nByte);
690 return pc + size - nByte;
691 }
692 }
693 addr = pc;
drh9e572e62004-04-23 23:43:10 +0000694 }
695 }
drh43605152004-05-29 21:46:49 +0000696
697 /* Allocate memory from the gap in between the cell pointer array
698 ** and the cell content area.
699 */
700 top = get2byte(&data[hdr+5]);
701 nCell = get2byte(&data[hdr+3]);
702 cellOffset = pPage->cellOffset;
703 if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
704 defragmentPage(pPage);
705 top = get2byte(&data[hdr+5]);
drh2af926b2001-05-15 00:39:25 +0000706 }
drh43605152004-05-29 21:46:49 +0000707 top -= nByte;
708 assert( cellOffset + 2*nCell <= top );
709 put2byte(&data[hdr+5], top);
710 return top;
drh7e3b0a02001-04-28 16:52:40 +0000711}
712
713/*
drh9e572e62004-04-23 23:43:10 +0000714** Return a section of the pPage->aData to the freelist.
715** The first byte of the new free block is pPage->aDisk[start]
716** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +0000717**
718** Most of the effort here is involved in coalesing adjacent
719** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000720*/
drh9e572e62004-04-23 23:43:10 +0000721static void freeSpace(MemPage *pPage, int start, int size){
722 int end = start + size; /* End of the segment being freed */
drh43605152004-05-29 21:46:49 +0000723 int addr, pbegin, hdr;
drh9e572e62004-04-23 23:43:10 +0000724 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +0000725
drh9e572e62004-04-23 23:43:10 +0000726 assert( pPage->pBt!=0 );
drha34b6762004-05-07 13:30:42 +0000727 assert( sqlite3pager_iswriteable(data) );
drh9e572e62004-04-23 23:43:10 +0000728 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
drhb6f41482004-05-14 01:58:11 +0000729 assert( end<=pPage->pBt->usableSize );
drh9e572e62004-04-23 23:43:10 +0000730 if( size<4 ) size = 4;
731
732 /* Add the space back into the linked list of freeblocks */
drh43605152004-05-29 21:46:49 +0000733 hdr = pPage->hdrOffset;
734 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +0000735 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +0000736 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000737 assert( pbegin>addr );
738 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +0000739 }
drhb6f41482004-05-14 01:58:11 +0000740 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000741 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +0000742 put2byte(&data[addr], start);
743 put2byte(&data[start], pbegin);
744 put2byte(&data[start+2], size);
drh2af926b2001-05-15 00:39:25 +0000745 pPage->nFree += size;
drh9e572e62004-04-23 23:43:10 +0000746
747 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +0000748 addr = pPage->hdrOffset + 1;
749 while( (pbegin = get2byte(&data[addr]))>0 ){
drh9e572e62004-04-23 23:43:10 +0000750 int pnext, psize;
drh3aac2dd2004-04-26 14:10:20 +0000751 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +0000752 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +0000753 pnext = get2byte(&data[pbegin]);
754 psize = get2byte(&data[pbegin+2]);
755 if( pbegin + psize + 3 >= pnext && pnext>0 ){
756 int frag = pnext - (pbegin+psize);
drh43605152004-05-29 21:46:49 +0000757 assert( frag<=data[pPage->hdrOffset+7] );
758 data[pPage->hdrOffset+7] -= frag;
drh9e572e62004-04-23 23:43:10 +0000759 put2byte(&data[pbegin], get2byte(&data[pnext]));
760 put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
761 }else{
drh3aac2dd2004-04-26 14:10:20 +0000762 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +0000763 }
764 }
drh7e3b0a02001-04-28 16:52:40 +0000765
drh43605152004-05-29 21:46:49 +0000766 /* If the cell content area begins with a freeblock, remove it. */
767 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
768 int top;
769 pbegin = get2byte(&data[hdr+1]);
770 memcpy(&data[hdr+1], &data[pbegin], 2);
771 top = get2byte(&data[hdr+5]);
772 put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
drh4b70f112004-05-02 21:12:19 +0000773 }
drh4b70f112004-05-02 21:12:19 +0000774}
775
776/*
drh271efa52004-05-30 19:19:05 +0000777** Decode the flags byte (the first byte of the header) for a page
778** and initialize fields of the MemPage structure accordingly.
779*/
780static void decodeFlags(MemPage *pPage, int flagByte){
781 Btree *pBt; /* A copy of pPage->pBt */
782
783 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
784 pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
785 pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
786 pPage->leaf = (flagByte & PTF_LEAF)!=0;
787 pPage->childPtrSize = 4*(pPage->leaf==0);
788 pBt = pPage->pBt;
789 if( flagByte & PTF_LEAFDATA ){
790 pPage->leafData = 1;
791 pPage->maxLocal = pBt->maxLeaf;
792 pPage->minLocal = pBt->minLeaf;
793 }else{
794 pPage->leafData = 0;
795 pPage->maxLocal = pBt->maxLocal;
796 pPage->minLocal = pBt->minLocal;
797 }
798 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
799}
800
801/*
drh7e3b0a02001-04-28 16:52:40 +0000802** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +0000803**
drhbd03cae2001-06-02 02:40:57 +0000804** The pParent parameter must be a pointer to the MemPage which
drh9e572e62004-04-23 23:43:10 +0000805** is the parent of the page being initialized. The root of a
806** BTree has no parent and so for that page, pParent==NULL.
drh5e2f8b92001-05-28 00:41:15 +0000807**
drh72f82862001-05-24 21:06:34 +0000808** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +0000809** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +0000810** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
811** guarantee that the page is well-formed. It only shows that
812** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +0000813*/
drh9e572e62004-04-23 23:43:10 +0000814static int initPage(
drh3aac2dd2004-04-26 14:10:20 +0000815 MemPage *pPage, /* The page to be initialized */
drh9e572e62004-04-23 23:43:10 +0000816 MemPage *pParent /* The parent. Might be NULL */
817){
drh271efa52004-05-30 19:19:05 +0000818 int pc; /* Address of a freeblock within pPage->aData[] */
819 int i; /* Loop counter */
820 int hdr; /* Offset to beginning of page header */
821 u8 *data; /* Equal to pPage->aData */
822 int usableSize; /* Amount of usable space on each page */
823 int cellOffset; /* Offset from start of page to first cell pointer */
824 int nFree; /* Number of unused bytes on the page */
825 int top; /* First byte of the cell content area */
drh2af926b2001-05-15 00:39:25 +0000826
drh3aac2dd2004-04-26 14:10:20 +0000827 assert( pPage->pBt!=0 );
drh4b70f112004-05-02 21:12:19 +0000828 assert( pParent==0 || pParent->pBt==pPage->pBt );
drha34b6762004-05-07 13:30:42 +0000829 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
drhde647132004-05-07 17:57:49 +0000830 assert( pPage->aData == &((unsigned char*)pPage)[-pPage->pBt->pageSize] );
drhda200cc2004-05-09 11:51:38 +0000831 assert( pPage->pParent==0 || pPage->pParent==pParent );
drh10617cd2004-05-14 15:27:27 +0000832 assert( pPage->pParent==pParent || !pPage->isInit );
833 if( pPage->isInit ) return SQLITE_OK;
drhda200cc2004-05-09 11:51:38 +0000834 if( pPage->pParent==0 && pParent!=0 ){
835 pPage->pParent = pParent;
drha34b6762004-05-07 13:30:42 +0000836 sqlite3pager_ref(pParent->aData);
drh5e2f8b92001-05-28 00:41:15 +0000837 }
drhde647132004-05-07 17:57:49 +0000838 hdr = pPage->hdrOffset;
drha34b6762004-05-07 13:30:42 +0000839 data = pPage->aData;
drh271efa52004-05-30 19:19:05 +0000840 decodeFlags(pPage, data[hdr]);
drh43605152004-05-29 21:46:49 +0000841 pPage->nOverflow = 0;
drhc8629a12004-05-08 20:07:40 +0000842 pPage->idxShift = 0;
drhb6f41482004-05-14 01:58:11 +0000843 usableSize = pPage->pBt->usableSize;
drh43605152004-05-29 21:46:49 +0000844 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
845 top = get2byte(&data[hdr+5]);
846 pPage->nCell = get2byte(&data[hdr+3]);
drh9e572e62004-04-23 23:43:10 +0000847
848 /* Compute the total free space on the page */
drh9e572e62004-04-23 23:43:10 +0000849 pc = get2byte(&data[hdr+1]);
drh43605152004-05-29 21:46:49 +0000850 nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
drh3add3672004-05-15 00:29:24 +0000851 i = 0;
drh9e572e62004-04-23 23:43:10 +0000852 while( pc>0 ){
853 int next, size;
drhb6f41482004-05-14 01:58:11 +0000854 if( pc>=usableSize ) return SQLITE_CORRUPT;
drh3add3672004-05-15 00:29:24 +0000855 if( i++>MX_PAGE_SIZE ) return SQLITE_CORRUPT;
drh9e572e62004-04-23 23:43:10 +0000856 next = get2byte(&data[pc]);
857 size = get2byte(&data[pc+2]);
drh3aac2dd2004-04-26 14:10:20 +0000858 if( next>0 && next<=pc+size+3 ) return SQLITE_CORRUPT;
drh3add3672004-05-15 00:29:24 +0000859 nFree += size;
drh9e572e62004-04-23 23:43:10 +0000860 pc = next;
861 }
drh3add3672004-05-15 00:29:24 +0000862 pPage->nFree = nFree;
863 if( nFree>=usableSize ) return SQLITE_CORRUPT;
drh9e572e62004-04-23 23:43:10 +0000864
drhde647132004-05-07 17:57:49 +0000865 pPage->isInit = 1;
drhda200cc2004-05-09 11:51:38 +0000866 pageIntegrity(pPage);
drh9e572e62004-04-23 23:43:10 +0000867 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +0000868}
869
870/*
drh8b2f49b2001-06-08 00:21:52 +0000871** Set up a raw page so that it looks like a database page holding
872** no entries.
drhbd03cae2001-06-02 02:40:57 +0000873*/
drh9e572e62004-04-23 23:43:10 +0000874static void zeroPage(MemPage *pPage, int flags){
875 unsigned char *data = pPage->aData;
876 Btree *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +0000877 int hdr = pPage->hdrOffset;
drh9e572e62004-04-23 23:43:10 +0000878 int first;
879
drhda200cc2004-05-09 11:51:38 +0000880 assert( sqlite3pager_pagenumber(data)==pPage->pgno );
881 assert( &data[pBt->pageSize] == (unsigned char*)pPage );
drha34b6762004-05-07 13:30:42 +0000882 assert( sqlite3pager_iswriteable(data) );
drhb6f41482004-05-14 01:58:11 +0000883 memset(&data[hdr], 0, pBt->usableSize - hdr);
drh9e572e62004-04-23 23:43:10 +0000884 data[hdr] = flags;
drh43605152004-05-29 21:46:49 +0000885 first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
886 memset(&data[hdr+1], 0, 4);
887 data[hdr+7] = 0;
888 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +0000889 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +0000890 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +0000891 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +0000892 pPage->cellOffset = first;
893 pPage->nOverflow = 0;
drhda200cc2004-05-09 11:51:38 +0000894 pPage->idxShift = 0;
drh43605152004-05-29 21:46:49 +0000895 pPage->nCell = 0;
drhda200cc2004-05-09 11:51:38 +0000896 pPage->isInit = 1;
897 pageIntegrity(pPage);
drhbd03cae2001-06-02 02:40:57 +0000898}
899
900/*
drh3aac2dd2004-04-26 14:10:20 +0000901** Get a page from the pager. Initialize the MemPage.pBt and
902** MemPage.aData elements if needed.
903*/
904static int getPage(Btree *pBt, Pgno pgno, MemPage **ppPage){
905 int rc;
906 unsigned char *aData;
907 MemPage *pPage;
drha34b6762004-05-07 13:30:42 +0000908 rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData);
drh3aac2dd2004-04-26 14:10:20 +0000909 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +0000910 pPage = (MemPage*)&aData[pBt->pageSize];
drh3aac2dd2004-04-26 14:10:20 +0000911 pPage->aData = aData;
912 pPage->pBt = pBt;
913 pPage->pgno = pgno;
drhde647132004-05-07 17:57:49 +0000914 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
drh3aac2dd2004-04-26 14:10:20 +0000915 *ppPage = pPage;
916 return SQLITE_OK;
917}
918
919/*
drhde647132004-05-07 17:57:49 +0000920** Get a page from the pager and initialize it. This routine
921** is just a convenience wrapper around separate calls to
922** getPage() and initPage().
923*/
924static int getAndInitPage(
925 Btree *pBt, /* The database file */
926 Pgno pgno, /* Number of the page to get */
927 MemPage **ppPage, /* Write the page pointer here */
928 MemPage *pParent /* Parent of the page */
929){
930 int rc;
931 rc = getPage(pBt, pgno, ppPage);
drh10617cd2004-05-14 15:27:27 +0000932 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
drhde647132004-05-07 17:57:49 +0000933 rc = initPage(*ppPage, pParent);
934 }
935 return rc;
936}
937
938/*
drh3aac2dd2004-04-26 14:10:20 +0000939** Release a MemPage. This should be called once for each prior
940** call to getPage.
941*/
drh4b70f112004-05-02 21:12:19 +0000942static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +0000943 if( pPage ){
944 assert( pPage->aData );
945 assert( pPage->pBt );
946 assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage );
drha34b6762004-05-07 13:30:42 +0000947 sqlite3pager_unref(pPage->aData);
drh3aac2dd2004-04-26 14:10:20 +0000948 }
949}
950
951/*
drh72f82862001-05-24 21:06:34 +0000952** This routine is called when the reference count for a page
953** reaches zero. We need to unref the pParent pointer when that
954** happens.
955*/
drhb6f41482004-05-14 01:58:11 +0000956static void pageDestructor(void *pData, int pageSize){
957 MemPage *pPage = (MemPage*)&((char*)pData)[pageSize];
drh72f82862001-05-24 21:06:34 +0000958 if( pPage->pParent ){
959 MemPage *pParent = pPage->pParent;
960 pPage->pParent = 0;
drha34b6762004-05-07 13:30:42 +0000961 releasePage(pParent);
drh72f82862001-05-24 21:06:34 +0000962 }
drh3aac2dd2004-04-26 14:10:20 +0000963 pPage->isInit = 0;
drh72f82862001-05-24 21:06:34 +0000964}
965
966/*
drha6abd042004-06-09 17:37:22 +0000967** During a rollback, when the pager reloads information into the cache
968** so that the cache is restored to its original state at the start of
969** the transaction, for each page restored this routine is called.
970**
971** This routine needs to reset the extra data section at the end of the
972** page to agree with the restored data.
973*/
974static void pageReinit(void *pData, int pageSize){
975 MemPage *pPage = (MemPage*)&((char*)pData)[pageSize];
976 if( pPage->isInit ){
977 pPage->isInit = 0;
978 initPage(pPage, pPage->pParent);
979 }
980}
981
982/*
drh306dc212001-05-21 13:45:10 +0000983** Open a new database.
984**
985** Actually, this routine just sets up the internal data structures
drh72f82862001-05-24 21:06:34 +0000986** for accessing the database. We do not open the database file
987** until the first page is loaded.
drh382c0242001-10-06 16:33:02 +0000988**
989** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +0000990** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +0000991** database file will be deleted when sqlite3BtreeClose() is called.
drha059ad02001-04-17 20:09:11 +0000992*/
drh23e11ca2004-05-04 17:27:28 +0000993int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +0000994 const char *zFilename, /* Name of the file containing the BTree database */
995 Btree **ppBtree, /* Pointer to new Btree object written here */
996 int nCache, /* Number of cache pages */
danielk197724162fe2004-06-04 06:22:00 +0000997 int flags, /* Options */
998 void *pBusyHandler /* Busy callback info passed to pager layer */
drh6019e162001-07-02 17:51:45 +0000999){
drha059ad02001-04-17 20:09:11 +00001000 Btree *pBt;
drha34b6762004-05-07 13:30:42 +00001001 int rc;
drha059ad02001-04-17 20:09:11 +00001002
drhd62d3d02003-01-24 12:14:20 +00001003 /*
1004 ** The following asserts make sure that structures used by the btree are
1005 ** the right size. This is to guard against size changes that result
1006 ** when compiling on a different architecture.
1007 */
drh4a1c3802004-05-12 15:15:47 +00001008 assert( sizeof(i64)==8 );
drh9e572e62004-04-23 23:43:10 +00001009 assert( sizeof(u64)==8 );
drhd62d3d02003-01-24 12:14:20 +00001010 assert( sizeof(u32)==4 );
1011 assert( sizeof(u16)==2 );
1012 assert( sizeof(Pgno)==4 );
drhd62d3d02003-01-24 12:14:20 +00001013 assert( sizeof(ptr)==sizeof(char*) );
1014 assert( sizeof(uptr)==sizeof(ptr) );
1015
drha059ad02001-04-17 20:09:11 +00001016 pBt = sqliteMalloc( sizeof(*pBt) );
1017 if( pBt==0 ){
drh8c42ca92001-06-22 19:15:00 +00001018 *ppBtree = 0;
drha059ad02001-04-17 20:09:11 +00001019 return SQLITE_NOMEM;
1020 }
drh6019e162001-07-02 17:51:45 +00001021 if( nCache<10 ) nCache = 10;
drha34b6762004-05-07 13:30:42 +00001022 rc = sqlite3pager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
danielk197724162fe2004-06-04 06:22:00 +00001023 (flags & BTREE_OMIT_JOURNAL)==0, pBusyHandler);
drha059ad02001-04-17 20:09:11 +00001024 if( rc!=SQLITE_OK ){
drha34b6762004-05-07 13:30:42 +00001025 if( pBt->pPager ) sqlite3pager_close(pBt->pPager);
drha059ad02001-04-17 20:09:11 +00001026 sqliteFree(pBt);
1027 *ppBtree = 0;
1028 return rc;
1029 }
drha34b6762004-05-07 13:30:42 +00001030 sqlite3pager_set_destructor(pBt->pPager, pageDestructor);
drha6abd042004-06-09 17:37:22 +00001031 sqlite3pager_set_reiniter(pBt->pPager, pageReinit);
drha059ad02001-04-17 20:09:11 +00001032 pBt->pCursor = 0;
drha34b6762004-05-07 13:30:42 +00001033 pBt->pPage1 = 0;
1034 pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager);
drh4b70f112004-05-02 21:12:19 +00001035 pBt->pageSize = SQLITE_PAGE_SIZE; /* FIX ME - read from header */
drhb6f41482004-05-14 01:58:11 +00001036 pBt->usableSize = pBt->pageSize;
drh6f11bef2004-05-13 01:12:56 +00001037 pBt->maxEmbedFrac = 64; /* FIX ME - read from header */
1038 pBt->minEmbedFrac = 32; /* FIX ME - read from header */
1039 pBt->minLeafFrac = 32; /* FIX ME - read from header */
drh3a4c1412004-05-09 20:40:11 +00001040
drha059ad02001-04-17 20:09:11 +00001041 *ppBtree = pBt;
1042 return SQLITE_OK;
1043}
1044
1045/*
1046** Close an open database and invalidate all cursors.
1047*/
drh3aac2dd2004-04-26 14:10:20 +00001048int sqlite3BtreeClose(Btree *pBt){
drha059ad02001-04-17 20:09:11 +00001049 while( pBt->pCursor ){
drh3aac2dd2004-04-26 14:10:20 +00001050 sqlite3BtreeCloseCursor(pBt->pCursor);
drha059ad02001-04-17 20:09:11 +00001051 }
drha34b6762004-05-07 13:30:42 +00001052 sqlite3pager_close(pBt->pPager);
drha059ad02001-04-17 20:09:11 +00001053 sqliteFree(pBt);
1054 return SQLITE_OK;
1055}
1056
1057/*
drhda47d772002-12-02 04:25:19 +00001058** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001059**
1060** The maximum number of cache pages is set to the absolute
1061** value of mxPage. If mxPage is negative, the pager will
1062** operate asynchronously - it will not stop to do fsync()s
1063** to insure data is written to the disk surface before
1064** continuing. Transactions still work if synchronous is off,
1065** and the database cannot be corrupted if this program
1066** crashes. But if the operating system crashes or there is
1067** an abrupt power failure when synchronous is off, the database
1068** could be left in an inconsistent and unrecoverable state.
1069** Synchronous is on by default so database corruption is not
1070** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001071*/
drh23e11ca2004-05-04 17:27:28 +00001072int sqlite3BtreeSetCacheSize(Btree *pBt, int mxPage){
drha34b6762004-05-07 13:30:42 +00001073 sqlite3pager_set_cachesize(pBt->pPager, mxPage);
drhf57b14a2001-09-14 18:54:08 +00001074 return SQLITE_OK;
1075}
1076
1077/*
drh973b6e32003-02-12 14:09:42 +00001078** Change the way data is synced to disk in order to increase or decrease
1079** how well the database resists damage due to OS crashes and power
1080** failures. Level 1 is the same as asynchronous (no syncs() occur and
1081** there is a high probability of damage) Level 2 is the default. There
1082** is a very low but non-zero probability of damage. Level 3 reduces the
1083** probability of damage to near zero but with a write performance reduction.
1084*/
drh3aac2dd2004-04-26 14:10:20 +00001085int sqlite3BtreeSetSafetyLevel(Btree *pBt, int level){
drha34b6762004-05-07 13:30:42 +00001086 sqlite3pager_set_safety_level(pBt->pPager, level);
drh973b6e32003-02-12 14:09:42 +00001087 return SQLITE_OK;
1088}
1089
1090/*
drha34b6762004-05-07 13:30:42 +00001091** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00001092** also acquire a readlock on that file.
1093**
1094** SQLITE_OK is returned on success. If the file is not a
1095** well-formed database file, then SQLITE_CORRUPT is returned.
1096** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
1097** is returned if we run out of memory. SQLITE_PROTOCOL is returned
1098** if there is a locking protocol violation.
1099*/
1100static int lockBtree(Btree *pBt){
1101 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001102 MemPage *pPage1;
drha34b6762004-05-07 13:30:42 +00001103 if( pBt->pPage1 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001104 rc = getPage(pBt, 1, &pPage1);
drh306dc212001-05-21 13:45:10 +00001105 if( rc!=SQLITE_OK ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00001106
drh306dc212001-05-21 13:45:10 +00001107
1108 /* Do some checking to help insure the file we opened really is
1109 ** a valid database file.
1110 */
drhb6f41482004-05-14 01:58:11 +00001111 rc = SQLITE_NOTADB;
drha34b6762004-05-07 13:30:42 +00001112 if( sqlite3pager_pagecount(pBt->pPager)>0 ){
drhb6f41482004-05-14 01:58:11 +00001113 u8 *page1 = pPage1->aData;
1114 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00001115 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00001116 }
drhb6f41482004-05-14 01:58:11 +00001117 if( page1[18]>1 || page1[19]>1 ){
1118 goto page1_init_failed;
1119 }
1120 pBt->pageSize = get2byte(&page1[16]);
1121 pBt->usableSize = pBt->pageSize - page1[20];
1122 if( pBt->usableSize<500 ){
1123 goto page1_init_failed;
1124 }
1125 pBt->maxEmbedFrac = page1[21];
1126 pBt->minEmbedFrac = page1[22];
1127 pBt->minLeafFrac = page1[23];
drh306dc212001-05-21 13:45:10 +00001128 }
drhb6f41482004-05-14 01:58:11 +00001129
1130 /* maxLocal is the maximum amount of payload to store locally for
1131 ** a cell. Make sure it is small enough so that at least minFanout
1132 ** cells can will fit on one page. We assume a 10-byte page header.
