blob: 14ddee57e86cbd723f85fe6a6acabf351d3bc709 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
drhe53831d2007-08-17 01:14:38 +000046#ifndef SQLITE_OMIT_SHARED_CACHE
47/*
danielk1977502b4e02008-09-02 14:07:24 +000048** A list of BtShared objects that are eligible for participation
49** in shared cache. This variable has file scope during normal builds,
50** but the test harness needs to access it so we make it global for
51** test builds.
drh7555d8e2009-03-20 13:15:30 +000052**
53** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000054*/
55#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000056BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000057#else
drh78f82d12008-09-02 00:52:52 +000058static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000059#endif
drhe53831d2007-08-17 01:14:38 +000060#endif /* SQLITE_OMIT_SHARED_CACHE */
61
62#ifndef SQLITE_OMIT_SHARED_CACHE
63/*
64** Enable or disable the shared pager and schema features.
65**
66** This routine has no effect on existing database connections.
67** The shared cache setting effects only future calls to
68** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
69*/
70int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000071 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000072 return SQLITE_OK;
73}
74#endif
75
drhd677b3d2007-08-20 22:48:41 +000076
danielk1977aef0bf62005-12-30 16:28:01 +000077
78#ifdef SQLITE_OMIT_SHARED_CACHE
79 /*
drhc25eabe2009-02-24 18:57:31 +000080 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
81 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000082 ** manipulate entries in the BtShared.pLock linked list used to store
83 ** shared-cache table level locks. If the library is compiled with the
84 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000085 ** of each BtShared structure and so this locking is not necessary.
86 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000087 */
drhc25eabe2009-02-24 18:57:31 +000088 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
89 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
90 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000091 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000092 #define hasSharedCacheTableLock(a,b,c,d) 1
93 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000094#endif
danielk1977aef0bf62005-12-30 16:28:01 +000095
drhe53831d2007-08-17 01:14:38 +000096#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000097
98#ifdef SQLITE_DEBUG
99/*
drh0ee3dbe2009-10-16 15:05:18 +0000100**** This function is only used as part of an assert() statement. ***
101**
102** Check to see if pBtree holds the required locks to read or write to the
103** table with root page iRoot. Return 1 if it does and 0 if not.
104**
105** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000106** Btree connection pBtree:
107**
108** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
109**
drh0ee3dbe2009-10-16 15:05:18 +0000110** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000111** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000112** the corresponding table. This makes things a bit more complicated,
113** as this module treats each table as a separate structure. To determine
114** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000115** function has to search through the database schema.
116**
drh0ee3dbe2009-10-16 15:05:18 +0000117** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000118** hold a write-lock on the schema table (root page 1). This is also
119** acceptable.
120*/
121static int hasSharedCacheTableLock(
122 Btree *pBtree, /* Handle that must hold lock */
123 Pgno iRoot, /* Root page of b-tree */
124 int isIndex, /* True if iRoot is the root of an index b-tree */
125 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
126){
127 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
128 Pgno iTab = 0;
129 BtLock *pLock;
130
drh0ee3dbe2009-10-16 15:05:18 +0000131 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000132 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000133 ** Return true immediately.
134 */
danielk197796d48e92009-06-29 06:00:37 +0000135 if( (pBtree->sharable==0)
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000137 ){
138 return 1;
139 }
140
drh0ee3dbe2009-10-16 15:05:18 +0000141 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow.
145 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
147 return 1;
148 }
149
danielk197796d48e92009-06-29 06:00:37 +0000150 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated
153 ** table. */
154 if( isIndex ){
155 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
157 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000158 if( pIdx->tnum==(int)iRoot ){
159 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000160 }
161 }
162 }else{
163 iTab = iRoot;
164 }
165
166 /* Search for the required lock. Either a write-lock on root-page iTab, a
167 ** write-lock on the schema table, or (if the client is reading) a
168 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
169 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
170 if( pLock->pBtree==pBtree
171 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
172 && pLock->eLock>=eLockType
173 ){
174 return 1;
175 }
176 }
177
178 /* Failed to find the required lock. */
179 return 0;
180}
drh0ee3dbe2009-10-16 15:05:18 +0000181#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000182
drh0ee3dbe2009-10-16 15:05:18 +0000183#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000184/*
drh0ee3dbe2009-10-16 15:05:18 +0000185**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000186**
drh0ee3dbe2009-10-16 15:05:18 +0000187** Return true if it would be illegal for pBtree to write into the
188** table or index rooted at iRoot because other shared connections are
189** simultaneously reading that same table or index.
190**
191** It is illegal for pBtree to write if some other Btree object that
192** shares the same BtShared object is currently reading or writing
193** the iRoot table. Except, if the other Btree object has the
194** read-uncommitted flag set, then it is OK for the other object to
195** have a read cursor.
196**
197** For example, before writing to any part of the table or index
198** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000199**
200** assert( !hasReadConflicts(pBtree, iRoot) );
201*/
202static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
203 BtCursor *p;
204 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
205 if( p->pgnoRoot==iRoot
206 && p->pBtree!=pBtree
207 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
208 ){
209 return 1;
210 }
211 }
212 return 0;
213}
214#endif /* #ifdef SQLITE_DEBUG */
215
danielk1977da184232006-01-05 11:34:32 +0000216/*
drh0ee3dbe2009-10-16 15:05:18 +0000217** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000218** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000219** SQLITE_OK if the lock may be obtained (by calling
220** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000221*/
drhc25eabe2009-02-24 18:57:31 +0000222static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000223 BtShared *pBt = p->pBt;
224 BtLock *pIter;
225
drh1fee73e2007-08-29 04:00:57 +0000226 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000227 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
228 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000229 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000230
danielk19775b413d72009-04-01 09:41:54 +0000231 /* If requesting a write-lock, then the Btree must have an open write
232 ** transaction on this file. And, obviously, for this to be so there
233 ** must be an open write transaction on the file itself.
234 */
235 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237
drh0ee3dbe2009-10-16 15:05:18 +0000238 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000239 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000240 return SQLITE_OK;
241 }
242
danielk1977641b0f42007-12-21 04:47:25 +0000243 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained.
245 */
drhc9166342012-01-05 23:32:06 +0000246 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000249 }
250
danielk1977e0d9e6f2009-07-03 16:25:06 +0000251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of:
254 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer).
260 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000267 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000268 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000269 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000270 }
271 }
272 return SQLITE_OK;
273}
drhe53831d2007-08-17 01:14:38 +0000274#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000275
drhe53831d2007-08-17 01:14:38 +0000276#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000277/*
278** Add a lock on the table with root-page iTable to the shared-btree used
279** by Btree handle p. Parameter eLock must be either READ_LOCK or
280** WRITE_LOCK.
281**
danielk19779d104862009-07-09 08:27:14 +0000282** This function assumes the following:
283**
drh0ee3dbe2009-10-16 15:05:18 +0000284** (a) The specified Btree object p is connected to a sharable
285** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000286**
drh0ee3dbe2009-10-16 15:05:18 +0000287** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000288** with the requested lock (i.e. querySharedCacheTableLock() has
289** already been called and returned SQLITE_OK).
290**
291** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
292** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000293*/
drhc25eabe2009-02-24 18:57:31 +0000294static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000295 BtShared *pBt = p->pBt;
296 BtLock *pLock = 0;
297 BtLock *pIter;
298
drh1fee73e2007-08-29 04:00:57 +0000299 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000300 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
301 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000302
danielk1977e0d9e6f2009-07-03 16:25:06 +0000303 /* A connection with the read-uncommitted flag set will never try to
304 ** obtain a read-lock using this function. The only read-lock obtained
305 ** by a connection in read-uncommitted mode is on the sqlite_master
306 ** table, and that lock is obtained in BtreeBeginTrans(). */
307 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
308
danielk19779d104862009-07-09 08:27:14 +0000309 /* This function should only be called on a sharable b-tree after it
310 ** has been determined that no other b-tree holds a conflicting lock. */
311 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000312 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 /* First search the list for an existing lock on this table. */
315 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
316 if( pIter->iTable==iTable && pIter->pBtree==p ){
317 pLock = pIter;
318 break;
319 }
320 }
321
322 /* If the above search did not find a BtLock struct associating Btree p
323 ** with table iTable, allocate one and link it into the list.
324 */
325 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000326 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000327 if( !pLock ){
328 return SQLITE_NOMEM;
329 }
330 pLock->iTable = iTable;
331 pLock->pBtree = p;
332 pLock->pNext = pBt->pLock;
333 pBt->pLock = pLock;
334 }
335
336 /* Set the BtLock.eLock variable to the maximum of the current lock
337 ** and the requested lock. This means if a write-lock was already held
338 ** and a read-lock requested, we don't incorrectly downgrade the lock.
339 */
340 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000341 if( eLock>pLock->eLock ){
342 pLock->eLock = eLock;
343 }
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 return SQLITE_OK;
346}
drhe53831d2007-08-17 01:14:38 +0000347#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000348
drhe53831d2007-08-17 01:14:38 +0000349#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000350/*
drhc25eabe2009-02-24 18:57:31 +0000351** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000352** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000353**
drh0ee3dbe2009-10-16 15:05:18 +0000354** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000355** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000356** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000357*/
drhc25eabe2009-02-24 18:57:31 +0000358static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000359 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000361
drh1fee73e2007-08-29 04:00:57 +0000362 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000363 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000364 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000365
danielk1977aef0bf62005-12-30 16:28:01 +0000366 while( *ppIter ){
367 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000368 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000369 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000370 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000372 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock);
375 }
danielk1977aef0bf62005-12-30 16:28:01 +0000376 }else{
377 ppIter = &pLock->pNext;
378 }
379 }
danielk1977641b0f42007-12-21 04:47:25 +0000380
drhc9166342012-01-05 23:32:06 +0000381 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000382 if( pBt->pWriter==p ){
383 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000384 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000385 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000386 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000387 ** transaction. If there currently exists a writer, and p is not
388 ** that writer, then the number of locks held by connections other
389 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000390 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000391 **
drhc9166342012-01-05 23:32:06 +0000392 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000393 ** be zero already. So this next line is harmless in that case.
394 */
drhc9166342012-01-05 23:32:06 +0000395 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397}
danielk197794b30732009-07-02 17:21:57 +0000398
danielk1977e0d9e6f2009-07-03 16:25:06 +0000399/*
drh0ee3dbe2009-10-16 15:05:18 +0000400** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000401*/
danielk197794b30732009-07-02 17:21:57 +0000402static void downgradeAllSharedCacheTableLocks(Btree *p){
403 BtShared *pBt = p->pBt;
404 if( pBt->pWriter==p ){
405 BtLock *pLock;
406 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000407 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000408 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
409 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
410 pLock->eLock = READ_LOCK;
411 }
412 }
413}
414
danielk1977aef0bf62005-12-30 16:28:01 +0000415#endif /* SQLITE_OMIT_SHARED_CACHE */
416
drh980b1a72006-08-16 16:42:48 +0000417static void releasePage(MemPage *pPage); /* Forward reference */
418
drh1fee73e2007-08-29 04:00:57 +0000419/*
drh0ee3dbe2009-10-16 15:05:18 +0000420***** This routine is used inside of assert() only ****
421**
422** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000423*/
drh0ee3dbe2009-10-16 15:05:18 +0000424#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000425static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000426 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000427}
428#endif
429
430
danielk197792d4d7a2007-05-04 12:05:56 +0000431#ifndef SQLITE_OMIT_INCRBLOB
432/*
433** Invalidate the overflow page-list cache for cursor pCur, if any.
434*/
435static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000436 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000437 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000438 pCur->aOverflow = 0;
439}
440
441/*
442** Invalidate the overflow page-list cache for all cursors opened
443** on the shared btree structure pBt.
444*/
445static void invalidateAllOverflowCache(BtShared *pBt){
446 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000447 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000448 for(p=pBt->pCursor; p; p=p->pNext){
449 invalidateOverflowCache(p);
450 }
451}
danielk197796d48e92009-06-29 06:00:37 +0000452
453/*
454** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000455** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000456** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000457**
458** If argument isClearTable is true, then the entire contents of the
459** table is about to be deleted. In this case invalidate all incrblob
460** cursors open on any row within the table with root-page pgnoRoot.
461**
462** Otherwise, if argument isClearTable is false, then the row with
463** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000464** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000465*/
466static void invalidateIncrblobCursors(
467 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000468 i64 iRow, /* The rowid that might be changing */
469 int isClearTable /* True if all rows are being deleted */
470){
471 BtCursor *p;
472 BtShared *pBt = pBtree->pBt;
473 assert( sqlite3BtreeHoldsMutex(pBtree) );
474 for(p=pBt->pCursor; p; p=p->pNext){
475 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
476 p->eState = CURSOR_INVALID;
477 }
478 }
479}
480
danielk197792d4d7a2007-05-04 12:05:56 +0000481#else
drh0ee3dbe2009-10-16 15:05:18 +0000482 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000483 #define invalidateOverflowCache(x)
484 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000485 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000486#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000487
drh980b1a72006-08-16 16:42:48 +0000488/*
danielk1977bea2a942009-01-20 17:06:27 +0000489** Set bit pgno of the BtShared.pHasContent bitvec. This is called
490** when a page that previously contained data becomes a free-list leaf
491** page.
492**
493** The BtShared.pHasContent bitvec exists to work around an obscure
494** bug caused by the interaction of two useful IO optimizations surrounding
495** free-list leaf pages:
496**
497** 1) When all data is deleted from a page and the page becomes
498** a free-list leaf page, the page is not written to the database
499** (as free-list leaf pages contain no meaningful data). Sometimes
500** such a page is not even journalled (as it will not be modified,
501** why bother journalling it?).
502**
503** 2) When a free-list leaf page is reused, its content is not read
504** from the database or written to the journal file (why should it
505** be, if it is not at all meaningful?).
506**
507** By themselves, these optimizations work fine and provide a handy
508** performance boost to bulk delete or insert operations. However, if
509** a page is moved to the free-list and then reused within the same
510** transaction, a problem comes up. If the page is not journalled when
511** it is moved to the free-list and it is also not journalled when it
512** is extracted from the free-list and reused, then the original data
513** may be lost. In the event of a rollback, it may not be possible
514** to restore the database to its original configuration.
515**
516** The solution is the BtShared.pHasContent bitvec. Whenever a page is
517** moved to become a free-list leaf page, the corresponding bit is
518** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000519** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000520** set in BtShared.pHasContent. The contents of the bitvec are cleared
521** at the end of every transaction.
522*/
523static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
524 int rc = SQLITE_OK;
525 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000526 assert( pgno<=pBt->nPage );
527 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000528 if( !pBt->pHasContent ){
529 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000530 }
531 }
532 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
533 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
534 }
535 return rc;
536}
537
538/*
539** Query the BtShared.pHasContent vector.
540**
541** This function is called when a free-list leaf page is removed from the
542** free-list for reuse. It returns false if it is safe to retrieve the
543** page from the pager layer with the 'no-content' flag set. True otherwise.
544*/
545static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
546 Bitvec *p = pBt->pHasContent;
547 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
548}
549
550/*
551** Clear (destroy) the BtShared.pHasContent bitvec. This should be
552** invoked at the conclusion of each write-transaction.
553*/
554static void btreeClearHasContent(BtShared *pBt){
555 sqlite3BitvecDestroy(pBt->pHasContent);
556 pBt->pHasContent = 0;
557}
558
559/*
drh980b1a72006-08-16 16:42:48 +0000560** Save the current cursor position in the variables BtCursor.nKey
561** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000562**
563** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
564** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000565*/
566static int saveCursorPosition(BtCursor *pCur){
567 int rc;
568
569 assert( CURSOR_VALID==pCur->eState );
570 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000571 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000572
573 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000574 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000575
576 /* If this is an intKey table, then the above call to BtreeKeySize()
577 ** stores the integer key in pCur->nKey. In this case this value is
578 ** all that is required. Otherwise, if pCur is not open on an intKey
579 ** table, then malloc space for and store the pCur->nKey bytes of key
580 ** data.
581 */
drh4c301aa2009-07-15 17:25:45 +0000582 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000583 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000584 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000585 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000586 if( rc==SQLITE_OK ){
587 pCur->pKey = pKey;
588 }else{
drh17435752007-08-16 04:30:38 +0000589 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000590 }
591 }else{
592 rc = SQLITE_NOMEM;
593 }
594 }
danielk197771d5d2c2008-09-29 11:49:47 +0000595 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000596
597 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000598 int i;
599 for(i=0; i<=pCur->iPage; i++){
600 releasePage(pCur->apPage[i]);
601 pCur->apPage[i] = 0;
602 }
603 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000604 pCur->eState = CURSOR_REQUIRESEEK;
605 }
606
danielk197792d4d7a2007-05-04 12:05:56 +0000607 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000608 return rc;
609}
610
611/*
drh0ee3dbe2009-10-16 15:05:18 +0000612** Save the positions of all cursors (except pExcept) that are open on
613** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000614** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
615*/
616static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
617 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000618 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000619 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000620 for(p=pBt->pCursor; p; p=p->pNext){
621 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
622 p->eState==CURSOR_VALID ){
623 int rc = saveCursorPosition(p);
624 if( SQLITE_OK!=rc ){
625 return rc;
626 }
627 }
628 }
629 return SQLITE_OK;
630}
631
632/*
drhbf700f32007-03-31 02:36:44 +0000633** Clear the current cursor position.
634*/
danielk1977be51a652008-10-08 17:58:48 +0000635void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000636 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000637 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000638 pCur->pKey = 0;
639 pCur->eState = CURSOR_INVALID;
640}
641
642/*
danielk19773509a652009-07-06 18:56:13 +0000643** In this version of BtreeMoveto, pKey is a packed index record
644** such as is generated by the OP_MakeRecord opcode. Unpack the
645** record and then call BtreeMovetoUnpacked() to do the work.
646*/
647static int btreeMoveto(
648 BtCursor *pCur, /* Cursor open on the btree to be searched */
649 const void *pKey, /* Packed key if the btree is an index */
650 i64 nKey, /* Integer key for tables. Size of pKey for indices */
651 int bias, /* Bias search to the high end */
652 int *pRes /* Write search results here */
653){
654 int rc; /* Status code */
655 UnpackedRecord *pIdxKey; /* Unpacked index key */
656 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000657 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000658
659 if( pKey ){
660 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000661 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
662 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
663 );
danielk19773509a652009-07-06 18:56:13 +0000664 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000665 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000666 }else{
667 pIdxKey = 0;
668 }
669 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000670 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000671 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000672 }
673 return rc;
674}
675
676/*
drh980b1a72006-08-16 16:42:48 +0000677** Restore the cursor to the position it was in (or as close to as possible)
678** when saveCursorPosition() was called. Note that this call deletes the
679** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000680** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000681** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000682*/
danielk197730548662009-07-09 05:07:37 +0000683static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000684 int rc;
drh1fee73e2007-08-29 04:00:57 +0000685 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000686 assert( pCur->eState>=CURSOR_REQUIRESEEK );
687 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000688 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000689 }
drh980b1a72006-08-16 16:42:48 +0000690 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000691 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000692 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000693 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000694 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000695 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000696 }
697 return rc;
698}
699
drha3460582008-07-11 21:02:53 +0000700#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000701 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000702 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000703 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000704
drha3460582008-07-11 21:02:53 +0000705/*
706** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000707** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000708** at is deleted out from under them.
709**
710** This routine returns an error code if something goes wrong. The
711** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
712*/
713int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
714 int rc;
715
716 rc = restoreCursorPosition(pCur);
717 if( rc ){
718 *pHasMoved = 1;
719 return rc;
720 }
drh4c301aa2009-07-15 17:25:45 +0000721 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000722 *pHasMoved = 1;
723 }else{
724 *pHasMoved = 0;
725 }
726 return SQLITE_OK;
727}
728
danielk1977599fcba2004-11-08 07:13:13 +0000729#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000730/*
drha3152892007-05-05 11:48:52 +0000731** Given a page number of a regular database page, return the page
732** number for the pointer-map page that contains the entry for the
733** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000734**
735** Return 0 (not a valid page) for pgno==1 since there is
736** no pointer map associated with page 1. The integrity_check logic
737** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000738*/
danielk1977266664d2006-02-10 08:24:21 +0000739static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000740 int nPagesPerMapPage;
741 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000742 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000743 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000744 nPagesPerMapPage = (pBt->usableSize/5)+1;
745 iPtrMap = (pgno-2)/nPagesPerMapPage;
746 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000747 if( ret==PENDING_BYTE_PAGE(pBt) ){
748 ret++;
749 }
750 return ret;
751}
danielk1977a19df672004-11-03 11:37:07 +0000752
danielk1977afcdd022004-10-31 16:25:42 +0000753/*
danielk1977afcdd022004-10-31 16:25:42 +0000754** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000755**
756** This routine updates the pointer map entry for page number 'key'
757** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000758**
759** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
760** a no-op. If an error occurs, the appropriate error code is written
761** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000762*/
drh98add2e2009-07-20 17:11:49 +0000763static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000764 DbPage *pDbPage; /* The pointer map page */
765 u8 *pPtrmap; /* The pointer map data */
766 Pgno iPtrmap; /* The pointer map page number */
767 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000768 int rc; /* Return code from subfunctions */
769
770 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000771
drh1fee73e2007-08-29 04:00:57 +0000772 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000773 /* The master-journal page number must never be used as a pointer map page */
774 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
775
danielk1977ac11ee62005-01-15 12:45:51 +0000776 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000777 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000778 *pRC = SQLITE_CORRUPT_BKPT;
779 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000780 }
danielk1977266664d2006-02-10 08:24:21 +0000781 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000782 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000783 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000784 *pRC = rc;
785 return;
danielk1977afcdd022004-10-31 16:25:42 +0000786 }
danielk19778c666b12008-07-18 09:34:57 +0000787 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000788 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000789 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000790 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000791 }
drhfc243732011-05-17 15:21:56 +0000792 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000793 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000794
drh615ae552005-01-16 23:21:00 +0000795 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
796 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000797 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000798 if( rc==SQLITE_OK ){
799 pPtrmap[offset] = eType;
800 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000801 }
danielk1977afcdd022004-10-31 16:25:42 +0000802 }
803
drh4925a552009-07-07 11:39:58 +0000804ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000805 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000806}
807
808/*
809** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000810**
811** This routine retrieves the pointer map entry for page 'key', writing
812** the type and parent page number to *pEType and *pPgno respectively.
813** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000814*/
danielk1977aef0bf62005-12-30 16:28:01 +0000815static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000816 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000817 int iPtrmap; /* Pointer map page index */
818 u8 *pPtrmap; /* Pointer map page data */
819 int offset; /* Offset of entry in pointer map */
820 int rc;
821
drh1fee73e2007-08-29 04:00:57 +0000822 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000823
danielk1977266664d2006-02-10 08:24:21 +0000824 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000825 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000826 if( rc!=0 ){
827 return rc;
828 }
danielk19773b8a05f2007-03-19 17:44:26 +0000829 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000830
danielk19778c666b12008-07-18 09:34:57 +0000831 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000832 if( offset<0 ){
833 sqlite3PagerUnref(pDbPage);
834 return SQLITE_CORRUPT_BKPT;
835 }
836 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000837 assert( pEType!=0 );
838 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000839 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000840
danielk19773b8a05f2007-03-19 17:44:26 +0000841 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000842 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000843 return SQLITE_OK;
844}
845
danielk197785d90ca2008-07-19 14:25:15 +0000846#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000847 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000848 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000849 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000850#endif
danielk1977afcdd022004-10-31 16:25:42 +0000851
drh0d316a42002-08-11 20:10:47 +0000852/*
drh271efa52004-05-30 19:19:05 +0000853** Given a btree page and a cell index (0 means the first cell on
854** the page, 1 means the second cell, and so forth) return a pointer
855** to the cell content.
856**
857** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000858*/
drh1688c862008-07-18 02:44:17 +0000859#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000860 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000861#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
862
drh43605152004-05-29 21:46:49 +0000863
864/*
drh93a960a2008-07-10 00:32:42 +0000865** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000866** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000867*/
868static u8 *findOverflowCell(MemPage *pPage, int iCell){
869 int i;
drh1fee73e2007-08-29 04:00:57 +0000870 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000871 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000872 int k;
873 struct _OvflCell *pOvfl;
874 pOvfl = &pPage->aOvfl[i];
875 k = pOvfl->idx;
876 if( k<=iCell ){
877 if( k==iCell ){
878 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000879 }
880 iCell--;
881 }
882 }
danielk19771cc5ed82007-05-16 17:28:43 +0000883 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000884}
885
886/*
887** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000888** are two versions of this function. btreeParseCell() takes a
889** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000890** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000891**
892** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000893** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000894*/
danielk197730548662009-07-09 05:07:37 +0000895static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000896 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000897 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000898 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000899){
drhf49661a2008-12-10 16:45:50 +0000900 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000901 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000902
drh1fee73e2007-08-29 04:00:57 +0000903 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000904
drh43605152004-05-29 21:46:49 +0000905 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000906 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000907 n = pPage->childPtrSize;
908 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000909 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000910 if( pPage->hasData ){
911 n += getVarint32(&pCell[n], nPayload);
912 }else{
913 nPayload = 0;
914 }
drh1bd10f82008-12-10 21:19:56 +0000915 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000916 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000917 }else{
drh79df1f42008-07-18 00:57:33 +0000918 pInfo->nData = 0;
919 n += getVarint32(&pCell[n], nPayload);
920 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000921 }
drh72365832007-03-06 15:53:44 +0000922 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000923 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000924 testcase( nPayload==pPage->maxLocal );
925 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000926 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000927 /* This is the (easy) common case where the entire payload fits
928 ** on the local page. No overflow is required.
929 */
drh41692e92011-01-25 04:34:51 +0000930 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000931 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000932 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000933 }else{
drh271efa52004-05-30 19:19:05 +0000934 /* If the payload will not fit completely on the local page, we have
935 ** to decide how much to store locally and how much to spill onto
936 ** overflow pages. The strategy is to minimize the amount of unused
937 ** space on overflow pages while keeping the amount of local storage
938 ** in between minLocal and maxLocal.
939 **
940 ** Warning: changing the way overflow payload is distributed in any
941 ** way will result in an incompatible file format.
942 */
943 int minLocal; /* Minimum amount of payload held locally */
944 int maxLocal; /* Maximum amount of payload held locally */
945 int surplus; /* Overflow payload available for local storage */
946
947 minLocal = pPage->minLocal;
948 maxLocal = pPage->maxLocal;
949 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000950 testcase( surplus==maxLocal );
951 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000952 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000953 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000954 }else{
drhf49661a2008-12-10 16:45:50 +0000955 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000956 }
drhf49661a2008-12-10 16:45:50 +0000957 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000958 pInfo->nSize = pInfo->iOverflow + 4;
959 }
drh3aac2dd2004-04-26 14:10:20 +0000960}
danielk19771cc5ed82007-05-16 17:28:43 +0000961#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000962 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
963static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000964 MemPage *pPage, /* Page containing the cell */
965 int iCell, /* The cell index. First cell is 0 */
966 CellInfo *pInfo /* Fill in this structure */
967){
danielk19771cc5ed82007-05-16 17:28:43 +0000968 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000969}
drh3aac2dd2004-04-26 14:10:20 +0000970
971/*
drh43605152004-05-29 21:46:49 +0000972** Compute the total number of bytes that a Cell needs in the cell
973** data area of the btree-page. The return number includes the cell
974** data header and the local payload, but not any overflow page or
975** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000976*/
danielk1977ae5558b2009-04-29 11:31:47 +0000977static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
978 u8 *pIter = &pCell[pPage->childPtrSize];
979 u32 nSize;
980
981#ifdef SQLITE_DEBUG
982 /* The value returned by this function should always be the same as
983 ** the (CellInfo.nSize) value found by doing a full parse of the
984 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
985 ** this function verifies that this invariant is not violated. */
986 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000987 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000988#endif
989
990 if( pPage->intKey ){
991 u8 *pEnd;
992 if( pPage->hasData ){
993 pIter += getVarint32(pIter, nSize);
994 }else{
995 nSize = 0;
996 }
997
998 /* pIter now points at the 64-bit integer key value, a variable length
999 ** integer. The following block moves pIter to point at the first byte
1000 ** past the end of the key value. */
1001 pEnd = &pIter[9];
1002 while( (*pIter++)&0x80 && pIter<pEnd );
1003 }else{
1004 pIter += getVarint32(pIter, nSize);
1005 }
1006
drh0a45c272009-07-08 01:49:11 +00001007 testcase( nSize==pPage->maxLocal );
1008 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001009 if( nSize>pPage->maxLocal ){
1010 int minLocal = pPage->minLocal;
1011 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001012 testcase( nSize==pPage->maxLocal );
1013 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001014 if( nSize>pPage->maxLocal ){
1015 nSize = minLocal;
1016 }
1017 nSize += 4;
1018 }
shane75ac1de2009-06-09 18:58:52 +00001019 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001020
1021 /* The minimum size of any cell is 4 bytes. */
1022 if( nSize<4 ){
1023 nSize = 4;
1024 }
1025
1026 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001027 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001028}
drh0ee3dbe2009-10-16 15:05:18 +00001029
1030#ifdef SQLITE_DEBUG
1031/* This variation on cellSizePtr() is used inside of assert() statements
1032** only. */
drha9121e42008-02-19 14:59:35 +00001033static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001034 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001035}
danielk1977bc6ada42004-06-30 08:20:16 +00001036#endif
drh3b7511c2001-05-26 13:15:44 +00001037
danielk197779a40da2005-01-16 08:00:01 +00001038#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001039/*
danielk197726836652005-01-17 01:33:13 +00001040** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001041** to an overflow page, insert an entry into the pointer-map
1042** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001043*/
drh98add2e2009-07-20 17:11:49 +00001044static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001045 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001046 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001047 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001048 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001049 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001050 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001051 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001052 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001053 }
danielk1977ac11ee62005-01-15 12:45:51 +00001054}
danielk197779a40da2005-01-16 08:00:01 +00001055#endif
1056
danielk1977ac11ee62005-01-15 12:45:51 +00001057
drhda200cc2004-05-09 11:51:38 +00001058/*
drh72f82862001-05-24 21:06:34 +00001059** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001060** end of the page and all free space is collected into one
1061** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001062** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001063*/
shane0af3f892008-11-12 04:55:34 +00001064static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001065 int i; /* Loop counter */
1066 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001067 int hdr; /* Offset to the page header */
1068 int size; /* Size of a cell */
1069 int usableSize; /* Number of usable bytes on a page */
1070 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001071 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001072 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001073 unsigned char *data; /* The page data */
1074 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001075 int iCellFirst; /* First allowable cell index */
1076 int iCellLast; /* Last possible cell index */
1077
drh2af926b2001-05-15 00:39:25 +00001078
danielk19773b8a05f2007-03-19 17:44:26 +00001079 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001080 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001081 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001082 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001083 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001084 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001085 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001086 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001087 cellOffset = pPage->cellOffset;
1088 nCell = pPage->nCell;
1089 assert( nCell==get2byte(&data[hdr+3]) );
1090 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001091 cbrk = get2byte(&data[hdr+5]);
1092 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1093 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001094 iCellFirst = cellOffset + 2*nCell;
1095 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001096 for(i=0; i<nCell; i++){
1097 u8 *pAddr; /* The i-th cell pointer */
1098 pAddr = &data[cellOffset + i*2];
1099 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001100 testcase( pc==iCellFirst );
1101 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001102#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001103 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001104 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1105 */
1106 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001107 return SQLITE_CORRUPT_BKPT;
1108 }
drh17146622009-07-07 17:38:38 +00001109#endif
1110 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001111 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001112 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001113#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1114 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001115 return SQLITE_CORRUPT_BKPT;
1116 }
drh17146622009-07-07 17:38:38 +00001117#else
1118 if( cbrk<iCellFirst || pc+size>usableSize ){
1119 return SQLITE_CORRUPT_BKPT;
1120 }
1121#endif
drh7157e1d2009-07-09 13:25:32 +00001122 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001123 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001124 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001125 memcpy(&data[cbrk], &temp[pc], size);
1126 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001127 }
drh17146622009-07-07 17:38:38 +00001128 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001129 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001130 data[hdr+1] = 0;
1131 data[hdr+2] = 0;
1132 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001133 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001134 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001135 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001136 return SQLITE_CORRUPT_BKPT;
1137 }
shane0af3f892008-11-12 04:55:34 +00001138 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001139}
1140
drha059ad02001-04-17 20:09:11 +00001141/*
danielk19776011a752009-04-01 16:25:32 +00001142** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001143** as the first argument. Write into *pIdx the index into pPage->aData[]
1144** of the first byte of allocated space. Return either SQLITE_OK or
1145** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001146**
drh0a45c272009-07-08 01:49:11 +00001147** The caller guarantees that there is sufficient space to make the
1148** allocation. This routine might need to defragment in order to bring
1149** all the space together, however. This routine will avoid using
1150** the first two bytes past the cell pointer area since presumably this
1151** allocation is being made in order to insert a new cell, so we will
1152** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001153*/
drh0a45c272009-07-08 01:49:11 +00001154static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001155 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1156 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1157 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001158 int top; /* First byte of cell content area */
1159 int gap; /* First byte of gap between cell pointers and cell content */
1160 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001161 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001162
danielk19773b8a05f2007-03-19 17:44:26 +00001163 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001164 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001165 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001166 assert( nByte>=0 ); /* Minimum cell size is 4 */
1167 assert( pPage->nFree>=nByte );
1168 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001169 usableSize = pPage->pBt->usableSize;
1170 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001171
1172 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001173 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1174 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001175 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001176 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001177 testcase( gap+2==top );
1178 testcase( gap+1==top );
1179 testcase( gap==top );
1180
danielk19776011a752009-04-01 16:25:32 +00001181 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001182 /* Always defragment highly fragmented pages */
1183 rc = defragmentPage(pPage);
1184 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001185 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001186 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001187 /* Search the freelist looking for a free slot big enough to satisfy
1188 ** the request. The allocation is made from the first free slot in
1189 ** the list that is large enough to accomadate it.
