blob: 3b68af167693fd00a477e89b9b17436690921da9 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
453#endif
454
danielk197792d4d7a2007-05-04 12:05:56 +0000455/*
dan5a500af2014-03-11 20:33:04 +0000456** Invalidate the overflow cache of the cursor passed as the first argument.
457** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000458*/
drh036dbec2014-03-11 23:40:44 +0000459#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000460
461/*
462** Invalidate the overflow page-list cache for all cursors opened
463** on the shared btree structure pBt.
464*/
465static void invalidateAllOverflowCache(BtShared *pBt){
466 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000467 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000468 for(p=pBt->pCursor; p; p=p->pNext){
469 invalidateOverflowCache(p);
470 }
471}
danielk197796d48e92009-06-29 06:00:37 +0000472
dan5a500af2014-03-11 20:33:04 +0000473#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000474/*
475** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000476** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000477** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000478**
479** If argument isClearTable is true, then the entire contents of the
480** table is about to be deleted. In this case invalidate all incrblob
481** cursors open on any row within the table with root-page pgnoRoot.
482**
483** Otherwise, if argument isClearTable is false, then the row with
484** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000485** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000486*/
487static void invalidateIncrblobCursors(
488 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000489 i64 iRow, /* The rowid that might be changing */
490 int isClearTable /* True if all rows are being deleted */
491){
492 BtCursor *p;
493 BtShared *pBt = pBtree->pBt;
494 assert( sqlite3BtreeHoldsMutex(pBtree) );
495 for(p=pBt->pCursor; p; p=p->pNext){
drh3f387402014-09-24 01:23:00 +0000496 if( (p->curFlags & BTCF_Incrblob)!=0
497 && (isClearTable || p->info.nKey==iRow)
498 ){
danielk197796d48e92009-06-29 06:00:37 +0000499 p->eState = CURSOR_INVALID;
500 }
501 }
502}
503
danielk197792d4d7a2007-05-04 12:05:56 +0000504#else
dan5a500af2014-03-11 20:33:04 +0000505 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000506 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000507#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000508
drh980b1a72006-08-16 16:42:48 +0000509/*
danielk1977bea2a942009-01-20 17:06:27 +0000510** Set bit pgno of the BtShared.pHasContent bitvec. This is called
511** when a page that previously contained data becomes a free-list leaf
512** page.
513**
514** The BtShared.pHasContent bitvec exists to work around an obscure
515** bug caused by the interaction of two useful IO optimizations surrounding
516** free-list leaf pages:
517**
518** 1) When all data is deleted from a page and the page becomes
519** a free-list leaf page, the page is not written to the database
520** (as free-list leaf pages contain no meaningful data). Sometimes
521** such a page is not even journalled (as it will not be modified,
522** why bother journalling it?).
523**
524** 2) When a free-list leaf page is reused, its content is not read
525** from the database or written to the journal file (why should it
526** be, if it is not at all meaningful?).
527**
528** By themselves, these optimizations work fine and provide a handy
529** performance boost to bulk delete or insert operations. However, if
530** a page is moved to the free-list and then reused within the same
531** transaction, a problem comes up. If the page is not journalled when
532** it is moved to the free-list and it is also not journalled when it
533** is extracted from the free-list and reused, then the original data
534** may be lost. In the event of a rollback, it may not be possible
535** to restore the database to its original configuration.
536**
537** The solution is the BtShared.pHasContent bitvec. Whenever a page is
538** moved to become a free-list leaf page, the corresponding bit is
539** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000540** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000541** set in BtShared.pHasContent. The contents of the bitvec are cleared
542** at the end of every transaction.
543*/
544static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
545 int rc = SQLITE_OK;
546 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000547 assert( pgno<=pBt->nPage );
548 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000549 if( !pBt->pHasContent ){
550 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000551 }
552 }
553 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
554 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
555 }
556 return rc;
557}
558
559/*
560** Query the BtShared.pHasContent vector.
561**
562** This function is called when a free-list leaf page is removed from the
563** free-list for reuse. It returns false if it is safe to retrieve the
564** page from the pager layer with the 'no-content' flag set. True otherwise.
565*/
566static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
567 Bitvec *p = pBt->pHasContent;
568 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
569}
570
571/*
572** Clear (destroy) the BtShared.pHasContent bitvec. This should be
573** invoked at the conclusion of each write-transaction.
574*/
575static void btreeClearHasContent(BtShared *pBt){
576 sqlite3BitvecDestroy(pBt->pHasContent);
577 pBt->pHasContent = 0;
578}
579
580/*
drh138eeeb2013-03-27 03:15:23 +0000581** Release all of the apPage[] pages for a cursor.
582*/
583static void btreeReleaseAllCursorPages(BtCursor *pCur){
584 int i;
585 for(i=0; i<=pCur->iPage; i++){
586 releasePage(pCur->apPage[i]);
587 pCur->apPage[i] = 0;
588 }
589 pCur->iPage = -1;
590}
591
592
593/*
drh980b1a72006-08-16 16:42:48 +0000594** Save the current cursor position in the variables BtCursor.nKey
595** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000596**
597** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
598** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000599*/
600static int saveCursorPosition(BtCursor *pCur){
601 int rc;
602
drhd2f83132015-03-25 17:35:01 +0000603 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000604 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000605 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000606
drhd2f83132015-03-25 17:35:01 +0000607 if( pCur->eState==CURSOR_SKIPNEXT ){
608 pCur->eState = CURSOR_VALID;
609 }else{
610 pCur->skipNext = 0;
611 }
drh980b1a72006-08-16 16:42:48 +0000612 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000613 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000614
615 /* If this is an intKey table, then the above call to BtreeKeySize()
616 ** stores the integer key in pCur->nKey. In this case this value is
617 ** all that is required. Otherwise, if pCur is not open on an intKey
618 ** table, then malloc space for and store the pCur->nKey bytes of key
619 ** data.
620 */
drh4c301aa2009-07-15 17:25:45 +0000621 if( 0==pCur->apPage[0]->intKey ){
drhda4ca9d2014-09-09 17:27:35 +0000622 void *pKey = sqlite3Malloc( pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000623 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000624 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000625 if( rc==SQLITE_OK ){
626 pCur->pKey = pKey;
627 }else{
drh17435752007-08-16 04:30:38 +0000628 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000629 }
630 }else{
631 rc = SQLITE_NOMEM;
632 }
633 }
danielk197771d5d2c2008-09-29 11:49:47 +0000634 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000635
636 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000637 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000638 pCur->eState = CURSOR_REQUIRESEEK;
639 }
640
danielk197792d4d7a2007-05-04 12:05:56 +0000641 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000642 return rc;
643}
644
drh637f3d82014-08-22 22:26:07 +0000645/* Forward reference */
646static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
647
drh980b1a72006-08-16 16:42:48 +0000648/*
drh0ee3dbe2009-10-16 15:05:18 +0000649** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000650** the table with root-page iRoot. "Saving the cursor position" means that
651** the location in the btree is remembered in such a way that it can be
652** moved back to the same spot after the btree has been modified. This
653** routine is called just before cursor pExcept is used to modify the
654** table, for example in BtreeDelete() or BtreeInsert().
655**
656** Implementation note: This routine merely checks to see if any cursors
657** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
658** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000659*/
660static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000661 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000662 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000663 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000664 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000665 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
666 }
667 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;
668}
669
670/* This helper routine to saveAllCursors does the actual work of saving
671** the cursors if and when a cursor is found that actually requires saving.
672** The common case is that no cursors need to be saved, so this routine is
673** broken out from its caller to avoid unnecessary stack pointer movement.
674*/
675static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000676 BtCursor *p, /* The first cursor that needs saving */
677 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
678 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000679){
680 do{
drh138eeeb2013-03-27 03:15:23 +0000681 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000682 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000683 int rc = saveCursorPosition(p);
684 if( SQLITE_OK!=rc ){
685 return rc;
686 }
687 }else{
688 testcase( p->iPage>0 );
689 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000690 }
691 }
drh637f3d82014-08-22 22:26:07 +0000692 p = p->pNext;
693 }while( p );
drh980b1a72006-08-16 16:42:48 +0000694 return SQLITE_OK;
695}
696
697/*
drhbf700f32007-03-31 02:36:44 +0000698** Clear the current cursor position.
699*/
danielk1977be51a652008-10-08 17:58:48 +0000700void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000701 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000702 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000703 pCur->pKey = 0;
704 pCur->eState = CURSOR_INVALID;
705}
706
707/*
danielk19773509a652009-07-06 18:56:13 +0000708** In this version of BtreeMoveto, pKey is a packed index record
709** such as is generated by the OP_MakeRecord opcode. Unpack the
710** record and then call BtreeMovetoUnpacked() to do the work.
711*/
712static int btreeMoveto(
713 BtCursor *pCur, /* Cursor open on the btree to be searched */
714 const void *pKey, /* Packed key if the btree is an index */
715 i64 nKey, /* Integer key for tables. Size of pKey for indices */
716 int bias, /* Bias search to the high end */
717 int *pRes /* Write search results here */
718){
719 int rc; /* Status code */
720 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000721 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000722 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000723
724 if( pKey ){
725 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000726 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
727 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
728 );
danielk19773509a652009-07-06 18:56:13 +0000729 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000730 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000731 if( pIdxKey->nField==0 ){
732 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
733 return SQLITE_CORRUPT_BKPT;
734 }
danielk19773509a652009-07-06 18:56:13 +0000735 }else{
736 pIdxKey = 0;
737 }
738 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000739 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000740 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000741 }
742 return rc;
743}
744
745/*
drh980b1a72006-08-16 16:42:48 +0000746** Restore the cursor to the position it was in (or as close to as possible)
747** when saveCursorPosition() was called. Note that this call deletes the
748** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000749** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000750** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000751*/
danielk197730548662009-07-09 05:07:37 +0000752static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000753 int rc;
drhd2f83132015-03-25 17:35:01 +0000754 int skipNext;
drh1fee73e2007-08-29 04:00:57 +0000755 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000756 assert( pCur->eState>=CURSOR_REQUIRESEEK );
757 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000758 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000759 }
drh980b1a72006-08-16 16:42:48 +0000760 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000761 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000762 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000763 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000764 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000765 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000766 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000767 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
768 pCur->eState = CURSOR_SKIPNEXT;
769 }
drh980b1a72006-08-16 16:42:48 +0000770 }
771 return rc;
772}
773
drha3460582008-07-11 21:02:53 +0000774#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000775 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000776 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000777 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000778
drha3460582008-07-11 21:02:53 +0000779/*
drh6848dad2014-08-22 23:33:03 +0000780** Determine whether or not a cursor has moved from the position where
781** it was last placed, or has been invalidated for any other reason.
782** Cursors can move when the row they are pointing at is deleted out
783** from under them, for example. Cursor might also move if a btree
784** is rebalanced.
drha3460582008-07-11 21:02:53 +0000785**
drh6848dad2014-08-22 23:33:03 +0000786** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000787**
drh6848dad2014-08-22 23:33:03 +0000788** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
789** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000790*/
drh6848dad2014-08-22 23:33:03 +0000791int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000792 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000793}
794
795/*
796** This routine restores a cursor back to its original position after it
797** has been moved by some outside activity (such as a btree rebalance or
798** a row having been deleted out from under the cursor).
799**
800** On success, the *pDifferentRow parameter is false if the cursor is left
801** pointing at exactly the same row. *pDifferntRow is the row the cursor
802** was pointing to has been deleted, forcing the cursor to point to some
803** nearby row.
804**
805** This routine should only be called for a cursor that just returned
806** TRUE from sqlite3BtreeCursorHasMoved().
807*/
808int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000809 int rc;
810
drh6848dad2014-08-22 23:33:03 +0000811 assert( pCur!=0 );
812 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000813 rc = restoreCursorPosition(pCur);
814 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000815 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000816 return rc;
817 }
drh606a3572015-03-25 18:29:10 +0000818 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000819 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000820 }else{
drh606a3572015-03-25 18:29:10 +0000821 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000822 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000823 }
824 return SQLITE_OK;
825}
826
danielk1977599fcba2004-11-08 07:13:13 +0000827#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000828/*
drha3152892007-05-05 11:48:52 +0000829** Given a page number of a regular database page, return the page
830** number for the pointer-map page that contains the entry for the
831** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000832**
833** Return 0 (not a valid page) for pgno==1 since there is
834** no pointer map associated with page 1. The integrity_check logic
835** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000836*/
danielk1977266664d2006-02-10 08:24:21 +0000837static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000838 int nPagesPerMapPage;
839 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000840 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000841 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000842 nPagesPerMapPage = (pBt->usableSize/5)+1;
843 iPtrMap = (pgno-2)/nPagesPerMapPage;
844 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000845 if( ret==PENDING_BYTE_PAGE(pBt) ){
846 ret++;
847 }
848 return ret;
849}
danielk1977a19df672004-11-03 11:37:07 +0000850
danielk1977afcdd022004-10-31 16:25:42 +0000851/*
danielk1977afcdd022004-10-31 16:25:42 +0000852** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000853**
854** This routine updates the pointer map entry for page number 'key'
855** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000856**
857** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
858** a no-op. If an error occurs, the appropriate error code is written
859** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000860*/
drh98add2e2009-07-20 17:11:49 +0000861static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000862 DbPage *pDbPage; /* The pointer map page */
863 u8 *pPtrmap; /* The pointer map data */
864 Pgno iPtrmap; /* The pointer map page number */
865 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000866 int rc; /* Return code from subfunctions */
867
868 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000869
drh1fee73e2007-08-29 04:00:57 +0000870 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000871 /* The master-journal page number must never be used as a pointer map page */
872 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
873
danielk1977ac11ee62005-01-15 12:45:51 +0000874 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000875 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000876 *pRC = SQLITE_CORRUPT_BKPT;
877 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000878 }
danielk1977266664d2006-02-10 08:24:21 +0000879 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000880 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000881 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000882 *pRC = rc;
883 return;
danielk1977afcdd022004-10-31 16:25:42 +0000884 }
danielk19778c666b12008-07-18 09:34:57 +0000885 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000886 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000887 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000888 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000889 }
drhfc243732011-05-17 15:21:56 +0000890 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000891 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000892
drh615ae552005-01-16 23:21:00 +0000893 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
894 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000895 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000896 if( rc==SQLITE_OK ){
897 pPtrmap[offset] = eType;
898 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000899 }
danielk1977afcdd022004-10-31 16:25:42 +0000900 }
901
drh4925a552009-07-07 11:39:58 +0000902ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000903 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000904}
905
906/*
907** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000908**
909** This routine retrieves the pointer map entry for page 'key', writing
910** the type and parent page number to *pEType and *pPgno respectively.
911** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000912*/
danielk1977aef0bf62005-12-30 16:28:01 +0000913static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000914 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000915 int iPtrmap; /* Pointer map page index */
916 u8 *pPtrmap; /* Pointer map page data */
917 int offset; /* Offset of entry in pointer map */
918 int rc;
919
drh1fee73e2007-08-29 04:00:57 +0000920 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000921
danielk1977266664d2006-02-10 08:24:21 +0000922 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000923 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000924 if( rc!=0 ){
925 return rc;
926 }
danielk19773b8a05f2007-03-19 17:44:26 +0000927 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000928
danielk19778c666b12008-07-18 09:34:57 +0000929 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000930 if( offset<0 ){
931 sqlite3PagerUnref(pDbPage);
932 return SQLITE_CORRUPT_BKPT;
933 }
934 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000935 assert( pEType!=0 );
936 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000937 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000938
danielk19773b8a05f2007-03-19 17:44:26 +0000939 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000940 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000941 return SQLITE_OK;
942}
943
danielk197785d90ca2008-07-19 14:25:15 +0000944#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000945 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000946 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000947 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000948#endif
danielk1977afcdd022004-10-31 16:25:42 +0000949
drh0d316a42002-08-11 20:10:47 +0000950/*
drh271efa52004-05-30 19:19:05 +0000951** Given a btree page and a cell index (0 means the first cell on
952** the page, 1 means the second cell, and so forth) return a pointer
953** to the cell content.
954**
955** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000956*/
drh1688c862008-07-18 02:44:17 +0000957#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000958 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000959
drh43605152004-05-29 21:46:49 +0000960/*
drh5fa60512015-06-19 17:19:34 +0000961** This is common tail processing for btreeParseCellPtr() and
962** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
963** on a single B-tree page. Make necessary adjustments to the CellInfo
964** structure.
drh43605152004-05-29 21:46:49 +0000965*/
drh5fa60512015-06-19 17:19:34 +0000966static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
967 MemPage *pPage, /* Page containing the cell */
968 u8 *pCell, /* Pointer to the cell text. */
969 CellInfo *pInfo /* Fill in this structure */
970){
971 /* If the payload will not fit completely on the local page, we have
972 ** to decide how much to store locally and how much to spill onto
973 ** overflow pages. The strategy is to minimize the amount of unused
974 ** space on overflow pages while keeping the amount of local storage
975 ** in between minLocal and maxLocal.
976 **
977 ** Warning: changing the way overflow payload is distributed in any
978 ** way will result in an incompatible file format.
979 */
980 int minLocal; /* Minimum amount of payload held locally */
981 int maxLocal; /* Maximum amount of payload held locally */
982 int surplus; /* Overflow payload available for local storage */
983
984 minLocal = pPage->minLocal;
985 maxLocal = pPage->maxLocal;
986 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
987 testcase( surplus==maxLocal );
988 testcase( surplus==maxLocal+1 );
989 if( surplus <= maxLocal ){
990 pInfo->nLocal = (u16)surplus;
991 }else{
992 pInfo->nLocal = (u16)minLocal;
993 }
994 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
995 pInfo->nSize = pInfo->iOverflow + 4;
996}
997
998/*
999** The following routines are implementations of the MemPage.xParseCell()
1000** method.