1133 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00001134 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00001135 ** 4-byte child pointer
1136 ** 9-byte nKey value
1137 ** 4-byte nData value
1138 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00001139 ** So a cell consists of a 2-byte poiner, a header which is as much as
1140 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
1141 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00001142 */
drh43605152004-05-29 21:46:49 +00001143 pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
1144 pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
1145 pBt->maxLeaf = pBt->usableSize - 35;
1146 pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
drhb6f41482004-05-14 01:58:11 +00001147 if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
1148 goto page1_init_failed;
1149 }
1150 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE );
drh3aac2dd2004-04-26 14:10:20 +00001151 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00001152 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00001153
drh72f82862001-05-24 21:06:34 +00001154page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00001155 releasePage(pPage1);
1156 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00001157 return rc;
drh306dc212001-05-21 13:45:10 +00001158}
1159
1160/*
drhb8ca3072001-12-05 00:21:20 +00001161** If there are no outstanding cursors and we are not in the middle
1162** of a transaction but there is a read lock on the database, then
1163** this routine unrefs the first page of the database file which
1164** has the effect of releasing the read lock.
1165**
1166** If there are any outstanding cursors, this routine is a no-op.
1167**
1168** If there is a transaction in progress, this routine is a no-op.
1169*/
1170static void unlockBtreeIfUnused(Btree *pBt){
danielk1977ee5741e2004-05-31 10:01:34 +00001171 if( pBt->inTrans==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
drh51c6d962004-06-06 00:42:25 +00001172 if( pBt->pPage1->aData==0 ){
1173 MemPage *pPage = pBt->pPage1;
1174 pPage->aData = &((char*)pPage)[-pBt->pageSize];
1175 pPage->pBt = pBt;
1176 pPage->pgno = 1;
1177 }
drh3aac2dd2004-04-26 14:10:20 +00001178 releasePage(pBt->pPage1);
1179 pBt->pPage1 = 0;
drh3aac2dd2004-04-26 14:10:20 +00001180 pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001181 }
1182}
1183
1184/*
drh9e572e62004-04-23 23:43:10 +00001185** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00001186** file.
drh8b2f49b2001-06-08 00:21:52 +00001187*/
1188static int newDatabase(Btree *pBt){
drh9e572e62004-04-23 23:43:10 +00001189 MemPage *pP1;
1190 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00001191 int rc;
drhde647132004-05-07 17:57:49 +00001192 if( sqlite3pager_pagecount(pBt->pPager)>0 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001193 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00001194 assert( pP1!=0 );
1195 data = pP1->aData;
drha34b6762004-05-07 13:30:42 +00001196 rc = sqlite3pager_write(data);
drh8b2f49b2001-06-08 00:21:52 +00001197 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00001198 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
1199 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00001200 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00001201 data[18] = 1;
1202 data[19] = 1;
drhb6f41482004-05-14 01:58:11 +00001203 data[20] = pBt->pageSize - pBt->usableSize;
1204 data[21] = pBt->maxEmbedFrac;
1205 data[22] = pBt->minEmbedFrac;
1206 data[23] = pBt->minLeafFrac;
1207 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00001208 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drh8b2f49b2001-06-08 00:21:52 +00001209 return SQLITE_OK;
1210}
1211
1212/*
danielk1977ee5741e2004-05-31 10:01:34 +00001213** Attempt to start a new transaction. A write-transaction
1214** is started if the second argument is true, otherwise a read-
1215** transaction.
drh8b2f49b2001-06-08 00:21:52 +00001216**
danielk1977ee5741e2004-05-31 10:01:34 +00001217** A write-transaction must be started before attempting any
1218** changes to the database. None of the following routines
1219** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00001220**
drh23e11ca2004-05-04 17:27:28 +00001221** sqlite3BtreeCreateTable()
1222** sqlite3BtreeCreateIndex()
1223** sqlite3BtreeClearTable()
1224** sqlite3BtreeDropTable()
1225** sqlite3BtreeInsert()
1226** sqlite3BtreeDelete()
1227** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00001228**
1229** If wrflag is true, then nMaster specifies the maximum length of
1230** a master journal file name supplied later via sqlite3BtreeSync().
1231** This is so that appropriate space can be allocated in the journal file
1232** when it is created..
drha059ad02001-04-17 20:09:11 +00001233*/
danielk197713adf8a2004-06-03 16:08:41 +00001234int sqlite3BtreeBeginTrans(Btree *pBt, int wrflag, int nMaster){
danielk1977ee5741e2004-05-31 10:01:34 +00001235 int rc = SQLITE_OK;
1236
1237 /* If the btree is already in a write-transaction, or it
1238 ** is already in a read-transaction and a read-transaction
1239 ** is requested, this is a no-op.
1240 */
1241 if( pBt->inTrans==TRANS_WRITE ||
1242 (pBt->inTrans==TRANS_READ && !wrflag) ){
1243 return SQLITE_OK;
1244 }
1245 if( pBt->readOnly && wrflag ){
1246 return SQLITE_READONLY;
1247 }
1248
drh3aac2dd2004-04-26 14:10:20 +00001249 if( pBt->pPage1==0 ){
drh7e3b0a02001-04-28 16:52:40 +00001250 rc = lockBtree(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00001251 }
1252
1253 if( rc==SQLITE_OK && wrflag ){
drhc9e06862004-06-09 20:03:08 +00001254 rc = sqlite3pager_begin(pBt->pPage1->aData, nMaster);
danielk1977ee5741e2004-05-31 10:01:34 +00001255 if( rc==SQLITE_OK ){
1256 rc = newDatabase(pBt);
drh8c42ca92001-06-22 19:15:00 +00001257 }
drha059ad02001-04-17 20:09:11 +00001258 }
danielk1977ee5741e2004-05-31 10:01:34 +00001259
drhf74b8d92002-09-01 23:20:45 +00001260 if( rc==SQLITE_OK ){
danielk1977ee5741e2004-05-31 10:01:34 +00001261 pBt->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
1262 if( wrflag ) pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001263 }else{
1264 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001265 }
drhb8ca3072001-12-05 00:21:20 +00001266 return rc;
drha059ad02001-04-17 20:09:11 +00001267}
1268
1269/*
drh2aa679f2001-06-25 02:11:07 +00001270** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00001271**
1272** This will release the write lock on the database file. If there
1273** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00001274*/
drh3aac2dd2004-04-26 14:10:20 +00001275int sqlite3BtreeCommit(Btree *pBt){
danielk1977ee5741e2004-05-31 10:01:34 +00001276 int rc = SQLITE_OK;
1277 if( pBt->inTrans==TRANS_WRITE ){
1278 rc = sqlite3pager_commit(pBt->pPager);
1279 }
1280 pBt->inTrans = TRANS_NONE;
drh3aac2dd2004-04-26 14:10:20 +00001281 pBt->inStmt = 0;
drh5e00f6c2001-09-13 13:46:56 +00001282 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001283 return rc;
1284}
1285
danielk1977fbcd5852004-06-15 02:44:18 +00001286#ifndef NDEBUG
1287/*
1288** Return the number of write-cursors open on this handle. This is for use
1289** in assert() expressions, so it is only compiled if NDEBUG is not
1290** defined.
1291*/
1292static int countWriteCursors(Btree *pBt){
1293 BtCursor *pCur;
1294 int r = 0;
1295 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1296 if( pCur->wrFlag ) r++;
1297 }
1298 return r;
1299}
1300#endif
1301
1302#if 0
drha059ad02001-04-17 20:09:11 +00001303/*
drhc39e0002004-05-07 23:50:57 +00001304** Invalidate all cursors
1305*/
1306static void invalidateCursors(Btree *pBt){
1307 BtCursor *pCur;
1308 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1309 MemPage *pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00001310 if( pPage /* && !pPage->isInit */ ){
1311 pageIntegrity(pPage);
drhc39e0002004-05-07 23:50:57 +00001312 releasePage(pPage);
1313 pCur->pPage = 0;
1314 pCur->isValid = 0;
1315 pCur->status = SQLITE_ABORT;
1316 }
1317 }
1318}
danielk1977fbcd5852004-06-15 02:44:18 +00001319#endif
drhc39e0002004-05-07 23:50:57 +00001320
drhda200cc2004-05-09 11:51:38 +00001321#ifdef SQLITE_TEST
1322/*
1323** Print debugging information about all cursors to standard output.
1324*/
1325void sqlite3BtreeCursorList(Btree *pBt){
1326 BtCursor *pCur;
1327 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1328 MemPage *pPage = pCur->pPage;
1329 char *zMode = pCur->wrFlag ? "rw" : "ro";
1330 printf("CURSOR %08x rooted at %4d(%s) currently at %d.%d%s\n",
1331 (int)pCur, pCur->pgnoRoot, zMode,
1332 pPage ? pPage->pgno : 0, pCur->idx,
1333 pCur->isValid ? "" : " eof"
1334 );
1335 }
1336}
1337#endif
1338
drhc39e0002004-05-07 23:50:57 +00001339/*
drhecdc7532001-09-23 02:35:53 +00001340** Rollback the transaction in progress. All cursors will be
1341** invalided by this operation. Any attempt to use a cursor
1342** that was open at the beginning of this operation will result
1343** in an error.
drh5e00f6c2001-09-13 13:46:56 +00001344**
1345** This will release the write lock on the database file. If there
1346** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00001347*/
drh3aac2dd2004-04-26 14:10:20 +00001348int sqlite3BtreeRollback(Btree *pBt){
danielk1977cfe9a692004-06-16 12:00:29 +00001349 int rc = SQLITE_OK;
drh24cd67e2004-05-10 16:18:47 +00001350 MemPage *pPage1;
danielk1977ee5741e2004-05-31 10:01:34 +00001351 if( pBt->inTrans==TRANS_WRITE ){
drh24cd67e2004-05-10 16:18:47 +00001352 rc = sqlite3pager_rollback(pBt->pPager);
1353 /* The rollback may have destroyed the pPage1->aData value. So
1354 ** call getPage() on page 1 again to make sure pPage1->aData is
1355 ** set correctly. */
1356 if( getPage(pBt, 1, &pPage1)==SQLITE_OK ){
1357 releasePage(pPage1);
1358 }
danielk1977fbcd5852004-06-15 02:44:18 +00001359 assert( countWriteCursors(pBt)==0 );
drh24cd67e2004-05-10 16:18:47 +00001360 }
danielk1977ee5741e2004-05-31 10:01:34 +00001361 pBt->inTrans = TRANS_NONE;
1362 pBt->inStmt = 0;
drh5e00f6c2001-09-13 13:46:56 +00001363 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001364 return rc;
1365}
1366
1367/*
drhab01f612004-05-22 02:55:23 +00001368** Start a statement subtransaction. The subtransaction can
1369** can be rolled back independently of the main transaction.
1370** You must start a transaction before starting a subtransaction.
1371** The subtransaction is ended automatically if the main transaction
drh663fc632002-02-02 18:49:19 +00001372** commits or rolls back.
1373**
drhab01f612004-05-22 02:55:23 +00001374** Only one subtransaction may be active at a time. It is an error to try
1375** to start a new subtransaction if another subtransaction is already active.
1376**
1377** Statement subtransactions are used around individual SQL statements
1378** that are contained within a BEGIN...COMMIT block. If a constraint
1379** error occurs within the statement, the effect of that one statement
1380** can be rolled back without having to rollback the entire transaction.
drh663fc632002-02-02 18:49:19 +00001381*/
drh3aac2dd2004-04-26 14:10:20 +00001382int sqlite3BtreeBeginStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001383 int rc;
danielk1977ee5741e2004-05-31 10:01:34 +00001384 if( (pBt->inTrans!=TRANS_WRITE) || pBt->inStmt ){
drhf74b8d92002-09-01 23:20:45 +00001385 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh0d65dc02002-02-03 00:56:09 +00001386 }
drha34b6762004-05-07 13:30:42 +00001387 rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager);
drh3aac2dd2004-04-26 14:10:20 +00001388 pBt->inStmt = 1;
drh663fc632002-02-02 18:49:19 +00001389 return rc;
1390}
1391
1392
1393/*
drhab01f612004-05-22 02:55:23 +00001394** Commit the statment subtransaction currently in progress. If no
1395** subtransaction is active, this is a no-op.
drh663fc632002-02-02 18:49:19 +00001396*/
drh3aac2dd2004-04-26 14:10:20 +00001397int sqlite3BtreeCommitStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001398 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001399 if( pBt->inStmt && !pBt->readOnly ){
drha34b6762004-05-07 13:30:42 +00001400 rc = sqlite3pager_stmt_commit(pBt->pPager);
drh663fc632002-02-02 18:49:19 +00001401 }else{
1402 rc = SQLITE_OK;
1403 }
drh3aac2dd2004-04-26 14:10:20 +00001404 pBt->inStmt = 0;
drh663fc632002-02-02 18:49:19 +00001405 return rc;
1406}
1407
1408/*
drhab01f612004-05-22 02:55:23 +00001409** Rollback the active statement subtransaction. If no subtransaction
1410** is active this routine is a no-op.
drh663fc632002-02-02 18:49:19 +00001411**
drhab01f612004-05-22 02:55:23 +00001412** All cursors will be invalidated by this operation. Any attempt
drh663fc632002-02-02 18:49:19 +00001413** to use a cursor that was open at the beginning of this operation
1414** will result in an error.
1415*/
drh3aac2dd2004-04-26 14:10:20 +00001416int sqlite3BtreeRollbackStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001417 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001418 if( pBt->inStmt==0 || pBt->readOnly ) return SQLITE_OK;
drha34b6762004-05-07 13:30:42 +00001419 rc = sqlite3pager_stmt_rollback(pBt->pPager);
danielk1977fbcd5852004-06-15 02:44:18 +00001420 assert( countWriteCursors(pBt)==0 );
drh3aac2dd2004-04-26 14:10:20 +00001421 pBt->inStmt = 0;
drh663fc632002-02-02 18:49:19 +00001422 return rc;
1423}
1424
1425/*
drh3aac2dd2004-04-26 14:10:20 +00001426** Default key comparison function to be used if no comparison function
1427** is specified on the sqlite3BtreeCursor() call.
1428*/
1429static int dfltCompare(
1430 void *NotUsed, /* User data is not used */
1431 int n1, const void *p1, /* First key to compare */
1432 int n2, const void *p2 /* Second key to compare */
1433){
1434 int c;
1435 c = memcmp(p1, p2, n1<n2 ? n1 : n2);
1436 if( c==0 ){
1437 c = n1 - n2;
1438 }
1439 return c;
1440}
1441
1442/*
drh8b2f49b2001-06-08 00:21:52 +00001443** Create a new cursor for the BTree whose root is on the page
1444** iTable. The act of acquiring a cursor gets a read lock on
1445** the database file.
drh1bee3d72001-10-15 00:44:35 +00001446**
1447** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00001448** If wrFlag==1, then the cursor can be used for reading or for
1449** writing if other conditions for writing are also met. These
1450** are the conditions that must be met in order for writing to
1451** be allowed:
drh6446c4d2001-12-15 14:22:18 +00001452**
drhf74b8d92002-09-01 23:20:45 +00001453** 1: The cursor must have been opened with wrFlag==1
1454**
1455** 2: No other cursors may be open with wrFlag==0 on the same table
1456**
1457** 3: The database must be writable (not on read-only media)
1458**
1459** 4: There must be an active transaction.
1460**
1461** Condition 2 warrants further discussion. If any cursor is opened
1462** on a table with wrFlag==0, that prevents all other cursors from
1463** writing to that table. This is a kind of "read-lock". When a cursor
1464** is opened with wrFlag==0 it is guaranteed that the table will not
1465** change as long as the cursor is open. This allows the cursor to
1466** do a sequential scan of the table without having to worry about
1467** entries being inserted or deleted during the scan. Cursors should
1468** be opened with wrFlag==0 only if this read-lock property is needed.
1469** That is to say, cursors should be opened with wrFlag==0 only if they
drh23e11ca2004-05-04 17:27:28 +00001470** intend to use the sqlite3BtreeNext() system call. All other cursors
drhf74b8d92002-09-01 23:20:45 +00001471** should be opened with wrFlag==1 even if they never really intend
1472** to write.
1473**
drh6446c4d2001-12-15 14:22:18 +00001474** No checking is done to make sure that page iTable really is the
1475** root page of a b-tree. If it is not, then the cursor acquired
1476** will not work correctly.
drh3aac2dd2004-04-26 14:10:20 +00001477**
1478** The comparison function must be logically the same for every cursor
1479** on a particular table. Changing the comparison function will result
1480** in incorrect operations. If the comparison function is NULL, a
1481** default comparison function is used. The comparison function is
1482** always ignored for INTKEY tables.
drha059ad02001-04-17 20:09:11 +00001483*/
drh3aac2dd2004-04-26 14:10:20 +00001484int sqlite3BtreeCursor(
1485 Btree *pBt, /* The btree */
1486 int iTable, /* Root page of table to open */
1487 int wrFlag, /* 1 to write. 0 read-only */
1488 int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
1489 void *pArg, /* First arg to xCompare() */
1490 BtCursor **ppCur /* Write new cursor here */
1491){
drha059ad02001-04-17 20:09:11 +00001492 int rc;
drhf74b8d92002-09-01 23:20:45 +00001493 BtCursor *pCur, *pRing;
drhecdc7532001-09-23 02:35:53 +00001494
drha0c9a112004-03-10 13:42:37 +00001495 if( pBt->readOnly && wrFlag ){
1496 *ppCur = 0;
1497 return SQLITE_READONLY;
1498 }
drh4b70f112004-05-02 21:12:19 +00001499 if( pBt->pPage1==0 ){
drha059ad02001-04-17 20:09:11 +00001500 rc = lockBtree(pBt);
1501 if( rc!=SQLITE_OK ){
1502 *ppCur = 0;
1503 return rc;
1504 }
1505 }
drheafe05b2004-06-13 00:54:01 +00001506 pCur = sqliteMallocRaw( sizeof(*pCur) );
drha059ad02001-04-17 20:09:11 +00001507 if( pCur==0 ){
drhbd03cae2001-06-02 02:40:57 +00001508 rc = SQLITE_NOMEM;
1509 goto create_cursor_exception;
1510 }
drh8b2f49b2001-06-08 00:21:52 +00001511 pCur->pgnoRoot = (Pgno)iTable;
drh24cd67e2004-05-10 16:18:47 +00001512 if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){
1513 rc = SQLITE_EMPTY;
drheafe05b2004-06-13 00:54:01 +00001514 pCur->pPage = 0;
drh24cd67e2004-05-10 16:18:47 +00001515 goto create_cursor_exception;
1516 }
danielk1977369f27e2004-06-15 11:40:04 +00001517 pCur->pPage = 0; /* For exit-handler, in case getAndInitPage() fails. */
drhde647132004-05-07 17:57:49 +00001518 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
drhbd03cae2001-06-02 02:40:57 +00001519 if( rc!=SQLITE_OK ){
1520 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00001521 }
drh3aac2dd2004-04-26 14:10:20 +00001522 pCur->xCompare = xCmp ? xCmp : dfltCompare;
1523 pCur->pArg = pArg;
drh14acc042001-06-10 19:56:58 +00001524 pCur->pBt = pBt;
drhecdc7532001-09-23 02:35:53 +00001525 pCur->wrFlag = wrFlag;
drh14acc042001-06-10 19:56:58 +00001526 pCur->idx = 0;
drh59eb6762004-06-13 23:07:04 +00001527 memset(&pCur->info, 0, sizeof(pCur->info));
drha059ad02001-04-17 20:09:11 +00001528 pCur->pNext = pBt->pCursor;
1529 if( pCur->pNext ){
1530 pCur->pNext->pPrev = pCur;
1531 }
drh14acc042001-06-10 19:56:58 +00001532 pCur->pPrev = 0;
drhf74b8d92002-09-01 23:20:45 +00001533 pRing = pBt->pCursor;
1534 while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
1535 if( pRing ){
1536 pCur->pShared = pRing->pShared;
1537 pRing->pShared = pCur;
1538 }else{
1539 pCur->pShared = pCur;
1540 }
drha059ad02001-04-17 20:09:11 +00001541 pBt->pCursor = pCur;
drhc39e0002004-05-07 23:50:57 +00001542 pCur->isValid = 0;
1543 pCur->status = SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +00001544 *ppCur = pCur;
1545 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00001546
1547create_cursor_exception:
1548 *ppCur = 0;
1549 if( pCur ){
drh3aac2dd2004-04-26 14:10:20 +00001550 releasePage(pCur->pPage);
drhbd03cae2001-06-02 02:40:57 +00001551 sqliteFree(pCur);
1552 }
drh5e00f6c2001-09-13 13:46:56 +00001553 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00001554 return rc;
drha059ad02001-04-17 20:09:11 +00001555}
1556
drh7a224de2004-06-02 01:22:02 +00001557#if 0 /* Not Used */
drhd3d39e92004-05-20 22:16:29 +00001558/*
1559** Change the value of the comparison function used by a cursor.
1560*/
danielk1977bf3b7212004-05-18 10:06:24 +00001561void sqlite3BtreeSetCompare(
drhd3d39e92004-05-20 22:16:29 +00001562 BtCursor *pCur, /* The cursor to whose comparison function is changed */
1563 int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */
1564 void *pArg /* First argument to xCmp() */
danielk1977bf3b7212004-05-18 10:06:24 +00001565){
1566 pCur->xCompare = xCmp ? xCmp : dfltCompare;
1567 pCur->pArg = pArg;
1568}
drh7a224de2004-06-02 01:22:02 +00001569#endif
danielk1977bf3b7212004-05-18 10:06:24 +00001570
drha059ad02001-04-17 20:09:11 +00001571/*
drh5e00f6c2001-09-13 13:46:56 +00001572** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00001573** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00001574*/
drh3aac2dd2004-04-26 14:10:20 +00001575int sqlite3BtreeCloseCursor(BtCursor *pCur){
drha059ad02001-04-17 20:09:11 +00001576 Btree *pBt = pCur->pBt;
drha059ad02001-04-17 20:09:11 +00001577 if( pCur->pPrev ){
1578 pCur->pPrev->pNext = pCur->pNext;
1579 }else{
1580 pBt->pCursor = pCur->pNext;
1581 }
1582 if( pCur->pNext ){
1583 pCur->pNext->pPrev = pCur->pPrev;
1584 }
drh3aac2dd2004-04-26 14:10:20 +00001585 releasePage(pCur->pPage);
drhf74b8d92002-09-01 23:20:45 +00001586 if( pCur->pShared!=pCur ){
1587 BtCursor *pRing = pCur->pShared;
1588 while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
1589 pRing->pShared = pCur->pShared;
1590 }
drh5e00f6c2001-09-13 13:46:56 +00001591 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001592 sqliteFree(pCur);
drh8c42ca92001-06-22 19:15:00 +00001593 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00001594}
1595
drh7e3b0a02001-04-28 16:52:40 +00001596/*
drh5e2f8b92001-05-28 00:41:15 +00001597** Make a temporary cursor by filling in the fields of pTempCur.
1598** The temporary cursor is not on the cursor list for the Btree.