1190 */
1191 int pc, addr;
1192 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001193 int size; /* Size of the free slot */
1194 if( pc>usableSize-4 || pc<addr+4 ){
1195 return SQLITE_CORRUPT_BKPT;
1196 }
1197 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001198 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001199 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001200 testcase( x==4 );
1201 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001202 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001203 /* Remove the slot from the free-list. Update the number of
1204 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001205 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001206 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001207 }else if( size+pc > usableSize ){
1208 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001209 }else{
danielk1977fad91942009-04-29 17:49:59 +00001210 /* The slot remains on the free-list. Reduce its size to account
1211 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001212 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001213 }
drh0a45c272009-07-08 01:49:11 +00001214 *pIdx = pc + x;
1215 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001216 }
drh9e572e62004-04-23 23:43:10 +00001217 }
1218 }
drh43605152004-05-29 21:46:49 +00001219
drh0a45c272009-07-08 01:49:11 +00001220 /* Check to make sure there is enough space in the gap to satisfy
1221 ** the allocation. If not, defragment.
1222 */
1223 testcase( gap+2+nByte==top );
1224 if( gap+2+nByte>top ){
1225 rc = defragmentPage(pPage);
1226 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001227 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001228 assert( gap+nByte<=top );
1229 }
1230
1231
drh43605152004-05-29 21:46:49 +00001232 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001233 ** and the cell content area. The btreeInitPage() call has already
1234 ** validated the freelist. Given that the freelist is valid, there
1235 ** is no way that the allocation can extend off the end of the page.
1236 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001237 */
drh0a45c272009-07-08 01:49:11 +00001238 top -= nByte;
drh43605152004-05-29 21:46:49 +00001239 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001240 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001241 *pIdx = top;
1242 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001243}
1244
1245/*
drh9e572e62004-04-23 23:43:10 +00001246** Return a section of the pPage->aData to the freelist.
1247** The first byte of the new free block is pPage->aDisk[start]
1248** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001249**
1250** Most of the effort here is involved in coalesing adjacent
1251** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001252*/
shanedcc50b72008-11-13 18:29:50 +00001253static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001254 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001255 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001256 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001257
drh9e572e62004-04-23 23:43:10 +00001258 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001259 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001260 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001261 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001262 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001263 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001264
drhc9166342012-01-05 23:32:06 +00001265 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001266 /* Overwrite deleted information with zeros when the secure_delete
1267 ** option is enabled */
1268 memset(&data[start], 0, size);
1269 }
drhfcce93f2006-02-22 03:08:32 +00001270
drh0a45c272009-07-08 01:49:11 +00001271 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001272 ** even though the freeblock list was checked by btreeInitPage(),
1273 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001274 ** freeblocks that overlapped cells. Nor does it detect when the
1275 ** cell content area exceeds the value in the page header. If these
1276 ** situations arise, then subsequent insert operations might corrupt
1277 ** the freelist. So we do need to check for corruption while scanning
1278 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001279 */
drh43605152004-05-29 21:46:49 +00001280 hdr = pPage->hdrOffset;
1281 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001282 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001283 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001284 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001285 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001286 return SQLITE_CORRUPT_BKPT;
1287 }
drh3aac2dd2004-04-26 14:10:20 +00001288 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001289 }
drh0a45c272009-07-08 01:49:11 +00001290 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001291 return SQLITE_CORRUPT_BKPT;
1292 }
drh3aac2dd2004-04-26 14:10:20 +00001293 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001294 put2byte(&data[addr], start);
1295 put2byte(&data[start], pbegin);
1296 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001297 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001298
1299 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001300 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001301 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001302 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001303 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001304 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001305 pnext = get2byte(&data[pbegin]);
1306 psize = get2byte(&data[pbegin+2]);
1307 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1308 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001309 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001310 return SQLITE_CORRUPT_BKPT;
1311 }
drh0a45c272009-07-08 01:49:11 +00001312 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001313 x = get2byte(&data[pnext]);
1314 put2byte(&data[pbegin], x);
1315 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1316 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001317 }else{
drh3aac2dd2004-04-26 14:10:20 +00001318 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001319 }
1320 }
drh7e3b0a02001-04-28 16:52:40 +00001321
drh43605152004-05-29 21:46:49 +00001322 /* If the cell content area begins with a freeblock, remove it. */
1323 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1324 int top;
1325 pbegin = get2byte(&data[hdr+1]);
1326 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001327 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1328 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001329 }
drhc5053fb2008-11-27 02:22:10 +00001330 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001331 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001332}
1333
1334/*
drh271efa52004-05-30 19:19:05 +00001335** Decode the flags byte (the first byte of the header) for a page
1336** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001337**
1338** Only the following combinations are supported. Anything different
1339** indicates a corrupt database files:
1340**
1341** PTF_ZERODATA
1342** PTF_ZERODATA | PTF_LEAF
1343** PTF_LEAFDATA | PTF_INTKEY
1344** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001345*/
drh44845222008-07-17 18:39:57 +00001346static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001347 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001348
1349 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001350 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001351 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001352 flagByte &= ~PTF_LEAF;
1353 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001354 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001355 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1356 pPage->intKey = 1;
1357 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001358 pPage->maxLocal = pBt->maxLeaf;
1359 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001360 }else if( flagByte==PTF_ZERODATA ){
1361 pPage->intKey = 0;
1362 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001363 pPage->maxLocal = pBt->maxLocal;
1364 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001365 }else{
1366 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001367 }
drhc9166342012-01-05 23:32:06 +00001368 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001369 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001370}
1371
1372/*
drh7e3b0a02001-04-28 16:52:40 +00001373** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001374**
1375** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001376** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001377** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1378** guarantee that the page is well-formed. It only shows that
1379** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001380*/
danielk197730548662009-07-09 05:07:37 +00001381static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001382
danielk197771d5d2c2008-09-29 11:49:47 +00001383 assert( pPage->pBt!=0 );
1384 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001385 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001386 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1387 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001388
1389 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001390 u16 pc; /* Address of a freeblock within pPage->aData[] */
1391 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001392 u8 *data; /* Equal to pPage->aData */
1393 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001394 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001395 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001396 int nFree; /* Number of unused bytes on the page */
1397 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001398 int iCellFirst; /* First allowable cell or freeblock offset */
1399 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001400
1401 pBt = pPage->pBt;
1402
danielk1977eaa06f62008-09-18 17:34:44 +00001403 hdr = pPage->hdrOffset;
1404 data = pPage->aData;
1405 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001406 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1407 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001408 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001409 usableSize = pBt->usableSize;
1410 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001411 pPage->aDataEnd = &data[usableSize];
1412 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001413 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001414 pPage->nCell = get2byte(&data[hdr+3]);
1415 if( pPage->nCell>MX_CELL(pBt) ){
1416 /* To many cells for a single page. The page must be corrupt */
1417 return SQLITE_CORRUPT_BKPT;
1418 }
drhb908d762009-07-08 16:54:40 +00001419 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001420
shane5eff7cf2009-08-10 03:57:58 +00001421 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001422 ** of page when parsing a cell.
1423 **
1424 ** The following block of code checks early to see if a cell extends
1425 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1426 ** returned if it does.
1427 */
drh0a45c272009-07-08 01:49:11 +00001428 iCellFirst = cellOffset + 2*pPage->nCell;
1429 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001430#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001431 {
drh69e931e2009-06-03 21:04:35 +00001432 int i; /* Index into the cell pointer array */
1433 int sz; /* Size of a cell */
1434
drh69e931e2009-06-03 21:04:35 +00001435 if( !pPage->leaf ) iCellLast--;
1436 for(i=0; i<pPage->nCell; i++){
1437 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001438 testcase( pc==iCellFirst );
1439 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001440 if( pc<iCellFirst || pc>iCellLast ){
1441 return SQLITE_CORRUPT_BKPT;
1442 }
1443 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001444 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001445 if( pc+sz>usableSize ){
1446 return SQLITE_CORRUPT_BKPT;
1447 }
1448 }
drh0a45c272009-07-08 01:49:11 +00001449 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001450 }
1451#endif
1452
danielk1977eaa06f62008-09-18 17:34:44 +00001453 /* Compute the total free space on the page */
1454 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001455 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001456 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001457 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001458 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001459 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001460 return SQLITE_CORRUPT_BKPT;
1461 }
1462 next = get2byte(&data[pc]);
1463 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001464 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1465 /* Free blocks must be in ascending order. And the last byte of
1466 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001467 return SQLITE_CORRUPT_BKPT;
1468 }
shane85095702009-06-15 16:27:08 +00001469 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001470 pc = next;
1471 }
danielk197793c829c2009-06-03 17:26:17 +00001472
1473 /* At this point, nFree contains the sum of the offset to the start
1474 ** of the cell-content area plus the number of free bytes within
1475 ** the cell-content area. If this is greater than the usable-size
1476 ** of the page, then the page must be corrupted. This check also
1477 ** serves to verify that the offset to the start of the cell-content
1478 ** area, according to the page header, lies within the page.
1479 */
1480 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001481 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001482 }
shane5eff7cf2009-08-10 03:57:58 +00001483 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001484 pPage->isInit = 1;
1485 }
drh9e572e62004-04-23 23:43:10 +00001486 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001487}
1488
1489/*
drh8b2f49b2001-06-08 00:21:52 +00001490** Set up a raw page so that it looks like a database page holding
1491** no entries.
drhbd03cae2001-06-02 02:40:57 +00001492*/
drh9e572e62004-04-23 23:43:10 +00001493static void zeroPage(MemPage *pPage, int flags){
1494 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001495 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001496 u8 hdr = pPage->hdrOffset;
1497 u16 first;
drh9e572e62004-04-23 23:43:10 +00001498
danielk19773b8a05f2007-03-19 17:44:26 +00001499 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001500 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1501 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001502 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001503 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001504 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001505 memset(&data[hdr], 0, pBt->usableSize - hdr);
1506 }
drh1bd10f82008-12-10 21:19:56 +00001507 data[hdr] = (char)flags;
1508 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001509 memset(&data[hdr+1], 0, 4);
1510 data[hdr+7] = 0;
1511 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001512 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001513 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001514 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001515 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001516 pPage->aDataEnd = &data[pBt->usableSize];
1517 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001518 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001519 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1520 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001521 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001522 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001523}
1524
drh897a8202008-09-18 01:08:15 +00001525
1526/*
1527** Convert a DbPage obtained from the pager into a MemPage used by
1528** the btree layer.
1529*/
1530static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1531 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1532 pPage->aData = sqlite3PagerGetData(pDbPage);
1533 pPage->pDbPage = pDbPage;
1534 pPage->pBt = pBt;
1535 pPage->pgno = pgno;
1536 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1537 return pPage;
1538}
1539
drhbd03cae2001-06-02 02:40:57 +00001540/*
drh3aac2dd2004-04-26 14:10:20 +00001541** Get a page from the pager. Initialize the MemPage.pBt and
1542** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001543**
1544** If the noContent flag is set, it means that we do not care about
1545** the content of the page at this time. So do not go to the disk
1546** to fetch the content. Just fill in the content with zeros for now.
1547** If in the future we call sqlite3PagerWrite() on this page, that
1548** means we have started to be concerned about content and the disk
1549** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001550*/
danielk197730548662009-07-09 05:07:37 +00001551static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001552 BtShared *pBt, /* The btree */
1553 Pgno pgno, /* Number of the page to fetch */
1554 MemPage **ppPage, /* Return the page in this parameter */
1555 int noContent /* Do not load page content if true */
1556){
drh3aac2dd2004-04-26 14:10:20 +00001557 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001558 DbPage *pDbPage;
1559
drh1fee73e2007-08-29 04:00:57 +00001560 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001561 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001562 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001563 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001564 return SQLITE_OK;
1565}
1566
1567/*
danielk1977bea2a942009-01-20 17:06:27 +00001568** Retrieve a page from the pager cache. If the requested page is not
1569** already in the pager cache return NULL. Initialize the MemPage.pBt and
1570** MemPage.aData elements if needed.
1571*/
1572static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1573 DbPage *pDbPage;
1574 assert( sqlite3_mutex_held(pBt->mutex) );
1575 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1576 if( pDbPage ){
1577 return btreePageFromDbPage(pDbPage, pgno, pBt);
1578 }
1579 return 0;
1580}
1581
1582/*
danielk197789d40042008-11-17 14:20:56 +00001583** Return the size of the database file in pages. If there is any kind of
1584** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001585*/
drhb1299152010-03-30 22:58:33 +00001586static Pgno btreePagecount(BtShared *pBt){
1587 return pBt->nPage;
1588}
1589u32 sqlite3BtreeLastPage(Btree *p){
1590 assert( sqlite3BtreeHoldsMutex(p) );
1591 assert( ((p->pBt->nPage)&0x8000000)==0 );
1592 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001593}
1594
1595/*
danielk197789bc4bc2009-07-21 19:25:24 +00001596** Get a page from the pager and initialize it. This routine is just a
1597** convenience wrapper around separate calls to btreeGetPage() and
1598** btreeInitPage().
1599**
1600** If an error occurs, then the value *ppPage is set to is undefined. It
1601** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001602*/
1603static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001604 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001605 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001606 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001607){
1608 int rc;
drh1fee73e2007-08-29 04:00:57 +00001609 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001610
danba3cbf32010-06-30 04:29:03 +00001611 if( pgno>btreePagecount(pBt) ){
1612 rc = SQLITE_CORRUPT_BKPT;
1613 }else{
1614 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1615 if( rc==SQLITE_OK ){
1616 rc = btreeInitPage(*ppPage);
1617 if( rc!=SQLITE_OK ){
1618 releasePage(*ppPage);
1619 }
danielk197789bc4bc2009-07-21 19:25:24 +00001620 }
drhee696e22004-08-30 16:52:17 +00001621 }
danba3cbf32010-06-30 04:29:03 +00001622
1623 testcase( pgno==0 );
1624 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001625 return rc;
1626}
1627
1628/*
drh3aac2dd2004-04-26 14:10:20 +00001629** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001630** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001631*/
drh4b70f112004-05-02 21:12:19 +00001632static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001633 if( pPage ){
1634 assert( pPage->aData );
1635 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001636 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1637 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001638 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001639 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001640 }
1641}
1642
1643/*
drha6abd042004-06-09 17:37:22 +00001644** During a rollback, when the pager reloads information into the cache
1645** so that the cache is restored to its original state at the start of
1646** the transaction, for each page restored this routine is called.
1647**
1648** This routine needs to reset the extra data section at the end of the
1649** page to agree with the restored data.
1650*/
danielk1977eaa06f62008-09-18 17:34:44 +00001651static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001652 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001653 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001654 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001655 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001656 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001657 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001658 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001659 /* pPage might not be a btree page; it might be an overflow page
1660 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001661 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001662 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001663 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001664 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001665 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001666 }
drha6abd042004-06-09 17:37:22 +00001667 }
1668}
1669
1670/*
drhe5fe6902007-12-07 18:55:28 +00001671** Invoke the busy handler for a btree.
1672*/
danielk19771ceedd32008-11-19 10:22:33 +00001673static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001674 BtShared *pBt = (BtShared*)pArg;
1675 assert( pBt->db );
1676 assert( sqlite3_mutex_held(pBt->db->mutex) );
1677 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1678}
1679
1680/*
drhad3e0102004-09-03 23:32:18 +00001681** Open a database file.
1682**
drh382c0242001-10-06 16:33:02 +00001683** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001684** then an ephemeral database is created. The ephemeral database might
1685** be exclusively in memory, or it might use a disk-based memory cache.
1686** Either way, the ephemeral database will be automatically deleted
1687** when sqlite3BtreeClose() is called.
1688**
drhe53831d2007-08-17 01:14:38 +00001689** If zFilename is ":memory:" then an in-memory database is created
1690** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001691**
drh33f111d2012-01-17 15:29:14 +00001692** The "flags" parameter is a bitmask that might contain bits like
1693** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001694**
drhc47fd8e2009-04-30 13:30:32 +00001695** If the database is already opened in the same database connection
1696** and we are in shared cache mode, then the open will fail with an
1697** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1698** objects in the same database connection since doing so will lead
1699** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001700*/
drh23e11ca2004-05-04 17:27:28 +00001701int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001702 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001703 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001704 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001705 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001706 int flags, /* Options */
1707 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001708){
drh7555d8e2009-03-20 13:15:30 +00001709 BtShared *pBt = 0; /* Shared part of btree structure */
1710 Btree *p; /* Handle to return */
1711 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1712 int rc = SQLITE_OK; /* Result code from this function */
1713 u8 nReserve; /* Byte of unused space on each page */
1714 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001715
drh75c014c2010-08-30 15:02:28 +00001716 /* True if opening an ephemeral, temporary database */
1717 const int isTempDb = zFilename==0 || zFilename[0]==0;
1718
danielk1977aef0bf62005-12-30 16:28:01 +00001719 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001720 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001721 */
drhb0a7c9c2010-12-06 21:09:59 +00001722#ifdef SQLITE_OMIT_MEMORYDB
1723 const int isMemdb = 0;
1724#else
1725 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
1726 || (isTempDb && sqlite3TempInMemory(db));
danielk1977aef0bf62005-12-30 16:28:01 +00001727#endif
1728
drhe5fe6902007-12-07 18:55:28 +00001729 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001730 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001731 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001732 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1733
1734 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1735 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1736
1737 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1738 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001739
drh75c014c2010-08-30 15:02:28 +00001740 if( isMemdb ){
1741 flags |= BTREE_MEMORY;
1742 }
1743 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1744 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1745 }
drh17435752007-08-16 04:30:38 +00001746 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001747 if( !p ){
1748 return SQLITE_NOMEM;
1749 }
1750 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001751 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001752#ifndef SQLITE_OMIT_SHARED_CACHE
1753 p->lock.pBtree = p;
1754 p->lock.iTable = 1;
1755#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001756
drh198bf392006-01-06 21:52:49 +00001757#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001758 /*
1759 ** If this Btree is a candidate for shared cache, try to find an
1760 ** existing BtShared object that we can share with
1761 */
drh75c014c2010-08-30 15:02:28 +00001762 if( isMemdb==0 && isTempDb==0 ){
drhf1f12682009-09-09 14:17:52 +00001763 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001764 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001765 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001766 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001767 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001768 if( !zFullPathname ){
1769 sqlite3_free(p);
1770 return SQLITE_NOMEM;
1771 }
drh070ad6b2011-11-17 11:43:19 +00001772 rc = sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
1773 if( rc ){
1774 sqlite3_free(zFullPathname);
1775 sqlite3_free(p);
1776 return rc;
1777 }
drh30ddce62011-10-15 00:16:30 +00001778#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001779 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1780 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001781 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001782 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001783#endif
drh78f82d12008-09-02 00:52:52 +00001784 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001785 assert( pBt->nRef>0 );
1786 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1787 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001788 int iDb;
1789 for(iDb=db->nDb-1; iDb>=0; iDb--){
1790 Btree *pExisting = db->aDb[iDb].pBt;
1791 if( pExisting && pExisting->pBt==pBt ){
1792 sqlite3_mutex_leave(mutexShared);
1793 sqlite3_mutex_leave(mutexOpen);
1794 sqlite3_free(zFullPathname);
1795 sqlite3_free(p);
1796 return SQLITE_CONSTRAINT;
1797 }
1798 }
drhff0587c2007-08-29 17:43:19 +00001799 p->pBt = pBt;
1800 pBt->nRef++;
1801 break;
1802 }
1803 }
1804 sqlite3_mutex_leave(mutexShared);
1805 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001806 }
drhff0587c2007-08-29 17:43:19 +00001807#ifdef SQLITE_DEBUG
1808 else{
1809 /* In debug mode, we mark all persistent databases as sharable
1810 ** even when they are not. This exercises the locking code and
1811 ** gives more opportunity for asserts(sqlite3_mutex_held())
1812 ** statements to find locking problems.
1813 */
1814 p->sharable = 1;
1815 }
1816#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001817 }
1818#endif
drha059ad02001-04-17 20:09:11 +00001819 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001820 /*
1821 ** The following asserts make sure that structures used by the btree are
1822 ** the right size. This is to guard against size changes that result
1823 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001824 */
drhe53831d2007-08-17 01:14:38 +00001825 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1826 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1827 assert( sizeof(u32)==4 );
1828 assert( sizeof(u16)==2 );
1829 assert( sizeof(Pgno)==4 );
1830
1831 pBt = sqlite3MallocZero( sizeof(*pBt) );
1832 if( pBt==0 ){
1833 rc = SQLITE_NOMEM;
1834 goto btree_open_out;
1835 }
danielk197771d5d2c2008-09-29 11:49:47 +00001836 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001837 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001838 if( rc==SQLITE_OK ){
1839 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1840 }
1841 if( rc!=SQLITE_OK ){
1842 goto btree_open_out;
1843 }
shanehbd2aaf92010-09-01 02:38:21 +00001844 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001845 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001846 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001847 p->pBt = pBt;
1848
drhe53831d2007-08-17 01:14:38 +00001849 pBt->pCursor = 0;
1850 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001851 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001852#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001853 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001854#endif
drhb2eced52010-08-12 02:41:12 +00001855 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001856 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1857 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001858 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001859#ifndef SQLITE_OMIT_AUTOVACUUM
1860 /* If the magic name ":memory:" will create an in-memory database, then
1861 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1862 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1863 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1864 ** regular file-name. In this case the auto-vacuum applies as per normal.
1865 */
1866 if( zFilename && !isMemdb ){
1867 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1868 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1869 }
1870#endif
1871 nReserve = 0;
1872 }else{
1873 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001874 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001875#ifndef SQLITE_OMIT_AUTOVACUUM
1876 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1877 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1878#endif
1879 }
drhfa9601a2009-06-18 17:22:39 +00001880 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001881 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001882 pBt->usableSize = pBt->pageSize - nReserve;
1883 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001884
1885#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1886 /* Add the new BtShared object to the linked list sharable BtShareds.
1887 */
1888 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001889 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001890 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001891 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001892 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001893 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001894 if( pBt->mutex==0 ){
1895 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001896 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001897 goto btree_open_out;
1898 }
drhff0587c2007-08-29 17:43:19 +00001899 }
drhe53831d2007-08-17 01:14:38 +00001900 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001901 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1902 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001903 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001904 }
drheee46cf2004-11-06 00:02:48 +00001905#endif
drh90f5ecb2004-07-22 01:19:35 +00001906 }
danielk1977aef0bf62005-12-30 16:28:01 +00001907
drhcfed7bc2006-03-13 14:28:05 +00001908#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001909 /* If the new Btree uses a sharable pBtShared, then link the new
1910 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001911 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001912 */
drhe53831d2007-08-17 01:14:38 +00001913 if( p->sharable ){
1914 int i;
1915 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001916 for(i=0; i<db->nDb; i++){
1917 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001918 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1919 if( p->pBt<pSib->pBt ){
1920 p->pNext = pSib;
1921 p->pPrev = 0;
1922 pSib->pPrev = p;
1923 }else{
drhabddb0c2007-08-20 13:14:28 +00001924 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001925 pSib = pSib->pNext;
1926 }
1927 p->pNext = pSib->pNext;
1928 p->pPrev = pSib;
1929 if( p->pNext ){
1930 p->pNext->pPrev = p;
1931 }
1932 pSib->pNext = p;
1933 }
1934 break;
1935 }
1936 }
danielk1977aef0bf62005-12-30 16:28:01 +00001937 }
danielk1977aef0bf62005-12-30 16:28:01 +00001938#endif
1939 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001940
1941btree_open_out:
1942 if( rc!=SQLITE_OK ){
1943 if( pBt && pBt->pPager ){
1944 sqlite3PagerClose(pBt->pPager);
1945 }
drh17435752007-08-16 04:30:38 +00001946 sqlite3_free(pBt);
1947 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001948 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001949 }else{
1950 /* If the B-Tree was successfully opened, set the pager-cache size to the
1951 ** default value. Except, when opening on an existing shared pager-cache,
1952 ** do not change the pager-cache size.
1953 */
1954 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1955 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1956 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001957 }
drh7555d8e2009-03-20 13:15:30 +00001958 if( mutexOpen ){
1959 assert( sqlite3_mutex_held(mutexOpen) );
1960 sqlite3_mutex_leave(mutexOpen);
1961 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001962 return rc;
drha059ad02001-04-17 20:09:11 +00001963}
1964
1965/*
drhe53831d2007-08-17 01:14:38 +00001966** Decrement the BtShared.nRef counter. When it reaches zero,
1967** remove the BtShared structure from the sharing list. Return
1968** true if the BtShared.nRef counter reaches zero and return
1969** false if it is still positive.
1970*/
1971static int removeFromSharingList(BtShared *pBt){
1972#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00001973 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00001974 BtShared *pList;
1975 int removed = 0;
1976
drhd677b3d2007-08-20 22:48:41 +00001977 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00001978 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00001979 sqlite3_mutex_enter(pMaster);
1980 pBt->nRef--;
1981 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001982 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1983 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001984 }else{
drh78f82d12008-09-02 00:52:52 +00001985 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001986 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001987 pList=pList->pNext;
1988 }
drh34004ce2008-07-11 16:15:17 +00001989 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001990 pList->pNext = pBt->pNext;
1991 }
1992 }
drh3285db22007-09-03 22:00:39 +00001993 if( SQLITE_THREADSAFE ){
1994 sqlite3_mutex_free(pBt->mutex);
1995 }
drhe53831d2007-08-17 01:14:38 +00001996 removed = 1;
1997 }
1998 sqlite3_mutex_leave(pMaster);
1999 return removed;
2000#else
2001 return 1;
2002#endif
2003}
2004
2005/*
drhf7141992008-06-19 00:16:08 +00002006** Make sure pBt->pTmpSpace points to an allocation of
2007** MX_CELL_SIZE(pBt) bytes.
2008*/
2009static void allocateTempSpace(BtShared *pBt){
2010 if( !pBt->pTmpSpace ){
2011 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2012 }
2013}
2014
2015/*
2016** Free the pBt->pTmpSpace allocation
2017*/
2018static void freeTempSpace(BtShared *pBt){
2019 sqlite3PageFree( pBt->pTmpSpace);
2020 pBt->pTmpSpace = 0;
2021}
2022
2023/*
drha059ad02001-04-17 20:09:11 +00002024** Close an open database and invalidate all cursors.
2025*/
danielk1977aef0bf62005-12-30 16:28:01 +00002026int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002027 BtShared *pBt = p->pBt;
2028 BtCursor *pCur;
2029
danielk1977aef0bf62005-12-30 16:28:01 +00002030 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002031 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002032 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002033 pCur = pBt->pCursor;
2034 while( pCur ){
2035 BtCursor *pTmp = pCur;
2036 pCur = pCur->pNext;
2037 if( pTmp->pBtree==p ){
2038 sqlite3BtreeCloseCursor(pTmp);
2039 }
drha059ad02001-04-17 20:09:11 +00002040 }
danielk1977aef0bf62005-12-30 16:28:01 +00002041
danielk19778d34dfd2006-01-24 16:37:57 +00002042 /* Rollback any active transaction and free the handle structure.
2043 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2044 ** this handle.
2045 */
danielk1977b597f742006-01-15 11:39:18 +00002046 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00002047 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002048
danielk1977aef0bf62005-12-30 16:28:01 +00002049 /* If there are still other outstanding references to the shared-btree
2050 ** structure, return now. The remainder of this procedure cleans
2051 ** up the shared-btree.
2052 */
drhe53831d2007-08-17 01:14:38 +00002053 assert( p->wantToLock==0 && p->locked==0 );
2054 if( !p->sharable || removeFromSharingList(pBt) ){
2055 /* The pBt is no longer on the sharing list, so we can access
2056 ** it without having to hold the mutex.
2057 **
2058 ** Clean out and delete the BtShared object.
2059 */
2060 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002061 sqlite3PagerClose(pBt->pPager);
2062 if( pBt->xFreeSchema && pBt->pSchema ){
2063 pBt->xFreeSchema(pBt->pSchema);
2064 }
drhb9755982010-07-24 16:34:37 +00002065 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002066 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002067 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002068 }
2069
drhe53831d2007-08-17 01:14:38 +00002070#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002071 assert( p->wantToLock==0 );
2072 assert( p->locked==0 );
2073 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2074 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002075#endif
2076
drhe53831d2007-08-17 01:14:38 +00002077 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002078 return SQLITE_OK;
2079}
2080
2081/*
drhda47d772002-12-02 04:25:19 +00002082** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002083**
2084** The maximum number of cache pages is set to the absolute
2085** value of mxPage. If mxPage is negative, the pager will
2086** operate asynchronously - it will not stop to do fsync()s
2087** to insure data is written to the disk surface before
2088** continuing. Transactions still work if synchronous is off,
2089** and the database cannot be corrupted if this program
2090** crashes. But if the operating system crashes or there is
2091** an abrupt power failure when synchronous is off, the database
2092** could be left in an inconsistent and unrecoverable state.
2093** Synchronous is on by default so database corruption is not
2094** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002095*/
danielk1977aef0bf62005-12-30 16:28:01 +00002096int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2097 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002098 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002099 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002100 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002101 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002102 return SQLITE_OK;
2103}
2104
2105/*
drh973b6e32003-02-12 14:09:42 +00002106** Change the way data is synced to disk in order to increase or decrease
2107** how well the database resists damage due to OS crashes and power
2108** failures. Level 1 is the same as asynchronous (no syncs() occur and
2109** there is a high probability of damage) Level 2 is the default. There
2110** is a very low but non-zero probability of damage. Level 3 reduces the
2111** probability of damage to near zero but with a write performance reduction.
2112*/
danielk197793758c82005-01-21 08:13:14 +00002113#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhc97d8462010-11-19 18:23:35 +00002114int sqlite3BtreeSetSafetyLevel(
2115 Btree *p, /* The btree to set the safety level on */
2116 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
2117 int fullSync, /* PRAGMA fullfsync. */
2118 int ckptFullSync /* PRAGMA checkpoint_fullfync */
2119){
danielk1977aef0bf62005-12-30 16:28:01 +00002120 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002121 assert( sqlite3_mutex_held(p->db->mutex) );
drhc97d8462010-11-19 18:23:35 +00002122 assert( level>=1 && level<=3 );
drhd677b3d2007-08-20 22:48:41 +00002123 sqlite3BtreeEnter(p);
drhc97d8462010-11-19 18:23:35 +00002124 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
drhd677b3d2007-08-20 22:48:41 +00002125 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002126 return SQLITE_OK;
2127}
danielk197793758c82005-01-21 08:13:14 +00002128#endif
drh973b6e32003-02-12 14:09:42 +00002129
drh2c8997b2005-08-27 16:36:48 +00002130/*
2131** Return TRUE if the given btree is set to safety level 1. In other
2132** words, return TRUE if no sync() occurs on the disk files.
2133*/
danielk1977aef0bf62005-12-30 16:28:01 +00002134int sqlite3BtreeSyncDisabled(Btree *p){
2135 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002136 int rc;
drhe5fe6902007-12-07 18:55:28 +00002137 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002138 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002139 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002140 rc = sqlite3PagerNosync(pBt->pPager);
2141 sqlite3BtreeLeave(p);
2142 return rc;
drh2c8997b2005-08-27 16:36:48 +00002143}
2144
drh973b6e32003-02-12 14:09:42 +00002145/*
drh90f5ecb2004-07-22 01:19:35 +00002146** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002147** Or, if the page size has already been fixed, return SQLITE_READONLY
2148** without changing anything.
drh06f50212004-11-02 14:24:33 +00002149**
2150** The page size must be a power of 2 between 512 and 65536. If the page
2151** size supplied does not meet this constraint then the page size is not
2152** changed.
