blob: f9c368a93d6b64f73ebb52f6a1f8b752d7917065 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
drhe53831d2007-08-17 01:14:38 +000046#ifndef SQLITE_OMIT_SHARED_CACHE
47/*
danielk1977502b4e02008-09-02 14:07:24 +000048** A list of BtShared objects that are eligible for participation
49** in shared cache. This variable has file scope during normal builds,
50** but the test harness needs to access it so we make it global for
51** test builds.
drh7555d8e2009-03-20 13:15:30 +000052**
53** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000054*/
55#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000056BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000057#else
drh78f82d12008-09-02 00:52:52 +000058static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000059#endif
drhe53831d2007-08-17 01:14:38 +000060#endif /* SQLITE_OMIT_SHARED_CACHE */
61
62#ifndef SQLITE_OMIT_SHARED_CACHE
63/*
64** Enable or disable the shared pager and schema features.
65**
66** This routine has no effect on existing database connections.
67** The shared cache setting effects only future calls to
68** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
69*/
70int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000071 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000072 return SQLITE_OK;
73}
74#endif
75
drhd677b3d2007-08-20 22:48:41 +000076
danielk1977aef0bf62005-12-30 16:28:01 +000077
78#ifdef SQLITE_OMIT_SHARED_CACHE
79 /*
drhc25eabe2009-02-24 18:57:31 +000080 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
81 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000082 ** manipulate entries in the BtShared.pLock linked list used to store
83 ** shared-cache table level locks. If the library is compiled with the
84 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000085 ** of each BtShared structure and so this locking is not necessary.
86 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000087 */
drhc25eabe2009-02-24 18:57:31 +000088 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
89 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
90 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000091 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000092 #define hasSharedCacheTableLock(a,b,c,d) 1
93 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000094#endif
danielk1977aef0bf62005-12-30 16:28:01 +000095
drhe53831d2007-08-17 01:14:38 +000096#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000097
98#ifdef SQLITE_DEBUG
99/*
drh0ee3dbe2009-10-16 15:05:18 +0000100**** This function is only used as part of an assert() statement. ***
101**
102** Check to see if pBtree holds the required locks to read or write to the
103** table with root page iRoot. Return 1 if it does and 0 if not.
104**
105** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000106** Btree connection pBtree:
107**
108** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
109**
drh0ee3dbe2009-10-16 15:05:18 +0000110** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000111** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000112** the corresponding table. This makes things a bit more complicated,
113** as this module treats each table as a separate structure. To determine
114** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000115** function has to search through the database schema.
116**
drh0ee3dbe2009-10-16 15:05:18 +0000117** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000118** hold a write-lock on the schema table (root page 1). This is also
119** acceptable.
120*/
121static int hasSharedCacheTableLock(
122 Btree *pBtree, /* Handle that must hold lock */
123 Pgno iRoot, /* Root page of b-tree */
124 int isIndex, /* True if iRoot is the root of an index b-tree */
125 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
126){
127 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
128 Pgno iTab = 0;
129 BtLock *pLock;
130
drh0ee3dbe2009-10-16 15:05:18 +0000131 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000132 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000133 ** Return true immediately.
134 */
danielk197796d48e92009-06-29 06:00:37 +0000135 if( (pBtree->sharable==0)
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000137 ){
138 return 1;
139 }
140
drh0ee3dbe2009-10-16 15:05:18 +0000141 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow.
145 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
147 return 1;
148 }
149
danielk197796d48e92009-06-29 06:00:37 +0000150 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated
153 ** table. */
154 if( isIndex ){
155 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
157 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000158 if( pIdx->tnum==(int)iRoot ){
159 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000160 }
161 }
162 }else{
163 iTab = iRoot;
164 }
165
166 /* Search for the required lock. Either a write-lock on root-page iTab, a
167 ** write-lock on the schema table, or (if the client is reading) a
168 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
169 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
170 if( pLock->pBtree==pBtree
171 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
172 && pLock->eLock>=eLockType
173 ){
174 return 1;
175 }
176 }
177
178 /* Failed to find the required lock. */
179 return 0;
180}
drh0ee3dbe2009-10-16 15:05:18 +0000181#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000182
drh0ee3dbe2009-10-16 15:05:18 +0000183#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000184/*
drh0ee3dbe2009-10-16 15:05:18 +0000185**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000186**
drh0ee3dbe2009-10-16 15:05:18 +0000187** Return true if it would be illegal for pBtree to write into the
188** table or index rooted at iRoot because other shared connections are
189** simultaneously reading that same table or index.
190**
191** It is illegal for pBtree to write if some other Btree object that
192** shares the same BtShared object is currently reading or writing
193** the iRoot table. Except, if the other Btree object has the
194** read-uncommitted flag set, then it is OK for the other object to
195** have a read cursor.
196**
197** For example, before writing to any part of the table or index
198** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000199**
200** assert( !hasReadConflicts(pBtree, iRoot) );
201*/
202static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
203 BtCursor *p;
204 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
205 if( p->pgnoRoot==iRoot
206 && p->pBtree!=pBtree
207 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
208 ){
209 return 1;
210 }
211 }
212 return 0;
213}
214#endif /* #ifdef SQLITE_DEBUG */
215
danielk1977da184232006-01-05 11:34:32 +0000216/*
drh0ee3dbe2009-10-16 15:05:18 +0000217** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000218** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000219** SQLITE_OK if the lock may be obtained (by calling
220** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000221*/
drhc25eabe2009-02-24 18:57:31 +0000222static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000223 BtShared *pBt = p->pBt;
224 BtLock *pIter;
225
drh1fee73e2007-08-29 04:00:57 +0000226 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000227 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
228 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000229 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000230
danielk19775b413d72009-04-01 09:41:54 +0000231 /* If requesting a write-lock, then the Btree must have an open write
232 ** transaction on this file. And, obviously, for this to be so there
233 ** must be an open write transaction on the file itself.
234 */
235 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237
drh0ee3dbe2009-10-16 15:05:18 +0000238 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000239 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000240 return SQLITE_OK;
241 }
242
danielk1977641b0f42007-12-21 04:47:25 +0000243 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained.
245 */
danielk1977404ca072009-03-16 13:19:36 +0000246 if( pBt->pWriter!=p && pBt->isExclusive ){
247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000249 }
250
danielk1977e0d9e6f2009-07-03 16:25:06 +0000251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of:
254 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer).
260 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter );
267 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000268 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000269 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000270 }
271 }
272 return SQLITE_OK;
273}
drhe53831d2007-08-17 01:14:38 +0000274#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000275
drhe53831d2007-08-17 01:14:38 +0000276#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000277/*
278** Add a lock on the table with root-page iTable to the shared-btree used
279** by Btree handle p. Parameter eLock must be either READ_LOCK or
280** WRITE_LOCK.
281**
danielk19779d104862009-07-09 08:27:14 +0000282** This function assumes the following:
283**
drh0ee3dbe2009-10-16 15:05:18 +0000284** (a) The specified Btree object p is connected to a sharable
285** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000286**
drh0ee3dbe2009-10-16 15:05:18 +0000287** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000288** with the requested lock (i.e. querySharedCacheTableLock() has
289** already been called and returned SQLITE_OK).
290**
291** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
292** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000293*/
drhc25eabe2009-02-24 18:57:31 +0000294static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000295 BtShared *pBt = p->pBt;
296 BtLock *pLock = 0;
297 BtLock *pIter;
298
drh1fee73e2007-08-29 04:00:57 +0000299 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000300 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
301 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000302
danielk1977e0d9e6f2009-07-03 16:25:06 +0000303 /* A connection with the read-uncommitted flag set will never try to
304 ** obtain a read-lock using this function. The only read-lock obtained
305 ** by a connection in read-uncommitted mode is on the sqlite_master
306 ** table, and that lock is obtained in BtreeBeginTrans(). */
307 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
308
danielk19779d104862009-07-09 08:27:14 +0000309 /* This function should only be called on a sharable b-tree after it
310 ** has been determined that no other b-tree holds a conflicting lock. */
311 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000312 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 /* First search the list for an existing lock on this table. */
315 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
316 if( pIter->iTable==iTable && pIter->pBtree==p ){
317 pLock = pIter;
318 break;
319 }
320 }
321
322 /* If the above search did not find a BtLock struct associating Btree p
323 ** with table iTable, allocate one and link it into the list.
324 */
325 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000326 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000327 if( !pLock ){
328 return SQLITE_NOMEM;
329 }
330 pLock->iTable = iTable;
331 pLock->pBtree = p;
332 pLock->pNext = pBt->pLock;
333 pBt->pLock = pLock;
334 }
335
336 /* Set the BtLock.eLock variable to the maximum of the current lock
337 ** and the requested lock. This means if a write-lock was already held
338 ** and a read-lock requested, we don't incorrectly downgrade the lock.
339 */
340 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000341 if( eLock>pLock->eLock ){
342 pLock->eLock = eLock;
343 }
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 return SQLITE_OK;
346}
drhe53831d2007-08-17 01:14:38 +0000347#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000348
drhe53831d2007-08-17 01:14:38 +0000349#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000350/*
drhc25eabe2009-02-24 18:57:31 +0000351** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000352** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000353**
drh0ee3dbe2009-10-16 15:05:18 +0000354** This function assumes that Btree p has an open read or write
danielk1977fa542f12009-04-02 18:28:08 +0000355** transaction. If it does not, then the BtShared.isPending variable
356** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000357*/
drhc25eabe2009-02-24 18:57:31 +0000358static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000359 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000361
drh1fee73e2007-08-29 04:00:57 +0000362 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000363 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000364 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000365
danielk1977aef0bf62005-12-30 16:28:01 +0000366 while( *ppIter ){
367 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000368 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000369 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000370 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000372 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock);
375 }
danielk1977aef0bf62005-12-30 16:28:01 +0000376 }else{
377 ppIter = &pLock->pNext;
378 }
379 }
danielk1977641b0f42007-12-21 04:47:25 +0000380
danielk1977404ca072009-03-16 13:19:36 +0000381 assert( pBt->isPending==0 || pBt->pWriter );
382 if( pBt->pWriter==p ){
383 pBt->pWriter = 0;
384 pBt->isExclusive = 0;
385 pBt->isPending = 0;
386 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000387 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000388 ** transaction. If there currently exists a writer, and p is not
389 ** that writer, then the number of locks held by connections other
390 ** than the writer must be about to drop to zero. In this case
391 ** set the isPending flag to 0.
392 **
393 ** If there is not currently a writer, then BtShared.isPending must
394 ** be zero already. So this next line is harmless in that case.
395 */
396 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000397 }
danielk1977aef0bf62005-12-30 16:28:01 +0000398}
danielk197794b30732009-07-02 17:21:57 +0000399
danielk1977e0d9e6f2009-07-03 16:25:06 +0000400/*
drh0ee3dbe2009-10-16 15:05:18 +0000401** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000402*/
danielk197794b30732009-07-02 17:21:57 +0000403static void downgradeAllSharedCacheTableLocks(Btree *p){
404 BtShared *pBt = p->pBt;
405 if( pBt->pWriter==p ){
406 BtLock *pLock;
407 pBt->pWriter = 0;
408 pBt->isExclusive = 0;
409 pBt->isPending = 0;
410 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
411 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
412 pLock->eLock = READ_LOCK;
413 }
414 }
415}
416
danielk1977aef0bf62005-12-30 16:28:01 +0000417#endif /* SQLITE_OMIT_SHARED_CACHE */
418
drh980b1a72006-08-16 16:42:48 +0000419static void releasePage(MemPage *pPage); /* Forward reference */
420
drh1fee73e2007-08-29 04:00:57 +0000421/*
drh0ee3dbe2009-10-16 15:05:18 +0000422***** This routine is used inside of assert() only ****
423**
424** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000425*/
drh0ee3dbe2009-10-16 15:05:18 +0000426#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000427static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000428 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000429}
430#endif
431
432
danielk197792d4d7a2007-05-04 12:05:56 +0000433#ifndef SQLITE_OMIT_INCRBLOB
434/*
435** Invalidate the overflow page-list cache for cursor pCur, if any.
436*/
437static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000438 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000439 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000440 pCur->aOverflow = 0;
441}
442
443/*
444** Invalidate the overflow page-list cache for all cursors opened
445** on the shared btree structure pBt.
446*/
447static void invalidateAllOverflowCache(BtShared *pBt){
448 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000449 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000450 for(p=pBt->pCursor; p; p=p->pNext){
451 invalidateOverflowCache(p);
452 }
453}
danielk197796d48e92009-06-29 06:00:37 +0000454
455/*
456** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000457** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000458** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000459**
460** If argument isClearTable is true, then the entire contents of the
461** table is about to be deleted. In this case invalidate all incrblob
462** cursors open on any row within the table with root-page pgnoRoot.
463**
464** Otherwise, if argument isClearTable is false, then the row with
465** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000466** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000467*/
468static void invalidateIncrblobCursors(
469 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000470 i64 iRow, /* The rowid that might be changing */
471 int isClearTable /* True if all rows are being deleted */
472){
473 BtCursor *p;
474 BtShared *pBt = pBtree->pBt;
475 assert( sqlite3BtreeHoldsMutex(pBtree) );
476 for(p=pBt->pCursor; p; p=p->pNext){
477 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
478 p->eState = CURSOR_INVALID;
479 }
480 }
481}
482
danielk197792d4d7a2007-05-04 12:05:56 +0000483#else
drh0ee3dbe2009-10-16 15:05:18 +0000484 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000485 #define invalidateOverflowCache(x)
486 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000487 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000488#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000489
drh980b1a72006-08-16 16:42:48 +0000490/*
danielk1977bea2a942009-01-20 17:06:27 +0000491** Set bit pgno of the BtShared.pHasContent bitvec. This is called
492** when a page that previously contained data becomes a free-list leaf
493** page.
494**
495** The BtShared.pHasContent bitvec exists to work around an obscure
496** bug caused by the interaction of two useful IO optimizations surrounding
497** free-list leaf pages:
498**
499** 1) When all data is deleted from a page and the page becomes
500** a free-list leaf page, the page is not written to the database
501** (as free-list leaf pages contain no meaningful data). Sometimes
502** such a page is not even journalled (as it will not be modified,
503** why bother journalling it?).
504**
505** 2) When a free-list leaf page is reused, its content is not read
506** from the database or written to the journal file (why should it
507** be, if it is not at all meaningful?).
508**
509** By themselves, these optimizations work fine and provide a handy
510** performance boost to bulk delete or insert operations. However, if
511** a page is moved to the free-list and then reused within the same
512** transaction, a problem comes up. If the page is not journalled when
513** it is moved to the free-list and it is also not journalled when it
514** is extracted from the free-list and reused, then the original data
515** may be lost. In the event of a rollback, it may not be possible
516** to restore the database to its original configuration.
517**
518** The solution is the BtShared.pHasContent bitvec. Whenever a page is
519** moved to become a free-list leaf page, the corresponding bit is
520** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000521** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000522** set in BtShared.pHasContent. The contents of the bitvec are cleared
523** at the end of every transaction.
524*/
525static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
526 int rc = SQLITE_OK;
527 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000528 assert( pgno<=pBt->nPage );
529 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000530 if( !pBt->pHasContent ){
531 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000532 }
533 }
534 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
535 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
536 }
537 return rc;
538}
539
540/*
541** Query the BtShared.pHasContent vector.
542**
543** This function is called when a free-list leaf page is removed from the
544** free-list for reuse. It returns false if it is safe to retrieve the
545** page from the pager layer with the 'no-content' flag set. True otherwise.
546*/
547static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
548 Bitvec *p = pBt->pHasContent;
549 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
550}
551
552/*
553** Clear (destroy) the BtShared.pHasContent bitvec. This should be
554** invoked at the conclusion of each write-transaction.
555*/
556static void btreeClearHasContent(BtShared *pBt){
557 sqlite3BitvecDestroy(pBt->pHasContent);
558 pBt->pHasContent = 0;
559}
560
561/*
drh980b1a72006-08-16 16:42:48 +0000562** Save the current cursor position in the variables BtCursor.nKey
563** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000564**
565** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
566** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000567*/
568static int saveCursorPosition(BtCursor *pCur){
569 int rc;
570
571 assert( CURSOR_VALID==pCur->eState );
572 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000573 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000574
575 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000576 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000577
578 /* If this is an intKey table, then the above call to BtreeKeySize()
579 ** stores the integer key in pCur->nKey. In this case this value is
580 ** all that is required. Otherwise, if pCur is not open on an intKey
581 ** table, then malloc space for and store the pCur->nKey bytes of key
582 ** data.
583 */
drh4c301aa2009-07-15 17:25:45 +0000584 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000585 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000586 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000587 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000588 if( rc==SQLITE_OK ){
589 pCur->pKey = pKey;
590 }else{
drh17435752007-08-16 04:30:38 +0000591 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000592 }
593 }else{
594 rc = SQLITE_NOMEM;
595 }
596 }
danielk197771d5d2c2008-09-29 11:49:47 +0000597 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000598
599 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000600 int i;
601 for(i=0; i<=pCur->iPage; i++){
602 releasePage(pCur->apPage[i]);
603 pCur->apPage[i] = 0;
604 }
605 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000606 pCur->eState = CURSOR_REQUIRESEEK;
607 }
608
danielk197792d4d7a2007-05-04 12:05:56 +0000609 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000610 return rc;
611}
612
613/*
drh0ee3dbe2009-10-16 15:05:18 +0000614** Save the positions of all cursors (except pExcept) that are open on
615** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000616** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
617*/
618static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
619 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000620 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000621 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000622 for(p=pBt->pCursor; p; p=p->pNext){
623 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
624 p->eState==CURSOR_VALID ){
625 int rc = saveCursorPosition(p);
626 if( SQLITE_OK!=rc ){
627 return rc;
628 }
629 }
630 }
631 return SQLITE_OK;
632}
633
634/*
drhbf700f32007-03-31 02:36:44 +0000635** Clear the current cursor position.
636*/
danielk1977be51a652008-10-08 17:58:48 +0000637void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000638 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000639 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000640 pCur->pKey = 0;
641 pCur->eState = CURSOR_INVALID;
642}
643
644/*
danielk19773509a652009-07-06 18:56:13 +0000645** In this version of BtreeMoveto, pKey is a packed index record
646** such as is generated by the OP_MakeRecord opcode. Unpack the
647** record and then call BtreeMovetoUnpacked() to do the work.
648*/
649static int btreeMoveto(
650 BtCursor *pCur, /* Cursor open on the btree to be searched */
651 const void *pKey, /* Packed key if the btree is an index */
652 i64 nKey, /* Integer key for tables. Size of pKey for indices */
653 int bias, /* Bias search to the high end */
654 int *pRes /* Write search results here */
655){
656 int rc; /* Status code */
657 UnpackedRecord *pIdxKey; /* Unpacked index key */
658 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
659
660 if( pKey ){
661 assert( nKey==(i64)(int)nKey );
662 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
663 aSpace, sizeof(aSpace));
664 if( pIdxKey==0 ) return SQLITE_NOMEM;
665 }else{
666 pIdxKey = 0;
667 }
668 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
669 if( pKey ){
670 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
671 }
672 return rc;
673}
674
675/*
drh980b1a72006-08-16 16:42:48 +0000676** Restore the cursor to the position it was in (or as close to as possible)
677** when saveCursorPosition() was called. Note that this call deletes the
678** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000679** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000680** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000681*/
danielk197730548662009-07-09 05:07:37 +0000682static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000683 int rc;
drh1fee73e2007-08-29 04:00:57 +0000684 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000685 assert( pCur->eState>=CURSOR_REQUIRESEEK );
686 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000687 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000688 }
drh980b1a72006-08-16 16:42:48 +0000689 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000690 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000691 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000692 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000693 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000694 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000695 }
696 return rc;
697}
698
drha3460582008-07-11 21:02:53 +0000699#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000700 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000701 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000702 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000703
drha3460582008-07-11 21:02:53 +0000704/*
705** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000706** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000707** at is deleted out from under them.
708**
709** This routine returns an error code if something goes wrong. The
710** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
711*/
712int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
713 int rc;
714
715 rc = restoreCursorPosition(pCur);
716 if( rc ){
717 *pHasMoved = 1;
718 return rc;
719 }
drh4c301aa2009-07-15 17:25:45 +0000720 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000721 *pHasMoved = 1;
722 }else{
723 *pHasMoved = 0;
724 }
725 return SQLITE_OK;
726}
727
danielk1977599fcba2004-11-08 07:13:13 +0000728#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000729/*
drha3152892007-05-05 11:48:52 +0000730** Given a page number of a regular database page, return the page
731** number for the pointer-map page that contains the entry for the
732** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000733**
734** Return 0 (not a valid page) for pgno==1 since there is
735** no pointer map associated with page 1. The integrity_check logic
736** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000737*/
danielk1977266664d2006-02-10 08:24:21 +0000738static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000739 int nPagesPerMapPage;
740 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000741 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000742 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000743 nPagesPerMapPage = (pBt->usableSize/5)+1;
744 iPtrMap = (pgno-2)/nPagesPerMapPage;
745 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000746 if( ret==PENDING_BYTE_PAGE(pBt) ){
747 ret++;
748 }
749 return ret;
750}
danielk1977a19df672004-11-03 11:37:07 +0000751
danielk1977afcdd022004-10-31 16:25:42 +0000752/*
danielk1977afcdd022004-10-31 16:25:42 +0000753** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000754**
755** This routine updates the pointer map entry for page number 'key'
756** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000757**
758** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
759** a no-op. If an error occurs, the appropriate error code is written
760** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000761*/
drh98add2e2009-07-20 17:11:49 +0000762static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000763 DbPage *pDbPage; /* The pointer map page */
764 u8 *pPtrmap; /* The pointer map data */
765 Pgno iPtrmap; /* The pointer map page number */
766 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000767 int rc; /* Return code from subfunctions */
768
769 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000770
drh1fee73e2007-08-29 04:00:57 +0000771 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000772 /* The master-journal page number must never be used as a pointer map page */
773 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
774
danielk1977ac11ee62005-01-15 12:45:51 +0000775 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000776 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000777 *pRC = SQLITE_CORRUPT_BKPT;
778 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000779 }
danielk1977266664d2006-02-10 08:24:21 +0000780 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000781 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000782 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000783 *pRC = rc;
784 return;
danielk1977afcdd022004-10-31 16:25:42 +0000785 }
danielk19778c666b12008-07-18 09:34:57 +0000786 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000787 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000788 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000789 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000790 }
danielk19773b8a05f2007-03-19 17:44:26 +0000791 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000792
drh615ae552005-01-16 23:21:00 +0000793 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
794 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000795 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000796 if( rc==SQLITE_OK ){
797 pPtrmap[offset] = eType;
798 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000799 }
danielk1977afcdd022004-10-31 16:25:42 +0000800 }
801
drh4925a552009-07-07 11:39:58 +0000802ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000803 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000804}
805
806/*
807** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000808**
809** This routine retrieves the pointer map entry for page 'key', writing
810** the type and parent page number to *pEType and *pPgno respectively.
811** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000812*/
danielk1977aef0bf62005-12-30 16:28:01 +0000813static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000814 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000815 int iPtrmap; /* Pointer map page index */
816 u8 *pPtrmap; /* Pointer map page data */
817 int offset; /* Offset of entry in pointer map */
818 int rc;
819
drh1fee73e2007-08-29 04:00:57 +0000820 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000821
danielk1977266664d2006-02-10 08:24:21 +0000822 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000823 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000824 if( rc!=0 ){
825 return rc;
826 }
danielk19773b8a05f2007-03-19 17:44:26 +0000827 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000828
danielk19778c666b12008-07-18 09:34:57 +0000829 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000830 assert( pEType!=0 );
831 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000832 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000833
danielk19773b8a05f2007-03-19 17:44:26 +0000834 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000835 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000836 return SQLITE_OK;
837}
838
danielk197785d90ca2008-07-19 14:25:15 +0000839#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000840 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000841 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000842 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000843#endif
danielk1977afcdd022004-10-31 16:25:42 +0000844
drh0d316a42002-08-11 20:10:47 +0000845/*
drh271efa52004-05-30 19:19:05 +0000846** Given a btree page and a cell index (0 means the first cell on
847** the page, 1 means the second cell, and so forth) return a pointer
848** to the cell content.
849**
850** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000851*/
drh1688c862008-07-18 02:44:17 +0000852#define findCell(P,I) \
853 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000854
855/*
drh93a960a2008-07-10 00:32:42 +0000856** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000857** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000858*/
859static u8 *findOverflowCell(MemPage *pPage, int iCell){
860 int i;
drh1fee73e2007-08-29 04:00:57 +0000861 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000862 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000863 int k;
864 struct _OvflCell *pOvfl;
865 pOvfl = &pPage->aOvfl[i];
866 k = pOvfl->idx;
867 if( k<=iCell ){
868 if( k==iCell ){
869 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000870 }
871 iCell--;
872 }
873 }
danielk19771cc5ed82007-05-16 17:28:43 +0000874 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000875}
876
877/*
878** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000879** are two versions of this function. btreeParseCell() takes a
880** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000881** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000882**
883** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000884** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000885*/
danielk197730548662009-07-09 05:07:37 +0000886static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000887 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000888 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000889 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000890){
drhf49661a2008-12-10 16:45:50 +0000891 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000892 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000893
drh1fee73e2007-08-29 04:00:57 +0000894 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000895
drh43605152004-05-29 21:46:49 +0000896 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000897 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000898 n = pPage->childPtrSize;
899 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000900 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000901 if( pPage->hasData ){
902 n += getVarint32(&pCell[n], nPayload);
903 }else{
904 nPayload = 0;
905 }
drh1bd10f82008-12-10 21:19:56 +0000906 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000907 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000908 }else{
drh79df1f42008-07-18 00:57:33 +0000909 pInfo->nData = 0;
910 n += getVarint32(&pCell[n], nPayload);
911 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000912 }
drh72365832007-03-06 15:53:44 +0000913 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000914 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000915 testcase( nPayload==pPage->maxLocal );
916 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000917 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000918 /* This is the (easy) common case where the entire payload fits
919 ** on the local page. No overflow is required.
920 */
921 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000922 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000923 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000924 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000925 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000926 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000927 }
drh1bd10f82008-12-10 21:19:56 +0000928 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000929 }else{
drh271efa52004-05-30 19:19:05 +0000930 /* If the payload will not fit completely on the local page, we have
931 ** to decide how much to store locally and how much to spill onto
932 ** overflow pages. The strategy is to minimize the amount of unused
933 ** space on overflow pages while keeping the amount of local storage
934 ** in between minLocal and maxLocal.
935 **
936 ** Warning: changing the way overflow payload is distributed in any
937 ** way will result in an incompatible file format.
938 */
939 int minLocal; /* Minimum amount of payload held locally */
940 int maxLocal; /* Maximum amount of payload held locally */
941 int surplus; /* Overflow payload available for local storage */
942
943 minLocal = pPage->minLocal;
944 maxLocal = pPage->maxLocal;
945 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000946 testcase( surplus==maxLocal );
947 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000948 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000949 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000950 }else{
drhf49661a2008-12-10 16:45:50 +0000951 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000952 }
drhf49661a2008-12-10 16:45:50 +0000953 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000954 pInfo->nSize = pInfo->iOverflow + 4;
955 }
drh3aac2dd2004-04-26 14:10:20 +0000956}
danielk19771cc5ed82007-05-16 17:28:43 +0000957#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000958 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
959static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000960 MemPage *pPage, /* Page containing the cell */
961 int iCell, /* The cell index. First cell is 0 */
962 CellInfo *pInfo /* Fill in this structure */
963){
danielk19771cc5ed82007-05-16 17:28:43 +0000964 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000965}
drh3aac2dd2004-04-26 14:10:20 +0000966
967/*
drh43605152004-05-29 21:46:49 +0000968** Compute the total number of bytes that a Cell needs in the cell
969** data area of the btree-page. The return number includes the cell
970** data header and the local payload, but not any overflow page or
971** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000972*/
danielk1977ae5558b2009-04-29 11:31:47 +0000973static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
974 u8 *pIter = &pCell[pPage->childPtrSize];
975 u32 nSize;
976
977#ifdef SQLITE_DEBUG
978 /* The value returned by this function should always be the same as
979 ** the (CellInfo.nSize) value found by doing a full parse of the
980 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
981 ** this function verifies that this invariant is not violated. */
982 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000983 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000984#endif
985
986 if( pPage->intKey ){
987 u8 *pEnd;
988 if( pPage->hasData ){
989 pIter += getVarint32(pIter, nSize);
990 }else{
991 nSize = 0;
992 }
993
994 /* pIter now points at the 64-bit integer key value, a variable length
995 ** integer. The following block moves pIter to point at the first byte
996 ** past the end of the key value. */
997 pEnd = &pIter[9];
998 while( (*pIter++)&0x80 && pIter<pEnd );
999 }else{
1000 pIter += getVarint32(pIter, nSize);
1001 }
1002
drh0a45c272009-07-08 01:49:11 +00001003 testcase( nSize==pPage->maxLocal );
1004 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001005 if( nSize>pPage->maxLocal ){
1006 int minLocal = pPage->minLocal;
1007 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001008 testcase( nSize==pPage->maxLocal );
1009 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001010 if( nSize>pPage->maxLocal ){
1011 nSize = minLocal;
1012 }
1013 nSize += 4;
1014 }
shane75ac1de2009-06-09 18:58:52 +00001015 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001016
1017 /* The minimum size of any cell is 4 bytes. */
1018 if( nSize<4 ){
1019 nSize = 4;
1020 }
1021
1022 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001023 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001024}
drh0ee3dbe2009-10-16 15:05:18 +00001025
1026#ifdef SQLITE_DEBUG
1027/* This variation on cellSizePtr() is used inside of assert() statements
1028** only. */
drha9121e42008-02-19 14:59:35 +00001029static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001030 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001031}
danielk1977bc6ada42004-06-30 08:20:16 +00001032#endif
drh3b7511c2001-05-26 13:15:44 +00001033
danielk197779a40da2005-01-16 08:00:01 +00001034#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001035/*
danielk197726836652005-01-17 01:33:13 +00001036** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001037** to an overflow page, insert an entry into the pointer-map
1038** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001039*/
drh98add2e2009-07-20 17:11:49 +00001040static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001041 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001042 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001043 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001044 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001045 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001046 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001047 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001048 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001049 }
danielk1977ac11ee62005-01-15 12:45:51 +00001050}
danielk197779a40da2005-01-16 08:00:01 +00001051#endif
1052
danielk1977ac11ee62005-01-15 12:45:51 +00001053
drhda200cc2004-05-09 11:51:38 +00001054/*
drh72f82862001-05-24 21:06:34 +00001055** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001056** end of the page and all free space is collected into one
1057** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001058** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001059*/
shane0af3f892008-11-12 04:55:34 +00001060static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001061 int i; /* Loop counter */
1062 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001063 int hdr; /* Offset to the page header */
1064 int size; /* Size of a cell */
1065 int usableSize; /* Number of usable bytes on a page */
1066 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001067 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001068 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001069 unsigned char *data; /* The page data */
1070 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001071 int iCellFirst; /* First allowable cell index */
1072 int iCellLast; /* Last possible cell index */
1073
drh2af926b2001-05-15 00:39:25 +00001074
danielk19773b8a05f2007-03-19 17:44:26 +00001075 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001076 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001077 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001078 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001079 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001080 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001081 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001082 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001083 cellOffset = pPage->cellOffset;
1084 nCell = pPage->nCell;
1085 assert( nCell==get2byte(&data[hdr+3]) );
1086 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001087 cbrk = get2byte(&data[hdr+5]);
1088 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1089 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001090 iCellFirst = cellOffset + 2*nCell;
1091 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001092 for(i=0; i<nCell; i++){
1093 u8 *pAddr; /* The i-th cell pointer */
1094 pAddr = &data[cellOffset + i*2];
1095 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001096 testcase( pc==iCellFirst );
1097 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001098#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001099 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001100 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1101 */
1102 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001103 return SQLITE_CORRUPT_BKPT;
1104 }
drh17146622009-07-07 17:38:38 +00001105#endif
1106 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001107 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001108 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001109#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1110 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001111 return SQLITE_CORRUPT_BKPT;
1112 }
drh17146622009-07-07 17:38:38 +00001113#else
1114 if( cbrk<iCellFirst || pc+size>usableSize ){
1115 return SQLITE_CORRUPT_BKPT;
1116 }
1117#endif
drh7157e1d2009-07-09 13:25:32 +00001118 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001119 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001120 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001121 memcpy(&data[cbrk], &temp[pc], size);
1122 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001123 }
drh17146622009-07-07 17:38:38 +00001124 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001125 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001126 data[hdr+1] = 0;
1127 data[hdr+2] = 0;
1128 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001129 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001130 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001131 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001132 return SQLITE_CORRUPT_BKPT;
1133 }
shane0af3f892008-11-12 04:55:34 +00001134 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001135}
1136
drha059ad02001-04-17 20:09:11 +00001137/*
danielk19776011a752009-04-01 16:25:32 +00001138** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001139** as the first argument. Write into *pIdx the index into pPage->aData[]
1140** of the first byte of allocated space. Return either SQLITE_OK or
1141** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001142**
drh0a45c272009-07-08 01:49:11 +00001143** The caller guarantees that there is sufficient space to make the
1144** allocation. This routine might need to defragment in order to bring
1145** all the space together, however. This routine will avoid using
1146** the first two bytes past the cell pointer area since presumably this
1147** allocation is being made in order to insert a new cell, so we will
1148** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001149*/
drh0a45c272009-07-08 01:49:11 +00001150static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001151 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1152 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1153 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001154 int top; /* First byte of cell content area */
1155 int gap; /* First byte of gap between cell pointers and cell content */
1156 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001157 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001158
danielk19773b8a05f2007-03-19 17:44:26 +00001159 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001160 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001161 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001162 assert( nByte>=0 ); /* Minimum cell size is 4 */
1163 assert( pPage->nFree>=nByte );
1164 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001165 usableSize = pPage->pBt->usableSize;
1166 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001167
1168 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001169 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1170 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001171 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001172 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001173 testcase( gap+2==top );
1174 testcase( gap+1==top );
1175 testcase( gap==top );
1176
danielk19776011a752009-04-01 16:25:32 +00001177 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001178 /* Always defragment highly fragmented pages */
1179 rc = defragmentPage(pPage);
1180 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001181 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001182 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001183 /* Search the freelist looking for a free slot big enough to satisfy
1184 ** the request. The allocation is made from the first free slot in
1185 ** the list that is large enough to accomadate it.