1001**
1002** Parse a cell content block and fill in the CellInfo structure.
1003**
1004** btreeParseCellPtr() => table btree leaf nodes
1005** btreeParseCellNoPayload() => table btree internal nodes
1006** btreeParseCellPtrIndex() => index btree nodes
1007**
1008** There is also a wrapper function btreeParseCell() that works for
1009** all MemPage types and that references the cell by index rather than
1010** by pointer.
1011*/
1012static void btreeParseCellPtrNoPayload(
1013 MemPage *pPage, /* Page containing the cell */
1014 u8 *pCell, /* Pointer to the cell text. */
1015 CellInfo *pInfo /* Fill in this structure */
1016){
1017 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1018 assert( pPage->leaf==0 );
1019 assert( pPage->noPayload );
1020 assert( pPage->childPtrSize==4 );
1021 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1022 pInfo->nPayload = 0;
1023 pInfo->nLocal = 0;
1024 pInfo->iOverflow = 0;
1025 pInfo->pPayload = 0;
1026 return;
1027}
danielk197730548662009-07-09 05:07:37 +00001028static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001029 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001030 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001031 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001032){
drh3e28ff52014-09-24 00:59:08 +00001033 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001034 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001035 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001036
drh1fee73e2007-08-29 04:00:57 +00001037 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001038 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001039 assert( pPage->intKeyLeaf || pPage->noPayload );
1040 assert( pPage->noPayload==0 );
1041 assert( pPage->intKeyLeaf );
1042 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001043 pIter = pCell;
1044
1045 /* The next block of code is equivalent to:
1046 **
1047 ** pIter += getVarint32(pIter, nPayload);
1048 **
1049 ** The code is inlined to avoid a function call.
1050 */
1051 nPayload = *pIter;
1052 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001053 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001054 nPayload &= 0x7f;
1055 do{
1056 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1057 }while( (*pIter)>=0x80 && pIter<pEnd );
1058 }
1059 pIter++;
1060
1061 /* The next block of code is equivalent to:
1062 **
1063 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1064 **
1065 ** The code is inlined to avoid a function call.
1066 */
1067 iKey = *pIter;
1068 if( iKey>=0x80 ){
1069 u8 *pEnd = &pIter[7];
1070 iKey &= 0x7f;
1071 while(1){
1072 iKey = (iKey<<7) | (*++pIter & 0x7f);
1073 if( (*pIter)<0x80 ) break;
1074 if( pIter>=pEnd ){
1075 iKey = (iKey<<8) | *++pIter;
1076 break;
1077 }
1078 }
1079 }
1080 pIter++;
1081
1082 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001083 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001084 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001085 testcase( nPayload==pPage->maxLocal );
1086 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001087 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001088 /* This is the (easy) common case where the entire payload fits
1089 ** on the local page. No overflow is required.
1090 */
drhab1cc582014-09-23 21:25:19 +00001091 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1092 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001093 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001094 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001095 }else{
drh5fa60512015-06-19 17:19:34 +00001096 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1097 }
1098}
1099static void btreeParseCellPtrIndex(
1100 MemPage *pPage, /* Page containing the cell */
1101 u8 *pCell, /* Pointer to the cell text. */
1102 CellInfo *pInfo /* Fill in this structure */
1103){
1104 u8 *pIter; /* For scanning through pCell */
1105 u32 nPayload; /* Number of bytes of cell payload */
drh271efa52004-05-30 19:19:05 +00001106
drh5fa60512015-06-19 17:19:34 +00001107 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1108 assert( pPage->leaf==0 || pPage->leaf==1 );
1109 assert( pPage->intKeyLeaf==0 );
1110 assert( pPage->noPayload==0 );
1111 pIter = pCell + pPage->childPtrSize;
1112 nPayload = *pIter;
1113 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001114 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001115 nPayload &= 0x7f;
1116 do{
1117 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1118 }while( *(pIter)>=0x80 && pIter<pEnd );
1119 }
1120 pIter++;
1121 pInfo->nKey = nPayload;
1122 pInfo->nPayload = nPayload;
1123 pInfo->pPayload = pIter;
1124 testcase( nPayload==pPage->maxLocal );
1125 testcase( nPayload==pPage->maxLocal+1 );
1126 if( nPayload<=pPage->maxLocal ){
1127 /* This is the (easy) common case where the entire payload fits
1128 ** on the local page. No overflow is required.
1129 */
1130 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1131 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1132 pInfo->nLocal = (u16)nPayload;
1133 pInfo->iOverflow = 0;
1134 }else{
1135 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001136 }
drh3aac2dd2004-04-26 14:10:20 +00001137}
danielk197730548662009-07-09 05:07:37 +00001138static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001139 MemPage *pPage, /* Page containing the cell */
1140 int iCell, /* The cell index. First cell is 0 */
1141 CellInfo *pInfo /* Fill in this structure */
1142){
drh5fa60512015-06-19 17:19:34 +00001143 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001144}
drh3aac2dd2004-04-26 14:10:20 +00001145
1146/*
drh5fa60512015-06-19 17:19:34 +00001147** The following routines are implementations of the MemPage.xCellSize
1148** method.
1149**
drh43605152004-05-29 21:46:49 +00001150** Compute the total number of bytes that a Cell needs in the cell
1151** data area of the btree-page. The return number includes the cell
1152** data header and the local payload, but not any overflow page or
1153** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001154**
drh5fa60512015-06-19 17:19:34 +00001155** cellSizePtrNoPayload() => table internal nodes
1156** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001157*/
danielk1977ae5558b2009-04-29 11:31:47 +00001158static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001159 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1160 u8 *pEnd; /* End mark for a varint */
1161 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001162
1163#ifdef SQLITE_DEBUG
1164 /* The value returned by this function should always be the same as
1165 ** the (CellInfo.nSize) value found by doing a full parse of the
1166 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1167 ** this function verifies that this invariant is not violated. */
1168 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001169 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001170#endif
1171
drh25ada072015-06-19 15:07:14 +00001172 assert( pPage->noPayload==0 );
drh3e28ff52014-09-24 00:59:08 +00001173 nSize = *pIter;
1174 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001175 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001176 nSize &= 0x7f;
1177 do{
1178 nSize = (nSize<<7) | (*++pIter & 0x7f);
1179 }while( *(pIter)>=0x80 && pIter<pEnd );
1180 }
1181 pIter++;
drhdc41d602014-09-22 19:51:35 +00001182 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001183 /* pIter now points at the 64-bit integer key value, a variable length
1184 ** integer. The following block moves pIter to point at the first byte
1185 ** past the end of the key value. */
1186 pEnd = &pIter[9];
1187 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001188 }
drh0a45c272009-07-08 01:49:11 +00001189 testcase( nSize==pPage->maxLocal );
1190 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001191 if( nSize<=pPage->maxLocal ){
1192 nSize += (u32)(pIter - pCell);
1193 if( nSize<4 ) nSize = 4;
1194 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001195 int minLocal = pPage->minLocal;
1196 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001197 testcase( nSize==pPage->maxLocal );
1198 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001199 if( nSize>pPage->maxLocal ){
1200 nSize = minLocal;
1201 }
drh3e28ff52014-09-24 00:59:08 +00001202 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001203 }
drhdc41d602014-09-22 19:51:35 +00001204 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001205 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001206}
drh25ada072015-06-19 15:07:14 +00001207static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1208 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1209 u8 *pEnd; /* End mark for a varint */
1210
1211#ifdef SQLITE_DEBUG
1212 /* The value returned by this function should always be the same as
1213 ** the (CellInfo.nSize) value found by doing a full parse of the
1214 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1215 ** this function verifies that this invariant is not violated. */
1216 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001217 pPage->xParseCell(pPage, pCell, &debuginfo);
drh25ada072015-06-19 15:07:14 +00001218#endif
1219
1220 assert( pPage->childPtrSize==4 );
1221 pEnd = pIter + 9;
1222 while( (*pIter++)&0x80 && pIter<pEnd );
1223 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1224 return (u16)(pIter - pCell);
1225}
1226
drh0ee3dbe2009-10-16 15:05:18 +00001227
1228#ifdef SQLITE_DEBUG
1229/* This variation on cellSizePtr() is used inside of assert() statements
1230** only. */
drha9121e42008-02-19 14:59:35 +00001231static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001232 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001233}
danielk1977bc6ada42004-06-30 08:20:16 +00001234#endif
drh3b7511c2001-05-26 13:15:44 +00001235
danielk197779a40da2005-01-16 08:00:01 +00001236#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001237/*
danielk197726836652005-01-17 01:33:13 +00001238** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001239** to an overflow page, insert an entry into the pointer-map
1240** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001241*/
drh98add2e2009-07-20 17:11:49 +00001242static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001243 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001244 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001245 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001246 pPage->xParseCell(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001247 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001248 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001249 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001250 }
danielk1977ac11ee62005-01-15 12:45:51 +00001251}
danielk197779a40da2005-01-16 08:00:01 +00001252#endif
1253
danielk1977ac11ee62005-01-15 12:45:51 +00001254
drhda200cc2004-05-09 11:51:38 +00001255/*
drh72f82862001-05-24 21:06:34 +00001256** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001257** end of the page and all free space is collected into one
1258** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001259** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001260**
1261** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1262** b-tree page so that there are no freeblocks or fragment bytes, all
1263** unused bytes are contained in the unallocated space region, and all
1264** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001265*/
shane0af3f892008-11-12 04:55:34 +00001266static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001267 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001268 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001269 int hdr; /* Offset to the page header */
1270 int size; /* Size of a cell */
1271 int usableSize; /* Number of usable bytes on a page */
1272 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001273 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001274 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001275 unsigned char *data; /* The page data */
1276 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001277 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001278 int iCellFirst; /* First allowable cell index */
1279 int iCellLast; /* Last possible cell index */
1280
drh2af926b2001-05-15 00:39:25 +00001281
danielk19773b8a05f2007-03-19 17:44:26 +00001282 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001283 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001284 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001285 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001286 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001287 temp = 0;
1288 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001289 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001290 cellOffset = pPage->cellOffset;
1291 nCell = pPage->nCell;
1292 assert( nCell==get2byte(&data[hdr+3]) );
1293 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001294 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001295 iCellFirst = cellOffset + 2*nCell;
1296 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001297 for(i=0; i<nCell; i++){
1298 u8 *pAddr; /* The i-th cell pointer */
1299 pAddr = &data[cellOffset + i*2];
1300 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001301 testcase( pc==iCellFirst );
1302 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001303 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001304 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001305 */
1306 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001307 return SQLITE_CORRUPT_BKPT;
1308 }
drh17146622009-07-07 17:38:38 +00001309 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001310 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001311 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001312 if( cbrk<iCellFirst || pc+size>usableSize ){
1313 return SQLITE_CORRUPT_BKPT;
1314 }
drh7157e1d2009-07-09 13:25:32 +00001315 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001316 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001317 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001318 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001319 if( temp==0 ){
1320 int x;
1321 if( cbrk==pc ) continue;
1322 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1323 x = get2byte(&data[hdr+5]);
1324 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1325 src = temp;
1326 }
1327 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001328 }
drh17146622009-07-07 17:38:38 +00001329 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001330 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001331 data[hdr+1] = 0;
1332 data[hdr+2] = 0;
1333 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001334 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001335 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001336 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001337 return SQLITE_CORRUPT_BKPT;
1338 }
shane0af3f892008-11-12 04:55:34 +00001339 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001340}
1341
drha059ad02001-04-17 20:09:11 +00001342/*
dan8e9ba0c2014-10-14 17:27:04 +00001343** Search the free-list on page pPg for space to store a cell nByte bytes in
1344** size. If one can be found, return a pointer to the space and remove it
1345** from the free-list.
1346**
1347** If no suitable space can be found on the free-list, return NULL.
1348**
drhba0f9992014-10-30 20:48:44 +00001349** This function may detect corruption within pPg. If corruption is
1350** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001351**
1352** If a slot of at least nByte bytes is found but cannot be used because
1353** there are already at least 60 fragmented bytes on the page, return NULL.
1354** In this case, if pbDefrag parameter is not NULL, set *pbDefrag to true.
dan8e9ba0c2014-10-14 17:27:04 +00001355*/
dan61e94c92014-10-27 08:02:16 +00001356static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc, int *pbDefrag){
dan8e9ba0c2014-10-14 17:27:04 +00001357 const int hdr = pPg->hdrOffset;
1358 u8 * const aData = pPg->aData;
1359 int iAddr;
1360 int pc;
1361 int usableSize = pPg->pBt->usableSize;
1362
1363 for(iAddr=hdr+1; (pc = get2byte(&aData[iAddr]))>0; iAddr=pc){
1364 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001365 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1366 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001367 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001368 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001369 return 0;
1370 }
drh113762a2014-11-19 16:36:25 +00001371 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1372 ** freeblock form a big-endian integer which is the size of the freeblock
1373 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001374 size = get2byte(&aData[pc+2]);
1375 if( size>=nByte ){
1376 int x = size - nByte;
1377 testcase( x==4 );
1378 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001379 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1380 *pRc = SQLITE_CORRUPT_BKPT;
1381 return 0;
1382 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001383 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1384 ** number of bytes in fragments may not exceed 60. */
dan61e94c92014-10-27 08:02:16 +00001385 if( aData[hdr+7]>=60 ){
1386 if( pbDefrag ) *pbDefrag = 1;
1387 return 0;
1388 }
dan8e9ba0c2014-10-14 17:27:04 +00001389 /* Remove the slot from the free-list. Update the number of
1390 ** fragmented bytes within the page. */
1391 memcpy(&aData[iAddr], &aData[pc], 2);
1392 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001393 }else{
1394 /* The slot remains on the free-list. Reduce its size to account
1395 ** for the portion used by the new allocation. */
1396 put2byte(&aData[pc+2], x);
1397 }
1398 return &aData[pc + x];
1399 }
1400 }
1401
1402 return 0;
1403}
1404
1405/*
danielk19776011a752009-04-01 16:25:32 +00001406** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001407** as the first argument. Write into *pIdx the index into pPage->aData[]
1408** of the first byte of allocated space. Return either SQLITE_OK or
1409** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001410**
drh0a45c272009-07-08 01:49:11 +00001411** The caller guarantees that there is sufficient space to make the
1412** allocation. This routine might need to defragment in order to bring
1413** all the space together, however. This routine will avoid using
1414** the first two bytes past the cell pointer area since presumably this
1415** allocation is being made in order to insert a new cell, so we will
1416** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001417*/
drh0a45c272009-07-08 01:49:11 +00001418static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001419 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1420 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001421 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001422 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001423 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001424
danielk19773b8a05f2007-03-19 17:44:26 +00001425 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001426 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001427 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001428 assert( nByte>=0 ); /* Minimum cell size is 4 */
1429 assert( pPage->nFree>=nByte );
1430 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001431 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001432
drh0a45c272009-07-08 01:49:11 +00001433 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1434 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001435 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001436 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1437 ** and the reserved space is zero (the usual value for reserved space)
1438 ** then the cell content offset of an empty page wants to be 65536.
1439 ** However, that integer is too large to be stored in a 2-byte unsigned
1440 ** integer, so a value of 0 is used in its place. */
1441 top = get2byteNotZero(&data[hdr+5]);
drh672073a2015-06-24 12:07:40 +00001442 if( gap>top || (u32)top>pPage->pBt->usableSize ){
drhe7266222015-05-29 17:51:16 +00001443 return SQLITE_CORRUPT_BKPT;
1444 }
drh4c04f3c2014-08-20 11:56:14 +00001445
1446 /* If there is enough space between gap and top for one more cell pointer
1447 ** array entry offset, and if the freelist is not empty, then search the
1448 ** freelist looking for a free slot big enough to satisfy the request.
1449 */
drh0a45c272009-07-08 01:49:11 +00001450 testcase( gap+2==top );
1451 testcase( gap+1==top );
1452 testcase( gap==top );
drh4c04f3c2014-08-20 11:56:14 +00001453 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
dan61e94c92014-10-27 08:02:16 +00001454 int bDefrag = 0;
1455 u8 *pSpace = pageFindSlot(pPage, nByte, &rc, &bDefrag);
dan8e9ba0c2014-10-14 17:27:04 +00001456 if( rc ) return rc;
dan61e94c92014-10-27 08:02:16 +00001457 if( bDefrag ) goto defragment_page;
dan8e9ba0c2014-10-14 17:27:04 +00001458 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001459 assert( pSpace>=data && (pSpace - data)<65536 );
1460 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001461 return SQLITE_OK;
drh9e572e62004-04-23 23:43:10 +00001462 }
1463 }
drh43605152004-05-29 21:46:49 +00001464
drh4c04f3c2014-08-20 11:56:14 +00001465 /* The request could not be fulfilled using a freelist slot. Check
1466 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001467 */
1468 testcase( gap+2+nByte==top );
1469 if( gap+2+nByte>top ){
dan61e94c92014-10-27 08:02:16 +00001470 defragment_page:
drh1fd2d7d2014-12-02 16:16:47 +00001471 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001472 rc = defragmentPage(pPage);
1473 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001474 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001475 assert( gap+nByte<=top );
1476 }
1477
1478
drh43605152004-05-29 21:46:49 +00001479 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001480 ** and the cell content area. The btreeInitPage() call has already
1481 ** validated the freelist. Given that the freelist is valid, there
1482 ** is no way that the allocation can extend off the end of the page.
1483 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001484 */
drh0a45c272009-07-08 01:49:11 +00001485 top -= nByte;
drh43605152004-05-29 21:46:49 +00001486 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001487 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001488 *pIdx = top;
1489 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001490}
1491
1492/*
drh9e572e62004-04-23 23:43:10 +00001493** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001494** The first byte of the new free block is pPage->aData[iStart]
1495** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001496**
drh5f5c7532014-08-20 17:56:27 +00001497** Adjacent freeblocks are coalesced.