2153**
2154** Page sizes are constrained to be a power of two so that the region
2155** of the database file used for locking (beginning at PENDING_BYTE,
2156** the first byte past the 1GB boundary, 0x40000000) needs to occur
2157** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002158**
2159** If parameter nReserve is less than zero, then the number of reserved
2160** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002161**
drhc9166342012-01-05 23:32:06 +00002162** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002163** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002164*/
drhce4869f2009-04-02 20:16:58 +00002165int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002166 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002167 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002168 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002169 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002170 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002171 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002172 return SQLITE_READONLY;
2173 }
2174 if( nReserve<0 ){
2175 nReserve = pBt->pageSize - pBt->usableSize;
2176 }
drhf49661a2008-12-10 16:45:50 +00002177 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002178 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2179 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002180 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002181 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002182 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002183 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002184 }
drhfa9601a2009-06-18 17:22:39 +00002185 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002186 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002187 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002188 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002189 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002190}
2191
2192/*
2193** Return the currently defined page size
2194*/
danielk1977aef0bf62005-12-30 16:28:01 +00002195int sqlite3BtreeGetPageSize(Btree *p){
2196 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002197}
drh7f751222009-03-17 22:33:00 +00002198
danbb2b4412011-04-06 17:54:31 +00002199#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002200/*
2201** Return the number of bytes of space at the end of every page that
2202** are intentually left unused. This is the "reserved" space that is
2203** sometimes used by extensions.
2204*/
danielk1977aef0bf62005-12-30 16:28:01 +00002205int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002206 int n;
2207 sqlite3BtreeEnter(p);
2208 n = p->pBt->pageSize - p->pBt->usableSize;
2209 sqlite3BtreeLeave(p);
2210 return n;
drh2011d5f2004-07-22 02:40:37 +00002211}
drhf8e632b2007-05-08 14:51:36 +00002212
2213/*
2214** Set the maximum page count for a database if mxPage is positive.
2215** No changes are made if mxPage is 0 or negative.
2216** Regardless of the value of mxPage, return the maximum page count.
2217*/
2218int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002219 int n;
2220 sqlite3BtreeEnter(p);
2221 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2222 sqlite3BtreeLeave(p);
2223 return n;
drhf8e632b2007-05-08 14:51:36 +00002224}
drh5b47efa2010-02-12 18:18:39 +00002225
2226/*
drhc9166342012-01-05 23:32:06 +00002227** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2228** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002229** setting after the change.
2230*/
2231int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2232 int b;
drhaf034ed2010-02-12 19:46:26 +00002233 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002234 sqlite3BtreeEnter(p);
2235 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002236 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2237 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002238 }
drhc9166342012-01-05 23:32:06 +00002239 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002240 sqlite3BtreeLeave(p);
2241 return b;
2242}
danielk1977576ec6b2005-01-21 11:55:25 +00002243#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002244
2245/*
danielk1977951af802004-11-05 15:45:09 +00002246** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2247** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2248** is disabled. The default value for the auto-vacuum property is
2249** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2250*/
danielk1977aef0bf62005-12-30 16:28:01 +00002251int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002252#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002253 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002254#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002255 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002256 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002257 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002258
2259 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002260 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002261 rc = SQLITE_READONLY;
2262 }else{
drh076d4662009-02-18 20:31:18 +00002263 pBt->autoVacuum = av ?1:0;
2264 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002265 }
drhd677b3d2007-08-20 22:48:41 +00002266 sqlite3BtreeLeave(p);
2267 return rc;
danielk1977951af802004-11-05 15:45:09 +00002268#endif
2269}
2270
2271/*
2272** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2273** enabled 1 is returned. Otherwise 0.
2274*/
danielk1977aef0bf62005-12-30 16:28:01 +00002275int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002276#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002277 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002278#else
drhd677b3d2007-08-20 22:48:41 +00002279 int rc;
2280 sqlite3BtreeEnter(p);
2281 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002282 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2283 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2284 BTREE_AUTOVACUUM_INCR
2285 );
drhd677b3d2007-08-20 22:48:41 +00002286 sqlite3BtreeLeave(p);
2287 return rc;
danielk1977951af802004-11-05 15:45:09 +00002288#endif
2289}
2290
2291
2292/*
drha34b6762004-05-07 13:30:42 +00002293** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002294** also acquire a readlock on that file.
2295**
2296** SQLITE_OK is returned on success. If the file is not a
2297** well-formed database file, then SQLITE_CORRUPT is returned.
2298** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002299** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002300*/
danielk1977aef0bf62005-12-30 16:28:01 +00002301static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002302 int rc; /* Result code from subfunctions */
2303 MemPage *pPage1; /* Page 1 of the database file */
2304 int nPage; /* Number of pages in the database */
2305 int nPageFile = 0; /* Number of pages in the database file */
2306 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002307
drh1fee73e2007-08-29 04:00:57 +00002308 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002309 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002310 rc = sqlite3PagerSharedLock(pBt->pPager);
2311 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002312 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002313 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002314
2315 /* Do some checking to help insure the file we opened really is
2316 ** a valid database file.
2317 */
drhc2a4bab2010-04-02 12:46:45 +00002318 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002319 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002320 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002321 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002322 }
2323 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002324 u32 pageSize;
2325 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002326 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002327 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002328 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002329 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002330 }
dan5cf53532010-05-01 16:40:20 +00002331
2332#ifdef SQLITE_OMIT_WAL
2333 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002334 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002335 }
2336 if( page1[19]>1 ){
2337 goto page1_init_failed;
2338 }
2339#else
dane04dc882010-04-20 18:53:15 +00002340 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002341 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002342 }
dane04dc882010-04-20 18:53:15 +00002343 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002344 goto page1_init_failed;
2345 }
drhe5ae5732008-06-15 02:51:47 +00002346
dana470aeb2010-04-21 11:43:38 +00002347 /* If the write version is set to 2, this database should be accessed
2348 ** in WAL mode. If the log is not already open, open it now. Then
2349 ** return SQLITE_OK and return without populating BtShared.pPage1.
2350 ** The caller detects this and calls this function again. This is
2351 ** required as the version of page 1 currently in the page1 buffer
2352 ** may not be the latest version - there may be a newer one in the log
2353 ** file.
2354 */
drhc9166342012-01-05 23:32:06 +00002355 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002356 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002357 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002358 if( rc!=SQLITE_OK ){
2359 goto page1_init_failed;
2360 }else if( isOpen==0 ){
2361 releasePage(pPage1);
2362 return SQLITE_OK;
2363 }
dan8b5444b2010-04-27 14:37:47 +00002364 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002365 }
dan5cf53532010-05-01 16:40:20 +00002366#endif
dane04dc882010-04-20 18:53:15 +00002367
drhe5ae5732008-06-15 02:51:47 +00002368 /* The maximum embedded fraction must be exactly 25%. And the minimum
2369 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2370 ** The original design allowed these amounts to vary, but as of
2371 ** version 3.6.0, we require them to be fixed.
2372 */
2373 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2374 goto page1_init_failed;
2375 }
drhb2eced52010-08-12 02:41:12 +00002376 pageSize = (page1[16]<<8) | (page1[17]<<16);
2377 if( ((pageSize-1)&pageSize)!=0
2378 || pageSize>SQLITE_MAX_PAGE_SIZE
2379 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002380 ){
drh07d183d2005-05-01 22:52:42 +00002381 goto page1_init_failed;
2382 }
2383 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002384 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002385 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002386 /* After reading the first page of the database assuming a page size
2387 ** of BtShared.pageSize, we have discovered that the page-size is
2388 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2389 ** zero and return SQLITE_OK. The caller will call this function
2390 ** again with the correct page-size.
2391 */
2392 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002393 pBt->usableSize = usableSize;
2394 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002395 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002396 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2397 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002398 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002399 }
danecac6702011-02-09 18:19:20 +00002400 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002401 rc = SQLITE_CORRUPT_BKPT;
2402 goto page1_init_failed;
2403 }
drhb33e1b92009-06-18 11:29:20 +00002404 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002405 goto page1_init_failed;
2406 }
drh43b18e12010-08-17 19:40:08 +00002407 pBt->pageSize = pageSize;
2408 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002409#ifndef SQLITE_OMIT_AUTOVACUUM
2410 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002411 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002412#endif
drh306dc212001-05-21 13:45:10 +00002413 }
drhb6f41482004-05-14 01:58:11 +00002414
2415 /* maxLocal is the maximum amount of payload to store locally for
2416 ** a cell. Make sure it is small enough so that at least minFanout
2417 ** cells can will fit on one page. We assume a 10-byte page header.
2418 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002419 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002420 ** 4-byte child pointer
2421 ** 9-byte nKey value
2422 ** 4-byte nData value
2423 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002424 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002425 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2426 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002427 */
shaneh1df2db72010-08-18 02:28:48 +00002428 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2429 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2430 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2431 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002432 if( pBt->maxLocal>127 ){
2433 pBt->max1bytePayload = 127;
2434 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002435 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002436 }
drh2e38c322004-09-03 18:38:44 +00002437 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002438 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002439 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002440 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002441
drh72f82862001-05-24 21:06:34 +00002442page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002443 releasePage(pPage1);
2444 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002445 return rc;
drh306dc212001-05-21 13:45:10 +00002446}
2447
2448/*
drhb8ca3072001-12-05 00:21:20 +00002449** If there are no outstanding cursors and we are not in the middle
2450** of a transaction but there is a read lock on the database, then
2451** this routine unrefs the first page of the database file which
2452** has the effect of releasing the read lock.
2453**
drhb8ca3072001-12-05 00:21:20 +00002454** If there is a transaction in progress, this routine is a no-op.
2455*/
danielk1977aef0bf62005-12-30 16:28:01 +00002456static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002457 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002458 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2459 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002460 assert( pBt->pPage1->aData );
2461 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2462 assert( pBt->pPage1->aData );
2463 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002464 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002465 }
2466}
2467
2468/*
drhe39f2f92009-07-23 01:43:59 +00002469** If pBt points to an empty file then convert that empty file
2470** into a new empty database by initializing the first page of
2471** the database.
drh8b2f49b2001-06-08 00:21:52 +00002472*/
danielk1977aef0bf62005-12-30 16:28:01 +00002473static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002474 MemPage *pP1;
2475 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002476 int rc;
drhd677b3d2007-08-20 22:48:41 +00002477
drh1fee73e2007-08-29 04:00:57 +00002478 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002479 if( pBt->nPage>0 ){
2480 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002481 }
drh3aac2dd2004-04-26 14:10:20 +00002482 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002483 assert( pP1!=0 );
2484 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002485 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002486 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002487 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2488 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002489 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2490 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002491 data[18] = 1;
2492 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002493 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2494 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002495 data[21] = 64;
2496 data[22] = 32;
2497 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002498 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002499 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002500 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002501#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002502 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002503 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002504 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002505 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002506#endif
drhdd3cd972010-03-27 17:12:36 +00002507 pBt->nPage = 1;
2508 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002509 return SQLITE_OK;
2510}
2511
2512/*
danielk1977ee5741e2004-05-31 10:01:34 +00002513** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002514** is started if the second argument is nonzero, otherwise a read-
2515** transaction. If the second argument is 2 or more and exclusive
2516** transaction is started, meaning that no other process is allowed
2517** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002518** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002519** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002520**
danielk1977ee5741e2004-05-31 10:01:34 +00002521** A write-transaction must be started before attempting any
2522** changes to the database. None of the following routines
2523** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002524**
drh23e11ca2004-05-04 17:27:28 +00002525** sqlite3BtreeCreateTable()
2526** sqlite3BtreeCreateIndex()
2527** sqlite3BtreeClearTable()
2528** sqlite3BtreeDropTable()
2529** sqlite3BtreeInsert()
2530** sqlite3BtreeDelete()
2531** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002532**
drhb8ef32c2005-03-14 02:01:49 +00002533** If an initial attempt to acquire the lock fails because of lock contention
2534** and the database was previously unlocked, then invoke the busy handler
2535** if there is one. But if there was previously a read-lock, do not
2536** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2537** returned when there is already a read-lock in order to avoid a deadlock.
2538**
2539** Suppose there are two processes A and B. A has a read lock and B has
2540** a reserved lock. B tries to promote to exclusive but is blocked because
2541** of A's read lock. A tries to promote to reserved but is blocked by B.
2542** One or the other of the two processes must give way or there can be
2543** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2544** when A already has a read lock, we encourage A to give up and let B
2545** proceed.
drha059ad02001-04-17 20:09:11 +00002546*/
danielk1977aef0bf62005-12-30 16:28:01 +00002547int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002548 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002549 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002550 int rc = SQLITE_OK;
2551
drhd677b3d2007-08-20 22:48:41 +00002552 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002553 btreeIntegrity(p);
2554
danielk1977ee5741e2004-05-31 10:01:34 +00002555 /* If the btree is already in a write-transaction, or it
2556 ** is already in a read-transaction and a read-transaction
2557 ** is requested, this is a no-op.
2558 */
danielk1977aef0bf62005-12-30 16:28:01 +00002559 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002560 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002561 }
drhb8ef32c2005-03-14 02:01:49 +00002562
2563 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002564 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002565 rc = SQLITE_READONLY;
2566 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002567 }
2568
danielk1977404ca072009-03-16 13:19:36 +00002569#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002570 /* If another database handle has already opened a write transaction
2571 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002572 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002573 */
drhc9166342012-01-05 23:32:06 +00002574 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2575 || (pBt->btsFlags & BTS_PENDING)!=0
2576 ){
danielk1977404ca072009-03-16 13:19:36 +00002577 pBlock = pBt->pWriter->db;
2578 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002579 BtLock *pIter;
2580 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2581 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002582 pBlock = pIter->pBtree->db;
2583 break;
danielk1977641b0f42007-12-21 04:47:25 +00002584 }
2585 }
2586 }
danielk1977404ca072009-03-16 13:19:36 +00002587 if( pBlock ){
2588 sqlite3ConnectionBlocked(p->db, pBlock);
2589 rc = SQLITE_LOCKED_SHAREDCACHE;
2590 goto trans_begun;
2591 }
danielk1977641b0f42007-12-21 04:47:25 +00002592#endif
2593
danielk1977602b4662009-07-02 07:47:33 +00002594 /* Any read-only or read-write transaction implies a read-lock on
2595 ** page 1. So if some other shared-cache client already has a write-lock
2596 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002597 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2598 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002599
drhc9166342012-01-05 23:32:06 +00002600 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2601 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002602 do {
danielk1977295dc102009-04-01 19:07:03 +00002603 /* Call lockBtree() until either pBt->pPage1 is populated or
2604 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2605 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2606 ** reading page 1 it discovers that the page-size of the database
2607 ** file is not pBt->pageSize. In this case lockBtree() will update
2608 ** pBt->pageSize to the page-size of the file on disk.
2609 */
2610 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002611
drhb8ef32c2005-03-14 02:01:49 +00002612 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002613 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002614 rc = SQLITE_READONLY;
2615 }else{
danielk1977d8293352009-04-30 09:10:37 +00002616 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002617 if( rc==SQLITE_OK ){
2618 rc = newDatabase(pBt);
2619 }
drhb8ef32c2005-03-14 02:01:49 +00002620 }
2621 }
2622
danielk1977bd434552009-03-18 10:33:00 +00002623 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002624 unlockBtreeIfUnused(pBt);
2625 }
danf9b76712010-06-01 14:12:45 +00002626 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002627 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002628
2629 if( rc==SQLITE_OK ){
2630 if( p->inTrans==TRANS_NONE ){
2631 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002632#ifndef SQLITE_OMIT_SHARED_CACHE
2633 if( p->sharable ){
2634 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2635 p->lock.eLock = READ_LOCK;
2636 p->lock.pNext = pBt->pLock;
2637 pBt->pLock = &p->lock;
2638 }
2639#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002640 }
2641 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2642 if( p->inTrans>pBt->inTransaction ){
2643 pBt->inTransaction = p->inTrans;
2644 }
danielk1977404ca072009-03-16 13:19:36 +00002645 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002646 MemPage *pPage1 = pBt->pPage1;
2647#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002648 assert( !pBt->pWriter );
2649 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002650 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2651 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002652#endif
dan59257dc2010-08-04 11:34:31 +00002653
2654 /* If the db-size header field is incorrect (as it may be if an old
2655 ** client has been writing the database file), update it now. Doing
2656 ** this sooner rather than later means the database size can safely
2657 ** re-read the database size from page 1 if a savepoint or transaction
2658 ** rollback occurs within the transaction.
2659 */
2660 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2661 rc = sqlite3PagerWrite(pPage1->pDbPage);
2662 if( rc==SQLITE_OK ){
2663 put4byte(&pPage1->aData[28], pBt->nPage);
2664 }
2665 }
2666 }
danielk1977aef0bf62005-12-30 16:28:01 +00002667 }
2668
drhd677b3d2007-08-20 22:48:41 +00002669
2670trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002671 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002672 /* This call makes sure that the pager has the correct number of
2673 ** open savepoints. If the second parameter is greater than 0 and
2674 ** the sub-journal is not already open, then it will be opened here.
2675 */
danielk1977fd7f0452008-12-17 17:30:26 +00002676 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2677 }
danielk197712dd5492008-12-18 15:45:07 +00002678
danielk1977aef0bf62005-12-30 16:28:01 +00002679 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002680 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002681 return rc;
drha059ad02001-04-17 20:09:11 +00002682}
2683
danielk1977687566d2004-11-02 12:56:41 +00002684#ifndef SQLITE_OMIT_AUTOVACUUM
2685
2686/*
2687** Set the pointer-map entries for all children of page pPage. Also, if
2688** pPage contains cells that point to overflow pages, set the pointer
2689** map entries for the overflow pages as well.
2690*/
2691static int setChildPtrmaps(MemPage *pPage){
2692 int i; /* Counter variable */
2693 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002694 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002695 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002696 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002697 Pgno pgno = pPage->pgno;
2698
drh1fee73e2007-08-29 04:00:57 +00002699 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002700 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002701 if( rc!=SQLITE_OK ){
2702 goto set_child_ptrmaps_out;
2703 }
danielk1977687566d2004-11-02 12:56:41 +00002704 nCell = pPage->nCell;
2705
2706 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002707 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002708
drh98add2e2009-07-20 17:11:49 +00002709 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002710
danielk1977687566d2004-11-02 12:56:41 +00002711 if( !pPage->leaf ){
2712 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002713 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002714 }
2715 }
2716
2717 if( !pPage->leaf ){
2718 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002719 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002720 }
2721
2722set_child_ptrmaps_out:
2723 pPage->isInit = isInitOrig;
2724 return rc;
2725}
2726
2727/*
drhf3aed592009-07-08 18:12:49 +00002728** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2729** that it points to iTo. Parameter eType describes the type of pointer to
2730** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002731**
2732** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2733** page of pPage.
2734**
2735** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2736** page pointed to by one of the cells on pPage.
2737**
2738** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2739** overflow page in the list.
2740*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002741static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002742 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002743 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002744 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002745 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002746 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002747 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002748 }
danielk1977f78fc082004-11-02 14:40:32 +00002749 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002750 }else{
drhf49661a2008-12-10 16:45:50 +00002751 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002752 int i;
2753 int nCell;
2754
danielk197730548662009-07-09 05:07:37 +00002755 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002756 nCell = pPage->nCell;
2757
danielk1977687566d2004-11-02 12:56:41 +00002758 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002759 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002760 if( eType==PTRMAP_OVERFLOW1 ){
2761 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002762 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002763 if( info.iOverflow
2764 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2765 && iFrom==get4byte(&pCell[info.iOverflow])
2766 ){
2767 put4byte(&pCell[info.iOverflow], iTo);
2768 break;
danielk1977687566d2004-11-02 12:56:41 +00002769 }
2770 }else{
2771 if( get4byte(pCell)==iFrom ){
2772 put4byte(pCell, iTo);
2773 break;
2774 }
2775 }
2776 }
2777
2778 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002779 if( eType!=PTRMAP_BTREE ||
2780 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002781 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002782 }
danielk1977687566d2004-11-02 12:56:41 +00002783 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2784 }
2785
2786 pPage->isInit = isInitOrig;
2787 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002788 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002789}
2790
danielk1977003ba062004-11-04 02:57:33 +00002791
danielk19777701e812005-01-10 12:59:51 +00002792/*
2793** Move the open database page pDbPage to location iFreePage in the
2794** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002795**
2796** The isCommit flag indicates that there is no need to remember that
2797** the journal needs to be sync()ed before database page pDbPage->pgno
2798** can be written to. The caller has already promised not to write to that
2799** page.
danielk19777701e812005-01-10 12:59:51 +00002800*/
danielk1977003ba062004-11-04 02:57:33 +00002801static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002802 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002803 MemPage *pDbPage, /* Open page to move */
2804 u8 eType, /* Pointer map 'type' entry for pDbPage */
2805 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002806 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002807 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002808){
2809 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2810 Pgno iDbPage = pDbPage->pgno;
2811 Pager *pPager = pBt->pPager;
2812 int rc;
2813
danielk1977a0bf2652004-11-04 14:30:04 +00002814 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2815 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002816 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002817 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002818
drh85b623f2007-12-13 21:54:09 +00002819 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002820 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2821 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002822 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002823 if( rc!=SQLITE_OK ){
2824 return rc;
2825 }
2826 pDbPage->pgno = iFreePage;
2827
2828 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2829 ** that point to overflow pages. The pointer map entries for all these
2830 ** pages need to be changed.
2831 **
2832 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2833 ** pointer to a subsequent overflow page. If this is the case, then
2834 ** the pointer map needs to be updated for the subsequent overflow page.
2835 */
danielk1977a0bf2652004-11-04 14:30:04 +00002836 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002837 rc = setChildPtrmaps(pDbPage);
2838 if( rc!=SQLITE_OK ){
2839 return rc;
2840 }
2841 }else{
2842 Pgno nextOvfl = get4byte(pDbPage->aData);
2843 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002844 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002845 if( rc!=SQLITE_OK ){
2846 return rc;
2847 }
2848 }
2849 }
2850
2851 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2852 ** that it points at iFreePage. Also fix the pointer map entry for
2853 ** iPtrPage.
2854 */
danielk1977a0bf2652004-11-04 14:30:04 +00002855 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002856 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002857 if( rc!=SQLITE_OK ){
2858 return rc;
2859 }
danielk19773b8a05f2007-03-19 17:44:26 +00002860 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002861 if( rc!=SQLITE_OK ){
2862 releasePage(pPtrPage);
2863 return rc;
2864 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002865 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002866 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002867 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002868 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002869 }
danielk1977003ba062004-11-04 02:57:33 +00002870 }
danielk1977003ba062004-11-04 02:57:33 +00002871 return rc;
2872}
2873
danielk1977dddbcdc2007-04-26 14:42:34 +00002874/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002875static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002876
2877/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002878** Perform a single step of an incremental-vacuum. If successful,
2879** return SQLITE_OK. If there is no work to do (and therefore no
2880** point in calling this function again), return SQLITE_DONE.
2881**
2882** More specificly, this function attempts to re-organize the
2883** database so that the last page of the file currently in use
2884** is no longer in use.
2885**
drhea8ffdf2009-07-22 00:35:23 +00002886** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002887** that the caller will keep calling incrVacuumStep() until
2888** it returns SQLITE_DONE or an error, and that nFin is the
2889** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002890** process is complete. If nFin is zero, it is assumed that
2891** incrVacuumStep() will be called a finite amount of times
2892** which may or may not empty the freelist. A full autovacuum
2893** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002894*/
danielk19773460d192008-12-27 15:23:13 +00002895static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002896 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002897 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002898
drh1fee73e2007-08-29 04:00:57 +00002899 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002900 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002901
2902 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002903 u8 eType;
2904 Pgno iPtrPage;
2905
2906 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002907 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002908 return SQLITE_DONE;
2909 }
2910
2911 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2912 if( rc!=SQLITE_OK ){
2913 return rc;
2914 }
2915 if( eType==PTRMAP_ROOTPAGE ){
2916 return SQLITE_CORRUPT_BKPT;
2917 }
2918
2919 if( eType==PTRMAP_FREEPAGE ){
2920 if( nFin==0 ){
2921 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002922 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002923 ** truncated to zero after this function returns, so it doesn't
2924 ** matter if it still contains some garbage entries.
2925 */
2926 Pgno iFreePg;
2927 MemPage *pFreePg;
2928 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2929 if( rc!=SQLITE_OK ){
2930 return rc;
2931 }
2932 assert( iFreePg==iLastPg );
2933 releasePage(pFreePg);
2934 }
2935 } else {
2936 Pgno iFreePg; /* Index of free page to move pLastPg to */
2937 MemPage *pLastPg;
2938
danielk197730548662009-07-09 05:07:37 +00002939 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002940 if( rc!=SQLITE_OK ){
2941 return rc;
2942 }
2943
danielk1977b4626a32007-04-28 15:47:43 +00002944 /* If nFin is zero, this loop runs exactly once and page pLastPg
2945 ** is swapped with the first free page pulled off the free list.
2946 **
2947 ** On the other hand, if nFin is greater than zero, then keep
2948 ** looping until a free-page located within the first nFin pages
2949 ** of the file is found.
2950 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002951 do {
2952 MemPage *pFreePg;
2953 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2954 if( rc!=SQLITE_OK ){
2955 releasePage(pLastPg);
2956 return rc;
2957 }
2958 releasePage(pFreePg);
2959 }while( nFin!=0 && iFreePg>nFin );
2960 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002961
2962 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002963 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002964 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002965 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002966 releasePage(pLastPg);
2967 if( rc!=SQLITE_OK ){
2968 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002969 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002970 }
2971 }
2972
danielk19773460d192008-12-27 15:23:13 +00002973 if( nFin==0 ){
2974 iLastPg--;
2975 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002976 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2977 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002978 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002979 if( rc!=SQLITE_OK ){
2980 return rc;
2981 }
2982 rc = sqlite3PagerWrite(pPg->pDbPage);
2983 releasePage(pPg);
2984 if( rc!=SQLITE_OK ){
2985 return rc;
2986 }
2987 }
danielk19773460d192008-12-27 15:23:13 +00002988 iLastPg--;
2989 }
2990 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002991 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002992 }
2993 return SQLITE_OK;
2994}
2995
2996/*
2997** A write-transaction must be opened before calling this function.
2998** It performs a single unit of work towards an incremental vacuum.
2999**
3000** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003001** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003002** SQLITE_OK is returned. Otherwise an SQLite error code.
3003*/
3004int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003005 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003006 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003007
3008 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003009 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3010 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003011 rc = SQLITE_DONE;
3012 }else{
3013 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00003014 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00003015 if( rc==SQLITE_OK ){
3016 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3017 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3018 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003019 }
drhd677b3d2007-08-20 22:48:41 +00003020 sqlite3BtreeLeave(p);
3021 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003022}
3023
3024/*
danielk19773b8a05f2007-03-19 17:44:26 +00003025** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003026** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003027**
3028** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3029** the database file should be truncated to during the commit process.
3030** i.e. the database has been reorganized so that only the first *pnTrunc
3031** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003032*/
danielk19773460d192008-12-27 15:23:13 +00003033static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003034 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003035 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003036 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003037
drh1fee73e2007-08-29 04:00:57 +00003038 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003039 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003040 assert(pBt->autoVacuum);
3041 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003042 Pgno nFin; /* Number of pages in database after autovacuuming */
3043 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003044 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3045 Pgno iFree; /* The next page to be freed */
3046 int nEntry; /* Number of entries on one ptrmap page */
3047 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003048
drhb1299152010-03-30 22:58:33 +00003049 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003050 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3051 /* It is not possible to create a database for which the final page
3052 ** is either a pointer-map page or the pending-byte page. If one
3053 ** is encountered, this indicates corruption.
3054 */
danielk19773460d192008-12-27 15:23:13 +00003055 return SQLITE_CORRUPT_BKPT;
3056 }
danielk1977ef165ce2009-04-06 17:50:03 +00003057
danielk19773460d192008-12-27 15:23:13 +00003058 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00003059 nEntry = pBt->usableSize/5;
3060 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00003061 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00003062 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00003063 nFin--;
3064 }
3065 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3066 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00003067 }
drhc5e47ac2009-06-04 00:11:56 +00003068 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003069
danielk19773460d192008-12-27 15:23:13 +00003070 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3071 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00003072 }
danielk19773460d192008-12-27 15:23:13 +00003073 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003074 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3075 put4byte(&pBt->pPage1->aData[32], 0);
3076 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003077 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00003078 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00003079 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003080 }
3081 if( rc!=SQLITE_OK ){
3082 sqlite3PagerRollback(pPager);
3083 }
danielk1977687566d2004-11-02 12:56:41 +00003084 }
3085
danielk19773b8a05f2007-03-19 17:44:26 +00003086 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003087 return rc;
3088}
danielk1977dddbcdc2007-04-26 14:42:34 +00003089
danielk1977a50d9aa2009-06-08 14:49:45 +00003090#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3091# define setChildPtrmaps(x) SQLITE_OK
3092#endif
danielk1977687566d2004-11-02 12:56:41 +00003093
3094/*
drh80e35f42007-03-30 14:06:34 +00003095** This routine does the first phase of a two-phase commit. This routine
3096** causes a rollback journal to be created (if it does not already exist)
3097** and populated with enough information so that if a power loss occurs
3098** the database can be restored to its original state by playing back
3099** the journal. Then the contents of the journal are flushed out to
3100** the disk. After the journal is safely on oxide, the changes to the
3101** database are written into the database file and flushed to oxide.
3102** At the end of this call, the rollback journal still exists on the
3103** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003104** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003105** commit process.
3106**
3107** This call is a no-op if no write-transaction is currently active on pBt.
3108**
3109** Otherwise, sync the database file for the btree pBt. zMaster points to
3110** the name of a master journal file that should be written into the
3111** individual journal file, or is NULL, indicating no master journal file
3112** (single database transaction).
3113**
3114** When this is called, the master journal should already have been
3115** created, populated with this journal pointer and synced to disk.
3116**
3117** Once this is routine has returned, the only thing required to commit
3118** the write-transaction for this database file is to delete the journal.
3119*/
3120int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3121 int rc = SQLITE_OK;
3122 if( p->inTrans==TRANS_WRITE ){
3123 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003124 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003125#ifndef SQLITE_OMIT_AUTOVACUUM
3126 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003127 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003128 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003129 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003130 return rc;
3131 }
3132 }
3133#endif
drh49b9d332009-01-02 18:10:42 +00003134 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003135 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003136 }
3137 return rc;
3138}
3139
3140/*
danielk197794b30732009-07-02 17:21:57 +00003141** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3142** at the conclusion of a transaction.
3143*/
3144static void btreeEndTransaction(Btree *p){
3145 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003146 assert( sqlite3BtreeHoldsMutex(p) );
3147
danielk197794b30732009-07-02 17:21:57 +00003148 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003149 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3150 /* If there are other active statements that belong to this database
3151 ** handle, downgrade to a read-only transaction. The other statements
3152 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003153 downgradeAllSharedCacheTableLocks(p);
3154 p->inTrans = TRANS_READ;
3155 }else{
3156 /* If the handle had any kind of transaction open, decrement the
3157 ** transaction count of the shared btree. If the transaction count
3158 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3159 ** call below will unlock the pager. */
3160 if( p->inTrans!=TRANS_NONE ){
3161 clearAllSharedCacheTableLocks(p);
3162 pBt->nTransaction--;
3163 if( 0==pBt->nTransaction ){
3164 pBt->inTransaction = TRANS_NONE;
3165 }
3166 }
3167
3168 /* Set the current transaction state to TRANS_NONE and unlock the
3169 ** pager if this call closed the only read or write transaction. */
3170 p->inTrans = TRANS_NONE;
3171 unlockBtreeIfUnused(pBt);
3172 }
3173
3174 btreeIntegrity(p);
3175}
3176
3177/*
drh2aa679f2001-06-25 02:11:07 +00003178** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003179**
drh6e345992007-03-30 11:12:08 +00003180** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003181** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3182** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3183** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003184** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003185** routine has to do is delete or truncate or zero the header in the
3186** the rollback journal (which causes the transaction to commit) and
3187** drop locks.
drh6e345992007-03-30 11:12:08 +00003188**
dan60939d02011-03-29 15:40:55 +00003189** Normally, if an error occurs while the pager layer is attempting to
3190** finalize the underlying journal file, this function returns an error and
3191** the upper layer will attempt a rollback. However, if the second argument
3192** is non-zero then this b-tree transaction is part of a multi-file
3193** transaction. In this case, the transaction has already been committed
3194** (by deleting a master journal file) and the caller will ignore this
3195** functions return code. So, even if an error occurs in the pager layer,
3196** reset the b-tree objects internal state to indicate that the write
3197** transaction has been closed. This is quite safe, as the pager will have
3198** transitioned to the error state.
3199**
drh5e00f6c2001-09-13 13:46:56 +00003200** This will release the write lock on the database file. If there
3201** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003202*/
dan60939d02011-03-29 15:40:55 +00003203int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003204
drh075ed302010-10-14 01:17:30 +00003205 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003206 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003207 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003208
3209 /* If the handle has a write-transaction open, commit the shared-btrees
3210 ** transaction and set the shared state to TRANS_READ.