1186 */
1187 int pc, addr;
1188 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001189 int size; /* Size of the free slot */
1190 if( pc>usableSize-4 || pc<addr+4 ){
1191 return SQLITE_CORRUPT_BKPT;
1192 }
1193 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001194 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001195 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001196 testcase( x==4 );
1197 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001198 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001199 /* Remove the slot from the free-list. Update the number of
1200 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001201 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001202 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001203 }else if( size+pc > usableSize ){
1204 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001205 }else{
danielk1977fad91942009-04-29 17:49:59 +00001206 /* The slot remains on the free-list. Reduce its size to account
1207 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001208 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001209 }
drh0a45c272009-07-08 01:49:11 +00001210 *pIdx = pc + x;
1211 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001212 }
drh9e572e62004-04-23 23:43:10 +00001213 }
1214 }
drh43605152004-05-29 21:46:49 +00001215
drh0a45c272009-07-08 01:49:11 +00001216 /* Check to make sure there is enough space in the gap to satisfy
1217 ** the allocation. If not, defragment.
1218 */
1219 testcase( gap+2+nByte==top );
1220 if( gap+2+nByte>top ){
1221 rc = defragmentPage(pPage);
1222 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001223 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001224 assert( gap+nByte<=top );
1225 }
1226
1227
drh43605152004-05-29 21:46:49 +00001228 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001229 ** and the cell content area. The btreeInitPage() call has already
1230 ** validated the freelist. Given that the freelist is valid, there
1231 ** is no way that the allocation can extend off the end of the page.
1232 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001233 */
drh0a45c272009-07-08 01:49:11 +00001234 top -= nByte;
drh43605152004-05-29 21:46:49 +00001235 put2byte(&data[hdr+5], top);
drhc314dc72009-07-21 11:52:34 +00001236 assert( top+nByte <= pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001237 *pIdx = top;
1238 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001239}
1240
1241/*
drh9e572e62004-04-23 23:43:10 +00001242** Return a section of the pPage->aData to the freelist.
1243** The first byte of the new free block is pPage->aDisk[start]
1244** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001245**
1246** Most of the effort here is involved in coalesing adjacent
1247** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001248*/
shanedcc50b72008-11-13 18:29:50 +00001249static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001250 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001251 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001252 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001253
drh9e572e62004-04-23 23:43:10 +00001254 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001255 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001256 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
danielk1977bc6ada42004-06-30 08:20:16 +00001257 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001258 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001259 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001260
drh5b47efa2010-02-12 18:18:39 +00001261 if( pPage->pBt->secureDelete ){
1262 /* Overwrite deleted information with zeros when the secure_delete
1263 ** option is enabled */
1264 memset(&data[start], 0, size);
1265 }
drhfcce93f2006-02-22 03:08:32 +00001266
drh0a45c272009-07-08 01:49:11 +00001267 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001268 ** even though the freeblock list was checked by btreeInitPage(),
1269 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001270 ** freeblocks that overlapped cells. Nor does it detect when the
1271 ** cell content area exceeds the value in the page header. If these
1272 ** situations arise, then subsequent insert operations might corrupt
1273 ** the freelist. So we do need to check for corruption while scanning
1274 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001275 */
drh43605152004-05-29 21:46:49 +00001276 hdr = pPage->hdrOffset;
1277 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001278 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001279 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001280 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001281 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001282 return SQLITE_CORRUPT_BKPT;
1283 }
drh3aac2dd2004-04-26 14:10:20 +00001284 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001285 }
drh0a45c272009-07-08 01:49:11 +00001286 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001287 return SQLITE_CORRUPT_BKPT;
1288 }
drh3aac2dd2004-04-26 14:10:20 +00001289 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001290 put2byte(&data[addr], start);
1291 put2byte(&data[start], pbegin);
1292 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001293 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001294
1295 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001296 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001297 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001298 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001299 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001300 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001301 pnext = get2byte(&data[pbegin]);
1302 psize = get2byte(&data[pbegin+2]);
1303 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1304 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001305 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001306 return SQLITE_CORRUPT_BKPT;
1307 }
drh0a45c272009-07-08 01:49:11 +00001308 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001309 x = get2byte(&data[pnext]);
1310 put2byte(&data[pbegin], x);
1311 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1312 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001313 }else{
drh3aac2dd2004-04-26 14:10:20 +00001314 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001315 }
1316 }
drh7e3b0a02001-04-28 16:52:40 +00001317
drh43605152004-05-29 21:46:49 +00001318 /* If the cell content area begins with a freeblock, remove it. */
1319 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1320 int top;
1321 pbegin = get2byte(&data[hdr+1]);
1322 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001323 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1324 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001325 }
drhc5053fb2008-11-27 02:22:10 +00001326 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001327 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001328}
1329
1330/*
drh271efa52004-05-30 19:19:05 +00001331** Decode the flags byte (the first byte of the header) for a page
1332** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001333**
1334** Only the following combinations are supported. Anything different
1335** indicates a corrupt database files:
1336**
1337** PTF_ZERODATA
1338** PTF_ZERODATA | PTF_LEAF
1339** PTF_LEAFDATA | PTF_INTKEY
1340** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001341*/
drh44845222008-07-17 18:39:57 +00001342static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001343 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001344
1345 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001346 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001347 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001348 flagByte &= ~PTF_LEAF;
1349 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001350 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001351 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1352 pPage->intKey = 1;
1353 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001354 pPage->maxLocal = pBt->maxLeaf;
1355 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001356 }else if( flagByte==PTF_ZERODATA ){
1357 pPage->intKey = 0;
1358 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001359 pPage->maxLocal = pBt->maxLocal;
1360 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001361 }else{
1362 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001363 }
drh44845222008-07-17 18:39:57 +00001364 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001365}
1366
1367/*
drh7e3b0a02001-04-28 16:52:40 +00001368** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001369**
1370** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001371** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001372** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1373** guarantee that the page is well-formed. It only shows that
1374** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001375*/
danielk197730548662009-07-09 05:07:37 +00001376static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001377
danielk197771d5d2c2008-09-29 11:49:47 +00001378 assert( pPage->pBt!=0 );
1379 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001380 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001381 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1382 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001383
1384 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001385 u16 pc; /* Address of a freeblock within pPage->aData[] */
1386 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001387 u8 *data; /* Equal to pPage->aData */
1388 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001389 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001390 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001391 int nFree; /* Number of unused bytes on the page */
1392 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001393 int iCellFirst; /* First allowable cell or freeblock offset */
1394 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001395
1396 pBt = pPage->pBt;
1397
danielk1977eaa06f62008-09-18 17:34:44 +00001398 hdr = pPage->hdrOffset;
1399 data = pPage->aData;
1400 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001401 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1402 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001403 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001404 usableSize = pBt->usableSize;
1405 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh5d433ce2010-08-14 16:02:52 +00001406 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001407 pPage->nCell = get2byte(&data[hdr+3]);
1408 if( pPage->nCell>MX_CELL(pBt) ){
1409 /* To many cells for a single page. The page must be corrupt */
1410 return SQLITE_CORRUPT_BKPT;
1411 }
drhb908d762009-07-08 16:54:40 +00001412 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001413
shane5eff7cf2009-08-10 03:57:58 +00001414 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001415 ** of page when parsing a cell.
1416 **
1417 ** The following block of code checks early to see if a cell extends
1418 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1419 ** returned if it does.
1420 */
drh0a45c272009-07-08 01:49:11 +00001421 iCellFirst = cellOffset + 2*pPage->nCell;
1422 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001423#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001424 {
drh69e931e2009-06-03 21:04:35 +00001425 int i; /* Index into the cell pointer array */
1426 int sz; /* Size of a cell */
1427
drh69e931e2009-06-03 21:04:35 +00001428 if( !pPage->leaf ) iCellLast--;
1429 for(i=0; i<pPage->nCell; i++){
1430 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001431 testcase( pc==iCellFirst );
1432 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001433 if( pc<iCellFirst || pc>iCellLast ){
1434 return SQLITE_CORRUPT_BKPT;
1435 }
1436 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001437 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001438 if( pc+sz>usableSize ){
1439 return SQLITE_CORRUPT_BKPT;
1440 }
1441 }
drh0a45c272009-07-08 01:49:11 +00001442 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001443 }
1444#endif
1445
danielk1977eaa06f62008-09-18 17:34:44 +00001446 /* Compute the total free space on the page */
1447 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001448 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001449 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001450 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001451 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001452 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001453 return SQLITE_CORRUPT_BKPT;
1454 }
1455 next = get2byte(&data[pc]);
1456 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001457 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1458 /* Free blocks must be in ascending order. And the last byte of
1459 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001460 return SQLITE_CORRUPT_BKPT;
1461 }
shane85095702009-06-15 16:27:08 +00001462 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001463 pc = next;
1464 }
danielk197793c829c2009-06-03 17:26:17 +00001465
1466 /* At this point, nFree contains the sum of the offset to the start
1467 ** of the cell-content area plus the number of free bytes within
1468 ** the cell-content area. If this is greater than the usable-size
1469 ** of the page, then the page must be corrupted. This check also
1470 ** serves to verify that the offset to the start of the cell-content
1471 ** area, according to the page header, lies within the page.
1472 */
1473 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001474 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001475 }
shane5eff7cf2009-08-10 03:57:58 +00001476 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001477 pPage->isInit = 1;
1478 }
drh9e572e62004-04-23 23:43:10 +00001479 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001480}
1481
1482/*
drh8b2f49b2001-06-08 00:21:52 +00001483** Set up a raw page so that it looks like a database page holding
1484** no entries.
drhbd03cae2001-06-02 02:40:57 +00001485*/
drh9e572e62004-04-23 23:43:10 +00001486static void zeroPage(MemPage *pPage, int flags){
1487 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001488 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001489 u8 hdr = pPage->hdrOffset;
1490 u16 first;
drh9e572e62004-04-23 23:43:10 +00001491
danielk19773b8a05f2007-03-19 17:44:26 +00001492 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001493 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1494 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001495 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001496 assert( sqlite3_mutex_held(pBt->mutex) );
drh5b47efa2010-02-12 18:18:39 +00001497 if( pBt->secureDelete ){
1498 memset(&data[hdr], 0, pBt->usableSize - hdr);
1499 }
drh1bd10f82008-12-10 21:19:56 +00001500 data[hdr] = (char)flags;
1501 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001502 memset(&data[hdr+1], 0, 4);
1503 data[hdr+7] = 0;
1504 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001505 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001506 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001507 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001508 pPage->cellOffset = first;
1509 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001510 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1511 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001512 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001513 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001514}
1515
drh897a8202008-09-18 01:08:15 +00001516
1517/*
1518** Convert a DbPage obtained from the pager into a MemPage used by
1519** the btree layer.
1520*/
1521static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1522 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1523 pPage->aData = sqlite3PagerGetData(pDbPage);
1524 pPage->pDbPage = pDbPage;
1525 pPage->pBt = pBt;
1526 pPage->pgno = pgno;
1527 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1528 return pPage;
1529}
1530
drhbd03cae2001-06-02 02:40:57 +00001531/*
drh3aac2dd2004-04-26 14:10:20 +00001532** Get a page from the pager. Initialize the MemPage.pBt and
1533** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001534**
1535** If the noContent flag is set, it means that we do not care about
1536** the content of the page at this time. So do not go to the disk
1537** to fetch the content. Just fill in the content with zeros for now.
1538** If in the future we call sqlite3PagerWrite() on this page, that
1539** means we have started to be concerned about content and the disk
1540** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001541*/
danielk197730548662009-07-09 05:07:37 +00001542static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001543 BtShared *pBt, /* The btree */
1544 Pgno pgno, /* Number of the page to fetch */
1545 MemPage **ppPage, /* Return the page in this parameter */
1546 int noContent /* Do not load page content if true */
1547){
drh3aac2dd2004-04-26 14:10:20 +00001548 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001549 DbPage *pDbPage;
1550
drh1fee73e2007-08-29 04:00:57 +00001551 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001552 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001553 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001554 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001555 return SQLITE_OK;
1556}
1557
1558/*
danielk1977bea2a942009-01-20 17:06:27 +00001559** Retrieve a page from the pager cache. If the requested page is not
1560** already in the pager cache return NULL. Initialize the MemPage.pBt and
1561** MemPage.aData elements if needed.
1562*/
1563static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1564 DbPage *pDbPage;
1565 assert( sqlite3_mutex_held(pBt->mutex) );
1566 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1567 if( pDbPage ){
1568 return btreePageFromDbPage(pDbPage, pgno, pBt);
1569 }
1570 return 0;
1571}
1572
1573/*
danielk197789d40042008-11-17 14:20:56 +00001574** Return the size of the database file in pages. If there is any kind of
1575** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001576*/
drhb1299152010-03-30 22:58:33 +00001577static Pgno btreePagecount(BtShared *pBt){
1578 return pBt->nPage;
1579}
1580u32 sqlite3BtreeLastPage(Btree *p){
1581 assert( sqlite3BtreeHoldsMutex(p) );
1582 assert( ((p->pBt->nPage)&0x8000000)==0 );
1583 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001584}
1585
1586/*
danielk197789bc4bc2009-07-21 19:25:24 +00001587** Get a page from the pager and initialize it. This routine is just a
1588** convenience wrapper around separate calls to btreeGetPage() and
1589** btreeInitPage().
1590**
1591** If an error occurs, then the value *ppPage is set to is undefined. It
1592** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001593*/
1594static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001595 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001596 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001597 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001598){
1599 int rc;
drh1fee73e2007-08-29 04:00:57 +00001600 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001601
danba3cbf32010-06-30 04:29:03 +00001602 if( pgno>btreePagecount(pBt) ){
1603 rc = SQLITE_CORRUPT_BKPT;
1604 }else{
1605 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1606 if( rc==SQLITE_OK ){
1607 rc = btreeInitPage(*ppPage);
1608 if( rc!=SQLITE_OK ){
1609 releasePage(*ppPage);
1610 }
danielk197789bc4bc2009-07-21 19:25:24 +00001611 }
drhee696e22004-08-30 16:52:17 +00001612 }
danba3cbf32010-06-30 04:29:03 +00001613
1614 testcase( pgno==0 );
1615 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001616 return rc;
1617}
1618
1619/*
drh3aac2dd2004-04-26 14:10:20 +00001620** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001621** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001622*/
drh4b70f112004-05-02 21:12:19 +00001623static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001624 if( pPage ){
1625 assert( pPage->aData );
1626 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001627 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1628 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001629 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001630 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001631 }
1632}
1633
1634/*
drha6abd042004-06-09 17:37:22 +00001635** During a rollback, when the pager reloads information into the cache
1636** so that the cache is restored to its original state at the start of
1637** the transaction, for each page restored this routine is called.
1638**
1639** This routine needs to reset the extra data section at the end of the
1640** page to agree with the restored data.
1641*/
danielk1977eaa06f62008-09-18 17:34:44 +00001642static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001643 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001644 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001645 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001646 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001647 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001648 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001649 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001650 /* pPage might not be a btree page; it might be an overflow page
1651 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001652 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001653 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001654 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001655 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001656 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001657 }
drha6abd042004-06-09 17:37:22 +00001658 }
1659}
1660
1661/*
drhe5fe6902007-12-07 18:55:28 +00001662** Invoke the busy handler for a btree.
1663*/
danielk19771ceedd32008-11-19 10:22:33 +00001664static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001665 BtShared *pBt = (BtShared*)pArg;
1666 assert( pBt->db );
1667 assert( sqlite3_mutex_held(pBt->db->mutex) );
1668 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1669}
1670
1671/*
drhad3e0102004-09-03 23:32:18 +00001672** Open a database file.
1673**
drh382c0242001-10-06 16:33:02 +00001674** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001675** then an ephemeral database is created. The ephemeral database might
1676** be exclusively in memory, or it might use a disk-based memory cache.
1677** Either way, the ephemeral database will be automatically deleted
1678** when sqlite3BtreeClose() is called.
1679**
drhe53831d2007-08-17 01:14:38 +00001680** If zFilename is ":memory:" then an in-memory database is created
1681** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001682**
drh75c014c2010-08-30 15:02:28 +00001683** The "flags" parameter is a bitmask that might contain bits
1684** BTREE_OMIT_JOURNAL and/or BTREE_NO_READLOCK. The BTREE_NO_READLOCK
1685** bit is also set if the SQLITE_NoReadlock flags is set in db->flags.
1686** These flags are passed through into sqlite3PagerOpen() and must
1687** be the same values as PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK.
1688**
drhc47fd8e2009-04-30 13:30:32 +00001689** If the database is already opened in the same database connection
1690** and we are in shared cache mode, then the open will fail with an
1691** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1692** objects in the same database connection since doing so will lead
1693** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001694*/
drh23e11ca2004-05-04 17:27:28 +00001695int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001696 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001697 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001698 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001699 int flags, /* Options */
1700 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001701){
drh7555d8e2009-03-20 13:15:30 +00001702 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1703 BtShared *pBt = 0; /* Shared part of btree structure */
1704 Btree *p; /* Handle to return */
1705 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1706 int rc = SQLITE_OK; /* Result code from this function */
1707 u8 nReserve; /* Byte of unused space on each page */
1708 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001709
drh75c014c2010-08-30 15:02:28 +00001710 /* True if opening an ephemeral, temporary database */
1711 const int isTempDb = zFilename==0 || zFilename[0]==0;
1712
danielk1977aef0bf62005-12-30 16:28:01 +00001713 /* Set the variable isMemdb to true for an in-memory database, or
1714 ** false for a file-based database. This symbol is only required if
1715 ** either of the shared-data or autovacuum features are compiled
1716 ** into the library.
1717 */
1718#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1719 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001720 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001721 #else
drh75c014c2010-08-30 15:02:28 +00001722 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
1723 || (isTempDb && sqlite3TempInMemory(db));
danielk1977aef0bf62005-12-30 16:28:01 +00001724 #endif
1725#endif
1726
drhe5fe6902007-12-07 18:55:28 +00001727 assert( db!=0 );
1728 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001729 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1730
1731 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1732 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1733
1734 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1735 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001736
drh75c014c2010-08-30 15:02:28 +00001737 if( db->flags & SQLITE_NoReadlock ){
1738 flags |= BTREE_NO_READLOCK;
1739 }
1740 if( isMemdb ){
1741 flags |= BTREE_MEMORY;
1742 }
1743 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1744 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1745 }
drhe5fe6902007-12-07 18:55:28 +00001746 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001747 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001748 if( !p ){
1749 return SQLITE_NOMEM;
1750 }
1751 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001752 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001753#ifndef SQLITE_OMIT_SHARED_CACHE
1754 p->lock.pBtree = p;
1755 p->lock.iTable = 1;
1756#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001757
drh198bf392006-01-06 21:52:49 +00001758#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001759 /*
1760 ** If this Btree is a candidate for shared cache, try to find an
1761 ** existing BtShared object that we can share with
1762 */
drh75c014c2010-08-30 15:02:28 +00001763 if( isMemdb==0 && isTempDb==0 ){
drhf1f12682009-09-09 14:17:52 +00001764 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001765 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001766 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001767 sqlite3_mutex *mutexShared;
1768 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001769 if( !zFullPathname ){
1770 sqlite3_free(p);
1771 return SQLITE_NOMEM;
1772 }
danielk1977adfb9b02007-09-17 07:02:56 +00001773 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001774 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1775 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001776 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001777 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001778 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001779 assert( pBt->nRef>0 );
1780 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1781 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001782 int iDb;
1783 for(iDb=db->nDb-1; iDb>=0; iDb--){
1784 Btree *pExisting = db->aDb[iDb].pBt;
1785 if( pExisting && pExisting->pBt==pBt ){
1786 sqlite3_mutex_leave(mutexShared);
1787 sqlite3_mutex_leave(mutexOpen);
1788 sqlite3_free(zFullPathname);
1789 sqlite3_free(p);
1790 return SQLITE_CONSTRAINT;
1791 }
1792 }
drhff0587c2007-08-29 17:43:19 +00001793 p->pBt = pBt;
1794 pBt->nRef++;
1795 break;
1796 }
1797 }
1798 sqlite3_mutex_leave(mutexShared);
1799 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001800 }
drhff0587c2007-08-29 17:43:19 +00001801#ifdef SQLITE_DEBUG
1802 else{
1803 /* In debug mode, we mark all persistent databases as sharable
1804 ** even when they are not. This exercises the locking code and
1805 ** gives more opportunity for asserts(sqlite3_mutex_held())
1806 ** statements to find locking problems.
1807 */
1808 p->sharable = 1;
1809 }
1810#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001811 }
1812#endif
drha059ad02001-04-17 20:09:11 +00001813 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001814 /*
1815 ** The following asserts make sure that structures used by the btree are
1816 ** the right size. This is to guard against size changes that result
1817 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001818 */
drhe53831d2007-08-17 01:14:38 +00001819 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1820 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1821 assert( sizeof(u32)==4 );
1822 assert( sizeof(u16)==2 );
1823 assert( sizeof(Pgno)==4 );
1824
1825 pBt = sqlite3MallocZero( sizeof(*pBt) );
1826 if( pBt==0 ){
1827 rc = SQLITE_NOMEM;
1828 goto btree_open_out;
1829 }
danielk197771d5d2c2008-09-29 11:49:47 +00001830 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001831 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001832 if( rc==SQLITE_OK ){
1833 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1834 }
1835 if( rc!=SQLITE_OK ){
1836 goto btree_open_out;
1837 }
shanehbd2aaf92010-09-01 02:38:21 +00001838 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001839 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001840 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001841 p->pBt = pBt;
1842
drhe53831d2007-08-17 01:14:38 +00001843 pBt->pCursor = 0;
1844 pBt->pPage1 = 0;
1845 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
drh5b47efa2010-02-12 18:18:39 +00001846#ifdef SQLITE_SECURE_DELETE
1847 pBt->secureDelete = 1;
1848#endif
drhb2eced52010-08-12 02:41:12 +00001849 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001850 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1851 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001852 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001853#ifndef SQLITE_OMIT_AUTOVACUUM
1854 /* If the magic name ":memory:" will create an in-memory database, then
1855 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1856 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1857 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1858 ** regular file-name. In this case the auto-vacuum applies as per normal.
1859 */
1860 if( zFilename && !isMemdb ){
1861 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1862 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1863 }
1864#endif
1865 nReserve = 0;
1866 }else{
1867 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001868 pBt->pageSizeFixed = 1;
1869#ifndef SQLITE_OMIT_AUTOVACUUM
1870 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1871 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1872#endif
1873 }
drhfa9601a2009-06-18 17:22:39 +00001874 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001875 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001876 pBt->usableSize = pBt->pageSize - nReserve;
1877 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001878
1879#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1880 /* Add the new BtShared object to the linked list sharable BtShareds.
1881 */
1882 if( p->sharable ){
1883 sqlite3_mutex *mutexShared;
1884 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001885 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001886 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001887 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001888 if( pBt->mutex==0 ){
1889 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001890 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001891 goto btree_open_out;
1892 }
drhff0587c2007-08-29 17:43:19 +00001893 }
drhe53831d2007-08-17 01:14:38 +00001894 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001895 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1896 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001897 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001898 }
drheee46cf2004-11-06 00:02:48 +00001899#endif
drh90f5ecb2004-07-22 01:19:35 +00001900 }
danielk1977aef0bf62005-12-30 16:28:01 +00001901
drhcfed7bc2006-03-13 14:28:05 +00001902#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001903 /* If the new Btree uses a sharable pBtShared, then link the new
1904 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001905 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001906 */
drhe53831d2007-08-17 01:14:38 +00001907 if( p->sharable ){
1908 int i;
1909 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001910 for(i=0; i<db->nDb; i++){
1911 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001912 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1913 if( p->pBt<pSib->pBt ){
1914 p->pNext = pSib;
1915 p->pPrev = 0;
1916 pSib->pPrev = p;
1917 }else{
drhabddb0c2007-08-20 13:14:28 +00001918 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001919 pSib = pSib->pNext;
1920 }
1921 p->pNext = pSib->pNext;
1922 p->pPrev = pSib;
1923 if( p->pNext ){
1924 p->pNext->pPrev = p;
1925 }
1926 pSib->pNext = p;
1927 }
1928 break;
1929 }
1930 }
danielk1977aef0bf62005-12-30 16:28:01 +00001931 }
danielk1977aef0bf62005-12-30 16:28:01 +00001932#endif
1933 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001934
1935btree_open_out:
1936 if( rc!=SQLITE_OK ){
1937 if( pBt && pBt->pPager ){
1938 sqlite3PagerClose(pBt->pPager);
1939 }
drh17435752007-08-16 04:30:38 +00001940 sqlite3_free(pBt);
1941 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001942 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001943 }else{
1944 /* If the B-Tree was successfully opened, set the pager-cache size to the
1945 ** default value. Except, when opening on an existing shared pager-cache,
1946 ** do not change the pager-cache size.
1947 */
1948 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1949 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1950 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001951 }
drh7555d8e2009-03-20 13:15:30 +00001952 if( mutexOpen ){
1953 assert( sqlite3_mutex_held(mutexOpen) );
1954 sqlite3_mutex_leave(mutexOpen);
1955 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001956 return rc;
drha059ad02001-04-17 20:09:11 +00001957}
1958
1959/*
drhe53831d2007-08-17 01:14:38 +00001960** Decrement the BtShared.nRef counter. When it reaches zero,
1961** remove the BtShared structure from the sharing list. Return
1962** true if the BtShared.nRef counter reaches zero and return
1963** false if it is still positive.
1964*/
1965static int removeFromSharingList(BtShared *pBt){
1966#ifndef SQLITE_OMIT_SHARED_CACHE
1967 sqlite3_mutex *pMaster;
1968 BtShared *pList;
1969 int removed = 0;
1970
drhd677b3d2007-08-20 22:48:41 +00001971 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001972 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001973 sqlite3_mutex_enter(pMaster);
1974 pBt->nRef--;
1975 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001976 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1977 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001978 }else{
drh78f82d12008-09-02 00:52:52 +00001979 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001980 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001981 pList=pList->pNext;
1982 }
drh34004ce2008-07-11 16:15:17 +00001983 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001984 pList->pNext = pBt->pNext;
1985 }
1986 }
drh3285db22007-09-03 22:00:39 +00001987 if( SQLITE_THREADSAFE ){
1988 sqlite3_mutex_free(pBt->mutex);
1989 }
drhe53831d2007-08-17 01:14:38 +00001990 removed = 1;
1991 }
1992 sqlite3_mutex_leave(pMaster);
1993 return removed;
1994#else
1995 return 1;
1996#endif
1997}
1998
1999/*
drhf7141992008-06-19 00:16:08 +00002000** Make sure pBt->pTmpSpace points to an allocation of
2001** MX_CELL_SIZE(pBt) bytes.
2002*/
2003static void allocateTempSpace(BtShared *pBt){
2004 if( !pBt->pTmpSpace ){
2005 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2006 }
2007}
2008
2009/*
2010** Free the pBt->pTmpSpace allocation
2011*/
2012static void freeTempSpace(BtShared *pBt){
2013 sqlite3PageFree( pBt->pTmpSpace);
2014 pBt->pTmpSpace = 0;
2015}
2016
2017/*
drha059ad02001-04-17 20:09:11 +00002018** Close an open database and invalidate all cursors.
2019*/
danielk1977aef0bf62005-12-30 16:28:01 +00002020int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002021 BtShared *pBt = p->pBt;
2022 BtCursor *pCur;
2023
danielk1977aef0bf62005-12-30 16:28:01 +00002024 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002025 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002026 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002027 pCur = pBt->pCursor;
2028 while( pCur ){
2029 BtCursor *pTmp = pCur;
2030 pCur = pCur->pNext;
2031 if( pTmp->pBtree==p ){
2032 sqlite3BtreeCloseCursor(pTmp);
2033 }
drha059ad02001-04-17 20:09:11 +00002034 }
danielk1977aef0bf62005-12-30 16:28:01 +00002035
danielk19778d34dfd2006-01-24 16:37:57 +00002036 /* Rollback any active transaction and free the handle structure.
2037 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2038 ** this handle.
2039 */
danielk1977b597f742006-01-15 11:39:18 +00002040 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00002041 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002042
danielk1977aef0bf62005-12-30 16:28:01 +00002043 /* If there are still other outstanding references to the shared-btree
2044 ** structure, return now. The remainder of this procedure cleans
2045 ** up the shared-btree.
2046 */
drhe53831d2007-08-17 01:14:38 +00002047 assert( p->wantToLock==0 && p->locked==0 );
2048 if( !p->sharable || removeFromSharingList(pBt) ){
2049 /* The pBt is no longer on the sharing list, so we can access
2050 ** it without having to hold the mutex.
2051 **
2052 ** Clean out and delete the BtShared object.
2053 */
2054 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002055 sqlite3PagerClose(pBt->pPager);
2056 if( pBt->xFreeSchema && pBt->pSchema ){
2057 pBt->xFreeSchema(pBt->pSchema);
2058 }
drhb9755982010-07-24 16:34:37 +00002059 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002060 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002061 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002062 }
2063
drhe53831d2007-08-17 01:14:38 +00002064#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002065 assert( p->wantToLock==0 );
2066 assert( p->locked==0 );
2067 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2068 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002069#endif
2070
drhe53831d2007-08-17 01:14:38 +00002071 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002072 return SQLITE_OK;
2073}
2074
2075/*
drhda47d772002-12-02 04:25:19 +00002076** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002077**
2078** The maximum number of cache pages is set to the absolute
2079** value of mxPage. If mxPage is negative, the pager will
2080** operate asynchronously - it will not stop to do fsync()s
2081** to insure data is written to the disk surface before
2082** continuing. Transactions still work if synchronous is off,
2083** and the database cannot be corrupted if this program
2084** crashes. But if the operating system crashes or there is
2085** an abrupt power failure when synchronous is off, the database
2086** could be left in an inconsistent and unrecoverable state.
2087** Synchronous is on by default so database corruption is not
2088** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002089*/
danielk1977aef0bf62005-12-30 16:28:01 +00002090int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2091 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002092 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002093 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002094 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002095 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002096 return SQLITE_OK;
2097}
2098
2099/*
drh973b6e32003-02-12 14:09:42 +00002100** Change the way data is synced to disk in order to increase or decrease
2101** how well the database resists damage due to OS crashes and power
2102** failures. Level 1 is the same as asynchronous (no syncs() occur and
2103** there is a high probability of damage) Level 2 is the default. There
2104** is a very low but non-zero probability of damage. Level 3 reduces the
2105** probability of damage to near zero but with a write performance reduction.
2106*/
danielk197793758c82005-01-21 08:13:14 +00002107#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002108int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002109 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002110 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002111 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002112 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002113 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002114 return SQLITE_OK;
2115}
danielk197793758c82005-01-21 08:13:14 +00002116#endif
drh973b6e32003-02-12 14:09:42 +00002117
drh2c8997b2005-08-27 16:36:48 +00002118/*
2119** Return TRUE if the given btree is set to safety level 1. In other
2120** words, return TRUE if no sync() occurs on the disk files.