1498**
1499** Note that even though the freeblock list was checked by btreeInitPage(),
1500** that routine will not detect overlap between cells or freeblocks. Nor
1501** does it detect cells or freeblocks that encrouch into the reserved bytes
1502** at the end of the page. So do additional corruption checks inside this
1503** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001504*/
drh5f5c7532014-08-20 17:56:27 +00001505static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001506 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001507 u16 iFreeBlk; /* Address of the next freeblock */
1508 u8 hdr; /* Page header size. 0 or 100 */
1509 u8 nFrag = 0; /* Reduction in fragmentation */
1510 u16 iOrigSize = iSize; /* Original value of iSize */
1511 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1512 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001513 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001514
drh9e572e62004-04-23 23:43:10 +00001515 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001516 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001517 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001518 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001519 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001520 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001521 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001522
drh5f5c7532014-08-20 17:56:27 +00001523 /* Overwrite deleted information with zeros when the secure_delete
1524 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001525 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001526 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001527 }
drhfcce93f2006-02-22 03:08:32 +00001528
drh5f5c7532014-08-20 17:56:27 +00001529 /* The list of freeblocks must be in ascending order. Find the
1530 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001531 */
drh43605152004-05-29 21:46:49 +00001532 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001533 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001534 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1535 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1536 }else{
1537 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1538 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1539 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001540 }
drh7bc4c452014-08-20 18:43:44 +00001541 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1542 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1543
1544 /* At this point:
1545 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001546 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001547 **
1548 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1549 */
1550 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1551 nFrag = iFreeBlk - iEnd;
1552 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1553 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhea82b372015-06-23 21:35:28 +00001554 if( NEVER(iEnd > pPage->pBt->usableSize) ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001555 iSize = iEnd - iStart;
1556 iFreeBlk = get2byte(&data[iFreeBlk]);
1557 }
1558
drh3f387402014-09-24 01:23:00 +00001559 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1560 ** pointer in the page header) then check to see if iStart should be
1561 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001562 */
1563 if( iPtr>hdr+1 ){
1564 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1565 if( iPtrEnd+3>=iStart ){
1566 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1567 nFrag += iStart - iPtrEnd;
1568 iSize = iEnd - iPtr;
1569 iStart = iPtr;
1570 }
1571 }
1572 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1573 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001574 }
drh7bc4c452014-08-20 18:43:44 +00001575 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001576 /* The new freeblock is at the beginning of the cell content area,
1577 ** so just extend the cell content area rather than create another
1578 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001579 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001580 put2byte(&data[hdr+1], iFreeBlk);
1581 put2byte(&data[hdr+5], iEnd);
1582 }else{
1583 /* Insert the new freeblock into the freelist */
1584 put2byte(&data[iPtr], iStart);
1585 put2byte(&data[iStart], iFreeBlk);
1586 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001587 }
drh5f5c7532014-08-20 17:56:27 +00001588 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001589 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001590}
1591
1592/*
drh271efa52004-05-30 19:19:05 +00001593** Decode the flags byte (the first byte of the header) for a page
1594** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001595**
1596** Only the following combinations are supported. Anything different
1597** indicates a corrupt database files:
1598**
1599** PTF_ZERODATA
1600** PTF_ZERODATA | PTF_LEAF
1601** PTF_LEAFDATA | PTF_INTKEY
1602** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001603*/
drh44845222008-07-17 18:39:57 +00001604static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001605 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001606
1607 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001608 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001609 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001610 flagByte &= ~PTF_LEAF;
1611 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001612 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001613 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001614 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001615 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1616 ** table b-tree page. */
1617 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1618 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1619 ** table b-tree page. */
1620 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001621 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001622 if( pPage->leaf ){
1623 pPage->intKeyLeaf = 1;
1624 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001625 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001626 }else{
1627 pPage->intKeyLeaf = 0;
1628 pPage->noPayload = 1;
1629 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001630 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001631 }
drh271efa52004-05-30 19:19:05 +00001632 pPage->maxLocal = pBt->maxLeaf;
1633 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001634 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001635 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1636 ** index b-tree page. */
1637 assert( (PTF_ZERODATA)==2 );
1638 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1639 ** index b-tree page. */
1640 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001641 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001642 pPage->intKeyLeaf = 0;
1643 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001644 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001645 pPage->maxLocal = pBt->maxLocal;
1646 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001647 }else{
drhfdab0262014-11-20 15:30:50 +00001648 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1649 ** an error. */
drh44845222008-07-17 18:39:57 +00001650 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001651 }
drhc9166342012-01-05 23:32:06 +00001652 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001653 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001654}
1655
1656/*
drh7e3b0a02001-04-28 16:52:40 +00001657** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001658**
1659** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001660** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001661** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1662** guarantee that the page is well-formed. It only shows that
1663** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001664*/
danielk197730548662009-07-09 05:07:37 +00001665static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001666
danielk197771d5d2c2008-09-29 11:49:47 +00001667 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001668 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001669 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001670 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001671 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1672 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001673
1674 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001675 u16 pc; /* Address of a freeblock within pPage->aData[] */
1676 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001677 u8 *data; /* Equal to pPage->aData */
1678 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001679 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001680 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001681 int nFree; /* Number of unused bytes on the page */
1682 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001683 int iCellFirst; /* First allowable cell or freeblock offset */
1684 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001685
1686 pBt = pPage->pBt;
1687
danielk1977eaa06f62008-09-18 17:34:44 +00001688 hdr = pPage->hdrOffset;
1689 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001690 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1691 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001692 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001693 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1694 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001695 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001696 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001697 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001698 pPage->aDataEnd = &data[usableSize];
1699 pPage->aCellIdx = &data[cellOffset];
drhfdab0262014-11-20 15:30:50 +00001700 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1701 ** the start of the cell content area. A zero value for this integer is
1702 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001703 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001704 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1705 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001706 pPage->nCell = get2byte(&data[hdr+3]);
1707 if( pPage->nCell>MX_CELL(pBt) ){
1708 /* To many cells for a single page. The page must be corrupt */
1709 return SQLITE_CORRUPT_BKPT;
1710 }
drhb908d762009-07-08 16:54:40 +00001711 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001712 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1713 ** possible for a root page of a table that contains no rows) then the
1714 ** offset to the cell content area will equal the page size minus the
1715 ** bytes of reserved space. */
1716 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001717
shane5eff7cf2009-08-10 03:57:58 +00001718 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001719 ** of page when parsing a cell.
1720 **
1721 ** The following block of code checks early to see if a cell extends
1722 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1723 ** returned if it does.
1724 */
drh0a45c272009-07-08 01:49:11 +00001725 iCellFirst = cellOffset + 2*pPage->nCell;
1726 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001727 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001728 int i; /* Index into the cell pointer array */
1729 int sz; /* Size of a cell */
1730
drh69e931e2009-06-03 21:04:35 +00001731 if( !pPage->leaf ) iCellLast--;
1732 for(i=0; i<pPage->nCell; i++){
1733 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001734 testcase( pc==iCellFirst );
1735 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001736 if( pc<iCellFirst || pc>iCellLast ){
1737 return SQLITE_CORRUPT_BKPT;
1738 }
drh25ada072015-06-19 15:07:14 +00001739 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001740 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001741 if( pc+sz>usableSize ){
1742 return SQLITE_CORRUPT_BKPT;
1743 }
1744 }
drh0a45c272009-07-08 01:49:11 +00001745 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001746 }
drh69e931e2009-06-03 21:04:35 +00001747
drhfdab0262014-11-20 15:30:50 +00001748 /* Compute the total free space on the page
1749 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1750 ** start of the first freeblock on the page, or is zero if there are no
1751 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001752 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001753 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001754 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001755 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001756 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001757 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1758 ** always be at least one cell before the first freeblock.
1759 **
1760 ** Or, the freeblock is off the end of the page
1761 */
danielk1977eaa06f62008-09-18 17:34:44 +00001762 return SQLITE_CORRUPT_BKPT;
1763 }
1764 next = get2byte(&data[pc]);
1765 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001766 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1767 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001768 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001769 return SQLITE_CORRUPT_BKPT;
1770 }
shane85095702009-06-15 16:27:08 +00001771 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001772 pc = next;
1773 }
danielk197793c829c2009-06-03 17:26:17 +00001774
1775 /* At this point, nFree contains the sum of the offset to the start
1776 ** of the cell-content area plus the number of free bytes within
1777 ** the cell-content area. If this is greater than the usable-size
1778 ** of the page, then the page must be corrupted. This check also
1779 ** serves to verify that the offset to the start of the cell-content
1780 ** area, according to the page header, lies within the page.
1781 */
1782 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001783 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001784 }
shane5eff7cf2009-08-10 03:57:58 +00001785 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001786 pPage->isInit = 1;
1787 }
drh9e572e62004-04-23 23:43:10 +00001788 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001789}
1790
1791/*
drh8b2f49b2001-06-08 00:21:52 +00001792** Set up a raw page so that it looks like a database page holding
1793** no entries.
drhbd03cae2001-06-02 02:40:57 +00001794*/
drh9e572e62004-04-23 23:43:10 +00001795static void zeroPage(MemPage *pPage, int flags){
1796 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001797 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001798 u8 hdr = pPage->hdrOffset;
1799 u16 first;
drh9e572e62004-04-23 23:43:10 +00001800
danielk19773b8a05f2007-03-19 17:44:26 +00001801 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001802 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1803 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001804 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001805 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001806 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001807 memset(&data[hdr], 0, pBt->usableSize - hdr);
1808 }
drh1bd10f82008-12-10 21:19:56 +00001809 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001810 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001811 memset(&data[hdr+1], 0, 4);
1812 data[hdr+7] = 0;
1813 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001814 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001815 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001816 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001817 pPage->aDataEnd = &data[pBt->usableSize];
1818 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001819 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001820 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1821 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001822 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001823 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001824}
1825
drh897a8202008-09-18 01:08:15 +00001826
1827/*
1828** Convert a DbPage obtained from the pager into a MemPage used by
1829** the btree layer.
1830*/
1831static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1832 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1833 pPage->aData = sqlite3PagerGetData(pDbPage);
1834 pPage->pDbPage = pDbPage;
1835 pPage->pBt = pBt;
1836 pPage->pgno = pgno;
1837 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1838 return pPage;
1839}
1840
drhbd03cae2001-06-02 02:40:57 +00001841/*
drh3aac2dd2004-04-26 14:10:20 +00001842** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001843** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001844**
drh7e8c6f12015-05-28 03:28:27 +00001845** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1846** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001847** to fetch the content. Just fill in the content with zeros for now.
1848** If in the future we call sqlite3PagerWrite() on this page, that
1849** means we have started to be concerned about content and the disk
1850** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001851*/
danielk197730548662009-07-09 05:07:37 +00001852static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001853 BtShared *pBt, /* The btree */
1854 Pgno pgno, /* Number of the page to fetch */
1855 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001856 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001857){
drh3aac2dd2004-04-26 14:10:20 +00001858 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001859 DbPage *pDbPage;
1860
drhb00fc3b2013-08-21 23:42:32 +00001861 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001862 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001863 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001864 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001865 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001866 return SQLITE_OK;
1867}
1868
1869/*
danielk1977bea2a942009-01-20 17:06:27 +00001870** Retrieve a page from the pager cache. If the requested page is not
1871** already in the pager cache return NULL. Initialize the MemPage.pBt and
1872** MemPage.aData elements if needed.
1873*/
1874static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1875 DbPage *pDbPage;
1876 assert( sqlite3_mutex_held(pBt->mutex) );
1877 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1878 if( pDbPage ){
1879 return btreePageFromDbPage(pDbPage, pgno, pBt);
1880 }
1881 return 0;
1882}
1883
1884/*
danielk197789d40042008-11-17 14:20:56 +00001885** Return the size of the database file in pages. If there is any kind of
1886** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001887*/
drhb1299152010-03-30 22:58:33 +00001888static Pgno btreePagecount(BtShared *pBt){
1889 return pBt->nPage;
1890}
1891u32 sqlite3BtreeLastPage(Btree *p){
1892 assert( sqlite3BtreeHoldsMutex(p) );
1893 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001894 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001895}
1896
1897/*
danielk197789bc4bc2009-07-21 19:25:24 +00001898** Get a page from the pager and initialize it. This routine is just a
1899** convenience wrapper around separate calls to btreeGetPage() and
1900** btreeInitPage().
1901**
1902** If an error occurs, then the value *ppPage is set to is undefined. It
1903** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001904*/
1905static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001906 BtShared *pBt, /* The database file */
1907 Pgno pgno, /* Number of the page to get */
1908 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001909 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001910){
1911 int rc;
drh1fee73e2007-08-29 04:00:57 +00001912 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001913 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001914
danba3cbf32010-06-30 04:29:03 +00001915 if( pgno>btreePagecount(pBt) ){
1916 rc = SQLITE_CORRUPT_BKPT;
1917 }else{
drhb00fc3b2013-08-21 23:42:32 +00001918 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001919 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001920 rc = btreeInitPage(*ppPage);
1921 if( rc!=SQLITE_OK ){
1922 releasePage(*ppPage);
1923 }
danielk197789bc4bc2009-07-21 19:25:24 +00001924 }
drhee696e22004-08-30 16:52:17 +00001925 }
danba3cbf32010-06-30 04:29:03 +00001926
1927 testcase( pgno==0 );
1928 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001929 return rc;
1930}
1931
1932/*
drh3aac2dd2004-04-26 14:10:20 +00001933** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001934** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001935*/
drh4b70f112004-05-02 21:12:19 +00001936static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001937 if( pPage ){
1938 assert( pPage->aData );
1939 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001940 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001941 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1942 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001943 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001944 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001945 }
1946}
1947
1948/*
drh7e8c6f12015-05-28 03:28:27 +00001949** Get an unused page.
1950**
1951** This works just like btreeGetPage() with the addition:
1952**
1953** * If the page is already in use for some other purpose, immediately
1954** release it and return an SQLITE_CURRUPT error.
1955** * Make sure the isInit flag is clear
1956*/
1957static int btreeGetUnusedPage(
1958 BtShared *pBt, /* The btree */
1959 Pgno pgno, /* Number of the page to fetch */
1960 MemPage **ppPage, /* Return the page in this parameter */
1961 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1962){
1963 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
1964 if( rc==SQLITE_OK ){
1965 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
1966 releasePage(*ppPage);
1967 *ppPage = 0;
1968 return SQLITE_CORRUPT_BKPT;
1969 }
1970 (*ppPage)->isInit = 0;
1971 }else{
1972 *ppPage = 0;
1973 }
1974 return rc;
1975}
1976
1977
1978/*
drha6abd042004-06-09 17:37:22 +00001979** During a rollback, when the pager reloads information into the cache
1980** so that the cache is restored to its original state at the start of
1981** the transaction, for each page restored this routine is called.
1982**
1983** This routine needs to reset the extra data section at the end of the
1984** page to agree with the restored data.
1985*/
danielk1977eaa06f62008-09-18 17:34:44 +00001986static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001987 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001988 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001989 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001990 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001991 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001992 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001993 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001994 /* pPage might not be a btree page; it might be an overflow page
1995 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001996 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001997 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001998 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001999 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002000 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002001 }
drha6abd042004-06-09 17:37:22 +00002002 }
2003}
2004
2005/*
drhe5fe6902007-12-07 18:55:28 +00002006** Invoke the busy handler for a btree.
2007*/
danielk19771ceedd32008-11-19 10:22:33 +00002008static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002009 BtShared *pBt = (BtShared*)pArg;
2010 assert( pBt->db );
2011 assert( sqlite3_mutex_held(pBt->db->mutex) );
2012 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2013}
2014
2015/*
drhad3e0102004-09-03 23:32:18 +00002016** Open a database file.
2017**
drh382c0242001-10-06 16:33:02 +00002018** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002019** then an ephemeral database is created. The ephemeral database might
2020** be exclusively in memory, or it might use a disk-based memory cache.
2021** Either way, the ephemeral database will be automatically deleted
2022** when sqlite3BtreeClose() is called.