1599*/
drh14acc042001-06-10 19:56:58 +00001600static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
drh5e2f8b92001-05-28 00:41:15 +00001601 memcpy(pTempCur, pCur, sizeof(*pCur));
1602 pTempCur->pNext = 0;
1603 pTempCur->pPrev = 0;
drhecdc7532001-09-23 02:35:53 +00001604 if( pTempCur->pPage ){
drha34b6762004-05-07 13:30:42 +00001605 sqlite3pager_ref(pTempCur->pPage->aData);
drhecdc7532001-09-23 02:35:53 +00001606 }
drh5e2f8b92001-05-28 00:41:15 +00001607}
1608
1609/*
drhbd03cae2001-06-02 02:40:57 +00001610** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00001611** function above.
1612*/
drh14acc042001-06-10 19:56:58 +00001613static void releaseTempCursor(BtCursor *pCur){
drhecdc7532001-09-23 02:35:53 +00001614 if( pCur->pPage ){
drha34b6762004-05-07 13:30:42 +00001615 sqlite3pager_unref(pCur->pPage->aData);
drhecdc7532001-09-23 02:35:53 +00001616 }
drh5e2f8b92001-05-28 00:41:15 +00001617}
1618
1619/*
drh9188b382004-05-14 21:12:22 +00001620** Make sure the BtCursor.info field of the given cursor is valid.
drhab01f612004-05-22 02:55:23 +00001621** If it is not already valid, call parseCell() to fill it in.
1622**
1623** BtCursor.info is a cache of the information in the current cell.
1624** Using this cache reduces the number of calls to parseCell().
drh9188b382004-05-14 21:12:22 +00001625*/
1626static void getCellInfo(BtCursor *pCur){
drh271efa52004-05-30 19:19:05 +00001627 if( pCur->info.nSize==0 ){
drh3a41a3f2004-05-30 02:14:17 +00001628 parseCell(pCur->pPage, pCur->idx, &pCur->info);
drh9188b382004-05-14 21:12:22 +00001629 }else{
1630#ifndef NDEBUG
1631 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00001632 memset(&info, 0, sizeof(info));
drh3a41a3f2004-05-30 02:14:17 +00001633 parseCell(pCur->pPage, pCur->idx, &info);
drh9188b382004-05-14 21:12:22 +00001634 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
1635#endif
1636 }
1637}
1638
1639/*
drh3aac2dd2004-04-26 14:10:20 +00001640** Set *pSize to the size of the buffer needed to hold the value of
1641** the key for the current entry. If the cursor is not pointing
1642** to a valid entry, *pSize is set to 0.
1643**
drh4b70f112004-05-02 21:12:19 +00001644** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00001645** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00001646*/
drh4a1c3802004-05-12 15:15:47 +00001647int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhc39e0002004-05-07 23:50:57 +00001648 if( !pCur->isValid ){
drh72f82862001-05-24 21:06:34 +00001649 *pSize = 0;
1650 }else{
drh9188b382004-05-14 21:12:22 +00001651 getCellInfo(pCur);
1652 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00001653 }
1654 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00001655}
drh2af926b2001-05-15 00:39:25 +00001656
drh72f82862001-05-24 21:06:34 +00001657/*
drh0e1c19e2004-05-11 00:58:56 +00001658** Set *pSize to the number of bytes of data in the entry the
1659** cursor currently points to. Always return SQLITE_OK.
1660** Failure is not possible. If the cursor is not currently
1661** pointing to an entry (which can happen, for example, if
1662** the database is empty) then *pSize is set to 0.
1663*/
1664int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh0e1c19e2004-05-11 00:58:56 +00001665 if( !pCur->isValid ){
danielk197796fc5fe2004-05-13 11:34:16 +00001666 /* Not pointing at a valid entry - set *pSize to 0. */
drh0e1c19e2004-05-11 00:58:56 +00001667 *pSize = 0;
1668 }else{
drh9188b382004-05-14 21:12:22 +00001669 getCellInfo(pCur);
1670 *pSize = pCur->info.nData;
drh0e1c19e2004-05-11 00:58:56 +00001671 }
1672 return SQLITE_OK;
1673}
1674
1675/*
drh72f82862001-05-24 21:06:34 +00001676** Read payload information from the entry that the pCur cursor is
1677** pointing to. Begin reading the payload at "offset" and read
1678** a total of "amt" bytes. Put the result in zBuf.
1679**
1680** This routine does not make a distinction between key and data.
drhab01f612004-05-22 02:55:23 +00001681** It just reads bytes from the payload area. Data might appear
1682** on the main page or be scattered out on multiple overflow pages.
drh72f82862001-05-24 21:06:34 +00001683*/
drh3aac2dd2004-04-26 14:10:20 +00001684static int getPayload(
1685 BtCursor *pCur, /* Cursor pointing to entry to read from */
1686 int offset, /* Begin reading this far into payload */
1687 int amt, /* Read this many bytes */
1688 unsigned char *pBuf, /* Write the bytes into this buffer */
1689 int skipKey /* offset begins at data if this is true */
1690){
1691 unsigned char *aPayload;
drh2af926b2001-05-15 00:39:25 +00001692 Pgno nextPage;
drh8c42ca92001-06-22 19:15:00 +00001693 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001694 MemPage *pPage;
1695 Btree *pBt;
drh6f11bef2004-05-13 01:12:56 +00001696 int ovflSize;
drhfa1a98a2004-05-14 19:08:17 +00001697 u32 nKey;
drh3aac2dd2004-04-26 14:10:20 +00001698
drh72f82862001-05-24 21:06:34 +00001699 assert( pCur!=0 && pCur->pPage!=0 );
drhc39e0002004-05-07 23:50:57 +00001700 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00001701 pBt = pCur->pBt;
1702 pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00001703 pageIntegrity(pPage);
drh3aac2dd2004-04-26 14:10:20 +00001704 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh9188b382004-05-14 21:12:22 +00001705 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00001706 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00001707 aPayload += pCur->info.nHeader;
drh3aac2dd2004-04-26 14:10:20 +00001708 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00001709 nKey = 0;
1710 }else{
1711 nKey = pCur->info.nKey;
drh3aac2dd2004-04-26 14:10:20 +00001712 }
1713 assert( offset>=0 );
1714 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00001715 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00001716 }
drhfa1a98a2004-05-14 19:08:17 +00001717 if( offset+amt > nKey+pCur->info.nData ){
drha34b6762004-05-07 13:30:42 +00001718 return SQLITE_ERROR;
drh3aac2dd2004-04-26 14:10:20 +00001719 }
drhfa1a98a2004-05-14 19:08:17 +00001720 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00001721 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00001722 if( a+offset>pCur->info.nLocal ){
1723 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00001724 }
drha34b6762004-05-07 13:30:42 +00001725 memcpy(pBuf, &aPayload[offset], a);
drh2af926b2001-05-15 00:39:25 +00001726 if( a==amt ){
1727 return SQLITE_OK;
1728 }
drh2aa679f2001-06-25 02:11:07 +00001729 offset = 0;
drha34b6762004-05-07 13:30:42 +00001730 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00001731 amt -= a;
drhdd793422001-06-28 01:54:48 +00001732 }else{
drhfa1a98a2004-05-14 19:08:17 +00001733 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00001734 }
danielk1977cfe9a692004-06-16 12:00:29 +00001735 ovflSize = pBt->usableSize - 4;
drhbd03cae2001-06-02 02:40:57 +00001736 if( amt>0 ){
drhfa1a98a2004-05-14 19:08:17 +00001737 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977cfe9a692004-06-16 12:00:29 +00001738 while( amt>0 && nextPage ){
1739 rc = sqlite3pager_get(pBt->pPager, nextPage, (void**)&aPayload);
1740 if( rc!=0 ){
1741 return rc;
drh2af926b2001-05-15 00:39:25 +00001742 }
danielk1977cfe9a692004-06-16 12:00:29 +00001743 nextPage = get4byte(aPayload);
1744 if( offset<ovflSize ){
1745 int a = amt;
1746 if( a + offset > ovflSize ){
1747 a = ovflSize - offset;
1748 }
1749 memcpy(pBuf, &aPayload[offset+4], a);
1750 offset = 0;
1751 amt -= a;
1752 pBuf += a;
1753 }else{
1754 offset -= ovflSize;
1755 }
1756 sqlite3pager_unref(aPayload);
drh2af926b2001-05-15 00:39:25 +00001757 }
drh2af926b2001-05-15 00:39:25 +00001758 }
danielk1977cfe9a692004-06-16 12:00:29 +00001759
drha7fcb052001-12-14 15:09:55 +00001760 if( amt>0 ){
1761 return SQLITE_CORRUPT;
1762 }
1763 return SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +00001764}
1765
drh72f82862001-05-24 21:06:34 +00001766/*
drh3aac2dd2004-04-26 14:10:20 +00001767** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00001768** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00001769** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00001770**
drh3aac2dd2004-04-26 14:10:20 +00001771** Return SQLITE_OK on success or an error code if anything goes
1772** wrong. An error is returned if "offset+amt" is larger than
1773** the available payload.
drh72f82862001-05-24 21:06:34 +00001774*/
drha34b6762004-05-07 13:30:42 +00001775int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh8c1238a2003-01-02 14:43:55 +00001776 assert( amt>=0 );
1777 assert( offset>=0 );
drhc39e0002004-05-07 23:50:57 +00001778 if( pCur->isValid==0 ){
1779 return pCur->status;
drh3aac2dd2004-04-26 14:10:20 +00001780 }
drhc39e0002004-05-07 23:50:57 +00001781 assert( pCur->pPage!=0 );
1782 assert( pCur->pPage->intKey==0 );
1783 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh3aac2dd2004-04-26 14:10:20 +00001784 return getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
1785}
1786
1787/*
drh3aac2dd2004-04-26 14:10:20 +00001788** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00001789** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00001790** begins at "offset".
1791**
1792** Return SQLITE_OK on success or an error code if anything goes
1793** wrong. An error is returned if "offset+amt" is larger than
1794** the available payload.
drh72f82862001-05-24 21:06:34 +00001795*/
drh3aac2dd2004-04-26 14:10:20 +00001796int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhc39e0002004-05-07 23:50:57 +00001797 if( !pCur->isValid ){
1798 return pCur->status ? pCur->status : SQLITE_INTERNAL;
1799 }
drh8c1238a2003-01-02 14:43:55 +00001800 assert( amt>=0 );
1801 assert( offset>=0 );
1802 assert( pCur->pPage!=0 );
drhc39e0002004-05-07 23:50:57 +00001803 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh3aac2dd2004-04-26 14:10:20 +00001804 return getPayload(pCur, offset, amt, pBuf, 1);
drh2af926b2001-05-15 00:39:25 +00001805}
1806
drh72f82862001-05-24 21:06:34 +00001807/*
drh0e1c19e2004-05-11 00:58:56 +00001808** Return a pointer to payload information from the entry that the
1809** pCur cursor is pointing to. The pointer is to the beginning of
1810** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00001811** skipKey==1. The number of bytes of available key/data is written
1812** into *pAmt. If *pAmt==0, then the value returned will not be
1813** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00001814**
1815** This routine is an optimization. It is common for the entire key
1816** and data to fit on the local page and for there to be no overflow
1817** pages. When that is so, this routine can be used to access the
1818** key and data without making a copy. If the key and/or data spills
1819** onto overflow pages, then getPayload() must be used to reassembly
1820** the key/data and copy it into a preallocated buffer.
1821**
1822** The pointer returned by this routine looks directly into the cached
1823** page of the database. The data might change or move the next time
1824** any btree routine is called.
1825*/
1826static const unsigned char *fetchPayload(
1827 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00001828 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00001829 int skipKey /* read beginning at data if this is true */
1830){
1831 unsigned char *aPayload;
1832 MemPage *pPage;
1833 Btree *pBt;
drhfa1a98a2004-05-14 19:08:17 +00001834 u32 nKey;
1835 int nLocal;
drh0e1c19e2004-05-11 00:58:56 +00001836
1837 assert( pCur!=0 && pCur->pPage!=0 );
1838 assert( pCur->isValid );
1839 pBt = pCur->pBt;
1840 pPage = pCur->pPage;
1841 pageIntegrity(pPage);
1842 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh9188b382004-05-14 21:12:22 +00001843 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00001844 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00001845 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00001846 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00001847 nKey = 0;
1848 }else{
1849 nKey = pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00001850 }
drh0e1c19e2004-05-11 00:58:56 +00001851 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00001852 aPayload += nKey;
1853 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00001854 }else{
drhfa1a98a2004-05-14 19:08:17 +00001855 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00001856 if( nLocal>nKey ){
1857 nLocal = nKey;
1858 }
drh0e1c19e2004-05-11 00:58:56 +00001859 }
drhe51c44f2004-05-30 20:46:09 +00001860 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00001861 return aPayload;
1862}
1863
1864
1865/*
drhe51c44f2004-05-30 20:46:09 +00001866** For the entry that cursor pCur is point to, return as
1867** many bytes of the key or data as are available on the local
1868** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00001869**
1870** The pointer returned is ephemeral. The key/data may move
1871** or be destroyed on the next call to any Btree routine.
1872**
1873** These routines is used to get quick access to key and data
1874** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00001875*/
drhe51c44f2004-05-30 20:46:09 +00001876const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
1877 return (const void*)fetchPayload(pCur, pAmt, 0);
drh0e1c19e2004-05-11 00:58:56 +00001878}
drhe51c44f2004-05-30 20:46:09 +00001879const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
1880 return (const void*)fetchPayload(pCur, pAmt, 1);
drh0e1c19e2004-05-11 00:58:56 +00001881}
1882
1883
1884/*
drh8178a752003-01-05 21:41:40 +00001885** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00001886** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00001887*/
drh3aac2dd2004-04-26 14:10:20 +00001888static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00001889 int rc;
1890 MemPage *pNewPage;
drh3aac2dd2004-04-26 14:10:20 +00001891 MemPage *pOldPage;
drh0d316a42002-08-11 20:10:47 +00001892 Btree *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00001893
drhc39e0002004-05-07 23:50:57 +00001894 assert( pCur->isValid );
drhde647132004-05-07 17:57:49 +00001895 rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
drh6019e162001-07-02 17:51:45 +00001896 if( rc ) return rc;
drhda200cc2004-05-09 11:51:38 +00001897 pageIntegrity(pNewPage);
drh428ae8c2003-01-04 16:48:09 +00001898 pNewPage->idxParent = pCur->idx;
drh3aac2dd2004-04-26 14:10:20 +00001899 pOldPage = pCur->pPage;
1900 pOldPage->idxShift = 0;
1901 releasePage(pOldPage);
drh72f82862001-05-24 21:06:34 +00001902 pCur->pPage = pNewPage;
1903 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00001904 pCur->info.nSize = 0;
drh4be295b2003-12-16 03:44:47 +00001905 if( pNewPage->nCell<1 ){
1906 return SQLITE_CORRUPT;
1907 }
drh72f82862001-05-24 21:06:34 +00001908 return SQLITE_OK;
1909}
1910
1911/*
drh8856d6a2004-04-29 14:42:46 +00001912** Return true if the page is the virtual root of its table.
1913**
1914** The virtual root page is the root page for most tables. But
1915** for the table rooted on page 1, sometime the real root page
1916** is empty except for the right-pointer. In such cases the
1917** virtual root page is the page that the right-pointer of page
1918** 1 is pointing to.
1919*/
1920static int isRootPage(MemPage *pPage){
1921 MemPage *pParent = pPage->pParent;
drhda200cc2004-05-09 11:51:38 +00001922 if( pParent==0 ) return 1;
1923 if( pParent->pgno>1 ) return 0;
1924 if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
drh8856d6a2004-04-29 14:42:46 +00001925 return 0;
1926}
1927
1928/*
drh5e2f8b92001-05-28 00:41:15 +00001929** Move the cursor up to the parent page.
1930**
1931** pCur->idx is set to the cell index that contains the pointer
1932** to the page we are coming from. If we are coming from the
1933** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00001934** the largest cell index.
drh72f82862001-05-24 21:06:34 +00001935*/
drh8178a752003-01-05 21:41:40 +00001936static void moveToParent(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00001937 Pgno oldPgno;
1938 MemPage *pParent;
drh8178a752003-01-05 21:41:40 +00001939 MemPage *pPage;
drh428ae8c2003-01-04 16:48:09 +00001940 int idxParent;
drh3aac2dd2004-04-26 14:10:20 +00001941
drhc39e0002004-05-07 23:50:57 +00001942 assert( pCur->isValid );
drh8178a752003-01-05 21:41:40 +00001943 pPage = pCur->pPage;
1944 assert( pPage!=0 );
drh8856d6a2004-04-29 14:42:46 +00001945 assert( !isRootPage(pPage) );
drhda200cc2004-05-09 11:51:38 +00001946 pageIntegrity(pPage);
drh8178a752003-01-05 21:41:40 +00001947 pParent = pPage->pParent;
1948 assert( pParent!=0 );
drhda200cc2004-05-09 11:51:38 +00001949 pageIntegrity(pParent);
drh8178a752003-01-05 21:41:40 +00001950 idxParent = pPage->idxParent;
drha34b6762004-05-07 13:30:42 +00001951 sqlite3pager_ref(pParent->aData);
drh3aac2dd2004-04-26 14:10:20 +00001952 oldPgno = pPage->pgno;
1953 releasePage(pPage);
drh72f82862001-05-24 21:06:34 +00001954 pCur->pPage = pParent;
drh271efa52004-05-30 19:19:05 +00001955 pCur->info.nSize = 0;
drh428ae8c2003-01-04 16:48:09 +00001956 assert( pParent->idxShift==0 );
drh43605152004-05-29 21:46:49 +00001957 pCur->idx = idxParent;
drh72f82862001-05-24 21:06:34 +00001958}
1959
1960/*
1961** Move the cursor to the root page
1962*/
drh5e2f8b92001-05-28 00:41:15 +00001963static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00001964 MemPage *pRoot;
drhbd03cae2001-06-02 02:40:57 +00001965 int rc;
drh0d316a42002-08-11 20:10:47 +00001966 Btree *pBt = pCur->pBt;
drhbd03cae2001-06-02 02:40:57 +00001967
drhde647132004-05-07 17:57:49 +00001968 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0);
drhc39e0002004-05-07 23:50:57 +00001969 if( rc ){
1970 pCur->isValid = 0;
1971 return rc;
1972 }
drh3aac2dd2004-04-26 14:10:20 +00001973 releasePage(pCur->pPage);
drhda200cc2004-05-09 11:51:38 +00001974 pageIntegrity(pRoot);
drh3aac2dd2004-04-26 14:10:20 +00001975 pCur->pPage = pRoot;
drh72f82862001-05-24 21:06:34 +00001976 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00001977 pCur->info.nSize = 0;
drh8856d6a2004-04-29 14:42:46 +00001978 if( pRoot->nCell==0 && !pRoot->leaf ){
1979 Pgno subpage;
1980 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00001981 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00001982 assert( subpage>0 );
drh3644f082004-05-10 18:45:09 +00001983 pCur->isValid = 1;
drh4b70f112004-05-02 21:12:19 +00001984 rc = moveToChild(pCur, subpage);
drh8856d6a2004-04-29 14:42:46 +00001985 }
drhc39e0002004-05-07 23:50:57 +00001986 pCur->isValid = pCur->pPage->nCell>0;
drh8856d6a2004-04-29 14:42:46 +00001987 return rc;
drh72f82862001-05-24 21:06:34 +00001988}
drh2af926b2001-05-15 00:39:25 +00001989
drh5e2f8b92001-05-28 00:41:15 +00001990/*
1991** Move the cursor down to the left-most leaf entry beneath the
1992** entry to which it is currently pointing.
1993*/
1994static int moveToLeftmost(BtCursor *pCur){
1995 Pgno pgno;
1996 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001997 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00001998
drhc39e0002004-05-07 23:50:57 +00001999 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00002000 while( !(pPage = pCur->pPage)->leaf ){
drha34b6762004-05-07 13:30:42 +00002001 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00002002 pgno = get4byte(findCell(pPage, pCur->idx));
drh8178a752003-01-05 21:41:40 +00002003 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00002004 if( rc ) return rc;
2005 }
2006 return SQLITE_OK;
2007}
2008
drh2dcc9aa2002-12-04 13:40:25 +00002009/*
2010** Move the cursor down to the right-most leaf entry beneath the
2011** page to which it is currently pointing. Notice the difference
2012** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
2013** finds the left-most entry beneath the *entry* whereas moveToRightmost()
2014** finds the right-most entry beneath the *page*.
2015*/
2016static int moveToRightmost(BtCursor *pCur){
2017 Pgno pgno;
2018 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002019 MemPage *pPage;
drh2dcc9aa2002-12-04 13:40:25 +00002020
drhc39e0002004-05-07 23:50:57 +00002021 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00002022 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00002023 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh3aac2dd2004-04-26 14:10:20 +00002024 pCur->idx = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00002025 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00002026 if( rc ) return rc;
2027 }
drh3aac2dd2004-04-26 14:10:20 +00002028 pCur->idx = pPage->nCell - 1;
drh271efa52004-05-30 19:19:05 +00002029 pCur->info.nSize = 0;
drh2dcc9aa2002-12-04 13:40:25 +00002030 return SQLITE_OK;
2031}
2032
drh5e00f6c2001-09-13 13:46:56 +00002033/* Move the cursor to the first entry in the table. Return SQLITE_OK
2034** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00002035** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00002036*/
drh3aac2dd2004-04-26 14:10:20 +00002037int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00002038 int rc;
drhc39e0002004-05-07 23:50:57 +00002039 if( pCur->status ){
2040 return pCur->status;
2041 }
drh5e00f6c2001-09-13 13:46:56 +00002042 rc = moveToRoot(pCur);
2043 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00002044 if( pCur->isValid==0 ){
2045 assert( pCur->pPage->nCell==0 );
drh5e00f6c2001-09-13 13:46:56 +00002046 *pRes = 1;
2047 return SQLITE_OK;
2048 }
drhc39e0002004-05-07 23:50:57 +00002049 assert( pCur->pPage->nCell>0 );
drh5e00f6c2001-09-13 13:46:56 +00002050 *pRes = 0;
2051 rc = moveToLeftmost(pCur);
2052 return rc;
2053}
drh5e2f8b92001-05-28 00:41:15 +00002054
drh9562b552002-02-19 15:00:07 +00002055/* Move the cursor to the last entry in the table. Return SQLITE_OK
2056** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00002057** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00002058*/
drh3aac2dd2004-04-26 14:10:20 +00002059int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00002060 int rc;
drhc39e0002004-05-07 23:50:57 +00002061 if( pCur->status ){
2062 return pCur->status;
2063 }
drh9562b552002-02-19 15:00:07 +00002064 rc = moveToRoot(pCur);
2065 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00002066 if( pCur->isValid==0 ){
2067 assert( pCur->pPage->nCell==0 );
drh9562b552002-02-19 15:00:07 +00002068 *pRes = 1;
2069 return SQLITE_OK;
2070 }
drhc39e0002004-05-07 23:50:57 +00002071 assert( pCur->isValid );
drh9562b552002-02-19 15:00:07 +00002072 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00002073 rc = moveToRightmost(pCur);
drh9562b552002-02-19 15:00:07 +00002074 return rc;
2075}
2076
drh3aac2dd2004-04-26 14:10:20 +00002077/* Move the cursor so that it points to an entry near pKey/nKey.
drh72f82862001-05-24 21:06:34 +00002078** Return a success code.
2079**
drh3aac2dd2004-04-26 14:10:20 +00002080** For INTKEY tables, only the nKey parameter is used. pKey is
2081** ignored. For other tables, nKey is the number of bytes of data
2082** in nKey. The comparison function specified when the cursor was
2083** created is used to compare keys.