3211 */
3212 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003213 int rc;
drh075ed302010-10-14 01:17:30 +00003214 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003215 assert( pBt->inTransaction==TRANS_WRITE );
3216 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003217 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003218 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003219 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003220 return rc;
3221 }
danielk1977aef0bf62005-12-30 16:28:01 +00003222 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003223 }
danielk1977aef0bf62005-12-30 16:28:01 +00003224
danielk197794b30732009-07-02 17:21:57 +00003225 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003226 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003227 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003228}
3229
drh80e35f42007-03-30 14:06:34 +00003230/*
3231** Do both phases of a commit.
3232*/
3233int sqlite3BtreeCommit(Btree *p){
3234 int rc;
drhd677b3d2007-08-20 22:48:41 +00003235 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003236 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3237 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003238 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003239 }
drhd677b3d2007-08-20 22:48:41 +00003240 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003241 return rc;
3242}
3243
danielk1977fbcd5852004-06-15 02:44:18 +00003244#ifndef NDEBUG
3245/*
3246** Return the number of write-cursors open on this handle. This is for use
3247** in assert() expressions, so it is only compiled if NDEBUG is not
3248** defined.
drhfb982642007-08-30 01:19:59 +00003249**
3250** For the purposes of this routine, a write-cursor is any cursor that
3251** is capable of writing to the databse. That means the cursor was
3252** originally opened for writing and the cursor has not be disabled
3253** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003254*/
danielk1977aef0bf62005-12-30 16:28:01 +00003255static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003256 BtCursor *pCur;
3257 int r = 0;
3258 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003259 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003260 }
3261 return r;
3262}
3263#endif
3264
drhc39e0002004-05-07 23:50:57 +00003265/*
drhfb982642007-08-30 01:19:59 +00003266** This routine sets the state to CURSOR_FAULT and the error
3267** code to errCode for every cursor on BtShared that pBtree
3268** references.
3269**
3270** Every cursor is tripped, including cursors that belong
3271** to other database connections that happen to be sharing
3272** the cache with pBtree.
3273**
3274** This routine gets called when a rollback occurs.
3275** All cursors using the same cache must be tripped
3276** to prevent them from trying to use the btree after
3277** the rollback. The rollback may have deleted tables
3278** or moved root pages, so it is not sufficient to
3279** save the state of the cursor. The cursor must be
3280** invalidated.
3281*/
3282void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3283 BtCursor *p;
3284 sqlite3BtreeEnter(pBtree);
3285 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003286 int i;
danielk1977be51a652008-10-08 17:58:48 +00003287 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003288 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003289 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003290 for(i=0; i<=p->iPage; i++){
3291 releasePage(p->apPage[i]);
3292 p->apPage[i] = 0;
3293 }
drhfb982642007-08-30 01:19:59 +00003294 }
3295 sqlite3BtreeLeave(pBtree);
3296}
3297
3298/*
drhecdc7532001-09-23 02:35:53 +00003299** Rollback the transaction in progress. All cursors will be
3300** invalided by this operation. Any attempt to use a cursor
3301** that was open at the beginning of this operation will result
3302** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003303**
3304** This will release the write lock on the database file. If there
3305** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003306*/
danielk1977aef0bf62005-12-30 16:28:01 +00003307int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003308 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003309 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003310 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003311
drhd677b3d2007-08-20 22:48:41 +00003312 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003313 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003314#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003315 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003316 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003317 ** trying to save cursor positions. If this is an automatic rollback (as
3318 ** the result of a constraint, malloc() failure or IO error) then
3319 ** the cache may be internally inconsistent (not contain valid trees) so
3320 ** we cannot simply return the error to the caller. Instead, abort
3321 ** all queries that may be using any of the cursors that failed to save.
3322 */
drhfb982642007-08-30 01:19:59 +00003323 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003324 }
danielk19778d34dfd2006-01-24 16:37:57 +00003325#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003326 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003327
3328 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003329 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003330
danielk19778d34dfd2006-01-24 16:37:57 +00003331 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003332 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003333 if( rc2!=SQLITE_OK ){
3334 rc = rc2;
3335 }
3336
drh24cd67e2004-05-10 16:18:47 +00003337 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003338 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003339 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003340 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003341 int nPage = get4byte(28+(u8*)pPage1->aData);
3342 testcase( nPage==0 );
3343 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3344 testcase( pBt->nPage!=nPage );
3345 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003346 releasePage(pPage1);
3347 }
danielk1977fbcd5852004-06-15 02:44:18 +00003348 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003349 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003350 }
danielk1977aef0bf62005-12-30 16:28:01 +00003351
danielk197794b30732009-07-02 17:21:57 +00003352 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003353 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003354 return rc;
3355}
3356
3357/*
danielk1977bd434552009-03-18 10:33:00 +00003358** Start a statement subtransaction. The subtransaction can can be rolled
3359** back independently of the main transaction. You must start a transaction
3360** before starting a subtransaction. The subtransaction is ended automatically
3361** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003362**
3363** Statement subtransactions are used around individual SQL statements
3364** that are contained within a BEGIN...COMMIT block. If a constraint
3365** error occurs within the statement, the effect of that one statement
3366** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003367**
3368** A statement sub-transaction is implemented as an anonymous savepoint. The
3369** value passed as the second parameter is the total number of savepoints,
3370** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3371** are no active savepoints and no other statement-transactions open,
3372** iStatement is 1. This anonymous savepoint can be released or rolled back
3373** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003374*/
danielk1977bd434552009-03-18 10:33:00 +00003375int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003376 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003377 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003378 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003379 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003380 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003381 assert( iStatement>0 );
3382 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003383 assert( pBt->inTransaction==TRANS_WRITE );
3384 /* At the pager level, a statement transaction is a savepoint with
3385 ** an index greater than all savepoints created explicitly using
3386 ** SQL statements. It is illegal to open, release or rollback any
3387 ** such savepoints while the statement transaction savepoint is active.
3388 */
3389 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003390 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003391 return rc;
3392}
3393
3394/*
danielk1977fd7f0452008-12-17 17:30:26 +00003395** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3396** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003397** savepoint identified by parameter iSavepoint, depending on the value
3398** of op.
3399**
3400** Normally, iSavepoint is greater than or equal to zero. However, if op is
3401** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3402** contents of the entire transaction are rolled back. This is different
3403** from a normal transaction rollback, as no locks are released and the
3404** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003405*/
3406int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3407 int rc = SQLITE_OK;
3408 if( p && p->inTrans==TRANS_WRITE ){
3409 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003410 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3411 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3412 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003413 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003414 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003415 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3416 pBt->nPage = 0;
3417 }
drh9f0bbf92009-01-02 21:08:09 +00003418 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003419 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003420
3421 /* The database size was written into the offset 28 of the header
3422 ** when the transaction started, so we know that the value at offset
3423 ** 28 is nonzero. */
3424 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003425 }
danielk1977fd7f0452008-12-17 17:30:26 +00003426 sqlite3BtreeLeave(p);
3427 }
3428 return rc;
3429}
3430
3431/*
drh8b2f49b2001-06-08 00:21:52 +00003432** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003433** iTable. If a read-only cursor is requested, it is assumed that
3434** the caller already has at least a read-only transaction open
3435** on the database already. If a write-cursor is requested, then
3436** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003437**
3438** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003439** If wrFlag==1, then the cursor can be used for reading or for
3440** writing if other conditions for writing are also met. These
3441** are the conditions that must be met in order for writing to
3442** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003443**
drhf74b8d92002-09-01 23:20:45 +00003444** 1: The cursor must have been opened with wrFlag==1
3445**
drhfe5d71d2007-03-19 11:54:10 +00003446** 2: Other database connections that share the same pager cache
3447** but which are not in the READ_UNCOMMITTED state may not have
3448** cursors open with wrFlag==0 on the same table. Otherwise
3449** the changes made by this write cursor would be visible to
3450** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003451**
3452** 3: The database must be writable (not on read-only media)
3453**
3454** 4: There must be an active transaction.
3455**
drh6446c4d2001-12-15 14:22:18 +00003456** No checking is done to make sure that page iTable really is the
3457** root page of a b-tree. If it is not, then the cursor acquired
3458** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003459**
drhf25a5072009-11-18 23:01:25 +00003460** It is assumed that the sqlite3BtreeCursorZero() has been called
3461** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003462*/
drhd677b3d2007-08-20 22:48:41 +00003463static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003464 Btree *p, /* The btree */
3465 int iTable, /* Root page of table to open */
3466 int wrFlag, /* 1 to write. 0 read-only */
3467 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3468 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003469){
danielk19773e8add92009-07-04 17:16:00 +00003470 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003471
drh1fee73e2007-08-29 04:00:57 +00003472 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003473 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003474
danielk1977602b4662009-07-02 07:47:33 +00003475 /* The following assert statements verify that if this is a sharable
3476 ** b-tree database, the connection is holding the required table locks,
3477 ** and that no other connection has any open cursor that conflicts with
3478 ** this lock. */
3479 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003480 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3481
danielk19773e8add92009-07-04 17:16:00 +00003482 /* Assert that the caller has opened the required transaction. */
3483 assert( p->inTrans>TRANS_NONE );
3484 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3485 assert( pBt->pPage1 && pBt->pPage1->aData );
3486
drhc9166342012-01-05 23:32:06 +00003487 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003488 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003489 }
drhb1299152010-03-30 22:58:33 +00003490 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003491 assert( wrFlag==0 );
3492 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003493 }
danielk1977aef0bf62005-12-30 16:28:01 +00003494
danielk1977aef0bf62005-12-30 16:28:01 +00003495 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003496 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003497 pCur->pgnoRoot = (Pgno)iTable;
3498 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003499 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003500 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003501 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003502 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003503 pCur->pNext = pBt->pCursor;
3504 if( pCur->pNext ){
3505 pCur->pNext->pPrev = pCur;
3506 }
3507 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003508 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003509 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003510 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003511}
drhd677b3d2007-08-20 22:48:41 +00003512int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003513 Btree *p, /* The btree */
3514 int iTable, /* Root page of table to open */
3515 int wrFlag, /* 1 to write. 0 read-only */
3516 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3517 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003518){
3519 int rc;
3520 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003521 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003522 sqlite3BtreeLeave(p);
3523 return rc;
3524}
drh7f751222009-03-17 22:33:00 +00003525
3526/*
3527** Return the size of a BtCursor object in bytes.
3528**
3529** This interfaces is needed so that users of cursors can preallocate
3530** sufficient storage to hold a cursor. The BtCursor object is opaque
3531** to users so they cannot do the sizeof() themselves - they must call
3532** this routine.
3533*/
3534int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003535 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003536}
3537
drh7f751222009-03-17 22:33:00 +00003538/*
drhf25a5072009-11-18 23:01:25 +00003539** Initialize memory that will be converted into a BtCursor object.
3540**
3541** The simple approach here would be to memset() the entire object
3542** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3543** do not need to be zeroed and they are large, so we can save a lot
3544** of run-time by skipping the initialization of those elements.
3545*/
3546void sqlite3BtreeCursorZero(BtCursor *p){
3547 memset(p, 0, offsetof(BtCursor, iPage));
3548}
3549
3550/*
drh7f751222009-03-17 22:33:00 +00003551** Set the cached rowid value of every cursor in the same database file
3552** as pCur and having the same root page number as pCur. The value is
3553** set to iRowid.
3554**
3555** Only positive rowid values are considered valid for this cache.
3556** The cache is initialized to zero, indicating an invalid cache.
3557** A btree will work fine with zero or negative rowids. We just cannot
3558** cache zero or negative rowids, which means tables that use zero or
3559** negative rowids might run a little slower. But in practice, zero
3560** or negative rowids are very uncommon so this should not be a problem.
3561*/
3562void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3563 BtCursor *p;
3564 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3565 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3566 }
3567 assert( pCur->cachedRowid==iRowid );
3568}
drhd677b3d2007-08-20 22:48:41 +00003569
drh7f751222009-03-17 22:33:00 +00003570/*
3571** Return the cached rowid for the given cursor. A negative or zero
3572** return value indicates that the rowid cache is invalid and should be
3573** ignored. If the rowid cache has never before been set, then a
3574** zero is returned.
3575*/
3576sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3577 return pCur->cachedRowid;
3578}
drha059ad02001-04-17 20:09:11 +00003579
3580/*
drh5e00f6c2001-09-13 13:46:56 +00003581** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003582** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003583*/
drh3aac2dd2004-04-26 14:10:20 +00003584int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003585 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003586 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003587 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003588 BtShared *pBt = pCur->pBt;
3589 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003590 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003591 if( pCur->pPrev ){
3592 pCur->pPrev->pNext = pCur->pNext;
3593 }else{
3594 pBt->pCursor = pCur->pNext;
3595 }
3596 if( pCur->pNext ){
3597 pCur->pNext->pPrev = pCur->pPrev;
3598 }
danielk197771d5d2c2008-09-29 11:49:47 +00003599 for(i=0; i<=pCur->iPage; i++){
3600 releasePage(pCur->apPage[i]);
3601 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003602 unlockBtreeIfUnused(pBt);
3603 invalidateOverflowCache(pCur);
3604 /* sqlite3_free(pCur); */
3605 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003606 }
drh8c42ca92001-06-22 19:15:00 +00003607 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003608}
3609
drh5e2f8b92001-05-28 00:41:15 +00003610/*
drh86057612007-06-26 01:04:48 +00003611** Make sure the BtCursor* given in the argument has a valid
3612** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003613** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003614**
3615** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003616** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003617**
3618** 2007-06-25: There is a bug in some versions of MSVC that cause the
3619** compiler to crash when getCellInfo() is implemented as a macro.
3620** But there is a measureable speed advantage to using the macro on gcc
3621** (when less compiler optimizations like -Os or -O0 are used and the
3622** compiler is not doing agressive inlining.) So we use a real function
3623** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003624*/
drh9188b382004-05-14 21:12:22 +00003625#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003626 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003627 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003628 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003629 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003630 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003631 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003632 }
danielk19771cc5ed82007-05-16 17:28:43 +00003633#else
3634 #define assertCellInfo(x)
3635#endif
drh86057612007-06-26 01:04:48 +00003636#ifdef _MSC_VER
3637 /* Use a real function in MSVC to work around bugs in that compiler. */
3638 static void getCellInfo(BtCursor *pCur){
3639 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003640 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003641 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003642 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003643 }else{
3644 assertCellInfo(pCur);
3645 }
3646 }
3647#else /* if not _MSC_VER */
3648 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003649#define getCellInfo(pCur) \
3650 if( pCur->info.nSize==0 ){ \
3651 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003652 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003653 pCur->validNKey = 1; \
3654 }else{ \
3655 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003656 }
3657#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003658
drhea8ffdf2009-07-22 00:35:23 +00003659#ifndef NDEBUG /* The next routine used only within assert() statements */
3660/*
3661** Return true if the given BtCursor is valid. A valid cursor is one
3662** that is currently pointing to a row in a (non-empty) table.
3663** This is a verification routine is used only within assert() statements.
3664*/
3665int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3666 return pCur && pCur->eState==CURSOR_VALID;
3667}
3668#endif /* NDEBUG */
3669
drh9188b382004-05-14 21:12:22 +00003670/*
drh3aac2dd2004-04-26 14:10:20 +00003671** Set *pSize to the size of the buffer needed to hold the value of
3672** the key for the current entry. If the cursor is not pointing
3673** to a valid entry, *pSize is set to 0.
3674**
drh4b70f112004-05-02 21:12:19 +00003675** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003676** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003677**
3678** The caller must position the cursor prior to invoking this routine.
3679**
3680** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003681*/
drh4a1c3802004-05-12 15:15:47 +00003682int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003683 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003684 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3685 if( pCur->eState!=CURSOR_VALID ){
3686 *pSize = 0;
3687 }else{
3688 getCellInfo(pCur);
3689 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003690 }
drhea8ffdf2009-07-22 00:35:23 +00003691 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003692}
drh2af926b2001-05-15 00:39:25 +00003693
drh72f82862001-05-24 21:06:34 +00003694/*
drh0e1c19e2004-05-11 00:58:56 +00003695** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003696** cursor currently points to.
3697**
3698** The caller must guarantee that the cursor is pointing to a non-NULL
3699** valid entry. In other words, the calling procedure must guarantee
3700** that the cursor has Cursor.eState==CURSOR_VALID.
3701**
3702** Failure is not possible. This function always returns SQLITE_OK.
3703** It might just as well be a procedure (returning void) but we continue
3704** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003705*/
3706int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003707 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003708 assert( pCur->eState==CURSOR_VALID );
3709 getCellInfo(pCur);
3710 *pSize = pCur->info.nData;
3711 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003712}
3713
3714/*
danielk1977d04417962007-05-02 13:16:30 +00003715** Given the page number of an overflow page in the database (parameter
3716** ovfl), this function finds the page number of the next page in the
3717** linked list of overflow pages. If possible, it uses the auto-vacuum
3718** pointer-map data instead of reading the content of page ovfl to do so.
3719**
3720** If an error occurs an SQLite error code is returned. Otherwise:
3721**
danielk1977bea2a942009-01-20 17:06:27 +00003722** The page number of the next overflow page in the linked list is
3723** written to *pPgnoNext. If page ovfl is the last page in its linked
3724** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003725**
danielk1977bea2a942009-01-20 17:06:27 +00003726** If ppPage is not NULL, and a reference to the MemPage object corresponding
3727** to page number pOvfl was obtained, then *ppPage is set to point to that
3728** reference. It is the responsibility of the caller to call releasePage()
3729** on *ppPage to free the reference. In no reference was obtained (because
3730** the pointer-map was used to obtain the value for *pPgnoNext), then
3731** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003732*/
3733static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003734 BtShared *pBt, /* The database file */
3735 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003736 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003737 Pgno *pPgnoNext /* OUT: Next overflow page number */
3738){
3739 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003740 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003741 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003742
drh1fee73e2007-08-29 04:00:57 +00003743 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003744 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003745
3746#ifndef SQLITE_OMIT_AUTOVACUUM
3747 /* Try to find the next page in the overflow list using the
3748 ** autovacuum pointer-map pages. Guess that the next page in
3749 ** the overflow list is page number (ovfl+1). If that guess turns
3750 ** out to be wrong, fall back to loading the data of page
3751 ** number ovfl to determine the next page number.
3752 */
3753 if( pBt->autoVacuum ){
3754 Pgno pgno;
3755 Pgno iGuess = ovfl+1;
3756 u8 eType;
3757
3758 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3759 iGuess++;
3760 }
3761
drhb1299152010-03-30 22:58:33 +00003762 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003763 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003764 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003765 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003766 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003767 }
3768 }
3769 }
3770#endif
3771
danielk1977d8a3f3d2009-07-11 11:45:23 +00003772 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003773 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003774 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003775 assert( rc==SQLITE_OK || pPage==0 );
3776 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003777 next = get4byte(pPage->aData);
3778 }
danielk1977443c0592009-01-16 15:21:05 +00003779 }
danielk197745d68822009-01-16 16:23:38 +00003780
danielk1977bea2a942009-01-20 17:06:27 +00003781 *pPgnoNext = next;
3782 if( ppPage ){
3783 *ppPage = pPage;
3784 }else{
3785 releasePage(pPage);
3786 }
3787 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003788}
3789
danielk1977da107192007-05-04 08:32:13 +00003790/*
3791** Copy data from a buffer to a page, or from a page to a buffer.
3792**
3793** pPayload is a pointer to data stored on database page pDbPage.
3794** If argument eOp is false, then nByte bytes of data are copied
3795** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3796** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3797** of data are copied from the buffer pBuf to pPayload.
3798**
3799** SQLITE_OK is returned on success, otherwise an error code.
3800*/
3801static int copyPayload(
3802 void *pPayload, /* Pointer to page data */
3803 void *pBuf, /* Pointer to buffer */
3804 int nByte, /* Number of bytes to copy */
3805 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3806 DbPage *pDbPage /* Page containing pPayload */
3807){
3808 if( eOp ){
3809 /* Copy data from buffer to page (a write operation) */
3810 int rc = sqlite3PagerWrite(pDbPage);
3811 if( rc!=SQLITE_OK ){
3812 return rc;
3813 }
3814 memcpy(pPayload, pBuf, nByte);
3815 }else{
3816 /* Copy data from page to buffer (a read operation) */
3817 memcpy(pBuf, pPayload, nByte);
3818 }
3819 return SQLITE_OK;
3820}
danielk1977d04417962007-05-02 13:16:30 +00003821
3822/*
danielk19779f8d6402007-05-02 17:48:45 +00003823** This function is used to read or overwrite payload information
3824** for the entry that the pCur cursor is pointing to. If the eOp
3825** parameter is 0, this is a read operation (data copied into
3826** buffer pBuf). If it is non-zero, a write (data copied from
3827** buffer pBuf).
3828**
3829** A total of "amt" bytes are read or written beginning at "offset".
3830** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003831**
drh3bcdfd22009-07-12 02:32:21 +00003832** The content being read or written might appear on the main page
3833** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003834**
danielk1977dcbb5d32007-05-04 18:36:44 +00003835** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003836** cursor entry uses one or more overflow pages, this function
3837** allocates space for and lazily popluates the overflow page-list
3838** cache array (BtCursor.aOverflow). Subsequent calls use this
3839** cache to make seeking to the supplied offset more efficient.
3840**
3841** Once an overflow page-list cache has been allocated, it may be
3842** invalidated if some other cursor writes to the same table, or if
3843** the cursor is moved to a different row. Additionally, in auto-vacuum
3844** mode, the following events may invalidate an overflow page-list cache.
3845**
3846** * An incremental vacuum,
3847** * A commit in auto_vacuum="full" mode,
3848** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003849*/
danielk19779f8d6402007-05-02 17:48:45 +00003850static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003851 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003852 u32 offset, /* Begin reading this far into payload */
3853 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003854 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003855 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003856){
3857 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003858 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003859 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003860 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003861 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003862 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003863
danielk1977da107192007-05-04 08:32:13 +00003864 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003865 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003866 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003867 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003868
drh86057612007-06-26 01:04:48 +00003869 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003870 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003871 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003872
drh3bcdfd22009-07-12 02:32:21 +00003873 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003874 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3875 ){
danielk1977da107192007-05-04 08:32:13 +00003876 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003877 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003878 }
danielk1977da107192007-05-04 08:32:13 +00003879
3880 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003881 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003882 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003883 if( a+offset>pCur->info.nLocal ){
3884 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003885 }
danielk1977da107192007-05-04 08:32:13 +00003886 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003887 offset = 0;
drha34b6762004-05-07 13:30:42 +00003888 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003889 amt -= a;
drhdd793422001-06-28 01:54:48 +00003890 }else{
drhfa1a98a2004-05-14 19:08:17 +00003891 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003892 }
danielk1977da107192007-05-04 08:32:13 +00003893
3894 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003895 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003896 Pgno nextPage;
3897
drhfa1a98a2004-05-14 19:08:17 +00003898 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003899
danielk19772dec9702007-05-02 16:48:37 +00003900#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003901 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003902 ** has not been allocated, allocate it now. The array is sized at
3903 ** one entry for each overflow page in the overflow chain. The
3904 ** page number of the first overflow page is stored in aOverflow[0],
3905 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3906 ** (the cache is lazily populated).
3907 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003908 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003909 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003910 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003911 /* nOvfl is always positive. If it were zero, fetchPayload would have
3912 ** been used instead of this routine. */
3913 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003914 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003915 }
3916 }
danielk1977da107192007-05-04 08:32:13 +00003917
3918 /* If the overflow page-list cache has been allocated and the
3919 ** entry for the first required overflow page is valid, skip
3920 ** directly to it.
3921 */
danielk19772dec9702007-05-02 16:48:37 +00003922 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3923 iIdx = (offset/ovflSize);
3924 nextPage = pCur->aOverflow[iIdx];
3925 offset = (offset%ovflSize);
3926 }
3927#endif
danielk1977da107192007-05-04 08:32:13 +00003928
3929 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3930
3931#ifndef SQLITE_OMIT_INCRBLOB
3932 /* If required, populate the overflow page-list cache. */
3933 if( pCur->aOverflow ){
3934 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3935 pCur->aOverflow[iIdx] = nextPage;
3936 }
3937#endif
3938
danielk1977d04417962007-05-02 13:16:30 +00003939 if( offset>=ovflSize ){
3940 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003941 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003942 ** data is not required. So first try to lookup the overflow
3943 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003944 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003945 */
danielk19772dec9702007-05-02 16:48:37 +00003946#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003947 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3948 nextPage = pCur->aOverflow[iIdx+1];
3949 } else
danielk19772dec9702007-05-02 16:48:37 +00003950#endif
danielk1977da107192007-05-04 08:32:13 +00003951 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003952 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003953 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003954 /* Need to read this page properly. It contains some of the
3955 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003956 */
danf4ba1092011-10-08 14:57:07 +00003957#ifdef SQLITE_DIRECT_OVERFLOW_READ
3958 sqlite3_file *fd;
3959#endif
danielk1977cfe9a692004-06-16 12:00:29 +00003960 int a = amt;
danf4ba1092011-10-08 14:57:07 +00003961 if( a + offset > ovflSize ){
3962 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003963 }
danf4ba1092011-10-08 14:57:07 +00003964
3965#ifdef SQLITE_DIRECT_OVERFLOW_READ
3966 /* If all the following are true:
3967 **
3968 ** 1) this is a read operation, and
3969 ** 2) data is required from the start of this overflow page, and
3970 ** 3) the database is file-backed, and
3971 ** 4) there is no open write-transaction, and
3972 ** 5) the database is not a WAL database,
3973 **
3974 ** then data can be read directly from the database file into the
3975 ** output buffer, bypassing the page-cache altogether. This speeds
3976 ** up loading large records that span many overflow pages.
3977 */
3978 if( eOp==0 /* (1) */
3979 && offset==0 /* (2) */
3980 && pBt->inTransaction==TRANS_READ /* (4) */
3981 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
3982 && pBt->pPage1->aData[19]==0x01 /* (5) */
3983 ){
3984 u8 aSave[4];
3985 u8 *aWrite = &pBuf[-4];
3986 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00003987 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00003988 nextPage = get4byte(aWrite);
3989 memcpy(aWrite, aSave, 4);
3990 }else
3991#endif
3992
3993 {
3994 DbPage *pDbPage;
3995 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
3996 if( rc==SQLITE_OK ){
3997 aPayload = sqlite3PagerGetData(pDbPage);
3998 nextPage = get4byte(aPayload);
3999 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4000 sqlite3PagerUnref(pDbPage);
4001 offset = 0;
4002 }
4003 }
4004 amt -= a;
4005 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004006 }
drh2af926b2001-05-15 00:39:25 +00004007 }
drh2af926b2001-05-15 00:39:25 +00004008 }
danielk1977cfe9a692004-06-16 12:00:29 +00004009
danielk1977da107192007-05-04 08:32:13 +00004010 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004011 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004012 }
danielk1977da107192007-05-04 08:32:13 +00004013 return rc;
drh2af926b2001-05-15 00:39:25 +00004014}
4015
drh72f82862001-05-24 21:06:34 +00004016/*
drh3aac2dd2004-04-26 14:10:20 +00004017** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004018** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004019** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004020**
drh5d1a8722009-07-22 18:07:40 +00004021** The caller must ensure that pCur is pointing to a valid row
4022** in the table.
4023**
drh3aac2dd2004-04-26 14:10:20 +00004024** Return SQLITE_OK on success or an error code if anything goes
4025** wrong. An error is returned if "offset+amt" is larger than
4026** the available payload.
drh72f82862001-05-24 21:06:34 +00004027*/
drha34b6762004-05-07 13:30:42 +00004028int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004029 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004030 assert( pCur->eState==CURSOR_VALID );
4031 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4032 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4033 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004034}
4035
4036/*
drh3aac2dd2004-04-26 14:10:20 +00004037** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004038** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004039** begins at "offset".
4040**
4041** Return SQLITE_OK on success or an error code if anything goes
4042** wrong. An error is returned if "offset+amt" is larger than
4043** the available payload.
drh72f82862001-05-24 21:06:34 +00004044*/
drh3aac2dd2004-04-26 14:10:20 +00004045int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004046 int rc;
4047
danielk19773588ceb2008-06-10 17:30:26 +00004048#ifndef SQLITE_OMIT_INCRBLOB
4049 if ( pCur->eState==CURSOR_INVALID ){
4050 return SQLITE_ABORT;
4051 }
4052#endif
4053
drh1fee73e2007-08-29 04:00:57 +00004054 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004055 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004056 if( rc==SQLITE_OK ){
4057 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004058 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4059 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004060 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004061 }
4062 return rc;
drh2af926b2001-05-15 00:39:25 +00004063}
4064
drh72f82862001-05-24 21:06:34 +00004065/*
drh0e1c19e2004-05-11 00:58:56 +00004066** Return a pointer to payload information from the entry that the
4067** pCur cursor is pointing to. The pointer is to the beginning of
4068** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004069** skipKey==1. The number of bytes of available key/data is written
4070** into *pAmt. If *pAmt==0, then the value returned will not be
4071** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004072**
4073** This routine is an optimization. It is common for the entire key
4074** and data to fit on the local page and for there to be no overflow
4075** pages. When that is so, this routine can be used to access the
4076** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004077** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004078** the key/data and copy it into a preallocated buffer.
4079**
4080** The pointer returned by this routine looks directly into the cached
4081** page of the database. The data might change or move the next time
4082** any btree routine is called.
4083*/
4084static const unsigned char *fetchPayload(
4085 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004086 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004087 int skipKey /* read beginning at data if this is true */
4088){
4089 unsigned char *aPayload;
4090 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004091 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004092 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004093
danielk197771d5d2c2008-09-29 11:49:47 +00004094 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004095 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004096 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004097 pPage = pCur->apPage[pCur->iPage];
4098 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004099 if( NEVER(pCur->info.nSize==0) ){
4100 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4101 &pCur->info);
4102 }
drh43605152004-05-29 21:46:49 +00004103 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004104 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004105 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004106 nKey = 0;
4107 }else{
drhf49661a2008-12-10 16:45:50 +00004108 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004109 }
drh0e1c19e2004-05-11 00:58:56 +00004110 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004111 aPayload += nKey;
4112 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004113 }else{
drhfa1a98a2004-05-14 19:08:17 +00004114 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004115 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004116 }
drhe51c44f2004-05-30 20:46:09 +00004117 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004118 return aPayload;
4119}
4120
4121
4122/*
drhe51c44f2004-05-30 20:46:09 +00004123** For the entry that cursor pCur is point to, return as
4124** many bytes of the key or data as are available on the local
4125** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004126**
4127** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004128** or be destroyed on the next call to any Btree routine,
4129** including calls from other threads against the same cache.
4130** Hence, a mutex on the BtShared should be held prior to calling
4131** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004132**
4133** These routines is used to get quick access to key and data
4134** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004135*/
drhe51c44f2004-05-30 20:46:09 +00004136const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004137 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004138 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004139 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004140 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4141 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004142 }
drhfe3313f2009-07-21 19:02:20 +00004143 return p;
drh0e1c19e2004-05-11 00:58:56 +00004144}
drhe51c44f2004-05-30 20:46:09 +00004145const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004146 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004147 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004148 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004149 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4150 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004151 }
drhfe3313f2009-07-21 19:02:20 +00004152 return p;
drh0e1c19e2004-05-11 00:58:56 +00004153}
4154
4155
4156/*
drh8178a752003-01-05 21:41:40 +00004157** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004158** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004159**
4160** This function returns SQLITE_CORRUPT if the page-header flags field of
4161** the new child page does not match the flags field of the parent (i.e.
4162** if an intkey page appears to be the parent of a non-intkey page, or
4163** vice-versa).
drh72f82862001-05-24 21:06:34 +00004164*/
drh3aac2dd2004-04-26 14:10:20 +00004165static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004166 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004167 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004168 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004169 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004170
drh1fee73e2007-08-29 04:00:57 +00004171 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004172 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004173 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4174 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4175 return SQLITE_CORRUPT_BKPT;
4176 }
4177 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004178 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004179 pCur->apPage[i+1] = pNewPage;
4180 pCur->aiIdx[i+1] = 0;
4181 pCur->iPage++;
4182
drh271efa52004-05-30 19:19:05 +00004183 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004184 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004185 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004186 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004187 }
drh72f82862001-05-24 21:06:34 +00004188 return SQLITE_OK;
4189}
4190
danbb246c42012-01-12 14:25:55 +00004191#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004192/*
4193** Page pParent is an internal (non-leaf) tree page. This function
4194** asserts that page number iChild is the left-child if the iIdx'th
4195** cell in page pParent. Or, if iIdx is equal to the total number of
4196** cells in pParent, that page number iChild is the right-child of
4197** the page.
4198*/
4199static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4200 assert( iIdx<=pParent->nCell );
4201 if( iIdx==pParent->nCell ){
4202 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4203 }else{
4204 assert( get4byte(findCell(pParent, iIdx))==iChild );
4205 }
4206}
4207#else
4208# define assertParentIndex(x,y,z)
4209#endif
4210
drh72f82862001-05-24 21:06:34 +00004211/*
drh5e2f8b92001-05-28 00:41:15 +00004212** Move the cursor up to the parent page.