2121*/
danielk1977aef0bf62005-12-30 16:28:01 +00002122int sqlite3BtreeSyncDisabled(Btree *p){
2123 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002124 int rc;
drhe5fe6902007-12-07 18:55:28 +00002125 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002126 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002127 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002128 rc = sqlite3PagerNosync(pBt->pPager);
2129 sqlite3BtreeLeave(p);
2130 return rc;
drh2c8997b2005-08-27 16:36:48 +00002131}
2132
danielk1977576ec6b2005-01-21 11:55:25 +00002133#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002134/*
drh90f5ecb2004-07-22 01:19:35 +00002135** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002136** Or, if the page size has already been fixed, return SQLITE_READONLY
2137** without changing anything.
drh06f50212004-11-02 14:24:33 +00002138**
2139** The page size must be a power of 2 between 512 and 65536. If the page
2140** size supplied does not meet this constraint then the page size is not
2141** changed.
2142**
2143** Page sizes are constrained to be a power of two so that the region
2144** of the database file used for locking (beginning at PENDING_BYTE,
2145** the first byte past the 1GB boundary, 0x40000000) needs to occur
2146** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002147**
2148** If parameter nReserve is less than zero, then the number of reserved
2149** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002150**
2151** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2152** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002153*/
drhce4869f2009-04-02 20:16:58 +00002154int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002155 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002156 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002157 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002158 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002159 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002160 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002161 return SQLITE_READONLY;
2162 }
2163 if( nReserve<0 ){
2164 nReserve = pBt->pageSize - pBt->usableSize;
2165 }
drhf49661a2008-12-10 16:45:50 +00002166 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002167 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2168 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002169 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002170 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002171 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002172 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002173 }
drhfa9601a2009-06-18 17:22:39 +00002174 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002175 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002176 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002177 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002178 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002179}
2180
2181/*
2182** Return the currently defined page size
2183*/
danielk1977aef0bf62005-12-30 16:28:01 +00002184int sqlite3BtreeGetPageSize(Btree *p){
2185 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002186}
drh7f751222009-03-17 22:33:00 +00002187
2188/*
2189** Return the number of bytes of space at the end of every page that
2190** are intentually left unused. This is the "reserved" space that is
2191** sometimes used by extensions.
2192*/
danielk1977aef0bf62005-12-30 16:28:01 +00002193int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002194 int n;
2195 sqlite3BtreeEnter(p);
2196 n = p->pBt->pageSize - p->pBt->usableSize;
2197 sqlite3BtreeLeave(p);
2198 return n;
drh2011d5f2004-07-22 02:40:37 +00002199}
drhf8e632b2007-05-08 14:51:36 +00002200
2201/*
2202** Set the maximum page count for a database if mxPage is positive.
2203** No changes are made if mxPage is 0 or negative.
2204** Regardless of the value of mxPage, return the maximum page count.
2205*/
2206int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002207 int n;
2208 sqlite3BtreeEnter(p);
2209 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2210 sqlite3BtreeLeave(p);
2211 return n;
drhf8e632b2007-05-08 14:51:36 +00002212}
drh5b47efa2010-02-12 18:18:39 +00002213
2214/*
2215** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1,
2216** then make no changes. Always return the value of the secureDelete
2217** setting after the change.
2218*/
2219int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2220 int b;
drhaf034ed2010-02-12 19:46:26 +00002221 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002222 sqlite3BtreeEnter(p);
2223 if( newFlag>=0 ){
2224 p->pBt->secureDelete = (newFlag!=0) ? 1 : 0;
2225 }
2226 b = p->pBt->secureDelete;
2227 sqlite3BtreeLeave(p);
2228 return b;
2229}
danielk1977576ec6b2005-01-21 11:55:25 +00002230#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002231
2232/*
danielk1977951af802004-11-05 15:45:09 +00002233** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2234** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2235** is disabled. The default value for the auto-vacuum property is
2236** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2237*/
danielk1977aef0bf62005-12-30 16:28:01 +00002238int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002239#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002240 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002241#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002242 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002243 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002244 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002245
2246 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002247 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002248 rc = SQLITE_READONLY;
2249 }else{
drh076d4662009-02-18 20:31:18 +00002250 pBt->autoVacuum = av ?1:0;
2251 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002252 }
drhd677b3d2007-08-20 22:48:41 +00002253 sqlite3BtreeLeave(p);
2254 return rc;
danielk1977951af802004-11-05 15:45:09 +00002255#endif
2256}
2257
2258/*
2259** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2260** enabled 1 is returned. Otherwise 0.
2261*/
danielk1977aef0bf62005-12-30 16:28:01 +00002262int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002263#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002264 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002265#else
drhd677b3d2007-08-20 22:48:41 +00002266 int rc;
2267 sqlite3BtreeEnter(p);
2268 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002269 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2270 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2271 BTREE_AUTOVACUUM_INCR
2272 );
drhd677b3d2007-08-20 22:48:41 +00002273 sqlite3BtreeLeave(p);
2274 return rc;
danielk1977951af802004-11-05 15:45:09 +00002275#endif
2276}
2277
2278
2279/*
drha34b6762004-05-07 13:30:42 +00002280** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002281** also acquire a readlock on that file.
2282**
2283** SQLITE_OK is returned on success. If the file is not a
2284** well-formed database file, then SQLITE_CORRUPT is returned.
2285** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002286** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002287*/
danielk1977aef0bf62005-12-30 16:28:01 +00002288static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002289 int rc; /* Result code from subfunctions */
2290 MemPage *pPage1; /* Page 1 of the database file */
2291 int nPage; /* Number of pages in the database */
2292 int nPageFile = 0; /* Number of pages in the database file */
2293 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002294
drh1fee73e2007-08-29 04:00:57 +00002295 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002296 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002297 rc = sqlite3PagerSharedLock(pBt->pPager);
2298 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002299 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002300 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002301
2302 /* Do some checking to help insure the file we opened really is
2303 ** a valid database file.
2304 */
drhc2a4bab2010-04-02 12:46:45 +00002305 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002306 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002307 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002308 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002309 }
2310 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002311 u32 pageSize;
2312 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002313 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002314 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002315 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002316 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002317 }
dan5cf53532010-05-01 16:40:20 +00002318
2319#ifdef SQLITE_OMIT_WAL
2320 if( page1[18]>1 ){
2321 pBt->readOnly = 1;
2322 }
2323 if( page1[19]>1 ){
2324 goto page1_init_failed;
2325 }
2326#else
dane04dc882010-04-20 18:53:15 +00002327 if( page1[18]>2 ){
drh309169a2007-04-24 17:27:51 +00002328 pBt->readOnly = 1;
2329 }
dane04dc882010-04-20 18:53:15 +00002330 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002331 goto page1_init_failed;
2332 }
drhe5ae5732008-06-15 02:51:47 +00002333
dana470aeb2010-04-21 11:43:38 +00002334 /* If the write version is set to 2, this database should be accessed
2335 ** in WAL mode. If the log is not already open, open it now. Then
2336 ** return SQLITE_OK and return without populating BtShared.pPage1.
2337 ** The caller detects this and calls this function again. This is
2338 ** required as the version of page 1 currently in the page1 buffer
2339 ** may not be the latest version - there may be a newer one in the log
2340 ** file.
2341 */
danb9780022010-04-21 18:37:57 +00002342 if( page1[19]==2 && pBt->doNotUseWAL==0 ){
dane04dc882010-04-20 18:53:15 +00002343 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002344 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002345 if( rc!=SQLITE_OK ){
2346 goto page1_init_failed;
2347 }else if( isOpen==0 ){
2348 releasePage(pPage1);
2349 return SQLITE_OK;
2350 }
dan8b5444b2010-04-27 14:37:47 +00002351 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002352 }
dan5cf53532010-05-01 16:40:20 +00002353#endif
dane04dc882010-04-20 18:53:15 +00002354
drhe5ae5732008-06-15 02:51:47 +00002355 /* The maximum embedded fraction must be exactly 25%. And the minimum
2356 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2357 ** The original design allowed these amounts to vary, but as of
2358 ** version 3.6.0, we require them to be fixed.
2359 */
2360 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2361 goto page1_init_failed;
2362 }
drhb2eced52010-08-12 02:41:12 +00002363 pageSize = (page1[16]<<8) | (page1[17]<<16);
2364 if( ((pageSize-1)&pageSize)!=0
2365 || pageSize>SQLITE_MAX_PAGE_SIZE
2366 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002367 ){
drh07d183d2005-05-01 22:52:42 +00002368 goto page1_init_failed;
2369 }
2370 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002371 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002372 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002373 /* After reading the first page of the database assuming a page size
2374 ** of BtShared.pageSize, we have discovered that the page-size is
2375 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2376 ** zero and return SQLITE_OK. The caller will call this function
2377 ** again with the correct page-size.
2378 */
2379 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002380 pBt->usableSize = usableSize;
2381 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002382 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002383 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2384 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002385 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002386 }
drhc2a4bab2010-04-02 12:46:45 +00002387 if( nPageHeader>nPageFile ){
2388 rc = SQLITE_CORRUPT_BKPT;
2389 goto page1_init_failed;
2390 }
drhb33e1b92009-06-18 11:29:20 +00002391 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002392 goto page1_init_failed;
2393 }
drh43b18e12010-08-17 19:40:08 +00002394 pBt->pageSize = pageSize;
2395 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002396#ifndef SQLITE_OMIT_AUTOVACUUM
2397 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002398 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002399#endif
drh306dc212001-05-21 13:45:10 +00002400 }
drhb6f41482004-05-14 01:58:11 +00002401
2402 /* maxLocal is the maximum amount of payload to store locally for
2403 ** a cell. Make sure it is small enough so that at least minFanout
2404 ** cells can will fit on one page. We assume a 10-byte page header.
2405 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002406 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002407 ** 4-byte child pointer
2408 ** 9-byte nKey value
2409 ** 4-byte nData value
2410 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002411 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002412 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2413 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002414 */
shaneh1df2db72010-08-18 02:28:48 +00002415 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2416 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2417 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2418 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drh2e38c322004-09-03 18:38:44 +00002419 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002420 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002421 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002422 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002423
drh72f82862001-05-24 21:06:34 +00002424page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002425 releasePage(pPage1);
2426 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002427 return rc;
drh306dc212001-05-21 13:45:10 +00002428}
2429
2430/*
drhb8ca3072001-12-05 00:21:20 +00002431** If there are no outstanding cursors and we are not in the middle
2432** of a transaction but there is a read lock on the database, then
2433** this routine unrefs the first page of the database file which
2434** has the effect of releasing the read lock.
2435**
drhb8ca3072001-12-05 00:21:20 +00002436** If there is a transaction in progress, this routine is a no-op.
2437*/
danielk1977aef0bf62005-12-30 16:28:01 +00002438static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002439 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002440 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2441 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002442 assert( pBt->pPage1->aData );
2443 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2444 assert( pBt->pPage1->aData );
2445 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002446 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002447 }
2448}
2449
2450/*
drhe39f2f92009-07-23 01:43:59 +00002451** If pBt points to an empty file then convert that empty file
2452** into a new empty database by initializing the first page of
2453** the database.
drh8b2f49b2001-06-08 00:21:52 +00002454*/
danielk1977aef0bf62005-12-30 16:28:01 +00002455static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002456 MemPage *pP1;
2457 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002458 int rc;
drhd677b3d2007-08-20 22:48:41 +00002459
drh1fee73e2007-08-29 04:00:57 +00002460 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002461 if( pBt->nPage>0 ){
2462 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002463 }
drh3aac2dd2004-04-26 14:10:20 +00002464 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002465 assert( pP1!=0 );
2466 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002467 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002468 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002469 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2470 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002471 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2472 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002473 data[18] = 1;
2474 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002475 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2476 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002477 data[21] = 64;
2478 data[22] = 32;
2479 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002480 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002481 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002482 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002483#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002484 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002485 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002486 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002487 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002488#endif
drhdd3cd972010-03-27 17:12:36 +00002489 pBt->nPage = 1;
2490 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002491 return SQLITE_OK;
2492}
2493
2494/*
danielk1977ee5741e2004-05-31 10:01:34 +00002495** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002496** is started if the second argument is nonzero, otherwise a read-
2497** transaction. If the second argument is 2 or more and exclusive
2498** transaction is started, meaning that no other process is allowed
2499** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002500** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002501** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002502**
danielk1977ee5741e2004-05-31 10:01:34 +00002503** A write-transaction must be started before attempting any
2504** changes to the database. None of the following routines
2505** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002506**
drh23e11ca2004-05-04 17:27:28 +00002507** sqlite3BtreeCreateTable()
2508** sqlite3BtreeCreateIndex()
2509** sqlite3BtreeClearTable()
2510** sqlite3BtreeDropTable()
2511** sqlite3BtreeInsert()
2512** sqlite3BtreeDelete()
2513** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002514**
drhb8ef32c2005-03-14 02:01:49 +00002515** If an initial attempt to acquire the lock fails because of lock contention
2516** and the database was previously unlocked, then invoke the busy handler
2517** if there is one. But if there was previously a read-lock, do not
2518** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2519** returned when there is already a read-lock in order to avoid a deadlock.
2520**
2521** Suppose there are two processes A and B. A has a read lock and B has
2522** a reserved lock. B tries to promote to exclusive but is blocked because
2523** of A's read lock. A tries to promote to reserved but is blocked by B.
2524** One or the other of the two processes must give way or there can be
2525** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2526** when A already has a read lock, we encourage A to give up and let B
2527** proceed.
drha059ad02001-04-17 20:09:11 +00002528*/
danielk1977aef0bf62005-12-30 16:28:01 +00002529int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002530 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002531 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002532 int rc = SQLITE_OK;
2533
drhd677b3d2007-08-20 22:48:41 +00002534 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002535 btreeIntegrity(p);
2536
danielk1977ee5741e2004-05-31 10:01:34 +00002537 /* If the btree is already in a write-transaction, or it
2538 ** is already in a read-transaction and a read-transaction
2539 ** is requested, this is a no-op.
2540 */
danielk1977aef0bf62005-12-30 16:28:01 +00002541 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002542 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002543 }
drhb8ef32c2005-03-14 02:01:49 +00002544
2545 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002546 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002547 rc = SQLITE_READONLY;
2548 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002549 }
2550
danielk1977404ca072009-03-16 13:19:36 +00002551#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002552 /* If another database handle has already opened a write transaction
2553 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002554 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002555 */
danielk1977404ca072009-03-16 13:19:36 +00002556 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2557 pBlock = pBt->pWriter->db;
2558 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002559 BtLock *pIter;
2560 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2561 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002562 pBlock = pIter->pBtree->db;
2563 break;
danielk1977641b0f42007-12-21 04:47:25 +00002564 }
2565 }
2566 }
danielk1977404ca072009-03-16 13:19:36 +00002567 if( pBlock ){
2568 sqlite3ConnectionBlocked(p->db, pBlock);
2569 rc = SQLITE_LOCKED_SHAREDCACHE;
2570 goto trans_begun;
2571 }
danielk1977641b0f42007-12-21 04:47:25 +00002572#endif
2573
danielk1977602b4662009-07-02 07:47:33 +00002574 /* Any read-only or read-write transaction implies a read-lock on
2575 ** page 1. So if some other shared-cache client already has a write-lock
2576 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002577 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2578 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002579
shaneh5eba1f62010-07-02 17:05:03 +00002580 pBt->initiallyEmpty = (u8)(pBt->nPage==0);
drhb8ef32c2005-03-14 02:01:49 +00002581 do {
danielk1977295dc102009-04-01 19:07:03 +00002582 /* Call lockBtree() until either pBt->pPage1 is populated or
2583 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2584 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2585 ** reading page 1 it discovers that the page-size of the database
2586 ** file is not pBt->pageSize. In this case lockBtree() will update
2587 ** pBt->pageSize to the page-size of the file on disk.
2588 */
2589 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002590
drhb8ef32c2005-03-14 02:01:49 +00002591 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002592 if( pBt->readOnly ){
2593 rc = SQLITE_READONLY;
2594 }else{
danielk1977d8293352009-04-30 09:10:37 +00002595 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002596 if( rc==SQLITE_OK ){
2597 rc = newDatabase(pBt);
2598 }
drhb8ef32c2005-03-14 02:01:49 +00002599 }
2600 }
2601
danielk1977bd434552009-03-18 10:33:00 +00002602 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002603 unlockBtreeIfUnused(pBt);
2604 }
danf9b76712010-06-01 14:12:45 +00002605 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002606 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002607
2608 if( rc==SQLITE_OK ){
2609 if( p->inTrans==TRANS_NONE ){
2610 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002611#ifndef SQLITE_OMIT_SHARED_CACHE
2612 if( p->sharable ){
2613 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2614 p->lock.eLock = READ_LOCK;
2615 p->lock.pNext = pBt->pLock;
2616 pBt->pLock = &p->lock;
2617 }
2618#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002619 }
2620 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2621 if( p->inTrans>pBt->inTransaction ){
2622 pBt->inTransaction = p->inTrans;
2623 }
danielk1977404ca072009-03-16 13:19:36 +00002624 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002625 MemPage *pPage1 = pBt->pPage1;
2626#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002627 assert( !pBt->pWriter );
2628 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002629 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002630#endif
dan59257dc2010-08-04 11:34:31 +00002631
2632 /* If the db-size header field is incorrect (as it may be if an old
2633 ** client has been writing the database file), update it now. Doing
2634 ** this sooner rather than later means the database size can safely
2635 ** re-read the database size from page 1 if a savepoint or transaction
2636 ** rollback occurs within the transaction.
2637 */
2638 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2639 rc = sqlite3PagerWrite(pPage1->pDbPage);
2640 if( rc==SQLITE_OK ){
2641 put4byte(&pPage1->aData[28], pBt->nPage);
2642 }
2643 }
2644 }
danielk1977aef0bf62005-12-30 16:28:01 +00002645 }
2646
drhd677b3d2007-08-20 22:48:41 +00002647
2648trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002649 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002650 /* This call makes sure that the pager has the correct number of
2651 ** open savepoints. If the second parameter is greater than 0 and
2652 ** the sub-journal is not already open, then it will be opened here.
2653 */
danielk1977fd7f0452008-12-17 17:30:26 +00002654 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2655 }
danielk197712dd5492008-12-18 15:45:07 +00002656
danielk1977aef0bf62005-12-30 16:28:01 +00002657 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002658 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002659 return rc;
drha059ad02001-04-17 20:09:11 +00002660}
2661
danielk1977687566d2004-11-02 12:56:41 +00002662#ifndef SQLITE_OMIT_AUTOVACUUM
2663
2664/*
2665** Set the pointer-map entries for all children of page pPage. Also, if
2666** pPage contains cells that point to overflow pages, set the pointer
2667** map entries for the overflow pages as well.
2668*/
2669static int setChildPtrmaps(MemPage *pPage){
2670 int i; /* Counter variable */
2671 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002672 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002673 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002674 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002675 Pgno pgno = pPage->pgno;
2676
drh1fee73e2007-08-29 04:00:57 +00002677 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002678 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002679 if( rc!=SQLITE_OK ){
2680 goto set_child_ptrmaps_out;
2681 }
danielk1977687566d2004-11-02 12:56:41 +00002682 nCell = pPage->nCell;
2683
2684 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002685 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002686
drh98add2e2009-07-20 17:11:49 +00002687 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002688
danielk1977687566d2004-11-02 12:56:41 +00002689 if( !pPage->leaf ){
2690 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002691 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002692 }
2693 }
2694
2695 if( !pPage->leaf ){
2696 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002697 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002698 }
2699
2700set_child_ptrmaps_out:
2701 pPage->isInit = isInitOrig;
2702 return rc;
2703}
2704
2705/*
drhf3aed592009-07-08 18:12:49 +00002706** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2707** that it points to iTo. Parameter eType describes the type of pointer to
2708** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002709**
2710** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2711** page of pPage.
2712**
2713** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2714** page pointed to by one of the cells on pPage.
2715**
2716** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2717** overflow page in the list.
2718*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002719static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002720 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002721 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002722 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002723 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002724 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002725 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002726 }
danielk1977f78fc082004-11-02 14:40:32 +00002727 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002728 }else{
drhf49661a2008-12-10 16:45:50 +00002729 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002730 int i;
2731 int nCell;
2732
danielk197730548662009-07-09 05:07:37 +00002733 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002734 nCell = pPage->nCell;
2735
danielk1977687566d2004-11-02 12:56:41 +00002736 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002737 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002738 if( eType==PTRMAP_OVERFLOW1 ){
2739 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002740 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002741 if( info.iOverflow ){
2742 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2743 put4byte(&pCell[info.iOverflow], iTo);
2744 break;
2745 }
2746 }
2747 }else{
2748 if( get4byte(pCell)==iFrom ){
2749 put4byte(pCell, iTo);
2750 break;
2751 }
2752 }
2753 }
2754
2755 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002756 if( eType!=PTRMAP_BTREE ||
2757 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002758 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002759 }
danielk1977687566d2004-11-02 12:56:41 +00002760 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2761 }
2762
2763 pPage->isInit = isInitOrig;
2764 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002765 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002766}
2767
danielk1977003ba062004-11-04 02:57:33 +00002768
danielk19777701e812005-01-10 12:59:51 +00002769/*
2770** Move the open database page pDbPage to location iFreePage in the
2771** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002772**
2773** The isCommit flag indicates that there is no need to remember that
2774** the journal needs to be sync()ed before database page pDbPage->pgno
2775** can be written to. The caller has already promised not to write to that
2776** page.
danielk19777701e812005-01-10 12:59:51 +00002777*/
danielk1977003ba062004-11-04 02:57:33 +00002778static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002779 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002780 MemPage *pDbPage, /* Open page to move */
2781 u8 eType, /* Pointer map 'type' entry for pDbPage */
2782 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002783 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002784 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002785){
2786 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2787 Pgno iDbPage = pDbPage->pgno;
2788 Pager *pPager = pBt->pPager;
2789 int rc;
2790
danielk1977a0bf2652004-11-04 14:30:04 +00002791 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2792 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002793 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002794 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002795
drh85b623f2007-12-13 21:54:09 +00002796 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002797 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2798 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002799 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002800 if( rc!=SQLITE_OK ){
2801 return rc;
2802 }
2803 pDbPage->pgno = iFreePage;
2804
2805 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2806 ** that point to overflow pages. The pointer map entries for all these
2807 ** pages need to be changed.
2808 **
2809 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2810 ** pointer to a subsequent overflow page. If this is the case, then
2811 ** the pointer map needs to be updated for the subsequent overflow page.
2812 */
danielk1977a0bf2652004-11-04 14:30:04 +00002813 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002814 rc = setChildPtrmaps(pDbPage);
2815 if( rc!=SQLITE_OK ){
2816 return rc;
2817 }
2818 }else{
2819 Pgno nextOvfl = get4byte(pDbPage->aData);
2820 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002821 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002822 if( rc!=SQLITE_OK ){
2823 return rc;
2824 }
2825 }
2826 }
2827
2828 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2829 ** that it points at iFreePage. Also fix the pointer map entry for
2830 ** iPtrPage.
2831 */
danielk1977a0bf2652004-11-04 14:30:04 +00002832 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002833 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002834 if( rc!=SQLITE_OK ){
2835 return rc;
2836 }
danielk19773b8a05f2007-03-19 17:44:26 +00002837 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002838 if( rc!=SQLITE_OK ){
2839 releasePage(pPtrPage);
2840 return rc;
2841 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002842 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002843 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002844 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002845 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002846 }
danielk1977003ba062004-11-04 02:57:33 +00002847 }
danielk1977003ba062004-11-04 02:57:33 +00002848 return rc;
2849}
2850
danielk1977dddbcdc2007-04-26 14:42:34 +00002851/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002852static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002853
2854/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002855** Perform a single step of an incremental-vacuum. If successful,
2856** return SQLITE_OK. If there is no work to do (and therefore no
2857** point in calling this function again), return SQLITE_DONE.
2858**
2859** More specificly, this function attempts to re-organize the
2860** database so that the last page of the file currently in use
2861** is no longer in use.
2862**
drhea8ffdf2009-07-22 00:35:23 +00002863** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002864** that the caller will keep calling incrVacuumStep() until
2865** it returns SQLITE_DONE or an error, and that nFin is the
2866** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002867** process is complete. If nFin is zero, it is assumed that
2868** incrVacuumStep() will be called a finite amount of times
2869** which may or may not empty the freelist. A full autovacuum
2870** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002871*/
danielk19773460d192008-12-27 15:23:13 +00002872static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002873 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002874 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002875
drh1fee73e2007-08-29 04:00:57 +00002876 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002877 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002878
2879 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002880 u8 eType;
2881 Pgno iPtrPage;
2882
2883 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002884 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002885 return SQLITE_DONE;
2886 }
2887
2888 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2889 if( rc!=SQLITE_OK ){
2890 return rc;
2891 }
2892 if( eType==PTRMAP_ROOTPAGE ){
2893 return SQLITE_CORRUPT_BKPT;
2894 }
2895
2896 if( eType==PTRMAP_FREEPAGE ){
2897 if( nFin==0 ){
2898 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002899 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002900 ** truncated to zero after this function returns, so it doesn't
2901 ** matter if it still contains some garbage entries.
2902 */
2903 Pgno iFreePg;
2904 MemPage *pFreePg;
2905 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2906 if( rc!=SQLITE_OK ){
2907 return rc;
2908 }
2909 assert( iFreePg==iLastPg );
2910 releasePage(pFreePg);
2911 }
2912 } else {
2913 Pgno iFreePg; /* Index of free page to move pLastPg to */
2914 MemPage *pLastPg;
2915
danielk197730548662009-07-09 05:07:37 +00002916 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002917 if( rc!=SQLITE_OK ){
2918 return rc;
2919 }
2920
danielk1977b4626a32007-04-28 15:47:43 +00002921 /* If nFin is zero, this loop runs exactly once and page pLastPg
2922 ** is swapped with the first free page pulled off the free list.
2923 **
2924 ** On the other hand, if nFin is greater than zero, then keep
2925 ** looping until a free-page located within the first nFin pages
2926 ** of the file is found.
2927 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002928 do {
2929 MemPage *pFreePg;
2930 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2931 if( rc!=SQLITE_OK ){
2932 releasePage(pLastPg);
2933 return rc;
2934 }
2935 releasePage(pFreePg);
2936 }while( nFin!=0 && iFreePg>nFin );
2937 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002938
2939 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002940 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002941 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002942 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002943 releasePage(pLastPg);
2944 if( rc!=SQLITE_OK ){
2945 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002946 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002947 }
2948 }
2949
danielk19773460d192008-12-27 15:23:13 +00002950 if( nFin==0 ){
2951 iLastPg--;
2952 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002953 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2954 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002955 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002956 if( rc!=SQLITE_OK ){
2957 return rc;
2958 }
2959 rc = sqlite3PagerWrite(pPg->pDbPage);
2960 releasePage(pPg);
2961 if( rc!=SQLITE_OK ){
2962 return rc;
2963 }
2964 }
danielk19773460d192008-12-27 15:23:13 +00002965 iLastPg--;
2966 }
2967 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002968 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002969 }
2970 return SQLITE_OK;
2971}
2972
2973/*
2974** A write-transaction must be opened before calling this function.
2975** It performs a single unit of work towards an incremental vacuum.
2976**
2977** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002978** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002979** SQLITE_OK is returned. Otherwise an SQLite error code.
2980*/
2981int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002982 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002983 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002984
2985 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002986 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2987 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002988 rc = SQLITE_DONE;
2989 }else{
2990 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00002991 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00002992 if( rc==SQLITE_OK ){
2993 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2994 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
2995 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002996 }
drhd677b3d2007-08-20 22:48:41 +00002997 sqlite3BtreeLeave(p);
2998 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002999}
3000
3001/*
danielk19773b8a05f2007-03-19 17:44:26 +00003002** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003003** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003004**
3005** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3006** the database file should be truncated to during the commit process.
3007** i.e. the database has been reorganized so that only the first *pnTrunc
3008** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003009*/
danielk19773460d192008-12-27 15:23:13 +00003010static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003011 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003012 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003013 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003014
drh1fee73e2007-08-29 04:00:57 +00003015 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003016 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003017 assert(pBt->autoVacuum);
3018 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003019 Pgno nFin; /* Number of pages in database after autovacuuming */
3020 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003021 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3022 Pgno iFree; /* The next page to be freed */
3023 int nEntry; /* Number of entries on one ptrmap page */
3024 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003025
drhb1299152010-03-30 22:58:33 +00003026 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003027 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3028 /* It is not possible to create a database for which the final page
3029 ** is either a pointer-map page or the pending-byte page. If one
3030 ** is encountered, this indicates corruption.
3031 */
danielk19773460d192008-12-27 15:23:13 +00003032 return SQLITE_CORRUPT_BKPT;
3033 }
danielk1977ef165ce2009-04-06 17:50:03 +00003034
danielk19773460d192008-12-27 15:23:13 +00003035 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00003036 nEntry = pBt->usableSize/5;
3037 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00003038 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00003039 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00003040 nFin--;
3041 }
3042 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3043 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00003044 }
drhc5e47ac2009-06-04 00:11:56 +00003045 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003046
danielk19773460d192008-12-27 15:23:13 +00003047 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3048 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00003049 }
danielk19773460d192008-12-27 15:23:13 +00003050 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003051 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3052 put4byte(&pBt->pPage1->aData[32], 0);
3053 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003054 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00003055 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00003056 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003057 }
3058 if( rc!=SQLITE_OK ){
3059 sqlite3PagerRollback(pPager);
3060 }
danielk1977687566d2004-11-02 12:56:41 +00003061 }
3062
danielk19773b8a05f2007-03-19 17:44:26 +00003063 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003064 return rc;
3065}
danielk1977dddbcdc2007-04-26 14:42:34 +00003066
danielk1977a50d9aa2009-06-08 14:49:45 +00003067#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3068# define setChildPtrmaps(x) SQLITE_OK
3069#endif
danielk1977687566d2004-11-02 12:56:41 +00003070
3071/*
drh80e35f42007-03-30 14:06:34 +00003072** This routine does the first phase of a two-phase commit. This routine
3073** causes a rollback journal to be created (if it does not already exist)
3074** and populated with enough information so that if a power loss occurs
3075** the database can be restored to its original state by playing back
3076** the journal. Then the contents of the journal are flushed out to
3077** the disk. After the journal is safely on oxide, the changes to the
3078** database are written into the database file and flushed to oxide.
3079** At the end of this call, the rollback journal still exists on the
3080** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003081** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003082** commit process.
3083**
3084** This call is a no-op if no write-transaction is currently active on pBt.
3085**
3086** Otherwise, sync the database file for the btree pBt. zMaster points to
3087** the name of a master journal file that should be written into the
3088** individual journal file, or is NULL, indicating no master journal file
3089** (single database transaction).
3090**
3091** When this is called, the master journal should already have been
3092** created, populated with this journal pointer and synced to disk.
3093**
3094** Once this is routine has returned, the only thing required to commit
3095** the write-transaction for this database file is to delete the journal.
3096*/
3097int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3098 int rc = SQLITE_OK;
3099 if( p->inTrans==TRANS_WRITE ){
3100 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003101 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003102#ifndef SQLITE_OMIT_AUTOVACUUM
3103 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003104 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003105 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003106 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003107 return rc;
3108 }
3109 }
3110#endif
drh49b9d332009-01-02 18:10:42 +00003111 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003112 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003113 }
3114 return rc;
3115}
3116
3117/*
danielk197794b30732009-07-02 17:21:57 +00003118** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3119** at the conclusion of a transaction.
3120*/
3121static void btreeEndTransaction(Btree *p){
3122 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003123 assert( sqlite3BtreeHoldsMutex(p) );
3124
danielk197794b30732009-07-02 17:21:57 +00003125 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003126 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3127 /* If there are other active statements that belong to this database
3128 ** handle, downgrade to a read-only transaction. The other statements
3129 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003130 downgradeAllSharedCacheTableLocks(p);
3131 p->inTrans = TRANS_READ;
3132 }else{
3133 /* If the handle had any kind of transaction open, decrement the
3134 ** transaction count of the shared btree. If the transaction count
3135 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3136 ** call below will unlock the pager. */
3137 if( p->inTrans!=TRANS_NONE ){
3138 clearAllSharedCacheTableLocks(p);
3139 pBt->nTransaction--;
3140 if( 0==pBt->nTransaction ){
3141 pBt->inTransaction = TRANS_NONE;
3142 }
3143 }
3144
3145 /* Set the current transaction state to TRANS_NONE and unlock the
3146 ** pager if this call closed the only read or write transaction. */
3147 p->inTrans = TRANS_NONE;
3148 unlockBtreeIfUnused(pBt);
3149 }
3150
3151 btreeIntegrity(p);
3152}
3153
3154/*
drh2aa679f2001-06-25 02:11:07 +00003155** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003156**
drh6e345992007-03-30 11:12:08 +00003157** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003158** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3159** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3160** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003161** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003162** routine has to do is delete or truncate or zero the header in the
3163** the rollback journal (which causes the transaction to commit) and
3164** drop locks.
drh6e345992007-03-30 11:12:08 +00003165**
drh5e00f6c2001-09-13 13:46:56 +00003166** This will release the write lock on the database file. If there
3167** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003168*/
drh80e35f42007-03-30 14:06:34 +00003169int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003170
drh075ed302010-10-14 01:17:30 +00003171 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003172 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003173 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003174
3175 /* If the handle has a write-transaction open, commit the shared-btrees
3176 ** transaction and set the shared state to TRANS_READ.