2084**
drh5e2f8b92001-05-28 00:41:15 +00002085** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00002086** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00002087** were present. The cursor might point to an entry that comes
2088** before or after the key.
2089**
drhbd03cae2001-06-02 02:40:57 +00002090** The result of comparing the key with the entry to which the
drhab01f612004-05-22 02:55:23 +00002091** cursor is written to *pRes if pRes!=NULL. The meaning of
drhbd03cae2001-06-02 02:40:57 +00002092** this value is as follows:
2093**
2094** *pRes<0 The cursor is left pointing at an entry that
drh1a844c32002-12-04 22:29:28 +00002095** is smaller than pKey or if the table is empty
2096** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00002097**
2098** *pRes==0 The cursor is left pointing at an entry that
2099** exactly matches pKey.
2100**
2101** *pRes>0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00002102** is larger than pKey.
drha059ad02001-04-17 20:09:11 +00002103*/
drh4a1c3802004-05-12 15:15:47 +00002104int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){
drh72f82862001-05-24 21:06:34 +00002105 int rc;
drhc39e0002004-05-07 23:50:57 +00002106
2107 if( pCur->status ){
2108 return pCur->status;
2109 }
drh5e2f8b92001-05-28 00:41:15 +00002110 rc = moveToRoot(pCur);
drh72f82862001-05-24 21:06:34 +00002111 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00002112 assert( pCur->pPage );
2113 assert( pCur->pPage->isInit );
2114 if( pCur->isValid==0 ){
drhf328bc82004-05-10 23:29:49 +00002115 *pRes = -1;
drhc39e0002004-05-07 23:50:57 +00002116 assert( pCur->pPage->nCell==0 );
2117 return SQLITE_OK;
2118 }
drh72f82862001-05-24 21:06:34 +00002119 for(;;){
2120 int lwr, upr;
2121 Pgno chldPg;
2122 MemPage *pPage = pCur->pPage;
drh1a844c32002-12-04 22:29:28 +00002123 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00002124 lwr = 0;
2125 upr = pPage->nCell-1;
drhda200cc2004-05-09 11:51:38 +00002126 pageIntegrity(pPage);
drh72f82862001-05-24 21:06:34 +00002127 while( lwr<=upr ){
danielk197713adf8a2004-06-03 16:08:41 +00002128 void *pCellKey;
drh4a1c3802004-05-12 15:15:47 +00002129 i64 nCellKey;
drh72f82862001-05-24 21:06:34 +00002130 pCur->idx = (lwr+upr)/2;
drh271efa52004-05-30 19:19:05 +00002131 pCur->info.nSize = 0;
drhde647132004-05-07 17:57:49 +00002132 sqlite3BtreeKeySize(pCur, &nCellKey);
drh3aac2dd2004-04-26 14:10:20 +00002133 if( pPage->intKey ){
2134 if( nCellKey<nKey ){
2135 c = -1;
2136 }else if( nCellKey>nKey ){
2137 c = +1;
2138 }else{
2139 c = 0;
2140 }
drh3aac2dd2004-04-26 14:10:20 +00002141 }else{
drhe51c44f2004-05-30 20:46:09 +00002142 int available;
danielk197713adf8a2004-06-03 16:08:41 +00002143 pCellKey = (void *)fetchPayload(pCur, &available, 0);
drhe51c44f2004-05-30 20:46:09 +00002144 if( available>=nCellKey ){
2145 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
2146 }else{
2147 pCellKey = sqliteMallocRaw( nCellKey );
2148 if( pCellKey==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00002149 rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
drhe51c44f2004-05-30 20:46:09 +00002150 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
2151 sqliteFree(pCellKey);
2152 if( rc ) return rc;
2153 }
drh3aac2dd2004-04-26 14:10:20 +00002154 }
drh72f82862001-05-24 21:06:34 +00002155 if( c==0 ){
drh8b18dd42004-05-12 19:18:15 +00002156 if( pPage->leafData && !pPage->leaf ){
drhfc70e6f2004-05-12 21:11:27 +00002157 lwr = pCur->idx;
2158 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00002159 break;
2160 }else{
drh8b18dd42004-05-12 19:18:15 +00002161 if( pRes ) *pRes = 0;
2162 return SQLITE_OK;
2163 }
drh72f82862001-05-24 21:06:34 +00002164 }
2165 if( c<0 ){
2166 lwr = pCur->idx+1;
2167 }else{
2168 upr = pCur->idx-1;
2169 }
2170 }
2171 assert( lwr==upr+1 );
drh7aa128d2002-06-21 13:09:16 +00002172 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00002173 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00002174 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00002175 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00002176 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00002177 }else{
drh43605152004-05-29 21:46:49 +00002178 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00002179 }
2180 if( chldPg==0 ){
drhc39e0002004-05-07 23:50:57 +00002181 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh72f82862001-05-24 21:06:34 +00002182 if( pRes ) *pRes = c;
2183 return SQLITE_OK;
2184 }
drh428ae8c2003-01-04 16:48:09 +00002185 pCur->idx = lwr;
drh271efa52004-05-30 19:19:05 +00002186 pCur->info.nSize = 0;
drh8178a752003-01-05 21:41:40 +00002187 rc = moveToChild(pCur, chldPg);
drhc39e0002004-05-07 23:50:57 +00002188 if( rc ){
2189 return rc;
2190 }
drh72f82862001-05-24 21:06:34 +00002191 }
drhbd03cae2001-06-02 02:40:57 +00002192 /* NOT REACHED */
drh72f82862001-05-24 21:06:34 +00002193}
2194
2195/*
drhc39e0002004-05-07 23:50:57 +00002196** Return TRUE if the cursor is not pointing at an entry of the table.
2197**
2198** TRUE will be returned after a call to sqlite3BtreeNext() moves
2199** past the last entry in the table or sqlite3BtreePrev() moves past
2200** the first entry. TRUE is also returned if the table is empty.
2201*/
2202int sqlite3BtreeEof(BtCursor *pCur){
2203 return pCur->isValid==0;
2204}
2205
2206/*
drhbd03cae2001-06-02 02:40:57 +00002207** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00002208** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00002209** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00002210** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00002211*/
drh3aac2dd2004-04-26 14:10:20 +00002212int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00002213 int rc;
drh8178a752003-01-05 21:41:40 +00002214 MemPage *pPage = pCur->pPage;
drh8b18dd42004-05-12 19:18:15 +00002215
drh8c1238a2003-01-02 14:43:55 +00002216 assert( pRes!=0 );
drhc39e0002004-05-07 23:50:57 +00002217 if( pCur->isValid==0 ){
drh8c1238a2003-01-02 14:43:55 +00002218 *pRes = 1;
drhc39e0002004-05-07 23:50:57 +00002219 return SQLITE_OK;
drhecdc7532001-09-23 02:35:53 +00002220 }
drh8178a752003-01-05 21:41:40 +00002221 assert( pPage->isInit );
drh8178a752003-01-05 21:41:40 +00002222 assert( pCur->idx<pPage->nCell );
drh72f82862001-05-24 21:06:34 +00002223 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00002224 pCur->info.nSize = 0;
drh8178a752003-01-05 21:41:40 +00002225 if( pCur->idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00002226 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00002227 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00002228 if( rc ) return rc;
2229 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00002230 *pRes = 0;
2231 return rc;
drh72f82862001-05-24 21:06:34 +00002232 }
drh5e2f8b92001-05-28 00:41:15 +00002233 do{
drh8856d6a2004-04-29 14:42:46 +00002234 if( isRootPage(pPage) ){
drh8c1238a2003-01-02 14:43:55 +00002235 *pRes = 1;
drhc39e0002004-05-07 23:50:57 +00002236 pCur->isValid = 0;
drh5e2f8b92001-05-28 00:41:15 +00002237 return SQLITE_OK;
2238 }
drh8178a752003-01-05 21:41:40 +00002239 moveToParent(pCur);
2240 pPage = pCur->pPage;
2241 }while( pCur->idx>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00002242 *pRes = 0;
drh8b18dd42004-05-12 19:18:15 +00002243 if( pPage->leafData ){
2244 rc = sqlite3BtreeNext(pCur, pRes);
2245 }else{
2246 rc = SQLITE_OK;
2247 }
2248 return rc;
drh8178a752003-01-05 21:41:40 +00002249 }
2250 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00002251 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00002252 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00002253 }
drh5e2f8b92001-05-28 00:41:15 +00002254 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00002255 return rc;
drh72f82862001-05-24 21:06:34 +00002256}
2257
drh3b7511c2001-05-26 13:15:44 +00002258/*
drh2dcc9aa2002-12-04 13:40:25 +00002259** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00002260** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00002261** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00002262** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00002263*/
drh3aac2dd2004-04-26 14:10:20 +00002264int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00002265 int rc;
2266 Pgno pgno;
drh8178a752003-01-05 21:41:40 +00002267 MemPage *pPage;
drhc39e0002004-05-07 23:50:57 +00002268 if( pCur->isValid==0 ){
2269 *pRes = 1;
2270 return SQLITE_OK;
2271 }
drh8178a752003-01-05 21:41:40 +00002272 pPage = pCur->pPage;
drh8178a752003-01-05 21:41:40 +00002273 assert( pPage->isInit );
drh2dcc9aa2002-12-04 13:40:25 +00002274 assert( pCur->idx>=0 );
drha34b6762004-05-07 13:30:42 +00002275 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00002276 pgno = get4byte( findCell(pPage, pCur->idx) );
drh8178a752003-01-05 21:41:40 +00002277 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00002278 if( rc ) return rc;
2279 rc = moveToRightmost(pCur);
2280 }else{
2281 while( pCur->idx==0 ){
drh8856d6a2004-04-29 14:42:46 +00002282 if( isRootPage(pPage) ){
drhc39e0002004-05-07 23:50:57 +00002283 pCur->isValid = 0;
2284 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00002285 return SQLITE_OK;
2286 }
drh8178a752003-01-05 21:41:40 +00002287 moveToParent(pCur);
2288 pPage = pCur->pPage;
drh2dcc9aa2002-12-04 13:40:25 +00002289 }
2290 pCur->idx--;
drh271efa52004-05-30 19:19:05 +00002291 pCur->info.nSize = 0;
drh8b18dd42004-05-12 19:18:15 +00002292 if( pPage->leafData ){
2293 rc = sqlite3BtreePrevious(pCur, pRes);
2294 }else{
2295 rc = SQLITE_OK;
2296 }
drh2dcc9aa2002-12-04 13:40:25 +00002297 }
drh8178a752003-01-05 21:41:40 +00002298 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00002299 return rc;
2300}
2301
2302/*
drh3a4c1412004-05-09 20:40:11 +00002303** The TRACE macro will print high-level status information about the
2304** btree operation when the global variable sqlite3_btree_trace is
2305** enabled.
2306*/
2307#if SQLITE_TEST
drhe54ca3f2004-06-07 01:52:14 +00002308# define TRACE(X) if( sqlite3_btree_trace )\
2309 { sqlite3DebugPrintf X; fflush(stdout); }
drh3a4c1412004-05-09 20:40:11 +00002310#else
2311# define TRACE(X)
2312#endif
2313int sqlite3_btree_trace=0; /* True to enable tracing */
2314
2315/*
drh3b7511c2001-05-26 13:15:44 +00002316** Allocate a new page from the database file.
2317**
drha34b6762004-05-07 13:30:42 +00002318** The new page is marked as dirty. (In other words, sqlite3pager_write()
drh3b7511c2001-05-26 13:15:44 +00002319** has already been called on the new page.) The new page has also
2320** been referenced and the calling routine is responsible for calling
drha34b6762004-05-07 13:30:42 +00002321** sqlite3pager_unref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00002322**
2323** SQLITE_OK is returned on success. Any other return value indicates
2324** an error. *ppPage and *pPgno are undefined in the event of an error.
drha34b6762004-05-07 13:30:42 +00002325** Do not invoke sqlite3pager_unref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00002326**
drh199e3cf2002-07-18 11:01:47 +00002327** If the "nearby" parameter is not 0, then a (feeble) effort is made to
2328** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00002329** attempt to keep related pages close to each other in the database file,
2330** which in turn can make database access faster.
drh3b7511c2001-05-26 13:15:44 +00002331*/
drh199e3cf2002-07-18 11:01:47 +00002332static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
drh3aac2dd2004-04-26 14:10:20 +00002333 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00002334 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002335 int n; /* Number of pages on the freelist */
2336 int k; /* Number of leaves on the trunk of the freelist */
drh30e58752002-03-02 20:41:57 +00002337
drh3aac2dd2004-04-26 14:10:20 +00002338 pPage1 = pBt->pPage1;
2339 n = get4byte(&pPage1->aData[36]);
2340 if( n>0 ){
drh91025292004-05-03 19:49:32 +00002341 /* There are pages on the freelist. Reuse one of those pages. */
drh3aac2dd2004-04-26 14:10:20 +00002342 MemPage *pTrunk;
drha34b6762004-05-07 13:30:42 +00002343 rc = sqlite3pager_write(pPage1->aData);
drh3b7511c2001-05-26 13:15:44 +00002344 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002345 put4byte(&pPage1->aData[36], n-1);
2346 rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002347 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002348 rc = sqlite3pager_write(pTrunk->aData);
drh3b7511c2001-05-26 13:15:44 +00002349 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00002350 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002351 return rc;
2352 }
drh3aac2dd2004-04-26 14:10:20 +00002353 k = get4byte(&pTrunk->aData[4]);
2354 if( k==0 ){
2355 /* The trunk has no leaves. So extract the trunk page itself and
2356 ** use it as the newly allocated page */
drha34b6762004-05-07 13:30:42 +00002357 *pPgno = get4byte(&pPage1->aData[32]);
drh3aac2dd2004-04-26 14:10:20 +00002358 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
2359 *ppPage = pTrunk;
drh3a4c1412004-05-09 20:40:11 +00002360 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh30e58752002-03-02 20:41:57 +00002361 }else{
drh3aac2dd2004-04-26 14:10:20 +00002362 /* Extract a leaf from the trunk */
2363 int closest;
2364 unsigned char *aData = pTrunk->aData;
2365 if( nearby>0 ){
drhbea00b92002-07-08 10:59:50 +00002366 int i, dist;
2367 closest = 0;
drh3aac2dd2004-04-26 14:10:20 +00002368 dist = get4byte(&aData[8]) - nearby;
drhbea00b92002-07-08 10:59:50 +00002369 if( dist<0 ) dist = -dist;
drh3a4c1412004-05-09 20:40:11 +00002370 for(i=1; i<k; i++){
drh3aac2dd2004-04-26 14:10:20 +00002371 int d2 = get4byte(&aData[8+i*4]) - nearby;
drhbea00b92002-07-08 10:59:50 +00002372 if( d2<0 ) d2 = -d2;
2373 if( d2<dist ) closest = i;
2374 }
2375 }else{
2376 closest = 0;
2377 }
drha34b6762004-05-07 13:30:42 +00002378 *pPgno = get4byte(&aData[8+closest*4]);
drh3a4c1412004-05-09 20:40:11 +00002379 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d: %d more free pages\n",
2380 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh9b171272004-05-08 02:03:22 +00002381 if( closest<k-1 ){
2382 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
2383 }
drh3a4c1412004-05-09 20:40:11 +00002384 put4byte(&aData[4], k-1);
drh3aac2dd2004-04-26 14:10:20 +00002385 rc = getPage(pBt, *pPgno, ppPage);
2386 releasePage(pTrunk);
drh30e58752002-03-02 20:41:57 +00002387 if( rc==SQLITE_OK ){
drh9b171272004-05-08 02:03:22 +00002388 sqlite3pager_dont_rollback((*ppPage)->aData);
drha34b6762004-05-07 13:30:42 +00002389 rc = sqlite3pager_write((*ppPage)->aData);
drh30e58752002-03-02 20:41:57 +00002390 }
2391 }
drh3b7511c2001-05-26 13:15:44 +00002392 }else{
drh3aac2dd2004-04-26 14:10:20 +00002393 /* There are no pages on the freelist, so create a new page at the
2394 ** end of the file */
drha34b6762004-05-07 13:30:42 +00002395 *pPgno = sqlite3pager_pagecount(pBt->pPager) + 1;
drh3aac2dd2004-04-26 14:10:20 +00002396 rc = getPage(pBt, *pPgno, ppPage);
drh3b7511c2001-05-26 13:15:44 +00002397 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002398 rc = sqlite3pager_write((*ppPage)->aData);
drh3a4c1412004-05-09 20:40:11 +00002399 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00002400 }
2401 return rc;
2402}
2403
2404/*
drh3aac2dd2004-04-26 14:10:20 +00002405** Add a page of the database file to the freelist.
drh5e2f8b92001-05-28 00:41:15 +00002406**
drha34b6762004-05-07 13:30:42 +00002407** sqlite3pager_unref() is NOT called for pPage.
drh3b7511c2001-05-26 13:15:44 +00002408*/
drh3aac2dd2004-04-26 14:10:20 +00002409static int freePage(MemPage *pPage){
2410 Btree *pBt = pPage->pBt;
2411 MemPage *pPage1 = pBt->pPage1;
2412 int rc, n, k;
drh8b2f49b2001-06-08 00:21:52 +00002413
drh3aac2dd2004-04-26 14:10:20 +00002414 /* Prepare the page for freeing */
2415 assert( pPage->pgno>1 );
2416 pPage->isInit = 0;
2417 releasePage(pPage->pParent);
2418 pPage->pParent = 0;
2419
drha34b6762004-05-07 13:30:42 +00002420 /* Increment the free page count on pPage1 */
2421 rc = sqlite3pager_write(pPage1->aData);
drh3aac2dd2004-04-26 14:10:20 +00002422 if( rc ) return rc;
2423 n = get4byte(&pPage1->aData[36]);
2424 put4byte(&pPage1->aData[36], n+1);
2425
2426 if( n==0 ){
2427 /* This is the first free page */
drhda200cc2004-05-09 11:51:38 +00002428 rc = sqlite3pager_write(pPage->aData);
2429 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002430 memset(pPage->aData, 0, 8);
drha34b6762004-05-07 13:30:42 +00002431 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00002432 TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
drh3aac2dd2004-04-26 14:10:20 +00002433 }else{
2434 /* Other free pages already exist. Retrive the first trunk page
2435 ** of the freelist and find out how many leaves it has. */
drha34b6762004-05-07 13:30:42 +00002436 MemPage *pTrunk;
2437 rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002438 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002439 k = get4byte(&pTrunk->aData[4]);
drhb6f41482004-05-14 01:58:11 +00002440 if( k==pBt->usableSize/4 - 8 ){
drh3aac2dd2004-04-26 14:10:20 +00002441 /* The trunk is full. Turn the page being freed into a new
2442 ** trunk page with no leaves. */
drha34b6762004-05-07 13:30:42 +00002443 rc = sqlite3pager_write(pPage->aData);
drh3aac2dd2004-04-26 14:10:20 +00002444 if( rc ) return rc;
2445 put4byte(pPage->aData, pTrunk->pgno);
2446 put4byte(&pPage->aData[4], 0);
2447 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00002448 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
2449 pPage->pgno, pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00002450 }else{
2451 /* Add the newly freed page as a leaf on the current trunk */
drha34b6762004-05-07 13:30:42 +00002452 rc = sqlite3pager_write(pTrunk->aData);
drh3aac2dd2004-04-26 14:10:20 +00002453 if( rc ) return rc;
2454 put4byte(&pTrunk->aData[4], k+1);
2455 put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
drha34b6762004-05-07 13:30:42 +00002456 sqlite3pager_dont_write(pBt->pPager, pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00002457 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00002458 }
2459 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002460 }
drh3b7511c2001-05-26 13:15:44 +00002461 return rc;
2462}
2463
2464/*
drh3aac2dd2004-04-26 14:10:20 +00002465** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00002466*/
drh3aac2dd2004-04-26 14:10:20 +00002467static int clearCell(MemPage *pPage, unsigned char *pCell){
2468 Btree *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00002469 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00002470 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00002471 int rc;
drh3b7511c2001-05-26 13:15:44 +00002472
drh43605152004-05-29 21:46:49 +00002473 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00002474 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00002475 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00002476 }
drh6f11bef2004-05-13 01:12:56 +00002477 ovflPgno = get4byte(&pCell[info.iOverflow]);
drh3aac2dd2004-04-26 14:10:20 +00002478 while( ovflPgno!=0 ){
2479 MemPage *pOvfl;
2480 rc = getPage(pBt, ovflPgno, &pOvfl);
drh3b7511c2001-05-26 13:15:44 +00002481 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002482 ovflPgno = get4byte(pOvfl->aData);
drha34b6762004-05-07 13:30:42 +00002483 rc = freePage(pOvfl);
drhbd03cae2001-06-02 02:40:57 +00002484 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002485 sqlite3pager_unref(pOvfl->aData);
drh3b7511c2001-05-26 13:15:44 +00002486 }
drh5e2f8b92001-05-28 00:41:15 +00002487 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00002488}
2489
2490/*
drh91025292004-05-03 19:49:32 +00002491** Create the byte sequence used to represent a cell on page pPage
2492** and write that byte sequence into pCell[]. Overflow pages are
2493** allocated and filled in as necessary. The calling procedure
2494** is responsible for making sure sufficient space has been allocated
2495** for pCell[].
2496**
2497** Note that pCell does not necessary need to point to the pPage->aData
2498** area. pCell might point to some temporary storage. The cell will
2499** be constructed in this temporary area then copied into pPage->aData
2500** later.
drh3b7511c2001-05-26 13:15:44 +00002501*/
2502static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00002503 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00002504 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00002505 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00002506 const void *pData,int nData, /* The data */
2507 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00002508){
drh3b7511c2001-05-26 13:15:44 +00002509 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00002510 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00002511 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00002512 int spaceLeft;
2513 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00002514 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00002515 unsigned char *pPrior;
2516 unsigned char *pPayload;
2517 Btree *pBt = pPage->pBt;
2518 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00002519 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00002520 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00002521
drh91025292004-05-03 19:49:32 +00002522 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00002523 nHeader = 0;
drh91025292004-05-03 19:49:32 +00002524 if( !pPage->leaf ){
2525 nHeader += 4;
2526 }
drh8b18dd42004-05-12 19:18:15 +00002527 if( pPage->hasData ){
drh91025292004-05-03 19:49:32 +00002528 nHeader += putVarint(&pCell[nHeader], nData);
drh6f11bef2004-05-13 01:12:56 +00002529 }else{
drh91025292004-05-03 19:49:32 +00002530 nData = 0;
2531 }
drh6f11bef2004-05-13 01:12:56 +00002532 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh43605152004-05-29 21:46:49 +00002533 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00002534 assert( info.nHeader==nHeader );
2535 assert( info.nKey==nKey );
2536 assert( info.nData==nData );
2537
2538 /* Fill in the payload */
drh3aac2dd2004-04-26 14:10:20 +00002539 nPayload = nData;
2540 if( pPage->intKey ){
2541 pSrc = pData;
2542 nSrc = nData;
drh91025292004-05-03 19:49:32 +00002543 nData = 0;
drh3aac2dd2004-04-26 14:10:20 +00002544 }else{
2545 nPayload += nKey;
2546 pSrc = pKey;
2547 nSrc = nKey;
2548 }
drh6f11bef2004-05-13 01:12:56 +00002549 *pnSize = info.nSize;
2550 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00002551 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00002552 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00002553
drh3b7511c2001-05-26 13:15:44 +00002554 while( nPayload>0 ){
2555 if( spaceLeft==0 ){
drh3aac2dd2004-04-26 14:10:20 +00002556 rc = allocatePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl);
drh3b7511c2001-05-26 13:15:44 +00002557 if( rc ){
drh9b171272004-05-08 02:03:22 +00002558 releasePage(pToRelease);
drh3aac2dd2004-04-26 14:10:20 +00002559 clearCell(pPage, pCell);
drh3b7511c2001-05-26 13:15:44 +00002560 return rc;
2561 }
drh3aac2dd2004-04-26 14:10:20 +00002562 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00002563 releasePage(pToRelease);
2564 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00002565 pPrior = pOvfl->aData;
2566 put4byte(pPrior, 0);
2567 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00002568 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00002569 }
2570 n = nPayload;
2571 if( n>spaceLeft ) n = spaceLeft;
drh3aac2dd2004-04-26 14:10:20 +00002572 if( n>nSrc ) n = nSrc;
2573 memcpy(pPayload, pSrc, n);
drh3b7511c2001-05-26 13:15:44 +00002574 nPayload -= n;
drhde647132004-05-07 17:57:49 +00002575 pPayload += n;
drh9b171272004-05-08 02:03:22 +00002576 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00002577 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00002578 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00002579 if( nSrc==0 ){
2580 nSrc = nData;
2581 pSrc = pData;
2582 }
drhdd793422001-06-28 01:54:48 +00002583 }
drh9b171272004-05-08 02:03:22 +00002584 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00002585 return SQLITE_OK;
2586}
2587
2588/*
drhbd03cae2001-06-02 02:40:57 +00002589** Change the MemPage.pParent pointer on the page whose number is
drh8b2f49b2001-06-08 00:21:52 +00002590** given in the second argument so that MemPage.pParent holds the
drhbd03cae2001-06-02 02:40:57 +00002591** pointer in the third argument.