4213**
4214** pCur->idx is set to the cell index that contains the pointer
4215** to the page we are coming from. If we are coming from the
4216** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004217** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004218*/
danielk197730548662009-07-09 05:07:37 +00004219static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004220 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004221 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004222 assert( pCur->iPage>0 );
4223 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004224
4225 /* UPDATE: It is actually possible for the condition tested by the assert
4226 ** below to be untrue if the database file is corrupt. This can occur if
4227 ** one cursor has modified page pParent while a reference to it is held
4228 ** by a second cursor. Which can only happen if a single page is linked
4229 ** into more than one b-tree structure in a corrupt database. */
4230#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004231 assertParentIndex(
4232 pCur->apPage[pCur->iPage-1],
4233 pCur->aiIdx[pCur->iPage-1],
4234 pCur->apPage[pCur->iPage]->pgno
4235 );
danbb246c42012-01-12 14:25:55 +00004236#endif
dan6c2688c2012-01-12 15:05:03 +00004237 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004238
danielk197771d5d2c2008-09-29 11:49:47 +00004239 releasePage(pCur->apPage[pCur->iPage]);
4240 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004241 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004242 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004243}
4244
4245/*
danielk19778f880a82009-07-13 09:41:45 +00004246** Move the cursor to point to the root page of its b-tree structure.
4247**
4248** If the table has a virtual root page, then the cursor is moved to point
4249** to the virtual root page instead of the actual root page. A table has a
4250** virtual root page when the actual root page contains no cells and a
4251** single child page. This can only happen with the table rooted at page 1.
4252**
4253** If the b-tree structure is empty, the cursor state is set to
4254** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4255** cell located on the root (or virtual root) page and the cursor state
4256** is set to CURSOR_VALID.
4257**
4258** If this function returns successfully, it may be assumed that the
4259** page-header flags indicate that the [virtual] root-page is the expected
4260** kind of b-tree page (i.e. if when opening the cursor the caller did not
4261** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4262** indicating a table b-tree, or if the caller did specify a KeyInfo
4263** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4264** b-tree).
drh72f82862001-05-24 21:06:34 +00004265*/
drh5e2f8b92001-05-28 00:41:15 +00004266static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004267 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004268 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004269 Btree *p = pCur->pBtree;
4270 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004271
drh1fee73e2007-08-29 04:00:57 +00004272 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004273 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4274 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4275 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4276 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4277 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004278 assert( pCur->skipNext!=SQLITE_OK );
4279 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004280 }
danielk1977be51a652008-10-08 17:58:48 +00004281 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004282 }
danielk197771d5d2c2008-09-29 11:49:47 +00004283
4284 if( pCur->iPage>=0 ){
4285 int i;
4286 for(i=1; i<=pCur->iPage; i++){
4287 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004288 }
danielk1977172114a2009-07-07 15:47:12 +00004289 pCur->iPage = 0;
dana205a482011-08-27 18:48:57 +00004290 }else if( pCur->pgnoRoot==0 ){
4291 pCur->eState = CURSOR_INVALID;
4292 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004293 }else{
drh4c301aa2009-07-15 17:25:45 +00004294 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4295 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004296 pCur->eState = CURSOR_INVALID;
4297 return rc;
4298 }
danielk1977172114a2009-07-07 15:47:12 +00004299 pCur->iPage = 0;
4300
4301 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4302 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4303 ** NULL, the caller expects a table b-tree. If this is not the case,
4304 ** return an SQLITE_CORRUPT error. */
4305 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4306 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4307 return SQLITE_CORRUPT_BKPT;
4308 }
drhc39e0002004-05-07 23:50:57 +00004309 }
danielk197771d5d2c2008-09-29 11:49:47 +00004310
danielk19778f880a82009-07-13 09:41:45 +00004311 /* Assert that the root page is of the correct type. This must be the
4312 ** case as the call to this function that loaded the root-page (either
4313 ** this call or a previous invocation) would have detected corruption
4314 ** if the assumption were not true, and it is not possible for the flags
4315 ** byte to have been modified while this cursor is holding a reference
4316 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004317 pRoot = pCur->apPage[0];
4318 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004319 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4320
danielk197771d5d2c2008-09-29 11:49:47 +00004321 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004322 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004323 pCur->atLast = 0;
4324 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004325
drh8856d6a2004-04-29 14:42:46 +00004326 if( pRoot->nCell==0 && !pRoot->leaf ){
4327 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004328 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004329 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004330 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004331 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004332 }else{
4333 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004334 }
4335 return rc;
drh72f82862001-05-24 21:06:34 +00004336}
drh2af926b2001-05-15 00:39:25 +00004337
drh5e2f8b92001-05-28 00:41:15 +00004338/*
4339** Move the cursor down to the left-most leaf entry beneath the
4340** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004341**
4342** The left-most leaf is the one with the smallest key - the first
4343** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004344*/
4345static int moveToLeftmost(BtCursor *pCur){
4346 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004347 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004348 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004349
drh1fee73e2007-08-29 04:00:57 +00004350 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004351 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004352 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4353 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4354 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004355 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004356 }
drhd677b3d2007-08-20 22:48:41 +00004357 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004358}
4359
drh2dcc9aa2002-12-04 13:40:25 +00004360/*
4361** Move the cursor down to the right-most leaf entry beneath the
4362** page to which it is currently pointing. Notice the difference
4363** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4364** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4365** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004366**
4367** The right-most entry is the one with the largest key - the last
4368** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004369*/
4370static int moveToRightmost(BtCursor *pCur){
4371 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004372 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004373 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004374
drh1fee73e2007-08-29 04:00:57 +00004375 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004376 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004377 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004378 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004379 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004380 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004381 }
drhd677b3d2007-08-20 22:48:41 +00004382 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004383 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004384 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004385 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004386 }
danielk1977518002e2008-09-05 05:02:46 +00004387 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004388}
4389
drh5e00f6c2001-09-13 13:46:56 +00004390/* Move the cursor to the first entry in the table. Return SQLITE_OK
4391** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004392** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004393*/
drh3aac2dd2004-04-26 14:10:20 +00004394int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004395 int rc;
drhd677b3d2007-08-20 22:48:41 +00004396
drh1fee73e2007-08-29 04:00:57 +00004397 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004398 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004399 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004400 if( rc==SQLITE_OK ){
4401 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004402 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004403 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004404 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004405 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004406 *pRes = 0;
4407 rc = moveToLeftmost(pCur);
4408 }
drh5e00f6c2001-09-13 13:46:56 +00004409 }
drh5e00f6c2001-09-13 13:46:56 +00004410 return rc;
4411}
drh5e2f8b92001-05-28 00:41:15 +00004412
drh9562b552002-02-19 15:00:07 +00004413/* Move the cursor to the last entry in the table. Return SQLITE_OK
4414** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004415** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004416*/
drh3aac2dd2004-04-26 14:10:20 +00004417int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004418 int rc;
drhd677b3d2007-08-20 22:48:41 +00004419
drh1fee73e2007-08-29 04:00:57 +00004420 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004421 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004422
4423 /* If the cursor already points to the last entry, this is a no-op. */
4424 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4425#ifdef SQLITE_DEBUG
4426 /* This block serves to assert() that the cursor really does point
4427 ** to the last entry in the b-tree. */
4428 int ii;
4429 for(ii=0; ii<pCur->iPage; ii++){
4430 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4431 }
4432 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4433 assert( pCur->apPage[pCur->iPage]->leaf );
4434#endif
4435 return SQLITE_OK;
4436 }
4437
drh9562b552002-02-19 15:00:07 +00004438 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004439 if( rc==SQLITE_OK ){
4440 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004441 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004442 *pRes = 1;
4443 }else{
4444 assert( pCur->eState==CURSOR_VALID );
4445 *pRes = 0;
4446 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004447 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004448 }
drh9562b552002-02-19 15:00:07 +00004449 }
drh9562b552002-02-19 15:00:07 +00004450 return rc;
4451}
4452
drhe14006d2008-03-25 17:23:32 +00004453/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004454** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004455**
drhe63d9992008-08-13 19:11:48 +00004456** For INTKEY tables, the intKey parameter is used. pIdxKey
4457** must be NULL. For index tables, pIdxKey is used and intKey
4458** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004459**
drh5e2f8b92001-05-28 00:41:15 +00004460** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004461** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004462** were present. The cursor might point to an entry that comes
4463** before or after the key.
4464**
drh64022502009-01-09 14:11:04 +00004465** An integer is written into *pRes which is the result of
4466** comparing the key with the entry to which the cursor is
4467** pointing. The meaning of the integer written into
4468** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004469**
4470** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004471** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004472** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004473**
4474** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004475** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004476**
4477** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004478** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004479**
drha059ad02001-04-17 20:09:11 +00004480*/
drhe63d9992008-08-13 19:11:48 +00004481int sqlite3BtreeMovetoUnpacked(
4482 BtCursor *pCur, /* The cursor to be moved */
4483 UnpackedRecord *pIdxKey, /* Unpacked index key */
4484 i64 intKey, /* The table key */
4485 int biasRight, /* If true, bias the search to the high end */
4486 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004487){
drh72f82862001-05-24 21:06:34 +00004488 int rc;
drhd677b3d2007-08-20 22:48:41 +00004489
drh1fee73e2007-08-29 04:00:57 +00004490 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004491 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004492 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004493 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004494
4495 /* If the cursor is already positioned at the point we are trying
4496 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004497 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4498 && pCur->apPage[0]->intKey
4499 ){
drhe63d9992008-08-13 19:11:48 +00004500 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004501 *pRes = 0;
4502 return SQLITE_OK;
4503 }
drhe63d9992008-08-13 19:11:48 +00004504 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004505 *pRes = -1;
4506 return SQLITE_OK;
4507 }
4508 }
4509
drh5e2f8b92001-05-28 00:41:15 +00004510 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004511 if( rc ){
4512 return rc;
4513 }
dana205a482011-08-27 18:48:57 +00004514 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4515 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4516 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004517 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004518 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004519 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004520 return SQLITE_OK;
4521 }
danielk197771d5d2c2008-09-29 11:49:47 +00004522 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004523 for(;;){
drhafb98172011-06-04 01:43:53 +00004524 int lwr, upr, idx;
drh72f82862001-05-24 21:06:34 +00004525 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004526 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004527 int c;
4528
4529 /* pPage->nCell must be greater than zero. If this is the root-page
4530 ** the cursor would have been INVALID above and this for(;;) loop
4531 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004532 ** would have already detected db corruption. Similarly, pPage must
4533 ** be the right kind (index or table) of b-tree page. Otherwise
4534 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004535 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004536 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004537 lwr = 0;
4538 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004539 if( biasRight ){
drhafb98172011-06-04 01:43:53 +00004540 pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
drhe4d90812007-03-29 05:51:49 +00004541 }else{
drhafb98172011-06-04 01:43:53 +00004542 pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004543 }
drh64022502009-01-09 14:11:04 +00004544 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004545 u8 *pCell; /* Pointer to current cell in pPage */
4546
drhafb98172011-06-04 01:43:53 +00004547 assert( idx==pCur->aiIdx[pCur->iPage] );
drh366fda62006-01-13 02:35:09 +00004548 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004549 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004550 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004551 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004552 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004553 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004554 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004555 }
drha2c20e42008-03-29 16:01:04 +00004556 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004557 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004558 c = 0;
drhe63d9992008-08-13 19:11:48 +00004559 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004560 c = -1;
4561 }else{
drhe63d9992008-08-13 19:11:48 +00004562 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004563 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004564 }
danielk197711c327a2009-05-04 19:01:26 +00004565 pCur->validNKey = 1;
4566 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004567 }else{
drhb2eced52010-08-12 02:41:12 +00004568 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004569 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004570 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004571 ** varint. This information is used to attempt to avoid parsing
4572 ** the entire cell by checking for the cases where the record is
4573 ** stored entirely within the b-tree page by inspecting the first
4574 ** 2 bytes of the cell.
4575 */
4576 int nCell = pCell[0];
drhc9166342012-01-05 23:32:06 +00004577 if( nCell<=pPage->max1bytePayload
4578 /* && (pCell+nCell)<pPage->aDataEnd */
drh3def2352011-11-11 00:27:15 +00004579 ){
danielk197711c327a2009-05-04 19:01:26 +00004580 /* This branch runs if the record-size field of the cell is a
4581 ** single byte varint and the record fits entirely on the main
4582 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004583 testcase( pCell+nCell+1==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004584 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4585 }else if( !(pCell[1] & 0x80)
4586 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
drhc9166342012-01-05 23:32:06 +00004587 /* && (pCell+nCell+2)<=pPage->aDataEnd */
danielk197711c327a2009-05-04 19:01:26 +00004588 ){
4589 /* The record-size field is a 2 byte varint and the record
4590 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004591 testcase( pCell+nCell+2==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004592 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004593 }else{
danielk197711c327a2009-05-04 19:01:26 +00004594 /* The record flows over onto one or more overflow pages. In
4595 ** this case the whole cell needs to be parsed, a buffer allocated
4596 ** and accessPayload() used to retrieve the record into the
4597 ** buffer before VdbeRecordCompare() can be called. */
4598 void *pCellKey;
4599 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004600 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004601 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004602 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004603 if( pCellKey==0 ){
4604 rc = SQLITE_NOMEM;
4605 goto moveto_finish;
4606 }
drhfb192682009-07-11 18:26:28 +00004607 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004608 if( rc ){
4609 sqlite3_free(pCellKey);
4610 goto moveto_finish;
4611 }
danielk197711c327a2009-05-04 19:01:26 +00004612 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004613 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004614 }
drh3aac2dd2004-04-26 14:10:20 +00004615 }
drh72f82862001-05-24 21:06:34 +00004616 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004617 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004618 lwr = idx;
drh8b18dd42004-05-12 19:18:15 +00004619 break;
4620 }else{
drh64022502009-01-09 14:11:04 +00004621 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004622 rc = SQLITE_OK;
4623 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004624 }
drh72f82862001-05-24 21:06:34 +00004625 }
4626 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004627 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004628 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004629 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004630 }
drhf1d68b32007-03-29 04:43:26 +00004631 if( lwr>upr ){
4632 break;
4633 }
drhafb98172011-06-04 01:43:53 +00004634 pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004635 }
drhb07028f2011-10-14 21:49:18 +00004636 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004637 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004638 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004639 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004640 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004641 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004642 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004643 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004644 }
4645 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004646 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004647 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004648 rc = SQLITE_OK;
4649 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004650 }
drhf49661a2008-12-10 16:45:50 +00004651 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004652 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004653 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004654 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004655 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004656 }
drh1e968a02008-03-25 00:22:21 +00004657moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004658 return rc;
4659}
4660
drhd677b3d2007-08-20 22:48:41 +00004661
drh72f82862001-05-24 21:06:34 +00004662/*
drhc39e0002004-05-07 23:50:57 +00004663** Return TRUE if the cursor is not pointing at an entry of the table.
4664**
4665** TRUE will be returned after a call to sqlite3BtreeNext() moves
4666** past the last entry in the table or sqlite3BtreePrev() moves past
4667** the first entry. TRUE is also returned if the table is empty.
4668*/
4669int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004670 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4671 ** have been deleted? This API will need to change to return an error code
4672 ** as well as the boolean result value.
4673 */
4674 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004675}
4676
4677/*
drhbd03cae2001-06-02 02:40:57 +00004678** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004679** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004680** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004681** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004682*/
drhd094db12008-04-03 21:46:57 +00004683int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004684 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004685 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004686 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004687
drh1fee73e2007-08-29 04:00:57 +00004688 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004689 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004690 if( rc!=SQLITE_OK ){
4691 return rc;
4692 }
drh8c4d3a62007-04-06 01:03:32 +00004693 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004694 if( CURSOR_INVALID==pCur->eState ){
4695 *pRes = 1;
4696 return SQLITE_OK;
4697 }
drh4c301aa2009-07-15 17:25:45 +00004698 if( pCur->skipNext>0 ){
4699 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004700 *pRes = 0;
4701 return SQLITE_OK;
4702 }
drh4c301aa2009-07-15 17:25:45 +00004703 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004704
danielk197771d5d2c2008-09-29 11:49:47 +00004705 pPage = pCur->apPage[pCur->iPage];
4706 idx = ++pCur->aiIdx[pCur->iPage];
4707 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004708
4709 /* If the database file is corrupt, it is possible for the value of idx
4710 ** to be invalid here. This can only occur if a second cursor modifies
4711 ** the page while cursor pCur is holding a reference to it. Which can
4712 ** only happen if the database is corrupt in such a way as to link the
4713 ** page into more than one b-tree structure. */
4714 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004715
drh271efa52004-05-30 19:19:05 +00004716 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004717 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004718 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004719 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004720 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004721 if( rc ) return rc;
4722 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004723 *pRes = 0;
4724 return rc;
drh72f82862001-05-24 21:06:34 +00004725 }
drh5e2f8b92001-05-28 00:41:15 +00004726 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004727 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004728 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004729 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004730 return SQLITE_OK;
4731 }
danielk197730548662009-07-09 05:07:37 +00004732 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004733 pPage = pCur->apPage[pCur->iPage];
4734 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004735 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004736 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004737 rc = sqlite3BtreeNext(pCur, pRes);
4738 }else{
4739 rc = SQLITE_OK;
4740 }
4741 return rc;
drh8178a752003-01-05 21:41:40 +00004742 }
4743 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004744 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004745 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004746 }
drh5e2f8b92001-05-28 00:41:15 +00004747 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004748 return rc;
drh72f82862001-05-24 21:06:34 +00004749}
drhd677b3d2007-08-20 22:48:41 +00004750
drh72f82862001-05-24 21:06:34 +00004751
drh3b7511c2001-05-26 13:15:44 +00004752/*
drh2dcc9aa2002-12-04 13:40:25 +00004753** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004754** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004755** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004756** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004757*/
drhd094db12008-04-03 21:46:57 +00004758int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004759 int rc;
drh8178a752003-01-05 21:41:40 +00004760 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004761
drh1fee73e2007-08-29 04:00:57 +00004762 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004763 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004764 if( rc!=SQLITE_OK ){
4765 return rc;
4766 }
drha2c20e42008-03-29 16:01:04 +00004767 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004768 if( CURSOR_INVALID==pCur->eState ){
4769 *pRes = 1;
4770 return SQLITE_OK;
4771 }
drh4c301aa2009-07-15 17:25:45 +00004772 if( pCur->skipNext<0 ){
4773 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004774 *pRes = 0;
4775 return SQLITE_OK;
4776 }
drh4c301aa2009-07-15 17:25:45 +00004777 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004778
danielk197771d5d2c2008-09-29 11:49:47 +00004779 pPage = pCur->apPage[pCur->iPage];
4780 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004781 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004782 int idx = pCur->aiIdx[pCur->iPage];
4783 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004784 if( rc ){
4785 return rc;
4786 }
drh2dcc9aa2002-12-04 13:40:25 +00004787 rc = moveToRightmost(pCur);
4788 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004789 while( pCur->aiIdx[pCur->iPage]==0 ){
4790 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004791 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004792 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004793 return SQLITE_OK;
4794 }
danielk197730548662009-07-09 05:07:37 +00004795 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004796 }
drh271efa52004-05-30 19:19:05 +00004797 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004798 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004799
4800 pCur->aiIdx[pCur->iPage]--;
4801 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004802 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004803 rc = sqlite3BtreePrevious(pCur, pRes);
4804 }else{
4805 rc = SQLITE_OK;
4806 }
drh2dcc9aa2002-12-04 13:40:25 +00004807 }
drh8178a752003-01-05 21:41:40 +00004808 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004809 return rc;
4810}
4811
4812/*
drh3b7511c2001-05-26 13:15:44 +00004813** Allocate a new page from the database file.
4814**
danielk19773b8a05f2007-03-19 17:44:26 +00004815** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004816** has already been called on the new page.) The new page has also
4817** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004818** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004819**
4820** SQLITE_OK is returned on success. Any other return value indicates
4821** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004822** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004823**
drh199e3cf2002-07-18 11:01:47 +00004824** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4825** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004826** attempt to keep related pages close to each other in the database file,
4827** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004828**
4829** If the "exact" parameter is not 0, and the page-number nearby exists
4830** anywhere on the free-list, then it is guarenteed to be returned. This
4831** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004832*/
drh4f0c5872007-03-26 22:05:01 +00004833static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004834 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004835 MemPage **ppPage,
4836 Pgno *pPgno,
4837 Pgno nearby,
4838 u8 exact
4839){
drh3aac2dd2004-04-26 14:10:20 +00004840 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004841 int rc;
drh35cd6432009-06-05 14:17:21 +00004842 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004843 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004844 MemPage *pTrunk = 0;
4845 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004846 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004847
drh1fee73e2007-08-29 04:00:57 +00004848 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004849 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004850 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004851 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004852 testcase( n==mxPage-1 );
4853 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004854 return SQLITE_CORRUPT_BKPT;
4855 }
drh3aac2dd2004-04-26 14:10:20 +00004856 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004857 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004858 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004859 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4860
4861 /* If the 'exact' parameter was true and a query of the pointer-map
4862 ** shows that the page 'nearby' is somewhere on the free-list, then
4863 ** the entire-list will be searched for that page.
4864 */
4865#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004866 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004867 u8 eType;
4868 assert( nearby>0 );
4869 assert( pBt->autoVacuum );
4870 rc = ptrmapGet(pBt, nearby, &eType, 0);
4871 if( rc ) return rc;
4872 if( eType==PTRMAP_FREEPAGE ){
4873 searchList = 1;
4874 }
4875 *pPgno = nearby;
4876 }
4877#endif
4878
4879 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4880 ** first free-list trunk page. iPrevTrunk is initially 1.
4881 */
danielk19773b8a05f2007-03-19 17:44:26 +00004882 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004883 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004884 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004885
4886 /* The code within this loop is run only once if the 'searchList' variable
4887 ** is not true. Otherwise, it runs once for each trunk-page on the
4888 ** free-list until the page 'nearby' is located.
4889 */
4890 do {
4891 pPrevTrunk = pTrunk;
4892 if( pPrevTrunk ){
4893 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004894 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004895 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004896 }
drhdf35a082009-07-09 02:24:35 +00004897 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004898 if( iTrunk>mxPage ){
4899 rc = SQLITE_CORRUPT_BKPT;
4900 }else{
danielk197730548662009-07-09 05:07:37 +00004901 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004902 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004903 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004904 pTrunk = 0;
4905 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004906 }
drhb07028f2011-10-14 21:49:18 +00004907 assert( pTrunk!=0 );
4908 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004909
drh93b4fc72011-04-07 14:47:01 +00004910 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004911 if( k==0 && !searchList ){
4912 /* The trunk has no leaves and the list is not being searched.
4913 ** So extract the trunk page itself and use it as the newly
4914 ** allocated page */
4915 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004916 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004917 if( rc ){
4918 goto end_allocate_page;
4919 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004920 *pPgno = iTrunk;
4921 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4922 *ppPage = pTrunk;
4923 pTrunk = 0;
4924 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004925 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004926 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004927 rc = SQLITE_CORRUPT_BKPT;
4928 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004929#ifndef SQLITE_OMIT_AUTOVACUUM
4930 }else if( searchList && nearby==iTrunk ){
4931 /* The list is being searched and this trunk page is the page
4932 ** to allocate, regardless of whether it has leaves.
4933 */
4934 assert( *pPgno==iTrunk );
4935 *ppPage = pTrunk;
4936 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004937 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004938 if( rc ){
4939 goto end_allocate_page;
4940 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004941 if( k==0 ){
4942 if( !pPrevTrunk ){
4943 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4944 }else{
danf48c3552010-08-23 15:41:24 +00004945 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
4946 if( rc!=SQLITE_OK ){
4947 goto end_allocate_page;
4948 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004949 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4950 }
4951 }else{
4952 /* The trunk page is required by the caller but it contains
4953 ** pointers to free-list leaves. The first leaf becomes a trunk
4954 ** page in this case.
4955 */
4956 MemPage *pNewTrunk;
4957 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004958 if( iNewTrunk>mxPage ){
4959 rc = SQLITE_CORRUPT_BKPT;
4960 goto end_allocate_page;
4961 }
drhdf35a082009-07-09 02:24:35 +00004962 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004963 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004964 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004965 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004966 }
danielk19773b8a05f2007-03-19 17:44:26 +00004967 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004968 if( rc!=SQLITE_OK ){
4969 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004970 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004971 }
4972 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4973 put4byte(&pNewTrunk->aData[4], k-1);
4974 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004975 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004976 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004977 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004978 put4byte(&pPage1->aData[32], iNewTrunk);
4979 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004980 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004981 if( rc ){
4982 goto end_allocate_page;
4983 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004984 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4985 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004986 }
4987 pTrunk = 0;
4988 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4989#endif
danielk1977e5765212009-06-17 11:13:28 +00004990 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004991 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004992 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004993 Pgno iPage;
4994 unsigned char *aData = pTrunk->aData;
4995 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004996 u32 i;
4997 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004998 closest = 0;
drhd50ffc42011-03-08 02:38:28 +00004999 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005000 for(i=1; i<k; i++){
drhd50ffc42011-03-08 02:38:28 +00005001 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005002 if( d2<dist ){
5003 closest = i;
5004 dist = d2;
5005 }
5006 }
5007 }else{
5008 closest = 0;
5009 }
5010
5011 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005012 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005013 if( iPage>mxPage ){
5014 rc = SQLITE_CORRUPT_BKPT;
5015 goto end_allocate_page;
5016 }
drhdf35a082009-07-09 02:24:35 +00005017 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005018 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00005019 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005020 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005021 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5022 ": %d more free pages\n",
5023 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005024 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5025 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005026 if( closest<k-1 ){
5027 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5028 }
5029 put4byte(&aData[4], k-1);
danielk1977bea2a942009-01-20 17:06:27 +00005030 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00005031 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005032 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005033 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005034 if( rc!=SQLITE_OK ){
5035 releasePage(*ppPage);
5036 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005037 }
5038 searchList = 0;
5039 }
drhee696e22004-08-30 16:52:17 +00005040 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005041 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005042 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005043 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005044 }else{
drh3aac2dd2004-04-26 14:10:20 +00005045 /* There are no pages on the freelist, so create a new page at the
5046 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00005047 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5048 if( rc ) return rc;
5049 pBt->nPage++;
5050 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005051
danielk1977afcdd022004-10-31 16:25:42 +00005052#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005053 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005054 /* If *pPgno refers to a pointer-map page, allocate two new pages
5055 ** at the end of the file instead of one. The first allocated page
5056 ** becomes a new pointer-map page, the second is used by the caller.
5057 */
danielk1977ac861692009-03-28 10:54:22 +00005058 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005059 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5060 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005061 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00005062 if( rc==SQLITE_OK ){
5063 rc = sqlite3PagerWrite(pPg->pDbPage);
5064 releasePage(pPg);
5065 }
5066 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005067 pBt->nPage++;
5068 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005069 }
5070#endif
drhdd3cd972010-03-27 17:12:36 +00005071 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5072 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005073
danielk1977599fcba2004-11-08 07:13:13 +00005074 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005075 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00005076 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005077 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005078 if( rc!=SQLITE_OK ){
5079 releasePage(*ppPage);
5080 }
drh3a4c1412004-05-09 20:40:11 +00005081 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005082 }
danielk1977599fcba2004-11-08 07:13:13 +00005083
5084 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005085
5086end_allocate_page:
5087 releasePage(pTrunk);
5088 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005089 if( rc==SQLITE_OK ){
5090 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5091 releasePage(*ppPage);
5092 return SQLITE_CORRUPT_BKPT;
5093 }
5094 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005095 }else{
5096 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005097 }
drh93b4fc72011-04-07 14:47:01 +00005098 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005099 return rc;
5100}
5101
5102/*
danielk1977bea2a942009-01-20 17:06:27 +00005103** This function is used to add page iPage to the database file free-list.
5104** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005105**
danielk1977bea2a942009-01-20 17:06:27 +00005106** The value passed as the second argument to this function is optional.
5107** If the caller happens to have a pointer to the MemPage object
5108** corresponding to page iPage handy, it may pass it as the second value.
5109** Otherwise, it may pass NULL.
5110**
5111** If a pointer to a MemPage object is passed as the second argument,
5112** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005113*/
danielk1977bea2a942009-01-20 17:06:27 +00005114static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5115 MemPage *pTrunk = 0; /* Free-list trunk page */
5116 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5117 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5118 MemPage *pPage; /* Page being freed. May be NULL. */
5119 int rc; /* Return Code */
5120 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005121
danielk1977bea2a942009-01-20 17:06:27 +00005122 assert( sqlite3_mutex_held(pBt->mutex) );
5123 assert( iPage>1 );
5124 assert( !pMemPage || pMemPage->pgno==iPage );
5125
5126 if( pMemPage ){
5127 pPage = pMemPage;
5128 sqlite3PagerRef(pPage->pDbPage);
5129 }else{
5130 pPage = btreePageLookup(pBt, iPage);
5131 }
drh3aac2dd2004-04-26 14:10:20 +00005132
drha34b6762004-05-07 13:30:42 +00005133 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005134 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005135 if( rc ) goto freepage_out;
5136 nFree = get4byte(&pPage1->aData[36]);
5137 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005138
drhc9166342012-01-05 23:32:06 +00005139 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005140 /* If the secure_delete option is enabled, then
5141 ** always fully overwrite deleted information with zeros.
5142 */
shaneh84f4b2f2010-02-26 01:46:54 +00005143 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5144 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005145 ){
5146 goto freepage_out;
5147 }
5148 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005149 }
drhfcce93f2006-02-22 03:08:32 +00005150
danielk1977687566d2004-11-02 12:56:41 +00005151 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005152 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005153 */
danielk197785d90ca2008-07-19 14:25:15 +00005154 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005155 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005156 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005157 }
danielk1977687566d2004-11-02 12:56:41 +00005158
danielk1977bea2a942009-01-20 17:06:27 +00005159 /* Now manipulate the actual database free-list structure. There are two
5160 ** possibilities. If the free-list is currently empty, or if the first
5161 ** trunk page in the free-list is full, then this page will become a
5162 ** new free-list trunk page. Otherwise, it will become a leaf of the
5163 ** first trunk page in the current free-list. This block tests if it
5164 ** is possible to add the page as a new free-list leaf.
5165 */
5166 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005167 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005168
5169 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005170 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005171 if( rc!=SQLITE_OK ){
5172 goto freepage_out;
5173 }
5174
5175 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005176 assert( pBt->usableSize>32 );
5177 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005178 rc = SQLITE_CORRUPT_BKPT;
5179 goto freepage_out;
5180 }
drheeb844a2009-08-08 18:01:07 +00005181 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005182 /* In this case there is room on the trunk page to insert the page
5183 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005184 **
5185 ** Note that the trunk page is not really full until it contains
5186 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5187 ** coded. But due to a coding error in versions of SQLite prior to
5188 ** 3.6.0, databases with freelist trunk pages holding more than
5189 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5190 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005191 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005192 ** for now. At some point in the future (once everyone has upgraded
5193 ** to 3.6.0 or later) we should consider fixing the conditional above
5194 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5195 */
danielk19773b8a05f2007-03-19 17:44:26 +00005196 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005197 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005198 put4byte(&pTrunk->aData[4], nLeaf+1);
5199 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005200 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005201 sqlite3PagerDontWrite(pPage->pDbPage);
5202 }
danielk1977bea2a942009-01-20 17:06:27 +00005203 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005204 }
drh3a4c1412004-05-09 20:40:11 +00005205 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005206 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005207 }
drh3b7511c2001-05-26 13:15:44 +00005208 }
danielk1977bea2a942009-01-20 17:06:27 +00005209
5210 /* If control flows to this point, then it was not possible to add the
5211 ** the page being freed as a leaf page of the first trunk in the free-list.
5212 ** Possibly because the free-list is empty, or possibly because the
5213 ** first trunk in the free-list is full. Either way, the page being freed
5214 ** will become the new first trunk page in the free-list.
5215 */
drhc046e3e2009-07-15 11:26:44 +00005216 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5217 goto freepage_out;
5218 }
5219 rc = sqlite3PagerWrite(pPage->pDbPage);
5220 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005221 goto freepage_out;
5222 }
5223 put4byte(pPage->aData, iTrunk);
5224 put4byte(&pPage->aData[4], 0);
5225 put4byte(&pPage1->aData[32], iPage);
5226 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5227
5228freepage_out:
5229 if( pPage ){
5230 pPage->isInit = 0;
5231 }
5232 releasePage(pPage);
5233 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005234 return rc;
5235}
drhc314dc72009-07-21 11:52:34 +00005236static void freePage(MemPage *pPage, int *pRC){
5237 if( (*pRC)==SQLITE_OK ){
5238 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5239 }
danielk1977bea2a942009-01-20 17:06:27 +00005240}
drh3b7511c2001-05-26 13:15:44 +00005241
5242/*
drh3aac2dd2004-04-26 14:10:20 +00005243** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005244*/
drh3aac2dd2004-04-26 14:10:20 +00005245static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005246 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005247 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005248 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005249 int rc;
drh94440812007-03-06 11:42:19 +00005250 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005251 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005252
drh1fee73e2007-08-29 04:00:57 +00005253 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005254 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005255 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005256 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005257 }
drhe42a9b42011-08-31 13:27:19 +00005258 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
5259 return SQLITE_CORRUPT; /* Cell extends past end of page */
5260 }
drh6f11bef2004-05-13 01:12:56 +00005261 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005262 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005263 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005264 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5265 assert( ovflPgno==0 || nOvfl>0 );
5266 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005267 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005268 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005269 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005270 /* 0 is not a legal page number and page 1 cannot be an
5271 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5272 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005273 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005274 }
danielk1977bea2a942009-01-20 17:06:27 +00005275 if( nOvfl ){
5276 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5277 if( rc ) return rc;
5278 }
dan887d4b22010-02-25 12:09:16 +00005279
shaneh1da207e2010-03-09 14:41:12 +00005280 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005281 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5282 ){
5283 /* There is no reason any cursor should have an outstanding reference
5284 ** to an overflow page belonging to a cell that is being deleted/updated.