3177 */
3178 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003179 int rc;
drh075ed302010-10-14 01:17:30 +00003180 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003181 assert( pBt->inTransaction==TRANS_WRITE );
3182 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003183 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003184 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003185 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003186 return rc;
3187 }
danielk1977aef0bf62005-12-30 16:28:01 +00003188 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003189 }
danielk1977aef0bf62005-12-30 16:28:01 +00003190
danielk197794b30732009-07-02 17:21:57 +00003191 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003192 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003193 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003194}
3195
drh80e35f42007-03-30 14:06:34 +00003196/*
3197** Do both phases of a commit.
3198*/
3199int sqlite3BtreeCommit(Btree *p){
3200 int rc;
drhd677b3d2007-08-20 22:48:41 +00003201 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003202 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3203 if( rc==SQLITE_OK ){
3204 rc = sqlite3BtreeCommitPhaseTwo(p);
3205 }
drhd677b3d2007-08-20 22:48:41 +00003206 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003207 return rc;
3208}
3209
danielk1977fbcd5852004-06-15 02:44:18 +00003210#ifndef NDEBUG
3211/*
3212** Return the number of write-cursors open on this handle. This is for use
3213** in assert() expressions, so it is only compiled if NDEBUG is not
3214** defined.
drhfb982642007-08-30 01:19:59 +00003215**
3216** For the purposes of this routine, a write-cursor is any cursor that
3217** is capable of writing to the databse. That means the cursor was
3218** originally opened for writing and the cursor has not be disabled
3219** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003220*/
danielk1977aef0bf62005-12-30 16:28:01 +00003221static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003222 BtCursor *pCur;
3223 int r = 0;
3224 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003225 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003226 }
3227 return r;
3228}
3229#endif
3230
drhc39e0002004-05-07 23:50:57 +00003231/*
drhfb982642007-08-30 01:19:59 +00003232** This routine sets the state to CURSOR_FAULT and the error
3233** code to errCode for every cursor on BtShared that pBtree
3234** references.
3235**
3236** Every cursor is tripped, including cursors that belong
3237** to other database connections that happen to be sharing
3238** the cache with pBtree.
3239**
3240** This routine gets called when a rollback occurs.
3241** All cursors using the same cache must be tripped
3242** to prevent them from trying to use the btree after
3243** the rollback. The rollback may have deleted tables
3244** or moved root pages, so it is not sufficient to
3245** save the state of the cursor. The cursor must be
3246** invalidated.
3247*/
3248void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3249 BtCursor *p;
3250 sqlite3BtreeEnter(pBtree);
3251 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003252 int i;
danielk1977be51a652008-10-08 17:58:48 +00003253 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003254 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003255 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003256 for(i=0; i<=p->iPage; i++){
3257 releasePage(p->apPage[i]);
3258 p->apPage[i] = 0;
3259 }
drhfb982642007-08-30 01:19:59 +00003260 }
3261 sqlite3BtreeLeave(pBtree);
3262}
3263
3264/*
drhecdc7532001-09-23 02:35:53 +00003265** Rollback the transaction in progress. All cursors will be
3266** invalided by this operation. Any attempt to use a cursor
3267** that was open at the beginning of this operation will result
3268** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003269**
3270** This will release the write lock on the database file. If there
3271** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003272*/
danielk1977aef0bf62005-12-30 16:28:01 +00003273int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003274 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003275 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003276 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003277
drhd677b3d2007-08-20 22:48:41 +00003278 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003279 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003280#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003281 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003282 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003283 ** trying to save cursor positions. If this is an automatic rollback (as
3284 ** the result of a constraint, malloc() failure or IO error) then
3285 ** the cache may be internally inconsistent (not contain valid trees) so
3286 ** we cannot simply return the error to the caller. Instead, abort
3287 ** all queries that may be using any of the cursors that failed to save.
3288 */
drhfb982642007-08-30 01:19:59 +00003289 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003290 }
danielk19778d34dfd2006-01-24 16:37:57 +00003291#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003292 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003293
3294 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003295 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003296
danielk19778d34dfd2006-01-24 16:37:57 +00003297 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003298 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003299 if( rc2!=SQLITE_OK ){
3300 rc = rc2;
3301 }
3302
drh24cd67e2004-05-10 16:18:47 +00003303 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003304 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003305 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003306 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003307 int nPage = get4byte(28+(u8*)pPage1->aData);
3308 testcase( nPage==0 );
3309 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3310 testcase( pBt->nPage!=nPage );
3311 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003312 releasePage(pPage1);
3313 }
danielk1977fbcd5852004-06-15 02:44:18 +00003314 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003315 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003316 }
danielk1977aef0bf62005-12-30 16:28:01 +00003317
danielk197794b30732009-07-02 17:21:57 +00003318 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003319 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003320 return rc;
3321}
3322
3323/*
danielk1977bd434552009-03-18 10:33:00 +00003324** Start a statement subtransaction. The subtransaction can can be rolled
3325** back independently of the main transaction. You must start a transaction
3326** before starting a subtransaction. The subtransaction is ended automatically
3327** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003328**
3329** Statement subtransactions are used around individual SQL statements
3330** that are contained within a BEGIN...COMMIT block. If a constraint
3331** error occurs within the statement, the effect of that one statement
3332** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003333**
3334** A statement sub-transaction is implemented as an anonymous savepoint. The
3335** value passed as the second parameter is the total number of savepoints,
3336** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3337** are no active savepoints and no other statement-transactions open,
3338** iStatement is 1. This anonymous savepoint can be released or rolled back
3339** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003340*/
danielk1977bd434552009-03-18 10:33:00 +00003341int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003342 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003343 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003344 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003345 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003346 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003347 assert( iStatement>0 );
3348 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003349 assert( pBt->inTransaction==TRANS_WRITE );
3350 /* At the pager level, a statement transaction is a savepoint with
3351 ** an index greater than all savepoints created explicitly using
3352 ** SQL statements. It is illegal to open, release or rollback any
3353 ** such savepoints while the statement transaction savepoint is active.
3354 */
3355 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003356 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003357 return rc;
3358}
3359
3360/*
danielk1977fd7f0452008-12-17 17:30:26 +00003361** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3362** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003363** savepoint identified by parameter iSavepoint, depending on the value
3364** of op.
3365**
3366** Normally, iSavepoint is greater than or equal to zero. However, if op is
3367** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3368** contents of the entire transaction are rolled back. This is different
3369** from a normal transaction rollback, as no locks are released and the
3370** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003371*/
3372int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3373 int rc = SQLITE_OK;
3374 if( p && p->inTrans==TRANS_WRITE ){
3375 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003376 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3377 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3378 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003379 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003380 if( rc==SQLITE_OK ){
drh25a80ad2010-03-29 21:13:12 +00003381 if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0;
drh9f0bbf92009-01-02 21:08:09 +00003382 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003383 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003384
3385 /* The database size was written into the offset 28 of the header
3386 ** when the transaction started, so we know that the value at offset
3387 ** 28 is nonzero. */
3388 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003389 }
danielk1977fd7f0452008-12-17 17:30:26 +00003390 sqlite3BtreeLeave(p);
3391 }
3392 return rc;
3393}
3394
3395/*
drh8b2f49b2001-06-08 00:21:52 +00003396** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003397** iTable. If a read-only cursor is requested, it is assumed that
3398** the caller already has at least a read-only transaction open
3399** on the database already. If a write-cursor is requested, then
3400** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003401**
3402** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003403** If wrFlag==1, then the cursor can be used for reading or for
3404** writing if other conditions for writing are also met. These
3405** are the conditions that must be met in order for writing to
3406** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003407**
drhf74b8d92002-09-01 23:20:45 +00003408** 1: The cursor must have been opened with wrFlag==1
3409**
drhfe5d71d2007-03-19 11:54:10 +00003410** 2: Other database connections that share the same pager cache
3411** but which are not in the READ_UNCOMMITTED state may not have
3412** cursors open with wrFlag==0 on the same table. Otherwise
3413** the changes made by this write cursor would be visible to
3414** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003415**
3416** 3: The database must be writable (not on read-only media)
3417**
3418** 4: There must be an active transaction.
3419**
drh6446c4d2001-12-15 14:22:18 +00003420** No checking is done to make sure that page iTable really is the
3421** root page of a b-tree. If it is not, then the cursor acquired
3422** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003423**
drhf25a5072009-11-18 23:01:25 +00003424** It is assumed that the sqlite3BtreeCursorZero() has been called
3425** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003426*/
drhd677b3d2007-08-20 22:48:41 +00003427static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003428 Btree *p, /* The btree */
3429 int iTable, /* Root page of table to open */
3430 int wrFlag, /* 1 to write. 0 read-only */
3431 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3432 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003433){
danielk19773e8add92009-07-04 17:16:00 +00003434 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003435
drh1fee73e2007-08-29 04:00:57 +00003436 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003437 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003438
danielk1977602b4662009-07-02 07:47:33 +00003439 /* The following assert statements verify that if this is a sharable
3440 ** b-tree database, the connection is holding the required table locks,
3441 ** and that no other connection has any open cursor that conflicts with
3442 ** this lock. */
3443 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003444 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3445
danielk19773e8add92009-07-04 17:16:00 +00003446 /* Assert that the caller has opened the required transaction. */
3447 assert( p->inTrans>TRANS_NONE );
3448 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3449 assert( pBt->pPage1 && pBt->pPage1->aData );
3450
danielk197796d48e92009-06-29 06:00:37 +00003451 if( NEVER(wrFlag && pBt->readOnly) ){
3452 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003453 }
drhb1299152010-03-30 22:58:33 +00003454 if( iTable==1 && btreePagecount(pBt)==0 ){
danielk19773e8add92009-07-04 17:16:00 +00003455 return SQLITE_EMPTY;
3456 }
danielk1977aef0bf62005-12-30 16:28:01 +00003457
danielk1977aef0bf62005-12-30 16:28:01 +00003458 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003459 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003460 pCur->pgnoRoot = (Pgno)iTable;
3461 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003462 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003463 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003464 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003465 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003466 pCur->pNext = pBt->pCursor;
3467 if( pCur->pNext ){
3468 pCur->pNext->pPrev = pCur;
3469 }
3470 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003471 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003472 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003473 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003474}
drhd677b3d2007-08-20 22:48:41 +00003475int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003476 Btree *p, /* The btree */
3477 int iTable, /* Root page of table to open */
3478 int wrFlag, /* 1 to write. 0 read-only */
3479 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3480 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003481){
3482 int rc;
3483 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003484 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003485 sqlite3BtreeLeave(p);
3486 return rc;
3487}
drh7f751222009-03-17 22:33:00 +00003488
3489/*
3490** Return the size of a BtCursor object in bytes.
3491**
3492** This interfaces is needed so that users of cursors can preallocate
3493** sufficient storage to hold a cursor. The BtCursor object is opaque
3494** to users so they cannot do the sizeof() themselves - they must call
3495** this routine.
3496*/
3497int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003498 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003499}
3500
drh7f751222009-03-17 22:33:00 +00003501/*
drhf25a5072009-11-18 23:01:25 +00003502** Initialize memory that will be converted into a BtCursor object.
3503**
3504** The simple approach here would be to memset() the entire object
3505** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3506** do not need to be zeroed and they are large, so we can save a lot
3507** of run-time by skipping the initialization of those elements.
3508*/
3509void sqlite3BtreeCursorZero(BtCursor *p){
3510 memset(p, 0, offsetof(BtCursor, iPage));
3511}
3512
3513/*
drh7f751222009-03-17 22:33:00 +00003514** Set the cached rowid value of every cursor in the same database file
3515** as pCur and having the same root page number as pCur. The value is
3516** set to iRowid.
3517**
3518** Only positive rowid values are considered valid for this cache.
3519** The cache is initialized to zero, indicating an invalid cache.
3520** A btree will work fine with zero or negative rowids. We just cannot
3521** cache zero or negative rowids, which means tables that use zero or
3522** negative rowids might run a little slower. But in practice, zero
3523** or negative rowids are very uncommon so this should not be a problem.
3524*/
3525void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3526 BtCursor *p;
3527 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3528 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3529 }
3530 assert( pCur->cachedRowid==iRowid );
3531}
drhd677b3d2007-08-20 22:48:41 +00003532
drh7f751222009-03-17 22:33:00 +00003533/*
3534** Return the cached rowid for the given cursor. A negative or zero
3535** return value indicates that the rowid cache is invalid and should be
3536** ignored. If the rowid cache has never before been set, then a
3537** zero is returned.
3538*/
3539sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3540 return pCur->cachedRowid;
3541}
drha059ad02001-04-17 20:09:11 +00003542
3543/*
drh5e00f6c2001-09-13 13:46:56 +00003544** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003545** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003546*/
drh3aac2dd2004-04-26 14:10:20 +00003547int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003548 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003549 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003550 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003551 BtShared *pBt = pCur->pBt;
3552 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003553 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003554 if( pCur->pPrev ){
3555 pCur->pPrev->pNext = pCur->pNext;
3556 }else{
3557 pBt->pCursor = pCur->pNext;
3558 }
3559 if( pCur->pNext ){
3560 pCur->pNext->pPrev = pCur->pPrev;
3561 }
danielk197771d5d2c2008-09-29 11:49:47 +00003562 for(i=0; i<=pCur->iPage; i++){
3563 releasePage(pCur->apPage[i]);
3564 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003565 unlockBtreeIfUnused(pBt);
3566 invalidateOverflowCache(pCur);
3567 /* sqlite3_free(pCur); */
3568 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003569 }
drh8c42ca92001-06-22 19:15:00 +00003570 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003571}
3572
drh5e2f8b92001-05-28 00:41:15 +00003573/*
drh86057612007-06-26 01:04:48 +00003574** Make sure the BtCursor* given in the argument has a valid
3575** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003576** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003577**
3578** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003579** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003580**
3581** 2007-06-25: There is a bug in some versions of MSVC that cause the
3582** compiler to crash when getCellInfo() is implemented as a macro.
3583** But there is a measureable speed advantage to using the macro on gcc
3584** (when less compiler optimizations like -Os or -O0 are used and the
3585** compiler is not doing agressive inlining.) So we use a real function
3586** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003587*/
drh9188b382004-05-14 21:12:22 +00003588#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003589 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003590 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003591 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003592 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003593 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003594 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003595 }
danielk19771cc5ed82007-05-16 17:28:43 +00003596#else
3597 #define assertCellInfo(x)
3598#endif
drh86057612007-06-26 01:04:48 +00003599#ifdef _MSC_VER
3600 /* Use a real function in MSVC to work around bugs in that compiler. */
3601 static void getCellInfo(BtCursor *pCur){
3602 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003603 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003604 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003605 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003606 }else{
3607 assertCellInfo(pCur);
3608 }
3609 }
3610#else /* if not _MSC_VER */
3611 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003612#define getCellInfo(pCur) \
3613 if( pCur->info.nSize==0 ){ \
3614 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003615 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003616 pCur->validNKey = 1; \
3617 }else{ \
3618 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003619 }
3620#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003621
drhea8ffdf2009-07-22 00:35:23 +00003622#ifndef NDEBUG /* The next routine used only within assert() statements */
3623/*
3624** Return true if the given BtCursor is valid. A valid cursor is one
3625** that is currently pointing to a row in a (non-empty) table.
3626** This is a verification routine is used only within assert() statements.
3627*/
3628int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3629 return pCur && pCur->eState==CURSOR_VALID;
3630}
3631#endif /* NDEBUG */
3632
drh9188b382004-05-14 21:12:22 +00003633/*
drh3aac2dd2004-04-26 14:10:20 +00003634** Set *pSize to the size of the buffer needed to hold the value of
3635** the key for the current entry. If the cursor is not pointing
3636** to a valid entry, *pSize is set to 0.
3637**
drh4b70f112004-05-02 21:12:19 +00003638** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003639** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003640**
3641** The caller must position the cursor prior to invoking this routine.
3642**
3643** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003644*/
drh4a1c3802004-05-12 15:15:47 +00003645int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003646 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003647 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3648 if( pCur->eState!=CURSOR_VALID ){
3649 *pSize = 0;
3650 }else{
3651 getCellInfo(pCur);
3652 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003653 }
drhea8ffdf2009-07-22 00:35:23 +00003654 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003655}
drh2af926b2001-05-15 00:39:25 +00003656
drh72f82862001-05-24 21:06:34 +00003657/*
drh0e1c19e2004-05-11 00:58:56 +00003658** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003659** cursor currently points to.
3660**
3661** The caller must guarantee that the cursor is pointing to a non-NULL
3662** valid entry. In other words, the calling procedure must guarantee
3663** that the cursor has Cursor.eState==CURSOR_VALID.
3664**
3665** Failure is not possible. This function always returns SQLITE_OK.
3666** It might just as well be a procedure (returning void) but we continue
3667** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003668*/
3669int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003670 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003671 assert( pCur->eState==CURSOR_VALID );
3672 getCellInfo(pCur);
3673 *pSize = pCur->info.nData;
3674 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003675}
3676
3677/*
danielk1977d04417962007-05-02 13:16:30 +00003678** Given the page number of an overflow page in the database (parameter
3679** ovfl), this function finds the page number of the next page in the
3680** linked list of overflow pages. If possible, it uses the auto-vacuum
3681** pointer-map data instead of reading the content of page ovfl to do so.
3682**
3683** If an error occurs an SQLite error code is returned. Otherwise:
3684**
danielk1977bea2a942009-01-20 17:06:27 +00003685** The page number of the next overflow page in the linked list is
3686** written to *pPgnoNext. If page ovfl is the last page in its linked
3687** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003688**
danielk1977bea2a942009-01-20 17:06:27 +00003689** If ppPage is not NULL, and a reference to the MemPage object corresponding
3690** to page number pOvfl was obtained, then *ppPage is set to point to that
3691** reference. It is the responsibility of the caller to call releasePage()
3692** on *ppPage to free the reference. In no reference was obtained (because
3693** the pointer-map was used to obtain the value for *pPgnoNext), then
3694** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003695*/
3696static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003697 BtShared *pBt, /* The database file */
3698 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003699 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003700 Pgno *pPgnoNext /* OUT: Next overflow page number */
3701){
3702 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003703 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003704 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003705
drh1fee73e2007-08-29 04:00:57 +00003706 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003707 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003708
3709#ifndef SQLITE_OMIT_AUTOVACUUM
3710 /* Try to find the next page in the overflow list using the
3711 ** autovacuum pointer-map pages. Guess that the next page in
3712 ** the overflow list is page number (ovfl+1). If that guess turns
3713 ** out to be wrong, fall back to loading the data of page
3714 ** number ovfl to determine the next page number.
3715 */
3716 if( pBt->autoVacuum ){
3717 Pgno pgno;
3718 Pgno iGuess = ovfl+1;
3719 u8 eType;
3720
3721 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3722 iGuess++;
3723 }
3724
drhb1299152010-03-30 22:58:33 +00003725 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003726 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003727 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003728 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003729 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003730 }
3731 }
3732 }
3733#endif
3734
danielk1977d8a3f3d2009-07-11 11:45:23 +00003735 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003736 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003737 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003738 assert( rc==SQLITE_OK || pPage==0 );
3739 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003740 next = get4byte(pPage->aData);
3741 }
danielk1977443c0592009-01-16 15:21:05 +00003742 }
danielk197745d68822009-01-16 16:23:38 +00003743
danielk1977bea2a942009-01-20 17:06:27 +00003744 *pPgnoNext = next;
3745 if( ppPage ){
3746 *ppPage = pPage;
3747 }else{
3748 releasePage(pPage);
3749 }
3750 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003751}
3752
danielk1977da107192007-05-04 08:32:13 +00003753/*
3754** Copy data from a buffer to a page, or from a page to a buffer.
3755**
3756** pPayload is a pointer to data stored on database page pDbPage.
3757** If argument eOp is false, then nByte bytes of data are copied
3758** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3759** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3760** of data are copied from the buffer pBuf to pPayload.
3761**
3762** SQLITE_OK is returned on success, otherwise an error code.
3763*/
3764static int copyPayload(
3765 void *pPayload, /* Pointer to page data */
3766 void *pBuf, /* Pointer to buffer */
3767 int nByte, /* Number of bytes to copy */
3768 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3769 DbPage *pDbPage /* Page containing pPayload */
3770){
3771 if( eOp ){
3772 /* Copy data from buffer to page (a write operation) */
3773 int rc = sqlite3PagerWrite(pDbPage);
3774 if( rc!=SQLITE_OK ){
3775 return rc;
3776 }
3777 memcpy(pPayload, pBuf, nByte);
3778 }else{
3779 /* Copy data from page to buffer (a read operation) */
3780 memcpy(pBuf, pPayload, nByte);
3781 }
3782 return SQLITE_OK;
3783}
danielk1977d04417962007-05-02 13:16:30 +00003784
3785/*
danielk19779f8d6402007-05-02 17:48:45 +00003786** This function is used to read or overwrite payload information
3787** for the entry that the pCur cursor is pointing to. If the eOp
3788** parameter is 0, this is a read operation (data copied into
3789** buffer pBuf). If it is non-zero, a write (data copied from
3790** buffer pBuf).
3791**
3792** A total of "amt" bytes are read or written beginning at "offset".
3793** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003794**
drh3bcdfd22009-07-12 02:32:21 +00003795** The content being read or written might appear on the main page
3796** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003797**
danielk1977dcbb5d32007-05-04 18:36:44 +00003798** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003799** cursor entry uses one or more overflow pages, this function
3800** allocates space for and lazily popluates the overflow page-list
3801** cache array (BtCursor.aOverflow). Subsequent calls use this
3802** cache to make seeking to the supplied offset more efficient.
3803**
3804** Once an overflow page-list cache has been allocated, it may be
3805** invalidated if some other cursor writes to the same table, or if
3806** the cursor is moved to a different row. Additionally, in auto-vacuum
3807** mode, the following events may invalidate an overflow page-list cache.
3808**
3809** * An incremental vacuum,
3810** * A commit in auto_vacuum="full" mode,
3811** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003812*/
danielk19779f8d6402007-05-02 17:48:45 +00003813static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003814 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003815 u32 offset, /* Begin reading this far into payload */
3816 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003817 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003818 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003819){
3820 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003821 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003822 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003823 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003824 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003825 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003826
danielk1977da107192007-05-04 08:32:13 +00003827 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003828 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003829 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003830 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003831
drh86057612007-06-26 01:04:48 +00003832 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003833 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003834 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003835
drh3bcdfd22009-07-12 02:32:21 +00003836 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003837 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3838 ){
danielk1977da107192007-05-04 08:32:13 +00003839 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003840 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003841 }
danielk1977da107192007-05-04 08:32:13 +00003842
3843 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003844 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003845 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003846 if( a+offset>pCur->info.nLocal ){
3847 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003848 }
danielk1977da107192007-05-04 08:32:13 +00003849 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003850 offset = 0;
drha34b6762004-05-07 13:30:42 +00003851 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003852 amt -= a;
drhdd793422001-06-28 01:54:48 +00003853 }else{
drhfa1a98a2004-05-14 19:08:17 +00003854 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003855 }
danielk1977da107192007-05-04 08:32:13 +00003856
3857 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003858 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003859 Pgno nextPage;
3860
drhfa1a98a2004-05-14 19:08:17 +00003861 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003862
danielk19772dec9702007-05-02 16:48:37 +00003863#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003864 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003865 ** has not been allocated, allocate it now. The array is sized at
3866 ** one entry for each overflow page in the overflow chain. The
3867 ** page number of the first overflow page is stored in aOverflow[0],
3868 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3869 ** (the cache is lazily populated).
3870 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003871 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003872 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003873 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003874 /* nOvfl is always positive. If it were zero, fetchPayload would have
3875 ** been used instead of this routine. */
3876 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003877 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003878 }
3879 }
danielk1977da107192007-05-04 08:32:13 +00003880
3881 /* If the overflow page-list cache has been allocated and the
3882 ** entry for the first required overflow page is valid, skip
3883 ** directly to it.
3884 */
danielk19772dec9702007-05-02 16:48:37 +00003885 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3886 iIdx = (offset/ovflSize);
3887 nextPage = pCur->aOverflow[iIdx];
3888 offset = (offset%ovflSize);
3889 }
3890#endif
danielk1977da107192007-05-04 08:32:13 +00003891
3892 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3893
3894#ifndef SQLITE_OMIT_INCRBLOB
3895 /* If required, populate the overflow page-list cache. */
3896 if( pCur->aOverflow ){
3897 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3898 pCur->aOverflow[iIdx] = nextPage;
3899 }
3900#endif
3901
danielk1977d04417962007-05-02 13:16:30 +00003902 if( offset>=ovflSize ){
3903 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003904 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003905 ** data is not required. So first try to lookup the overflow
3906 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003907 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003908 */
danielk19772dec9702007-05-02 16:48:37 +00003909#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003910 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3911 nextPage = pCur->aOverflow[iIdx+1];
3912 } else
danielk19772dec9702007-05-02 16:48:37 +00003913#endif
danielk1977da107192007-05-04 08:32:13 +00003914 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003915 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003916 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003917 /* Need to read this page properly. It contains some of the
3918 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003919 */
3920 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003921 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003922 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003923 if( rc==SQLITE_OK ){
3924 aPayload = sqlite3PagerGetData(pDbPage);
3925 nextPage = get4byte(aPayload);
3926 if( a + offset > ovflSize ){
3927 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003928 }
danielk1977da107192007-05-04 08:32:13 +00003929 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3930 sqlite3PagerUnref(pDbPage);
3931 offset = 0;
3932 amt -= a;
3933 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003934 }
danielk1977cfe9a692004-06-16 12:00:29 +00003935 }
drh2af926b2001-05-15 00:39:25 +00003936 }
drh2af926b2001-05-15 00:39:25 +00003937 }
danielk1977cfe9a692004-06-16 12:00:29 +00003938
danielk1977da107192007-05-04 08:32:13 +00003939 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003940 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003941 }
danielk1977da107192007-05-04 08:32:13 +00003942 return rc;
drh2af926b2001-05-15 00:39:25 +00003943}
3944
drh72f82862001-05-24 21:06:34 +00003945/*
drh3aac2dd2004-04-26 14:10:20 +00003946** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003947** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003948** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003949**
drh5d1a8722009-07-22 18:07:40 +00003950** The caller must ensure that pCur is pointing to a valid row
3951** in the table.
3952**
drh3aac2dd2004-04-26 14:10:20 +00003953** Return SQLITE_OK on success or an error code if anything goes
3954** wrong. An error is returned if "offset+amt" is larger than
3955** the available payload.
drh72f82862001-05-24 21:06:34 +00003956*/
drha34b6762004-05-07 13:30:42 +00003957int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00003958 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00003959 assert( pCur->eState==CURSOR_VALID );
3960 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3961 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
3962 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00003963}
3964
3965/*
drh3aac2dd2004-04-26 14:10:20 +00003966** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003967** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003968** begins at "offset".
3969**
3970** Return SQLITE_OK on success or an error code if anything goes
3971** wrong. An error is returned if "offset+amt" is larger than
3972** the available payload.
drh72f82862001-05-24 21:06:34 +00003973*/
drh3aac2dd2004-04-26 14:10:20 +00003974int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003975 int rc;
3976
danielk19773588ceb2008-06-10 17:30:26 +00003977#ifndef SQLITE_OMIT_INCRBLOB
3978 if ( pCur->eState==CURSOR_INVALID ){
3979 return SQLITE_ABORT;
3980 }
3981#endif
3982
drh1fee73e2007-08-29 04:00:57 +00003983 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003984 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003985 if( rc==SQLITE_OK ){
3986 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003987 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3988 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003989 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00003990 }
3991 return rc;
drh2af926b2001-05-15 00:39:25 +00003992}
3993
drh72f82862001-05-24 21:06:34 +00003994/*
drh0e1c19e2004-05-11 00:58:56 +00003995** Return a pointer to payload information from the entry that the
3996** pCur cursor is pointing to. The pointer is to the beginning of
3997** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003998** skipKey==1. The number of bytes of available key/data is written
3999** into *pAmt. If *pAmt==0, then the value returned will not be
4000** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004001**
4002** This routine is an optimization. It is common for the entire key
4003** and data to fit on the local page and for there to be no overflow
4004** pages. When that is so, this routine can be used to access the
4005** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004006** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004007** the key/data and copy it into a preallocated buffer.
4008**
4009** The pointer returned by this routine looks directly into the cached
4010** page of the database. The data might change or move the next time
4011** any btree routine is called.
4012*/
4013static const unsigned char *fetchPayload(
4014 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004015 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004016 int skipKey /* read beginning at data if this is true */
4017){
4018 unsigned char *aPayload;
4019 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004020 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004021 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004022
danielk197771d5d2c2008-09-29 11:49:47 +00004023 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004024 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004025 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004026 pPage = pCur->apPage[pCur->iPage];
4027 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004028 if( NEVER(pCur->info.nSize==0) ){
4029 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4030 &pCur->info);
4031 }
drh43605152004-05-29 21:46:49 +00004032 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004033 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004034 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004035 nKey = 0;
4036 }else{
drhf49661a2008-12-10 16:45:50 +00004037 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004038 }
drh0e1c19e2004-05-11 00:58:56 +00004039 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004040 aPayload += nKey;
4041 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004042 }else{
drhfa1a98a2004-05-14 19:08:17 +00004043 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004044 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004045 }
drhe51c44f2004-05-30 20:46:09 +00004046 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004047 return aPayload;
4048}
4049
4050
4051/*
drhe51c44f2004-05-30 20:46:09 +00004052** For the entry that cursor pCur is point to, return as
4053** many bytes of the key or data as are available on the local
4054** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004055**
4056** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004057** or be destroyed on the next call to any Btree routine,
4058** including calls from other threads against the same cache.
4059** Hence, a mutex on the BtShared should be held prior to calling
4060** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004061**
4062** These routines is used to get quick access to key and data
4063** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004064*/
drhe51c44f2004-05-30 20:46:09 +00004065const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004066 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004067 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004068 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004069 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4070 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004071 }
drhfe3313f2009-07-21 19:02:20 +00004072 return p;
drh0e1c19e2004-05-11 00:58:56 +00004073}
drhe51c44f2004-05-30 20:46:09 +00004074const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004075 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004076 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004077 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004078 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4079 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004080 }
drhfe3313f2009-07-21 19:02:20 +00004081 return p;
drh0e1c19e2004-05-11 00:58:56 +00004082}
4083
4084
4085/*
drh8178a752003-01-05 21:41:40 +00004086** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004087** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004088**
4089** This function returns SQLITE_CORRUPT if the page-header flags field of
4090** the new child page does not match the flags field of the parent (i.e.
4091** if an intkey page appears to be the parent of a non-intkey page, or
4092** vice-versa).
drh72f82862001-05-24 21:06:34 +00004093*/
drh3aac2dd2004-04-26 14:10:20 +00004094static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004095 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004096 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004097 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004098 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004099
drh1fee73e2007-08-29 04:00:57 +00004100 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004101 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004102 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4103 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4104 return SQLITE_CORRUPT_BKPT;
4105 }
4106 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004107 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004108 pCur->apPage[i+1] = pNewPage;
4109 pCur->aiIdx[i+1] = 0;
4110 pCur->iPage++;
4111
drh271efa52004-05-30 19:19:05 +00004112 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004113 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004114 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004115 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004116 }
drh72f82862001-05-24 21:06:34 +00004117 return SQLITE_OK;
4118}
4119
danielk1977bf93c562008-09-29 15:53:25 +00004120#ifndef NDEBUG
4121/*
4122** Page pParent is an internal (non-leaf) tree page. This function
4123** asserts that page number iChild is the left-child if the iIdx'th
4124** cell in page pParent. Or, if iIdx is equal to the total number of
4125** cells in pParent, that page number iChild is the right-child of
4126** the page.