2592*/
drh4b70f112004-05-02 21:12:19 +00002593static void reparentPage(Btree *pBt, Pgno pgno, MemPage *pNewParent, int idx){
drhbd03cae2001-06-02 02:40:57 +00002594 MemPage *pThis;
drh4b70f112004-05-02 21:12:19 +00002595 unsigned char *aData;
drhbd03cae2001-06-02 02:40:57 +00002596
drhdd793422001-06-28 01:54:48 +00002597 if( pgno==0 ) return;
drh4b70f112004-05-02 21:12:19 +00002598 assert( pBt->pPager!=0 );
drha34b6762004-05-07 13:30:42 +00002599 aData = sqlite3pager_lookup(pBt->pPager, pgno);
drhda200cc2004-05-09 11:51:38 +00002600 if( aData ){
drhb6f41482004-05-14 01:58:11 +00002601 pThis = (MemPage*)&aData[pBt->usableSize];
drhda200cc2004-05-09 11:51:38 +00002602 if( pThis->isInit ){
2603 if( pThis->pParent!=pNewParent ){
2604 if( pThis->pParent ) sqlite3pager_unref(pThis->pParent->aData);
2605 pThis->pParent = pNewParent;
2606 if( pNewParent ) sqlite3pager_ref(pNewParent->aData);
2607 }
2608 pThis->idxParent = idx;
drhdd793422001-06-28 01:54:48 +00002609 }
drha34b6762004-05-07 13:30:42 +00002610 sqlite3pager_unref(aData);
drhbd03cae2001-06-02 02:40:57 +00002611 }
2612}
2613
2614/*
drh4b70f112004-05-02 21:12:19 +00002615** Change the pParent pointer of all children of pPage to point back
2616** to pPage.
2617**
drhbd03cae2001-06-02 02:40:57 +00002618** In other words, for every child of pPage, invoke reparentPage()
drh5e00f6c2001-09-13 13:46:56 +00002619** to make sure that each child knows that pPage is its parent.
drhbd03cae2001-06-02 02:40:57 +00002620**
2621** This routine gets called after you memcpy() one page into
2622** another.
2623*/
drh4b70f112004-05-02 21:12:19 +00002624static void reparentChildPages(MemPage *pPage){
drhbd03cae2001-06-02 02:40:57 +00002625 int i;
drh4b70f112004-05-02 21:12:19 +00002626 Btree *pBt;
2627
drha34b6762004-05-07 13:30:42 +00002628 if( pPage->leaf ) return;
drh4b70f112004-05-02 21:12:19 +00002629 pBt = pPage->pBt;
drhbd03cae2001-06-02 02:40:57 +00002630 for(i=0; i<pPage->nCell; i++){
drh43605152004-05-29 21:46:49 +00002631 reparentPage(pBt, get4byte(findCell(pPage,i)), pPage, i);
drhbd03cae2001-06-02 02:40:57 +00002632 }
drh43605152004-05-29 21:46:49 +00002633 reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]), pPage, i);
drh428ae8c2003-01-04 16:48:09 +00002634 pPage->idxShift = 0;
drh14acc042001-06-10 19:56:58 +00002635}
2636
2637/*
2638** Remove the i-th cell from pPage. This routine effects pPage only.
2639** The cell content is not freed or deallocated. It is assumed that
2640** the cell content has been copied someplace else. This routine just
2641** removes the reference to the cell from pPage.
2642**
2643** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00002644*/
drh4b70f112004-05-02 21:12:19 +00002645static void dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00002646 int i; /* Loop counter */
2647 int pc; /* Offset to cell content of cell being deleted */
2648 u8 *data; /* pPage->aData */
2649 u8 *ptr; /* Used to move bytes around within data[] */
2650
drh8c42ca92001-06-22 19:15:00 +00002651 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00002652 assert( sz==cellSize(pPage, idx) );
drha34b6762004-05-07 13:30:42 +00002653 assert( sqlite3pager_iswriteable(pPage->aData) );
drhda200cc2004-05-09 11:51:38 +00002654 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00002655 ptr = &data[pPage->cellOffset + 2*idx];
2656 pc = get2byte(ptr);
2657 assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
drhde647132004-05-07 17:57:49 +00002658 freeSpace(pPage, pc, sz);
drh43605152004-05-29 21:46:49 +00002659 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
2660 ptr[0] = ptr[2];
2661 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00002662 }
2663 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00002664 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
2665 pPage->nFree += 2;
drh428ae8c2003-01-04 16:48:09 +00002666 pPage->idxShift = 1;
drh14acc042001-06-10 19:56:58 +00002667}
2668
2669/*
2670** Insert a new cell on pPage at cell index "i". pCell points to the
2671** content of the cell.
2672**
2673** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00002674** will not fit, then make a copy of the cell content into pTemp if
2675** pTemp is not null. Regardless of pTemp, allocate a new entry
2676** in pPage->aOvfl[] and make it point to the cell content (either
2677** in pTemp or the original pCell) and also record its index.
2678** Allocating a new entry in pPage->aCell[] implies that
2679** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00002680*/
drh24cd67e2004-05-10 16:18:47 +00002681static void insertCell(
2682 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00002683 int i, /* New cell becomes the i-th cell of the page */
2684 u8 *pCell, /* Content of the new cell */
2685 int sz, /* Bytes of content in pCell */
drh24cd67e2004-05-10 16:18:47 +00002686 u8 *pTemp /* Temp storage space for pCell, if needed */
2687){
drh43605152004-05-29 21:46:49 +00002688 int idx; /* Where to write new cell content in data[] */
2689 int j; /* Loop counter */
2690 int top; /* First byte of content for any cell in data[] */
2691 int end; /* First byte past the last cell pointer in data[] */
2692 int ins; /* Index in data[] where new cell pointer is inserted */
2693 int hdr; /* Offset into data[] of the page header */
2694 int cellOffset; /* Address of first cell pointer in data[] */
2695 u8 *data; /* The content of the whole page */
2696 u8 *ptr; /* Used for moving information around in data[] */
2697
2698 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
2699 assert( sz==cellSizePtr(pPage, pCell) );
drha34b6762004-05-07 13:30:42 +00002700 assert( sqlite3pager_iswriteable(pPage->aData) );
drh43605152004-05-29 21:46:49 +00002701 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00002702 if( pTemp ){
2703 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00002704 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00002705 }
drh43605152004-05-29 21:46:49 +00002706 j = pPage->nOverflow++;
2707 assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
2708 pPage->aOvfl[j].pCell = pCell;
2709 pPage->aOvfl[j].idx = i;
2710 pPage->nFree = 0;
drh14acc042001-06-10 19:56:58 +00002711 }else{
drh43605152004-05-29 21:46:49 +00002712 data = pPage->aData;
2713 hdr = pPage->hdrOffset;
2714 top = get2byte(&data[hdr+5]);
2715 cellOffset = pPage->cellOffset;
2716 end = cellOffset + 2*pPage->nCell + 2;
2717 ins = cellOffset + 2*i;
2718 if( end > top - sz ){
2719 defragmentPage(pPage);
2720 top = get2byte(&data[hdr+5]);
2721 assert( end + sz <= top );
2722 }
2723 idx = allocateSpace(pPage, sz);
2724 assert( idx>0 );
2725 assert( end <= get2byte(&data[hdr+5]) );
2726 pPage->nCell++;
2727 pPage->nFree -= 2;
drhda200cc2004-05-09 11:51:38 +00002728 memcpy(&data[idx], pCell, sz);
drh43605152004-05-29 21:46:49 +00002729 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
2730 ptr[0] = ptr[-2];
2731 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00002732 }
drh43605152004-05-29 21:46:49 +00002733 put2byte(&data[ins], idx);
2734 put2byte(&data[hdr+3], pPage->nCell);
2735 pPage->idxShift = 1;
drhda200cc2004-05-09 11:51:38 +00002736 pageIntegrity(pPage);
drh14acc042001-06-10 19:56:58 +00002737 }
2738}
2739
2740/*
drhfa1a98a2004-05-14 19:08:17 +00002741** Add a list of cells to a page. The page should be initially empty.
2742** The cells are guaranteed to fit on the page.
2743*/
2744static void assemblePage(
2745 MemPage *pPage, /* The page to be assemblied */
2746 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00002747 u8 **apCell, /* Pointers to cell bodies */
drhfa1a98a2004-05-14 19:08:17 +00002748 int *aSize /* Sizes of the cells */
2749){
2750 int i; /* Loop counter */
2751 int totalSize; /* Total size of all cells */
2752 int hdr; /* Index of page header */
drh43605152004-05-29 21:46:49 +00002753 int cellptr; /* Address of next cell pointer */
2754 int cellbody; /* Address of next cell body */
drhfa1a98a2004-05-14 19:08:17 +00002755 u8 *data; /* Data for the page */
2756
drh43605152004-05-29 21:46:49 +00002757 assert( pPage->nOverflow==0 );
drhfa1a98a2004-05-14 19:08:17 +00002758 totalSize = 0;
2759 for(i=0; i<nCell; i++){
2760 totalSize += aSize[i];
2761 }
drh43605152004-05-29 21:46:49 +00002762 assert( totalSize+2*nCell<=pPage->nFree );
drhfa1a98a2004-05-14 19:08:17 +00002763 assert( pPage->nCell==0 );
drh43605152004-05-29 21:46:49 +00002764 cellptr = pPage->cellOffset;
drhfa1a98a2004-05-14 19:08:17 +00002765 data = pPage->aData;
2766 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00002767 put2byte(&data[hdr+3], nCell);
2768 cellbody = allocateSpace(pPage, totalSize);
2769 assert( cellbody>0 );
2770 assert( pPage->nFree >= 2*nCell );
2771 pPage->nFree -= 2*nCell;
drhfa1a98a2004-05-14 19:08:17 +00002772 for(i=0; i<nCell; i++){
drh43605152004-05-29 21:46:49 +00002773 put2byte(&data[cellptr], cellbody);
2774 memcpy(&data[cellbody], apCell[i], aSize[i]);
2775 cellptr += 2;
2776 cellbody += aSize[i];
drhfa1a98a2004-05-14 19:08:17 +00002777 }
drh43605152004-05-29 21:46:49 +00002778 assert( cellbody==pPage->pBt->usableSize );
drhfa1a98a2004-05-14 19:08:17 +00002779 pPage->nCell = nCell;
drhfa1a98a2004-05-14 19:08:17 +00002780}
2781
drh14acc042001-06-10 19:56:58 +00002782/*
drhc8629a12004-05-08 20:07:40 +00002783** GCC does not define the offsetof() macro so we'll have to do it
2784** ourselves.
2785*/
2786#ifndef offsetof
2787#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
2788#endif
2789
2790/*
drhc3b70572003-01-04 19:44:07 +00002791** The following parameters determine how many adjacent pages get involved
2792** in a balancing operation. NN is the number of neighbors on either side
2793** of the page that participate in the balancing operation. NB is the
2794** total number of pages that participate, including the target page and
2795** NN neighbors on either side.
2796**
2797** The minimum value of NN is 1 (of course). Increasing NN above 1
2798** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
2799** in exchange for a larger degradation in INSERT and UPDATE performance.
2800** The value of NN appears to give the best results overall.
2801*/
2802#define NN 1 /* Number of neighbors on either side of pPage */
2803#define NB (NN*2+1) /* Total pages involved in the balance */
2804
drh43605152004-05-29 21:46:49 +00002805/* Forward reference */
2806static int balance(MemPage*);
2807
drhc3b70572003-01-04 19:44:07 +00002808/*
drhab01f612004-05-22 02:55:23 +00002809** This routine redistributes Cells on pPage and up to NN*2 siblings
drh8b2f49b2001-06-08 00:21:52 +00002810** of pPage so that all pages have about the same amount of free space.
drh0c6cc4e2004-06-15 02:13:26 +00002811** Usually NN siblings on either side of pPage is used in the balancing,
2812** though more siblings might come from one side if pPage is the first
drhab01f612004-05-22 02:55:23 +00002813** or last child of its parent. If pPage has fewer than 2*NN siblings
drh8b2f49b2001-06-08 00:21:52 +00002814** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00002815** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00002816**
drh0c6cc4e2004-06-15 02:13:26 +00002817** The number of siblings of pPage might be increased or decreased by one or
2818** two in an effort to keep pages nearly full but not over full. The root page
drhab01f612004-05-22 02:55:23 +00002819** is special and is allowed to be nearly empty. If pPage is
drh8c42ca92001-06-22 19:15:00 +00002820** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00002821** or decreased by one, as necessary, to keep the root page from being
drhab01f612004-05-22 02:55:23 +00002822** overfull or completely empty.
drh14acc042001-06-10 19:56:58 +00002823**
drh8b2f49b2001-06-08 00:21:52 +00002824** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00002825** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00002826** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00002827** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00002828**
drh8c42ca92001-06-22 19:15:00 +00002829** In the course of balancing the siblings of pPage, the parent of pPage
2830** might become overfull or underfull. If that happens, then this routine
2831** is called recursively on the parent.
2832**
drh5e00f6c2001-09-13 13:46:56 +00002833** If this routine fails for any reason, it might leave the database
2834** in a corrupted state. So if this routine fails, the database should
2835** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00002836*/
drh43605152004-05-29 21:46:49 +00002837static int balance_nonroot(MemPage *pPage){
drh8b2f49b2001-06-08 00:21:52 +00002838 MemPage *pParent; /* The parent of pPage */
drh4b70f112004-05-02 21:12:19 +00002839 Btree *pBt; /* The whole database */
danielk1977cfe9a692004-06-16 12:00:29 +00002840 int nCell = 0; /* Number of cells in aCell[] */
drh8b2f49b2001-06-08 00:21:52 +00002841 int nOld; /* Number of pages in apOld[] */
2842 int nNew; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00002843 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00002844 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00002845 int idx; /* Index of pPage in pParent->aCell[] */
2846 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00002847 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00002848 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00002849 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00002850 int usableSpace; /* Bytes in pPage beyond the header */
2851 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00002852 int subtotal; /* Subtotal of bytes in cells on one page */
drhb6f41482004-05-14 01:58:11 +00002853 int iSpace = 0; /* First unused byte of aSpace[] */
drhc3b70572003-01-04 19:44:07 +00002854 MemPage *apOld[NB]; /* pPage and up to two siblings */
2855 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00002856 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00002857 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
2858 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
drhc3b70572003-01-04 19:44:07 +00002859 int idxDiv[NB]; /* Indices of divider cells in pParent */
drh4b70f112004-05-02 21:12:19 +00002860 u8 *apDiv[NB]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00002861 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
2862 int szNew[NB+2]; /* Combined size of cells place on i-th page */
drh4b70f112004-05-02 21:12:19 +00002863 u8 *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
drhc3b70572003-01-04 19:44:07 +00002864 int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
drh4b70f112004-05-02 21:12:19 +00002865 u8 aCopy[NB][MX_PAGE_SIZE+sizeof(MemPage)]; /* Space for apCopy[] */
drha2fce642004-06-05 00:01:44 +00002866 u8 aSpace[MX_PAGE_SIZE*5]; /* Space to copies of divider cells */
drh8b2f49b2001-06-08 00:21:52 +00002867
drh14acc042001-06-10 19:56:58 +00002868 /*
drh43605152004-05-29 21:46:49 +00002869 ** Find the parent page.
drh8b2f49b2001-06-08 00:21:52 +00002870 */
drh3a4c1412004-05-09 20:40:11 +00002871 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00002872 assert( sqlite3pager_iswriteable(pPage->aData) );
drh4b70f112004-05-02 21:12:19 +00002873 pBt = pPage->pBt;
drh14acc042001-06-10 19:56:58 +00002874 pParent = pPage->pParent;
drh43605152004-05-29 21:46:49 +00002875 sqlite3pager_write(pParent->aData);
2876 assert( pParent );
2877 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
drh14acc042001-06-10 19:56:58 +00002878
drh8b2f49b2001-06-08 00:21:52 +00002879 /*
drh4b70f112004-05-02 21:12:19 +00002880 ** Find the cell in the parent page whose left child points back
drh14acc042001-06-10 19:56:58 +00002881 ** to pPage. The "idx" variable is the index of that cell. If pPage
2882 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00002883 */
drhbb49aba2003-01-04 18:53:27 +00002884 if( pParent->idxShift ){
drha34b6762004-05-07 13:30:42 +00002885 Pgno pgno;
drh4b70f112004-05-02 21:12:19 +00002886 pgno = pPage->pgno;
drha34b6762004-05-07 13:30:42 +00002887 assert( pgno==sqlite3pager_pagenumber(pPage->aData) );
drhbb49aba2003-01-04 18:53:27 +00002888 for(idx=0; idx<pParent->nCell; idx++){
drh43605152004-05-29 21:46:49 +00002889 if( get4byte(findCell(pParent, idx))==pgno ){
drhbb49aba2003-01-04 18:53:27 +00002890 break;
2891 }
drh8b2f49b2001-06-08 00:21:52 +00002892 }
drh4b70f112004-05-02 21:12:19 +00002893 assert( idx<pParent->nCell
drh43605152004-05-29 21:46:49 +00002894 || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
drhbb49aba2003-01-04 18:53:27 +00002895 }else{
2896 idx = pPage->idxParent;
drh8b2f49b2001-06-08 00:21:52 +00002897 }
drh8b2f49b2001-06-08 00:21:52 +00002898
2899 /*
drh14acc042001-06-10 19:56:58 +00002900 ** Initialize variables so that it will be safe to jump
drh5edc3122001-09-13 21:53:09 +00002901 ** directly to balance_cleanup at any moment.
drh8b2f49b2001-06-08 00:21:52 +00002902 */
drh14acc042001-06-10 19:56:58 +00002903 nOld = nNew = 0;
drha34b6762004-05-07 13:30:42 +00002904 sqlite3pager_ref(pParent->aData);
drh14acc042001-06-10 19:56:58 +00002905
2906 /*
drh4b70f112004-05-02 21:12:19 +00002907 ** Find sibling pages to pPage and the cells in pParent that divide
drhc3b70572003-01-04 19:44:07 +00002908 ** the siblings. An attempt is made to find NN siblings on either
2909 ** side of pPage. More siblings are taken from one side, however, if
2910 ** pPage there are fewer than NN siblings on the other side. If pParent
2911 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00002912 */
drhc3b70572003-01-04 19:44:07 +00002913 nxDiv = idx - NN;
2914 if( nxDiv + NB > pParent->nCell ){
2915 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00002916 }
drhc3b70572003-01-04 19:44:07 +00002917 if( nxDiv<0 ){
2918 nxDiv = 0;
2919 }
drh8b2f49b2001-06-08 00:21:52 +00002920 nDiv = 0;
drhc3b70572003-01-04 19:44:07 +00002921 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00002922 if( k<pParent->nCell ){
2923 idxDiv[i] = k;
drh43605152004-05-29 21:46:49 +00002924 apDiv[i] = findCell(pParent, k);
drh8b2f49b2001-06-08 00:21:52 +00002925 nDiv++;
drha34b6762004-05-07 13:30:42 +00002926 assert( !pParent->leaf );
drh43605152004-05-29 21:46:49 +00002927 pgnoOld[i] = get4byte(apDiv[i]);
drh14acc042001-06-10 19:56:58 +00002928 }else if( k==pParent->nCell ){
drh43605152004-05-29 21:46:49 +00002929 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
drh14acc042001-06-10 19:56:58 +00002930 }else{
2931 break;
drh8b2f49b2001-06-08 00:21:52 +00002932 }
drhde647132004-05-07 17:57:49 +00002933 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
drh6019e162001-07-02 17:51:45 +00002934 if( rc ) goto balance_cleanup;
drh428ae8c2003-01-04 16:48:09 +00002935 apOld[i]->idxParent = k;
drh91025292004-05-03 19:49:32 +00002936 apCopy[i] = 0;
2937 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00002938 nOld++;
drh8b2f49b2001-06-08 00:21:52 +00002939 }
2940
2941 /*
drh14acc042001-06-10 19:56:58 +00002942 ** Make copies of the content of pPage and its siblings into aOld[].
2943 ** The rest of this function will use data from the copies rather
2944 ** that the original pages since the original pages will be in the
2945 ** process of being overwritten.
2946 */
2947 for(i=0; i<nOld; i++){
drhc8629a12004-05-08 20:07:40 +00002948 MemPage *p = apCopy[i] = (MemPage*)&aCopy[i+1][-sizeof(MemPage)];
drh43605152004-05-29 21:46:49 +00002949 p->aData = &((u8*)p)[-pBt->pageSize];
2950 memcpy(p->aData, apOld[i]->aData, pBt->pageSize + sizeof(MemPage));
2951 p->aData = &((u8*)p)[-pBt->pageSize];
drh14acc042001-06-10 19:56:58 +00002952 }
2953
2954 /*
2955 ** Load pointers to all cells on sibling pages and the divider cells
2956 ** into the local apCell[] array. Make copies of the divider cells
drhb6f41482004-05-14 01:58:11 +00002957 ** into space obtained form aSpace[] and remove the the divider Cells
2958 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00002959 **
2960 ** If the siblings are on leaf pages, then the child pointers of the
2961 ** divider cells are stripped from the cells before they are copied
drh96f5b762004-05-16 16:24:36 +00002962 ** into aSpace[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00002963 ** child pointers. If siblings are not leaves, then all cell in
2964 ** apCell[] include child pointers. Either way, all cells in apCell[]
2965 ** are alike.
drh96f5b762004-05-16 16:24:36 +00002966 **
2967 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
2968 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00002969 */
2970 nCell = 0;
drh4b70f112004-05-02 21:12:19 +00002971 leafCorrection = pPage->leaf*4;
drh8b18dd42004-05-12 19:18:15 +00002972 leafData = pPage->leafData && pPage->leaf;
drh8b2f49b2001-06-08 00:21:52 +00002973 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00002974 MemPage *pOld = apCopy[i];
drh43605152004-05-29 21:46:49 +00002975 int limit = pOld->nCell+pOld->nOverflow;
2976 for(j=0; j<limit; j++){
2977 apCell[nCell] = findOverflowCell(pOld, j);
2978 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
drh14acc042001-06-10 19:56:58 +00002979 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00002980 }
2981 if( i<nOld-1 ){
drh43605152004-05-29 21:46:49 +00002982 int sz = cellSizePtr(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00002983 if( leafData ){
drh96f5b762004-05-16 16:24:36 +00002984 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
2985 ** are duplicates of keys on the child pages. We need to remove
2986 ** the divider cells from pParent, but the dividers cells are not
2987 ** added to apCell[] because they are duplicates of child cells.