2023**
drhe53831d2007-08-17 01:14:38 +00002024** If zFilename is ":memory:" then an in-memory database is created
2025** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002026**
drh33f111d2012-01-17 15:29:14 +00002027** The "flags" parameter is a bitmask that might contain bits like
2028** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002029**
drhc47fd8e2009-04-30 13:30:32 +00002030** If the database is already opened in the same database connection
2031** and we are in shared cache mode, then the open will fail with an
2032** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2033** objects in the same database connection since doing so will lead
2034** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002035*/
drh23e11ca2004-05-04 17:27:28 +00002036int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002037 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002038 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002039 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002040 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002041 int flags, /* Options */
2042 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002043){
drh7555d8e2009-03-20 13:15:30 +00002044 BtShared *pBt = 0; /* Shared part of btree structure */
2045 Btree *p; /* Handle to return */
2046 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2047 int rc = SQLITE_OK; /* Result code from this function */
2048 u8 nReserve; /* Byte of unused space on each page */
2049 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002050
drh75c014c2010-08-30 15:02:28 +00002051 /* True if opening an ephemeral, temporary database */
2052 const int isTempDb = zFilename==0 || zFilename[0]==0;
2053
danielk1977aef0bf62005-12-30 16:28:01 +00002054 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002055 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002056 */
drhb0a7c9c2010-12-06 21:09:59 +00002057#ifdef SQLITE_OMIT_MEMORYDB
2058 const int isMemdb = 0;
2059#else
2060 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002061 || (isTempDb && sqlite3TempInMemory(db))
2062 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002063#endif
2064
drhe5fe6902007-12-07 18:55:28 +00002065 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002066 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002067 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002068 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2069
2070 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2071 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2072
2073 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2074 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002075
drh75c014c2010-08-30 15:02:28 +00002076 if( isMemdb ){
2077 flags |= BTREE_MEMORY;
2078 }
2079 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2080 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2081 }
drh17435752007-08-16 04:30:38 +00002082 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002083 if( !p ){
2084 return SQLITE_NOMEM;
2085 }
2086 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002087 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002088#ifndef SQLITE_OMIT_SHARED_CACHE
2089 p->lock.pBtree = p;
2090 p->lock.iTable = 1;
2091#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002092
drh198bf392006-01-06 21:52:49 +00002093#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002094 /*
2095 ** If this Btree is a candidate for shared cache, try to find an
2096 ** existing BtShared object that we can share with
2097 */
drh4ab9d252012-05-26 20:08:49 +00002098 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002099 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002100 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002101 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002102 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002103 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002104
drhff0587c2007-08-29 17:43:19 +00002105 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002106 if( !zFullPathname ){
2107 sqlite3_free(p);
2108 return SQLITE_NOMEM;
2109 }
drhafc8b7f2012-05-26 18:06:38 +00002110 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002111 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002112 }else{
2113 rc = sqlite3OsFullPathname(pVfs, zFilename,
2114 nFullPathname, zFullPathname);
2115 if( rc ){
2116 sqlite3_free(zFullPathname);
2117 sqlite3_free(p);
2118 return rc;
2119 }
drh070ad6b2011-11-17 11:43:19 +00002120 }
drh30ddce62011-10-15 00:16:30 +00002121#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002122 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2123 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002124 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002125 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002126#endif
drh78f82d12008-09-02 00:52:52 +00002127 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002128 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002129 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002130 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002131 int iDb;
2132 for(iDb=db->nDb-1; iDb>=0; iDb--){
2133 Btree *pExisting = db->aDb[iDb].pBt;
2134 if( pExisting && pExisting->pBt==pBt ){
2135 sqlite3_mutex_leave(mutexShared);
2136 sqlite3_mutex_leave(mutexOpen);
2137 sqlite3_free(zFullPathname);
2138 sqlite3_free(p);
2139 return SQLITE_CONSTRAINT;
2140 }
2141 }
drhff0587c2007-08-29 17:43:19 +00002142 p->pBt = pBt;
2143 pBt->nRef++;
2144 break;
2145 }
2146 }
2147 sqlite3_mutex_leave(mutexShared);
2148 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002149 }
drhff0587c2007-08-29 17:43:19 +00002150#ifdef SQLITE_DEBUG
2151 else{
2152 /* In debug mode, we mark all persistent databases as sharable
2153 ** even when they are not. This exercises the locking code and
2154 ** gives more opportunity for asserts(sqlite3_mutex_held())
2155 ** statements to find locking problems.
2156 */
2157 p->sharable = 1;
2158 }
2159#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002160 }
2161#endif
drha059ad02001-04-17 20:09:11 +00002162 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002163 /*
2164 ** The following asserts make sure that structures used by the btree are
2165 ** the right size. This is to guard against size changes that result
2166 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002167 */
drh062cf272015-03-23 19:03:51 +00002168 assert( sizeof(i64)==8 );
2169 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002170 assert( sizeof(u32)==4 );
2171 assert( sizeof(u16)==2 );
2172 assert( sizeof(Pgno)==4 );
2173
2174 pBt = sqlite3MallocZero( sizeof(*pBt) );
2175 if( pBt==0 ){
2176 rc = SQLITE_NOMEM;
2177 goto btree_open_out;
2178 }
danielk197771d5d2c2008-09-29 11:49:47 +00002179 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002180 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002181 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002182 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002183 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2184 }
2185 if( rc!=SQLITE_OK ){
2186 goto btree_open_out;
2187 }
shanehbd2aaf92010-09-01 02:38:21 +00002188 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002189 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002190 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002191 p->pBt = pBt;
2192
drhe53831d2007-08-17 01:14:38 +00002193 pBt->pCursor = 0;
2194 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002195 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002196#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002197 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002198#endif
drh113762a2014-11-19 16:36:25 +00002199 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2200 ** determined by the 2-byte integer located at an offset of 16 bytes from
2201 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002202 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002203 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2204 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002205 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002206#ifndef SQLITE_OMIT_AUTOVACUUM
2207 /* If the magic name ":memory:" will create an in-memory database, then
2208 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2209 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2210 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2211 ** regular file-name. In this case the auto-vacuum applies as per normal.
2212 */
2213 if( zFilename && !isMemdb ){
2214 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2215 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2216 }
2217#endif
2218 nReserve = 0;
2219 }else{
drh113762a2014-11-19 16:36:25 +00002220 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2221 ** determined by the one-byte unsigned integer found at an offset of 20
2222 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002223 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002224 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002225#ifndef SQLITE_OMIT_AUTOVACUUM
2226 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2227 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2228#endif
2229 }
drhfa9601a2009-06-18 17:22:39 +00002230 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002231 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002232 pBt->usableSize = pBt->pageSize - nReserve;
2233 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002234
2235#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2236 /* Add the new BtShared object to the linked list sharable BtShareds.
2237 */
2238 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002239 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002240 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002241 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002242 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002243 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002244 if( pBt->mutex==0 ){
2245 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002246 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002247 goto btree_open_out;
2248 }
drhff0587c2007-08-29 17:43:19 +00002249 }
drhe53831d2007-08-17 01:14:38 +00002250 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002251 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2252 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002253 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002254 }
drheee46cf2004-11-06 00:02:48 +00002255#endif
drh90f5ecb2004-07-22 01:19:35 +00002256 }
danielk1977aef0bf62005-12-30 16:28:01 +00002257
drhcfed7bc2006-03-13 14:28:05 +00002258#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002259 /* If the new Btree uses a sharable pBtShared, then link the new
2260 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002261 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002262 */
drhe53831d2007-08-17 01:14:38 +00002263 if( p->sharable ){
2264 int i;
2265 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002266 for(i=0; i<db->nDb; i++){
2267 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002268 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2269 if( p->pBt<pSib->pBt ){
2270 p->pNext = pSib;
2271 p->pPrev = 0;
2272 pSib->pPrev = p;
2273 }else{
drhabddb0c2007-08-20 13:14:28 +00002274 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002275 pSib = pSib->pNext;
2276 }
2277 p->pNext = pSib->pNext;
2278 p->pPrev = pSib;
2279 if( p->pNext ){
2280 p->pNext->pPrev = p;
2281 }
2282 pSib->pNext = p;
2283 }
2284 break;
2285 }
2286 }
danielk1977aef0bf62005-12-30 16:28:01 +00002287 }
danielk1977aef0bf62005-12-30 16:28:01 +00002288#endif
2289 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002290
2291btree_open_out:
2292 if( rc!=SQLITE_OK ){
2293 if( pBt && pBt->pPager ){
2294 sqlite3PagerClose(pBt->pPager);
2295 }
drh17435752007-08-16 04:30:38 +00002296 sqlite3_free(pBt);
2297 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002298 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002299 }else{
2300 /* If the B-Tree was successfully opened, set the pager-cache size to the
2301 ** default value. Except, when opening on an existing shared pager-cache,
2302 ** do not change the pager-cache size.
2303 */
2304 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2305 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2306 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002307 }
drh7555d8e2009-03-20 13:15:30 +00002308 if( mutexOpen ){
2309 assert( sqlite3_mutex_held(mutexOpen) );
2310 sqlite3_mutex_leave(mutexOpen);
2311 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002312 return rc;
drha059ad02001-04-17 20:09:11 +00002313}
2314
2315/*
drhe53831d2007-08-17 01:14:38 +00002316** Decrement the BtShared.nRef counter. When it reaches zero,
2317** remove the BtShared structure from the sharing list. Return
2318** true if the BtShared.nRef counter reaches zero and return
2319** false if it is still positive.
2320*/
2321static int removeFromSharingList(BtShared *pBt){
2322#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002323 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002324 BtShared *pList;
2325 int removed = 0;
2326
drhd677b3d2007-08-20 22:48:41 +00002327 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002328 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002329 sqlite3_mutex_enter(pMaster);
2330 pBt->nRef--;
2331 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002332 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2333 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002334 }else{
drh78f82d12008-09-02 00:52:52 +00002335 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002336 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002337 pList=pList->pNext;
2338 }
drh34004ce2008-07-11 16:15:17 +00002339 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002340 pList->pNext = pBt->pNext;
2341 }
2342 }
drh3285db22007-09-03 22:00:39 +00002343 if( SQLITE_THREADSAFE ){
2344 sqlite3_mutex_free(pBt->mutex);
2345 }
drhe53831d2007-08-17 01:14:38 +00002346 removed = 1;
2347 }
2348 sqlite3_mutex_leave(pMaster);
2349 return removed;
2350#else
2351 return 1;
2352#endif
2353}
2354
2355/*
drhf7141992008-06-19 00:16:08 +00002356** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002357** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2358** pointer.
drhf7141992008-06-19 00:16:08 +00002359*/
2360static void allocateTempSpace(BtShared *pBt){
2361 if( !pBt->pTmpSpace ){
2362 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002363
2364 /* One of the uses of pBt->pTmpSpace is to format cells before
2365 ** inserting them into a leaf page (function fillInCell()). If
2366 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2367 ** by the various routines that manipulate binary cells. Which
2368 ** can mean that fillInCell() only initializes the first 2 or 3
2369 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2370 ** it into a database page. This is not actually a problem, but it
2371 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2372 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002373 ** zero the first 4 bytes of temp space here.
2374 **
2375 ** Also: Provide four bytes of initialized space before the
2376 ** beginning of pTmpSpace as an area available to prepend the
2377 ** left-child pointer to the beginning of a cell.
2378 */
2379 if( pBt->pTmpSpace ){
2380 memset(pBt->pTmpSpace, 0, 8);
2381 pBt->pTmpSpace += 4;
2382 }
drhf7141992008-06-19 00:16:08 +00002383 }
2384}
2385
2386/*
2387** Free the pBt->pTmpSpace allocation
2388*/
2389static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002390 if( pBt->pTmpSpace ){
2391 pBt->pTmpSpace -= 4;
2392 sqlite3PageFree(pBt->pTmpSpace);
2393 pBt->pTmpSpace = 0;
2394 }
drhf7141992008-06-19 00:16:08 +00002395}
2396
2397/*
drha059ad02001-04-17 20:09:11 +00002398** Close an open database and invalidate all cursors.
2399*/
danielk1977aef0bf62005-12-30 16:28:01 +00002400int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002401 BtShared *pBt = p->pBt;
2402 BtCursor *pCur;
2403
danielk1977aef0bf62005-12-30 16:28:01 +00002404 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002405 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002406 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002407 pCur = pBt->pCursor;
2408 while( pCur ){
2409 BtCursor *pTmp = pCur;
2410 pCur = pCur->pNext;
2411 if( pTmp->pBtree==p ){
2412 sqlite3BtreeCloseCursor(pTmp);
2413 }
drha059ad02001-04-17 20:09:11 +00002414 }
danielk1977aef0bf62005-12-30 16:28:01 +00002415
danielk19778d34dfd2006-01-24 16:37:57 +00002416 /* Rollback any active transaction and free the handle structure.
2417 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2418 ** this handle.
2419 */
drh47b7fc72014-11-11 01:33:57 +00002420 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002421 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002422
danielk1977aef0bf62005-12-30 16:28:01 +00002423 /* If there are still other outstanding references to the shared-btree
2424 ** structure, return now. The remainder of this procedure cleans
2425 ** up the shared-btree.
2426 */
drhe53831d2007-08-17 01:14:38 +00002427 assert( p->wantToLock==0 && p->locked==0 );
2428 if( !p->sharable || removeFromSharingList(pBt) ){
2429 /* The pBt is no longer on the sharing list, so we can access
2430 ** it without having to hold the mutex.
2431 **
2432 ** Clean out and delete the BtShared object.
2433 */
2434 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002435 sqlite3PagerClose(pBt->pPager);
2436 if( pBt->xFreeSchema && pBt->pSchema ){
2437 pBt->xFreeSchema(pBt->pSchema);
2438 }
drhb9755982010-07-24 16:34:37 +00002439 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002440 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002441 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002442 }
2443
drhe53831d2007-08-17 01:14:38 +00002444#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002445 assert( p->wantToLock==0 );
2446 assert( p->locked==0 );
2447 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2448 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002449#endif
2450
drhe53831d2007-08-17 01:14:38 +00002451 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002452 return SQLITE_OK;
2453}
2454
2455/*
drhda47d772002-12-02 04:25:19 +00002456** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002457**
2458** The maximum number of cache pages is set to the absolute
2459** value of mxPage. If mxPage is negative, the pager will
2460** operate asynchronously - it will not stop to do fsync()s
2461** to insure data is written to the disk surface before
2462** continuing. Transactions still work if synchronous is off,
2463** and the database cannot be corrupted if this program
2464** crashes. But if the operating system crashes or there is
2465** an abrupt power failure when synchronous is off, the database
2466** could be left in an inconsistent and unrecoverable state.
2467** Synchronous is on by default so database corruption is not
2468** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002469*/
danielk1977aef0bf62005-12-30 16:28:01 +00002470int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2471 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002472 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002473 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002474 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002475 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002476 return SQLITE_OK;
2477}
2478
drh18c7e402014-03-14 11:46:10 +00002479#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002480/*
dan5d8a1372013-03-19 19:28:06 +00002481** Change the limit on the amount of the database file that may be
2482** memory mapped.
2483*/
drh9b4c59f2013-04-15 17:03:42 +00002484int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002485 BtShared *pBt = p->pBt;
2486 assert( sqlite3_mutex_held(p->db->mutex) );
2487 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002488 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002489 sqlite3BtreeLeave(p);
2490 return SQLITE_OK;
2491}
drh18c7e402014-03-14 11:46:10 +00002492#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002493
2494/*
drh973b6e32003-02-12 14:09:42 +00002495** Change the way data is synced to disk in order to increase or decrease
2496** how well the database resists damage due to OS crashes and power
2497** failures. Level 1 is the same as asynchronous (no syncs() occur and
2498** there is a high probability of damage) Level 2 is the default. There
2499** is a very low but non-zero probability of damage. Level 3 reduces the
2500** probability of damage to near zero but with a write performance reduction.
2501*/
danielk197793758c82005-01-21 08:13:14 +00002502#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002503int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002504 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002505 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002506){
danielk1977aef0bf62005-12-30 16:28:01 +00002507 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002508 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002509 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002510 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002511 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002512 return SQLITE_OK;
2513}
danielk197793758c82005-01-21 08:13:14 +00002514#endif
drh973b6e32003-02-12 14:09:42 +00002515
drh2c8997b2005-08-27 16:36:48 +00002516/*
2517** Return TRUE if the given btree is set to safety level 1. In other
2518** words, return TRUE if no sync() occurs on the disk files.
2519*/
danielk1977aef0bf62005-12-30 16:28:01 +00002520int sqlite3BtreeSyncDisabled(Btree *p){
2521 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002522 int rc;
drhe5fe6902007-12-07 18:55:28 +00002523 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002524 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002525 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002526 rc = sqlite3PagerNosync(pBt->pPager);
2527 sqlite3BtreeLeave(p);
2528 return rc;
drh2c8997b2005-08-27 16:36:48 +00002529}
2530
drh973b6e32003-02-12 14:09:42 +00002531/*
drh90f5ecb2004-07-22 01:19:35 +00002532** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002533** Or, if the page size has already been fixed, return SQLITE_READONLY
2534** without changing anything.
drh06f50212004-11-02 14:24:33 +00002535**
2536** The page size must be a power of 2 between 512 and 65536. If the page
2537** size supplied does not meet this constraint then the page size is not
2538** changed.
2539**
2540** Page sizes are constrained to be a power of two so that the region
2541** of the database file used for locking (beginning at PENDING_BYTE,
2542** the first byte past the 1GB boundary, 0x40000000) needs to occur
2543** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002544**
2545** If parameter nReserve is less than zero, then the number of reserved
2546** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002547**
drhc9166342012-01-05 23:32:06 +00002548** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002549** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002550*/
drhce4869f2009-04-02 20:16:58 +00002551int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002552 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002553 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002554 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002555 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002556#if SQLITE_HAS_CODEC
2557 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2558#endif
drhc9166342012-01-05 23:32:06 +00002559 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002560 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002561 return SQLITE_READONLY;
2562 }
2563 if( nReserve<0 ){
2564 nReserve = pBt->pageSize - pBt->usableSize;
2565 }
drhf49661a2008-12-10 16:45:50 +00002566 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002567 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2568 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002569 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002570 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002571 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002572 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002573 }
drhfa9601a2009-06-18 17:22:39 +00002574 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002575 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002576 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002577 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002578 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002579}
2580
2581/*
2582** Return the currently defined page size
2583*/
danielk1977aef0bf62005-12-30 16:28:01 +00002584int sqlite3BtreeGetPageSize(Btree *p){
2585 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002586}
drh7f751222009-03-17 22:33:00 +00002587
dan0094f372012-09-28 20:23:42 +00002588/*
2589** This function is similar to sqlite3BtreeGetReserve(), except that it
2590** may only be called if it is guaranteed that the b-tree mutex is already
2591** held.