4127*/
4128static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4129 assert( iIdx<=pParent->nCell );
4130 if( iIdx==pParent->nCell ){
4131 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4132 }else{
4133 assert( get4byte(findCell(pParent, iIdx))==iChild );
4134 }
4135}
4136#else
4137# define assertParentIndex(x,y,z)
4138#endif
4139
drh72f82862001-05-24 21:06:34 +00004140/*
drh5e2f8b92001-05-28 00:41:15 +00004141** Move the cursor up to the parent page.
4142**
4143** pCur->idx is set to the cell index that contains the pointer
4144** to the page we are coming from. If we are coming from the
4145** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004146** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004147*/
danielk197730548662009-07-09 05:07:37 +00004148static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004149 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004150 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004151 assert( pCur->iPage>0 );
4152 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004153 assertParentIndex(
4154 pCur->apPage[pCur->iPage-1],
4155 pCur->aiIdx[pCur->iPage-1],
4156 pCur->apPage[pCur->iPage]->pgno
4157 );
danielk197771d5d2c2008-09-29 11:49:47 +00004158 releasePage(pCur->apPage[pCur->iPage]);
4159 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004160 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004161 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004162}
4163
4164/*
danielk19778f880a82009-07-13 09:41:45 +00004165** Move the cursor to point to the root page of its b-tree structure.
4166**
4167** If the table has a virtual root page, then the cursor is moved to point
4168** to the virtual root page instead of the actual root page. A table has a
4169** virtual root page when the actual root page contains no cells and a
4170** single child page. This can only happen with the table rooted at page 1.
4171**
4172** If the b-tree structure is empty, the cursor state is set to
4173** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4174** cell located on the root (or virtual root) page and the cursor state
4175** is set to CURSOR_VALID.
4176**
4177** If this function returns successfully, it may be assumed that the
4178** page-header flags indicate that the [virtual] root-page is the expected
4179** kind of b-tree page (i.e. if when opening the cursor the caller did not
4180** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4181** indicating a table b-tree, or if the caller did specify a KeyInfo
4182** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4183** b-tree).
drh72f82862001-05-24 21:06:34 +00004184*/
drh5e2f8b92001-05-28 00:41:15 +00004185static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004186 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004187 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004188 Btree *p = pCur->pBtree;
4189 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004190
drh1fee73e2007-08-29 04:00:57 +00004191 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004192 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4193 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4194 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4195 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4196 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004197 assert( pCur->skipNext!=SQLITE_OK );
4198 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004199 }
danielk1977be51a652008-10-08 17:58:48 +00004200 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004201 }
danielk197771d5d2c2008-09-29 11:49:47 +00004202
4203 if( pCur->iPage>=0 ){
4204 int i;
4205 for(i=1; i<=pCur->iPage; i++){
4206 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004207 }
danielk1977172114a2009-07-07 15:47:12 +00004208 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004209 }else{
drh4c301aa2009-07-15 17:25:45 +00004210 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4211 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004212 pCur->eState = CURSOR_INVALID;
4213 return rc;
4214 }
danielk1977172114a2009-07-07 15:47:12 +00004215 pCur->iPage = 0;
4216
4217 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4218 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4219 ** NULL, the caller expects a table b-tree. If this is not the case,
4220 ** return an SQLITE_CORRUPT error. */
4221 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4222 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4223 return SQLITE_CORRUPT_BKPT;
4224 }
drhc39e0002004-05-07 23:50:57 +00004225 }
danielk197771d5d2c2008-09-29 11:49:47 +00004226
danielk19778f880a82009-07-13 09:41:45 +00004227 /* Assert that the root page is of the correct type. This must be the
4228 ** case as the call to this function that loaded the root-page (either
4229 ** this call or a previous invocation) would have detected corruption
4230 ** if the assumption were not true, and it is not possible for the flags
4231 ** byte to have been modified while this cursor is holding a reference
4232 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004233 pRoot = pCur->apPage[0];
4234 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004235 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4236
danielk197771d5d2c2008-09-29 11:49:47 +00004237 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004238 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004239 pCur->atLast = 0;
4240 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004241
drh8856d6a2004-04-29 14:42:46 +00004242 if( pRoot->nCell==0 && !pRoot->leaf ){
4243 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004244 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004245 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004246 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004247 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004248 }else{
4249 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004250 }
4251 return rc;
drh72f82862001-05-24 21:06:34 +00004252}
drh2af926b2001-05-15 00:39:25 +00004253
drh5e2f8b92001-05-28 00:41:15 +00004254/*
4255** Move the cursor down to the left-most leaf entry beneath the
4256** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004257**
4258** The left-most leaf is the one with the smallest key - the first
4259** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004260*/
4261static int moveToLeftmost(BtCursor *pCur){
4262 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004263 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004264 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004265
drh1fee73e2007-08-29 04:00:57 +00004266 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004267 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004268 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4269 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4270 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004271 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004272 }
drhd677b3d2007-08-20 22:48:41 +00004273 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004274}
4275
drh2dcc9aa2002-12-04 13:40:25 +00004276/*
4277** Move the cursor down to the right-most leaf entry beneath the
4278** page to which it is currently pointing. Notice the difference
4279** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4280** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4281** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004282**
4283** The right-most entry is the one with the largest key - the last
4284** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004285*/
4286static int moveToRightmost(BtCursor *pCur){
4287 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004288 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004289 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004290
drh1fee73e2007-08-29 04:00:57 +00004291 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004292 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004293 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004294 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004295 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004296 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004297 }
drhd677b3d2007-08-20 22:48:41 +00004298 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004299 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004300 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004301 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004302 }
danielk1977518002e2008-09-05 05:02:46 +00004303 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004304}
4305
drh5e00f6c2001-09-13 13:46:56 +00004306/* Move the cursor to the first entry in the table. Return SQLITE_OK
4307** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004308** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004309*/
drh3aac2dd2004-04-26 14:10:20 +00004310int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004311 int rc;
drhd677b3d2007-08-20 22:48:41 +00004312
drh1fee73e2007-08-29 04:00:57 +00004313 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004314 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004315 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004316 if( rc==SQLITE_OK ){
4317 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004318 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004319 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004320 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004321 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004322 *pRes = 0;
4323 rc = moveToLeftmost(pCur);
4324 }
drh5e00f6c2001-09-13 13:46:56 +00004325 }
drh5e00f6c2001-09-13 13:46:56 +00004326 return rc;
4327}
drh5e2f8b92001-05-28 00:41:15 +00004328
drh9562b552002-02-19 15:00:07 +00004329/* Move the cursor to the last entry in the table. Return SQLITE_OK
4330** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004331** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004332*/
drh3aac2dd2004-04-26 14:10:20 +00004333int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004334 int rc;
drhd677b3d2007-08-20 22:48:41 +00004335
drh1fee73e2007-08-29 04:00:57 +00004336 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004337 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004338
4339 /* If the cursor already points to the last entry, this is a no-op. */
4340 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4341#ifdef SQLITE_DEBUG
4342 /* This block serves to assert() that the cursor really does point
4343 ** to the last entry in the b-tree. */
4344 int ii;
4345 for(ii=0; ii<pCur->iPage; ii++){
4346 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4347 }
4348 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4349 assert( pCur->apPage[pCur->iPage]->leaf );
4350#endif
4351 return SQLITE_OK;
4352 }
4353
drh9562b552002-02-19 15:00:07 +00004354 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004355 if( rc==SQLITE_OK ){
4356 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004357 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004358 *pRes = 1;
4359 }else{
4360 assert( pCur->eState==CURSOR_VALID );
4361 *pRes = 0;
4362 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004363 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004364 }
drh9562b552002-02-19 15:00:07 +00004365 }
drh9562b552002-02-19 15:00:07 +00004366 return rc;
4367}
4368
drhe14006d2008-03-25 17:23:32 +00004369/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004370** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004371**
drhe63d9992008-08-13 19:11:48 +00004372** For INTKEY tables, the intKey parameter is used. pIdxKey
4373** must be NULL. For index tables, pIdxKey is used and intKey
4374** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004375**
drh5e2f8b92001-05-28 00:41:15 +00004376** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004377** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004378** were present. The cursor might point to an entry that comes
4379** before or after the key.
4380**
drh64022502009-01-09 14:11:04 +00004381** An integer is written into *pRes which is the result of
4382** comparing the key with the entry to which the cursor is
4383** pointing. The meaning of the integer written into
4384** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004385**
4386** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004387** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004388** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004389**
4390** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004391** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004392**
4393** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004394** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004395**
drha059ad02001-04-17 20:09:11 +00004396*/
drhe63d9992008-08-13 19:11:48 +00004397int sqlite3BtreeMovetoUnpacked(
4398 BtCursor *pCur, /* The cursor to be moved */
4399 UnpackedRecord *pIdxKey, /* Unpacked index key */
4400 i64 intKey, /* The table key */
4401 int biasRight, /* If true, bias the search to the high end */
4402 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004403){
drh72f82862001-05-24 21:06:34 +00004404 int rc;
drhd677b3d2007-08-20 22:48:41 +00004405
drh1fee73e2007-08-29 04:00:57 +00004406 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004407 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004408 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004409 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004410
4411 /* If the cursor is already positioned at the point we are trying
4412 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004413 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4414 && pCur->apPage[0]->intKey
4415 ){
drhe63d9992008-08-13 19:11:48 +00004416 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004417 *pRes = 0;
4418 return SQLITE_OK;
4419 }
drhe63d9992008-08-13 19:11:48 +00004420 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004421 *pRes = -1;
4422 return SQLITE_OK;
4423 }
4424 }
4425
drh5e2f8b92001-05-28 00:41:15 +00004426 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004427 if( rc ){
4428 return rc;
4429 }
danielk197771d5d2c2008-09-29 11:49:47 +00004430 assert( pCur->apPage[pCur->iPage] );
4431 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004432 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004433 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004434 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004435 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004436 return SQLITE_OK;
4437 }
danielk197771d5d2c2008-09-29 11:49:47 +00004438 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004439 for(;;){
drh72f82862001-05-24 21:06:34 +00004440 int lwr, upr;
4441 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004442 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004443 int c;
4444
4445 /* pPage->nCell must be greater than zero. If this is the root-page
4446 ** the cursor would have been INVALID above and this for(;;) loop
4447 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004448 ** would have already detected db corruption. Similarly, pPage must
4449 ** be the right kind (index or table) of b-tree page. Otherwise
4450 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004451 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004452 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004453 lwr = 0;
4454 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004455 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004456 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004457 }else{
drhf49661a2008-12-10 16:45:50 +00004458 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004459 }
drh64022502009-01-09 14:11:04 +00004460 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004461 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4462 u8 *pCell; /* Pointer to current cell in pPage */
4463
drh366fda62006-01-13 02:35:09 +00004464 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004465 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004466 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004467 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004468 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004469 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004470 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004471 }
drha2c20e42008-03-29 16:01:04 +00004472 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004473 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004474 c = 0;
drhe63d9992008-08-13 19:11:48 +00004475 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004476 c = -1;
4477 }else{
drhe63d9992008-08-13 19:11:48 +00004478 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004479 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004480 }
danielk197711c327a2009-05-04 19:01:26 +00004481 pCur->validNKey = 1;
4482 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004483 }else{
drhb2eced52010-08-12 02:41:12 +00004484 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004485 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004486 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004487 ** varint. This information is used to attempt to avoid parsing
4488 ** the entire cell by checking for the cases where the record is
4489 ** stored entirely within the b-tree page by inspecting the first
4490 ** 2 bytes of the cell.
4491 */
4492 int nCell = pCell[0];
4493 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4494 /* This branch runs if the record-size field of the cell is a
4495 ** single byte varint and the record fits entirely on the main
4496 ** b-tree page. */
4497 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4498 }else if( !(pCell[1] & 0x80)
4499 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4500 ){
4501 /* The record-size field is a 2 byte varint and the record
4502 ** fits entirely on the main b-tree page. */
4503 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004504 }else{
danielk197711c327a2009-05-04 19:01:26 +00004505 /* The record flows over onto one or more overflow pages. In
4506 ** this case the whole cell needs to be parsed, a buffer allocated
4507 ** and accessPayload() used to retrieve the record into the
4508 ** buffer before VdbeRecordCompare() can be called. */
4509 void *pCellKey;
4510 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004511 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004512 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004513 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004514 if( pCellKey==0 ){
4515 rc = SQLITE_NOMEM;
4516 goto moveto_finish;
4517 }
drhfb192682009-07-11 18:26:28 +00004518 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004519 if( rc ){
4520 sqlite3_free(pCellKey);
4521 goto moveto_finish;
4522 }
danielk197711c327a2009-05-04 19:01:26 +00004523 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004524 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004525 }
drh3aac2dd2004-04-26 14:10:20 +00004526 }
drh72f82862001-05-24 21:06:34 +00004527 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004528 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004529 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004530 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004531 break;
4532 }else{
drh64022502009-01-09 14:11:04 +00004533 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004534 rc = SQLITE_OK;
4535 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004536 }
drh72f82862001-05-24 21:06:34 +00004537 }
4538 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004539 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004540 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004541 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004542 }
drhf1d68b32007-03-29 04:43:26 +00004543 if( lwr>upr ){
4544 break;
4545 }
drhf49661a2008-12-10 16:45:50 +00004546 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004547 }
4548 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004549 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004550 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004551 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004552 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004553 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004554 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004555 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004556 }
4557 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004558 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004559 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004560 rc = SQLITE_OK;
4561 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004562 }
drhf49661a2008-12-10 16:45:50 +00004563 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004564 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004565 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004566 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004567 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004568 }
drh1e968a02008-03-25 00:22:21 +00004569moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004570 return rc;
4571}
4572
drhd677b3d2007-08-20 22:48:41 +00004573
drh72f82862001-05-24 21:06:34 +00004574/*
drhc39e0002004-05-07 23:50:57 +00004575** Return TRUE if the cursor is not pointing at an entry of the table.
4576**
4577** TRUE will be returned after a call to sqlite3BtreeNext() moves
4578** past the last entry in the table or sqlite3BtreePrev() moves past
4579** the first entry. TRUE is also returned if the table is empty.
4580*/
4581int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004582 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4583 ** have been deleted? This API will need to change to return an error code
4584 ** as well as the boolean result value.
4585 */
4586 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004587}
4588
4589/*
drhbd03cae2001-06-02 02:40:57 +00004590** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004591** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004592** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004593** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004594*/
drhd094db12008-04-03 21:46:57 +00004595int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004596 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004597 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004598 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004599
drh1fee73e2007-08-29 04:00:57 +00004600 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004601 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004602 if( rc!=SQLITE_OK ){
4603 return rc;
4604 }
drh8c4d3a62007-04-06 01:03:32 +00004605 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004606 if( CURSOR_INVALID==pCur->eState ){
4607 *pRes = 1;
4608 return SQLITE_OK;
4609 }
drh4c301aa2009-07-15 17:25:45 +00004610 if( pCur->skipNext>0 ){
4611 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004612 *pRes = 0;
4613 return SQLITE_OK;
4614 }
drh4c301aa2009-07-15 17:25:45 +00004615 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004616
danielk197771d5d2c2008-09-29 11:49:47 +00004617 pPage = pCur->apPage[pCur->iPage];
4618 idx = ++pCur->aiIdx[pCur->iPage];
4619 assert( pPage->isInit );
4620 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004621
drh271efa52004-05-30 19:19:05 +00004622 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004623 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004624 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004625 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004626 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004627 if( rc ) return rc;
4628 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004629 *pRes = 0;
4630 return rc;
drh72f82862001-05-24 21:06:34 +00004631 }
drh5e2f8b92001-05-28 00:41:15 +00004632 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004633 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004634 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004635 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004636 return SQLITE_OK;
4637 }
danielk197730548662009-07-09 05:07:37 +00004638 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004639 pPage = pCur->apPage[pCur->iPage];
4640 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004641 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004642 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004643 rc = sqlite3BtreeNext(pCur, pRes);
4644 }else{
4645 rc = SQLITE_OK;
4646 }
4647 return rc;
drh8178a752003-01-05 21:41:40 +00004648 }
4649 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004650 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004651 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004652 }
drh5e2f8b92001-05-28 00:41:15 +00004653 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004654 return rc;
drh72f82862001-05-24 21:06:34 +00004655}
drhd677b3d2007-08-20 22:48:41 +00004656
drh72f82862001-05-24 21:06:34 +00004657
drh3b7511c2001-05-26 13:15:44 +00004658/*
drh2dcc9aa2002-12-04 13:40:25 +00004659** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004660** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004661** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004662** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004663*/
drhd094db12008-04-03 21:46:57 +00004664int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004665 int rc;
drh8178a752003-01-05 21:41:40 +00004666 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004667
drh1fee73e2007-08-29 04:00:57 +00004668 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004669 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004670 if( rc!=SQLITE_OK ){
4671 return rc;
4672 }
drha2c20e42008-03-29 16:01:04 +00004673 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004674 if( CURSOR_INVALID==pCur->eState ){
4675 *pRes = 1;
4676 return SQLITE_OK;
4677 }
drh4c301aa2009-07-15 17:25:45 +00004678 if( pCur->skipNext<0 ){
4679 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004680 *pRes = 0;
4681 return SQLITE_OK;
4682 }
drh4c301aa2009-07-15 17:25:45 +00004683 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004684
danielk197771d5d2c2008-09-29 11:49:47 +00004685 pPage = pCur->apPage[pCur->iPage];
4686 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004687 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004688 int idx = pCur->aiIdx[pCur->iPage];
4689 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004690 if( rc ){
4691 return rc;
4692 }
drh2dcc9aa2002-12-04 13:40:25 +00004693 rc = moveToRightmost(pCur);
4694 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004695 while( pCur->aiIdx[pCur->iPage]==0 ){
4696 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004697 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004698 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004699 return SQLITE_OK;
4700 }
danielk197730548662009-07-09 05:07:37 +00004701 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004702 }
drh271efa52004-05-30 19:19:05 +00004703 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004704 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004705
4706 pCur->aiIdx[pCur->iPage]--;
4707 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004708 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004709 rc = sqlite3BtreePrevious(pCur, pRes);
4710 }else{
4711 rc = SQLITE_OK;
4712 }
drh2dcc9aa2002-12-04 13:40:25 +00004713 }
drh8178a752003-01-05 21:41:40 +00004714 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004715 return rc;
4716}
4717
4718/*
drh3b7511c2001-05-26 13:15:44 +00004719** Allocate a new page from the database file.
4720**
danielk19773b8a05f2007-03-19 17:44:26 +00004721** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004722** has already been called on the new page.) The new page has also
4723** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004724** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004725**
4726** SQLITE_OK is returned on success. Any other return value indicates
4727** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004728** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004729**
drh199e3cf2002-07-18 11:01:47 +00004730** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4731** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004732** attempt to keep related pages close to each other in the database file,
4733** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004734**
4735** If the "exact" parameter is not 0, and the page-number nearby exists
4736** anywhere on the free-list, then it is guarenteed to be returned. This
4737** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004738*/
drh4f0c5872007-03-26 22:05:01 +00004739static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004740 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004741 MemPage **ppPage,
4742 Pgno *pPgno,
4743 Pgno nearby,
4744 u8 exact
4745){
drh3aac2dd2004-04-26 14:10:20 +00004746 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004747 int rc;
drh35cd6432009-06-05 14:17:21 +00004748 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004749 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004750 MemPage *pTrunk = 0;
4751 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004752 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004753
drh1fee73e2007-08-29 04:00:57 +00004754 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004755 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004756 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004757 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004758 testcase( n==mxPage-1 );
4759 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004760 return SQLITE_CORRUPT_BKPT;
4761 }
drh3aac2dd2004-04-26 14:10:20 +00004762 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004763 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004764 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004765 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4766
4767 /* If the 'exact' parameter was true and a query of the pointer-map
4768 ** shows that the page 'nearby' is somewhere on the free-list, then
4769 ** the entire-list will be searched for that page.
4770 */
4771#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004772 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004773 u8 eType;
4774 assert( nearby>0 );
4775 assert( pBt->autoVacuum );
4776 rc = ptrmapGet(pBt, nearby, &eType, 0);
4777 if( rc ) return rc;
4778 if( eType==PTRMAP_FREEPAGE ){
4779 searchList = 1;
4780 }
4781 *pPgno = nearby;
4782 }
4783#endif
4784
4785 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4786 ** first free-list trunk page. iPrevTrunk is initially 1.
4787 */
danielk19773b8a05f2007-03-19 17:44:26 +00004788 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004789 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004790 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004791
4792 /* The code within this loop is run only once if the 'searchList' variable
4793 ** is not true. Otherwise, it runs once for each trunk-page on the
4794 ** free-list until the page 'nearby' is located.
4795 */
4796 do {
4797 pPrevTrunk = pTrunk;
4798 if( pPrevTrunk ){
4799 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004800 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004801 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004802 }
drhdf35a082009-07-09 02:24:35 +00004803 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004804 if( iTrunk>mxPage ){
4805 rc = SQLITE_CORRUPT_BKPT;
4806 }else{
danielk197730548662009-07-09 05:07:37 +00004807 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004808 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004809 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004810 pTrunk = 0;
4811 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004812 }
4813
4814 k = get4byte(&pTrunk->aData[4]);
4815 if( k==0 && !searchList ){
4816 /* The trunk has no leaves and the list is not being searched.
4817 ** So extract the trunk page itself and use it as the newly
4818 ** allocated page */
4819 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004820 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004821 if( rc ){
4822 goto end_allocate_page;
4823 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004824 *pPgno = iTrunk;
4825 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4826 *ppPage = pTrunk;
4827 pTrunk = 0;
4828 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004829 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004830 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004831 rc = SQLITE_CORRUPT_BKPT;
4832 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004833#ifndef SQLITE_OMIT_AUTOVACUUM
4834 }else if( searchList && nearby==iTrunk ){
4835 /* The list is being searched and this trunk page is the page
4836 ** to allocate, regardless of whether it has leaves.
4837 */
4838 assert( *pPgno==iTrunk );
4839 *ppPage = pTrunk;
4840 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004841 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004842 if( rc ){
4843 goto end_allocate_page;
4844 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004845 if( k==0 ){
4846 if( !pPrevTrunk ){
4847 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4848 }else{
danf48c3552010-08-23 15:41:24 +00004849 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
4850 if( rc!=SQLITE_OK ){
4851 goto end_allocate_page;
4852 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004853 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4854 }
4855 }else{
4856 /* The trunk page is required by the caller but it contains
4857 ** pointers to free-list leaves. The first leaf becomes a trunk
4858 ** page in this case.
4859 */
4860 MemPage *pNewTrunk;
4861 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004862 if( iNewTrunk>mxPage ){
4863 rc = SQLITE_CORRUPT_BKPT;
4864 goto end_allocate_page;
4865 }
drhdf35a082009-07-09 02:24:35 +00004866 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004867 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004868 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004869 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004870 }
danielk19773b8a05f2007-03-19 17:44:26 +00004871 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004872 if( rc!=SQLITE_OK ){
4873 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004874 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004875 }
4876 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4877 put4byte(&pNewTrunk->aData[4], k-1);
4878 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004879 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004880 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004881 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004882 put4byte(&pPage1->aData[32], iNewTrunk);
4883 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004884 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004885 if( rc ){
4886 goto end_allocate_page;
4887 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004888 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4889 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004890 }
4891 pTrunk = 0;
4892 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4893#endif
danielk1977e5765212009-06-17 11:13:28 +00004894 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004895 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004896 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004897 Pgno iPage;
4898 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004899 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004900 if( rc ){
4901 goto end_allocate_page;
4902 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004903 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004904 u32 i;
4905 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004906 closest = 0;
4907 dist = get4byte(&aData[8]) - nearby;
4908 if( dist<0 ) dist = -dist;
4909 for(i=1; i<k; i++){
4910 int d2 = get4byte(&aData[8+i*4]) - nearby;
4911 if( d2<0 ) d2 = -d2;
4912 if( d2<dist ){
4913 closest = i;
4914 dist = d2;
4915 }
4916 }
4917 }else{
4918 closest = 0;
4919 }
4920
4921 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004922 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004923 if( iPage>mxPage ){
4924 rc = SQLITE_CORRUPT_BKPT;
4925 goto end_allocate_page;
4926 }
drhdf35a082009-07-09 02:24:35 +00004927 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004928 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004929 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004930 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004931 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4932 ": %d more free pages\n",
4933 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4934 if( closest<k-1 ){
4935 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4936 }
4937 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004938 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004939 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004940 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004941 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004942 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004943 if( rc!=SQLITE_OK ){
4944 releasePage(*ppPage);
4945 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004946 }
4947 searchList = 0;
4948 }
drhee696e22004-08-30 16:52:17 +00004949 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004950 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004951 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004952 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004953 }else{
drh3aac2dd2004-04-26 14:10:20 +00004954 /* There are no pages on the freelist, so create a new page at the
4955 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00004956 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4957 if( rc ) return rc;
4958 pBt->nPage++;
4959 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00004960
danielk1977afcdd022004-10-31 16:25:42 +00004961#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00004962 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00004963 /* If *pPgno refers to a pointer-map page, allocate two new pages
4964 ** at the end of the file instead of one. The first allocated page
4965 ** becomes a new pointer-map page, the second is used by the caller.
4966 */
danielk1977ac861692009-03-28 10:54:22 +00004967 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00004968 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
4969 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004970 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00004971 if( rc==SQLITE_OK ){
4972 rc = sqlite3PagerWrite(pPg->pDbPage);
4973 releasePage(pPg);
4974 }
4975 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00004976 pBt->nPage++;
4977 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00004978 }
4979#endif
drhdd3cd972010-03-27 17:12:36 +00004980 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
4981 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00004982
danielk1977599fcba2004-11-08 07:13:13 +00004983 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004984 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00004985 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004986 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004987 if( rc!=SQLITE_OK ){
4988 releasePage(*ppPage);
4989 }
drh3a4c1412004-05-09 20:40:11 +00004990 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004991 }
danielk1977599fcba2004-11-08 07:13:13 +00004992
4993 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004994
4995end_allocate_page:
4996 releasePage(pTrunk);
4997 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004998 if( rc==SQLITE_OK ){
4999 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5000 releasePage(*ppPage);
5001 return SQLITE_CORRUPT_BKPT;
5002 }
5003 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005004 }else{
5005 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005006 }
drh3b7511c2001-05-26 13:15:44 +00005007 return rc;
5008}
5009
5010/*
danielk1977bea2a942009-01-20 17:06:27 +00005011** This function is used to add page iPage to the database file free-list.
5012** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005013**
danielk1977bea2a942009-01-20 17:06:27 +00005014** The value passed as the second argument to this function is optional.
5015** If the caller happens to have a pointer to the MemPage object
5016** corresponding to page iPage handy, it may pass it as the second value.
5017** Otherwise, it may pass NULL.
5018**
5019** If a pointer to a MemPage object is passed as the second argument,
5020** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005021*/
danielk1977bea2a942009-01-20 17:06:27 +00005022static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5023 MemPage *pTrunk = 0; /* Free-list trunk page */
5024 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5025 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5026 MemPage *pPage; /* Page being freed. May be NULL. */
5027 int rc; /* Return Code */
5028 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005029
danielk1977bea2a942009-01-20 17:06:27 +00005030 assert( sqlite3_mutex_held(pBt->mutex) );
5031 assert( iPage>1 );
5032 assert( !pMemPage || pMemPage->pgno==iPage );
5033
5034 if( pMemPage ){
5035 pPage = pMemPage;
5036 sqlite3PagerRef(pPage->pDbPage);
5037 }else{
5038 pPage = btreePageLookup(pBt, iPage);
5039 }
drh3aac2dd2004-04-26 14:10:20 +00005040
drha34b6762004-05-07 13:30:42 +00005041 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005042 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005043 if( rc ) goto freepage_out;
5044 nFree = get4byte(&pPage1->aData[36]);
5045 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005046
drh5b47efa2010-02-12 18:18:39 +00005047 if( pBt->secureDelete ){
5048 /* If the secure_delete option is enabled, then
5049 ** always fully overwrite deleted information with zeros.
5050 */
shaneh84f4b2f2010-02-26 01:46:54 +00005051 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5052 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005053 ){
5054 goto freepage_out;
5055 }
5056 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005057 }
drhfcce93f2006-02-22 03:08:32 +00005058
danielk1977687566d2004-11-02 12:56:41 +00005059 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005060 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005061 */
danielk197785d90ca2008-07-19 14:25:15 +00005062 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005063 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005064 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005065 }
danielk1977687566d2004-11-02 12:56:41 +00005066
danielk1977bea2a942009-01-20 17:06:27 +00005067 /* Now manipulate the actual database free-list structure. There are two
5068 ** possibilities. If the free-list is currently empty, or if the first
5069 ** trunk page in the free-list is full, then this page will become a
5070 ** new free-list trunk page. Otherwise, it will become a leaf of the
5071 ** first trunk page in the current free-list. This block tests if it
5072 ** is possible to add the page as a new free-list leaf.
5073 */
5074 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005075 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005076
5077 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005078 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005079 if( rc!=SQLITE_OK ){
5080 goto freepage_out;
5081 }
5082
5083 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005084 assert( pBt->usableSize>32 );
5085 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005086 rc = SQLITE_CORRUPT_BKPT;
5087 goto freepage_out;
5088 }
drheeb844a2009-08-08 18:01:07 +00005089 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005090 /* In this case there is room on the trunk page to insert the page
5091 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005092 **
5093 ** Note that the trunk page is not really full until it contains
5094 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5095 ** coded. But due to a coding error in versions of SQLite prior to
5096 ** 3.6.0, databases with freelist trunk pages holding more than
5097 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5098 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005099 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005100 ** for now. At some point in the future (once everyone has upgraded
5101 ** to 3.6.0 or later) we should consider fixing the conditional above
5102 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5103 */
danielk19773b8a05f2007-03-19 17:44:26 +00005104 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005105 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005106 put4byte(&pTrunk->aData[4], nLeaf+1);
5107 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drh5b47efa2010-02-12 18:18:39 +00005108 if( pPage && !pBt->secureDelete ){
danielk1977bea2a942009-01-20 17:06:27 +00005109 sqlite3PagerDontWrite(pPage->pDbPage);
5110 }
danielk1977bea2a942009-01-20 17:06:27 +00005111 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005112 }
drh3a4c1412004-05-09 20:40:11 +00005113 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005114 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005115 }
drh3b7511c2001-05-26 13:15:44 +00005116 }
danielk1977bea2a942009-01-20 17:06:27 +00005117
5118 /* If control flows to this point, then it was not possible to add the
5119 ** the page being freed as a leaf page of the first trunk in the free-list.
5120 ** Possibly because the free-list is empty, or possibly because the
5121 ** first trunk in the free-list is full. Either way, the page being freed
5122 ** will become the new first trunk page in the free-list.
5123 */
drhc046e3e2009-07-15 11:26:44 +00005124 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5125 goto freepage_out;
5126 }
5127 rc = sqlite3PagerWrite(pPage->pDbPage);
5128 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005129 goto freepage_out;
5130 }
5131 put4byte(pPage->aData, iTrunk);
5132 put4byte(&pPage->aData[4], 0);
5133 put4byte(&pPage1->aData[32], iPage);
5134 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5135
5136freepage_out:
5137 if( pPage ){
5138 pPage->isInit = 0;
5139 }
5140 releasePage(pPage);
5141 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005142 return rc;
5143}
drhc314dc72009-07-21 11:52:34 +00005144static void freePage(MemPage *pPage, int *pRC){
5145 if( (*pRC)==SQLITE_OK ){
5146 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5147 }
danielk1977bea2a942009-01-20 17:06:27 +00005148}
drh3b7511c2001-05-26 13:15:44 +00005149
5150/*
drh3aac2dd2004-04-26 14:10:20 +00005151** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005152*/
drh3aac2dd2004-04-26 14:10:20 +00005153static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005154 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005155 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005156 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005157 int rc;
drh94440812007-03-06 11:42:19 +00005158 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005159 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005160
drh1fee73e2007-08-29 04:00:57 +00005161 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005162 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005163 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005164 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005165 }
drh6f11bef2004-05-13 01:12:56 +00005166 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005167 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005168 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005169 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5170 assert( ovflPgno==0 || nOvfl>0 );
5171 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005172 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005173 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005174 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005175 /* 0 is not a legal page number and page 1 cannot be an
5176 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5177 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005178 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005179 }
danielk1977bea2a942009-01-20 17:06:27 +00005180 if( nOvfl ){
5181 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5182 if( rc ) return rc;
5183 }
dan887d4b22010-02-25 12:09:16 +00005184
shaneh1da207e2010-03-09 14:41:12 +00005185 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005186 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5187 ){
5188 /* There is no reason any cursor should have an outstanding reference
5189 ** to an overflow page belonging to a cell that is being deleted/updated.