5285 ** So if there exists more than one reference to this page, then it
5286 ** must not really be an overflow page and the database must be corrupt.
5287 ** It is helpful to detect this before calling freePage2(), as
5288 ** freePage2() may zero the page contents if secure-delete mode is
5289 ** enabled. If this 'overflow' page happens to be a page that the
5290 ** caller is iterating through or using in some other way, this
5291 ** can be problematic.
5292 */
5293 rc = SQLITE_CORRUPT_BKPT;
5294 }else{
5295 rc = freePage2(pBt, pOvfl, ovflPgno);
5296 }
5297
danielk1977bea2a942009-01-20 17:06:27 +00005298 if( pOvfl ){
5299 sqlite3PagerUnref(pOvfl->pDbPage);
5300 }
drh3b7511c2001-05-26 13:15:44 +00005301 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005302 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005303 }
drh5e2f8b92001-05-28 00:41:15 +00005304 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005305}
5306
5307/*
drh91025292004-05-03 19:49:32 +00005308** Create the byte sequence used to represent a cell on page pPage
5309** and write that byte sequence into pCell[]. Overflow pages are
5310** allocated and filled in as necessary. The calling procedure
5311** is responsible for making sure sufficient space has been allocated
5312** for pCell[].
5313**
5314** Note that pCell does not necessary need to point to the pPage->aData
5315** area. pCell might point to some temporary storage. The cell will
5316** be constructed in this temporary area then copied into pPage->aData
5317** later.
drh3b7511c2001-05-26 13:15:44 +00005318*/
5319static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005320 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005321 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005322 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005323 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005324 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005325 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005326){
drh3b7511c2001-05-26 13:15:44 +00005327 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005328 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005329 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005330 int spaceLeft;
5331 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005332 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005333 unsigned char *pPrior;
5334 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005335 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005336 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005337 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005338 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005339
drh1fee73e2007-08-29 04:00:57 +00005340 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005341
drhc5053fb2008-11-27 02:22:10 +00005342 /* pPage is not necessarily writeable since pCell might be auxiliary
5343 ** buffer space that is separate from the pPage buffer area */
5344 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5345 || sqlite3PagerIswriteable(pPage->pDbPage) );
5346
drh91025292004-05-03 19:49:32 +00005347 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005348 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005349 if( !pPage->leaf ){
5350 nHeader += 4;
5351 }
drh8b18dd42004-05-12 19:18:15 +00005352 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005353 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005354 }else{
drhb026e052007-05-02 01:34:31 +00005355 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005356 }
drh6f11bef2004-05-13 01:12:56 +00005357 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005358 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005359 assert( info.nHeader==nHeader );
5360 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005361 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005362
5363 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005364 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005365 if( pPage->intKey ){
5366 pSrc = pData;
5367 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005368 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005369 }else{
danielk197731d31b82009-07-13 13:18:07 +00005370 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5371 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005372 }
drhf49661a2008-12-10 16:45:50 +00005373 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005374 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005375 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005376 }
drh6f11bef2004-05-13 01:12:56 +00005377 *pnSize = info.nSize;
5378 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005379 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005380 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005381
drh3b7511c2001-05-26 13:15:44 +00005382 while( nPayload>0 ){
5383 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005384#ifndef SQLITE_OMIT_AUTOVACUUM
5385 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005386 if( pBt->autoVacuum ){
5387 do{
5388 pgnoOvfl++;
5389 } while(
5390 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5391 );
danielk1977b39f70b2007-05-17 18:28:11 +00005392 }
danielk1977afcdd022004-10-31 16:25:42 +00005393#endif
drhf49661a2008-12-10 16:45:50 +00005394 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005395#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005396 /* If the database supports auto-vacuum, and the second or subsequent
5397 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005398 ** for that page now.
5399 **
5400 ** If this is the first overflow page, then write a partial entry
5401 ** to the pointer-map. If we write nothing to this pointer-map slot,
5402 ** then the optimistic overflow chain processing in clearCell()
5403 ** may misinterpret the uninitialised values and delete the
5404 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005405 */
danielk19774ef24492007-05-23 09:52:41 +00005406 if( pBt->autoVacuum && rc==SQLITE_OK ){
5407 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005408 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005409 if( rc ){
5410 releasePage(pOvfl);
5411 }
danielk1977afcdd022004-10-31 16:25:42 +00005412 }
5413#endif
drh3b7511c2001-05-26 13:15:44 +00005414 if( rc ){
drh9b171272004-05-08 02:03:22 +00005415 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005416 return rc;
5417 }
drhc5053fb2008-11-27 02:22:10 +00005418
5419 /* If pToRelease is not zero than pPrior points into the data area
5420 ** of pToRelease. Make sure pToRelease is still writeable. */
5421 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5422
5423 /* If pPrior is part of the data area of pPage, then make sure pPage
5424 ** is still writeable */
5425 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5426 || sqlite3PagerIswriteable(pPage->pDbPage) );
5427
drh3aac2dd2004-04-26 14:10:20 +00005428 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005429 releasePage(pToRelease);
5430 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005431 pPrior = pOvfl->aData;
5432 put4byte(pPrior, 0);
5433 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005434 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005435 }
5436 n = nPayload;
5437 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005438
5439 /* If pToRelease is not zero than pPayload points into the data area
5440 ** of pToRelease. Make sure pToRelease is still writeable. */
5441 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5442
5443 /* If pPayload is part of the data area of pPage, then make sure pPage
5444 ** is still writeable */
5445 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5446 || sqlite3PagerIswriteable(pPage->pDbPage) );
5447
drhb026e052007-05-02 01:34:31 +00005448 if( nSrc>0 ){
5449 if( n>nSrc ) n = nSrc;
5450 assert( pSrc );
5451 memcpy(pPayload, pSrc, n);
5452 }else{
5453 memset(pPayload, 0, n);
5454 }
drh3b7511c2001-05-26 13:15:44 +00005455 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005456 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005457 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005458 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005459 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005460 if( nSrc==0 ){
5461 nSrc = nData;
5462 pSrc = pData;
5463 }
drhdd793422001-06-28 01:54:48 +00005464 }
drh9b171272004-05-08 02:03:22 +00005465 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005466 return SQLITE_OK;
5467}
5468
drh14acc042001-06-10 19:56:58 +00005469/*
5470** Remove the i-th cell from pPage. This routine effects pPage only.
5471** The cell content is not freed or deallocated. It is assumed that
5472** the cell content has been copied someplace else. This routine just
5473** removes the reference to the cell from pPage.
5474**
5475** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005476*/
drh98add2e2009-07-20 17:11:49 +00005477static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005478 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005479 u8 *data; /* pPage->aData */
5480 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005481 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005482 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005483 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005484
drh98add2e2009-07-20 17:11:49 +00005485 if( *pRC ) return;
5486
drh8c42ca92001-06-22 19:15:00 +00005487 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005488 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005489 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005490 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005491 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005492 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005493 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005494 hdr = pPage->hdrOffset;
5495 testcase( pc==get2byte(&data[hdr+5]) );
5496 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005497 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005498 *pRC = SQLITE_CORRUPT_BKPT;
5499 return;
shane0af3f892008-11-12 04:55:34 +00005500 }
shanedcc50b72008-11-13 18:29:50 +00005501 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005502 if( rc ){
5503 *pRC = rc;
5504 return;
shanedcc50b72008-11-13 18:29:50 +00005505 }
drh3def2352011-11-11 00:27:15 +00005506 endPtr = &pPage->aCellIdx[2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005507 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005508 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005509 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005510 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005511 }
5512 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005513 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005514 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005515}
5516
5517/*
5518** Insert a new cell on pPage at cell index "i". pCell points to the
5519** content of the cell.
5520**
5521** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005522** will not fit, then make a copy of the cell content into pTemp if
5523** pTemp is not null. Regardless of pTemp, allocate a new entry
5524** in pPage->aOvfl[] and make it point to the cell content (either
5525** in pTemp or the original pCell) and also record its index.
5526** Allocating a new entry in pPage->aCell[] implies that
5527** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005528**
5529** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5530** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005531** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005532** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005533*/
drh98add2e2009-07-20 17:11:49 +00005534static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005535 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005536 int i, /* New cell becomes the i-th cell of the page */
5537 u8 *pCell, /* Content of the new cell */
5538 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005539 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005540 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5541 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005542){
drh383d30f2010-02-26 13:07:37 +00005543 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005544 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005545 int end; /* First byte past the last cell pointer in data[] */
5546 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005547 int cellOffset; /* Address of first cell pointer in data[] */
5548 u8 *data; /* The content of the whole page */
5549 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005550 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005551
danielk19774dbaa892009-06-16 16:50:22 +00005552 int nSkip = (iChild ? 4 : 0);
5553
drh98add2e2009-07-20 17:11:49 +00005554 if( *pRC ) return;
5555
drh43605152004-05-29 21:46:49 +00005556 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005557 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drhf49661a2008-12-10 16:45:50 +00005558 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005559 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005560 /* The cell should normally be sized correctly. However, when moving a
5561 ** malformed cell from a leaf page to an interior page, if the cell size
5562 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5563 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5564 ** the term after the || in the following assert(). */
5565 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005566 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005567 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005568 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005569 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005570 }
danielk19774dbaa892009-06-16 16:50:22 +00005571 if( iChild ){
5572 put4byte(pCell, iChild);
5573 }
drh43605152004-05-29 21:46:49 +00005574 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005575 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005576 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005577 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005578 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005579 int rc = sqlite3PagerWrite(pPage->pDbPage);
5580 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005581 *pRC = rc;
5582 return;
danielk19776e465eb2007-08-21 13:11:00 +00005583 }
5584 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005585 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005586 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005587 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005588 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005589 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005590 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005591 /* The allocateSpace() routine guarantees the following two properties
5592 ** if it returns success */
5593 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005594 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005595 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005596 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005597 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005598 if( iChild ){
5599 put4byte(&data[idx], iChild);
5600 }
drh61d2fe92011-06-03 23:28:33 +00005601 ptr = &data[end];
5602 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005603 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005604 while( ptr>endPtr ){
5605 *(u16*)ptr = *(u16*)&ptr[-2];
5606 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005607 }
drh43605152004-05-29 21:46:49 +00005608 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005609 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005610#ifndef SQLITE_OMIT_AUTOVACUUM
5611 if( pPage->pBt->autoVacuum ){
5612 /* The cell may contain a pointer to an overflow page. If so, write
5613 ** the entry for the overflow page into the pointer map.
5614 */
drh98add2e2009-07-20 17:11:49 +00005615 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005616 }
5617#endif
drh14acc042001-06-10 19:56:58 +00005618 }
5619}
5620
5621/*
drhfa1a98a2004-05-14 19:08:17 +00005622** Add a list of cells to a page. The page should be initially empty.
5623** The cells are guaranteed to fit on the page.
5624*/
5625static void assemblePage(
5626 MemPage *pPage, /* The page to be assemblied */
5627 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005628 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005629 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005630){
5631 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005632 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005633 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005634 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5635 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5636 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005637
drh43605152004-05-29 21:46:49 +00005638 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005639 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005640 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5641 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005642 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005643
5644 /* Check that the page has just been zeroed by zeroPage() */
5645 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005646 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005647
drh3def2352011-11-11 00:27:15 +00005648 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005649 cellbody = nUsable;
5650 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005651 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005652 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005653 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005654 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005655 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005656 }
danielk1977fad91942009-04-29 17:49:59 +00005657 put2byte(&data[hdr+3], nCell);
5658 put2byte(&data[hdr+5], cellbody);
5659 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005660 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005661}
5662
drh14acc042001-06-10 19:56:58 +00005663/*
drhc3b70572003-01-04 19:44:07 +00005664** The following parameters determine how many adjacent pages get involved
5665** in a balancing operation. NN is the number of neighbors on either side
5666** of the page that participate in the balancing operation. NB is the
5667** total number of pages that participate, including the target page and
5668** NN neighbors on either side.
5669**
5670** The minimum value of NN is 1 (of course). Increasing NN above 1
5671** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5672** in exchange for a larger degradation in INSERT and UPDATE performance.
5673** The value of NN appears to give the best results overall.
5674*/
5675#define NN 1 /* Number of neighbors on either side of pPage */
5676#define NB (NN*2+1) /* Total pages involved in the balance */
5677
danielk1977ac245ec2005-01-14 13:50:11 +00005678
drh615ae552005-01-16 23:21:00 +00005679#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005680/*
5681** This version of balance() handles the common special case where
5682** a new entry is being inserted on the extreme right-end of the
5683** tree, in other words, when the new entry will become the largest
5684** entry in the tree.
5685**
drhc314dc72009-07-21 11:52:34 +00005686** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005687** a new page to the right-hand side and put the one new entry in
5688** that page. This leaves the right side of the tree somewhat
5689** unbalanced. But odds are that we will be inserting new entries
5690** at the end soon afterwards so the nearly empty page will quickly
5691** fill up. On average.
5692**
5693** pPage is the leaf page which is the right-most page in the tree.
5694** pParent is its parent. pPage must have a single overflow entry
5695** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005696**
5697** The pSpace buffer is used to store a temporary copy of the divider
5698** cell that will be inserted into pParent. Such a cell consists of a 4
5699** byte page number followed by a variable length integer. In other
5700** words, at most 13 bytes. Hence the pSpace buffer must be at
5701** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005702*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005703static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5704 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005705 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005706 int rc; /* Return Code */
5707 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005708
drh1fee73e2007-08-29 04:00:57 +00005709 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005710 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005711 assert( pPage->nOverflow==1 );
5712
drh5d433ce2010-08-14 16:02:52 +00005713 /* This error condition is now caught prior to reaching this function */
drh6b47fca2010-08-19 14:22:42 +00005714 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005715
danielk1977a50d9aa2009-06-08 14:49:45 +00005716 /* Allocate a new page. This page will become the right-sibling of
5717 ** pPage. Make the parent page writable, so that the new divider cell
5718 ** may be inserted. If both these operations are successful, proceed.
5719 */
drh4f0c5872007-03-26 22:05:01 +00005720 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005721
danielk1977eaa06f62008-09-18 17:34:44 +00005722 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005723
5724 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005725 u8 *pCell = pPage->aOvfl[0].pCell;
5726 u16 szCell = cellSizePtr(pPage, pCell);
5727 u8 *pStop;
5728
drhc5053fb2008-11-27 02:22:10 +00005729 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005730 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5731 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005732 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005733
5734 /* If this is an auto-vacuum database, update the pointer map
5735 ** with entries for the new page, and any pointer from the
5736 ** cell on the page to an overflow page. If either of these
5737 ** operations fails, the return code is set, but the contents
5738 ** of the parent page are still manipulated by thh code below.
5739 ** That is Ok, at this point the parent page is guaranteed to
5740 ** be marked as dirty. Returning an error code will cause a
5741 ** rollback, undoing any changes made to the parent page.
5742 */
5743 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005744 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5745 if( szCell>pNew->minLocal ){
5746 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005747 }
5748 }
danielk1977eaa06f62008-09-18 17:34:44 +00005749
danielk19776f235cc2009-06-04 14:46:08 +00005750 /* Create a divider cell to insert into pParent. The divider cell
5751 ** consists of a 4-byte page number (the page number of pPage) and
5752 ** a variable length key value (which must be the same value as the
5753 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005754 **
danielk19776f235cc2009-06-04 14:46:08 +00005755 ** To find the largest key value on pPage, first find the right-most
5756 ** cell on pPage. The first two fields of this cell are the
5757 ** record-length (a variable length integer at most 32-bits in size)
5758 ** and the key value (a variable length integer, may have any value).
5759 ** The first of the while(...) loops below skips over the record-length
5760 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005761 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005762 */
danielk1977eaa06f62008-09-18 17:34:44 +00005763 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005764 pStop = &pCell[9];
5765 while( (*(pCell++)&0x80) && pCell<pStop );
5766 pStop = &pCell[9];
5767 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5768
danielk19774dbaa892009-06-16 16:50:22 +00005769 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005770 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5771 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005772
5773 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005774 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5775
danielk1977e08a3c42008-09-18 18:17:03 +00005776 /* Release the reference to the new page. */
5777 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005778 }
5779
danielk1977eaa06f62008-09-18 17:34:44 +00005780 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005781}
drh615ae552005-01-16 23:21:00 +00005782#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005783
danielk19774dbaa892009-06-16 16:50:22 +00005784#if 0
drhc3b70572003-01-04 19:44:07 +00005785/*
danielk19774dbaa892009-06-16 16:50:22 +00005786** This function does not contribute anything to the operation of SQLite.
5787** it is sometimes activated temporarily while debugging code responsible
5788** for setting pointer-map entries.
5789*/
5790static int ptrmapCheckPages(MemPage **apPage, int nPage){
5791 int i, j;
5792 for(i=0; i<nPage; i++){
5793 Pgno n;
5794 u8 e;
5795 MemPage *pPage = apPage[i];
5796 BtShared *pBt = pPage->pBt;
5797 assert( pPage->isInit );
5798
5799 for(j=0; j<pPage->nCell; j++){
5800 CellInfo info;
5801 u8 *z;
5802
5803 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005804 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005805 if( info.iOverflow ){
5806 Pgno ovfl = get4byte(&z[info.iOverflow]);
5807 ptrmapGet(pBt, ovfl, &e, &n);
5808 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5809 }
5810 if( !pPage->leaf ){
5811 Pgno child = get4byte(z);
5812 ptrmapGet(pBt, child, &e, &n);
5813 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5814 }
5815 }
5816 if( !pPage->leaf ){
5817 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5818 ptrmapGet(pBt, child, &e, &n);
5819 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5820 }
5821 }
5822 return 1;
5823}
5824#endif
5825
danielk1977cd581a72009-06-23 15:43:39 +00005826/*
5827** This function is used to copy the contents of the b-tree node stored
5828** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5829** the pointer-map entries for each child page are updated so that the
5830** parent page stored in the pointer map is page pTo. If pFrom contained
5831** any cells with overflow page pointers, then the corresponding pointer
5832** map entries are also updated so that the parent page is page pTo.
5833**
5834** If pFrom is currently carrying any overflow cells (entries in the
5835** MemPage.aOvfl[] array), they are not copied to pTo.
5836**
danielk197730548662009-07-09 05:07:37 +00005837** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005838**
5839** The performance of this function is not critical. It is only used by
5840** the balance_shallower() and balance_deeper() procedures, neither of
5841** which are called often under normal circumstances.
5842*/
drhc314dc72009-07-21 11:52:34 +00005843static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5844 if( (*pRC)==SQLITE_OK ){
5845 BtShared * const pBt = pFrom->pBt;
5846 u8 * const aFrom = pFrom->aData;
5847 u8 * const aTo = pTo->aData;
5848 int const iFromHdr = pFrom->hdrOffset;
5849 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005850 int rc;
drhc314dc72009-07-21 11:52:34 +00005851 int iData;
5852
5853
5854 assert( pFrom->isInit );
5855 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00005856 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00005857
5858 /* Copy the b-tree node content from page pFrom to page pTo. */
5859 iData = get2byte(&aFrom[iFromHdr+5]);
5860 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5861 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5862
5863 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005864 ** match the new data. The initialization of pTo can actually fail under
5865 ** fairly obscure circumstances, even though it is a copy of initialized
5866 ** page pFrom.
5867 */
drhc314dc72009-07-21 11:52:34 +00005868 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005869 rc = btreeInitPage(pTo);
5870 if( rc!=SQLITE_OK ){
5871 *pRC = rc;
5872 return;
5873 }
drhc314dc72009-07-21 11:52:34 +00005874
5875 /* If this is an auto-vacuum database, update the pointer-map entries
5876 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5877 */
5878 if( ISAUTOVACUUM ){
5879 *pRC = setChildPtrmaps(pTo);
5880 }
danielk1977cd581a72009-06-23 15:43:39 +00005881 }
danielk1977cd581a72009-06-23 15:43:39 +00005882}
5883
5884/*
danielk19774dbaa892009-06-16 16:50:22 +00005885** This routine redistributes cells on the iParentIdx'th child of pParent
5886** (hereafter "the page") and up to 2 siblings so that all pages have about the
5887** same amount of free space. Usually a single sibling on either side of the
5888** page are used in the balancing, though both siblings might come from one
5889** side if the page is the first or last child of its parent. If the page
5890** has fewer than 2 siblings (something which can only happen if the page
5891** is a root page or a child of a root page) then all available siblings
5892** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005893**
danielk19774dbaa892009-06-16 16:50:22 +00005894** The number of siblings of the page might be increased or decreased by
5895** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005896**
danielk19774dbaa892009-06-16 16:50:22 +00005897** Note that when this routine is called, some of the cells on the page
5898** might not actually be stored in MemPage.aData[]. This can happen
5899** if the page is overfull. This routine ensures that all cells allocated
5900** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005901**
danielk19774dbaa892009-06-16 16:50:22 +00005902** In the course of balancing the page and its siblings, cells may be
5903** inserted into or removed from the parent page (pParent). Doing so
5904** may cause the parent page to become overfull or underfull. If this
5905** happens, it is the responsibility of the caller to invoke the correct
5906** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005907**
drh5e00f6c2001-09-13 13:46:56 +00005908** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005909** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005910** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005911**
5912** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005913** buffer big enough to hold one page. If while inserting cells into the parent
5914** page (pParent) the parent page becomes overfull, this buffer is
5915** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005916** a maximum of four divider cells into the parent page, and the maximum
5917** size of a cell stored within an internal node is always less than 1/4
5918** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5919** enough for all overflow cells.
5920**
5921** If aOvflSpace is set to a null pointer, this function returns
5922** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005923*/
danielk19774dbaa892009-06-16 16:50:22 +00005924static int balance_nonroot(
5925 MemPage *pParent, /* Parent page of siblings being balanced */
5926 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005927 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5928 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005929){
drh16a9b832007-05-05 18:39:25 +00005930 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005931 int nCell = 0; /* Number of cells in apCell[] */
5932 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005933 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005934 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005935 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005936 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005937 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005938 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005939 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005940 int usableSpace; /* Bytes in pPage beyond the header */
5941 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005942 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005943 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005944 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005945 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005946 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005947 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005948 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005949 u8 *pRight; /* Location in parent of right-sibling pointer */
5950 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005951 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5952 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005953 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005954 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005955 u8 *aSpace1; /* Space for copies of dividers cells */
5956 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005957
danielk1977a50d9aa2009-06-08 14:49:45 +00005958 pBt = pParent->pBt;
5959 assert( sqlite3_mutex_held(pBt->mutex) );
5960 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005961
danielk1977e5765212009-06-17 11:13:28 +00005962#if 0
drh43605152004-05-29 21:46:49 +00005963 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005964#endif
drh2e38c322004-09-03 18:38:44 +00005965
danielk19774dbaa892009-06-16 16:50:22 +00005966 /* At this point pParent may have at most one overflow cell. And if
5967 ** this overflow cell is present, it must be the cell with
5968 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005969 ** is called (indirectly) from sqlite3BtreeDelete().
5970 */
danielk19774dbaa892009-06-16 16:50:22 +00005971 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5972 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5973
danielk197711a8a862009-06-17 11:49:52 +00005974 if( !aOvflSpace ){
5975 return SQLITE_NOMEM;
5976 }
5977
danielk1977a50d9aa2009-06-08 14:49:45 +00005978 /* Find the sibling pages to balance. Also locate the cells in pParent
5979 ** that divide the siblings. An attempt is made to find NN siblings on
5980 ** either side of pPage. More siblings are taken from one side, however,
5981 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005982 ** has NB or fewer children then all children of pParent are taken.
5983 **
5984 ** This loop also drops the divider cells from the parent page. This
5985 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005986 ** overflow cells in the parent page, since if any existed they will
5987 ** have already been removed.
5988 */
danielk19774dbaa892009-06-16 16:50:22 +00005989 i = pParent->nOverflow + pParent->nCell;
5990 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005991 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005992 nOld = i+1;
5993 }else{
5994 nOld = 3;
5995 if( iParentIdx==0 ){
5996 nxDiv = 0;
5997 }else if( iParentIdx==i ){
5998 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005999 }else{
danielk19774dbaa892009-06-16 16:50:22 +00006000 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006001 }
danielk19774dbaa892009-06-16 16:50:22 +00006002 i = 2;
6003 }
6004 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6005 pRight = &pParent->aData[pParent->hdrOffset+8];
6006 }else{
6007 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6008 }
6009 pgno = get4byte(pRight);
6010 while( 1 ){
6011 rc = getAndInitPage(pBt, pgno, &apOld[i]);
6012 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006013 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006014 goto balance_cleanup;
6015 }
danielk1977634f2982005-03-28 08:44:07 +00006016 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006017 if( (i--)==0 ) break;
6018
drhcd09c532009-07-20 19:30:00 +00006019 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00006020 apDiv[i] = pParent->aOvfl[0].pCell;
6021 pgno = get4byte(apDiv[i]);
6022 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6023 pParent->nOverflow = 0;
6024 }else{
6025 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6026 pgno = get4byte(apDiv[i]);
6027 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6028
6029 /* Drop the cell from the parent page. apDiv[i] still points to
6030 ** the cell within the parent, even though it has been dropped.
6031 ** This is safe because dropping a cell only overwrites the first
6032 ** four bytes of it, and this function does not need the first
6033 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006034 ** later on.
6035 **
drh8a575d92011-10-12 17:00:28 +00006036 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006037 ** the dropCell() routine will overwrite the entire cell with zeroes.
6038 ** In this case, temporarily copy the cell into the aOvflSpace[]
6039 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6040 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006041 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006042 int iOff;
6043
6044 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006045 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006046 rc = SQLITE_CORRUPT_BKPT;
6047 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6048 goto balance_cleanup;
6049 }else{
6050 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6051 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6052 }
drh5b47efa2010-02-12 18:18:39 +00006053 }
drh98add2e2009-07-20 17:11:49 +00006054 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006055 }
drh8b2f49b2001-06-08 00:21:52 +00006056 }
6057
drha9121e42008-02-19 14:59:35 +00006058 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006059 ** alignment */
drha9121e42008-02-19 14:59:35 +00006060 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006061
drh8b2f49b2001-06-08 00:21:52 +00006062 /*
danielk1977634f2982005-03-28 08:44:07 +00006063 ** Allocate space for memory structures
6064 */
danielk19774dbaa892009-06-16 16:50:22 +00006065 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006066 szScratch =
drha9121e42008-02-19 14:59:35 +00006067 nMaxCells*sizeof(u8*) /* apCell */
6068 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006069 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006070 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006071 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006072 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006073 rc = SQLITE_NOMEM;
6074 goto balance_cleanup;
6075 }
drha9121e42008-02-19 14:59:35 +00006076 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006077 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006078 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006079
6080 /*
6081 ** Load pointers to all cells on sibling pages and the divider cells
6082 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00006083 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00006084 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006085 **
6086 ** If the siblings are on leaf pages, then the child pointers of the
6087 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006088 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006089 ** child pointers. If siblings are not leaves, then all cell in
6090 ** apCell[] include child pointers. Either way, all cells in apCell[]
6091 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006092 **
6093 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6094 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006095 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006096 leafCorrection = apOld[0]->leaf*4;
6097 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006098 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006099 int limit;
6100
6101 /* Before doing anything else, take a copy of the i'th original sibling
6102 ** The rest of this function will use data from the copies rather
6103 ** that the original pages since the original pages will be in the
6104 ** process of being overwritten. */
6105 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6106 memcpy(pOld, apOld[i], sizeof(MemPage));
6107 pOld->aData = (void*)&pOld[1];
6108 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6109
6110 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006111 if( pOld->nOverflow>0 ){
6112 for(j=0; j<limit; j++){
6113 assert( nCell<nMaxCells );
6114 apCell[nCell] = findOverflowCell(pOld, j);
6115 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6116 nCell++;
6117 }
6118 }else{
6119 u8 *aData = pOld->aData;
6120 u16 maskPage = pOld->maskPage;
6121 u16 cellOffset = pOld->cellOffset;
6122 for(j=0; j<limit; j++){
6123 assert( nCell<nMaxCells );
6124 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6125 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6126 nCell++;
6127 }
6128 }
danielk19774dbaa892009-06-16 16:50:22 +00006129 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006130 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006131 u8 *pTemp;
6132 assert( nCell<nMaxCells );
6133 szCell[nCell] = sz;
6134 pTemp = &aSpace1[iSpace1];
6135 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006136 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006137 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006138 memcpy(pTemp, apDiv[i], sz);
6139 apCell[nCell] = pTemp+leafCorrection;
6140 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006141 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006142 if( !pOld->leaf ){
6143 assert( leafCorrection==0 );
6144 assert( pOld->hdrOffset==0 );
6145 /* The right pointer of the child page pOld becomes the left
6146 ** pointer of the divider cell */
6147 memcpy(apCell[nCell], &pOld->aData[8], 4);
6148 }else{
6149 assert( leafCorrection==4 );
6150 if( szCell[nCell]<4 ){
6151 /* Do not allow any cells smaller than 4 bytes. */
6152 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006153 }
6154 }
drh14acc042001-06-10 19:56:58 +00006155 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006156 }
drh8b2f49b2001-06-08 00:21:52 +00006157 }
6158
6159 /*
drh6019e162001-07-02 17:51:45 +00006160 ** Figure out the number of pages needed to hold all nCell cells.
6161 ** Store this number in "k". Also compute szNew[] which is the total
6162 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006163 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006164 ** cntNew[k] should equal nCell.
6165 **
drh96f5b762004-05-16 16:24:36 +00006166 ** Values computed by this block:
6167 **
6168 ** k: The total number of sibling pages
6169 ** szNew[i]: Spaced used on the i-th sibling page.
6170 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6171 ** the right of the i-th sibling page.
6172 ** usableSpace: Number of bytes of space available on each sibling.
6173 **
drh8b2f49b2001-06-08 00:21:52 +00006174 */
drh43605152004-05-29 21:46:49 +00006175 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006176 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006177 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006178 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006179 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006180 szNew[k] = subtotal - szCell[i];
6181 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006182 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006183 subtotal = 0;
6184 k++;
drh9978c972010-02-23 17:36:32 +00006185 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006186 }
6187 }
6188 szNew[k] = subtotal;
6189 cntNew[k] = nCell;
6190 k++;
drh96f5b762004-05-16 16:24:36 +00006191
6192 /*
6193 ** The packing computed by the previous block is biased toward the siblings
6194 ** on the left side. The left siblings are always nearly full, while the
6195 ** right-most sibling might be nearly empty. This block of code attempts
6196 ** to adjust the packing of siblings to get a better balance.
6197 **
6198 ** This adjustment is more than an optimization. The packing above might
6199 ** be so out of balance as to be illegal. For example, the right-most
6200 ** sibling might be completely empty. This adjustment is not optional.
6201 */
drh6019e162001-07-02 17:51:45 +00006202 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006203 int szRight = szNew[i]; /* Size of sibling on the right */
6204 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6205 int r; /* Index of right-most cell in left sibling */
6206 int d; /* Index of first cell to the left of right sibling */
6207
6208 r = cntNew[i-1] - 1;
6209 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006210 assert( d<nMaxCells );
6211 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00006212 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
6213 szRight += szCell[d] + 2;
6214 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006215 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006216 r = cntNew[i-1] - 1;
6217 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006218 }
drh96f5b762004-05-16 16:24:36 +00006219 szNew[i] = szRight;
6220 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006221 }
drh09d0deb2005-08-02 17:13:09 +00006222
danielk19776f235cc2009-06-04 14:46:08 +00006223 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006224 ** a virtual root page. A virtual root page is when the real root
6225 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006226 **
6227 ** UPDATE: The assert() below is not necessarily true if the database
6228 ** file is corrupt. The corruption will be detected and reported later
6229 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006230 */
drh2f32fba2012-01-02 16:38:57 +00006231#if 0
drh09d0deb2005-08-02 17:13:09 +00006232 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006233#endif
drh8b2f49b2001-06-08 00:21:52 +00006234
danielk1977e5765212009-06-17 11:13:28 +00006235 TRACE(("BALANCE: old: %d %d %d ",
6236 apOld[0]->pgno,
6237 nOld>=2 ? apOld[1]->pgno : 0,
6238 nOld>=3 ? apOld[2]->pgno : 0
6239 ));
6240
drh8b2f49b2001-06-08 00:21:52 +00006241 /*
drh6b308672002-07-08 02:16:37 +00006242 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006243 */
drheac74422009-06-14 12:47:11 +00006244 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006245 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006246 goto balance_cleanup;
6247 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006248 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006249 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006250 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006251 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006252 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006253 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006254 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006255 nNew++;
danielk197728129562005-01-11 10:25:06 +00006256 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006257 }else{
drh7aa8f852006-03-28 00:24:44 +00006258 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006259 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006260 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006261 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006262 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006263
6264 /* Set the pointer-map entry for the new sibling page. */
6265 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006266 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006267 if( rc!=SQLITE_OK ){
6268 goto balance_cleanup;
6269 }
6270 }
drh6b308672002-07-08 02:16:37 +00006271 }
drh8b2f49b2001-06-08 00:21:52 +00006272 }
6273
danielk1977299b1872004-11-22 10:02:10 +00006274 /* Free any old pages that were not reused as new pages.