2592**
2593** This is useful in one special case in the backup API code where it is
2594** known that the shared b-tree mutex is held, but the mutex on the
2595** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2596** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002597** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002598*/
2599int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002600 int n;
dan0094f372012-09-28 20:23:42 +00002601 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002602 n = p->pBt->pageSize - p->pBt->usableSize;
2603 return n;
dan0094f372012-09-28 20:23:42 +00002604}
2605
drh7f751222009-03-17 22:33:00 +00002606/*
2607** Return the number of bytes of space at the end of every page that
2608** are intentually left unused. This is the "reserved" space that is
2609** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002610**
2611** If SQLITE_HAS_MUTEX is defined then the number returned is the
2612** greater of the current reserved space and the maximum requested
2613** reserve space.
drh7f751222009-03-17 22:33:00 +00002614*/
drhad0961b2015-02-21 00:19:25 +00002615int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002616 int n;
2617 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002618 n = sqlite3BtreeGetReserveNoMutex(p);
2619#ifdef SQLITE_HAS_CODEC
2620 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2621#endif
drhd677b3d2007-08-20 22:48:41 +00002622 sqlite3BtreeLeave(p);
2623 return n;
drh2011d5f2004-07-22 02:40:37 +00002624}
drhf8e632b2007-05-08 14:51:36 +00002625
drhad0961b2015-02-21 00:19:25 +00002626
drhf8e632b2007-05-08 14:51:36 +00002627/*
2628** Set the maximum page count for a database if mxPage is positive.
2629** No changes are made if mxPage is 0 or negative.
2630** Regardless of the value of mxPage, return the maximum page count.
2631*/
2632int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002633 int n;
2634 sqlite3BtreeEnter(p);
2635 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2636 sqlite3BtreeLeave(p);
2637 return n;
drhf8e632b2007-05-08 14:51:36 +00002638}
drh5b47efa2010-02-12 18:18:39 +00002639
2640/*
drhc9166342012-01-05 23:32:06 +00002641** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2642** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002643** setting after the change.
2644*/
2645int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2646 int b;
drhaf034ed2010-02-12 19:46:26 +00002647 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002648 sqlite3BtreeEnter(p);
2649 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002650 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2651 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002652 }
drhc9166342012-01-05 23:32:06 +00002653 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002654 sqlite3BtreeLeave(p);
2655 return b;
2656}
drh90f5ecb2004-07-22 01:19:35 +00002657
2658/*
danielk1977951af802004-11-05 15:45:09 +00002659** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2660** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2661** is disabled. The default value for the auto-vacuum property is
2662** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2663*/
danielk1977aef0bf62005-12-30 16:28:01 +00002664int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002665#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002666 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002667#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002668 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002669 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002670 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002671
2672 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002673 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002674 rc = SQLITE_READONLY;
2675 }else{
drh076d4662009-02-18 20:31:18 +00002676 pBt->autoVacuum = av ?1:0;
2677 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002678 }
drhd677b3d2007-08-20 22:48:41 +00002679 sqlite3BtreeLeave(p);
2680 return rc;
danielk1977951af802004-11-05 15:45:09 +00002681#endif
2682}
2683
2684/*
2685** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2686** enabled 1 is returned. Otherwise 0.
2687*/
danielk1977aef0bf62005-12-30 16:28:01 +00002688int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002689#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002690 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002691#else
drhd677b3d2007-08-20 22:48:41 +00002692 int rc;
2693 sqlite3BtreeEnter(p);
2694 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002695 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2696 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2697 BTREE_AUTOVACUUM_INCR
2698 );
drhd677b3d2007-08-20 22:48:41 +00002699 sqlite3BtreeLeave(p);
2700 return rc;
danielk1977951af802004-11-05 15:45:09 +00002701#endif
2702}
2703
2704
2705/*
drha34b6762004-05-07 13:30:42 +00002706** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002707** also acquire a readlock on that file.
2708**
2709** SQLITE_OK is returned on success. If the file is not a
2710** well-formed database file, then SQLITE_CORRUPT is returned.
2711** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002712** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002713*/
danielk1977aef0bf62005-12-30 16:28:01 +00002714static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002715 int rc; /* Result code from subfunctions */
2716 MemPage *pPage1; /* Page 1 of the database file */
2717 int nPage; /* Number of pages in the database */
2718 int nPageFile = 0; /* Number of pages in the database file */
2719 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002720
drh1fee73e2007-08-29 04:00:57 +00002721 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002722 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002723 rc = sqlite3PagerSharedLock(pBt->pPager);
2724 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002725 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002726 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002727
2728 /* Do some checking to help insure the file we opened really is
2729 ** a valid database file.
2730 */
drhc2a4bab2010-04-02 12:46:45 +00002731 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002732 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002733 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002734 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002735 }
2736 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002737 u32 pageSize;
2738 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002739 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002740 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002741 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2742 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2743 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002744 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002745 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002746 }
dan5cf53532010-05-01 16:40:20 +00002747
2748#ifdef SQLITE_OMIT_WAL
2749 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002750 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002751 }
2752 if( page1[19]>1 ){
2753 goto page1_init_failed;
2754 }
2755#else
dane04dc882010-04-20 18:53:15 +00002756 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002757 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002758 }
dane04dc882010-04-20 18:53:15 +00002759 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002760 goto page1_init_failed;
2761 }
drhe5ae5732008-06-15 02:51:47 +00002762
dana470aeb2010-04-21 11:43:38 +00002763 /* If the write version is set to 2, this database should be accessed
2764 ** in WAL mode. If the log is not already open, open it now. Then
2765 ** return SQLITE_OK and return without populating BtShared.pPage1.
2766 ** The caller detects this and calls this function again. This is
2767 ** required as the version of page 1 currently in the page1 buffer
2768 ** may not be the latest version - there may be a newer one in the log
2769 ** file.
2770 */
drhc9166342012-01-05 23:32:06 +00002771 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002772 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002773 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002774 if( rc!=SQLITE_OK ){
2775 goto page1_init_failed;
2776 }else if( isOpen==0 ){
2777 releasePage(pPage1);
2778 return SQLITE_OK;
2779 }
dan8b5444b2010-04-27 14:37:47 +00002780 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002781 }
dan5cf53532010-05-01 16:40:20 +00002782#endif
dane04dc882010-04-20 18:53:15 +00002783
drh113762a2014-11-19 16:36:25 +00002784 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2785 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2786 **
drhe5ae5732008-06-15 02:51:47 +00002787 ** The original design allowed these amounts to vary, but as of
2788 ** version 3.6.0, we require them to be fixed.
2789 */
2790 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2791 goto page1_init_failed;
2792 }
drh113762a2014-11-19 16:36:25 +00002793 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2794 ** determined by the 2-byte integer located at an offset of 16 bytes from
2795 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002796 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002797 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2798 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002799 if( ((pageSize-1)&pageSize)!=0
2800 || pageSize>SQLITE_MAX_PAGE_SIZE
2801 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002802 ){
drh07d183d2005-05-01 22:52:42 +00002803 goto page1_init_failed;
2804 }
2805 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002806 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2807 ** integer at offset 20 is the number of bytes of space at the end of
2808 ** each page to reserve for extensions.
2809 **
2810 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2811 ** determined by the one-byte unsigned integer found at an offset of 20
2812 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002813 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002814 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002815 /* After reading the first page of the database assuming a page size
2816 ** of BtShared.pageSize, we have discovered that the page-size is
2817 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2818 ** zero and return SQLITE_OK. The caller will call this function
2819 ** again with the correct page-size.
2820 */
2821 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002822 pBt->usableSize = usableSize;
2823 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002824 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002825 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2826 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002827 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002828 }
danecac6702011-02-09 18:19:20 +00002829 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002830 rc = SQLITE_CORRUPT_BKPT;
2831 goto page1_init_failed;
2832 }
drh113762a2014-11-19 16:36:25 +00002833 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2834 ** be less than 480. In other words, if the page size is 512, then the
2835 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002836 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002837 goto page1_init_failed;
2838 }
drh43b18e12010-08-17 19:40:08 +00002839 pBt->pageSize = pageSize;
2840 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002841#ifndef SQLITE_OMIT_AUTOVACUUM
2842 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002843 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002844#endif
drh306dc212001-05-21 13:45:10 +00002845 }
drhb6f41482004-05-14 01:58:11 +00002846
2847 /* maxLocal is the maximum amount of payload to store locally for
2848 ** a cell. Make sure it is small enough so that at least minFanout
2849 ** cells can will fit on one page. We assume a 10-byte page header.
2850 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002851 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002852 ** 4-byte child pointer
2853 ** 9-byte nKey value
2854 ** 4-byte nData value
2855 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002856 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002857 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2858 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002859 */
shaneh1df2db72010-08-18 02:28:48 +00002860 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2861 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2862 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2863 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002864 if( pBt->maxLocal>127 ){
2865 pBt->max1bytePayload = 127;
2866 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002867 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002868 }
drh2e38c322004-09-03 18:38:44 +00002869 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002870 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002871 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002872 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002873
drh72f82862001-05-24 21:06:34 +00002874page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002875 releasePage(pPage1);
2876 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002877 return rc;
drh306dc212001-05-21 13:45:10 +00002878}
2879
drh85ec3b62013-05-14 23:12:06 +00002880#ifndef NDEBUG
2881/*
2882** Return the number of cursors open on pBt. This is for use
2883** in assert() expressions, so it is only compiled if NDEBUG is not
2884** defined.
2885**
2886** Only write cursors are counted if wrOnly is true. If wrOnly is
2887** false then all cursors are counted.
2888**
2889** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002890** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002891** have been tripped into the CURSOR_FAULT state are not counted.
2892*/
2893static int countValidCursors(BtShared *pBt, int wrOnly){
2894 BtCursor *pCur;
2895 int r = 0;
2896 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002897 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2898 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002899 }
2900 return r;
2901}
2902#endif
2903
drh306dc212001-05-21 13:45:10 +00002904/*
drhb8ca3072001-12-05 00:21:20 +00002905** If there are no outstanding cursors and we are not in the middle
2906** of a transaction but there is a read lock on the database, then
2907** this routine unrefs the first page of the database file which
2908** has the effect of releasing the read lock.
2909**
drhb8ca3072001-12-05 00:21:20 +00002910** If there is a transaction in progress, this routine is a no-op.
2911*/
danielk1977aef0bf62005-12-30 16:28:01 +00002912static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002913 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002914 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002915 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00002916 MemPage *pPage1 = pBt->pPage1;
2917 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00002918 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00002919 pBt->pPage1 = 0;
drhb2325b72014-09-24 18:31:07 +00002920 releasePage(pPage1);
drhb8ca3072001-12-05 00:21:20 +00002921 }
2922}
2923
2924/*
drhe39f2f92009-07-23 01:43:59 +00002925** If pBt points to an empty file then convert that empty file
2926** into a new empty database by initializing the first page of
2927** the database.
drh8b2f49b2001-06-08 00:21:52 +00002928*/
danielk1977aef0bf62005-12-30 16:28:01 +00002929static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002930 MemPage *pP1;
2931 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002932 int rc;
drhd677b3d2007-08-20 22:48:41 +00002933
drh1fee73e2007-08-29 04:00:57 +00002934 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002935 if( pBt->nPage>0 ){
2936 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002937 }
drh3aac2dd2004-04-26 14:10:20 +00002938 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002939 assert( pP1!=0 );
2940 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002941 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002942 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002943 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2944 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002945 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2946 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002947 data[18] = 1;
2948 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002949 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2950 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002951 data[21] = 64;
2952 data[22] = 32;
2953 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002954 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002955 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002956 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002957#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002958 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002959 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002960 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002961 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002962#endif
drhdd3cd972010-03-27 17:12:36 +00002963 pBt->nPage = 1;
2964 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002965 return SQLITE_OK;
2966}
2967
2968/*
danb483eba2012-10-13 19:58:11 +00002969** Initialize the first page of the database file (creating a database
2970** consisting of a single page and no schema objects). Return SQLITE_OK
2971** if successful, or an SQLite error code otherwise.
2972*/
2973int sqlite3BtreeNewDb(Btree *p){
2974 int rc;
2975 sqlite3BtreeEnter(p);
2976 p->pBt->nPage = 0;
2977 rc = newDatabase(p->pBt);
2978 sqlite3BtreeLeave(p);
2979 return rc;
2980}
2981
2982/*
danielk1977ee5741e2004-05-31 10:01:34 +00002983** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002984** is started if the second argument is nonzero, otherwise a read-
2985** transaction. If the second argument is 2 or more and exclusive
2986** transaction is started, meaning that no other process is allowed
2987** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002988** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002989** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002990**
danielk1977ee5741e2004-05-31 10:01:34 +00002991** A write-transaction must be started before attempting any
2992** changes to the database. None of the following routines
2993** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002994**
drh23e11ca2004-05-04 17:27:28 +00002995** sqlite3BtreeCreateTable()
2996** sqlite3BtreeCreateIndex()
2997** sqlite3BtreeClearTable()
2998** sqlite3BtreeDropTable()
2999** sqlite3BtreeInsert()
3000** sqlite3BtreeDelete()
3001** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003002**
drhb8ef32c2005-03-14 02:01:49 +00003003** If an initial attempt to acquire the lock fails because of lock contention
3004** and the database was previously unlocked, then invoke the busy handler
3005** if there is one. But if there was previously a read-lock, do not
3006** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3007** returned when there is already a read-lock in order to avoid a deadlock.
3008**
3009** Suppose there are two processes A and B. A has a read lock and B has
3010** a reserved lock. B tries to promote to exclusive but is blocked because
3011** of A's read lock. A tries to promote to reserved but is blocked by B.
3012** One or the other of the two processes must give way or there can be
3013** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3014** when A already has a read lock, we encourage A to give up and let B
3015** proceed.
drha059ad02001-04-17 20:09:11 +00003016*/
danielk1977aef0bf62005-12-30 16:28:01 +00003017int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00003018 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003019 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003020 int rc = SQLITE_OK;
3021
drhd677b3d2007-08-20 22:48:41 +00003022 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003023 btreeIntegrity(p);
3024
danielk1977ee5741e2004-05-31 10:01:34 +00003025 /* If the btree is already in a write-transaction, or it
3026 ** is already in a read-transaction and a read-transaction
3027 ** is requested, this is a no-op.
3028 */
danielk1977aef0bf62005-12-30 16:28:01 +00003029 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003030 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003031 }
dan56c517a2013-09-26 11:04:33 +00003032 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003033
3034 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003035 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003036 rc = SQLITE_READONLY;
3037 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003038 }
3039
danielk1977404ca072009-03-16 13:19:36 +00003040#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00003041 /* If another database handle has already opened a write transaction
3042 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00003043 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00003044 */
drhc9166342012-01-05 23:32:06 +00003045 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3046 || (pBt->btsFlags & BTS_PENDING)!=0
3047 ){
danielk1977404ca072009-03-16 13:19:36 +00003048 pBlock = pBt->pWriter->db;
3049 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00003050 BtLock *pIter;
3051 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3052 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00003053 pBlock = pIter->pBtree->db;
3054 break;
danielk1977641b0f42007-12-21 04:47:25 +00003055 }
3056 }
3057 }
danielk1977404ca072009-03-16 13:19:36 +00003058 if( pBlock ){
3059 sqlite3ConnectionBlocked(p->db, pBlock);
3060 rc = SQLITE_LOCKED_SHAREDCACHE;
3061 goto trans_begun;
3062 }
danielk1977641b0f42007-12-21 04:47:25 +00003063#endif
3064
danielk1977602b4662009-07-02 07:47:33 +00003065 /* Any read-only or read-write transaction implies a read-lock on
3066 ** page 1. So if some other shared-cache client already has a write-lock
3067 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003068 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3069 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003070
drhc9166342012-01-05 23:32:06 +00003071 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3072 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003073 do {
danielk1977295dc102009-04-01 19:07:03 +00003074 /* Call lockBtree() until either pBt->pPage1 is populated or
3075 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3076 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3077 ** reading page 1 it discovers that the page-size of the database
3078 ** file is not pBt->pageSize. In this case lockBtree() will update
3079 ** pBt->pageSize to the page-size of the file on disk.
3080 */
3081 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003082
drhb8ef32c2005-03-14 02:01:49 +00003083 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003084 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003085 rc = SQLITE_READONLY;
3086 }else{
danielk1977d8293352009-04-30 09:10:37 +00003087 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003088 if( rc==SQLITE_OK ){
3089 rc = newDatabase(pBt);
3090 }
drhb8ef32c2005-03-14 02:01:49 +00003091 }
3092 }
3093
danielk1977bd434552009-03-18 10:33:00 +00003094 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003095 unlockBtreeIfUnused(pBt);
3096 }
danf9b76712010-06-01 14:12:45 +00003097 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003098 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003099
3100 if( rc==SQLITE_OK ){
3101 if( p->inTrans==TRANS_NONE ){
3102 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003103#ifndef SQLITE_OMIT_SHARED_CACHE
3104 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003105 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003106 p->lock.eLock = READ_LOCK;
3107 p->lock.pNext = pBt->pLock;
3108 pBt->pLock = &p->lock;
3109 }
3110#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003111 }
3112 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3113 if( p->inTrans>pBt->inTransaction ){
3114 pBt->inTransaction = p->inTrans;
3115 }
danielk1977404ca072009-03-16 13:19:36 +00003116 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003117 MemPage *pPage1 = pBt->pPage1;
3118#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003119 assert( !pBt->pWriter );
3120 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003121 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3122 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003123#endif
dan59257dc2010-08-04 11:34:31 +00003124
3125 /* If the db-size header field is incorrect (as it may be if an old
3126 ** client has been writing the database file), update it now. Doing
3127 ** this sooner rather than later means the database size can safely
3128 ** re-read the database size from page 1 if a savepoint or transaction
3129 ** rollback occurs within the transaction.
3130 */
3131 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3132 rc = sqlite3PagerWrite(pPage1->pDbPage);
3133 if( rc==SQLITE_OK ){
3134 put4byte(&pPage1->aData[28], pBt->nPage);
3135 }
3136 }
3137 }
danielk1977aef0bf62005-12-30 16:28:01 +00003138 }
3139
drhd677b3d2007-08-20 22:48:41 +00003140
3141trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003142 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003143 /* This call makes sure that the pager has the correct number of
3144 ** open savepoints. If the second parameter is greater than 0 and
3145 ** the sub-journal is not already open, then it will be opened here.