5190 ** So if there exists more than one reference to this page, then it
5191 ** must not really be an overflow page and the database must be corrupt.
5192 ** It is helpful to detect this before calling freePage2(), as
5193 ** freePage2() may zero the page contents if secure-delete mode is
5194 ** enabled. If this 'overflow' page happens to be a page that the
5195 ** caller is iterating through or using in some other way, this
5196 ** can be problematic.
5197 */
5198 rc = SQLITE_CORRUPT_BKPT;
5199 }else{
5200 rc = freePage2(pBt, pOvfl, ovflPgno);
5201 }
5202
danielk1977bea2a942009-01-20 17:06:27 +00005203 if( pOvfl ){
5204 sqlite3PagerUnref(pOvfl->pDbPage);
5205 }
drh3b7511c2001-05-26 13:15:44 +00005206 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005207 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005208 }
drh5e2f8b92001-05-28 00:41:15 +00005209 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005210}
5211
5212/*
drh91025292004-05-03 19:49:32 +00005213** Create the byte sequence used to represent a cell on page pPage
5214** and write that byte sequence into pCell[]. Overflow pages are
5215** allocated and filled in as necessary. The calling procedure
5216** is responsible for making sure sufficient space has been allocated
5217** for pCell[].
5218**
5219** Note that pCell does not necessary need to point to the pPage->aData
5220** area. pCell might point to some temporary storage. The cell will
5221** be constructed in this temporary area then copied into pPage->aData
5222** later.
drh3b7511c2001-05-26 13:15:44 +00005223*/
5224static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005225 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005226 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005227 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005228 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005229 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005230 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005231){
drh3b7511c2001-05-26 13:15:44 +00005232 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005233 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005234 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005235 int spaceLeft;
5236 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005237 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005238 unsigned char *pPrior;
5239 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005240 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005241 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005242 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005243 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005244
drh1fee73e2007-08-29 04:00:57 +00005245 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005246
drhc5053fb2008-11-27 02:22:10 +00005247 /* pPage is not necessarily writeable since pCell might be auxiliary
5248 ** buffer space that is separate from the pPage buffer area */
5249 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5250 || sqlite3PagerIswriteable(pPage->pDbPage) );
5251
drh91025292004-05-03 19:49:32 +00005252 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005253 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005254 if( !pPage->leaf ){
5255 nHeader += 4;
5256 }
drh8b18dd42004-05-12 19:18:15 +00005257 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005258 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005259 }else{
drhb026e052007-05-02 01:34:31 +00005260 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005261 }
drh6f11bef2004-05-13 01:12:56 +00005262 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005263 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005264 assert( info.nHeader==nHeader );
5265 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005266 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005267
5268 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005269 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005270 if( pPage->intKey ){
5271 pSrc = pData;
5272 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005273 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005274 }else{
danielk197731d31b82009-07-13 13:18:07 +00005275 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5276 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005277 }
drhf49661a2008-12-10 16:45:50 +00005278 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005279 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005280 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005281 }
drh6f11bef2004-05-13 01:12:56 +00005282 *pnSize = info.nSize;
5283 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005284 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005285 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005286
drh3b7511c2001-05-26 13:15:44 +00005287 while( nPayload>0 ){
5288 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005289#ifndef SQLITE_OMIT_AUTOVACUUM
5290 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005291 if( pBt->autoVacuum ){
5292 do{
5293 pgnoOvfl++;
5294 } while(
5295 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5296 );
danielk1977b39f70b2007-05-17 18:28:11 +00005297 }
danielk1977afcdd022004-10-31 16:25:42 +00005298#endif
drhf49661a2008-12-10 16:45:50 +00005299 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005300#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005301 /* If the database supports auto-vacuum, and the second or subsequent
5302 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005303 ** for that page now.
5304 **
5305 ** If this is the first overflow page, then write a partial entry
5306 ** to the pointer-map. If we write nothing to this pointer-map slot,
5307 ** then the optimistic overflow chain processing in clearCell()
5308 ** may misinterpret the uninitialised values and delete the
5309 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005310 */
danielk19774ef24492007-05-23 09:52:41 +00005311 if( pBt->autoVacuum && rc==SQLITE_OK ){
5312 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005313 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005314 if( rc ){
5315 releasePage(pOvfl);
5316 }
danielk1977afcdd022004-10-31 16:25:42 +00005317 }
5318#endif
drh3b7511c2001-05-26 13:15:44 +00005319 if( rc ){
drh9b171272004-05-08 02:03:22 +00005320 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005321 return rc;
5322 }
drhc5053fb2008-11-27 02:22:10 +00005323
5324 /* If pToRelease is not zero than pPrior points into the data area
5325 ** of pToRelease. Make sure pToRelease is still writeable. */
5326 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5327
5328 /* If pPrior is part of the data area of pPage, then make sure pPage
5329 ** is still writeable */
5330 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5331 || sqlite3PagerIswriteable(pPage->pDbPage) );
5332
drh3aac2dd2004-04-26 14:10:20 +00005333 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005334 releasePage(pToRelease);
5335 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005336 pPrior = pOvfl->aData;
5337 put4byte(pPrior, 0);
5338 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005339 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005340 }
5341 n = nPayload;
5342 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005343
5344 /* If pToRelease is not zero than pPayload points into the data area
5345 ** of pToRelease. Make sure pToRelease is still writeable. */
5346 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5347
5348 /* If pPayload is part of the data area of pPage, then make sure pPage
5349 ** is still writeable */
5350 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5351 || sqlite3PagerIswriteable(pPage->pDbPage) );
5352
drhb026e052007-05-02 01:34:31 +00005353 if( nSrc>0 ){
5354 if( n>nSrc ) n = nSrc;
5355 assert( pSrc );
5356 memcpy(pPayload, pSrc, n);
5357 }else{
5358 memset(pPayload, 0, n);
5359 }
drh3b7511c2001-05-26 13:15:44 +00005360 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005361 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005362 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005363 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005364 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005365 if( nSrc==0 ){
5366 nSrc = nData;
5367 pSrc = pData;
5368 }
drhdd793422001-06-28 01:54:48 +00005369 }
drh9b171272004-05-08 02:03:22 +00005370 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005371 return SQLITE_OK;
5372}
5373
drh14acc042001-06-10 19:56:58 +00005374/*
5375** Remove the i-th cell from pPage. This routine effects pPage only.
5376** The cell content is not freed or deallocated. It is assumed that
5377** the cell content has been copied someplace else. This routine just
5378** removes the reference to the cell from pPage.
5379**
5380** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005381*/
drh98add2e2009-07-20 17:11:49 +00005382static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43605152004-05-29 21:46:49 +00005383 int i; /* Loop counter */
drh43b18e12010-08-17 19:40:08 +00005384 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005385 u8 *data; /* pPage->aData */
5386 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005387 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005388 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005389
drh98add2e2009-07-20 17:11:49 +00005390 if( *pRC ) return;
5391
drh8c42ca92001-06-22 19:15:00 +00005392 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005393 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005394 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005395 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005396 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005397 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005398 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005399 hdr = pPage->hdrOffset;
5400 testcase( pc==get2byte(&data[hdr+5]) );
5401 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005402 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005403 *pRC = SQLITE_CORRUPT_BKPT;
5404 return;
shane0af3f892008-11-12 04:55:34 +00005405 }
shanedcc50b72008-11-13 18:29:50 +00005406 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005407 if( rc ){
5408 *pRC = rc;
5409 return;
shanedcc50b72008-11-13 18:29:50 +00005410 }
drh43605152004-05-29 21:46:49 +00005411 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5412 ptr[0] = ptr[2];
5413 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005414 }
5415 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005416 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005417 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005418}
5419
5420/*
5421** Insert a new cell on pPage at cell index "i". pCell points to the
5422** content of the cell.
5423**
5424** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005425** will not fit, then make a copy of the cell content into pTemp if
5426** pTemp is not null. Regardless of pTemp, allocate a new entry
5427** in pPage->aOvfl[] and make it point to the cell content (either
5428** in pTemp or the original pCell) and also record its index.
5429** Allocating a new entry in pPage->aCell[] implies that
5430** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005431**
5432** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5433** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005434** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005435** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005436*/
drh98add2e2009-07-20 17:11:49 +00005437static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005438 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005439 int i, /* New cell becomes the i-th cell of the page */
5440 u8 *pCell, /* Content of the new cell */
5441 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005442 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005443 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5444 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005445){
drh383d30f2010-02-26 13:07:37 +00005446 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005447 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005448 int end; /* First byte past the last cell pointer in data[] */
5449 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005450 int cellOffset; /* Address of first cell pointer in data[] */
5451 u8 *data; /* The content of the whole page */
5452 u8 *ptr; /* Used for moving information around in data[] */
5453
danielk19774dbaa892009-06-16 16:50:22 +00005454 int nSkip = (iChild ? 4 : 0);
5455
drh98add2e2009-07-20 17:11:49 +00005456 if( *pRC ) return;
5457
drh43605152004-05-29 21:46:49 +00005458 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005459 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drhf49661a2008-12-10 16:45:50 +00005460 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005461 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005462 /* The cell should normally be sized correctly. However, when moving a
5463 ** malformed cell from a leaf page to an interior page, if the cell size
5464 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5465 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5466 ** the term after the || in the following assert(). */
5467 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005468 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005469 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005470 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005471 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005472 }
danielk19774dbaa892009-06-16 16:50:22 +00005473 if( iChild ){
5474 put4byte(pCell, iChild);
5475 }
drh43605152004-05-29 21:46:49 +00005476 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005477 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005478 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005479 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005480 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005481 int rc = sqlite3PagerWrite(pPage->pDbPage);
5482 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005483 *pRC = rc;
5484 return;
danielk19776e465eb2007-08-21 13:11:00 +00005485 }
5486 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005487 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005488 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005489 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005490 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005491 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005492 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005493 /* The allocateSpace() routine guarantees the following two properties
5494 ** if it returns success */
5495 assert( idx >= end+2 );
5496 assert( idx+sz <= pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005497 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005498 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005499 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005500 if( iChild ){
5501 put4byte(&data[idx], iChild);
5502 }
drh0a45c272009-07-08 01:49:11 +00005503 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005504 ptr[0] = ptr[-2];
5505 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005506 }
drh43605152004-05-29 21:46:49 +00005507 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005508 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005509#ifndef SQLITE_OMIT_AUTOVACUUM
5510 if( pPage->pBt->autoVacuum ){
5511 /* The cell may contain a pointer to an overflow page. If so, write
5512 ** the entry for the overflow page into the pointer map.
5513 */
drh98add2e2009-07-20 17:11:49 +00005514 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005515 }
5516#endif
drh14acc042001-06-10 19:56:58 +00005517 }
5518}
5519
5520/*
drhfa1a98a2004-05-14 19:08:17 +00005521** Add a list of cells to a page. The page should be initially empty.
5522** The cells are guaranteed to fit on the page.
5523*/
5524static void assemblePage(
5525 MemPage *pPage, /* The page to be assemblied */
5526 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005527 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005528 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005529){
5530 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005531 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005532 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005533 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5534 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5535 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005536
drh43605152004-05-29 21:46:49 +00005537 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005538 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb2eced52010-08-12 02:41:12 +00005539 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005540 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005541
5542 /* Check that the page has just been zeroed by zeroPage() */
5543 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005544 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005545
5546 pCellptr = &data[pPage->cellOffset + nCell*2];
5547 cellbody = nUsable;
5548 for(i=nCell-1; i>=0; i--){
5549 pCellptr -= 2;
5550 cellbody -= aSize[i];
5551 put2byte(pCellptr, cellbody);
5552 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005553 }
danielk1977fad91942009-04-29 17:49:59 +00005554 put2byte(&data[hdr+3], nCell);
5555 put2byte(&data[hdr+5], cellbody);
5556 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005557 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005558}
5559
drh14acc042001-06-10 19:56:58 +00005560/*
drhc3b70572003-01-04 19:44:07 +00005561** The following parameters determine how many adjacent pages get involved
5562** in a balancing operation. NN is the number of neighbors on either side
5563** of the page that participate in the balancing operation. NB is the
5564** total number of pages that participate, including the target page and
5565** NN neighbors on either side.
5566**
5567** The minimum value of NN is 1 (of course). Increasing NN above 1
5568** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5569** in exchange for a larger degradation in INSERT and UPDATE performance.
5570** The value of NN appears to give the best results overall.
5571*/
5572#define NN 1 /* Number of neighbors on either side of pPage */
5573#define NB (NN*2+1) /* Total pages involved in the balance */
5574
danielk1977ac245ec2005-01-14 13:50:11 +00005575
drh615ae552005-01-16 23:21:00 +00005576#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005577/*
5578** This version of balance() handles the common special case where
5579** a new entry is being inserted on the extreme right-end of the
5580** tree, in other words, when the new entry will become the largest
5581** entry in the tree.
5582**
drhc314dc72009-07-21 11:52:34 +00005583** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005584** a new page to the right-hand side and put the one new entry in
5585** that page. This leaves the right side of the tree somewhat
5586** unbalanced. But odds are that we will be inserting new entries
5587** at the end soon afterwards so the nearly empty page will quickly
5588** fill up. On average.
5589**
5590** pPage is the leaf page which is the right-most page in the tree.
5591** pParent is its parent. pPage must have a single overflow entry
5592** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005593**
5594** The pSpace buffer is used to store a temporary copy of the divider
5595** cell that will be inserted into pParent. Such a cell consists of a 4
5596** byte page number followed by a variable length integer. In other
5597** words, at most 13 bytes. Hence the pSpace buffer must be at
5598** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005599*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005600static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5601 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005602 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005603 int rc; /* Return Code */
5604 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005605
drh1fee73e2007-08-29 04:00:57 +00005606 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005607 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005608 assert( pPage->nOverflow==1 );
5609
drh5d433ce2010-08-14 16:02:52 +00005610 /* This error condition is now caught prior to reaching this function */
drh6b47fca2010-08-19 14:22:42 +00005611 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005612
danielk1977a50d9aa2009-06-08 14:49:45 +00005613 /* Allocate a new page. This page will become the right-sibling of
5614 ** pPage. Make the parent page writable, so that the new divider cell
5615 ** may be inserted. If both these operations are successful, proceed.
5616 */
drh4f0c5872007-03-26 22:05:01 +00005617 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005618
danielk1977eaa06f62008-09-18 17:34:44 +00005619 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005620
5621 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005622 u8 *pCell = pPage->aOvfl[0].pCell;
5623 u16 szCell = cellSizePtr(pPage, pCell);
5624 u8 *pStop;
5625
drhc5053fb2008-11-27 02:22:10 +00005626 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005627 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5628 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005629 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005630
5631 /* If this is an auto-vacuum database, update the pointer map
5632 ** with entries for the new page, and any pointer from the
5633 ** cell on the page to an overflow page. If either of these
5634 ** operations fails, the return code is set, but the contents
5635 ** of the parent page are still manipulated by thh code below.
5636 ** That is Ok, at this point the parent page is guaranteed to
5637 ** be marked as dirty. Returning an error code will cause a
5638 ** rollback, undoing any changes made to the parent page.
5639 */
5640 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005641 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5642 if( szCell>pNew->minLocal ){
5643 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005644 }
5645 }
danielk1977eaa06f62008-09-18 17:34:44 +00005646
danielk19776f235cc2009-06-04 14:46:08 +00005647 /* Create a divider cell to insert into pParent. The divider cell
5648 ** consists of a 4-byte page number (the page number of pPage) and
5649 ** a variable length key value (which must be the same value as the
5650 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005651 **
danielk19776f235cc2009-06-04 14:46:08 +00005652 ** To find the largest key value on pPage, first find the right-most
5653 ** cell on pPage. The first two fields of this cell are the
5654 ** record-length (a variable length integer at most 32-bits in size)
5655 ** and the key value (a variable length integer, may have any value).
5656 ** The first of the while(...) loops below skips over the record-length
5657 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005658 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005659 */
danielk1977eaa06f62008-09-18 17:34:44 +00005660 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005661 pStop = &pCell[9];
5662 while( (*(pCell++)&0x80) && pCell<pStop );
5663 pStop = &pCell[9];
5664 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5665
danielk19774dbaa892009-06-16 16:50:22 +00005666 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005667 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5668 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005669
5670 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005671 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5672
danielk1977e08a3c42008-09-18 18:17:03 +00005673 /* Release the reference to the new page. */
5674 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005675 }
5676
danielk1977eaa06f62008-09-18 17:34:44 +00005677 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005678}
drh615ae552005-01-16 23:21:00 +00005679#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005680
danielk19774dbaa892009-06-16 16:50:22 +00005681#if 0
drhc3b70572003-01-04 19:44:07 +00005682/*
danielk19774dbaa892009-06-16 16:50:22 +00005683** This function does not contribute anything to the operation of SQLite.
5684** it is sometimes activated temporarily while debugging code responsible
5685** for setting pointer-map entries.
5686*/
5687static int ptrmapCheckPages(MemPage **apPage, int nPage){
5688 int i, j;
5689 for(i=0; i<nPage; i++){
5690 Pgno n;
5691 u8 e;
5692 MemPage *pPage = apPage[i];
5693 BtShared *pBt = pPage->pBt;
5694 assert( pPage->isInit );
5695
5696 for(j=0; j<pPage->nCell; j++){
5697 CellInfo info;
5698 u8 *z;
5699
5700 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005701 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005702 if( info.iOverflow ){
5703 Pgno ovfl = get4byte(&z[info.iOverflow]);
5704 ptrmapGet(pBt, ovfl, &e, &n);
5705 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5706 }
5707 if( !pPage->leaf ){
5708 Pgno child = get4byte(z);
5709 ptrmapGet(pBt, child, &e, &n);
5710 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5711 }
5712 }
5713 if( !pPage->leaf ){
5714 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5715 ptrmapGet(pBt, child, &e, &n);
5716 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5717 }
5718 }
5719 return 1;
5720}
5721#endif
5722
danielk1977cd581a72009-06-23 15:43:39 +00005723/*
5724** This function is used to copy the contents of the b-tree node stored
5725** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5726** the pointer-map entries for each child page are updated so that the
5727** parent page stored in the pointer map is page pTo. If pFrom contained
5728** any cells with overflow page pointers, then the corresponding pointer
5729** map entries are also updated so that the parent page is page pTo.
5730**
5731** If pFrom is currently carrying any overflow cells (entries in the
5732** MemPage.aOvfl[] array), they are not copied to pTo.
5733**
danielk197730548662009-07-09 05:07:37 +00005734** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005735**
5736** The performance of this function is not critical. It is only used by
5737** the balance_shallower() and balance_deeper() procedures, neither of
5738** which are called often under normal circumstances.
5739*/
drhc314dc72009-07-21 11:52:34 +00005740static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5741 if( (*pRC)==SQLITE_OK ){
5742 BtShared * const pBt = pFrom->pBt;
5743 u8 * const aFrom = pFrom->aData;
5744 u8 * const aTo = pTo->aData;
5745 int const iFromHdr = pFrom->hdrOffset;
5746 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005747 int rc;
drhc314dc72009-07-21 11:52:34 +00005748 int iData;
5749
5750
5751 assert( pFrom->isInit );
5752 assert( pFrom->nFree>=iToHdr );
5753 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5754
5755 /* Copy the b-tree node content from page pFrom to page pTo. */
5756 iData = get2byte(&aFrom[iFromHdr+5]);
5757 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5758 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5759
5760 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005761 ** match the new data. The initialization of pTo can actually fail under
5762 ** fairly obscure circumstances, even though it is a copy of initialized
5763 ** page pFrom.
5764 */
drhc314dc72009-07-21 11:52:34 +00005765 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005766 rc = btreeInitPage(pTo);
5767 if( rc!=SQLITE_OK ){
5768 *pRC = rc;
5769 return;
5770 }
drhc314dc72009-07-21 11:52:34 +00005771
5772 /* If this is an auto-vacuum database, update the pointer-map entries
5773 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5774 */
5775 if( ISAUTOVACUUM ){
5776 *pRC = setChildPtrmaps(pTo);
5777 }
danielk1977cd581a72009-06-23 15:43:39 +00005778 }
danielk1977cd581a72009-06-23 15:43:39 +00005779}
5780
5781/*
danielk19774dbaa892009-06-16 16:50:22 +00005782** This routine redistributes cells on the iParentIdx'th child of pParent
5783** (hereafter "the page") and up to 2 siblings so that all pages have about the
5784** same amount of free space. Usually a single sibling on either side of the
5785** page are used in the balancing, though both siblings might come from one
5786** side if the page is the first or last child of its parent. If the page
5787** has fewer than 2 siblings (something which can only happen if the page
5788** is a root page or a child of a root page) then all available siblings
5789** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005790**
danielk19774dbaa892009-06-16 16:50:22 +00005791** The number of siblings of the page might be increased or decreased by
5792** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005793**
danielk19774dbaa892009-06-16 16:50:22 +00005794** Note that when this routine is called, some of the cells on the page
5795** might not actually be stored in MemPage.aData[]. This can happen
5796** if the page is overfull. This routine ensures that all cells allocated
5797** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005798**
danielk19774dbaa892009-06-16 16:50:22 +00005799** In the course of balancing the page and its siblings, cells may be
5800** inserted into or removed from the parent page (pParent). Doing so
5801** may cause the parent page to become overfull or underfull. If this
5802** happens, it is the responsibility of the caller to invoke the correct
5803** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005804**
drh5e00f6c2001-09-13 13:46:56 +00005805** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005806** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005807** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005808**
5809** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005810** buffer big enough to hold one page. If while inserting cells into the parent
5811** page (pParent) the parent page becomes overfull, this buffer is
5812** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005813** a maximum of four divider cells into the parent page, and the maximum
5814** size of a cell stored within an internal node is always less than 1/4
5815** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5816** enough for all overflow cells.
5817**
5818** If aOvflSpace is set to a null pointer, this function returns
5819** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005820*/
danielk19774dbaa892009-06-16 16:50:22 +00005821static int balance_nonroot(
5822 MemPage *pParent, /* Parent page of siblings being balanced */
5823 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005824 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5825 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005826){
drh16a9b832007-05-05 18:39:25 +00005827 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005828 int nCell = 0; /* Number of cells in apCell[] */
5829 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005830 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005831 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005832 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005833 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005834 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005835 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005836 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005837 int usableSpace; /* Bytes in pPage beyond the header */
5838 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005839 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005840 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005841 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005842 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005843 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005844 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005845 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005846 u8 *pRight; /* Location in parent of right-sibling pointer */
5847 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005848 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5849 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005850 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005851 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005852 u8 *aSpace1; /* Space for copies of dividers cells */
5853 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005854
danielk1977a50d9aa2009-06-08 14:49:45 +00005855 pBt = pParent->pBt;
5856 assert( sqlite3_mutex_held(pBt->mutex) );
5857 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005858
danielk1977e5765212009-06-17 11:13:28 +00005859#if 0
drh43605152004-05-29 21:46:49 +00005860 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005861#endif
drh2e38c322004-09-03 18:38:44 +00005862
danielk19774dbaa892009-06-16 16:50:22 +00005863 /* At this point pParent may have at most one overflow cell. And if
5864 ** this overflow cell is present, it must be the cell with
5865 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005866 ** is called (indirectly) from sqlite3BtreeDelete().
5867 */
danielk19774dbaa892009-06-16 16:50:22 +00005868 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5869 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5870
danielk197711a8a862009-06-17 11:49:52 +00005871 if( !aOvflSpace ){
5872 return SQLITE_NOMEM;
5873 }
5874
danielk1977a50d9aa2009-06-08 14:49:45 +00005875 /* Find the sibling pages to balance. Also locate the cells in pParent
5876 ** that divide the siblings. An attempt is made to find NN siblings on
5877 ** either side of pPage. More siblings are taken from one side, however,
5878 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005879 ** has NB or fewer children then all children of pParent are taken.
5880 **
5881 ** This loop also drops the divider cells from the parent page. This
5882 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005883 ** overflow cells in the parent page, since if any existed they will
5884 ** have already been removed.
5885 */
danielk19774dbaa892009-06-16 16:50:22 +00005886 i = pParent->nOverflow + pParent->nCell;
5887 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005888 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005889 nOld = i+1;
5890 }else{
5891 nOld = 3;
5892 if( iParentIdx==0 ){
5893 nxDiv = 0;
5894 }else if( iParentIdx==i ){
5895 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005896 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005897 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005898 }
danielk19774dbaa892009-06-16 16:50:22 +00005899 i = 2;
5900 }
5901 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5902 pRight = &pParent->aData[pParent->hdrOffset+8];
5903 }else{
5904 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5905 }
5906 pgno = get4byte(pRight);
5907 while( 1 ){
5908 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5909 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00005910 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00005911 goto balance_cleanup;
5912 }
danielk1977634f2982005-03-28 08:44:07 +00005913 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005914 if( (i--)==0 ) break;
5915
drhcd09c532009-07-20 19:30:00 +00005916 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00005917 apDiv[i] = pParent->aOvfl[0].pCell;
5918 pgno = get4byte(apDiv[i]);
5919 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5920 pParent->nOverflow = 0;
5921 }else{
5922 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5923 pgno = get4byte(apDiv[i]);
5924 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5925
5926 /* Drop the cell from the parent page. apDiv[i] still points to
5927 ** the cell within the parent, even though it has been dropped.
5928 ** This is safe because dropping a cell only overwrites the first
5929 ** four bytes of it, and this function does not need the first
5930 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005931 ** later on.
5932 **
5933 ** Unless SQLite is compiled in secure-delete mode. In this case,
5934 ** the dropCell() routine will overwrite the entire cell with zeroes.
5935 ** In this case, temporarily copy the cell into the aOvflSpace[]
5936 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5937 ** is allocated. */
drh5b47efa2010-02-12 18:18:39 +00005938 if( pBt->secureDelete ){
shaneh1da207e2010-03-09 14:41:12 +00005939 int iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00005940 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00005941 rc = SQLITE_CORRUPT_BKPT;
5942 memset(apOld, 0, (i+1)*sizeof(MemPage*));
5943 goto balance_cleanup;
5944 }else{
5945 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
5946 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5947 }
drh5b47efa2010-02-12 18:18:39 +00005948 }
drh98add2e2009-07-20 17:11:49 +00005949 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005950 }
drh8b2f49b2001-06-08 00:21:52 +00005951 }
5952
drha9121e42008-02-19 14:59:35 +00005953 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005954 ** alignment */
drha9121e42008-02-19 14:59:35 +00005955 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005956
drh8b2f49b2001-06-08 00:21:52 +00005957 /*
danielk1977634f2982005-03-28 08:44:07 +00005958 ** Allocate space for memory structures
5959 */
danielk19774dbaa892009-06-16 16:50:22 +00005960 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005961 szScratch =
drha9121e42008-02-19 14:59:35 +00005962 nMaxCells*sizeof(u8*) /* apCell */
5963 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005964 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005965 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005966 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005967 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005968 rc = SQLITE_NOMEM;
5969 goto balance_cleanup;
5970 }
drha9121e42008-02-19 14:59:35 +00005971 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005972 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005973 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005974
5975 /*
5976 ** Load pointers to all cells on sibling pages and the divider cells
5977 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005978 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005979 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005980 **
5981 ** If the siblings are on leaf pages, then the child pointers of the
5982 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005983 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005984 ** child pointers. If siblings are not leaves, then all cell in
5985 ** apCell[] include child pointers. Either way, all cells in apCell[]
5986 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005987 **
5988 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5989 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005990 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005991 leafCorrection = apOld[0]->leaf*4;
5992 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005993 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005994 int limit;
5995
5996 /* Before doing anything else, take a copy of the i'th original sibling
5997 ** The rest of this function will use data from the copies rather
5998 ** that the original pages since the original pages will be in the
5999 ** process of being overwritten. */
6000 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6001 memcpy(pOld, apOld[i], sizeof(MemPage));
6002 pOld->aData = (void*)&pOld[1];
6003 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6004
6005 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00006006 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00006007 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00006008 apCell[nCell] = findOverflowCell(pOld, j);
6009 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00006010 nCell++;
6011 }
6012 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006013 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006014 u8 *pTemp;
6015 assert( nCell<nMaxCells );
6016 szCell[nCell] = sz;
6017 pTemp = &aSpace1[iSpace1];
6018 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006019 assert( sz<=pBt->maxLocal+23 );
danielk19774dbaa892009-06-16 16:50:22 +00006020 assert( iSpace1<=pBt->pageSize );
6021 memcpy(pTemp, apDiv[i], sz);
6022 apCell[nCell] = pTemp+leafCorrection;
6023 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006024 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006025 if( !pOld->leaf ){
6026 assert( leafCorrection==0 );
6027 assert( pOld->hdrOffset==0 );
6028 /* The right pointer of the child page pOld becomes the left
6029 ** pointer of the divider cell */
6030 memcpy(apCell[nCell], &pOld->aData[8], 4);
6031 }else{
6032 assert( leafCorrection==4 );
6033 if( szCell[nCell]<4 ){
6034 /* Do not allow any cells smaller than 4 bytes. */
6035 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006036 }
6037 }
drh14acc042001-06-10 19:56:58 +00006038 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006039 }
drh8b2f49b2001-06-08 00:21:52 +00006040 }
6041
6042 /*
drh6019e162001-07-02 17:51:45 +00006043 ** Figure out the number of pages needed to hold all nCell cells.
6044 ** Store this number in "k". Also compute szNew[] which is the total
6045 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006046 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006047 ** cntNew[k] should equal nCell.
6048 **
drh96f5b762004-05-16 16:24:36 +00006049 ** Values computed by this block:
6050 **
6051 ** k: The total number of sibling pages
6052 ** szNew[i]: Spaced used on the i-th sibling page.
6053 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6054 ** the right of the i-th sibling page.
6055 ** usableSpace: Number of bytes of space available on each sibling.
6056 **
drh8b2f49b2001-06-08 00:21:52 +00006057 */
drh43605152004-05-29 21:46:49 +00006058 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006059 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006060 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006061 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006062 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006063 szNew[k] = subtotal - szCell[i];
6064 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006065 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006066 subtotal = 0;
6067 k++;
drh9978c972010-02-23 17:36:32 +00006068 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006069 }
6070 }
6071 szNew[k] = subtotal;
6072 cntNew[k] = nCell;
6073 k++;
drh96f5b762004-05-16 16:24:36 +00006074
6075 /*
6076 ** The packing computed by the previous block is biased toward the siblings
6077 ** on the left side. The left siblings are always nearly full, while the
6078 ** right-most sibling might be nearly empty. This block of code attempts
6079 ** to adjust the packing of siblings to get a better balance.
6080 **
6081 ** This adjustment is more than an optimization. The packing above might
6082 ** be so out of balance as to be illegal. For example, the right-most
6083 ** sibling might be completely empty. This adjustment is not optional.
6084 */
drh6019e162001-07-02 17:51:45 +00006085 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006086 int szRight = szNew[i]; /* Size of sibling on the right */
6087 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6088 int r; /* Index of right-most cell in left sibling */
6089 int d; /* Index of first cell to the left of right sibling */
6090
6091 r = cntNew[i-1] - 1;
6092 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006093 assert( d<nMaxCells );
6094 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00006095 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
6096 szRight += szCell[d] + 2;
6097 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006098 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006099 r = cntNew[i-1] - 1;
6100 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006101 }
drh96f5b762004-05-16 16:24:36 +00006102 szNew[i] = szRight;
6103 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006104 }
drh09d0deb2005-08-02 17:13:09 +00006105
danielk19776f235cc2009-06-04 14:46:08 +00006106 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006107 ** a virtual root page. A virtual root page is when the real root
6108 ** page is page 1 and we are the only child of that page.
6109 */
6110 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00006111
danielk1977e5765212009-06-17 11:13:28 +00006112 TRACE(("BALANCE: old: %d %d %d ",
6113 apOld[0]->pgno,
6114 nOld>=2 ? apOld[1]->pgno : 0,
6115 nOld>=3 ? apOld[2]->pgno : 0
6116 ));
6117
drh8b2f49b2001-06-08 00:21:52 +00006118 /*
drh6b308672002-07-08 02:16:37 +00006119 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006120 */
drheac74422009-06-14 12:47:11 +00006121 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006122 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006123 goto balance_cleanup;
6124 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006125 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006126 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006127 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006128 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006129 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006130 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006131 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006132 nNew++;
danielk197728129562005-01-11 10:25:06 +00006133 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006134 }else{
drh7aa8f852006-03-28 00:24:44 +00006135 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006136 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006137 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006138 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006139 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006140
6141 /* Set the pointer-map entry for the new sibling page. */
6142 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006143 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006144 if( rc!=SQLITE_OK ){
6145 goto balance_cleanup;
6146 }
6147 }
drh6b308672002-07-08 02:16:37 +00006148 }
drh8b2f49b2001-06-08 00:21:52 +00006149 }
6150
danielk1977299b1872004-11-22 10:02:10 +00006151 /* Free any old pages that were not reused as new pages.