6275 */
6276 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006277 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006278 if( rc ) goto balance_cleanup;
6279 releasePage(apOld[i]);
6280 apOld[i] = 0;
6281 i++;
6282 }
6283
drh8b2f49b2001-06-08 00:21:52 +00006284 /*
drhf9ffac92002-03-02 19:00:31 +00006285 ** Put the new pages in accending order. This helps to
6286 ** keep entries in the disk file in order so that a scan
6287 ** of the table is a linear scan through the file. That
6288 ** in turn helps the operating system to deliver pages
6289 ** from the disk more rapidly.
6290 **
6291 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006292 ** n is never more than NB (a small constant), that should
6293 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006294 **
drhc3b70572003-01-04 19:44:07 +00006295 ** When NB==3, this one optimization makes the database
6296 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006297 */
6298 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006299 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006300 int minI = i;
6301 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006302 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006303 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006304 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006305 }
6306 }
6307 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006308 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006309 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006310 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006311 apNew[minI] = pT;
6312 }
6313 }
danielk1977e5765212009-06-17 11:13:28 +00006314 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006315 apNew[0]->pgno, szNew[0],
6316 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6317 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6318 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6319 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6320
6321 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6322 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006323
drhf9ffac92002-03-02 19:00:31 +00006324 /*
drh14acc042001-06-10 19:56:58 +00006325 ** Evenly distribute the data in apCell[] across the new pages.
6326 ** Insert divider cells into pParent as necessary.
6327 */
6328 j = 0;
6329 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006330 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006331 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006332 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006333 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006334 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006335 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006336 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006337
danielk1977ac11ee62005-01-15 12:45:51 +00006338 j = cntNew[i];
6339
6340 /* If the sibling page assembled above was not the right-most sibling,
6341 ** insert a divider cell into the parent page.
6342 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006343 assert( i<nNew-1 || j==nCell );
6344 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006345 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006346 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006347 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006348
6349 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006350 pCell = apCell[j];
6351 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006352 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006353 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006354 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006355 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006356 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006357 ** then there is no divider cell in apCell[]. Instead, the divider
6358 ** cell consists of the integer key for the right-most cell of
6359 ** the sibling-page assembled above only.
6360 */
drh6f11bef2004-05-13 01:12:56 +00006361 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006362 j--;
danielk197730548662009-07-09 05:07:37 +00006363 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006364 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006365 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006366 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006367 }else{
6368 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006369 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006370 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006371 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006372 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006373 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006374 ** insertCell(), so reparse the cell now.
6375 **
6376 ** Note that this can never happen in an SQLite data file, as all
6377 ** cells are at least 4 bytes. It only happens in b-trees used
6378 ** to evaluate "IN (SELECT ...)" and similar clauses.
6379 */
6380 if( szCell[j]==4 ){
6381 assert(leafCorrection==4);
6382 sz = cellSizePtr(pParent, pCell);
6383 }
drh4b70f112004-05-02 21:12:19 +00006384 }
danielk19776067a9b2009-06-09 09:41:00 +00006385 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006386 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006387 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006388 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006389 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006390 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006391
drh14acc042001-06-10 19:56:58 +00006392 j++;
6393 nxDiv++;
6394 }
6395 }
drh6019e162001-07-02 17:51:45 +00006396 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006397 assert( nOld>0 );
6398 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006399 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006400 u8 *zChild = &apCopy[nOld-1]->aData[8];
6401 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006402 }
6403
danielk197713bd99f2009-06-24 05:40:34 +00006404 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6405 /* The root page of the b-tree now contains no cells. The only sibling
6406 ** page is the right-child of the parent. Copy the contents of the
6407 ** child page into the parent, decreasing the overall height of the
6408 ** b-tree structure by one. This is described as the "balance-shallower"
6409 ** sub-algorithm in some documentation.
6410 **
6411 ** If this is an auto-vacuum database, the call to copyNodeContent()
6412 ** sets all pointer-map entries corresponding to database image pages
6413 ** for which the pointer is stored within the content being copied.
6414 **
6415 ** The second assert below verifies that the child page is defragmented
6416 ** (it must be, as it was just reconstructed using assemblePage()). This
6417 ** is important if the parent page happens to be page 1 of the database
6418 ** image. */
6419 assert( nNew==1 );
6420 assert( apNew[0]->nFree ==
6421 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6422 );
drhc314dc72009-07-21 11:52:34 +00006423 copyNodeContent(apNew[0], pParent, &rc);
6424 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006425 }else if( ISAUTOVACUUM ){
6426 /* Fix the pointer-map entries for all the cells that were shifted around.
6427 ** There are several different types of pointer-map entries that need to
6428 ** be dealt with by this routine. Some of these have been set already, but
6429 ** many have not. The following is a summary:
6430 **
6431 ** 1) The entries associated with new sibling pages that were not
6432 ** siblings when this function was called. These have already
6433 ** been set. We don't need to worry about old siblings that were
6434 ** moved to the free-list - the freePage() code has taken care
6435 ** of those.
6436 **
6437 ** 2) The pointer-map entries associated with the first overflow
6438 ** page in any overflow chains used by new divider cells. These
6439 ** have also already been taken care of by the insertCell() code.
6440 **
6441 ** 3) If the sibling pages are not leaves, then the child pages of
6442 ** cells stored on the sibling pages may need to be updated.
6443 **
6444 ** 4) If the sibling pages are not internal intkey nodes, then any
6445 ** overflow pages used by these cells may need to be updated
6446 ** (internal intkey nodes never contain pointers to overflow pages).
6447 **
6448 ** 5) If the sibling pages are not leaves, then the pointer-map
6449 ** entries for the right-child pages of each sibling may need
6450 ** to be updated.
6451 **
6452 ** Cases 1 and 2 are dealt with above by other code. The next
6453 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6454 ** setting a pointer map entry is a relatively expensive operation, this
6455 ** code only sets pointer map entries for child or overflow pages that have
6456 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006457 MemPage *pNew = apNew[0];
6458 MemPage *pOld = apCopy[0];
6459 int nOverflow = pOld->nOverflow;
6460 int iNextOld = pOld->nCell + nOverflow;
6461 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6462 j = 0; /* Current 'old' sibling page */
6463 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006464 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006465 int isDivider = 0;
6466 while( i==iNextOld ){
6467 /* Cell i is the cell immediately following the last cell on old
6468 ** sibling page j. If the siblings are not leaf pages of an
6469 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006470 assert( j+1 < ArraySize(apCopy) );
danielk19774dbaa892009-06-16 16:50:22 +00006471 pOld = apCopy[++j];
6472 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6473 if( pOld->nOverflow ){
6474 nOverflow = pOld->nOverflow;
6475 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6476 }
6477 isDivider = !leafData;
6478 }
6479
6480 assert(nOverflow>0 || iOverflow<i );
6481 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6482 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6483 if( i==iOverflow ){
6484 isDivider = 1;
6485 if( (--nOverflow)>0 ){
6486 iOverflow++;
6487 }
6488 }
6489
6490 if( i==cntNew[k] ){
6491 /* Cell i is the cell immediately following the last cell on new
6492 ** sibling page k. If the siblings are not leaf pages of an
6493 ** intkey b-tree, then cell i is a divider cell. */
6494 pNew = apNew[++k];
6495 if( !leafData ) continue;
6496 }
danielk19774dbaa892009-06-16 16:50:22 +00006497 assert( j<nOld );
6498 assert( k<nNew );
6499
6500 /* If the cell was originally divider cell (and is not now) or
6501 ** an overflow cell, or if the cell was located on a different sibling
6502 ** page before the balancing, then the pointer map entries associated
6503 ** with any child or overflow pages need to be updated. */
6504 if( isDivider || pOld->pgno!=pNew->pgno ){
6505 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006506 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006507 }
drh98add2e2009-07-20 17:11:49 +00006508 if( szCell[i]>pNew->minLocal ){
6509 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006510 }
6511 }
6512 }
6513
6514 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006515 for(i=0; i<nNew; i++){
6516 u32 key = get4byte(&apNew[i]->aData[8]);
6517 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006518 }
6519 }
6520
6521#if 0
6522 /* The ptrmapCheckPages() contains assert() statements that verify that
6523 ** all pointer map pages are set correctly. This is helpful while
6524 ** debugging. This is usually disabled because a corrupt database may
6525 ** cause an assert() statement to fail. */
6526 ptrmapCheckPages(apNew, nNew);
6527 ptrmapCheckPages(&pParent, 1);
6528#endif
6529 }
6530
danielk197771d5d2c2008-09-29 11:49:47 +00006531 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006532 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6533 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006534
drh8b2f49b2001-06-08 00:21:52 +00006535 /*
drh14acc042001-06-10 19:56:58 +00006536 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006537 */
drh14acc042001-06-10 19:56:58 +00006538balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006539 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006540 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006541 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006542 }
drh14acc042001-06-10 19:56:58 +00006543 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006544 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006545 }
danielk1977eaa06f62008-09-18 17:34:44 +00006546
drh8b2f49b2001-06-08 00:21:52 +00006547 return rc;
6548}
6549
drh43605152004-05-29 21:46:49 +00006550
6551/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006552** This function is called when the root page of a b-tree structure is
6553** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006554**
danielk1977a50d9aa2009-06-08 14:49:45 +00006555** A new child page is allocated and the contents of the current root
6556** page, including overflow cells, are copied into the child. The root
6557** page is then overwritten to make it an empty page with the right-child
6558** pointer pointing to the new page.
6559**
6560** Before returning, all pointer-map entries corresponding to pages
6561** that the new child-page now contains pointers to are updated. The
6562** entry corresponding to the new right-child pointer of the root
6563** page is also updated.
6564**
6565** If successful, *ppChild is set to contain a reference to the child
6566** page and SQLITE_OK is returned. In this case the caller is required
6567** to call releasePage() on *ppChild exactly once. If an error occurs,
6568** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006569*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006570static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6571 int rc; /* Return value from subprocedures */
6572 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006573 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006574 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006575
danielk1977a50d9aa2009-06-08 14:49:45 +00006576 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006577 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006578
danielk1977a50d9aa2009-06-08 14:49:45 +00006579 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6580 ** page that will become the new right-child of pPage. Copy the contents
6581 ** of the node stored on pRoot into the new child page.
6582 */
drh98add2e2009-07-20 17:11:49 +00006583 rc = sqlite3PagerWrite(pRoot->pDbPage);
6584 if( rc==SQLITE_OK ){
6585 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006586 copyNodeContent(pRoot, pChild, &rc);
6587 if( ISAUTOVACUUM ){
6588 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006589 }
6590 }
6591 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006592 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006593 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006594 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006595 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006596 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6597 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6598 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006599
danielk1977a50d9aa2009-06-08 14:49:45 +00006600 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6601
6602 /* Copy the overflow cells from pRoot to pChild */
6603 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6604 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006605
6606 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6607 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6608 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6609
6610 *ppChild = pChild;
6611 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006612}
6613
6614/*
danielk197771d5d2c2008-09-29 11:49:47 +00006615** The page that pCur currently points to has just been modified in
6616** some way. This function figures out if this modification means the
6617** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006618** routine. Balancing routines are:
6619**
6620** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006621** balance_deeper()
6622** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006623*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006624static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006625 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006626 const int nMin = pCur->pBt->usableSize * 2 / 3;
6627 u8 aBalanceQuickSpace[13];
6628 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006629
shane75ac1de2009-06-09 18:58:52 +00006630 TESTONLY( int balance_quick_called = 0 );
6631 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006632
6633 do {
6634 int iPage = pCur->iPage;
6635 MemPage *pPage = pCur->apPage[iPage];
6636
6637 if( iPage==0 ){
6638 if( pPage->nOverflow ){
6639 /* The root page of the b-tree is overfull. In this case call the
6640 ** balance_deeper() function to create a new child for the root-page
6641 ** and copy the current contents of the root-page to it. The
6642 ** next iteration of the do-loop will balance the child page.
6643 */
6644 assert( (balance_deeper_called++)==0 );
6645 rc = balance_deeper(pPage, &pCur->apPage[1]);
6646 if( rc==SQLITE_OK ){
6647 pCur->iPage = 1;
6648 pCur->aiIdx[0] = 0;
6649 pCur->aiIdx[1] = 0;
6650 assert( pCur->apPage[1]->nOverflow );
6651 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006652 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006653 break;
6654 }
6655 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6656 break;
6657 }else{
6658 MemPage * const pParent = pCur->apPage[iPage-1];
6659 int const iIdx = pCur->aiIdx[iPage-1];
6660
6661 rc = sqlite3PagerWrite(pParent->pDbPage);
6662 if( rc==SQLITE_OK ){
6663#ifndef SQLITE_OMIT_QUICKBALANCE
6664 if( pPage->hasData
6665 && pPage->nOverflow==1
6666 && pPage->aOvfl[0].idx==pPage->nCell
6667 && pParent->pgno!=1
6668 && pParent->nCell==iIdx
6669 ){
6670 /* Call balance_quick() to create a new sibling of pPage on which
6671 ** to store the overflow cell. balance_quick() inserts a new cell
6672 ** into pParent, which may cause pParent overflow. If this
6673 ** happens, the next interation of the do-loop will balance pParent
6674 ** use either balance_nonroot() or balance_deeper(). Until this
6675 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6676 ** buffer.
6677 **
6678 ** The purpose of the following assert() is to check that only a
6679 ** single call to balance_quick() is made for each call to this
6680 ** function. If this were not verified, a subtle bug involving reuse
6681 ** of the aBalanceQuickSpace[] might sneak in.
6682 */
6683 assert( (balance_quick_called++)==0 );
6684 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6685 }else
6686#endif
6687 {
6688 /* In this case, call balance_nonroot() to redistribute cells
6689 ** between pPage and up to 2 of its sibling pages. This involves
6690 ** modifying the contents of pParent, which may cause pParent to
6691 ** become overfull or underfull. The next iteration of the do-loop
6692 ** will balance the parent page to correct this.
6693 **
6694 ** If the parent page becomes overfull, the overflow cell or cells
6695 ** are stored in the pSpace buffer allocated immediately below.
6696 ** A subsequent iteration of the do-loop will deal with this by
6697 ** calling balance_nonroot() (balance_deeper() may be called first,
6698 ** but it doesn't deal with overflow cells - just moves them to a
6699 ** different page). Once this subsequent call to balance_nonroot()
6700 ** has completed, it is safe to release the pSpace buffer used by
6701 ** the previous call, as the overflow cell data will have been
6702 ** copied either into the body of a database page or into the new
6703 ** pSpace buffer passed to the latter call to balance_nonroot().
6704 */
6705 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006706 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006707 if( pFree ){
6708 /* If pFree is not NULL, it points to the pSpace buffer used
6709 ** by a previous call to balance_nonroot(). Its contents are
6710 ** now stored either on real database pages or within the
6711 ** new pSpace buffer, so it may be safely freed here. */
6712 sqlite3PageFree(pFree);
6713 }
6714
danielk19774dbaa892009-06-16 16:50:22 +00006715 /* The pSpace buffer will be freed after the next call to
6716 ** balance_nonroot(), or just before this function returns, whichever
6717 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006718 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006719 }
6720 }
6721
6722 pPage->nOverflow = 0;
6723
6724 /* The next iteration of the do-loop balances the parent page. */
6725 releasePage(pPage);
6726 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006727 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006728 }while( rc==SQLITE_OK );
6729
6730 if( pFree ){
6731 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006732 }
6733 return rc;
6734}
6735
drhf74b8d92002-09-01 23:20:45 +00006736
6737/*
drh3b7511c2001-05-26 13:15:44 +00006738** Insert a new record into the BTree. The key is given by (pKey,nKey)
6739** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006740** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006741** is left pointing at a random location.
6742**
6743** For an INTKEY table, only the nKey value of the key is used. pKey is
6744** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006745**
6746** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006747** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006748** been performed. seekResult is the search result returned (a negative
6749** number if pCur points at an entry that is smaller than (pKey, nKey), or
6750** a positive value if pCur points at an etry that is larger than
6751** (pKey, nKey)).
6752**
drh3e9ca092009-09-08 01:14:48 +00006753** If the seekResult parameter is non-zero, then the caller guarantees that
6754** cursor pCur is pointing at the existing copy of a row that is to be
6755** overwritten. If the seekResult parameter is 0, then cursor pCur may
6756** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006757** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006758*/
drh3aac2dd2004-04-26 14:10:20 +00006759int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006760 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006761 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006762 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006763 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006764 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006765 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006766){
drh3b7511c2001-05-26 13:15:44 +00006767 int rc;
drh3e9ca092009-09-08 01:14:48 +00006768 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006769 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006770 int idx;
drh3b7511c2001-05-26 13:15:44 +00006771 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006772 Btree *p = pCur->pBtree;
6773 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006774 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006775 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006776
drh98add2e2009-07-20 17:11:49 +00006777 if( pCur->eState==CURSOR_FAULT ){
6778 assert( pCur->skipNext!=SQLITE_OK );
6779 return pCur->skipNext;
6780 }
6781
drh1fee73e2007-08-29 04:00:57 +00006782 assert( cursorHoldsMutex(pCur) );
drhc9166342012-01-05 23:32:06 +00006783 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6784 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006785 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6786
danielk197731d31b82009-07-13 13:18:07 +00006787 /* Assert that the caller has been consistent. If this cursor was opened
6788 ** expecting an index b-tree, then the caller should be inserting blob
6789 ** keys with no associated data. If the cursor was opened expecting an
6790 ** intkey table, the caller should be inserting integer keys with a
6791 ** blob of associated data. */
6792 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6793
danielk197796d48e92009-06-29 06:00:37 +00006794 /* If this is an insert into a table b-tree, invalidate any incrblob
6795 ** cursors open on the row being replaced (assuming this is a replace
6796 ** operation - if it is not, the following is a no-op). */
6797 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006798 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006799 }
danielk197796d48e92009-06-29 06:00:37 +00006800
danielk19779c3acf32009-05-02 07:36:49 +00006801 /* Save the positions of any other cursors open on this table.
6802 **
danielk19773509a652009-07-06 18:56:13 +00006803 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006804 ** example, when inserting data into a table with auto-generated integer
6805 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6806 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006807 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006808 ** that the cursor is already where it needs to be and returns without
6809 ** doing any work. To avoid thwarting these optimizations, it is important
6810 ** not to clear the cursor here.
6811 */
drh4c301aa2009-07-15 17:25:45 +00006812 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6813 if( rc ) return rc;
6814 if( !loc ){
6815 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6816 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006817 }
danielk1977b980d2212009-06-22 18:03:51 +00006818 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006819
danielk197771d5d2c2008-09-29 11:49:47 +00006820 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006821 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006822 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006823
drh3a4c1412004-05-09 20:40:11 +00006824 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6825 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6826 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006827 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006828 allocateTempSpace(pBt);
6829 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006830 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006831 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006832 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006833 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00006834 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006835 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006836 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006837 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006838 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006839 rc = sqlite3PagerWrite(pPage->pDbPage);
6840 if( rc ){
6841 goto end_insert;
6842 }
danielk197771d5d2c2008-09-29 11:49:47 +00006843 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006844 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006845 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006846 }
drh43605152004-05-29 21:46:49 +00006847 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006848 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006849 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006850 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006851 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006852 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006853 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006854 }else{
drh4b70f112004-05-02 21:12:19 +00006855 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006856 }
drh98add2e2009-07-20 17:11:49 +00006857 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006858 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006859
danielk1977a50d9aa2009-06-08 14:49:45 +00006860 /* If no error has occured and pPage has an overflow cell, call balance()
6861 ** to redistribute the cells within the tree. Since balance() may move
6862 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6863 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006864 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006865 ** Previous versions of SQLite called moveToRoot() to move the cursor
6866 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006867 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6868 ** set the cursor state to "invalid". This makes common insert operations
6869 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006870 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006871 ** There is a subtle but important optimization here too. When inserting
6872 ** multiple records into an intkey b-tree using a single cursor (as can
6873 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6874 ** is advantageous to leave the cursor pointing to the last entry in
6875 ** the b-tree if possible. If the cursor is left pointing to the last
6876 ** entry in the table, and the next row inserted has an integer key
6877 ** larger than the largest existing key, it is possible to insert the
6878 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006879 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006880 pCur->info.nSize = 0;
6881 pCur->validNKey = 0;
6882 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006883 rc = balance(pCur);
6884
6885 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006886 ** fails. Internal data structure corruption will result otherwise.
6887 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6888 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006889 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006890 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006891 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006892 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006893
drh2e38c322004-09-03 18:38:44 +00006894end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006895 return rc;
6896}
6897
6898/*
drh4b70f112004-05-02 21:12:19 +00006899** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006900** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006901*/
drh3aac2dd2004-04-26 14:10:20 +00006902int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006903 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006904 BtShared *pBt = p->pBt;
6905 int rc; /* Return code */
6906 MemPage *pPage; /* Page to delete cell from */
6907 unsigned char *pCell; /* Pointer to cell to delete */
6908 int iCellIdx; /* Index of cell to delete */
6909 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006910
drh1fee73e2007-08-29 04:00:57 +00006911 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006912 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00006913 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh64022502009-01-09 14:11:04 +00006914 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006915 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6916 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6917
danielk19774dbaa892009-06-16 16:50:22 +00006918 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6919 || NEVER(pCur->eState!=CURSOR_VALID)
6920 ){
6921 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006922 }
danielk1977da184232006-01-05 11:34:32 +00006923
danielk197796d48e92009-06-29 06:00:37 +00006924 /* If this is a delete operation to remove a row from a table b-tree,
6925 ** invalidate any incrblob cursors open on the row being deleted. */
6926 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006927 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006928 }
6929
6930 iCellDepth = pCur->iPage;
6931 iCellIdx = pCur->aiIdx[iCellDepth];
6932 pPage = pCur->apPage[iCellDepth];
6933 pCell = findCell(pPage, iCellIdx);
6934
6935 /* If the page containing the entry to delete is not a leaf page, move
6936 ** the cursor to the largest entry in the tree that is smaller than
6937 ** the entry being deleted. This cell will replace the cell being deleted
6938 ** from the internal node. The 'previous' entry is used for this instead
6939 ** of the 'next' entry, as the previous entry is always a part of the
6940 ** sub-tree headed by the child page of the cell being deleted. This makes
6941 ** balancing the tree following the delete operation easier. */
6942 if( !pPage->leaf ){
6943 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006944 rc = sqlite3BtreePrevious(pCur, &notUsed);
6945 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006946 }
6947
6948 /* Save the positions of any other cursors open on this table before
6949 ** making any modifications. Make the page containing the entry to be
6950 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006951 ** entry and finally remove the cell itself from within the page.
6952 */
6953 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6954 if( rc ) return rc;
6955 rc = sqlite3PagerWrite(pPage->pDbPage);
6956 if( rc ) return rc;
6957 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006958 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006959 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006960
danielk19774dbaa892009-06-16 16:50:22 +00006961 /* If the cell deleted was not located on a leaf page, then the cursor
6962 ** is currently pointing to the largest entry in the sub-tree headed
6963 ** by the child-page of the cell that was just deleted from an internal
6964 ** node. The cell from the leaf node needs to be moved to the internal
6965 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006966 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006967 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6968 int nCell;
6969 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6970 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006971
danielk19774dbaa892009-06-16 16:50:22 +00006972 pCell = findCell(pLeaf, pLeaf->nCell-1);
6973 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00006974 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006975
danielk19774dbaa892009-06-16 16:50:22 +00006976 allocateTempSpace(pBt);
6977 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006978
drha4ec1d42009-07-11 13:13:11 +00006979 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006980 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6981 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006982 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006983 }
danielk19774dbaa892009-06-16 16:50:22 +00006984
6985 /* Balance the tree. If the entry deleted was located on a leaf page,
6986 ** then the cursor still points to that page. In this case the first
6987 ** call to balance() repairs the tree, and the if(...) condition is
6988 ** never true.
6989 **
6990 ** Otherwise, if the entry deleted was on an internal node page, then
6991 ** pCur is pointing to the leaf page from which a cell was removed to
6992 ** replace the cell deleted from the internal node. This is slightly
6993 ** tricky as the leaf node may be underfull, and the internal node may
6994 ** be either under or overfull. In this case run the balancing algorithm
6995 ** on the leaf node first. If the balance proceeds far enough up the
6996 ** tree that we can be sure that any problem in the internal node has
6997 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6998 ** walk the cursor up the tree to the internal node and balance it as
6999 ** well. */
7000 rc = balance(pCur);
7001 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7002 while( pCur->iPage>iCellDepth ){
7003 releasePage(pCur->apPage[pCur->iPage--]);
7004 }
7005 rc = balance(pCur);
7006 }
7007
danielk19776b456a22005-03-21 04:04:02 +00007008 if( rc==SQLITE_OK ){
7009 moveToRoot(pCur);
7010 }
drh5e2f8b92001-05-28 00:41:15 +00007011 return rc;
drh3b7511c2001-05-26 13:15:44 +00007012}
drh8b2f49b2001-06-08 00:21:52 +00007013
7014/*
drhc6b52df2002-01-04 03:09:29 +00007015** Create a new BTree table. Write into *piTable the page
7016** number for the root page of the new table.
7017**
drhab01f612004-05-22 02:55:23 +00007018** The type of type is determined by the flags parameter. Only the
7019** following values of flags are currently in use. Other values for
7020** flags might not work:
7021**
7022** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7023** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007024*/
drhd4187c72010-08-30 22:15:45 +00007025static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007026 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007027 MemPage *pRoot;
7028 Pgno pgnoRoot;
7029 int rc;
drhd4187c72010-08-30 22:15:45 +00007030 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007031
drh1fee73e2007-08-29 04:00:57 +00007032 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007033 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007034 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007035
danielk1977003ba062004-11-04 02:57:33 +00007036#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007037 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007038 if( rc ){
7039 return rc;
7040 }
danielk1977003ba062004-11-04 02:57:33 +00007041#else
danielk1977687566d2004-11-02 12:56:41 +00007042 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007043 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7044 MemPage *pPageMove; /* The page to move to. */
7045
danielk197720713f32007-05-03 11:43:33 +00007046 /* Creating a new table may probably require moving an existing database
7047 ** to make room for the new tables root page. In case this page turns
7048 ** out to be an overflow page, delete all overflow page-map caches
7049 ** held by open cursors.
7050 */
danielk197792d4d7a2007-05-04 12:05:56 +00007051 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007052
danielk1977003ba062004-11-04 02:57:33 +00007053 /* Read the value of meta[3] from the database to determine where the
7054 ** root page of the new table should go. meta[3] is the largest root-page
7055 ** created so far, so the new root-page is (meta[3]+1).
7056 */
danielk1977602b4662009-07-02 07:47:33 +00007057 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007058 pgnoRoot++;
7059
danielk1977599fcba2004-11-08 07:13:13 +00007060 /* The new root-page may not be allocated on a pointer-map page, or the
7061 ** PENDING_BYTE page.
7062 */
drh72190432008-01-31 14:54:43 +00007063 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007064 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007065 pgnoRoot++;
7066 }
7067 assert( pgnoRoot>=3 );
7068
7069 /* Allocate a page. The page that currently resides at pgnoRoot will
7070 ** be moved to the allocated page (unless the allocated page happens
7071 ** to reside at pgnoRoot).
7072 */
drh4f0c5872007-03-26 22:05:01 +00007073 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00007074 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007075 return rc;
7076 }
danielk1977003ba062004-11-04 02:57:33 +00007077
7078 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007079 /* pgnoRoot is the page that will be used for the root-page of
7080 ** the new table (assuming an error did not occur). But we were
7081 ** allocated pgnoMove. If required (i.e. if it was not allocated
7082 ** by extending the file), the current page at position pgnoMove
7083 ** is already journaled.
7084 */
drheeb844a2009-08-08 18:01:07 +00007085 u8 eType = 0;
7086 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007087
7088 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00007089
7090 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00007091 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007092 if( rc!=SQLITE_OK ){
7093 return rc;
7094 }
7095 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007096 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7097 rc = SQLITE_CORRUPT_BKPT;
7098 }
7099 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007100 releasePage(pRoot);
7101 return rc;
7102 }
drhccae6022005-02-26 17:31:26 +00007103 assert( eType!=PTRMAP_ROOTPAGE );
7104 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007105 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007106 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007107
7108 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007109 if( rc!=SQLITE_OK ){
7110 return rc;
7111 }
danielk197730548662009-07-09 05:07:37 +00007112 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007113 if( rc!=SQLITE_OK ){
7114 return rc;
7115 }
danielk19773b8a05f2007-03-19 17:44:26 +00007116 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007117 if( rc!=SQLITE_OK ){
7118 releasePage(pRoot);
7119 return rc;
7120 }
7121 }else{
7122 pRoot = pPageMove;
7123 }
7124
danielk197742741be2005-01-08 12:42:39 +00007125 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007126 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007127 if( rc ){
7128 releasePage(pRoot);
7129 return rc;
7130 }
drhbf592832010-03-30 15:51:12 +00007131
7132 /* When the new root page was allocated, page 1 was made writable in
7133 ** order either to increase the database filesize, or to decrement the
7134 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7135 */
7136 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007137 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007138 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007139 releasePage(pRoot);
7140 return rc;
7141 }
danielk197742741be2005-01-08 12:42:39 +00007142
danielk1977003ba062004-11-04 02:57:33 +00007143 }else{
drh4f0c5872007-03-26 22:05:01 +00007144 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007145 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007146 }
7147#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007148 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007149 if( createTabFlags & BTREE_INTKEY ){
7150 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7151 }else{
7152 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7153 }
7154 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007155 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007156 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007157 *piTable = (int)pgnoRoot;
7158 return SQLITE_OK;
7159}
drhd677b3d2007-08-20 22:48:41 +00007160int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7161 int rc;
7162 sqlite3BtreeEnter(p);
7163 rc = btreeCreateTable(p, piTable, flags);
7164 sqlite3BtreeLeave(p);
7165 return rc;
7166}
drh8b2f49b2001-06-08 00:21:52 +00007167
7168/*
7169** Erase the given database page and all its children. Return
7170** the page to the freelist.
7171*/
drh4b70f112004-05-02 21:12:19 +00007172static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007173 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007174 Pgno pgno, /* Page number to clear */
7175 int freePageFlag, /* Deallocate page if true */
7176 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007177){
danielk1977146ba992009-07-22 14:08:13 +00007178 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007179 int rc;
drh4b70f112004-05-02 21:12:19 +00007180 unsigned char *pCell;
7181 int i;
drh8b2f49b2001-06-08 00:21:52 +00007182
drh1fee73e2007-08-29 04:00:57 +00007183 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007184 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007185 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007186 }
7187
danielk197771d5d2c2008-09-29 11:49:47 +00007188 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007189 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007190 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007191 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007192 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007193 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007194 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007195 }
drh4b70f112004-05-02 21:12:19 +00007196 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007197 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007198 }
drha34b6762004-05-07 13:30:42 +00007199 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007200 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007201 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007202 }else if( pnChange ){
7203 assert( pPage->intKey );
7204 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007205 }
7206 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007207 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007208 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007209 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007210 }
danielk19776b456a22005-03-21 04:04:02 +00007211
7212cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007213 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007214 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007215}
7216
7217/*
drhab01f612004-05-22 02:55:23 +00007218** Delete all information from a single table in the database. iTable is
7219** the page number of the root of the table. After this routine returns,
7220** the root page is empty, but still exists.
7221**
7222** This routine will fail with SQLITE_LOCKED if there are any open
7223** read cursors on the table. Open write cursors are moved to the
7224** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007225**
7226** If pnChange is not NULL, then table iTable must be an intkey table. The
7227** integer value pointed to by pnChange is incremented by the number of
7228** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007229*/
danielk1977c7af4842008-10-27 13:59:33 +00007230int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007231 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007232 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007233 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007234 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007235
7236 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7237 ** is the root of a table b-tree - if it is not, the following call is
7238 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00007239 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00007240
drhc046e3e2009-07-15 11:26:44 +00007241 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7242 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00007243 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007244 }
drhd677b3d2007-08-20 22:48:41 +00007245 sqlite3BtreeLeave(p);
7246 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007247}
7248
7249/*
7250** Erase all information in a table and add the root of the table to
7251** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007252** page 1) is never added to the freelist.