2988 */
drh8b18dd42004-05-12 19:18:15 +00002989 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00002990 }else{
drhb6f41482004-05-14 01:58:11 +00002991 u8 *pTemp;
2992 szCell[nCell] = sz;
2993 pTemp = &aSpace[iSpace];
2994 iSpace += sz;
2995 assert( iSpace<=sizeof(aSpace) );
2996 memcpy(pTemp, apDiv[i], sz);
2997 apCell[nCell] = pTemp+leafCorrection;
2998 dropCell(pParent, nxDiv, sz);
drh8b18dd42004-05-12 19:18:15 +00002999 szCell[nCell] -= leafCorrection;
drh43605152004-05-29 21:46:49 +00003000 assert( get4byte(pTemp)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00003001 if( !pOld->leaf ){
3002 assert( leafCorrection==0 );
3003 /* The right pointer of the child page pOld becomes the left
3004 ** pointer of the divider cell */
drh43605152004-05-29 21:46:49 +00003005 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
drh8b18dd42004-05-12 19:18:15 +00003006 }else{
3007 assert( leafCorrection==4 );
3008 }
3009 nCell++;
drh4b70f112004-05-02 21:12:19 +00003010 }
drh8b2f49b2001-06-08 00:21:52 +00003011 }
3012 }
3013
3014 /*
drh6019e162001-07-02 17:51:45 +00003015 ** Figure out the number of pages needed to hold all nCell cells.
3016 ** Store this number in "k". Also compute szNew[] which is the total
3017 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00003018 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00003019 ** cntNew[k] should equal nCell.
3020 **
drh96f5b762004-05-16 16:24:36 +00003021 ** Values computed by this block:
3022 **
3023 ** k: The total number of sibling pages
3024 ** szNew[i]: Spaced used on the i-th sibling page.
3025 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
3026 ** the right of the i-th sibling page.
3027 ** usableSpace: Number of bytes of space available on each sibling.
3028 **
drh8b2f49b2001-06-08 00:21:52 +00003029 */
drh43605152004-05-29 21:46:49 +00003030 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00003031 for(subtotal=k=i=0; i<nCell; i++){
drh43605152004-05-29 21:46:49 +00003032 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00003033 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00003034 szNew[k] = subtotal - szCell[i];
3035 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00003036 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00003037 subtotal = 0;
3038 k++;
3039 }
3040 }
3041 szNew[k] = subtotal;
3042 cntNew[k] = nCell;
3043 k++;
drh96f5b762004-05-16 16:24:36 +00003044
3045 /*
3046 ** The packing computed by the previous block is biased toward the siblings
3047 ** on the left side. The left siblings are always nearly full, while the
3048 ** right-most sibling might be nearly empty. This block of code attempts
3049 ** to adjust the packing of siblings to get a better balance.
3050 **
3051 ** This adjustment is more than an optimization. The packing above might
3052 ** be so out of balance as to be illegal. For example, the right-most
3053 ** sibling might be completely empty. This adjustment is not optional.
3054 */
drh6019e162001-07-02 17:51:45 +00003055 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00003056 int szRight = szNew[i]; /* Size of sibling on the right */
3057 int szLeft = szNew[i-1]; /* Size of sibling on the left */
3058 int r; /* Index of right-most cell in left sibling */
3059 int d; /* Index of first cell to the left of right sibling */
3060
3061 r = cntNew[i-1] - 1;
3062 d = r + 1 - leafData;
drh43605152004-05-29 21:46:49 +00003063 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
3064 szRight += szCell[d] + 2;
3065 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00003066 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00003067 r = cntNew[i-1] - 1;
3068 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00003069 }
drh96f5b762004-05-16 16:24:36 +00003070 szNew[i] = szRight;
3071 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00003072 }
3073 assert( cntNew[0]>0 );
drh8b2f49b2001-06-08 00:21:52 +00003074
3075 /*
drh6b308672002-07-08 02:16:37 +00003076 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00003077 */
drh4b70f112004-05-02 21:12:19 +00003078 assert( pPage->pgno>1 );
3079 pageFlags = pPage->aData[0];
drh14acc042001-06-10 19:56:58 +00003080 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00003081 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00003082 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00003083 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00003084 pgnoNew[i] = pgnoOld[i];
3085 apOld[i] = 0;
drhda200cc2004-05-09 11:51:38 +00003086 sqlite3pager_write(pNew->aData);
drh6b308672002-07-08 02:16:37 +00003087 }else{
drhda200cc2004-05-09 11:51:38 +00003088 rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1]);
drh6b308672002-07-08 02:16:37 +00003089 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00003090 apNew[i] = pNew;
drh6b308672002-07-08 02:16:37 +00003091 }
drh14acc042001-06-10 19:56:58 +00003092 nNew++;
drhda200cc2004-05-09 11:51:38 +00003093 zeroPage(pNew, pageFlags);
drh8b2f49b2001-06-08 00:21:52 +00003094 }
3095
drh6b308672002-07-08 02:16:37 +00003096 /* Free any old pages that were not reused as new pages.
3097 */
3098 while( i<nOld ){
drh4b70f112004-05-02 21:12:19 +00003099 rc = freePage(apOld[i]);
drh6b308672002-07-08 02:16:37 +00003100 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00003101 releasePage(apOld[i]);
drh6b308672002-07-08 02:16:37 +00003102 apOld[i] = 0;
3103 i++;
3104 }
3105
drh8b2f49b2001-06-08 00:21:52 +00003106 /*
drhf9ffac92002-03-02 19:00:31 +00003107 ** Put the new pages in accending order. This helps to
3108 ** keep entries in the disk file in order so that a scan
3109 ** of the table is a linear scan through the file. That
3110 ** in turn helps the operating system to deliver pages
3111 ** from the disk more rapidly.
3112 **
3113 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00003114 ** n is never more than NB (a small constant), that should
3115 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00003116 **
drhc3b70572003-01-04 19:44:07 +00003117 ** When NB==3, this one optimization makes the database
3118 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00003119 */
3120 for(i=0; i<k-1; i++){
3121 int minV = pgnoNew[i];
3122 int minI = i;
3123 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00003124 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00003125 minI = j;
3126 minV = pgnoNew[j];
3127 }
3128 }
3129 if( minI>i ){
3130 int t;
3131 MemPage *pT;
3132 t = pgnoNew[i];
3133 pT = apNew[i];
3134 pgnoNew[i] = pgnoNew[minI];
3135 apNew[i] = apNew[minI];
3136 pgnoNew[minI] = t;
3137 apNew[minI] = pT;
3138 }
3139 }
drha2fce642004-06-05 00:01:44 +00003140 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
drh24cd67e2004-05-10 16:18:47 +00003141 pgnoOld[0],
3142 nOld>=2 ? pgnoOld[1] : 0,
3143 nOld>=3 ? pgnoOld[2] : 0,
drh10c0fa62004-05-18 12:50:17 +00003144 pgnoNew[0], szNew[0],
3145 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
3146 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
drha2fce642004-06-05 00:01:44 +00003147 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
3148 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
drh24cd67e2004-05-10 16:18:47 +00003149
drhf9ffac92002-03-02 19:00:31 +00003150
3151 /*
drh14acc042001-06-10 19:56:58 +00003152 ** Evenly distribute the data in apCell[] across the new pages.
3153 ** Insert divider cells into pParent as necessary.
3154 */
3155 j = 0;
3156 for(i=0; i<nNew; i++){
3157 MemPage *pNew = apNew[i];
drh4b70f112004-05-02 21:12:19 +00003158 assert( pNew->pgno==pgnoNew[i] );
drhfa1a98a2004-05-14 19:08:17 +00003159 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
3160 j = cntNew[i];
drh6019e162001-07-02 17:51:45 +00003161 assert( pNew->nCell>0 );
drh43605152004-05-29 21:46:49 +00003162 assert( pNew->nOverflow==0 );
drh14acc042001-06-10 19:56:58 +00003163 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00003164 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00003165 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00003166 int sz;
3167 pCell = apCell[j];
3168 sz = szCell[j] + leafCorrection;
drh4b70f112004-05-02 21:12:19 +00003169 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00003170 memcpy(&pNew->aData[8], pCell, 4);
drh24cd67e2004-05-10 16:18:47 +00003171 pTemp = 0;
drh8b18dd42004-05-12 19:18:15 +00003172 }else if( leafData ){
drh6f11bef2004-05-13 01:12:56 +00003173 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00003174 j--;
drh43605152004-05-29 21:46:49 +00003175 parseCellPtr(pNew, apCell[j], &info);
drhb6f41482004-05-14 01:58:11 +00003176 pCell = &aSpace[iSpace];
drh6f11bef2004-05-13 01:12:56 +00003177 fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz);
drhb6f41482004-05-14 01:58:11 +00003178 iSpace += sz;
3179 assert( iSpace<=sizeof(aSpace) );
drh8b18dd42004-05-12 19:18:15 +00003180 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00003181 }else{
3182 pCell -= 4;
drhb6f41482004-05-14 01:58:11 +00003183 pTemp = &aSpace[iSpace];
3184 iSpace += sz;
3185 assert( iSpace<=sizeof(aSpace) );
drh4b70f112004-05-02 21:12:19 +00003186 }
drh8b18dd42004-05-12 19:18:15 +00003187 insertCell(pParent, nxDiv, pCell, sz, pTemp);
drh43605152004-05-29 21:46:49 +00003188 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
drh14acc042001-06-10 19:56:58 +00003189 j++;
3190 nxDiv++;
3191 }
3192 }
drh6019e162001-07-02 17:51:45 +00003193 assert( j==nCell );
drh4b70f112004-05-02 21:12:19 +00003194 if( (pageFlags & PTF_LEAF)==0 ){
drh43605152004-05-29 21:46:49 +00003195 memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
drh14acc042001-06-10 19:56:58 +00003196 }
drh43605152004-05-29 21:46:49 +00003197 if( nxDiv==pParent->nCell+pParent->nOverflow ){
drh4b70f112004-05-02 21:12:19 +00003198 /* Right-most sibling is the right-most child of pParent */
drh43605152004-05-29 21:46:49 +00003199 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
drh4b70f112004-05-02 21:12:19 +00003200 }else{
3201 /* Right-most sibling is the left child of the first entry in pParent
3202 ** past the right-most divider entry */
drh43605152004-05-29 21:46:49 +00003203 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00003204 }
3205
3206 /*
3207 ** Reparent children of all cells.
drh8b2f49b2001-06-08 00:21:52 +00003208 */
3209 for(i=0; i<nNew; i++){
drh4b70f112004-05-02 21:12:19 +00003210 reparentChildPages(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00003211 }
drh4b70f112004-05-02 21:12:19 +00003212 reparentChildPages(pParent);
drh8b2f49b2001-06-08 00:21:52 +00003213
3214 /*
drh3a4c1412004-05-09 20:40:11 +00003215 ** Balance the parent page. Note that the current page (pPage) might
3216 ** have been added to the freelist is it might no longer be initialized.
3217 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00003218 */
drhda200cc2004-05-09 11:51:38 +00003219 assert( pParent->isInit );
drh3a4c1412004-05-09 20:40:11 +00003220 /* assert( pPage->isInit ); // No! pPage might have been added to freelist */
3221 /* pageIntegrity(pPage); // No! pPage might have been added to freelist */
drh4b70f112004-05-02 21:12:19 +00003222 rc = balance(pParent);
drhda200cc2004-05-09 11:51:38 +00003223
drh8b2f49b2001-06-08 00:21:52 +00003224 /*
drh14acc042001-06-10 19:56:58 +00003225 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00003226 */
drh14acc042001-06-10 19:56:58 +00003227balance_cleanup:
drh8b2f49b2001-06-08 00:21:52 +00003228 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00003229 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00003230 }
drh14acc042001-06-10 19:56:58 +00003231 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00003232 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00003233 }
drh91025292004-05-03 19:49:32 +00003234 releasePage(pParent);
drh3a4c1412004-05-09 20:40:11 +00003235 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
3236 pPage->pgno, nOld, nNew, nCell));
drh8b2f49b2001-06-08 00:21:52 +00003237 return rc;
3238}
3239
3240/*
drh43605152004-05-29 21:46:49 +00003241** This routine is called for the root page of a btree when the root
3242** page contains no cells. This is an opportunity to make the tree
3243** shallower by one level.
3244*/
3245static int balance_shallower(MemPage *pPage){
3246 MemPage *pChild; /* The only child page of pPage */
3247 Pgno pgnoChild; /* Page number for pChild */
3248 int rc; /* Return code from subprocedures */
3249 u8 *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
3250 int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
3251
3252 assert( pPage->pParent==0 );
3253 assert( pPage->nCell==0 );
3254 if( pPage->leaf ){
3255 /* The table is completely empty */
3256 TRACE(("BALANCE: empty table %d\n", pPage->pgno));
3257 }else{
3258 /* The root page is empty but has one child. Transfer the
3259 ** information from that one child into the root page if it
3260 ** will fit. This reduces the depth of the tree by one.
3261 **
3262 ** If the root page is page 1, it has less space available than
3263 ** its child (due to the 100 byte header that occurs at the beginning
3264 ** of the database fle), so it might not be able to hold all of the
3265 ** information currently contained in the child. If this is the
3266 ** case, then do not do the transfer. Leave page 1 empty except
3267 ** for the right-pointer to the child page. The child page becomes
3268 ** the virtual root of the tree.
3269 */
3270 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3271 assert( pgnoChild>0 );
3272 assert( pgnoChild<=sqlite3pager_pagecount(pPage->pBt->pPager) );
3273 rc = getPage(pPage->pBt, pgnoChild, &pChild);
3274 if( rc ) return rc;
3275 if( pPage->pgno==1 ){
3276 rc = initPage(pChild, pPage);
3277 if( rc ) return rc;
3278 assert( pChild->nOverflow==0 );
3279 if( pChild->nFree>=100 ){
3280 /* The child information will fit on the root page, so do the
3281 ** copy */
3282 int i;
3283 zeroPage(pPage, pChild->aData[0]);
3284 for(i=0; i<pChild->nCell; i++){
3285 apCell[i] = findCell(pChild,i);
3286 szCell[i] = cellSizePtr(pChild, apCell[i]);
3287 }
3288 assemblePage(pPage, pChild->nCell, apCell, szCell);
3289 freePage(pChild);
3290 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
3291 }else{
3292 /* The child has more information that will fit on the root.
3293 ** The tree is already balanced. Do nothing. */
3294 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
3295 }
3296 }else{
3297 memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
3298 pPage->isInit = 0;
3299 pPage->pParent = 0;
3300 rc = initPage(pPage, 0);
3301 assert( rc==SQLITE_OK );
3302 freePage(pChild);
3303 TRACE(("BALANCE: transfer child %d into root %d\n",
3304 pChild->pgno, pPage->pgno));
3305 }
3306 reparentChildPages(pPage);
3307 releasePage(pChild);
3308 }
3309 return SQLITE_OK;
3310}
3311
3312
3313/*
3314** The root page is overfull
3315**
3316** When this happens, Create a new child page and copy the
3317** contents of the root into the child. Then make the root
3318** page an empty page with rightChild pointing to the new
3319** child. Finally, call balance_internal() on the new child
3320** to cause it to split.
3321*/
3322static int balance_deeper(MemPage *pPage){
3323 int rc; /* Return value from subprocedures */
3324 MemPage *pChild; /* Pointer to a new child page */
3325 Pgno pgnoChild; /* Page number of the new child page */
3326 Btree *pBt; /* The BTree */
3327 int usableSize; /* Total usable size of a page */
3328 u8 *data; /* Content of the parent page */
3329 u8 *cdata; /* Content of the child page */
3330 int hdr; /* Offset to page header in parent */
3331 int brk; /* Offset to content of first cell in parent */
3332
3333 assert( pPage->pParent==0 );
3334 assert( pPage->nOverflow>0 );
3335 pBt = pPage->pBt;
3336 rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno);
3337 if( rc ) return rc;
3338 assert( sqlite3pager_iswriteable(pChild->aData) );
3339 usableSize = pBt->usableSize;
3340 data = pPage->aData;
3341 hdr = pPage->hdrOffset;
3342 brk = get2byte(&data[hdr+5]);
3343 cdata = pChild->aData;
3344 memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
3345 memcpy(&cdata[brk], &data[brk], usableSize-brk);
3346 rc = initPage(pChild, pPage);
3347 if( rc ) return rc;
3348 memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
3349 pChild->nOverflow = pPage->nOverflow;
3350 if( pChild->nOverflow ){
3351 pChild->nFree = 0;
3352 }
3353 assert( pChild->nCell==pPage->nCell );
3354 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
3355 put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
3356 TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
3357 rc = balance_nonroot(pChild);
3358 releasePage(pChild);
3359 return rc;
3360}
3361
3362/*
3363** Decide if the page pPage needs to be balanced. If balancing is
3364** required, call the appropriate balancing routine.
3365*/
3366static int balance(MemPage *pPage){
3367 int rc = SQLITE_OK;
3368 if( pPage->pParent==0 ){
3369 if( pPage->nOverflow>0 ){
3370 rc = balance_deeper(pPage);
3371 }
3372 if( pPage->nCell==0 ){
3373 rc = balance_shallower(pPage);
3374 }
3375 }else{
3376 if( pPage->nOverflow>0 || pPage->nFree>pPage->pBt->usableSize*2/3 ){
3377 rc = balance_nonroot(pPage);
3378 }
3379 }
3380 return rc;
3381}
3382
3383/*
drhf74b8d92002-09-01 23:20:45 +00003384** This routine checks all cursors that point to the same table
3385** as pCur points to. If any of those cursors were opened with
3386** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
3387** cursors point to the same table were opened with wrFlag==1
3388** then this routine returns SQLITE_OK.
3389**
3390** In addition to checking for read-locks (where a read-lock
3391** means a cursor opened with wrFlag==0) this routine also moves
3392** all cursors other than pCur so that they are pointing to the
3393** first Cell on root page. This is necessary because an insert
3394** or delete might change the number of cells on a page or delete
3395** a page entirely and we do not want to leave any cursors
3396** pointing to non-existant pages or cells.
3397*/
3398static int checkReadLocks(BtCursor *pCur){
3399 BtCursor *p;
3400 assert( pCur->wrFlag );
3401 for(p=pCur->pShared; p!=pCur; p=p->pShared){
3402 assert( p );
3403 assert( p->pgnoRoot==pCur->pgnoRoot );
drha34b6762004-05-07 13:30:42 +00003404 assert( p->pPage->pgno==sqlite3pager_pagenumber(p->pPage->aData) );
drhf74b8d92002-09-01 23:20:45 +00003405 if( p->wrFlag==0 ) return SQLITE_LOCKED;
drh91025292004-05-03 19:49:32 +00003406 if( p->pPage->pgno!=p->pgnoRoot ){
drhf74b8d92002-09-01 23:20:45 +00003407 moveToRoot(p);
3408 }
3409 }
3410 return SQLITE_OK;
3411}
3412
3413/*
drh3b7511c2001-05-26 13:15:44 +00003414** Insert a new record into the BTree. The key is given by (pKey,nKey)
3415** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00003416** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00003417** is left pointing at a random location.
3418**
3419** For an INTKEY table, only the nKey value of the key is used. pKey is
3420** ignored. For a ZERODATA table, the pData and nData are both ignored.
drh3b7511c2001-05-26 13:15:44 +00003421*/
drh3aac2dd2004-04-26 14:10:20 +00003422int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00003423 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00003424 const void *pKey, i64 nKey, /* The key of the new record */
drh5c4d9702001-08-20 00:33:58 +00003425 const void *pData, int nData /* The data of the new record */
drh3b7511c2001-05-26 13:15:44 +00003426){
drh3b7511c2001-05-26 13:15:44 +00003427 int rc;
3428 int loc;
drh14acc042001-06-10 19:56:58 +00003429 int szNew;
drh3b7511c2001-05-26 13:15:44 +00003430 MemPage *pPage;
3431 Btree *pBt = pCur->pBt;
drha34b6762004-05-07 13:30:42 +00003432 unsigned char *oldCell;
3433 unsigned char newCell[MX_CELL_SIZE];
drh3b7511c2001-05-26 13:15:44 +00003434
drhc39e0002004-05-07 23:50:57 +00003435 if( pCur->status ){
3436 return pCur->status; /* A rollback destroyed this cursor */
drhecdc7532001-09-23 02:35:53 +00003437 }
danielk1977ee5741e2004-05-31 10:01:34 +00003438 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00003439 /* Must start a transaction before doing an insert */
3440 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003441 }
drhf74b8d92002-09-01 23:20:45 +00003442 assert( !pBt->readOnly );
drhecdc7532001-09-23 02:35:53 +00003443 if( !pCur->wrFlag ){
3444 return SQLITE_PERM; /* Cursor not open for writing */
3445 }
drhf74b8d92002-09-01 23:20:45 +00003446 if( checkReadLocks(pCur) ){
3447 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
3448 }
drh3aac2dd2004-04-26 14:10:20 +00003449 rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc);
drh3b7511c2001-05-26 13:15:44 +00003450 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00003451 pPage = pCur->pPage;
drh4a1c3802004-05-12 15:15:47 +00003452 assert( pPage->intKey || nKey>=0 );
drh8b18dd42004-05-12 19:18:15 +00003453 assert( pPage->leaf || !pPage->leafData );
drh3a4c1412004-05-09 20:40:11 +00003454 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
3455 pCur->pgnoRoot, nKey, nData, pPage->pgno,
3456 loc==0 ? "overwrite" : "new entry"));
drh7aa128d2002-06-21 13:09:16 +00003457 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00003458 rc = sqlite3pager_write(pPage->aData);
drhbd03cae2001-06-02 02:40:57 +00003459 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003460 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew);
drh3b7511c2001-05-26 13:15:44 +00003461 if( rc ) return rc;
drh43605152004-05-29 21:46:49 +00003462 assert( szNew==cellSizePtr(pPage, newCell) );
drh3a4c1412004-05-09 20:40:11 +00003463 assert( szNew<=sizeof(newCell) );
drhf328bc82004-05-10 23:29:49 +00003464 if( loc==0 && pCur->isValid ){
drha34b6762004-05-07 13:30:42 +00003465 int szOld;
3466 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00003467 oldCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00003468 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003469 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00003470 }
drh43605152004-05-29 21:46:49 +00003471 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00003472 rc = clearCell(pPage, oldCell);
drh5e2f8b92001-05-28 00:41:15 +00003473 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003474 dropCell(pPage, pCur->idx, szOld);
drh7c717f72001-06-24 20:39:41 +00003475 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00003476 assert( pPage->leaf );
drh14acc042001-06-10 19:56:58 +00003477 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00003478 pCur->info.nSize = 0;
drh14acc042001-06-10 19:56:58 +00003479 }else{
drh4b70f112004-05-02 21:12:19 +00003480 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00003481 }
drh24cd67e2004-05-10 16:18:47 +00003482 insertCell(pPage, pCur->idx, newCell, szNew, 0);
drh4b70f112004-05-02 21:12:19 +00003483 rc = balance(pPage);
drh23e11ca2004-05-04 17:27:28 +00003484 /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
drh3fc190c2001-09-14 03:24:23 +00003485 /* fflush(stdout); */
drh4b70f112004-05-02 21:12:19 +00003486 moveToRoot(pCur);
drh5e2f8b92001-05-28 00:41:15 +00003487 return rc;
3488}
3489
3490/*
drh4b70f112004-05-02 21:12:19 +00003491** Delete the entry that the cursor is pointing to. The cursor
3492** is left pointing at a random location.
drh3b7511c2001-05-26 13:15:44 +00003493*/
drh3aac2dd2004-04-26 14:10:20 +00003494int sqlite3BtreeDelete(BtCursor *pCur){
drh5e2f8b92001-05-28 00:41:15 +00003495 MemPage *pPage = pCur->pPage;
drh4b70f112004-05-02 21:12:19 +00003496 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00003497 int rc;
danielk1977cfe9a692004-06-16 12:00:29 +00003498 Pgno pgnoChild = 0;
drh0d316a42002-08-11 20:10:47 +00003499 Btree *pBt = pCur->pBt;
drh8b2f49b2001-06-08 00:21:52 +00003500
drh7aa128d2002-06-21 13:09:16 +00003501 assert( pPage->isInit );
drhc39e0002004-05-07 23:50:57 +00003502 if( pCur->status ){
3503 return pCur->status; /* A rollback destroyed this cursor */
drhecdc7532001-09-23 02:35:53 +00003504 }
danielk1977ee5741e2004-05-31 10:01:34 +00003505 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00003506 /* Must start a transaction before doing a delete */
3507 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003508 }
drhf74b8d92002-09-01 23:20:45 +00003509 assert( !pBt->readOnly );
drhbd03cae2001-06-02 02:40:57 +00003510 if( pCur->idx >= pPage->nCell ){
3511 return SQLITE_ERROR; /* The cursor is not pointing to anything */
3512 }
drhecdc7532001-09-23 02:35:53 +00003513 if( !pCur->wrFlag ){
3514 return SQLITE_PERM; /* Did not open this cursor for writing */
3515 }
drhf74b8d92002-09-01 23:20:45 +00003516 if( checkReadLocks(pCur) ){
3517 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
3518 }
drha34b6762004-05-07 13:30:42 +00003519 rc = sqlite3pager_write(pPage->aData);
drhbd03cae2001-06-02 02:40:57 +00003520 if( rc ) return rc;
drh43605152004-05-29 21:46:49 +00003521 pCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00003522 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003523 pgnoChild = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00003524 }
3525 clearCell(pPage, pCell);
3526 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00003527 /*
drh5e00f6c2001-09-13 13:46:56 +00003528 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00003529 ** do something we will leave a hole on an internal page.