6152 */
6153 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006154 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006155 if( rc ) goto balance_cleanup;
6156 releasePage(apOld[i]);
6157 apOld[i] = 0;
6158 i++;
6159 }
6160
drh8b2f49b2001-06-08 00:21:52 +00006161 /*
drhf9ffac92002-03-02 19:00:31 +00006162 ** Put the new pages in accending order. This helps to
6163 ** keep entries in the disk file in order so that a scan
6164 ** of the table is a linear scan through the file. That
6165 ** in turn helps the operating system to deliver pages
6166 ** from the disk more rapidly.
6167 **
6168 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006169 ** n is never more than NB (a small constant), that should
6170 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006171 **
drhc3b70572003-01-04 19:44:07 +00006172 ** When NB==3, this one optimization makes the database
6173 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006174 */
6175 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006176 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006177 int minI = i;
6178 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006179 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006180 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006181 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006182 }
6183 }
6184 if( minI>i ){
6185 int t;
6186 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00006187 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006188 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006189 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006190 apNew[minI] = pT;
6191 }
6192 }
danielk1977e5765212009-06-17 11:13:28 +00006193 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006194 apNew[0]->pgno, szNew[0],
6195 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6196 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6197 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6198 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6199
6200 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6201 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006202
drhf9ffac92002-03-02 19:00:31 +00006203 /*
drh14acc042001-06-10 19:56:58 +00006204 ** Evenly distribute the data in apCell[] across the new pages.
6205 ** Insert divider cells into pParent as necessary.
6206 */
6207 j = 0;
6208 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006209 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006210 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006211 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006212 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006213 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006214 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006215 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006216
danielk1977ac11ee62005-01-15 12:45:51 +00006217 j = cntNew[i];
6218
6219 /* If the sibling page assembled above was not the right-most sibling,
6220 ** insert a divider cell into the parent page.
6221 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006222 assert( i<nNew-1 || j==nCell );
6223 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006224 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006225 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006226 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006227
6228 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006229 pCell = apCell[j];
6230 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006231 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006232 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006233 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006234 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006235 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006236 ** then there is no divider cell in apCell[]. Instead, the divider
6237 ** cell consists of the integer key for the right-most cell of
6238 ** the sibling-page assembled above only.
6239 */
drh6f11bef2004-05-13 01:12:56 +00006240 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006241 j--;
danielk197730548662009-07-09 05:07:37 +00006242 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006243 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006244 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006245 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006246 }else{
6247 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006248 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006249 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006250 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006251 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006252 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006253 ** insertCell(), so reparse the cell now.
6254 **
6255 ** Note that this can never happen in an SQLite data file, as all
6256 ** cells are at least 4 bytes. It only happens in b-trees used
6257 ** to evaluate "IN (SELECT ...)" and similar clauses.
6258 */
6259 if( szCell[j]==4 ){
6260 assert(leafCorrection==4);
6261 sz = cellSizePtr(pParent, pCell);
6262 }
drh4b70f112004-05-02 21:12:19 +00006263 }
danielk19776067a9b2009-06-09 09:41:00 +00006264 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006265 assert( sz<=pBt->maxLocal+23 );
danielk19776067a9b2009-06-09 09:41:00 +00006266 assert( iOvflSpace<=pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006267 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006268 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006269 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006270
drh14acc042001-06-10 19:56:58 +00006271 j++;
6272 nxDiv++;
6273 }
6274 }
drh6019e162001-07-02 17:51:45 +00006275 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006276 assert( nOld>0 );
6277 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006278 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006279 u8 *zChild = &apCopy[nOld-1]->aData[8];
6280 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006281 }
6282
danielk197713bd99f2009-06-24 05:40:34 +00006283 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6284 /* The root page of the b-tree now contains no cells. The only sibling
6285 ** page is the right-child of the parent. Copy the contents of the
6286 ** child page into the parent, decreasing the overall height of the
6287 ** b-tree structure by one. This is described as the "balance-shallower"
6288 ** sub-algorithm in some documentation.
6289 **
6290 ** If this is an auto-vacuum database, the call to copyNodeContent()
6291 ** sets all pointer-map entries corresponding to database image pages
6292 ** for which the pointer is stored within the content being copied.
6293 **
6294 ** The second assert below verifies that the child page is defragmented
6295 ** (it must be, as it was just reconstructed using assemblePage()). This
6296 ** is important if the parent page happens to be page 1 of the database
6297 ** image. */
6298 assert( nNew==1 );
6299 assert( apNew[0]->nFree ==
6300 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6301 );
drhc314dc72009-07-21 11:52:34 +00006302 copyNodeContent(apNew[0], pParent, &rc);
6303 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006304 }else if( ISAUTOVACUUM ){
6305 /* Fix the pointer-map entries for all the cells that were shifted around.
6306 ** There are several different types of pointer-map entries that need to
6307 ** be dealt with by this routine. Some of these have been set already, but
6308 ** many have not. The following is a summary:
6309 **
6310 ** 1) The entries associated with new sibling pages that were not
6311 ** siblings when this function was called. These have already
6312 ** been set. We don't need to worry about old siblings that were
6313 ** moved to the free-list - the freePage() code has taken care
6314 ** of those.
6315 **
6316 ** 2) The pointer-map entries associated with the first overflow
6317 ** page in any overflow chains used by new divider cells. These
6318 ** have also already been taken care of by the insertCell() code.
6319 **
6320 ** 3) If the sibling pages are not leaves, then the child pages of
6321 ** cells stored on the sibling pages may need to be updated.
6322 **
6323 ** 4) If the sibling pages are not internal intkey nodes, then any
6324 ** overflow pages used by these cells may need to be updated
6325 ** (internal intkey nodes never contain pointers to overflow pages).
6326 **
6327 ** 5) If the sibling pages are not leaves, then the pointer-map
6328 ** entries for the right-child pages of each sibling may need
6329 ** to be updated.
6330 **
6331 ** Cases 1 and 2 are dealt with above by other code. The next
6332 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6333 ** setting a pointer map entry is a relatively expensive operation, this
6334 ** code only sets pointer map entries for child or overflow pages that have
6335 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006336 MemPage *pNew = apNew[0];
6337 MemPage *pOld = apCopy[0];
6338 int nOverflow = pOld->nOverflow;
6339 int iNextOld = pOld->nCell + nOverflow;
6340 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6341 j = 0; /* Current 'old' sibling page */
6342 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006343 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006344 int isDivider = 0;
6345 while( i==iNextOld ){
6346 /* Cell i is the cell immediately following the last cell on old
6347 ** sibling page j. If the siblings are not leaf pages of an
6348 ** intkey b-tree, then cell i was a divider cell. */
6349 pOld = apCopy[++j];
6350 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6351 if( pOld->nOverflow ){
6352 nOverflow = pOld->nOverflow;
6353 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6354 }
6355 isDivider = !leafData;
6356 }
6357
6358 assert(nOverflow>0 || iOverflow<i );
6359 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6360 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6361 if( i==iOverflow ){
6362 isDivider = 1;
6363 if( (--nOverflow)>0 ){
6364 iOverflow++;
6365 }
6366 }
6367
6368 if( i==cntNew[k] ){
6369 /* Cell i is the cell immediately following the last cell on new
6370 ** sibling page k. If the siblings are not leaf pages of an
6371 ** intkey b-tree, then cell i is a divider cell. */
6372 pNew = apNew[++k];
6373 if( !leafData ) continue;
6374 }
danielk19774dbaa892009-06-16 16:50:22 +00006375 assert( j<nOld );
6376 assert( k<nNew );
6377
6378 /* If the cell was originally divider cell (and is not now) or
6379 ** an overflow cell, or if the cell was located on a different sibling
6380 ** page before the balancing, then the pointer map entries associated
6381 ** with any child or overflow pages need to be updated. */
6382 if( isDivider || pOld->pgno!=pNew->pgno ){
6383 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006384 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006385 }
drh98add2e2009-07-20 17:11:49 +00006386 if( szCell[i]>pNew->minLocal ){
6387 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006388 }
6389 }
6390 }
6391
6392 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006393 for(i=0; i<nNew; i++){
6394 u32 key = get4byte(&apNew[i]->aData[8]);
6395 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006396 }
6397 }
6398
6399#if 0
6400 /* The ptrmapCheckPages() contains assert() statements that verify that
6401 ** all pointer map pages are set correctly. This is helpful while
6402 ** debugging. This is usually disabled because a corrupt database may
6403 ** cause an assert() statement to fail. */
6404 ptrmapCheckPages(apNew, nNew);
6405 ptrmapCheckPages(&pParent, 1);
6406#endif
6407 }
6408
danielk197771d5d2c2008-09-29 11:49:47 +00006409 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006410 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6411 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006412
drh8b2f49b2001-06-08 00:21:52 +00006413 /*
drh14acc042001-06-10 19:56:58 +00006414 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006415 */
drh14acc042001-06-10 19:56:58 +00006416balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006417 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006418 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006419 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006420 }
drh14acc042001-06-10 19:56:58 +00006421 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006422 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006423 }
danielk1977eaa06f62008-09-18 17:34:44 +00006424
drh8b2f49b2001-06-08 00:21:52 +00006425 return rc;
6426}
6427
drh43605152004-05-29 21:46:49 +00006428
6429/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006430** This function is called when the root page of a b-tree structure is
6431** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006432**
danielk1977a50d9aa2009-06-08 14:49:45 +00006433** A new child page is allocated and the contents of the current root
6434** page, including overflow cells, are copied into the child. The root
6435** page is then overwritten to make it an empty page with the right-child
6436** pointer pointing to the new page.
6437**
6438** Before returning, all pointer-map entries corresponding to pages
6439** that the new child-page now contains pointers to are updated. The
6440** entry corresponding to the new right-child pointer of the root
6441** page is also updated.
6442**
6443** If successful, *ppChild is set to contain a reference to the child
6444** page and SQLITE_OK is returned. In this case the caller is required
6445** to call releasePage() on *ppChild exactly once. If an error occurs,
6446** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006447*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006448static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6449 int rc; /* Return value from subprocedures */
6450 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006451 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006452 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006453
danielk1977a50d9aa2009-06-08 14:49:45 +00006454 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006455 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006456
danielk1977a50d9aa2009-06-08 14:49:45 +00006457 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6458 ** page that will become the new right-child of pPage. Copy the contents
6459 ** of the node stored on pRoot into the new child page.
6460 */
drh98add2e2009-07-20 17:11:49 +00006461 rc = sqlite3PagerWrite(pRoot->pDbPage);
6462 if( rc==SQLITE_OK ){
6463 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006464 copyNodeContent(pRoot, pChild, &rc);
6465 if( ISAUTOVACUUM ){
6466 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006467 }
6468 }
6469 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006470 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006471 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006472 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006473 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006474 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6475 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6476 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006477
danielk1977a50d9aa2009-06-08 14:49:45 +00006478 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6479
6480 /* Copy the overflow cells from pRoot to pChild */
6481 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6482 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006483
6484 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6485 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6486 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6487
6488 *ppChild = pChild;
6489 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006490}
6491
6492/*
danielk197771d5d2c2008-09-29 11:49:47 +00006493** The page that pCur currently points to has just been modified in
6494** some way. This function figures out if this modification means the
6495** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006496** routine. Balancing routines are:
6497**
6498** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006499** balance_deeper()
6500** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006501*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006502static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006503 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006504 const int nMin = pCur->pBt->usableSize * 2 / 3;
6505 u8 aBalanceQuickSpace[13];
6506 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006507
shane75ac1de2009-06-09 18:58:52 +00006508 TESTONLY( int balance_quick_called = 0 );
6509 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006510
6511 do {
6512 int iPage = pCur->iPage;
6513 MemPage *pPage = pCur->apPage[iPage];
6514
6515 if( iPage==0 ){
6516 if( pPage->nOverflow ){
6517 /* The root page of the b-tree is overfull. In this case call the
6518 ** balance_deeper() function to create a new child for the root-page
6519 ** and copy the current contents of the root-page to it. The
6520 ** next iteration of the do-loop will balance the child page.
6521 */
6522 assert( (balance_deeper_called++)==0 );
6523 rc = balance_deeper(pPage, &pCur->apPage[1]);
6524 if( rc==SQLITE_OK ){
6525 pCur->iPage = 1;
6526 pCur->aiIdx[0] = 0;
6527 pCur->aiIdx[1] = 0;
6528 assert( pCur->apPage[1]->nOverflow );
6529 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006530 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006531 break;
6532 }
6533 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6534 break;
6535 }else{
6536 MemPage * const pParent = pCur->apPage[iPage-1];
6537 int const iIdx = pCur->aiIdx[iPage-1];
6538
6539 rc = sqlite3PagerWrite(pParent->pDbPage);
6540 if( rc==SQLITE_OK ){
6541#ifndef SQLITE_OMIT_QUICKBALANCE
6542 if( pPage->hasData
6543 && pPage->nOverflow==1
6544 && pPage->aOvfl[0].idx==pPage->nCell
6545 && pParent->pgno!=1
6546 && pParent->nCell==iIdx
6547 ){
6548 /* Call balance_quick() to create a new sibling of pPage on which
6549 ** to store the overflow cell. balance_quick() inserts a new cell
6550 ** into pParent, which may cause pParent overflow. If this
6551 ** happens, the next interation of the do-loop will balance pParent
6552 ** use either balance_nonroot() or balance_deeper(). Until this
6553 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6554 ** buffer.
6555 **
6556 ** The purpose of the following assert() is to check that only a
6557 ** single call to balance_quick() is made for each call to this
6558 ** function. If this were not verified, a subtle bug involving reuse
6559 ** of the aBalanceQuickSpace[] might sneak in.
6560 */
6561 assert( (balance_quick_called++)==0 );
6562 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6563 }else
6564#endif
6565 {
6566 /* In this case, call balance_nonroot() to redistribute cells
6567 ** between pPage and up to 2 of its sibling pages. This involves
6568 ** modifying the contents of pParent, which may cause pParent to
6569 ** become overfull or underfull. The next iteration of the do-loop
6570 ** will balance the parent page to correct this.
6571 **
6572 ** If the parent page becomes overfull, the overflow cell or cells
6573 ** are stored in the pSpace buffer allocated immediately below.
6574 ** A subsequent iteration of the do-loop will deal with this by
6575 ** calling balance_nonroot() (balance_deeper() may be called first,
6576 ** but it doesn't deal with overflow cells - just moves them to a
6577 ** different page). Once this subsequent call to balance_nonroot()
6578 ** has completed, it is safe to release the pSpace buffer used by
6579 ** the previous call, as the overflow cell data will have been
6580 ** copied either into the body of a database page or into the new
6581 ** pSpace buffer passed to the latter call to balance_nonroot().
6582 */
6583 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006584 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006585 if( pFree ){
6586 /* If pFree is not NULL, it points to the pSpace buffer used
6587 ** by a previous call to balance_nonroot(). Its contents are
6588 ** now stored either on real database pages or within the
6589 ** new pSpace buffer, so it may be safely freed here. */
6590 sqlite3PageFree(pFree);
6591 }
6592
danielk19774dbaa892009-06-16 16:50:22 +00006593 /* The pSpace buffer will be freed after the next call to
6594 ** balance_nonroot(), or just before this function returns, whichever
6595 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006596 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006597 }
6598 }
6599
6600 pPage->nOverflow = 0;
6601
6602 /* The next iteration of the do-loop balances the parent page. */
6603 releasePage(pPage);
6604 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006605 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006606 }while( rc==SQLITE_OK );
6607
6608 if( pFree ){
6609 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006610 }
6611 return rc;
6612}
6613
drhf74b8d92002-09-01 23:20:45 +00006614
6615/*
drh3b7511c2001-05-26 13:15:44 +00006616** Insert a new record into the BTree. The key is given by (pKey,nKey)
6617** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006618** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006619** is left pointing at a random location.
6620**
6621** For an INTKEY table, only the nKey value of the key is used. pKey is
6622** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006623**
6624** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006625** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006626** been performed. seekResult is the search result returned (a negative
6627** number if pCur points at an entry that is smaller than (pKey, nKey), or
6628** a positive value if pCur points at an etry that is larger than
6629** (pKey, nKey)).
6630**
drh3e9ca092009-09-08 01:14:48 +00006631** If the seekResult parameter is non-zero, then the caller guarantees that
6632** cursor pCur is pointing at the existing copy of a row that is to be
6633** overwritten. If the seekResult parameter is 0, then cursor pCur may
6634** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006635** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006636*/
drh3aac2dd2004-04-26 14:10:20 +00006637int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006638 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006639 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006640 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006641 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006642 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006643 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006644){
drh3b7511c2001-05-26 13:15:44 +00006645 int rc;
drh3e9ca092009-09-08 01:14:48 +00006646 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006647 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006648 int idx;
drh3b7511c2001-05-26 13:15:44 +00006649 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006650 Btree *p = pCur->pBtree;
6651 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006652 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006653 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006654
drh98add2e2009-07-20 17:11:49 +00006655 if( pCur->eState==CURSOR_FAULT ){
6656 assert( pCur->skipNext!=SQLITE_OK );
6657 return pCur->skipNext;
6658 }
6659
drh1fee73e2007-08-29 04:00:57 +00006660 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006661 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006662 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6663
danielk197731d31b82009-07-13 13:18:07 +00006664 /* Assert that the caller has been consistent. If this cursor was opened
6665 ** expecting an index b-tree, then the caller should be inserting blob
6666 ** keys with no associated data. If the cursor was opened expecting an
6667 ** intkey table, the caller should be inserting integer keys with a
6668 ** blob of associated data. */
6669 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6670
danielk197796d48e92009-06-29 06:00:37 +00006671 /* If this is an insert into a table b-tree, invalidate any incrblob
6672 ** cursors open on the row being replaced (assuming this is a replace
6673 ** operation - if it is not, the following is a no-op). */
6674 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006675 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006676 }
danielk197796d48e92009-06-29 06:00:37 +00006677
danielk19779c3acf32009-05-02 07:36:49 +00006678 /* Save the positions of any other cursors open on this table.
6679 **
danielk19773509a652009-07-06 18:56:13 +00006680 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006681 ** example, when inserting data into a table with auto-generated integer
6682 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6683 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006684 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006685 ** that the cursor is already where it needs to be and returns without
6686 ** doing any work. To avoid thwarting these optimizations, it is important
6687 ** not to clear the cursor here.
6688 */
drh4c301aa2009-07-15 17:25:45 +00006689 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6690 if( rc ) return rc;
6691 if( !loc ){
6692 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6693 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006694 }
danielk1977b980d2212009-06-22 18:03:51 +00006695 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006696
danielk197771d5d2c2008-09-29 11:49:47 +00006697 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006698 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006699 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006700
drh3a4c1412004-05-09 20:40:11 +00006701 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6702 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6703 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006704 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006705 allocateTempSpace(pBt);
6706 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006707 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006708 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006709 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006710 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006711 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006712 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006713 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006714 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006715 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006716 rc = sqlite3PagerWrite(pPage->pDbPage);
6717 if( rc ){
6718 goto end_insert;
6719 }
danielk197771d5d2c2008-09-29 11:49:47 +00006720 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006721 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006722 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006723 }
drh43605152004-05-29 21:46:49 +00006724 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006725 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006726 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006727 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006728 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006729 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006730 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006731 }else{
drh4b70f112004-05-02 21:12:19 +00006732 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006733 }
drh98add2e2009-07-20 17:11:49 +00006734 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006735 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006736
danielk1977a50d9aa2009-06-08 14:49:45 +00006737 /* If no error has occured and pPage has an overflow cell, call balance()
6738 ** to redistribute the cells within the tree. Since balance() may move
6739 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6740 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006741 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006742 ** Previous versions of SQLite called moveToRoot() to move the cursor
6743 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006744 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6745 ** set the cursor state to "invalid". This makes common insert operations
6746 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006747 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006748 ** There is a subtle but important optimization here too. When inserting
6749 ** multiple records into an intkey b-tree using a single cursor (as can
6750 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6751 ** is advantageous to leave the cursor pointing to the last entry in
6752 ** the b-tree if possible. If the cursor is left pointing to the last
6753 ** entry in the table, and the next row inserted has an integer key
6754 ** larger than the largest existing key, it is possible to insert the
6755 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006756 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006757 pCur->info.nSize = 0;
6758 pCur->validNKey = 0;
6759 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006760 rc = balance(pCur);
6761
6762 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006763 ** fails. Internal data structure corruption will result otherwise.
6764 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6765 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006766 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006767 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006768 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006769 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006770
drh2e38c322004-09-03 18:38:44 +00006771end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006772 return rc;
6773}
6774
6775/*
drh4b70f112004-05-02 21:12:19 +00006776** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006777** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006778*/
drh3aac2dd2004-04-26 14:10:20 +00006779int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006780 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006781 BtShared *pBt = p->pBt;
6782 int rc; /* Return code */
6783 MemPage *pPage; /* Page to delete cell from */
6784 unsigned char *pCell; /* Pointer to cell to delete */
6785 int iCellIdx; /* Index of cell to delete */
6786 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006787
drh1fee73e2007-08-29 04:00:57 +00006788 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006789 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006790 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006791 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006792 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6793 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6794
danielk19774dbaa892009-06-16 16:50:22 +00006795 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6796 || NEVER(pCur->eState!=CURSOR_VALID)
6797 ){
6798 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006799 }
danielk1977da184232006-01-05 11:34:32 +00006800
danielk197796d48e92009-06-29 06:00:37 +00006801 /* If this is a delete operation to remove a row from a table b-tree,
6802 ** invalidate any incrblob cursors open on the row being deleted. */
6803 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006804 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006805 }
6806
6807 iCellDepth = pCur->iPage;
6808 iCellIdx = pCur->aiIdx[iCellDepth];
6809 pPage = pCur->apPage[iCellDepth];
6810 pCell = findCell(pPage, iCellIdx);
6811
6812 /* If the page containing the entry to delete is not a leaf page, move
6813 ** the cursor to the largest entry in the tree that is smaller than
6814 ** the entry being deleted. This cell will replace the cell being deleted
6815 ** from the internal node. The 'previous' entry is used for this instead
6816 ** of the 'next' entry, as the previous entry is always a part of the
6817 ** sub-tree headed by the child page of the cell being deleted. This makes
6818 ** balancing the tree following the delete operation easier. */
6819 if( !pPage->leaf ){
6820 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006821 rc = sqlite3BtreePrevious(pCur, &notUsed);
6822 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006823 }
6824
6825 /* Save the positions of any other cursors open on this table before
6826 ** making any modifications. Make the page containing the entry to be
6827 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006828 ** entry and finally remove the cell itself from within the page.
6829 */
6830 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6831 if( rc ) return rc;
6832 rc = sqlite3PagerWrite(pPage->pDbPage);
6833 if( rc ) return rc;
6834 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006835 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006836 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006837
danielk19774dbaa892009-06-16 16:50:22 +00006838 /* If the cell deleted was not located on a leaf page, then the cursor
6839 ** is currently pointing to the largest entry in the sub-tree headed
6840 ** by the child-page of the cell that was just deleted from an internal
6841 ** node. The cell from the leaf node needs to be moved to the internal
6842 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006843 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006844 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6845 int nCell;
6846 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6847 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006848
danielk19774dbaa892009-06-16 16:50:22 +00006849 pCell = findCell(pLeaf, pLeaf->nCell-1);
6850 nCell = cellSizePtr(pLeaf, pCell);
6851 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006852
danielk19774dbaa892009-06-16 16:50:22 +00006853 allocateTempSpace(pBt);
6854 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006855
drha4ec1d42009-07-11 13:13:11 +00006856 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006857 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6858 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006859 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006860 }
danielk19774dbaa892009-06-16 16:50:22 +00006861
6862 /* Balance the tree. If the entry deleted was located on a leaf page,
6863 ** then the cursor still points to that page. In this case the first
6864 ** call to balance() repairs the tree, and the if(...) condition is
6865 ** never true.
6866 **
6867 ** Otherwise, if the entry deleted was on an internal node page, then
6868 ** pCur is pointing to the leaf page from which a cell was removed to
6869 ** replace the cell deleted from the internal node. This is slightly
6870 ** tricky as the leaf node may be underfull, and the internal node may
6871 ** be either under or overfull. In this case run the balancing algorithm
6872 ** on the leaf node first. If the balance proceeds far enough up the
6873 ** tree that we can be sure that any problem in the internal node has
6874 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6875 ** walk the cursor up the tree to the internal node and balance it as
6876 ** well. */
6877 rc = balance(pCur);
6878 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6879 while( pCur->iPage>iCellDepth ){
6880 releasePage(pCur->apPage[pCur->iPage--]);
6881 }
6882 rc = balance(pCur);
6883 }
6884
danielk19776b456a22005-03-21 04:04:02 +00006885 if( rc==SQLITE_OK ){
6886 moveToRoot(pCur);
6887 }
drh5e2f8b92001-05-28 00:41:15 +00006888 return rc;
drh3b7511c2001-05-26 13:15:44 +00006889}
drh8b2f49b2001-06-08 00:21:52 +00006890
6891/*
drhc6b52df2002-01-04 03:09:29 +00006892** Create a new BTree table. Write into *piTable the page
6893** number for the root page of the new table.
6894**
drhab01f612004-05-22 02:55:23 +00006895** The type of type is determined by the flags parameter. Only the
6896** following values of flags are currently in use. Other values for
6897** flags might not work:
6898**
6899** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6900** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006901*/
drhd4187c72010-08-30 22:15:45 +00006902static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00006903 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006904 MemPage *pRoot;
6905 Pgno pgnoRoot;
6906 int rc;
drhd4187c72010-08-30 22:15:45 +00006907 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00006908
drh1fee73e2007-08-29 04:00:57 +00006909 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006910 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006911 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006912
danielk1977003ba062004-11-04 02:57:33 +00006913#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006914 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006915 if( rc ){
6916 return rc;
6917 }
danielk1977003ba062004-11-04 02:57:33 +00006918#else
danielk1977687566d2004-11-02 12:56:41 +00006919 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006920 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6921 MemPage *pPageMove; /* The page to move to. */
6922
danielk197720713f32007-05-03 11:43:33 +00006923 /* Creating a new table may probably require moving an existing database
6924 ** to make room for the new tables root page. In case this page turns
6925 ** out to be an overflow page, delete all overflow page-map caches
6926 ** held by open cursors.
6927 */
danielk197792d4d7a2007-05-04 12:05:56 +00006928 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006929
danielk1977003ba062004-11-04 02:57:33 +00006930 /* Read the value of meta[3] from the database to determine where the
6931 ** root page of the new table should go. meta[3] is the largest root-page
6932 ** created so far, so the new root-page is (meta[3]+1).
6933 */
danielk1977602b4662009-07-02 07:47:33 +00006934 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006935 pgnoRoot++;
6936
danielk1977599fcba2004-11-08 07:13:13 +00006937 /* The new root-page may not be allocated on a pointer-map page, or the
6938 ** PENDING_BYTE page.
6939 */
drh72190432008-01-31 14:54:43 +00006940 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006941 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006942 pgnoRoot++;
6943 }
6944 assert( pgnoRoot>=3 );
6945
6946 /* Allocate a page. The page that currently resides at pgnoRoot will
6947 ** be moved to the allocated page (unless the allocated page happens
6948 ** to reside at pgnoRoot).
6949 */
drh4f0c5872007-03-26 22:05:01 +00006950 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006951 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006952 return rc;
6953 }
danielk1977003ba062004-11-04 02:57:33 +00006954
6955 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006956 /* pgnoRoot is the page that will be used for the root-page of
6957 ** the new table (assuming an error did not occur). But we were
6958 ** allocated pgnoMove. If required (i.e. if it was not allocated
6959 ** by extending the file), the current page at position pgnoMove
6960 ** is already journaled.
6961 */
drheeb844a2009-08-08 18:01:07 +00006962 u8 eType = 0;
6963 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00006964
6965 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006966
6967 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006968 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006969 if( rc!=SQLITE_OK ){
6970 return rc;
6971 }
6972 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006973 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6974 rc = SQLITE_CORRUPT_BKPT;
6975 }
6976 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006977 releasePage(pRoot);
6978 return rc;
6979 }
drhccae6022005-02-26 17:31:26 +00006980 assert( eType!=PTRMAP_ROOTPAGE );
6981 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006982 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006983 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006984
6985 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006986 if( rc!=SQLITE_OK ){
6987 return rc;
6988 }
danielk197730548662009-07-09 05:07:37 +00006989 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006990 if( rc!=SQLITE_OK ){
6991 return rc;
6992 }
danielk19773b8a05f2007-03-19 17:44:26 +00006993 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006994 if( rc!=SQLITE_OK ){
6995 releasePage(pRoot);
6996 return rc;
6997 }
6998 }else{
6999 pRoot = pPageMove;
7000 }
7001
danielk197742741be2005-01-08 12:42:39 +00007002 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007003 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007004 if( rc ){
7005 releasePage(pRoot);
7006 return rc;
7007 }
drhbf592832010-03-30 15:51:12 +00007008
7009 /* When the new root page was allocated, page 1 was made writable in
7010 ** order either to increase the database filesize, or to decrement the
7011 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7012 */
7013 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007014 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007015 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007016 releasePage(pRoot);
7017 return rc;
7018 }
danielk197742741be2005-01-08 12:42:39 +00007019
danielk1977003ba062004-11-04 02:57:33 +00007020 }else{
drh4f0c5872007-03-26 22:05:01 +00007021 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007022 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007023 }
7024#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007025 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007026 if( createTabFlags & BTREE_INTKEY ){
7027 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7028 }else{
7029 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7030 }
7031 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007032 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007033 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007034 *piTable = (int)pgnoRoot;
7035 return SQLITE_OK;
7036}
drhd677b3d2007-08-20 22:48:41 +00007037int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7038 int rc;
7039 sqlite3BtreeEnter(p);
7040 rc = btreeCreateTable(p, piTable, flags);
7041 sqlite3BtreeLeave(p);
7042 return rc;
7043}
drh8b2f49b2001-06-08 00:21:52 +00007044
7045/*
7046** Erase the given database page and all its children. Return
7047** the page to the freelist.
7048*/
drh4b70f112004-05-02 21:12:19 +00007049static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007050 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007051 Pgno pgno, /* Page number to clear */
7052 int freePageFlag, /* Deallocate page if true */
7053 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007054){
danielk1977146ba992009-07-22 14:08:13 +00007055 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007056 int rc;
drh4b70f112004-05-02 21:12:19 +00007057 unsigned char *pCell;
7058 int i;
drh8b2f49b2001-06-08 00:21:52 +00007059
drh1fee73e2007-08-29 04:00:57 +00007060 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007061 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007062 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007063 }
7064
danielk197771d5d2c2008-09-29 11:49:47 +00007065 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007066 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007067 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007068 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007069 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007070 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007071 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007072 }
drh4b70f112004-05-02 21:12:19 +00007073 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007074 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007075 }
drha34b6762004-05-07 13:30:42 +00007076 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007077 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007078 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007079 }else if( pnChange ){
7080 assert( pPage->intKey );
7081 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007082 }
7083 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007084 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007085 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007086 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007087 }
danielk19776b456a22005-03-21 04:04:02 +00007088
7089cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007090 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007091 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007092}
7093
7094/*
drhab01f612004-05-22 02:55:23 +00007095** Delete all information from a single table in the database. iTable is
7096** the page number of the root of the table. After this routine returns,
7097** the root page is empty, but still exists.
7098**
7099** This routine will fail with SQLITE_LOCKED if there are any open
7100** read cursors on the table. Open write cursors are moved to the
7101** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007102**
7103** If pnChange is not NULL, then table iTable must be an intkey table. The
7104** integer value pointed to by pnChange is incremented by the number of
7105** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007106*/
danielk1977c7af4842008-10-27 13:59:33 +00007107int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007108 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007109 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007110 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007111 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007112
7113 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7114 ** is the root of a table b-tree - if it is not, the following call is
7115 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00007116 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00007117
drhc046e3e2009-07-15 11:26:44 +00007118 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7119 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00007120 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007121 }
drhd677b3d2007-08-20 22:48:41 +00007122 sqlite3BtreeLeave(p);
7123 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007124}
7125
7126/*
7127** Erase all information in a table and add the root of the table to
7128** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007129** page 1) is never added to the freelist.