7253**
7254** This routine will fail with SQLITE_LOCKED if there are any open
7255** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007256**
7257** If AUTOVACUUM is enabled and the page at iTable is not the last
7258** root page in the database file, then the last root page
7259** in the database file is moved into the slot formerly occupied by
7260** iTable and that last slot formerly occupied by the last root page
7261** is added to the freelist instead of iTable. In this say, all
7262** root pages are kept at the beginning of the database file, which
7263** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7264** page number that used to be the last root page in the file before
7265** the move. If no page gets moved, *piMoved is set to 0.
7266** The last root page is recorded in meta[3] and the value of
7267** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007268*/
danielk197789d40042008-11-17 14:20:56 +00007269static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007270 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007271 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007272 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007273
drh1fee73e2007-08-29 04:00:57 +00007274 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007275 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007276
danielk1977e6efa742004-11-10 11:55:10 +00007277 /* It is illegal to drop a table if any cursors are open on the
7278 ** database. This is because in auto-vacuum mode the backend may
7279 ** need to move another root-page to fill a gap left by the deleted
7280 ** root page. If an open cursor was using this page a problem would
7281 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007282 **
7283 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007284 */
drhc046e3e2009-07-15 11:26:44 +00007285 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007286 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7287 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007288 }
danielk1977a0bf2652004-11-04 14:30:04 +00007289
danielk197730548662009-07-09 05:07:37 +00007290 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007291 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007292 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007293 if( rc ){
7294 releasePage(pPage);
7295 return rc;
7296 }
danielk1977a0bf2652004-11-04 14:30:04 +00007297
drh205f48e2004-11-05 00:43:11 +00007298 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007299
drh4b70f112004-05-02 21:12:19 +00007300 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007301#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007302 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007303 releasePage(pPage);
7304#else
7305 if( pBt->autoVacuum ){
7306 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007307 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007308
7309 if( iTable==maxRootPgno ){
7310 /* If the table being dropped is the table with the largest root-page
7311 ** number in the database, put the root page on the free list.
7312 */
drhc314dc72009-07-21 11:52:34 +00007313 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007314 releasePage(pPage);
7315 if( rc!=SQLITE_OK ){
7316 return rc;
7317 }
7318 }else{
7319 /* The table being dropped does not have the largest root-page
7320 ** number in the database. So move the page that does into the
7321 ** gap left by the deleted root-page.
7322 */
7323 MemPage *pMove;
7324 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007325 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007326 if( rc!=SQLITE_OK ){
7327 return rc;
7328 }
danielk19774c999992008-07-16 18:17:55 +00007329 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007330 releasePage(pMove);
7331 if( rc!=SQLITE_OK ){
7332 return rc;
7333 }
drhfe3313f2009-07-21 19:02:20 +00007334 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007335 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007336 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007337 releasePage(pMove);
7338 if( rc!=SQLITE_OK ){
7339 return rc;
7340 }
7341 *piMoved = maxRootPgno;
7342 }
7343
danielk1977599fcba2004-11-08 07:13:13 +00007344 /* Set the new 'max-root-page' value in the database header. This
7345 ** is the old value less one, less one more if that happens to
7346 ** be a root-page number, less one again if that is the
7347 ** PENDING_BYTE_PAGE.
7348 */
danielk197787a6e732004-11-05 12:58:25 +00007349 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007350 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7351 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007352 maxRootPgno--;
7353 }
danielk1977599fcba2004-11-08 07:13:13 +00007354 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7355
danielk1977aef0bf62005-12-30 16:28:01 +00007356 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007357 }else{
drhc314dc72009-07-21 11:52:34 +00007358 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007359 releasePage(pPage);
7360 }
7361#endif
drh2aa679f2001-06-25 02:11:07 +00007362 }else{
drhc046e3e2009-07-15 11:26:44 +00007363 /* If sqlite3BtreeDropTable was called on page 1.
7364 ** This really never should happen except in a corrupt
7365 ** database.
7366 */
drha34b6762004-05-07 13:30:42 +00007367 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007368 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007369 }
drh8b2f49b2001-06-08 00:21:52 +00007370 return rc;
7371}
drhd677b3d2007-08-20 22:48:41 +00007372int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7373 int rc;
7374 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007375 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007376 sqlite3BtreeLeave(p);
7377 return rc;
7378}
drh8b2f49b2001-06-08 00:21:52 +00007379
drh001bbcb2003-03-19 03:14:00 +00007380
drh8b2f49b2001-06-08 00:21:52 +00007381/*
danielk1977602b4662009-07-02 07:47:33 +00007382** This function may only be called if the b-tree connection already
7383** has a read or write transaction open on the database.
7384**
drh23e11ca2004-05-04 17:27:28 +00007385** Read the meta-information out of a database file. Meta[0]
7386** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007387** through meta[15] are available for use by higher layers. Meta[0]
7388** is read-only, the others are read/write.
7389**
7390** The schema layer numbers meta values differently. At the schema
7391** layer (and the SetCookie and ReadCookie opcodes) the number of
7392** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007393*/
danielk1977602b4662009-07-02 07:47:33 +00007394void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007395 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007396
drhd677b3d2007-08-20 22:48:41 +00007397 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007398 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007399 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007400 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007401 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007402
danielk1977602b4662009-07-02 07:47:33 +00007403 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007404
danielk1977602b4662009-07-02 07:47:33 +00007405 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7406 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007407#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007408 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7409 pBt->btsFlags |= BTS_READ_ONLY;
7410 }
danielk1977003ba062004-11-04 02:57:33 +00007411#endif
drhae157872004-08-14 19:20:09 +00007412
drhd677b3d2007-08-20 22:48:41 +00007413 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007414}
7415
7416/*
drh23e11ca2004-05-04 17:27:28 +00007417** Write meta-information back into the database. Meta[0] is
7418** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007419*/
danielk1977aef0bf62005-12-30 16:28:01 +00007420int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7421 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007422 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007423 int rc;
drh23e11ca2004-05-04 17:27:28 +00007424 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007425 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007426 assert( p->inTrans==TRANS_WRITE );
7427 assert( pBt->pPage1!=0 );
7428 pP1 = pBt->pPage1->aData;
7429 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7430 if( rc==SQLITE_OK ){
7431 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007432#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007433 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007434 assert( pBt->autoVacuum || iMeta==0 );
7435 assert( iMeta==0 || iMeta==1 );
7436 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007437 }
drh64022502009-01-09 14:11:04 +00007438#endif
drh5df72a52002-06-06 23:16:05 +00007439 }
drhd677b3d2007-08-20 22:48:41 +00007440 sqlite3BtreeLeave(p);
7441 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007442}
drh8c42ca92001-06-22 19:15:00 +00007443
danielk1977a5533162009-02-24 10:01:51 +00007444#ifndef SQLITE_OMIT_BTREECOUNT
7445/*
7446** The first argument, pCur, is a cursor opened on some b-tree. Count the
7447** number of entries in the b-tree and write the result to *pnEntry.
7448**
7449** SQLITE_OK is returned if the operation is successfully executed.
7450** Otherwise, if an error is encountered (i.e. an IO error or database
7451** corruption) an SQLite error code is returned.
7452*/
7453int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7454 i64 nEntry = 0; /* Value to return in *pnEntry */
7455 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007456
7457 if( pCur->pgnoRoot==0 ){
7458 *pnEntry = 0;
7459 return SQLITE_OK;
7460 }
danielk1977a5533162009-02-24 10:01:51 +00007461 rc = moveToRoot(pCur);
7462
7463 /* Unless an error occurs, the following loop runs one iteration for each
7464 ** page in the B-Tree structure (not including overflow pages).
7465 */
7466 while( rc==SQLITE_OK ){
7467 int iIdx; /* Index of child node in parent */
7468 MemPage *pPage; /* Current page of the b-tree */
7469
7470 /* If this is a leaf page or the tree is not an int-key tree, then
7471 ** this page contains countable entries. Increment the entry counter
7472 ** accordingly.
7473 */
7474 pPage = pCur->apPage[pCur->iPage];
7475 if( pPage->leaf || !pPage->intKey ){
7476 nEntry += pPage->nCell;
7477 }
7478
7479 /* pPage is a leaf node. This loop navigates the cursor so that it
7480 ** points to the first interior cell that it points to the parent of
7481 ** the next page in the tree that has not yet been visited. The
7482 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7483 ** of the page, or to the number of cells in the page if the next page
7484 ** to visit is the right-child of its parent.
7485 **
7486 ** If all pages in the tree have been visited, return SQLITE_OK to the
7487 ** caller.
7488 */
7489 if( pPage->leaf ){
7490 do {
7491 if( pCur->iPage==0 ){
7492 /* All pages of the b-tree have been visited. Return successfully. */
7493 *pnEntry = nEntry;
7494 return SQLITE_OK;
7495 }
danielk197730548662009-07-09 05:07:37 +00007496 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007497 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7498
7499 pCur->aiIdx[pCur->iPage]++;
7500 pPage = pCur->apPage[pCur->iPage];
7501 }
7502
7503 /* Descend to the child node of the cell that the cursor currently
7504 ** points at. This is the right-child if (iIdx==pPage->nCell).
7505 */
7506 iIdx = pCur->aiIdx[pCur->iPage];
7507 if( iIdx==pPage->nCell ){
7508 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7509 }else{
7510 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7511 }
7512 }
7513
shanebe217792009-03-05 04:20:31 +00007514 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007515 return rc;
7516}
7517#endif
drhdd793422001-06-28 01:54:48 +00007518
drhdd793422001-06-28 01:54:48 +00007519/*
drh5eddca62001-06-30 21:53:53 +00007520** Return the pager associated with a BTree. This routine is used for
7521** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007522*/
danielk1977aef0bf62005-12-30 16:28:01 +00007523Pager *sqlite3BtreePager(Btree *p){
7524 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007525}
drh5eddca62001-06-30 21:53:53 +00007526
drhb7f91642004-10-31 02:22:47 +00007527#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007528/*
7529** Append a message to the error message string.
7530*/
drh2e38c322004-09-03 18:38:44 +00007531static void checkAppendMsg(
7532 IntegrityCk *pCheck,
7533 char *zMsg1,
7534 const char *zFormat,
7535 ...
7536){
7537 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007538 if( !pCheck->mxErr ) return;
7539 pCheck->mxErr--;
7540 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007541 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007542 if( pCheck->errMsg.nChar ){
7543 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007544 }
drhf089aa42008-07-08 19:34:06 +00007545 if( zMsg1 ){
7546 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7547 }
7548 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7549 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007550 if( pCheck->errMsg.mallocFailed ){
7551 pCheck->mallocFailed = 1;
7552 }
drh5eddca62001-06-30 21:53:53 +00007553}
drhb7f91642004-10-31 02:22:47 +00007554#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007555
drhb7f91642004-10-31 02:22:47 +00007556#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007557/*
7558** Add 1 to the reference count for page iPage. If this is the second
7559** reference to the page, add an error message to pCheck->zErrMsg.
7560** Return 1 if there are 2 ore more references to the page and 0 if
7561** if this is the first reference to the page.
7562**
7563** Also check that the page number is in bounds.
7564*/
danielk197789d40042008-11-17 14:20:56 +00007565static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007566 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007567 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007568 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007569 return 1;
7570 }
7571 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007572 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007573 return 1;
7574 }
7575 return (pCheck->anRef[iPage]++)>1;
7576}
7577
danielk1977afcdd022004-10-31 16:25:42 +00007578#ifndef SQLITE_OMIT_AUTOVACUUM
7579/*
7580** Check that the entry in the pointer-map for page iChild maps to
7581** page iParent, pointer type ptrType. If not, append an error message
7582** to pCheck.
7583*/
7584static void checkPtrmap(
7585 IntegrityCk *pCheck, /* Integrity check context */
7586 Pgno iChild, /* Child page number */
7587 u8 eType, /* Expected pointer map type */
7588 Pgno iParent, /* Expected pointer map parent page number */
7589 char *zContext /* Context description (used for error msg) */
7590){
7591 int rc;
7592 u8 ePtrmapType;
7593 Pgno iPtrmapParent;
7594
7595 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7596 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007597 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007598 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7599 return;
7600 }
7601
7602 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7603 checkAppendMsg(pCheck, zContext,
7604 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7605 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7606 }
7607}
7608#endif
7609
drh5eddca62001-06-30 21:53:53 +00007610/*
7611** Check the integrity of the freelist or of an overflow page list.
7612** Verify that the number of pages on the list is N.
7613*/
drh30e58752002-03-02 20:41:57 +00007614static void checkList(
7615 IntegrityCk *pCheck, /* Integrity checking context */
7616 int isFreeList, /* True for a freelist. False for overflow page list */
7617 int iPage, /* Page number for first page in the list */
7618 int N, /* Expected number of pages in the list */
7619 char *zContext /* Context for error messages */
7620){
7621 int i;
drh3a4c1412004-05-09 20:40:11 +00007622 int expected = N;
7623 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007624 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007625 DbPage *pOvflPage;
7626 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007627 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007628 checkAppendMsg(pCheck, zContext,
7629 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007630 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007631 break;
7632 }
7633 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007634 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007635 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007636 break;
7637 }
danielk19773b8a05f2007-03-19 17:44:26 +00007638 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007639 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007640 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007641#ifndef SQLITE_OMIT_AUTOVACUUM
7642 if( pCheck->pBt->autoVacuum ){
7643 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7644 }
7645#endif
drh43b18e12010-08-17 19:40:08 +00007646 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007647 checkAppendMsg(pCheck, zContext,
7648 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007649 N--;
7650 }else{
7651 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007652 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007653#ifndef SQLITE_OMIT_AUTOVACUUM
7654 if( pCheck->pBt->autoVacuum ){
7655 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7656 }
7657#endif
7658 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007659 }
7660 N -= n;
drh30e58752002-03-02 20:41:57 +00007661 }
drh30e58752002-03-02 20:41:57 +00007662 }
danielk1977afcdd022004-10-31 16:25:42 +00007663#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007664 else{
7665 /* If this database supports auto-vacuum and iPage is not the last
7666 ** page in this overflow list, check that the pointer-map entry for
7667 ** the following page matches iPage.
7668 */
7669 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007670 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007671 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7672 }
danielk1977afcdd022004-10-31 16:25:42 +00007673 }
7674#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007675 iPage = get4byte(pOvflData);
7676 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007677 }
7678}
drhb7f91642004-10-31 02:22:47 +00007679#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007680
drhb7f91642004-10-31 02:22:47 +00007681#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007682/*
7683** Do various sanity checks on a single page of a tree. Return
7684** the tree depth. Root pages return 0. Parents of root pages
7685** return 1, and so forth.
7686**
7687** These checks are done:
7688**
7689** 1. Make sure that cells and freeblocks do not overlap
7690** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007691** NO 2. Make sure cell keys are in order.
7692** NO 3. Make sure no key is less than or equal to zLowerBound.
7693** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007694** 5. Check the integrity of overflow pages.
7695** 6. Recursively call checkTreePage on all children.
7696** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007697** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007698** the root of the tree.
7699*/
7700static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007701 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007702 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007703 char *zParentContext, /* Parent context */
7704 i64 *pnParentMinKey,
7705 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007706){
7707 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007708 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007709 int hdr, cellStart;
7710 int nCell;
drhda200cc2004-05-09 11:51:38 +00007711 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007712 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007713 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007714 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007715 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007716 i64 nMinKey = 0;
7717 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007718
drh5bb3eb92007-05-04 13:15:55 +00007719 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007720
drh5eddca62001-06-30 21:53:53 +00007721 /* Check that the page exists
7722 */
drhd9cb6ac2005-10-20 07:28:17 +00007723 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007724 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007725 if( iPage==0 ) return 0;
7726 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007727 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007728 checkAppendMsg(pCheck, zContext,
7729 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007730 return 0;
7731 }
danielk197793caf5a2009-07-11 06:55:33 +00007732
7733 /* Clear MemPage.isInit to make sure the corruption detection code in
7734 ** btreeInitPage() is executed. */
7735 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007736 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007737 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007738 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007739 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007740 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007741 return 0;
7742 }
7743
7744 /* Check out all the cells.
7745 */
7746 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007747 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007748 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007749 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007750 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007751
7752 /* Check payload overflow pages
7753 */
drh5bb3eb92007-05-04 13:15:55 +00007754 sqlite3_snprintf(sizeof(zContext), zContext,
7755 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007756 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007757 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007758 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007759 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007760 /* For intKey pages, check that the keys are in order.
7761 */
7762 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7763 else{
7764 if( info.nKey <= nMaxKey ){
7765 checkAppendMsg(pCheck, zContext,
7766 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7767 }
7768 nMaxKey = info.nKey;
7769 }
drh72365832007-03-06 15:53:44 +00007770 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007771 if( (sz>info.nLocal)
7772 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7773 ){
drhb6f41482004-05-14 01:58:11 +00007774 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007775 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7776#ifndef SQLITE_OMIT_AUTOVACUUM
7777 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007778 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007779 }
7780#endif
7781 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007782 }
7783
7784 /* Check sanity of left child page.
7785 */
drhda200cc2004-05-09 11:51:38 +00007786 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007787 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007788#ifndef SQLITE_OMIT_AUTOVACUUM
7789 if( pBt->autoVacuum ){
7790 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7791 }
7792#endif
shaneh195475d2010-02-19 04:28:08 +00007793 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007794 if( i>0 && d2!=depth ){
7795 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7796 }
7797 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007798 }
drh5eddca62001-06-30 21:53:53 +00007799 }
shaneh195475d2010-02-19 04:28:08 +00007800
drhda200cc2004-05-09 11:51:38 +00007801 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007802 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007803 sqlite3_snprintf(sizeof(zContext), zContext,
7804 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007805#ifndef SQLITE_OMIT_AUTOVACUUM
7806 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007807 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007808 }
7809#endif
shaneh195475d2010-02-19 04:28:08 +00007810 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007811 }
drh5eddca62001-06-30 21:53:53 +00007812
shaneh195475d2010-02-19 04:28:08 +00007813 /* For intKey leaf pages, check that the min/max keys are in order
7814 ** with any left/parent/right pages.
7815 */
7816 if( pPage->leaf && pPage->intKey ){
7817 /* if we are a left child page */
7818 if( pnParentMinKey ){
7819 /* if we are the left most child page */
7820 if( !pnParentMaxKey ){
7821 if( nMaxKey > *pnParentMinKey ){
7822 checkAppendMsg(pCheck, zContext,
7823 "Rowid %lld out of order (max larger than parent min of %lld)",
7824 nMaxKey, *pnParentMinKey);
7825 }
7826 }else{
7827 if( nMinKey <= *pnParentMinKey ){
7828 checkAppendMsg(pCheck, zContext,
7829 "Rowid %lld out of order (min less than parent min of %lld)",
7830 nMinKey, *pnParentMinKey);
7831 }
7832 if( nMaxKey > *pnParentMaxKey ){
7833 checkAppendMsg(pCheck, zContext,
7834 "Rowid %lld out of order (max larger than parent max of %lld)",
7835 nMaxKey, *pnParentMaxKey);
7836 }
7837 *pnParentMinKey = nMaxKey;
7838 }
7839 /* else if we're a right child page */
7840 } else if( pnParentMaxKey ){
7841 if( nMinKey <= *pnParentMaxKey ){
7842 checkAppendMsg(pCheck, zContext,
7843 "Rowid %lld out of order (min less than parent max of %lld)",
7844 nMinKey, *pnParentMaxKey);
7845 }
7846 }
7847 }
7848
drh5eddca62001-06-30 21:53:53 +00007849 /* Check for complete coverage of the page
7850 */
drhda200cc2004-05-09 11:51:38 +00007851 data = pPage->aData;
7852 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007853 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007854 if( hit==0 ){
7855 pCheck->mallocFailed = 1;
7856 }else{
drh5d433ce2010-08-14 16:02:52 +00007857 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007858 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007859 memset(hit+contentOffset, 0, usableSize-contentOffset);
7860 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007861 nCell = get2byte(&data[hdr+3]);
7862 cellStart = hdr + 12 - 4*pPage->leaf;
7863 for(i=0; i<nCell; i++){
7864 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00007865 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00007866 int j;
drh8c2bbb62009-07-10 02:52:20 +00007867 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007868 size = cellSizePtr(pPage, &data[pc]);
7869 }
drh43b18e12010-08-17 19:40:08 +00007870 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007871 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007872 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007873 }else{
7874 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7875 }
drh2e38c322004-09-03 18:38:44 +00007876 }
drh8c2bbb62009-07-10 02:52:20 +00007877 i = get2byte(&data[hdr+1]);
7878 while( i>0 ){
7879 int size, j;
7880 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7881 size = get2byte(&data[i+2]);
7882 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7883 for(j=i+size-1; j>=i; j--) hit[j]++;
7884 j = get2byte(&data[i]);
7885 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7886 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7887 i = j;
drh2e38c322004-09-03 18:38:44 +00007888 }
7889 for(i=cnt=0; i<usableSize; i++){
7890 if( hit[i]==0 ){
7891 cnt++;
7892 }else if( hit[i]>1 ){
7893 checkAppendMsg(pCheck, 0,
7894 "Multiple uses for byte %d of page %d", i, iPage);
7895 break;
7896 }
7897 }
7898 if( cnt!=data[hdr+7] ){
7899 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007900 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007901 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007902 }
7903 }
drh8c2bbb62009-07-10 02:52:20 +00007904 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007905 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007906 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007907}
drhb7f91642004-10-31 02:22:47 +00007908#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007909
drhb7f91642004-10-31 02:22:47 +00007910#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007911/*
7912** This routine does a complete check of the given BTree file. aRoot[] is
7913** an array of pages numbers were each page number is the root page of
7914** a table. nRoot is the number of entries in aRoot.
7915**
danielk19773509a652009-07-06 18:56:13 +00007916** A read-only or read-write transaction must be opened before calling
7917** this function.
7918**
drhc890fec2008-08-01 20:10:08 +00007919** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007920** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007921** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007922** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007923*/
drh1dcdbc02007-01-27 02:24:54 +00007924char *sqlite3BtreeIntegrityCheck(
7925 Btree *p, /* The btree to be checked */
7926 int *aRoot, /* An array of root pages numbers for individual trees */
7927 int nRoot, /* Number of entries in aRoot[] */
7928 int mxErr, /* Stop reporting errors after this many */
7929 int *pnErr /* Write number of errors seen to this variable */
7930){
danielk197789d40042008-11-17 14:20:56 +00007931 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007932 int nRef;
drhaaab5722002-02-19 13:39:21 +00007933 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007934 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007935 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007936
drhd677b3d2007-08-20 22:48:41 +00007937 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007938 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007939 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007940 sCheck.pBt = pBt;
7941 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007942 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007943 sCheck.mxErr = mxErr;
7944 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007945 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007946 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007947 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007948 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007949 return 0;
7950 }
drhe5ae5732008-06-15 02:51:47 +00007951 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007952 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007953 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007954 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007955 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007956 }
drhda200cc2004-05-09 11:51:38 +00007957 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007958 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007959 if( i<=sCheck.nPage ){
7960 sCheck.anRef[i] = 1;
7961 }
drhf089aa42008-07-08 19:34:06 +00007962 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drhb9755982010-07-24 16:34:37 +00007963 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00007964
7965 /* Check the integrity of the freelist
7966 */
drha34b6762004-05-07 13:30:42 +00007967 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7968 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007969
7970 /* Check all the tables.
7971 */
danielk197789d40042008-11-17 14:20:56 +00007972 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007973 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007974#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007975 if( pBt->autoVacuum && aRoot[i]>1 ){
7976 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7977 }
7978#endif
shaneh195475d2010-02-19 04:28:08 +00007979 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007980 }
7981
7982 /* Make sure every page in the file is referenced
7983 */
drh1dcdbc02007-01-27 02:24:54 +00007984 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007985#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007986 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007987 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007988 }
danielk1977afcdd022004-10-31 16:25:42 +00007989#else
7990 /* If the database supports auto-vacuum, make sure no tables contain
7991 ** references to pointer-map pages.
7992 */
7993 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007994 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007995 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7996 }
7997 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007998 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007999 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8000 }
8001#endif
drh5eddca62001-06-30 21:53:53 +00008002 }
8003
drh64022502009-01-09 14:11:04 +00008004 /* Make sure this analysis did not leave any unref() pages.
8005 ** This is an internal consistency check; an integrity check
8006 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008007 */
drh64022502009-01-09 14:11:04 +00008008 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008009 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008010 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008011 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008012 );
drh5eddca62001-06-30 21:53:53 +00008013 }
8014
8015 /* Clean up and report errors.
8016 */
drhd677b3d2007-08-20 22:48:41 +00008017 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00008018 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00008019 if( sCheck.mallocFailed ){
8020 sqlite3StrAccumReset(&sCheck.errMsg);
8021 *pnErr = sCheck.nErr+1;
8022 return 0;
8023 }
drh1dcdbc02007-01-27 02:24:54 +00008024 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008025 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8026 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008027}
drhb7f91642004-10-31 02:22:47 +00008028#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008029
drh73509ee2003-04-06 20:44:45 +00008030/*
8031** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00008032**
8033** The pager filename is invariant as long as the pager is
8034** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008035*/
danielk1977aef0bf62005-12-30 16:28:01 +00008036const char *sqlite3BtreeGetFilename(Btree *p){
8037 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008038 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00008039}
8040
8041/*
danielk19775865e3d2004-06-14 06:03:57 +00008042** Return the pathname of the journal file for this database. The return
8043** value of this routine is the same regardless of whether the journal file
8044** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008045**
8046** The pager journal filename is invariant as long as the pager is
8047** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008048*/
danielk1977aef0bf62005-12-30 16:28:01 +00008049const char *sqlite3BtreeGetJournalname(Btree *p){
8050 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008051 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008052}
8053
danielk19771d850a72004-05-31 08:26:49 +00008054/*
8055** Return non-zero if a transaction is active.
8056*/
danielk1977aef0bf62005-12-30 16:28:01 +00008057int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008058 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008059 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008060}
8061
dana550f2d2010-08-02 10:47:05 +00008062#ifndef SQLITE_OMIT_WAL
8063/*
8064** Run a checkpoint on the Btree passed as the first argument.
8065**
8066** Return SQLITE_LOCKED if this or any other connection has an open
8067** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008068**
dancdc1f042010-11-18 12:11:05 +00008069** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008070*/
dancdc1f042010-11-18 12:11:05 +00008071int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008072 int rc = SQLITE_OK;
8073 if( p ){
8074 BtShared *pBt = p->pBt;
8075 sqlite3BtreeEnter(p);
8076 if( pBt->inTransaction!=TRANS_NONE ){
8077 rc = SQLITE_LOCKED;
8078 }else{
dancdc1f042010-11-18 12:11:05 +00008079 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008080 }
8081 sqlite3BtreeLeave(p);
8082 }
8083 return rc;
8084}
8085#endif
8086
danielk19771d850a72004-05-31 08:26:49 +00008087/*
danielk19772372c2b2006-06-27 16:34:56 +00008088** Return non-zero if a read (or write) transaction is active.
8089*/
8090int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008091 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008092 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008093 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008094}
8095
danielk197704103022009-02-03 16:51:24 +00008096int sqlite3BtreeIsInBackup(Btree *p){
8097 assert( p );
8098 assert( sqlite3_mutex_held(p->db->mutex) );
8099 return p->nBackup!=0;
8100}
8101
danielk19772372c2b2006-06-27 16:34:56 +00008102/*
danielk1977da184232006-01-05 11:34:32 +00008103** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008104** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008105** purposes (for example, to store a high-level schema associated with
8106** the shared-btree). The btree layer manages reference counting issues.
8107**
8108** The first time this is called on a shared-btree, nBytes bytes of memory
8109** are allocated, zeroed, and returned to the caller. For each subsequent
8110** call the nBytes parameter is ignored and a pointer to the same blob
8111** of memory returned.
8112**
danielk1977171bfed2008-06-23 09:50:50 +00008113** If the nBytes parameter is 0 and the blob of memory has not yet been
8114** allocated, a null pointer is returned. If the blob has already been
8115** allocated, it is returned as normal.
8116**
danielk1977da184232006-01-05 11:34:32 +00008117** Just before the shared-btree is closed, the function passed as the
8118** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008119** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008120** on the memory, the btree layer does that.
8121*/
8122void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8123 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008124 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008125 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008126 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008127 pBt->xFreeSchema = xFree;
8128 }
drh27641702007-08-22 02:56:42 +00008129 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008130 return pBt->pSchema;
8131}
8132
danielk1977c87d34d2006-01-06 13:00:28 +00008133/*
danielk1977404ca072009-03-16 13:19:36 +00008134** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8135** btree as the argument handle holds an exclusive lock on the
8136** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008137*/
8138int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008139 int rc;
drhe5fe6902007-12-07 18:55:28 +00008140 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008141 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008142 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8143 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008144 sqlite3BtreeLeave(p);
8145 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008146}
8147
drha154dcd2006-03-22 22:10:07 +00008148
8149#ifndef SQLITE_OMIT_SHARED_CACHE
8150/*
8151** Obtain a lock on the table whose root page is iTab. The
8152** lock is a write lock if isWritelock is true or a read lock
8153** if it is false.
8154*/
danielk1977c00da102006-01-07 13:21:04 +00008155int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008156 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008157 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008158 if( p->sharable ){
8159 u8 lockType = READ_LOCK + isWriteLock;
8160 assert( READ_LOCK+1==WRITE_LOCK );
8161 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008162
drh6a9ad3d2008-04-02 16:29:30 +00008163 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008164 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008165 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008166 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008167 }
8168 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008169 }
8170 return rc;
8171}
drha154dcd2006-03-22 22:10:07 +00008172#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008173
danielk1977b4e9af92007-05-01 17:49:49 +00008174#ifndef SQLITE_OMIT_INCRBLOB
8175/*
8176** Argument pCsr must be a cursor opened for writing on an
8177** INTKEY table currently pointing at a valid table entry.
8178** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008179**
8180** Only the data content may only be modified, it is not possible to
8181** change the length of the data stored. If this function is called with
8182** parameters that attempt to write past the end of the existing data,
8183** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008184*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008185int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008186 int rc;
drh1fee73e2007-08-29 04:00:57 +00008187 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008188 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008189 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008190
danielk1977c9000e62009-07-08 13:55:28 +00008191 rc = restoreCursorPosition(pCsr);
8192 if( rc!=SQLITE_OK ){
8193 return rc;
8194 }
danielk19773588ceb2008-06-10 17:30:26 +00008195 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8196 if( pCsr->eState!=CURSOR_VALID ){
8197 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008198 }
8199
danielk1977c9000e62009-07-08 13:55:28 +00008200 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008201 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008202 ** (b) there is a read/write transaction open,
8203 ** (c) the connection holds a write-lock on the table (if required),
8204 ** (d) there are no conflicting read-locks, and
8205 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008206 */
danielk19774f029602009-07-08 18:45:37 +00008207 if( !pCsr->wrFlag ){
8208 return SQLITE_READONLY;
8209 }
drhc9166342012-01-05 23:32:06 +00008210 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8211 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008212 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8213 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008214 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008215
drhfb192682009-07-11 18:26:28 +00008216 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008217}
danielk19772dec9702007-05-02 16:48:37 +00008218
8219/*
8220** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008221** overflow list for the current row. This is used by cursors opened
8222** for incremental blob IO only.
8223**
8224** This function sets a flag only. The actual page location cache
8225** (stored in BtCursor.aOverflow[]) is allocated and used by function
8226** accessPayload() (the worker function for sqlite3BtreeData() and
8227** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008228*/
8229void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008230 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008231 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008232 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008233 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008234}
danielk1977b4e9af92007-05-01 17:49:49 +00008235#endif
dane04dc882010-04-20 18:53:15 +00008236
8237/*
8238** Set both the "read version" (single byte at byte offset 18) and
8239** "write version" (single byte at byte offset 19) fields in the database
8240** header to iVersion.
8241*/
8242int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8243 BtShared *pBt = pBtree->pBt;
8244 int rc; /* Return code */
8245
dane04dc882010-04-20 18:53:15 +00008246 assert( iVersion==1 || iVersion==2 );
8247
danb9780022010-04-21 18:37:57 +00008248 /* If setting the version fields to 1, do not automatically open the
8249 ** WAL connection, even if the version fields are currently set to 2.
8250 */
drhc9166342012-01-05 23:32:06 +00008251 pBt->btsFlags &= ~BTS_NO_WAL;
8252 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008253
8254 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008255 if( rc==SQLITE_OK ){
8256 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008257 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008258 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008259 if( rc==SQLITE_OK ){
8260 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8261 if( rc==SQLITE_OK ){
8262 aData[18] = (u8)iVersion;
8263 aData[19] = (u8)iVersion;
8264 }
8265 }
8266 }
dane04dc882010-04-20 18:53:15 +00008267 }
8268
drhc9166342012-01-05 23:32:06 +00008269 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008270 return rc;
8271}