3530 ** We have to fill the hole by moving in a cell from a leaf. The
3531 ** next Cell after the one to be deleted is guaranteed to exist and
3532 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00003533 */
drh14acc042001-06-10 19:56:58 +00003534 BtCursor leafCur;
drh4b70f112004-05-02 21:12:19 +00003535 unsigned char *pNext;
drh14acc042001-06-10 19:56:58 +00003536 int szNext;
drh8c1238a2003-01-02 14:43:55 +00003537 int notUsed;
drh24cd67e2004-05-10 16:18:47 +00003538 unsigned char tempCell[MX_CELL_SIZE];
drh8b18dd42004-05-12 19:18:15 +00003539 assert( !pPage->leafData );
drh14acc042001-06-10 19:56:58 +00003540 getTempCursor(pCur, &leafCur);
drh3aac2dd2004-04-26 14:10:20 +00003541 rc = sqlite3BtreeNext(&leafCur, &notUsed);
drh14acc042001-06-10 19:56:58 +00003542 if( rc!=SQLITE_OK ){
drh8a6ac0a2004-02-14 17:35:07 +00003543 if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
3544 return rc;
drh5e2f8b92001-05-28 00:41:15 +00003545 }
drha34b6762004-05-07 13:30:42 +00003546 rc = sqlite3pager_write(leafCur.pPage->aData);
drh6019e162001-07-02 17:51:45 +00003547 if( rc ) return rc;
drh3a4c1412004-05-09 20:40:11 +00003548 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
3549 pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
drh43605152004-05-29 21:46:49 +00003550 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
3551 pNext = findCell(leafCur.pPage, leafCur.idx);
3552 szNext = cellSizePtr(leafCur.pPage, pNext);
drh24cd67e2004-05-10 16:18:47 +00003553 assert( sizeof(tempCell)>=szNext+4 );
3554 insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell);
drh43605152004-05-29 21:46:49 +00003555 put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
drh4b70f112004-05-02 21:12:19 +00003556 rc = balance(pPage);
drh5e2f8b92001-05-28 00:41:15 +00003557 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003558 dropCell(leafCur.pPage, leafCur.idx, szNext);
3559 rc = balance(leafCur.pPage);
drh8c42ca92001-06-22 19:15:00 +00003560 releaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00003561 }else{
drh3a4c1412004-05-09 20:40:11 +00003562 TRACE(("DELETE: table=%d delete from leaf %d\n",
3563 pCur->pgnoRoot, pPage->pgno));
drh43605152004-05-29 21:46:49 +00003564 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
drh4b70f112004-05-02 21:12:19 +00003565 rc = balance(pPage);
drh5e2f8b92001-05-28 00:41:15 +00003566 }
drh4b70f112004-05-02 21:12:19 +00003567 moveToRoot(pCur);
drh5e2f8b92001-05-28 00:41:15 +00003568 return rc;
drh3b7511c2001-05-26 13:15:44 +00003569}
drh8b2f49b2001-06-08 00:21:52 +00003570
3571/*
drhc6b52df2002-01-04 03:09:29 +00003572** Create a new BTree table. Write into *piTable the page
3573** number for the root page of the new table.
3574**
drhab01f612004-05-22 02:55:23 +00003575** The type of type is determined by the flags parameter. Only the
3576** following values of flags are currently in use. Other values for
3577** flags might not work:
3578**
3579** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
3580** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00003581*/
drh3aac2dd2004-04-26 14:10:20 +00003582int sqlite3BtreeCreateTable(Btree *pBt, int *piTable, int flags){
drh8b2f49b2001-06-08 00:21:52 +00003583 MemPage *pRoot;
3584 Pgno pgnoRoot;
3585 int rc;
danielk1977ee5741e2004-05-31 10:01:34 +00003586 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00003587 /* Must start a transaction first */
3588 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003589 }
drh5df72a52002-06-06 23:16:05 +00003590 if( pBt->readOnly ){
3591 return SQLITE_READONLY;
3592 }
drhda200cc2004-05-09 11:51:38 +00003593 rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1);
drh8b2f49b2001-06-08 00:21:52 +00003594 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003595 assert( sqlite3pager_iswriteable(pRoot->aData) );
drhde647132004-05-07 17:57:49 +00003596 zeroPage(pRoot, flags | PTF_LEAF);
drha34b6762004-05-07 13:30:42 +00003597 sqlite3pager_unref(pRoot->aData);
drh8b2f49b2001-06-08 00:21:52 +00003598 *piTable = (int)pgnoRoot;
3599 return SQLITE_OK;
3600}
3601
3602/*
3603** Erase the given database page and all its children. Return
3604** the page to the freelist.
3605*/
drh4b70f112004-05-02 21:12:19 +00003606static int clearDatabasePage(
3607 Btree *pBt, /* The BTree that contains the table */
3608 Pgno pgno, /* Page number to clear */
3609 MemPage *pParent, /* Parent page. NULL for the root */
3610 int freePageFlag /* Deallocate page if true */
3611){
drh8b2f49b2001-06-08 00:21:52 +00003612 MemPage *pPage;
3613 int rc;
drh4b70f112004-05-02 21:12:19 +00003614 unsigned char *pCell;
3615 int i;
drh8b2f49b2001-06-08 00:21:52 +00003616
drhde647132004-05-07 17:57:49 +00003617 rc = getAndInitPage(pBt, pgno, &pPage, pParent);
drh8b2f49b2001-06-08 00:21:52 +00003618 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003619 rc = sqlite3pager_write(pPage->aData);
drh6019e162001-07-02 17:51:45 +00003620 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003621 for(i=0; i<pPage->nCell; i++){
drh43605152004-05-29 21:46:49 +00003622 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00003623 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003624 rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
drh8b2f49b2001-06-08 00:21:52 +00003625 if( rc ) return rc;
3626 }
drh4b70f112004-05-02 21:12:19 +00003627 rc = clearCell(pPage, pCell);
drh8b2f49b2001-06-08 00:21:52 +00003628 if( rc ) return rc;
3629 }
drha34b6762004-05-07 13:30:42 +00003630 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003631 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
drh2aa679f2001-06-25 02:11:07 +00003632 if( rc ) return rc;
3633 }
3634 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00003635 rc = freePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00003636 }else{
drh3a4c1412004-05-09 20:40:11 +00003637 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00003638 }
drh4b70f112004-05-02 21:12:19 +00003639 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00003640 return rc;
drh8b2f49b2001-06-08 00:21:52 +00003641}
3642
3643/*
drhab01f612004-05-22 02:55:23 +00003644** Delete all information from a single table in the database. iTable is
3645** the page number of the root of the table. After this routine returns,
3646** the root page is empty, but still exists.
3647**
3648** This routine will fail with SQLITE_LOCKED if there are any open
3649** read cursors on the table. Open write cursors are moved to the
3650** root of the table.
drh8b2f49b2001-06-08 00:21:52 +00003651*/
drh3aac2dd2004-04-26 14:10:20 +00003652int sqlite3BtreeClearTable(Btree *pBt, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00003653 int rc;
drhf74b8d92002-09-01 23:20:45 +00003654 BtCursor *pCur;
danielk1977ee5741e2004-05-31 10:01:34 +00003655 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00003656 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003657 }
drhf74b8d92002-09-01 23:20:45 +00003658 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3659 if( pCur->pgnoRoot==(Pgno)iTable ){
3660 if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
3661 moveToRoot(pCur);
3662 }
drhecdc7532001-09-23 02:35:53 +00003663 }
drha34b6762004-05-07 13:30:42 +00003664 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
drh8b2f49b2001-06-08 00:21:52 +00003665 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00003666 sqlite3BtreeRollback(pBt);
drh8b2f49b2001-06-08 00:21:52 +00003667 }
drh8c42ca92001-06-22 19:15:00 +00003668 return rc;
drh8b2f49b2001-06-08 00:21:52 +00003669}
3670
3671/*
3672** Erase all information in a table and add the root of the table to
3673** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00003674** page 1) is never added to the freelist.
3675**
3676** This routine will fail with SQLITE_LOCKED if there are any open
3677** cursors on the table.
drh8b2f49b2001-06-08 00:21:52 +00003678*/
drh3aac2dd2004-04-26 14:10:20 +00003679int sqlite3BtreeDropTable(Btree *pBt, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00003680 int rc;
3681 MemPage *pPage;
drhf74b8d92002-09-01 23:20:45 +00003682 BtCursor *pCur;
danielk1977ee5741e2004-05-31 10:01:34 +00003683 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00003684 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003685 }
drhf74b8d92002-09-01 23:20:45 +00003686 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3687 if( pCur->pgnoRoot==(Pgno)iTable ){
3688 return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
3689 }
drh5df72a52002-06-06 23:16:05 +00003690 }
drha34b6762004-05-07 13:30:42 +00003691 rc = getPage(pBt, (Pgno)iTable, &pPage);
drh2aa679f2001-06-25 02:11:07 +00003692 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003693 rc = sqlite3BtreeClearTable(pBt, iTable);
drh2aa679f2001-06-25 02:11:07 +00003694 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003695 if( iTable>1 ){
drha34b6762004-05-07 13:30:42 +00003696 rc = freePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00003697 }else{
drha34b6762004-05-07 13:30:42 +00003698 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
drh8b2f49b2001-06-08 00:21:52 +00003699 }
drh4b70f112004-05-02 21:12:19 +00003700 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00003701 return rc;
3702}
3703
drh001bbcb2003-03-19 03:14:00 +00003704
drh8b2f49b2001-06-08 00:21:52 +00003705/*
drh23e11ca2004-05-04 17:27:28 +00003706** Read the meta-information out of a database file. Meta[0]
3707** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00003708** through meta[15] are available for use by higher layers. Meta[0]
3709** is read-only, the others are read/write.
3710**
3711** The schema layer numbers meta values differently. At the schema
3712** layer (and the SetCookie and ReadCookie opcodes) the number of
3713** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00003714*/
drh3aac2dd2004-04-26 14:10:20 +00003715int sqlite3BtreeGetMeta(Btree *pBt, int idx, u32 *pMeta){
drh8b2f49b2001-06-08 00:21:52 +00003716 int rc;
drh4b70f112004-05-02 21:12:19 +00003717 unsigned char *pP1;
drh8b2f49b2001-06-08 00:21:52 +00003718
drh23e11ca2004-05-04 17:27:28 +00003719 assert( idx>=0 && idx<=15 );
drha34b6762004-05-07 13:30:42 +00003720 rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1);
drh8b2f49b2001-06-08 00:21:52 +00003721 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00003722 *pMeta = get4byte(&pP1[36 + idx*4]);
drha34b6762004-05-07 13:30:42 +00003723 sqlite3pager_unref(pP1);
drh8b2f49b2001-06-08 00:21:52 +00003724 return SQLITE_OK;
3725}
3726
3727/*
drh23e11ca2004-05-04 17:27:28 +00003728** Write meta-information back into the database. Meta[0] is
3729** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00003730*/
drh3aac2dd2004-04-26 14:10:20 +00003731int sqlite3BtreeUpdateMeta(Btree *pBt, int idx, u32 iMeta){
drh4b70f112004-05-02 21:12:19 +00003732 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00003733 int rc;
drh23e11ca2004-05-04 17:27:28 +00003734 assert( idx>=1 && idx<=15 );
danielk1977ee5741e2004-05-31 10:01:34 +00003735 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00003736 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh5df72a52002-06-06 23:16:05 +00003737 }
drhde647132004-05-07 17:57:49 +00003738 assert( pBt->pPage1!=0 );
3739 pP1 = pBt->pPage1->aData;
drha34b6762004-05-07 13:30:42 +00003740 rc = sqlite3pager_write(pP1);
drh4b70f112004-05-02 21:12:19 +00003741 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00003742 put4byte(&pP1[36 + idx*4], iMeta);
drh8b2f49b2001-06-08 00:21:52 +00003743 return SQLITE_OK;
3744}
drh8c42ca92001-06-22 19:15:00 +00003745
drhf328bc82004-05-10 23:29:49 +00003746/*
3747** Return the flag byte at the beginning of the page that the cursor
3748** is currently pointing to.
3749*/
3750int sqlite3BtreeFlags(BtCursor *pCur){
3751 MemPage *pPage = pCur->pPage;
3752 return pPage ? pPage->aData[pPage->hdrOffset] : 0;
3753}
3754
drh8c42ca92001-06-22 19:15:00 +00003755/*
3756** Print a disassembly of the given page on standard output. This routine
3757** is used for debugging and testing only.
3758*/
drhaaab5722002-02-19 13:39:21 +00003759#ifdef SQLITE_TEST
drh23e11ca2004-05-04 17:27:28 +00003760int sqlite3BtreePageDump(Btree *pBt, int pgno, int recursive){
drh8c42ca92001-06-22 19:15:00 +00003761 int rc;
3762 MemPage *pPage;
drhc8629a12004-05-08 20:07:40 +00003763 int i, j, c;
drh8c42ca92001-06-22 19:15:00 +00003764 int nFree;
3765 u16 idx;
drhab9f7f12004-05-08 10:56:11 +00003766 int hdr;
drh43605152004-05-29 21:46:49 +00003767 int nCell;
drha2fce642004-06-05 00:01:44 +00003768 int isInit;
drhab9f7f12004-05-08 10:56:11 +00003769 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003770 char range[20];
3771 unsigned char payload[20];
drhab9f7f12004-05-08 10:56:11 +00003772
drh4b70f112004-05-02 21:12:19 +00003773 rc = getPage(pBt, (Pgno)pgno, &pPage);
drha2fce642004-06-05 00:01:44 +00003774 isInit = pPage->isInit;
3775 if( pPage->isInit==0 ){
3776 initPage(pPage, 0);
3777 }
drh8c42ca92001-06-22 19:15:00 +00003778 if( rc ){
3779 return rc;
3780 }
drhab9f7f12004-05-08 10:56:11 +00003781 hdr = pPage->hdrOffset;
3782 data = pPage->aData;
drhc8629a12004-05-08 20:07:40 +00003783 c = data[hdr];
drh8b18dd42004-05-12 19:18:15 +00003784 pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0;
drhc8629a12004-05-08 20:07:40 +00003785 pPage->zeroData = (c & PTF_ZERODATA)!=0;
drh8b18dd42004-05-12 19:18:15 +00003786 pPage->leafData = (c & PTF_LEAFDATA)!=0;
drhc8629a12004-05-08 20:07:40 +00003787 pPage->leaf = (c & PTF_LEAF)!=0;
drh8b18dd42004-05-12 19:18:15 +00003788 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
drh43605152004-05-29 21:46:49 +00003789 nCell = get2byte(&data[hdr+3]);
drhda200cc2004-05-09 11:51:38 +00003790 printf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno,
drh43605152004-05-29 21:46:49 +00003791 data[hdr], data[hdr+7],
drhda200cc2004-05-09 11:51:38 +00003792 (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0);
drhab9f7f12004-05-08 10:56:11 +00003793 assert( hdr == (pgno==1 ? 100 : 0) );
drh43605152004-05-29 21:46:49 +00003794 idx = hdr + 12 - pPage->leaf*4;
3795 for(i=0; i<nCell; i++){
drh6f11bef2004-05-13 01:12:56 +00003796 CellInfo info;
drh4b70f112004-05-02 21:12:19 +00003797 Pgno child;
drh43605152004-05-29 21:46:49 +00003798 unsigned char *pCell;
drh6f11bef2004-05-13 01:12:56 +00003799 int sz;
drh43605152004-05-29 21:46:49 +00003800 int addr;
drh6f11bef2004-05-13 01:12:56 +00003801
drh43605152004-05-29 21:46:49 +00003802 addr = get2byte(&data[idx + 2*i]);
3803 pCell = &data[addr];
3804 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00003805 sz = info.nSize;
drh43605152004-05-29 21:46:49 +00003806 sprintf(range,"%d..%d", addr, addr+sz-1);
drh4b70f112004-05-02 21:12:19 +00003807 if( pPage->leaf ){
3808 child = 0;
3809 }else{
drh43605152004-05-29 21:46:49 +00003810 child = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00003811 }
drh6f11bef2004-05-13 01:12:56 +00003812 sz = info.nData;
3813 if( !pPage->intKey ) sz += info.nKey;
drh8c42ca92001-06-22 19:15:00 +00003814 if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
drh6f11bef2004-05-13 01:12:56 +00003815 memcpy(payload, &pCell[info.nHeader], sz);
drh8c42ca92001-06-22 19:15:00 +00003816 for(j=0; j<sz; j++){
3817 if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
3818 }
3819 payload[sz] = 0;
3820 printf(
drh6f11bef2004-05-13 01:12:56 +00003821 "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n",
3822 i, range, child, info.nKey, info.nData, payload
drh8c42ca92001-06-22 19:15:00 +00003823 );
drh8c42ca92001-06-22 19:15:00 +00003824 }
drh4b70f112004-05-02 21:12:19 +00003825 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003826 printf("right_child: %d\n", get4byte(&data[hdr+8]));
drh4b70f112004-05-02 21:12:19 +00003827 }
drh8c42ca92001-06-22 19:15:00 +00003828 nFree = 0;
3829 i = 0;
drhab9f7f12004-05-08 10:56:11 +00003830 idx = get2byte(&data[hdr+1]);
drhb6f41482004-05-14 01:58:11 +00003831 while( idx>0 && idx<pPage->pBt->usableSize ){
drhab9f7f12004-05-08 10:56:11 +00003832 int sz = get2byte(&data[idx+2]);
drh4b70f112004-05-02 21:12:19 +00003833 sprintf(range,"%d..%d", idx, idx+sz-1);
3834 nFree += sz;
drh8c42ca92001-06-22 19:15:00 +00003835 printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
drh4b70f112004-05-02 21:12:19 +00003836 i, range, sz, nFree);
drhab9f7f12004-05-08 10:56:11 +00003837 idx = get2byte(&data[idx]);
drh2aa679f2001-06-25 02:11:07 +00003838 i++;
drh8c42ca92001-06-22 19:15:00 +00003839 }
3840 if( idx!=0 ){
3841 printf("ERROR: next freeblock index out of range: %d\n", idx);
3842 }
drha34b6762004-05-07 13:30:42 +00003843 if( recursive && !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003844 for(i=0; i<nCell; i++){
3845 unsigned char *pCell = findCell(pPage, i);
3846 sqlite3BtreePageDump(pBt, get4byte(pCell), 1);
drha34b6762004-05-07 13:30:42 +00003847 idx = get2byte(pCell);
drh6019e162001-07-02 17:51:45 +00003848 }
drh43605152004-05-29 21:46:49 +00003849 sqlite3BtreePageDump(pBt, get4byte(&data[hdr+8]), 1);
drh6019e162001-07-02 17:51:45 +00003850 }
drha2fce642004-06-05 00:01:44 +00003851 pPage->isInit = isInit;
drhab9f7f12004-05-08 10:56:11 +00003852 sqlite3pager_unref(data);
drh3644f082004-05-10 18:45:09 +00003853 fflush(stdout);
drh8c42ca92001-06-22 19:15:00 +00003854 return SQLITE_OK;
3855}
drhaaab5722002-02-19 13:39:21 +00003856#endif
drh8c42ca92001-06-22 19:15:00 +00003857
drhaaab5722002-02-19 13:39:21 +00003858#ifdef SQLITE_TEST
drh8c42ca92001-06-22 19:15:00 +00003859/*
drh2aa679f2001-06-25 02:11:07 +00003860** Fill aResult[] with information about the entry and page that the
3861** cursor is pointing to.