7130**
7131** This routine will fail with SQLITE_LOCKED if there are any open
7132** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007133**
7134** If AUTOVACUUM is enabled and the page at iTable is not the last
7135** root page in the database file, then the last root page
7136** in the database file is moved into the slot formerly occupied by
7137** iTable and that last slot formerly occupied by the last root page
7138** is added to the freelist instead of iTable. In this say, all
7139** root pages are kept at the beginning of the database file, which
7140** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7141** page number that used to be the last root page in the file before
7142** the move. If no page gets moved, *piMoved is set to 0.
7143** The last root page is recorded in meta[3] and the value of
7144** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007145*/
danielk197789d40042008-11-17 14:20:56 +00007146static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007147 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007148 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007149 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007150
drh1fee73e2007-08-29 04:00:57 +00007151 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007152 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007153
danielk1977e6efa742004-11-10 11:55:10 +00007154 /* It is illegal to drop a table if any cursors are open on the
7155 ** database. This is because in auto-vacuum mode the backend may
7156 ** need to move another root-page to fill a gap left by the deleted
7157 ** root page. If an open cursor was using this page a problem would
7158 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007159 **
7160 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007161 */
drhc046e3e2009-07-15 11:26:44 +00007162 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007163 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7164 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007165 }
danielk1977a0bf2652004-11-04 14:30:04 +00007166
danielk197730548662009-07-09 05:07:37 +00007167 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007168 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007169 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007170 if( rc ){
7171 releasePage(pPage);
7172 return rc;
7173 }
danielk1977a0bf2652004-11-04 14:30:04 +00007174
drh205f48e2004-11-05 00:43:11 +00007175 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007176
drh4b70f112004-05-02 21:12:19 +00007177 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007178#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007179 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007180 releasePage(pPage);
7181#else
7182 if( pBt->autoVacuum ){
7183 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007184 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007185
7186 if( iTable==maxRootPgno ){
7187 /* If the table being dropped is the table with the largest root-page
7188 ** number in the database, put the root page on the free list.
7189 */
drhc314dc72009-07-21 11:52:34 +00007190 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007191 releasePage(pPage);
7192 if( rc!=SQLITE_OK ){
7193 return rc;
7194 }
7195 }else{
7196 /* The table being dropped does not have the largest root-page
7197 ** number in the database. So move the page that does into the
7198 ** gap left by the deleted root-page.
7199 */
7200 MemPage *pMove;
7201 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007202 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007203 if( rc!=SQLITE_OK ){
7204 return rc;
7205 }
danielk19774c999992008-07-16 18:17:55 +00007206 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007207 releasePage(pMove);
7208 if( rc!=SQLITE_OK ){
7209 return rc;
7210 }
drhfe3313f2009-07-21 19:02:20 +00007211 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007212 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007213 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007214 releasePage(pMove);
7215 if( rc!=SQLITE_OK ){
7216 return rc;
7217 }
7218 *piMoved = maxRootPgno;
7219 }
7220
danielk1977599fcba2004-11-08 07:13:13 +00007221 /* Set the new 'max-root-page' value in the database header. This
7222 ** is the old value less one, less one more if that happens to
7223 ** be a root-page number, less one again if that is the
7224 ** PENDING_BYTE_PAGE.
7225 */
danielk197787a6e732004-11-05 12:58:25 +00007226 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007227 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7228 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007229 maxRootPgno--;
7230 }
danielk1977599fcba2004-11-08 07:13:13 +00007231 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7232
danielk1977aef0bf62005-12-30 16:28:01 +00007233 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007234 }else{
drhc314dc72009-07-21 11:52:34 +00007235 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007236 releasePage(pPage);
7237 }
7238#endif
drh2aa679f2001-06-25 02:11:07 +00007239 }else{
drhc046e3e2009-07-15 11:26:44 +00007240 /* If sqlite3BtreeDropTable was called on page 1.
7241 ** This really never should happen except in a corrupt
7242 ** database.
7243 */
drha34b6762004-05-07 13:30:42 +00007244 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007245 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007246 }
drh8b2f49b2001-06-08 00:21:52 +00007247 return rc;
7248}
drhd677b3d2007-08-20 22:48:41 +00007249int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7250 int rc;
7251 sqlite3BtreeEnter(p);
7252 rc = btreeDropTable(p, iTable, piMoved);
7253 sqlite3BtreeLeave(p);
7254 return rc;
7255}
drh8b2f49b2001-06-08 00:21:52 +00007256
drh001bbcb2003-03-19 03:14:00 +00007257
drh8b2f49b2001-06-08 00:21:52 +00007258/*
danielk1977602b4662009-07-02 07:47:33 +00007259** This function may only be called if the b-tree connection already
7260** has a read or write transaction open on the database.
7261**
drh23e11ca2004-05-04 17:27:28 +00007262** Read the meta-information out of a database file. Meta[0]
7263** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007264** through meta[15] are available for use by higher layers. Meta[0]
7265** is read-only, the others are read/write.
7266**
7267** The schema layer numbers meta values differently. At the schema
7268** layer (and the SetCookie and ReadCookie opcodes) the number of
7269** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007270*/
danielk1977602b4662009-07-02 07:47:33 +00007271void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007272 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007273
drhd677b3d2007-08-20 22:48:41 +00007274 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007275 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007276 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007277 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007278 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007279
danielk1977602b4662009-07-02 07:47:33 +00007280 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007281
danielk1977602b4662009-07-02 07:47:33 +00007282 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7283 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007284#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007285 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007286#endif
drhae157872004-08-14 19:20:09 +00007287
drhd677b3d2007-08-20 22:48:41 +00007288 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007289}
7290
7291/*
drh23e11ca2004-05-04 17:27:28 +00007292** Write meta-information back into the database. Meta[0] is
7293** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007294*/
danielk1977aef0bf62005-12-30 16:28:01 +00007295int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7296 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007297 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007298 int rc;
drh23e11ca2004-05-04 17:27:28 +00007299 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007300 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007301 assert( p->inTrans==TRANS_WRITE );
7302 assert( pBt->pPage1!=0 );
7303 pP1 = pBt->pPage1->aData;
7304 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7305 if( rc==SQLITE_OK ){
7306 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007307#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007308 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007309 assert( pBt->autoVacuum || iMeta==0 );
7310 assert( iMeta==0 || iMeta==1 );
7311 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007312 }
drh64022502009-01-09 14:11:04 +00007313#endif
drh5df72a52002-06-06 23:16:05 +00007314 }
drhd677b3d2007-08-20 22:48:41 +00007315 sqlite3BtreeLeave(p);
7316 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007317}
drh8c42ca92001-06-22 19:15:00 +00007318
danielk1977a5533162009-02-24 10:01:51 +00007319#ifndef SQLITE_OMIT_BTREECOUNT
7320/*
7321** The first argument, pCur, is a cursor opened on some b-tree. Count the
7322** number of entries in the b-tree and write the result to *pnEntry.
7323**
7324** SQLITE_OK is returned if the operation is successfully executed.
7325** Otherwise, if an error is encountered (i.e. an IO error or database
7326** corruption) an SQLite error code is returned.
7327*/
7328int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7329 i64 nEntry = 0; /* Value to return in *pnEntry */
7330 int rc; /* Return code */
7331 rc = moveToRoot(pCur);
7332
7333 /* Unless an error occurs, the following loop runs one iteration for each
7334 ** page in the B-Tree structure (not including overflow pages).
7335 */
7336 while( rc==SQLITE_OK ){
7337 int iIdx; /* Index of child node in parent */
7338 MemPage *pPage; /* Current page of the b-tree */
7339
7340 /* If this is a leaf page or the tree is not an int-key tree, then
7341 ** this page contains countable entries. Increment the entry counter
7342 ** accordingly.
7343 */
7344 pPage = pCur->apPage[pCur->iPage];
7345 if( pPage->leaf || !pPage->intKey ){
7346 nEntry += pPage->nCell;
7347 }
7348
7349 /* pPage is a leaf node. This loop navigates the cursor so that it
7350 ** points to the first interior cell that it points to the parent of
7351 ** the next page in the tree that has not yet been visited. The
7352 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7353 ** of the page, or to the number of cells in the page if the next page
7354 ** to visit is the right-child of its parent.
7355 **
7356 ** If all pages in the tree have been visited, return SQLITE_OK to the
7357 ** caller.
7358 */
7359 if( pPage->leaf ){
7360 do {
7361 if( pCur->iPage==0 ){
7362 /* All pages of the b-tree have been visited. Return successfully. */
7363 *pnEntry = nEntry;
7364 return SQLITE_OK;
7365 }
danielk197730548662009-07-09 05:07:37 +00007366 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007367 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7368
7369 pCur->aiIdx[pCur->iPage]++;
7370 pPage = pCur->apPage[pCur->iPage];
7371 }
7372
7373 /* Descend to the child node of the cell that the cursor currently
7374 ** points at. This is the right-child if (iIdx==pPage->nCell).
7375 */
7376 iIdx = pCur->aiIdx[pCur->iPage];
7377 if( iIdx==pPage->nCell ){
7378 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7379 }else{
7380 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7381 }
7382 }
7383
shanebe217792009-03-05 04:20:31 +00007384 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007385 return rc;
7386}
7387#endif
drhdd793422001-06-28 01:54:48 +00007388
drhdd793422001-06-28 01:54:48 +00007389/*
drh5eddca62001-06-30 21:53:53 +00007390** Return the pager associated with a BTree. This routine is used for
7391** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007392*/
danielk1977aef0bf62005-12-30 16:28:01 +00007393Pager *sqlite3BtreePager(Btree *p){
7394 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007395}
drh5eddca62001-06-30 21:53:53 +00007396
drhb7f91642004-10-31 02:22:47 +00007397#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007398/*
7399** Append a message to the error message string.
7400*/
drh2e38c322004-09-03 18:38:44 +00007401static void checkAppendMsg(
7402 IntegrityCk *pCheck,
7403 char *zMsg1,
7404 const char *zFormat,
7405 ...
7406){
7407 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007408 if( !pCheck->mxErr ) return;
7409 pCheck->mxErr--;
7410 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007411 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007412 if( pCheck->errMsg.nChar ){
7413 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007414 }
drhf089aa42008-07-08 19:34:06 +00007415 if( zMsg1 ){
7416 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7417 }
7418 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7419 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007420 if( pCheck->errMsg.mallocFailed ){
7421 pCheck->mallocFailed = 1;
7422 }
drh5eddca62001-06-30 21:53:53 +00007423}
drhb7f91642004-10-31 02:22:47 +00007424#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007425
drhb7f91642004-10-31 02:22:47 +00007426#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007427/*
7428** Add 1 to the reference count for page iPage. If this is the second
7429** reference to the page, add an error message to pCheck->zErrMsg.
7430** Return 1 if there are 2 ore more references to the page and 0 if
7431** if this is the first reference to the page.
7432**
7433** Also check that the page number is in bounds.
7434*/
danielk197789d40042008-11-17 14:20:56 +00007435static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007436 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007437 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007438 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007439 return 1;
7440 }
7441 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007442 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007443 return 1;
7444 }
7445 return (pCheck->anRef[iPage]++)>1;
7446}
7447
danielk1977afcdd022004-10-31 16:25:42 +00007448#ifndef SQLITE_OMIT_AUTOVACUUM
7449/*
7450** Check that the entry in the pointer-map for page iChild maps to
7451** page iParent, pointer type ptrType. If not, append an error message
7452** to pCheck.
7453*/
7454static void checkPtrmap(
7455 IntegrityCk *pCheck, /* Integrity check context */
7456 Pgno iChild, /* Child page number */
7457 u8 eType, /* Expected pointer map type */
7458 Pgno iParent, /* Expected pointer map parent page number */
7459 char *zContext /* Context description (used for error msg) */
7460){
7461 int rc;
7462 u8 ePtrmapType;
7463 Pgno iPtrmapParent;
7464
7465 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7466 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007467 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007468 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7469 return;
7470 }
7471
7472 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7473 checkAppendMsg(pCheck, zContext,
7474 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7475 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7476 }
7477}
7478#endif
7479
drh5eddca62001-06-30 21:53:53 +00007480/*
7481** Check the integrity of the freelist or of an overflow page list.
7482** Verify that the number of pages on the list is N.
7483*/
drh30e58752002-03-02 20:41:57 +00007484static void checkList(
7485 IntegrityCk *pCheck, /* Integrity checking context */
7486 int isFreeList, /* True for a freelist. False for overflow page list */
7487 int iPage, /* Page number for first page in the list */
7488 int N, /* Expected number of pages in the list */
7489 char *zContext /* Context for error messages */
7490){
7491 int i;
drh3a4c1412004-05-09 20:40:11 +00007492 int expected = N;
7493 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007494 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007495 DbPage *pOvflPage;
7496 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007497 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007498 checkAppendMsg(pCheck, zContext,
7499 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007500 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007501 break;
7502 }
7503 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007504 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007505 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007506 break;
7507 }
danielk19773b8a05f2007-03-19 17:44:26 +00007508 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007509 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007510 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007511#ifndef SQLITE_OMIT_AUTOVACUUM
7512 if( pCheck->pBt->autoVacuum ){
7513 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7514 }
7515#endif
drh43b18e12010-08-17 19:40:08 +00007516 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007517 checkAppendMsg(pCheck, zContext,
7518 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007519 N--;
7520 }else{
7521 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007522 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007523#ifndef SQLITE_OMIT_AUTOVACUUM
7524 if( pCheck->pBt->autoVacuum ){
7525 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7526 }
7527#endif
7528 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007529 }
7530 N -= n;
drh30e58752002-03-02 20:41:57 +00007531 }
drh30e58752002-03-02 20:41:57 +00007532 }
danielk1977afcdd022004-10-31 16:25:42 +00007533#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007534 else{
7535 /* If this database supports auto-vacuum and iPage is not the last
7536 ** page in this overflow list, check that the pointer-map entry for
7537 ** the following page matches iPage.
7538 */
7539 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007540 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007541 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7542 }
danielk1977afcdd022004-10-31 16:25:42 +00007543 }
7544#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007545 iPage = get4byte(pOvflData);
7546 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007547 }
7548}
drhb7f91642004-10-31 02:22:47 +00007549#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007550
drhb7f91642004-10-31 02:22:47 +00007551#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007552/*
7553** Do various sanity checks on a single page of a tree. Return
7554** the tree depth. Root pages return 0. Parents of root pages
7555** return 1, and so forth.
7556**
7557** These checks are done:
7558**
7559** 1. Make sure that cells and freeblocks do not overlap
7560** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007561** NO 2. Make sure cell keys are in order.
7562** NO 3. Make sure no key is less than or equal to zLowerBound.
7563** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007564** 5. Check the integrity of overflow pages.
7565** 6. Recursively call checkTreePage on all children.
7566** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007567** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007568** the root of the tree.
7569*/
7570static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007571 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007572 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007573 char *zParentContext, /* Parent context */
7574 i64 *pnParentMinKey,
7575 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007576){
7577 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007578 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007579 int hdr, cellStart;
7580 int nCell;
drhda200cc2004-05-09 11:51:38 +00007581 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007582 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007583 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007584 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007585 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007586 i64 nMinKey = 0;
7587 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007588
drh5bb3eb92007-05-04 13:15:55 +00007589 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007590
drh5eddca62001-06-30 21:53:53 +00007591 /* Check that the page exists
7592 */
drhd9cb6ac2005-10-20 07:28:17 +00007593 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007594 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007595 if( iPage==0 ) return 0;
7596 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007597 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007598 checkAppendMsg(pCheck, zContext,
7599 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007600 return 0;
7601 }
danielk197793caf5a2009-07-11 06:55:33 +00007602
7603 /* Clear MemPage.isInit to make sure the corruption detection code in
7604 ** btreeInitPage() is executed. */
7605 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007606 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007607 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007608 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007609 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007610 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007611 return 0;
7612 }
7613
7614 /* Check out all the cells.
7615 */
7616 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007617 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007618 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007619 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007620 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007621
7622 /* Check payload overflow pages
7623 */
drh5bb3eb92007-05-04 13:15:55 +00007624 sqlite3_snprintf(sizeof(zContext), zContext,
7625 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007626 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007627 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007628 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007629 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007630 /* For intKey pages, check that the keys are in order.
7631 */
7632 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7633 else{
7634 if( info.nKey <= nMaxKey ){
7635 checkAppendMsg(pCheck, zContext,
7636 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7637 }
7638 nMaxKey = info.nKey;
7639 }
drh72365832007-03-06 15:53:44 +00007640 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007641 if( (sz>info.nLocal)
7642 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7643 ){
drhb6f41482004-05-14 01:58:11 +00007644 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007645 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7646#ifndef SQLITE_OMIT_AUTOVACUUM
7647 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007648 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007649 }
7650#endif
7651 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007652 }
7653
7654 /* Check sanity of left child page.
7655 */
drhda200cc2004-05-09 11:51:38 +00007656 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007657 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007658#ifndef SQLITE_OMIT_AUTOVACUUM
7659 if( pBt->autoVacuum ){
7660 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7661 }
7662#endif
shaneh195475d2010-02-19 04:28:08 +00007663 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007664 if( i>0 && d2!=depth ){
7665 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7666 }
7667 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007668 }
drh5eddca62001-06-30 21:53:53 +00007669 }
shaneh195475d2010-02-19 04:28:08 +00007670
drhda200cc2004-05-09 11:51:38 +00007671 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007672 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007673 sqlite3_snprintf(sizeof(zContext), zContext,
7674 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007675#ifndef SQLITE_OMIT_AUTOVACUUM
7676 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007677 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007678 }
7679#endif
shaneh195475d2010-02-19 04:28:08 +00007680 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007681 }
drh5eddca62001-06-30 21:53:53 +00007682
shaneh195475d2010-02-19 04:28:08 +00007683 /* For intKey leaf pages, check that the min/max keys are in order
7684 ** with any left/parent/right pages.
7685 */
7686 if( pPage->leaf && pPage->intKey ){
7687 /* if we are a left child page */
7688 if( pnParentMinKey ){
7689 /* if we are the left most child page */
7690 if( !pnParentMaxKey ){
7691 if( nMaxKey > *pnParentMinKey ){
7692 checkAppendMsg(pCheck, zContext,
7693 "Rowid %lld out of order (max larger than parent min of %lld)",
7694 nMaxKey, *pnParentMinKey);
7695 }
7696 }else{
7697 if( nMinKey <= *pnParentMinKey ){
7698 checkAppendMsg(pCheck, zContext,
7699 "Rowid %lld out of order (min less than parent min of %lld)",
7700 nMinKey, *pnParentMinKey);
7701 }
7702 if( nMaxKey > *pnParentMaxKey ){
7703 checkAppendMsg(pCheck, zContext,
7704 "Rowid %lld out of order (max larger than parent max of %lld)",
7705 nMaxKey, *pnParentMaxKey);
7706 }
7707 *pnParentMinKey = nMaxKey;
7708 }
7709 /* else if we're a right child page */
7710 } else if( pnParentMaxKey ){
7711 if( nMinKey <= *pnParentMaxKey ){
7712 checkAppendMsg(pCheck, zContext,
7713 "Rowid %lld out of order (min less than parent max of %lld)",
7714 nMinKey, *pnParentMaxKey);
7715 }
7716 }
7717 }
7718
drh5eddca62001-06-30 21:53:53 +00007719 /* Check for complete coverage of the page
7720 */
drhda200cc2004-05-09 11:51:38 +00007721 data = pPage->aData;
7722 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007723 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007724 if( hit==0 ){
7725 pCheck->mallocFailed = 1;
7726 }else{
drh5d433ce2010-08-14 16:02:52 +00007727 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007728 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007729 memset(hit+contentOffset, 0, usableSize-contentOffset);
7730 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007731 nCell = get2byte(&data[hdr+3]);
7732 cellStart = hdr + 12 - 4*pPage->leaf;
7733 for(i=0; i<nCell; i++){
7734 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00007735 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00007736 int j;
drh8c2bbb62009-07-10 02:52:20 +00007737 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007738 size = cellSizePtr(pPage, &data[pc]);
7739 }
drh43b18e12010-08-17 19:40:08 +00007740 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007741 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007742 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007743 }else{
7744 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7745 }
drh2e38c322004-09-03 18:38:44 +00007746 }
drh8c2bbb62009-07-10 02:52:20 +00007747 i = get2byte(&data[hdr+1]);
7748 while( i>0 ){
7749 int size, j;
7750 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7751 size = get2byte(&data[i+2]);
7752 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7753 for(j=i+size-1; j>=i; j--) hit[j]++;
7754 j = get2byte(&data[i]);
7755 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7756 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7757 i = j;
drh2e38c322004-09-03 18:38:44 +00007758 }
7759 for(i=cnt=0; i<usableSize; i++){
7760 if( hit[i]==0 ){
7761 cnt++;
7762 }else if( hit[i]>1 ){
7763 checkAppendMsg(pCheck, 0,
7764 "Multiple uses for byte %d of page %d", i, iPage);
7765 break;
7766 }
7767 }
7768 if( cnt!=data[hdr+7] ){
7769 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007770 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007771 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007772 }
7773 }
drh8c2bbb62009-07-10 02:52:20 +00007774 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007775 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007776 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007777}
drhb7f91642004-10-31 02:22:47 +00007778#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007779
drhb7f91642004-10-31 02:22:47 +00007780#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007781/*
7782** This routine does a complete check of the given BTree file. aRoot[] is
7783** an array of pages numbers were each page number is the root page of
7784** a table. nRoot is the number of entries in aRoot.
7785**
danielk19773509a652009-07-06 18:56:13 +00007786** A read-only or read-write transaction must be opened before calling
7787** this function.
7788**
drhc890fec2008-08-01 20:10:08 +00007789** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007790** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007791** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007792** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007793*/
drh1dcdbc02007-01-27 02:24:54 +00007794char *sqlite3BtreeIntegrityCheck(
7795 Btree *p, /* The btree to be checked */
7796 int *aRoot, /* An array of root pages numbers for individual trees */
7797 int nRoot, /* Number of entries in aRoot[] */
7798 int mxErr, /* Stop reporting errors after this many */
7799 int *pnErr /* Write number of errors seen to this variable */
7800){
danielk197789d40042008-11-17 14:20:56 +00007801 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007802 int nRef;
drhaaab5722002-02-19 13:39:21 +00007803 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007804 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007805 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007806
drhd677b3d2007-08-20 22:48:41 +00007807 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007808 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007809 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007810 sCheck.pBt = pBt;
7811 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007812 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007813 sCheck.mxErr = mxErr;
7814 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007815 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007816 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007817 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007818 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007819 return 0;
7820 }
drhe5ae5732008-06-15 02:51:47 +00007821 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007822 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007823 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007824 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007825 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007826 }
drhda200cc2004-05-09 11:51:38 +00007827 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007828 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007829 if( i<=sCheck.nPage ){
7830 sCheck.anRef[i] = 1;
7831 }
drhf089aa42008-07-08 19:34:06 +00007832 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drhb9755982010-07-24 16:34:37 +00007833 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00007834
7835 /* Check the integrity of the freelist
7836 */
drha34b6762004-05-07 13:30:42 +00007837 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7838 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007839
7840 /* Check all the tables.
7841 */
danielk197789d40042008-11-17 14:20:56 +00007842 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007843 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007844#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007845 if( pBt->autoVacuum && aRoot[i]>1 ){
7846 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7847 }
7848#endif
shaneh195475d2010-02-19 04:28:08 +00007849 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007850 }
7851
7852 /* Make sure every page in the file is referenced
7853 */
drh1dcdbc02007-01-27 02:24:54 +00007854 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007855#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007856 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007857 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007858 }
danielk1977afcdd022004-10-31 16:25:42 +00007859#else
7860 /* If the database supports auto-vacuum, make sure no tables contain
7861 ** references to pointer-map pages.
7862 */
7863 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007864 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007865 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7866 }
7867 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007868 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007869 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7870 }
7871#endif
drh5eddca62001-06-30 21:53:53 +00007872 }
7873
drh64022502009-01-09 14:11:04 +00007874 /* Make sure this analysis did not leave any unref() pages.
7875 ** This is an internal consistency check; an integrity check
7876 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007877 */
drh64022502009-01-09 14:11:04 +00007878 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007879 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007880 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007881 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007882 );
drh5eddca62001-06-30 21:53:53 +00007883 }
7884
7885 /* Clean up and report errors.
7886 */
drhd677b3d2007-08-20 22:48:41 +00007887 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007888 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007889 if( sCheck.mallocFailed ){
7890 sqlite3StrAccumReset(&sCheck.errMsg);
7891 *pnErr = sCheck.nErr+1;
7892 return 0;
7893 }
drh1dcdbc02007-01-27 02:24:54 +00007894 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007895 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7896 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007897}
drhb7f91642004-10-31 02:22:47 +00007898#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007899
drh73509ee2003-04-06 20:44:45 +00007900/*
7901** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007902**
7903** The pager filename is invariant as long as the pager is
7904** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007905*/
danielk1977aef0bf62005-12-30 16:28:01 +00007906const char *sqlite3BtreeGetFilename(Btree *p){
7907 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007908 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007909}
7910
7911/*
danielk19775865e3d2004-06-14 06:03:57 +00007912** Return the pathname of the journal file for this database. The return
7913** value of this routine is the same regardless of whether the journal file
7914** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007915**
7916** The pager journal filename is invariant as long as the pager is
7917** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007918*/
danielk1977aef0bf62005-12-30 16:28:01 +00007919const char *sqlite3BtreeGetJournalname(Btree *p){
7920 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007921 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007922}
7923
danielk19771d850a72004-05-31 08:26:49 +00007924/*
7925** Return non-zero if a transaction is active.
7926*/
danielk1977aef0bf62005-12-30 16:28:01 +00007927int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007928 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007929 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007930}
7931
dana550f2d2010-08-02 10:47:05 +00007932#ifndef SQLITE_OMIT_WAL
7933/*
7934** Run a checkpoint on the Btree passed as the first argument.
7935**
7936** Return SQLITE_LOCKED if this or any other connection has an open
7937** transaction on the shared-cache the argument Btree is connected to.
7938*/
7939int sqlite3BtreeCheckpoint(Btree *p){
7940 int rc = SQLITE_OK;
7941 if( p ){
7942 BtShared *pBt = p->pBt;
7943 sqlite3BtreeEnter(p);
7944 if( pBt->inTransaction!=TRANS_NONE ){
7945 rc = SQLITE_LOCKED;
7946 }else{
7947 rc = sqlite3PagerCheckpoint(pBt->pPager);
7948 }
7949 sqlite3BtreeLeave(p);
7950 }
7951 return rc;
7952}
7953#endif
7954
danielk19771d850a72004-05-31 08:26:49 +00007955/*
danielk19772372c2b2006-06-27 16:34:56 +00007956** Return non-zero if a read (or write) transaction is active.
7957*/
7958int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007959 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007960 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007961 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007962}
7963
danielk197704103022009-02-03 16:51:24 +00007964int sqlite3BtreeIsInBackup(Btree *p){
7965 assert( p );
7966 assert( sqlite3_mutex_held(p->db->mutex) );
7967 return p->nBackup!=0;
7968}
7969
danielk19772372c2b2006-06-27 16:34:56 +00007970/*
danielk1977da184232006-01-05 11:34:32 +00007971** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007972** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007973** purposes (for example, to store a high-level schema associated with
7974** the shared-btree). The btree layer manages reference counting issues.
7975**
7976** The first time this is called on a shared-btree, nBytes bytes of memory
7977** are allocated, zeroed, and returned to the caller. For each subsequent
7978** call the nBytes parameter is ignored and a pointer to the same blob
7979** of memory returned.
7980**
danielk1977171bfed2008-06-23 09:50:50 +00007981** If the nBytes parameter is 0 and the blob of memory has not yet been
7982** allocated, a null pointer is returned. If the blob has already been
7983** allocated, it is returned as normal.
7984**
danielk1977da184232006-01-05 11:34:32 +00007985** Just before the shared-btree is closed, the function passed as the
7986** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007987** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007988** on the memory, the btree layer does that.
7989*/
7990void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7991 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007992 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007993 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00007994 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00007995 pBt->xFreeSchema = xFree;
7996 }
drh27641702007-08-22 02:56:42 +00007997 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007998 return pBt->pSchema;
7999}
8000
danielk1977c87d34d2006-01-06 13:00:28 +00008001/*
danielk1977404ca072009-03-16 13:19:36 +00008002** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8003** btree as the argument handle holds an exclusive lock on the
8004** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008005*/
8006int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008007 int rc;
drhe5fe6902007-12-07 18:55:28 +00008008 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008009 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008010 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8011 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008012 sqlite3BtreeLeave(p);
8013 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008014}
8015
drha154dcd2006-03-22 22:10:07 +00008016
8017#ifndef SQLITE_OMIT_SHARED_CACHE
8018/*
8019** Obtain a lock on the table whose root page is iTab. The
8020** lock is a write lock if isWritelock is true or a read lock
8021** if it is false.
8022*/
danielk1977c00da102006-01-07 13:21:04 +00008023int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008024 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008025 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008026 if( p->sharable ){
8027 u8 lockType = READ_LOCK + isWriteLock;
8028 assert( READ_LOCK+1==WRITE_LOCK );
8029 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008030
drh6a9ad3d2008-04-02 16:29:30 +00008031 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008032 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008033 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008034 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008035 }
8036 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008037 }
8038 return rc;
8039}
drha154dcd2006-03-22 22:10:07 +00008040#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008041
danielk1977b4e9af92007-05-01 17:49:49 +00008042#ifndef SQLITE_OMIT_INCRBLOB
8043/*
8044** Argument pCsr must be a cursor opened for writing on an
8045** INTKEY table currently pointing at a valid table entry.
8046** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008047**
8048** Only the data content may only be modified, it is not possible to
8049** change the length of the data stored. If this function is called with
8050** parameters that attempt to write past the end of the existing data,
8051** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008052*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008053int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008054 int rc;
drh1fee73e2007-08-29 04:00:57 +00008055 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008056 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008057 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008058
danielk1977c9000e62009-07-08 13:55:28 +00008059 rc = restoreCursorPosition(pCsr);
8060 if( rc!=SQLITE_OK ){
8061 return rc;
8062 }
danielk19773588ceb2008-06-10 17:30:26 +00008063 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8064 if( pCsr->eState!=CURSOR_VALID ){
8065 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008066 }
8067
danielk1977c9000e62009-07-08 13:55:28 +00008068 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008069 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008070 ** (b) there is a read/write transaction open,
8071 ** (c) the connection holds a write-lock on the table (if required),
8072 ** (d) there are no conflicting read-locks, and
8073 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008074 */
danielk19774f029602009-07-08 18:45:37 +00008075 if( !pCsr->wrFlag ){
8076 return SQLITE_READONLY;
8077 }
danielk197796d48e92009-06-29 06:00:37 +00008078 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
8079 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8080 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008081 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008082
drhfb192682009-07-11 18:26:28 +00008083 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008084}
danielk19772dec9702007-05-02 16:48:37 +00008085
8086/*
8087** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008088** overflow list for the current row. This is used by cursors opened
8089** for incremental blob IO only.
8090**
8091** This function sets a flag only. The actual page location cache
8092** (stored in BtCursor.aOverflow[]) is allocated and used by function
8093** accessPayload() (the worker function for sqlite3BtreeData() and
8094** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008095*/
8096void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008097 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008098 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00008099 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00008100 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00008101 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008102}
danielk1977b4e9af92007-05-01 17:49:49 +00008103#endif
dane04dc882010-04-20 18:53:15 +00008104
8105/*
8106** Set both the "read version" (single byte at byte offset 18) and
8107** "write version" (single byte at byte offset 19) fields in the database
8108** header to iVersion.
8109*/
8110int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8111 BtShared *pBt = pBtree->pBt;
8112 int rc; /* Return code */
8113
danb9780022010-04-21 18:37:57 +00008114 assert( pBtree->inTrans==TRANS_NONE );
dane04dc882010-04-20 18:53:15 +00008115 assert( iVersion==1 || iVersion==2 );
8116
danb9780022010-04-21 18:37:57 +00008117 /* If setting the version fields to 1, do not automatically open the
8118 ** WAL connection, even if the version fields are currently set to 2.
8119 */
shaneh5eba1f62010-07-02 17:05:03 +00008120 pBt->doNotUseWAL = (u8)(iVersion==1);
danb9780022010-04-21 18:37:57 +00008121
8122 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008123 if( rc==SQLITE_OK ){
8124 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008125 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008126 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008127 if( rc==SQLITE_OK ){
8128 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8129 if( rc==SQLITE_OK ){
8130 aData[18] = (u8)iVersion;
8131 aData[19] = (u8)iVersion;
8132 }
8133 }
8134 }
dane04dc882010-04-20 18:53:15 +00008135 }
8136
danb9780022010-04-21 18:37:57 +00008137 pBt->doNotUseWAL = 0;
dane04dc882010-04-20 18:53:15 +00008138 return rc;
8139}