3146 */
danielk1977fd7f0452008-12-17 17:30:26 +00003147 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3148 }
danielk197712dd5492008-12-18 15:45:07 +00003149
danielk1977aef0bf62005-12-30 16:28:01 +00003150 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003151 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003152 return rc;
drha059ad02001-04-17 20:09:11 +00003153}
3154
danielk1977687566d2004-11-02 12:56:41 +00003155#ifndef SQLITE_OMIT_AUTOVACUUM
3156
3157/*
3158** Set the pointer-map entries for all children of page pPage. Also, if
3159** pPage contains cells that point to overflow pages, set the pointer
3160** map entries for the overflow pages as well.
3161*/
3162static int setChildPtrmaps(MemPage *pPage){
3163 int i; /* Counter variable */
3164 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003165 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003166 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003167 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003168 Pgno pgno = pPage->pgno;
3169
drh1fee73e2007-08-29 04:00:57 +00003170 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003171 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003172 if( rc!=SQLITE_OK ){
3173 goto set_child_ptrmaps_out;
3174 }
danielk1977687566d2004-11-02 12:56:41 +00003175 nCell = pPage->nCell;
3176
3177 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003178 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003179
drh98add2e2009-07-20 17:11:49 +00003180 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003181
danielk1977687566d2004-11-02 12:56:41 +00003182 if( !pPage->leaf ){
3183 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003184 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003185 }
3186 }
3187
3188 if( !pPage->leaf ){
3189 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003190 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003191 }
3192
3193set_child_ptrmaps_out:
3194 pPage->isInit = isInitOrig;
3195 return rc;
3196}
3197
3198/*
drhf3aed592009-07-08 18:12:49 +00003199** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3200** that it points to iTo. Parameter eType describes the type of pointer to
3201** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003202**
3203** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3204** page of pPage.
3205**
3206** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3207** page pointed to by one of the cells on pPage.
3208**
3209** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3210** overflow page in the list.
3211*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003212static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003213 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003214 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003215 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003216 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003217 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003218 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003219 }
danielk1977f78fc082004-11-02 14:40:32 +00003220 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003221 }else{
drhf49661a2008-12-10 16:45:50 +00003222 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003223 int i;
3224 int nCell;
drha1f75d92015-05-24 10:18:12 +00003225 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003226
drha1f75d92015-05-24 10:18:12 +00003227 rc = btreeInitPage(pPage);
3228 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003229 nCell = pPage->nCell;
3230
danielk1977687566d2004-11-02 12:56:41 +00003231 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003232 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003233 if( eType==PTRMAP_OVERFLOW1 ){
3234 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003235 pPage->xParseCell(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00003236 if( info.iOverflow
3237 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3238 && iFrom==get4byte(&pCell[info.iOverflow])
3239 ){
3240 put4byte(&pCell[info.iOverflow], iTo);
3241 break;
danielk1977687566d2004-11-02 12:56:41 +00003242 }
3243 }else{
3244 if( get4byte(pCell)==iFrom ){
3245 put4byte(pCell, iTo);
3246 break;
3247 }
3248 }
3249 }
3250
3251 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003252 if( eType!=PTRMAP_BTREE ||
3253 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003254 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003255 }
danielk1977687566d2004-11-02 12:56:41 +00003256 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3257 }
3258
3259 pPage->isInit = isInitOrig;
3260 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003261 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003262}
3263
danielk1977003ba062004-11-04 02:57:33 +00003264
danielk19777701e812005-01-10 12:59:51 +00003265/*
3266** Move the open database page pDbPage to location iFreePage in the
3267** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003268**
3269** The isCommit flag indicates that there is no need to remember that
3270** the journal needs to be sync()ed before database page pDbPage->pgno
3271** can be written to. The caller has already promised not to write to that
3272** page.
danielk19777701e812005-01-10 12:59:51 +00003273*/
danielk1977003ba062004-11-04 02:57:33 +00003274static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003275 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003276 MemPage *pDbPage, /* Open page to move */
3277 u8 eType, /* Pointer map 'type' entry for pDbPage */
3278 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003279 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003280 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003281){
3282 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3283 Pgno iDbPage = pDbPage->pgno;
3284 Pager *pPager = pBt->pPager;
3285 int rc;
3286
danielk1977a0bf2652004-11-04 14:30:04 +00003287 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3288 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003289 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003290 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003291
drh85b623f2007-12-13 21:54:09 +00003292 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003293 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3294 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003295 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003296 if( rc!=SQLITE_OK ){
3297 return rc;
3298 }
3299 pDbPage->pgno = iFreePage;
3300
3301 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3302 ** that point to overflow pages. The pointer map entries for all these
3303 ** pages need to be changed.
3304 **
3305 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3306 ** pointer to a subsequent overflow page. If this is the case, then
3307 ** the pointer map needs to be updated for the subsequent overflow page.
3308 */
danielk1977a0bf2652004-11-04 14:30:04 +00003309 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003310 rc = setChildPtrmaps(pDbPage);
3311 if( rc!=SQLITE_OK ){
3312 return rc;
3313 }
3314 }else{
3315 Pgno nextOvfl = get4byte(pDbPage->aData);
3316 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003317 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003318 if( rc!=SQLITE_OK ){
3319 return rc;
3320 }
3321 }
3322 }
3323
3324 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3325 ** that it points at iFreePage. Also fix the pointer map entry for
3326 ** iPtrPage.
3327 */
danielk1977a0bf2652004-11-04 14:30:04 +00003328 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003329 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003330 if( rc!=SQLITE_OK ){
3331 return rc;
3332 }
danielk19773b8a05f2007-03-19 17:44:26 +00003333 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003334 if( rc!=SQLITE_OK ){
3335 releasePage(pPtrPage);
3336 return rc;
3337 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003338 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003339 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003340 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003341 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003342 }
danielk1977003ba062004-11-04 02:57:33 +00003343 }
danielk1977003ba062004-11-04 02:57:33 +00003344 return rc;
3345}
3346
danielk1977dddbcdc2007-04-26 14:42:34 +00003347/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003348static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003349
3350/*
dan51f0b6d2013-02-22 20:16:34 +00003351** Perform a single step of an incremental-vacuum. If successful, return
3352** SQLITE_OK. If there is no work to do (and therefore no point in
3353** calling this function again), return SQLITE_DONE. Or, if an error
3354** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003355**
peter.d.reid60ec9142014-09-06 16:39:46 +00003356** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003357** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003358**
dan51f0b6d2013-02-22 20:16:34 +00003359** Parameter nFin is the number of pages that this database would contain
3360** were this function called until it returns SQLITE_DONE.
3361**
3362** If the bCommit parameter is non-zero, this function assumes that the
3363** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003364** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003365** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003366*/
dan51f0b6d2013-02-22 20:16:34 +00003367static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003368 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003369 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003370
drh1fee73e2007-08-29 04:00:57 +00003371 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003372 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003373
3374 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003375 u8 eType;
3376 Pgno iPtrPage;
3377
3378 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003379 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003380 return SQLITE_DONE;
3381 }
3382
3383 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3384 if( rc!=SQLITE_OK ){
3385 return rc;
3386 }
3387 if( eType==PTRMAP_ROOTPAGE ){
3388 return SQLITE_CORRUPT_BKPT;
3389 }
3390
3391 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003392 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003393 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003394 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003395 ** truncated to zero after this function returns, so it doesn't
3396 ** matter if it still contains some garbage entries.
3397 */
3398 Pgno iFreePg;
3399 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003400 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003401 if( rc!=SQLITE_OK ){
3402 return rc;
3403 }
3404 assert( iFreePg==iLastPg );
3405 releasePage(pFreePg);
3406 }
3407 } else {
3408 Pgno iFreePg; /* Index of free page to move pLastPg to */
3409 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003410 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3411 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003412
drhb00fc3b2013-08-21 23:42:32 +00003413 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003414 if( rc!=SQLITE_OK ){
3415 return rc;
3416 }
3417
dan51f0b6d2013-02-22 20:16:34 +00003418 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003419 ** is swapped with the first free page pulled off the free list.
3420 **
dan51f0b6d2013-02-22 20:16:34 +00003421 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003422 ** looping until a free-page located within the first nFin pages
3423 ** of the file is found.
3424 */
dan51f0b6d2013-02-22 20:16:34 +00003425 if( bCommit==0 ){
3426 eMode = BTALLOC_LE;
3427 iNear = nFin;
3428 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003429 do {
3430 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003431 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003432 if( rc!=SQLITE_OK ){
3433 releasePage(pLastPg);
3434 return rc;
3435 }
3436 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003437 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003438 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003439
dane1df4e32013-03-05 11:27:04 +00003440 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003441 releasePage(pLastPg);
3442 if( rc!=SQLITE_OK ){
3443 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003444 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003445 }
3446 }
3447
dan51f0b6d2013-02-22 20:16:34 +00003448 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003449 do {
danielk19773460d192008-12-27 15:23:13 +00003450 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003451 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3452 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003453 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003454 }
3455 return SQLITE_OK;
3456}
3457
3458/*
dan51f0b6d2013-02-22 20:16:34 +00003459** The database opened by the first argument is an auto-vacuum database
3460** nOrig pages in size containing nFree free pages. Return the expected
3461** size of the database in pages following an auto-vacuum operation.
3462*/
3463static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3464 int nEntry; /* Number of entries on one ptrmap page */
3465 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3466 Pgno nFin; /* Return value */
3467
3468 nEntry = pBt->usableSize/5;
3469 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3470 nFin = nOrig - nFree - nPtrmap;
3471 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3472 nFin--;
3473 }
3474 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3475 nFin--;
3476 }
dan51f0b6d2013-02-22 20:16:34 +00003477
3478 return nFin;
3479}
3480
3481/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003482** A write-transaction must be opened before calling this function.
3483** It performs a single unit of work towards an incremental vacuum.
3484**
3485** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003486** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003487** SQLITE_OK is returned. Otherwise an SQLite error code.
3488*/
3489int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003490 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003491 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003492
3493 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003494 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3495 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003496 rc = SQLITE_DONE;
3497 }else{
dan51f0b6d2013-02-22 20:16:34 +00003498 Pgno nOrig = btreePagecount(pBt);
3499 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3500 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3501
dan91384712013-02-24 11:50:43 +00003502 if( nOrig<nFin ){
3503 rc = SQLITE_CORRUPT_BKPT;
3504 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003505 rc = saveAllCursors(pBt, 0, 0);
3506 if( rc==SQLITE_OK ){
3507 invalidateAllOverflowCache(pBt);
3508 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3509 }
dan51f0b6d2013-02-22 20:16:34 +00003510 if( rc==SQLITE_OK ){
3511 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3512 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3513 }
3514 }else{
3515 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003516 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003517 }
drhd677b3d2007-08-20 22:48:41 +00003518 sqlite3BtreeLeave(p);
3519 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003520}
3521
3522/*
danielk19773b8a05f2007-03-19 17:44:26 +00003523** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003524** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003525**
3526** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3527** the database file should be truncated to during the commit process.
3528** i.e. the database has been reorganized so that only the first *pnTrunc
3529** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003530*/
danielk19773460d192008-12-27 15:23:13 +00003531static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003532 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003533 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003534 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003535
drh1fee73e2007-08-29 04:00:57 +00003536 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003537 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003538 assert(pBt->autoVacuum);
3539 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003540 Pgno nFin; /* Number of pages in database after autovacuuming */
3541 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003542 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003543 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003544
drhb1299152010-03-30 22:58:33 +00003545 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003546 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3547 /* It is not possible to create a database for which the final page
3548 ** is either a pointer-map page or the pending-byte page. If one
3549 ** is encountered, this indicates corruption.
3550 */
danielk19773460d192008-12-27 15:23:13 +00003551 return SQLITE_CORRUPT_BKPT;
3552 }
danielk1977ef165ce2009-04-06 17:50:03 +00003553
danielk19773460d192008-12-27 15:23:13 +00003554 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003555 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003556 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003557 if( nFin<nOrig ){
3558 rc = saveAllCursors(pBt, 0, 0);
3559 }
danielk19773460d192008-12-27 15:23:13 +00003560 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003561 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003562 }
danielk19773460d192008-12-27 15:23:13 +00003563 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003564 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3565 put4byte(&pBt->pPage1->aData[32], 0);
3566 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003567 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003568 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003569 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003570 }
3571 if( rc!=SQLITE_OK ){
3572 sqlite3PagerRollback(pPager);
3573 }
danielk1977687566d2004-11-02 12:56:41 +00003574 }
3575
dan0aed84d2013-03-26 14:16:20 +00003576 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003577 return rc;
3578}
danielk1977dddbcdc2007-04-26 14:42:34 +00003579
danielk1977a50d9aa2009-06-08 14:49:45 +00003580#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3581# define setChildPtrmaps(x) SQLITE_OK
3582#endif
danielk1977687566d2004-11-02 12:56:41 +00003583
3584/*
drh80e35f42007-03-30 14:06:34 +00003585** This routine does the first phase of a two-phase commit. This routine
3586** causes a rollback journal to be created (if it does not already exist)
3587** and populated with enough information so that if a power loss occurs
3588** the database can be restored to its original state by playing back
3589** the journal. Then the contents of the journal are flushed out to
3590** the disk. After the journal is safely on oxide, the changes to the
3591** database are written into the database file and flushed to oxide.
3592** At the end of this call, the rollback journal still exists on the
3593** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003594** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003595** commit process.
3596**
3597** This call is a no-op if no write-transaction is currently active on pBt.
3598**
3599** Otherwise, sync the database file for the btree pBt. zMaster points to
3600** the name of a master journal file that should be written into the
3601** individual journal file, or is NULL, indicating no master journal file
3602** (single database transaction).
3603**
3604** When this is called, the master journal should already have been
3605** created, populated with this journal pointer and synced to disk.
3606**
3607** Once this is routine has returned, the only thing required to commit
3608** the write-transaction for this database file is to delete the journal.
3609*/
3610int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3611 int rc = SQLITE_OK;
3612 if( p->inTrans==TRANS_WRITE ){
3613 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003614 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003615#ifndef SQLITE_OMIT_AUTOVACUUM
3616 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003617 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003618 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003619 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003620 return rc;
3621 }
3622 }
danbc1a3c62013-02-23 16:40:46 +00003623 if( pBt->bDoTruncate ){
3624 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3625 }
drh80e35f42007-03-30 14:06:34 +00003626#endif
drh49b9d332009-01-02 18:10:42 +00003627 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003628 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003629 }
3630 return rc;
3631}
3632
3633/*
danielk197794b30732009-07-02 17:21:57 +00003634** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3635** at the conclusion of a transaction.
3636*/
3637static void btreeEndTransaction(Btree *p){
3638 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003639 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003640 assert( sqlite3BtreeHoldsMutex(p) );
3641
danbc1a3c62013-02-23 16:40:46 +00003642#ifndef SQLITE_OMIT_AUTOVACUUM
3643 pBt->bDoTruncate = 0;
3644#endif
danc0537fe2013-06-28 19:41:43 +00003645 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003646 /* If there are other active statements that belong to this database
3647 ** handle, downgrade to a read-only transaction. The other statements
3648 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003649 downgradeAllSharedCacheTableLocks(p);
3650 p->inTrans = TRANS_READ;
3651 }else{
3652 /* If the handle had any kind of transaction open, decrement the
3653 ** transaction count of the shared btree. If the transaction count
3654 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3655 ** call below will unlock the pager. */
3656 if( p->inTrans!=TRANS_NONE ){
3657 clearAllSharedCacheTableLocks(p);
3658 pBt->nTransaction--;
3659 if( 0==pBt->nTransaction ){
3660 pBt->inTransaction = TRANS_NONE;
3661 }
3662 }
3663
3664 /* Set the current transaction state to TRANS_NONE and unlock the
3665 ** pager if this call closed the only read or write transaction. */
3666 p->inTrans = TRANS_NONE;
3667 unlockBtreeIfUnused(pBt);
3668 }
3669
3670 btreeIntegrity(p);
3671}
3672
3673/*
drh2aa679f2001-06-25 02:11:07 +00003674** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003675**
drh6e345992007-03-30 11:12:08 +00003676** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003677** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3678** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3679** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003680** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003681** routine has to do is delete or truncate or zero the header in the
3682** the rollback journal (which causes the transaction to commit) and
3683** drop locks.
drh6e345992007-03-30 11:12:08 +00003684**
dan60939d02011-03-29 15:40:55 +00003685** Normally, if an error occurs while the pager layer is attempting to
3686** finalize the underlying journal file, this function returns an error and
3687** the upper layer will attempt a rollback. However, if the second argument
3688** is non-zero then this b-tree transaction is part of a multi-file
3689** transaction. In this case, the transaction has already been committed
3690** (by deleting a master journal file) and the caller will ignore this
3691** functions return code. So, even if an error occurs in the pager layer,
3692** reset the b-tree objects internal state to indicate that the write
3693** transaction has been closed. This is quite safe, as the pager will have
3694** transitioned to the error state.
3695**
drh5e00f6c2001-09-13 13:46:56 +00003696** This will release the write lock on the database file. If there
3697** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003698*/
dan60939d02011-03-29 15:40:55 +00003699int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003700
drh075ed302010-10-14 01:17:30 +00003701 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003702 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003703 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003704
3705 /* If the handle has a write-transaction open, commit the shared-btrees
3706 ** transaction and set the shared state to TRANS_READ.
3707 */
3708 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003709 int rc;
drh075ed302010-10-14 01:17:30 +00003710 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003711 assert( pBt->inTransaction==TRANS_WRITE );
3712 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003713 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003714 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003715 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003716 return rc;
3717 }
drh3da9c042014-12-22 18:41:21 +00003718 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003719 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003720 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003721 }
danielk1977aef0bf62005-12-30 16:28:01 +00003722
danielk197794b30732009-07-02 17:21:57 +00003723 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003724 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003725 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003726}
3727
drh80e35f42007-03-30 14:06:34 +00003728/*
3729** Do both phases of a commit.