3862**
3863** aResult[0] = The page number
3864** aResult[1] = The entry number
3865** aResult[2] = Total number of entries on this page
3866** aResult[3] = Size of this entry
3867** aResult[4] = Number of free bytes on this page
3868** aResult[5] = Number of free blocks on the page
3869** aResult[6] = Page number of the left child of this entry
3870** aResult[7] = Page number of the right child for the whole page
drh5eddca62001-06-30 21:53:53 +00003871**
3872** This routine is used for testing and debugging only.
drh8c42ca92001-06-22 19:15:00 +00003873*/
drhda200cc2004-05-09 11:51:38 +00003874int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult){
drh2aa679f2001-06-25 02:11:07 +00003875 int cnt, idx;
3876 MemPage *pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00003877
3878 pageIntegrity(pPage);
drh4b70f112004-05-02 21:12:19 +00003879 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00003880 aResult[0] = sqlite3pager_pagenumber(pPage->aData);
drh91025292004-05-03 19:49:32 +00003881 assert( aResult[0]==pPage->pgno );
drh8c42ca92001-06-22 19:15:00 +00003882 aResult[1] = pCur->idx;
drh2aa679f2001-06-25 02:11:07 +00003883 aResult[2] = pPage->nCell;
3884 if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
drh43605152004-05-29 21:46:49 +00003885 u8 *pCell = findCell(pPage, pCur->idx);
3886 aResult[3] = cellSizePtr(pPage, pCell);
3887 aResult[6] = pPage->leaf ? 0 : get4byte(pCell);
drh2aa679f2001-06-25 02:11:07 +00003888 }else{
3889 aResult[3] = 0;
3890 aResult[6] = 0;
3891 }
3892 aResult[4] = pPage->nFree;
3893 cnt = 0;
drh4b70f112004-05-02 21:12:19 +00003894 idx = get2byte(&pPage->aData[pPage->hdrOffset+1]);
drhb6f41482004-05-14 01:58:11 +00003895 while( idx>0 && idx<pPage->pBt->usableSize ){
drh2aa679f2001-06-25 02:11:07 +00003896 cnt++;
drh4b70f112004-05-02 21:12:19 +00003897 idx = get2byte(&pPage->aData[idx]);
drh2aa679f2001-06-25 02:11:07 +00003898 }
3899 aResult[5] = cnt;
drh43605152004-05-29 21:46:49 +00003900 aResult[7] = pPage->leaf ? 0 : get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh8c42ca92001-06-22 19:15:00 +00003901 return SQLITE_OK;
3902}
drhaaab5722002-02-19 13:39:21 +00003903#endif
drhdd793422001-06-28 01:54:48 +00003904
drhdd793422001-06-28 01:54:48 +00003905/*
drh5eddca62001-06-30 21:53:53 +00003906** Return the pager associated with a BTree. This routine is used for
3907** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00003908*/
drh3aac2dd2004-04-26 14:10:20 +00003909Pager *sqlite3BtreePager(Btree *pBt){
drhdd793422001-06-28 01:54:48 +00003910 return pBt->pPager;
3911}
drh5eddca62001-06-30 21:53:53 +00003912
3913/*
3914** This structure is passed around through all the sanity checking routines
3915** in order to keep track of some global state information.
3916*/
drhaaab5722002-02-19 13:39:21 +00003917typedef struct IntegrityCk IntegrityCk;
3918struct IntegrityCk {
drh100569d2001-10-02 13:01:48 +00003919 Btree *pBt; /* The tree being checked out */
3920 Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
3921 int nPage; /* Number of pages in the database */
3922 int *anRef; /* Number of times each page is referenced */
drh100569d2001-10-02 13:01:48 +00003923 char *zErrMsg; /* An error message. NULL of no errors seen. */
drh5eddca62001-06-30 21:53:53 +00003924};
3925
3926/*
3927** Append a message to the error message string.
3928*/
drhaaab5722002-02-19 13:39:21 +00003929static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
drh5eddca62001-06-30 21:53:53 +00003930 if( pCheck->zErrMsg ){
3931 char *zOld = pCheck->zErrMsg;
3932 pCheck->zErrMsg = 0;
danielk19774adee202004-05-08 08:23:19 +00003933 sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00003934 sqliteFree(zOld);
3935 }else{
danielk19774adee202004-05-08 08:23:19 +00003936 sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00003937 }
3938}
3939
3940/*
3941** Add 1 to the reference count for page iPage. If this is the second
3942** reference to the page, add an error message to pCheck->zErrMsg.
3943** Return 1 if there are 2 ore more references to the page and 0 if
3944** if this is the first reference to the page.
3945**
3946** Also check that the page number is in bounds.
3947*/
drhaaab5722002-02-19 13:39:21 +00003948static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00003949 if( iPage==0 ) return 1;
drh0de8c112002-07-06 16:32:14 +00003950 if( iPage>pCheck->nPage || iPage<0 ){
drh5eddca62001-06-30 21:53:53 +00003951 char zBuf[100];
3952 sprintf(zBuf, "invalid page number %d", iPage);
3953 checkAppendMsg(pCheck, zContext, zBuf);
3954 return 1;
3955 }
3956 if( pCheck->anRef[iPage]==1 ){
3957 char zBuf[100];
3958 sprintf(zBuf, "2nd reference to page %d", iPage);
3959 checkAppendMsg(pCheck, zContext, zBuf);
3960 return 1;
3961 }
3962 return (pCheck->anRef[iPage]++)>1;
3963}
3964
3965/*
3966** Check the integrity of the freelist or of an overflow page list.
3967** Verify that the number of pages on the list is N.
3968*/
drh30e58752002-03-02 20:41:57 +00003969static void checkList(
3970 IntegrityCk *pCheck, /* Integrity checking context */
3971 int isFreeList, /* True for a freelist. False for overflow page list */
3972 int iPage, /* Page number for first page in the list */
3973 int N, /* Expected number of pages in the list */
3974 char *zContext /* Context for error messages */
3975){
3976 int i;
drh3a4c1412004-05-09 20:40:11 +00003977 int expected = N;
3978 int iFirst = iPage;
drh5eddca62001-06-30 21:53:53 +00003979 char zMsg[100];
drh30e58752002-03-02 20:41:57 +00003980 while( N-- > 0 ){
drh4b70f112004-05-02 21:12:19 +00003981 unsigned char *pOvfl;
drh5eddca62001-06-30 21:53:53 +00003982 if( iPage<1 ){
drh3a4c1412004-05-09 20:40:11 +00003983 sprintf(zMsg, "%d of %d pages missing from overflow list starting at %d",
3984 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00003985 checkAppendMsg(pCheck, zContext, zMsg);
3986 break;
3987 }
3988 if( checkRef(pCheck, iPage, zContext) ) break;
drha34b6762004-05-07 13:30:42 +00003989 if( sqlite3pager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
drh5eddca62001-06-30 21:53:53 +00003990 sprintf(zMsg, "failed to get page %d", iPage);
3991 checkAppendMsg(pCheck, zContext, zMsg);
3992 break;
3993 }
drh30e58752002-03-02 20:41:57 +00003994 if( isFreeList ){
drh4b70f112004-05-02 21:12:19 +00003995 int n = get4byte(&pOvfl[4]);
drh0d316a42002-08-11 20:10:47 +00003996 for(i=0; i<n; i++){
drh4b70f112004-05-02 21:12:19 +00003997 checkRef(pCheck, get4byte(&pOvfl[8+i*4]), zContext);
drh30e58752002-03-02 20:41:57 +00003998 }
drh0d316a42002-08-11 20:10:47 +00003999 N -= n;
drh30e58752002-03-02 20:41:57 +00004000 }
drh4b70f112004-05-02 21:12:19 +00004001 iPage = get4byte(pOvfl);
drha34b6762004-05-07 13:30:42 +00004002 sqlite3pager_unref(pOvfl);
drh5eddca62001-06-30 21:53:53 +00004003 }
4004}
4005
4006/*
4007** Do various sanity checks on a single page of a tree. Return
4008** the tree depth. Root pages return 0. Parents of root pages
4009** return 1, and so forth.
4010**
4011** These checks are done:
4012**
4013** 1. Make sure that cells and freeblocks do not overlap
4014** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00004015** NO 2. Make sure cell keys are in order.
4016** NO 3. Make sure no key is less than or equal to zLowerBound.
4017** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00004018** 5. Check the integrity of overflow pages.
4019** 6. Recursively call checkTreePage on all children.
4020** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00004021** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00004022** the root of the tree.
4023*/
4024static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00004025 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00004026 int iPage, /* Page number of the page to check */
4027 MemPage *pParent, /* Parent page */
4028 char *zParentContext, /* Parent context */
4029 char *zLowerBound, /* All keys should be greater than this, if not NULL */
drh1bffb9c2002-02-03 17:37:36 +00004030 int nLower, /* Number of characters in zLowerBound */
4031 char *zUpperBound, /* All keys should be less than this, if not NULL */
4032 int nUpper /* Number of characters in zUpperBound */
drh5eddca62001-06-30 21:53:53 +00004033){
4034 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00004035 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00004036 int hdr, cellStart;
4037 int nCell;
drhda200cc2004-05-09 11:51:38 +00004038 u8 *data;
drh5eddca62001-06-30 21:53:53 +00004039 BtCursor cur;
drh0d316a42002-08-11 20:10:47 +00004040 Btree *pBt;
drhb6f41482004-05-14 01:58:11 +00004041 int maxLocal, usableSize;
drh5eddca62001-06-30 21:53:53 +00004042 char zMsg[100];
4043 char zContext[100];
drhda200cc2004-05-09 11:51:38 +00004044 char hit[MX_PAGE_SIZE];
drh5eddca62001-06-30 21:53:53 +00004045
4046 /* Check that the page exists
4047 */
drh0d316a42002-08-11 20:10:47 +00004048 cur.pBt = pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00004049 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00004050 if( iPage==0 ) return 0;
4051 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh4b70f112004-05-02 21:12:19 +00004052 if( (rc = getPage(pBt, (Pgno)iPage, &pPage))!=0 ){
drh5eddca62001-06-30 21:53:53 +00004053 sprintf(zMsg, "unable to get the page. error code=%d", rc);
4054 checkAppendMsg(pCheck, zContext, zMsg);
4055 return 0;
4056 }
drh6f11bef2004-05-13 01:12:56 +00004057 maxLocal = pPage->leafData ? pBt->maxLeaf : pBt->maxLocal;
drh4b70f112004-05-02 21:12:19 +00004058 if( (rc = initPage(pPage, pParent))!=0 ){
drh5eddca62001-06-30 21:53:53 +00004059 sprintf(zMsg, "initPage() returns error code %d", rc);
4060 checkAppendMsg(pCheck, zContext, zMsg);
drh91025292004-05-03 19:49:32 +00004061 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00004062 return 0;
4063 }
4064
4065 /* Check out all the cells.
4066 */
4067 depth = 0;
drh5eddca62001-06-30 21:53:53 +00004068 cur.pPage = pPage;
drh5eddca62001-06-30 21:53:53 +00004069 for(i=0; i<pPage->nCell; i++){
drh6f11bef2004-05-13 01:12:56 +00004070 u8 *pCell;
4071 int sz;
4072 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00004073
4074 /* Check payload overflow pages
4075 */
drh3a4c1412004-05-09 20:40:11 +00004076 sprintf(zContext, "On tree page %d cell %d: ", iPage, i);
drh43605152004-05-29 21:46:49 +00004077 pCell = findCell(pPage,i);
4078 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004079 sz = info.nData;
4080 if( !pPage->intKey ) sz += info.nKey;
4081 if( sz>info.nLocal ){
drhb6f41482004-05-14 01:58:11 +00004082 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +00004083 checkList(pCheck, 0, get4byte(&pCell[info.iOverflow]),nPage,zContext);
drh5eddca62001-06-30 21:53:53 +00004084 }
4085
4086 /* Check sanity of left child page.
4087 */
drhda200cc2004-05-09 11:51:38 +00004088 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004089 pgno = get4byte(pCell);
drhda200cc2004-05-09 11:51:38 +00004090 d2 = checkTreePage(pCheck,pgno,pPage,zContext,0,0,0,0);
4091 if( i>0 && d2!=depth ){
4092 checkAppendMsg(pCheck, zContext, "Child page depth differs");
4093 }
4094 depth = d2;
drh5eddca62001-06-30 21:53:53 +00004095 }
drh5eddca62001-06-30 21:53:53 +00004096 }
drhda200cc2004-05-09 11:51:38 +00004097 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004098 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drhda200cc2004-05-09 11:51:38 +00004099 sprintf(zContext, "On page %d at right child: ", iPage);
4100 checkTreePage(pCheck, pgno, pPage, zContext,0,0,0,0);
4101 }
drh5eddca62001-06-30 21:53:53 +00004102
4103 /* Check for complete coverage of the page
4104 */
drhda200cc2004-05-09 11:51:38 +00004105 data = pPage->aData;
4106 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00004107 memset(hit, 0, usableSize);
4108 memset(hit, 1, get2byte(&data[hdr+5]));
4109 nCell = get2byte(&data[hdr+3]);
4110 cellStart = hdr + 12 - 4*pPage->leaf;
4111 for(i=0; i<nCell; i++){
4112 int pc = get2byte(&data[cellStart+i*2]);
4113 int size = cellSizePtr(pPage, &data[pc]);
drh5eddca62001-06-30 21:53:53 +00004114 int j;
drh43605152004-05-29 21:46:49 +00004115 for(j=pc+size-1; j>=pc; j--) hit[j]++;
drh5eddca62001-06-30 21:53:53 +00004116 }
drhb6f41482004-05-14 01:58:11 +00004117 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; cnt++){
drhda200cc2004-05-09 11:51:38 +00004118 int size = get2byte(&data[i+2]);
drh5eddca62001-06-30 21:53:53 +00004119 int j;
drhda200cc2004-05-09 11:51:38 +00004120 for(j=i+size-1; j>=i; j--) hit[j]++;
4121 i = get2byte(&data[i]);
drh5eddca62001-06-30 21:53:53 +00004122 }
drhb6f41482004-05-14 01:58:11 +00004123 for(i=cnt=0; i<usableSize; i++){
drh5eddca62001-06-30 21:53:53 +00004124 if( hit[i]==0 ){
drhda200cc2004-05-09 11:51:38 +00004125 cnt++;
drh5eddca62001-06-30 21:53:53 +00004126 }else if( hit[i]>1 ){
4127 sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
4128 checkAppendMsg(pCheck, zMsg, 0);
4129 break;
4130 }
4131 }
drh43605152004-05-29 21:46:49 +00004132 if( cnt!=data[hdr+7] ){
drhda200cc2004-05-09 11:51:38 +00004133 sprintf(zMsg, "Fragmented space is %d byte reported as %d on page %d",
drh43605152004-05-29 21:46:49 +00004134 cnt, data[hdr+7], iPage);
drhda200cc2004-05-09 11:51:38 +00004135 checkAppendMsg(pCheck, zMsg, 0);
4136 }
drh6019e162001-07-02 17:51:45 +00004137
drh4b70f112004-05-02 21:12:19 +00004138 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00004139 return depth+1;
drh5eddca62001-06-30 21:53:53 +00004140}
4141
4142/*
4143** This routine does a complete check of the given BTree file. aRoot[] is
4144** an array of pages numbers were each page number is the root page of
4145** a table. nRoot is the number of entries in aRoot.
4146**
4147** If everything checks out, this routine returns NULL. If something is
4148** amiss, an error message is written into memory obtained from malloc()
4149** and a pointer to that error message is returned. The calling function
4150** is responsible for freeing the error message when it is done.
4151*/
drh3aac2dd2004-04-26 14:10:20 +00004152char *sqlite3BtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
drh5eddca62001-06-30 21:53:53 +00004153 int i;
4154 int nRef;
drhaaab5722002-02-19 13:39:21 +00004155 IntegrityCk sCheck;
drh5eddca62001-06-30 21:53:53 +00004156
drha34b6762004-05-07 13:30:42 +00004157 nRef = *sqlite3pager_stats(pBt->pPager);
drhefc251d2001-07-01 22:12:01 +00004158 if( lockBtree(pBt)!=SQLITE_OK ){
4159 return sqliteStrDup("Unable to acquire a read lock on the database");
4160 }
drh5eddca62001-06-30 21:53:53 +00004161 sCheck.pBt = pBt;
4162 sCheck.pPager = pBt->pPager;
drha34b6762004-05-07 13:30:42 +00004163 sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager);
drh0de8c112002-07-06 16:32:14 +00004164 if( sCheck.nPage==0 ){
4165 unlockBtreeIfUnused(pBt);
4166 return 0;
4167 }
drh8c1238a2003-01-02 14:43:55 +00004168 sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
drhda200cc2004-05-09 11:51:38 +00004169 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh1f595712004-06-15 01:40:29 +00004170 i = PENDING_BYTE/pBt->pageSize + 1;
4171 if( i<=sCheck.nPage ){
4172 sCheck.anRef[i] = 1;
4173 }
drh5eddca62001-06-30 21:53:53 +00004174 sCheck.zErrMsg = 0;
4175
4176 /* Check the integrity of the freelist
4177 */
drha34b6762004-05-07 13:30:42 +00004178 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
4179 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00004180
4181 /* Check all the tables.
4182 */
4183 for(i=0; i<nRoot; i++){
drh4ff6dfa2002-03-03 23:06:00 +00004184 if( aRoot[i]==0 ) continue;
drh1bffb9c2002-02-03 17:37:36 +00004185 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
drh5eddca62001-06-30 21:53:53 +00004186 }
4187
4188 /* Make sure every page in the file is referenced
4189 */
4190 for(i=1; i<=sCheck.nPage; i++){
4191 if( sCheck.anRef[i]==0 ){
4192 char zBuf[100];
4193 sprintf(zBuf, "Page %d is never used", i);
4194 checkAppendMsg(&sCheck, zBuf, 0);
4195 }
4196 }
4197
4198 /* Make sure this analysis did not leave any unref() pages
4199 */
drh5e00f6c2001-09-13 13:46:56 +00004200 unlockBtreeIfUnused(pBt);
drha34b6762004-05-07 13:30:42 +00004201 if( nRef != *sqlite3pager_stats(pBt->pPager) ){
drh5eddca62001-06-30 21:53:53 +00004202 char zBuf[100];
4203 sprintf(zBuf,
4204 "Outstanding page count goes from %d to %d during this analysis",
drha34b6762004-05-07 13:30:42 +00004205 nRef, *sqlite3pager_stats(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00004206 );
4207 checkAppendMsg(&sCheck, zBuf, 0);
4208 }
4209
4210 /* Clean up and report errors.
4211 */
4212 sqliteFree(sCheck.anRef);
4213 return sCheck.zErrMsg;
4214}
paulb95a8862003-04-01 21:16:41 +00004215
drh73509ee2003-04-06 20:44:45 +00004216/*
4217** Return the full pathname of the underlying database file.
4218*/
drh3aac2dd2004-04-26 14:10:20 +00004219const char *sqlite3BtreeGetFilename(Btree *pBt){
drh73509ee2003-04-06 20:44:45 +00004220 assert( pBt->pPager!=0 );
drha34b6762004-05-07 13:30:42 +00004221 return sqlite3pager_filename(pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00004222}
4223
4224/*
danielk19775865e3d2004-06-14 06:03:57 +00004225** Return the pathname of the directory that contains the database file.
4226*/
4227const char *sqlite3BtreeGetDirname(Btree *pBt){
4228 assert( pBt->pPager!=0 );
4229 return sqlite3pager_dirname(pBt->pPager);
4230}
4231
4232/*
4233** Return the pathname of the journal file for this database. The return
4234** value of this routine is the same regardless of whether the journal file
4235** has been created or not.
4236*/
4237const char *sqlite3BtreeGetJournalname(Btree *pBt){
4238 assert( pBt->pPager!=0 );
4239 return sqlite3pager_journalname(pBt->pPager);
4240}
4241
4242/*
drhf7c57532003-04-25 13:22:51 +00004243** Copy the complete content of pBtFrom into pBtTo. A transaction
4244** must be active for both files.
4245**
4246** The size of file pBtFrom may be reduced by this operation.
drh43605152004-05-29 21:46:49 +00004247** If anything goes wrong, the transaction on pBtFrom is rolled back.
drh73509ee2003-04-06 20:44:45 +00004248*/
drh3aac2dd2004-04-26 14:10:20 +00004249int sqlite3BtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
drhf7c57532003-04-25 13:22:51 +00004250 int rc = SQLITE_OK;
drh2e6d11b2003-04-25 15:37:57 +00004251 Pgno i, nPage, nToPage;
drhf7c57532003-04-25 13:22:51 +00004252
danielk1977ee5741e2004-05-31 10:01:34 +00004253 if( pBtTo->inTrans!=TRANS_WRITE || pBtFrom->inTrans!=TRANS_WRITE ){
4254 return SQLITE_ERROR;
4255 }
drhf7c57532003-04-25 13:22:51 +00004256 if( pBtTo->pCursor ) return SQLITE_BUSY;
drha34b6762004-05-07 13:30:42 +00004257 nToPage = sqlite3pager_pagecount(pBtTo->pPager);
4258 nPage = sqlite3pager_pagecount(pBtFrom->pPager);
danielk1977369f27e2004-06-15 11:40:04 +00004259 for(i=1; rc==SQLITE_OK && i<=nPage; i++){
drhf7c57532003-04-25 13:22:51 +00004260 void *pPage;
drha34b6762004-05-07 13:30:42 +00004261 rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage);
drhf7c57532003-04-25 13:22:51 +00004262 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00004263 rc = sqlite3pager_overwrite(pBtTo->pPager, i, pPage);
drh2e6d11b2003-04-25 15:37:57 +00004264 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00004265 sqlite3pager_unref(pPage);
drhf7c57532003-04-25 13:22:51 +00004266 }
drh2e6d11b2003-04-25 15:37:57 +00004267 for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
4268 void *pPage;
drha34b6762004-05-07 13:30:42 +00004269 rc = sqlite3pager_get(pBtTo->pPager, i, &pPage);
drh2e6d11b2003-04-25 15:37:57 +00004270 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00004271 rc = sqlite3pager_write(pPage);
4272 sqlite3pager_unref(pPage);
4273 sqlite3pager_dont_write(pBtTo->pPager, i);
drh2e6d11b2003-04-25 15:37:57 +00004274 }
4275 if( !rc && nPage<nToPage ){
drha34b6762004-05-07 13:30:42 +00004276 rc = sqlite3pager_truncate(pBtTo->pPager, nPage);
drh2e6d11b2003-04-25 15:37:57 +00004277 }
drhf7c57532003-04-25 13:22:51 +00004278 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00004279 sqlite3BtreeRollback(pBtTo);
drhf7c57532003-04-25 13:22:51 +00004280 }
4281 return rc;
drh73509ee2003-04-06 20:44:45 +00004282}
danielk19771d850a72004-05-31 08:26:49 +00004283
4284/*
4285** Return non-zero if a transaction is active.
4286*/
4287int sqlite3BtreeIsInTrans(Btree *pBt){
danielk1977ee5741e2004-05-31 10:01:34 +00004288 return (pBt && (pBt->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00004289}
4290
4291/*
4292** Return non-zero if a statement transaction is active.
4293*/
4294int sqlite3BtreeIsInStmt(Btree *pBt){
4295 return (pBt && pBt->inStmt);
4296}
danielk197713adf8a2004-06-03 16:08:41 +00004297
4298/*
4299** This call is a no-op if no write-transaction is currently active on pBt.
4300**
4301** Otherwise, sync the database file for the btree pBt. zMaster points to
4302** the name of a master journal file that should be written into the
4303** individual journal file, or is NULL, indicating no master journal file
4304** (single database transaction).
4305**
4306** When this is called, the master journal should already have been
4307** created, populated with this journal pointer and synced to disk.
4308**
4309** Once this is routine has returned, the only thing required to commit
4310** the write-transaction for this database file is to delete the journal.
4311*/
4312int sqlite3BtreeSync(Btree *pBt, const char *zMaster){
4313 if( pBt->inTrans==TRANS_WRITE ){
4314 return sqlite3pager_sync(pBt->pPager, zMaster);
4315 }
4316 return SQLITE_OK;
4317}