3730*/
3731int sqlite3BtreeCommit(Btree *p){
3732 int rc;
drhd677b3d2007-08-20 22:48:41 +00003733 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003734 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3735 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003736 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003737 }
drhd677b3d2007-08-20 22:48:41 +00003738 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003739 return rc;
3740}
3741
drhc39e0002004-05-07 23:50:57 +00003742/*
drhfb982642007-08-30 01:19:59 +00003743** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003744** code to errCode for every cursor on any BtShared that pBtree
3745** references. Or if the writeOnly flag is set to 1, then only
3746** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003747**
drh47b7fc72014-11-11 01:33:57 +00003748** Every cursor is a candidate to be tripped, including cursors
3749** that belong to other database connections that happen to be
3750** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003751**
dan80231042014-11-12 14:56:02 +00003752** This routine gets called when a rollback occurs. If the writeOnly
3753** flag is true, then only write-cursors need be tripped - read-only
3754** cursors save their current positions so that they may continue
3755** following the rollback. Or, if writeOnly is false, all cursors are
3756** tripped. In general, writeOnly is false if the transaction being
3757** rolled back modified the database schema. In this case b-tree root
3758** pages may be moved or deleted from the database altogether, making
3759** it unsafe for read cursors to continue.
3760**
3761** If the writeOnly flag is true and an error is encountered while
3762** saving the current position of a read-only cursor, all cursors,
3763** including all read-cursors are tripped.
3764**
3765** SQLITE_OK is returned if successful, or if an error occurs while
3766** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003767*/
dan80231042014-11-12 14:56:02 +00003768int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003769 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003770 int rc = SQLITE_OK;
3771
drh47b7fc72014-11-11 01:33:57 +00003772 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003773 if( pBtree ){
3774 sqlite3BtreeEnter(pBtree);
3775 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3776 int i;
3777 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003778 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003779 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003780 if( rc!=SQLITE_OK ){
3781 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3782 break;
3783 }
3784 }
3785 }else{
3786 sqlite3BtreeClearCursor(p);
3787 p->eState = CURSOR_FAULT;
3788 p->skipNext = errCode;
3789 }
3790 for(i=0; i<=p->iPage; i++){
3791 releasePage(p->apPage[i]);
3792 p->apPage[i] = 0;
3793 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003794 }
dan80231042014-11-12 14:56:02 +00003795 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003796 }
dan80231042014-11-12 14:56:02 +00003797 return rc;
drhfb982642007-08-30 01:19:59 +00003798}
3799
3800/*
drh47b7fc72014-11-11 01:33:57 +00003801** Rollback the transaction in progress.
3802**
3803** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3804** Only write cursors are tripped if writeOnly is true but all cursors are
3805** tripped if writeOnly is false. Any attempt to use
3806** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003807**
3808** This will release the write lock on the database file. If there
3809** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003810*/
drh47b7fc72014-11-11 01:33:57 +00003811int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003812 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003813 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003814 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003815
drh47b7fc72014-11-11 01:33:57 +00003816 assert( writeOnly==1 || writeOnly==0 );
3817 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003818 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003819 if( tripCode==SQLITE_OK ){
3820 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003821 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003822 }else{
3823 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003824 }
drh0f198a72012-02-13 16:43:16 +00003825 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003826 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3827 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3828 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003829 }
danielk1977aef0bf62005-12-30 16:28:01 +00003830 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003831
3832 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003833 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003834
danielk19778d34dfd2006-01-24 16:37:57 +00003835 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003836 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003837 if( rc2!=SQLITE_OK ){
3838 rc = rc2;
3839 }
3840
drh24cd67e2004-05-10 16:18:47 +00003841 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003842 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003843 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003844 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003845 int nPage = get4byte(28+(u8*)pPage1->aData);
3846 testcase( nPage==0 );
3847 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3848 testcase( pBt->nPage!=nPage );
3849 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003850 releasePage(pPage1);
3851 }
drh85ec3b62013-05-14 23:12:06 +00003852 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003853 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003854 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003855 }
danielk1977aef0bf62005-12-30 16:28:01 +00003856
danielk197794b30732009-07-02 17:21:57 +00003857 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003858 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003859 return rc;
3860}
3861
3862/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003863** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003864** back independently of the main transaction. You must start a transaction
3865** before starting a subtransaction. The subtransaction is ended automatically
3866** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003867**
3868** Statement subtransactions are used around individual SQL statements
3869** that are contained within a BEGIN...COMMIT block. If a constraint
3870** error occurs within the statement, the effect of that one statement
3871** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003872**
3873** A statement sub-transaction is implemented as an anonymous savepoint. The
3874** value passed as the second parameter is the total number of savepoints,
3875** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3876** are no active savepoints and no other statement-transactions open,
3877** iStatement is 1. This anonymous savepoint can be released or rolled back
3878** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003879*/
danielk1977bd434552009-03-18 10:33:00 +00003880int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003881 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003882 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003883 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003884 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003885 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003886 assert( iStatement>0 );
3887 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003888 assert( pBt->inTransaction==TRANS_WRITE );
3889 /* At the pager level, a statement transaction is a savepoint with
3890 ** an index greater than all savepoints created explicitly using
3891 ** SQL statements. It is illegal to open, release or rollback any
3892 ** such savepoints while the statement transaction savepoint is active.
3893 */
3894 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003895 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003896 return rc;
3897}
3898
3899/*
danielk1977fd7f0452008-12-17 17:30:26 +00003900** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3901** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003902** savepoint identified by parameter iSavepoint, depending on the value
3903** of op.
3904**
3905** Normally, iSavepoint is greater than or equal to zero. However, if op is
3906** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3907** contents of the entire transaction are rolled back. This is different
3908** from a normal transaction rollback, as no locks are released and the
3909** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003910*/
3911int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3912 int rc = SQLITE_OK;
3913 if( p && p->inTrans==TRANS_WRITE ){
3914 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003915 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3916 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3917 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003918 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003919 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003920 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3921 pBt->nPage = 0;
3922 }
drh9f0bbf92009-01-02 21:08:09 +00003923 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003924 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003925
3926 /* The database size was written into the offset 28 of the header
3927 ** when the transaction started, so we know that the value at offset
3928 ** 28 is nonzero. */
3929 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003930 }
danielk1977fd7f0452008-12-17 17:30:26 +00003931 sqlite3BtreeLeave(p);
3932 }
3933 return rc;
3934}
3935
3936/*
drh8b2f49b2001-06-08 00:21:52 +00003937** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003938** iTable. If a read-only cursor is requested, it is assumed that
3939** the caller already has at least a read-only transaction open
3940** on the database already. If a write-cursor is requested, then
3941** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003942**
3943** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003944** If wrFlag==1, then the cursor can be used for reading or for
3945** writing if other conditions for writing are also met. These
3946** are the conditions that must be met in order for writing to
3947** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003948**
drhf74b8d92002-09-01 23:20:45 +00003949** 1: The cursor must have been opened with wrFlag==1
3950**
drhfe5d71d2007-03-19 11:54:10 +00003951** 2: Other database connections that share the same pager cache
3952** but which are not in the READ_UNCOMMITTED state may not have
3953** cursors open with wrFlag==0 on the same table. Otherwise
3954** the changes made by this write cursor would be visible to
3955** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003956**
3957** 3: The database must be writable (not on read-only media)
3958**
3959** 4: There must be an active transaction.
3960**
drh6446c4d2001-12-15 14:22:18 +00003961** No checking is done to make sure that page iTable really is the
3962** root page of a b-tree. If it is not, then the cursor acquired
3963** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003964**
drhf25a5072009-11-18 23:01:25 +00003965** It is assumed that the sqlite3BtreeCursorZero() has been called
3966** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003967*/
drhd677b3d2007-08-20 22:48:41 +00003968static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003969 Btree *p, /* The btree */
3970 int iTable, /* Root page of table to open */
3971 int wrFlag, /* 1 to write. 0 read-only */
3972 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3973 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003974){
danielk19773e8add92009-07-04 17:16:00 +00003975 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003976
drh1fee73e2007-08-29 04:00:57 +00003977 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003978 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003979
danielk1977602b4662009-07-02 07:47:33 +00003980 /* The following assert statements verify that if this is a sharable
3981 ** b-tree database, the connection is holding the required table locks,
3982 ** and that no other connection has any open cursor that conflicts with
3983 ** this lock. */
3984 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003985 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3986
danielk19773e8add92009-07-04 17:16:00 +00003987 /* Assert that the caller has opened the required transaction. */
3988 assert( p->inTrans>TRANS_NONE );
3989 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3990 assert( pBt->pPage1 && pBt->pPage1->aData );
3991
drhc9166342012-01-05 23:32:06 +00003992 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003993 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003994 }
drh3fbb0222014-09-24 19:47:27 +00003995 if( wrFlag ){
3996 allocateTempSpace(pBt);
3997 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
3998 }
drhb1299152010-03-30 22:58:33 +00003999 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004000 assert( wrFlag==0 );
4001 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004002 }
danielk1977aef0bf62005-12-30 16:28:01 +00004003
danielk1977aef0bf62005-12-30 16:28:01 +00004004 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004005 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004006 pCur->pgnoRoot = (Pgno)iTable;
4007 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004008 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004009 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004010 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00004011 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
4012 pCur->curFlags = wrFlag;
drha059ad02001-04-17 20:09:11 +00004013 pCur->pNext = pBt->pCursor;
4014 if( pCur->pNext ){
4015 pCur->pNext->pPrev = pCur;
4016 }
4017 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004018 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004019 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004020}
drhd677b3d2007-08-20 22:48:41 +00004021int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004022 Btree *p, /* The btree */
4023 int iTable, /* Root page of table to open */
4024 int wrFlag, /* 1 to write. 0 read-only */
4025 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4026 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004027){
4028 int rc;
dan08f901b2015-05-25 19:24:36 +00004029 if( iTable<1 ){
4030 rc = SQLITE_CORRUPT_BKPT;
4031 }else{
4032 sqlite3BtreeEnter(p);
4033 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4034 sqlite3BtreeLeave(p);
4035 }
drhd677b3d2007-08-20 22:48:41 +00004036 return rc;
4037}
drh7f751222009-03-17 22:33:00 +00004038
4039/*
4040** Return the size of a BtCursor object in bytes.
4041**
4042** This interfaces is needed so that users of cursors can preallocate
4043** sufficient storage to hold a cursor. The BtCursor object is opaque
4044** to users so they cannot do the sizeof() themselves - they must call
4045** this routine.
4046*/
4047int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004048 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004049}
4050
drh7f751222009-03-17 22:33:00 +00004051/*
drhf25a5072009-11-18 23:01:25 +00004052** Initialize memory that will be converted into a BtCursor object.
4053**
4054** The simple approach here would be to memset() the entire object
4055** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4056** do not need to be zeroed and they are large, so we can save a lot
4057** of run-time by skipping the initialization of those elements.
4058*/
4059void sqlite3BtreeCursorZero(BtCursor *p){
4060 memset(p, 0, offsetof(BtCursor, iPage));
4061}
4062
4063/*
drh5e00f6c2001-09-13 13:46:56 +00004064** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004065** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004066*/
drh3aac2dd2004-04-26 14:10:20 +00004067int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004068 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004069 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004070 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004071 BtShared *pBt = pCur->pBt;
4072 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004073 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004074 if( pCur->pPrev ){
4075 pCur->pPrev->pNext = pCur->pNext;
4076 }else{
4077 pBt->pCursor = pCur->pNext;
4078 }
4079 if( pCur->pNext ){
4080 pCur->pNext->pPrev = pCur->pPrev;
4081 }
danielk197771d5d2c2008-09-29 11:49:47 +00004082 for(i=0; i<=pCur->iPage; i++){
4083 releasePage(pCur->apPage[i]);
4084 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004085 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004086 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004087 /* sqlite3_free(pCur); */
4088 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004089 }
drh8c42ca92001-06-22 19:15:00 +00004090 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004091}
4092
drh5e2f8b92001-05-28 00:41:15 +00004093/*
drh86057612007-06-26 01:04:48 +00004094** Make sure the BtCursor* given in the argument has a valid
4095** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004096** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004097**
4098** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004099** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004100*/
drh9188b382004-05-14 21:12:22 +00004101#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004102 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004103 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004104 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004105 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004106 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004107 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004108 }
danielk19771cc5ed82007-05-16 17:28:43 +00004109#else
4110 #define assertCellInfo(x)
4111#endif
drhc5b41ac2015-06-17 02:11:46 +00004112static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4113 if( pCur->info.nSize==0 ){
4114 int iPage = pCur->iPage;
4115 pCur->curFlags |= BTCF_ValidNKey;
4116 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4117 }else{
4118 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004119 }
drhc5b41ac2015-06-17 02:11:46 +00004120}
drh9188b382004-05-14 21:12:22 +00004121
drhea8ffdf2009-07-22 00:35:23 +00004122#ifndef NDEBUG /* The next routine used only within assert() statements */
4123/*
4124** Return true if the given BtCursor is valid. A valid cursor is one
4125** that is currently pointing to a row in a (non-empty) table.
4126** This is a verification routine is used only within assert() statements.
4127*/
4128int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4129 return pCur && pCur->eState==CURSOR_VALID;
4130}
4131#endif /* NDEBUG */
4132
drh9188b382004-05-14 21:12:22 +00004133/*
drh3aac2dd2004-04-26 14:10:20 +00004134** Set *pSize to the size of the buffer needed to hold the value of
4135** the key for the current entry. If the cursor is not pointing
4136** to a valid entry, *pSize is set to 0.
4137**
drh4b70f112004-05-02 21:12:19 +00004138** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004139** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004140**
4141** The caller must position the cursor prior to invoking this routine.
4142**
4143** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004144*/
drh4a1c3802004-05-12 15:15:47 +00004145int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004146 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004147 assert( pCur->eState==CURSOR_VALID );
4148 getCellInfo(pCur);
4149 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004150 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004151}
drh2af926b2001-05-15 00:39:25 +00004152
drh72f82862001-05-24 21:06:34 +00004153/*
drh0e1c19e2004-05-11 00:58:56 +00004154** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004155** cursor currently points to.
4156**
4157** The caller must guarantee that the cursor is pointing to a non-NULL
4158** valid entry. In other words, the calling procedure must guarantee
4159** that the cursor has Cursor.eState==CURSOR_VALID.
4160**
4161** Failure is not possible. This function always returns SQLITE_OK.
4162** It might just as well be a procedure (returning void) but we continue
4163** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004164*/
4165int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004166 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004167 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004168 assert( pCur->iPage>=0 );
4169 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004170 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004171 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004172 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004173 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004174}
4175
4176/*
danielk1977d04417962007-05-02 13:16:30 +00004177** Given the page number of an overflow page in the database (parameter
4178** ovfl), this function finds the page number of the next page in the
4179** linked list of overflow pages. If possible, it uses the auto-vacuum
4180** pointer-map data instead of reading the content of page ovfl to do so.
4181**
4182** If an error occurs an SQLite error code is returned. Otherwise:
4183**
danielk1977bea2a942009-01-20 17:06:27 +00004184** The page number of the next overflow page in the linked list is
4185** written to *pPgnoNext. If page ovfl is the last page in its linked
4186** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004187**
danielk1977bea2a942009-01-20 17:06:27 +00004188** If ppPage is not NULL, and a reference to the MemPage object corresponding
4189** to page number pOvfl was obtained, then *ppPage is set to point to that
4190** reference. It is the responsibility of the caller to call releasePage()
4191** on *ppPage to free the reference. In no reference was obtained (because
4192** the pointer-map was used to obtain the value for *pPgnoNext), then
4193** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004194*/
4195static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004196 BtShared *pBt, /* The database file */
4197 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004198 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004199 Pgno *pPgnoNext /* OUT: Next overflow page number */
4200){
4201 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004202 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004203 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004204
drh1fee73e2007-08-29 04:00:57 +00004205 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004206 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004207
4208#ifndef SQLITE_OMIT_AUTOVACUUM
4209 /* Try to find the next page in the overflow list using the
4210 ** autovacuum pointer-map pages. Guess that the next page in
4211 ** the overflow list is page number (ovfl+1). If that guess turns
4212 ** out to be wrong, fall back to loading the data of page
4213 ** number ovfl to determine the next page number.
4214 */
4215 if( pBt->autoVacuum ){
4216 Pgno pgno;
4217 Pgno iGuess = ovfl+1;
4218 u8 eType;
4219
4220 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4221 iGuess++;
4222 }
4223
drhb1299152010-03-30 22:58:33 +00004224 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004225 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004226 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004227 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004228 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004229 }
4230 }
4231 }
4232#endif
4233
danielk1977d8a3f3d2009-07-11 11:45:23 +00004234 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004235 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004236 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004237 assert( rc==SQLITE_OK || pPage==0 );
4238 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004239 next = get4byte(pPage->aData);
4240 }
danielk1977443c0592009-01-16 15:21:05 +00004241 }
danielk197745d68822009-01-16 16:23:38 +00004242
danielk1977bea2a942009-01-20 17:06:27 +00004243 *pPgnoNext = next;
4244 if( ppPage ){
4245 *ppPage = pPage;
4246 }else{
4247 releasePage(pPage);
4248 }
4249 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004250}
4251
danielk1977da107192007-05-04 08:32:13 +00004252/*
4253** Copy data from a buffer to a page, or from a page to a buffer.
4254**
4255** pPayload is a pointer to data stored on database page pDbPage.
4256** If argument eOp is false, then nByte bytes of data are copied
4257** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4258** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4259** of data are copied from the buffer pBuf to pPayload.
4260**
4261** SQLITE_OK is returned on success, otherwise an error code.
4262*/
4263static int copyPayload(
4264 void *pPayload, /* Pointer to page data */
4265 void *pBuf, /* Pointer to buffer */
4266 int nByte, /* Number of bytes to copy */
4267 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4268 DbPage *pDbPage /* Page containing pPayload */
4269){
4270 if( eOp ){
4271 /* Copy data from buffer to page (a write operation) */
4272 int rc = sqlite3PagerWrite(pDbPage);
4273 if( rc!=SQLITE_OK ){
4274 return rc;
4275 }
4276 memcpy(pPayload, pBuf, nByte);
4277 }else{
4278 /* Copy data from page to buffer (a read operation) */
4279 memcpy(pBuf, pPayload, nByte);
4280 }
4281 return SQLITE_OK;
4282}
danielk1977d04417962007-05-02 13:16:30 +00004283
4284/*
danielk19779f8d6402007-05-02 17:48:45 +00004285** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004286** for the entry that the pCur cursor is pointing to. The eOp
4287** argument is interpreted as follows:
4288**
4289** 0: The operation is a read. Populate the overflow cache.
4290** 1: The operation is a write. Populate the overflow cache.
4291** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004292**
4293** A total of "amt" bytes are read or written beginning at "offset".
4294** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004295**
drh3bcdfd22009-07-12 02:32:21 +00004296** The content being read or written might appear on the main page
4297** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004298**
dan5a500af2014-03-11 20:33:04 +00004299** If the current cursor entry uses one or more overflow pages and the
4300** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004301** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004302** Subsequent calls use this cache to make seeking to the supplied offset
4303** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004304**
4305** Once an overflow page-list cache has been allocated, it may be
4306** invalidated if some other cursor writes to the same table, or if
4307** the cursor is moved to a different row. Additionally, in auto-vacuum
4308** mode, the following events may invalidate an overflow page-list cache.
4309**
4310** * An incremental vacuum,
4311** * A commit in auto_vacuum="full" mode,
4312** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004313*/
danielk19779f8d6402007-05-02 17:48:45 +00004314static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004315 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004316 u32 offset, /* Begin reading this far into payload */
4317 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004318 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004319 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004320){
4321 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004322 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004323 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004324 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004325 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004326#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004327 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004328 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004329#endif
drh3aac2dd2004-04-26 14:10:20 +00004330
danielk1977da107192007-05-04 08:32:13 +00004331 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004332 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004333 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004334 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004335 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004336
drh86057612007-06-26 01:04:48 +00004337 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004338 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004339#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004340 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004341#endif
drhab1cc582014-09-23 21:25:19 +00004342 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004343
drhab1cc582014-09-23 21:25:19 +00004344 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004345 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004346 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004347 }
danielk1977da107192007-05-04 08:32:13 +00004348
4349 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004350 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004351 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004352 if( a+offset>pCur->info.nLocal ){
4353 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004354 }
dan5a500af2014-03-11 20:33:04 +00004355 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004356 offset = 0;
drha34b6762004-05-07 13:30:42 +00004357 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004358 amt -= a;
drhdd793422001-06-28 01:54:48 +00004359 }else{
drhfa1a98a2004-05-14 19:08:17 +00004360 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004361 }
danielk1977da107192007-05-04 08:32:13 +00004362
dan85753662014-12-11 16:38:18 +00004363
danielk1977da107192007-05-04 08:32:13 +00004364 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004365 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004366 Pgno nextPage;
4367
drhfa1a98a2004-05-14 19:08:17 +00004368 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004369
drha38c9512014-04-01 01:24:34 +00004370 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4371 ** Except, do not allocate aOverflow[] for eOp==2.
4372 **
4373 ** The aOverflow[] array is sized at one entry for each overflow page
4374 ** in the overflow chain. The page number of the first overflow page is
4375 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4376 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004377 */
drh036dbec2014-03-11 23:40:44 +00004378 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004379 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004380 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004381 Pgno *aNew = (Pgno*)sqlite3Realloc(
4382 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004383 );
4384 if( aNew==0 ){
4385 rc = SQLITE_NOMEM;
4386 }else{
4387 pCur->nOvflAlloc = nOvfl*2;
4388 pCur->aOverflow = aNew;
4389 }
4390 }
4391 if( rc==SQLITE_OK ){
4392 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004393 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004394 }
4395 }
danielk1977da107192007-05-04 08:32:13 +00004396
4397 /* If the overflow page-list cache has been allocated and the
4398 ** entry for the first required overflow page is valid, skip
4399 ** directly to it.
4400 */
drh3f387402014-09-24 01:23:00 +00004401 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4402 && pCur->aOverflow[offset/ovflSize]
4403 ){
danielk19772dec9702007-05-02 16:48:37 +00004404 iIdx = (offset/ovflSize);
4405 nextPage = pCur->aOverflow[iIdx];
4406 offset = (offset%ovflSize);
4407 }
danielk1977da107192007-05-04 08:32:13 +00004408
4409 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4410
danielk1977da107192007-05-04 08:32:13 +00004411 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004412 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004413 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4414 pCur->aOverflow[iIdx] = nextPage;
4415 }
danielk1977da107192007-05-04 08:32:13 +00004416
danielk1977d04417962007-05-02 13:16:30 +00004417 if( offset>=ovflSize ){
4418 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004419 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004420 ** data is not required. So first try to lookup the overflow
4421 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004422 ** function.
drha38c9512014-04-01 01:24:34 +00004423 **
4424 ** Note that the aOverflow[] array must be allocated because eOp!=2
4425 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004426 */
drha38c9512014-04-01 01:24:34 +00004427 assert( eOp!=2 );
4428 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004429 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004430 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004431 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004432 }else{
danielk1977da107192007-05-04 08:32:13 +00004433 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004434 }
danielk1977da107192007-05-04 08:32:13 +00004435 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004436 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004437 /* Need to read this page properly. It contains some of the
4438 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004439 */
danf4ba1092011-10-08 14:57:07 +00004440#ifdef SQLITE_DIRECT_OVERFLOW_READ
4441 sqlite3_file *fd;
4442#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004443 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004444 if( a + offset > ovflSize ){
4445 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004446 }
danf4ba1092011-10-08 14:57:07 +00004447
4448#ifdef SQLITE_DIRECT_OVERFLOW_READ
4449 /* If all the following are true:
4450 **
4451 ** 1) this is a read operation, and
4452 ** 2) data is required from the start of this overflow page, and
4453 ** 3) the database is file-backed, and
4454 ** 4) there is no open write-transaction, and
4455 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004456 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004457 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004458 **
4459 ** then data can be read directly from the database file into the
4460 ** output buffer, bypassing the page-cache altogether. This speeds
4461 ** up loading large records that span many overflow pages.
4462 */
dan5a500af2014-03-11 20:33:04 +00004463 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004464 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004465 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004466 && pBt->inTransaction==TRANS_READ /* (4) */
4467 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4468 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004469 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004470 ){
4471 u8 aSave[4];
4472 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004473 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004474 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004475 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004476 nextPage = get4byte(aWrite);
4477 memcpy(aWrite, aSave, 4);
4478 }else
4479#endif
4480
4481 {
4482 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004483 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004484 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004485 );
danf4ba1092011-10-08 14:57:07 +00004486 if( rc==SQLITE_OK ){
4487 aPayload = sqlite3PagerGetData(pDbPage);
4488 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004489 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004490 sqlite3PagerUnref(pDbPage);
4491 offset = 0;
4492 }
4493 }
4494 amt -= a;
4495 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004496 }
drh2af926b2001-05-15 00:39:25 +00004497 }
drh2af926b2001-05-15 00:39:25 +00004498 }
danielk1977cfe9a692004-06-16 12:00:29 +00004499
danielk1977da107192007-05-04 08:32:13 +00004500 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004501 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004502 }
danielk1977da107192007-05-04 08:32:13 +00004503 return rc;
drh2af926b2001-05-15 00:39:25 +00004504}
4505
drh72f82862001-05-24 21:06:34 +00004506/*
drh3aac2dd2004-04-26 14:10:20 +00004507** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004508** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004509** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004510**
drh5d1a8722009-07-22 18:07:40 +00004511** The caller must ensure that pCur is pointing to a valid row
4512** in the table.
4513**
drh3aac2dd2004-04-26 14:10:20 +00004514** Return SQLITE_OK on success or an error code if anything goes
4515** wrong. An error is returned if "offset+amt" is larger than
4516** the available payload.
drh72f82862001-05-24 21:06:34 +00004517*/
drha34b6762004-05-07 13:30:42 +00004518int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004519 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004520 assert( pCur->eState==CURSOR_VALID );
4521 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4522 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4523 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004524}
4525
4526/*
drh3aac2dd2004-04-26 14:10:20 +00004527** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004528** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004529** begins at "offset".
4530**
4531** Return SQLITE_OK on success or an error code if anything goes
4532** wrong. An error is returned if "offset+amt" is larger than
4533** the available payload.
drh72f82862001-05-24 21:06:34 +00004534*/
drh3aac2dd2004-04-26 14:10:20 +00004535int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004536 int rc;
4537
danielk19773588ceb2008-06-10 17:30:26 +00004538#ifndef SQLITE_OMIT_INCRBLOB
4539 if ( pCur->eState==CURSOR_INVALID ){
4540 return SQLITE_ABORT;
4541 }
4542#endif
4543
drh1fee73e2007-08-29 04:00:57 +00004544 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004545 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004546 if( rc==SQLITE_OK ){
4547 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004548 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4549 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004550 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004551 }
4552 return rc;
drh2af926b2001-05-15 00:39:25 +00004553}
4554
drh72f82862001-05-24 21:06:34 +00004555/*
drh0e1c19e2004-05-11 00:58:56 +00004556** Return a pointer to payload information from the entry that the
4557** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004558** the key if index btrees (pPage->intKey==0) and is the data for
4559** table btrees (pPage->intKey==1). The number of bytes of available
4560** key/data is written into *pAmt. If *pAmt==0, then the value
4561** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004562**
4563** This routine is an optimization. It is common for the entire key
4564** and data to fit on the local page and for there to be no overflow
4565** pages. When that is so, this routine can be used to access the
4566** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004567** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004568** the key/data and copy it into a preallocated buffer.
4569**
4570** The pointer returned by this routine looks directly into the cached
4571** page of the database. The data might change or move the next time
4572** any btree routine is called.
4573*/
drh2a8d2262013-12-09 20:43:22 +00004574static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004575 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004576 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004577){
drhf3392e32015-04-15 17:26:55 +00004578 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004579 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004580 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004581 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004582 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004583 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004584 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004585 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4586 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4587 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4588 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4589 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004590 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004591}
4592
4593
4594/*
drhe51c44f2004-05-30 20:46:09 +00004595** For the entry that cursor pCur is point to, return as
4596** many bytes of the key or data as are available on the local
4597** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004598**
4599** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004600** or be destroyed on the next call to any Btree routine,
4601** including calls from other threads against the same cache.
4602** Hence, a mutex on the BtShared should be held prior to calling
4603** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004604**
4605** These routines is used to get quick access to key and data
4606** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004607*/
drh501932c2013-11-21 21:59:53 +00004608const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004609 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004610}
drh501932c2013-11-21 21:59:53 +00004611const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004612 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004613}
4614
4615
4616/*
drh8178a752003-01-05 21:41:40 +00004617** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004618** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004619**
4620** This function returns SQLITE_CORRUPT if the page-header flags field of
4621** the new child page does not match the flags field of the parent (i.e.
4622** if an intkey page appears to be the parent of a non-intkey page, or
4623** vice-versa).
drh72f82862001-05-24 21:06:34 +00004624*/
drh3aac2dd2004-04-26 14:10:20 +00004625static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004626 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004627 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004628 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004629 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004630
drh1fee73e2007-08-29 04:00:57 +00004631 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004632 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004633 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004634 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004635 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4636 return SQLITE_CORRUPT_BKPT;
4637 }
drhb00fc3b2013-08-21 23:42:32 +00004638 rc = getAndInitPage(pBt, newPgno, &pNewPage,
drh036dbec2014-03-11 23:40:44 +00004639 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004640 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004641 pCur->apPage[i+1] = pNewPage;
4642 pCur->aiIdx[i+1] = 0;
4643 pCur->iPage++;
4644
drh271efa52004-05-30 19:19:05 +00004645 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004646 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk1977bd5969a2009-07-11 17:39:42 +00004647 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004648 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004649 }
drh72f82862001-05-24 21:06:34 +00004650 return SQLITE_OK;
4651}
4652
drhcbd33492015-03-25 13:06:54 +00004653#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004654/*
4655** Page pParent is an internal (non-leaf) tree page. This function
4656** asserts that page number iChild is the left-child if the iIdx'th
4657** cell in page pParent. Or, if iIdx is equal to the total number of
4658** cells in pParent, that page number iChild is the right-child of
4659** the page.
4660*/
4661static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004662 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4663 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004664 assert( iIdx<=pParent->nCell );
4665 if( iIdx==pParent->nCell ){
4666 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4667 }else{
4668 assert( get4byte(findCell(pParent, iIdx))==iChild );
4669 }
4670}
4671#else
4672# define assertParentIndex(x,y,z)
4673#endif
4674
drh72f82862001-05-24 21:06:34 +00004675/*
drh5e2f8b92001-05-28 00:41:15 +00004676** Move the cursor up to the parent page.
4677**
4678** pCur->idx is set to the cell index that contains the pointer
4679** to the page we are coming from. If we are coming from the
4680** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004681** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004682*/
danielk197730548662009-07-09 05:07:37 +00004683static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004684 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004685 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004686 assert( pCur->iPage>0 );
4687 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004688 assertParentIndex(
4689 pCur->apPage[pCur->iPage-1],
4690 pCur->aiIdx[pCur->iPage-1],
4691 pCur->apPage[pCur->iPage]->pgno
4692 );
dan6c2688c2012-01-12 15:05:03 +00004693 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004694
danielk197771d5d2c2008-09-29 11:49:47 +00004695 releasePage(pCur->apPage[pCur->iPage]);
4696 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004697 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004698 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh72f82862001-05-24 21:06:34 +00004699}
4700
4701/*
danielk19778f880a82009-07-13 09:41:45 +00004702** Move the cursor to point to the root page of its b-tree structure.
4703**
4704** If the table has a virtual root page, then the cursor is moved to point
4705** to the virtual root page instead of the actual root page. A table has a
4706** virtual root page when the actual root page contains no cells and a
4707** single child page. This can only happen with the table rooted at page 1.
4708**
4709** If the b-tree structure is empty, the cursor state is set to
4710** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4711** cell located on the root (or virtual root) page and the cursor state
4712** is set to CURSOR_VALID.
4713**
4714** If this function returns successfully, it may be assumed that the
4715** page-header flags indicate that the [virtual] root-page is the expected
4716** kind of b-tree page (i.e. if when opening the cursor the caller did not
4717** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4718** indicating a table b-tree, or if the caller did specify a KeyInfo
4719** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4720** b-tree).
drh72f82862001-05-24 21:06:34 +00004721*/
drh5e2f8b92001-05-28 00:41:15 +00004722static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004723 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004724 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004725
drh1fee73e2007-08-29 04:00:57 +00004726 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004727 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4728 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4729 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4730 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4731 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004732 assert( pCur->skipNext!=SQLITE_OK );
4733 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004734 }
danielk1977be51a652008-10-08 17:58:48 +00004735 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004736 }
danielk197771d5d2c2008-09-29 11:49:47 +00004737
4738 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004739 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004740 }else if( pCur->pgnoRoot==0 ){
4741 pCur->eState = CURSOR_INVALID;
4742 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004743 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004744 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh036dbec2014-03-11 23:40:44 +00004745 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004746 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004747 pCur->eState = CURSOR_INVALID;
4748 return rc;
4749 }
danielk1977172114a2009-07-07 15:47:12 +00004750 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004751 }
danielk197771d5d2c2008-09-29 11:49:47 +00004752 pRoot = pCur->apPage[0];
4753 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004754
4755 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4756 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4757 ** NULL, the caller expects a table b-tree. If this is not the case,
4758 ** return an SQLITE_CORRUPT error.
4759 **
4760 ** Earlier versions of SQLite assumed that this test could not fail
4761 ** if the root page was already loaded when this function was called (i.e.
4762 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4763 ** in such a way that page pRoot is linked into a second b-tree table
4764 ** (or the freelist). */
4765 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4766 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4767 return SQLITE_CORRUPT_BKPT;
4768 }
danielk19778f880a82009-07-13 09:41:45 +00004769
danielk197771d5d2c2008-09-29 11:49:47 +00004770 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004771 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004772 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004773
drh4e8fe3f2013-12-06 23:25:27 +00004774 if( pRoot->nCell>0 ){
4775 pCur->eState = CURSOR_VALID;
4776 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004777 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004778 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004779 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004780 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004781 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004782 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004783 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004784 }
4785 return rc;
drh72f82862001-05-24 21:06:34 +00004786}
drh2af926b2001-05-15 00:39:25 +00004787
drh5e2f8b92001-05-28 00:41:15 +00004788/*
4789** Move the cursor down to the left-most leaf entry beneath the
4790** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004791**
4792** The left-most leaf is the one with the smallest key - the first
4793** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004794*/
4795static int moveToLeftmost(BtCursor *pCur){
4796 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004797 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004798 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004799
drh1fee73e2007-08-29 04:00:57 +00004800 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004801 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004802 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4803 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4804 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004805 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004806 }
drhd677b3d2007-08-20 22:48:41 +00004807 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004808}
4809
drh2dcc9aa2002-12-04 13:40:25 +00004810/*
4811** Move the cursor down to the right-most leaf entry beneath the
4812** page to which it is currently pointing. Notice the difference
4813** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4814** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4815** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004816**
4817** The right-most entry is the one with the largest key - the last
4818** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004819*/
4820static int moveToRightmost(BtCursor *pCur){
4821 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004822 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004823 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004824
drh1fee73e2007-08-29 04:00:57 +00004825 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004826 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004827 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004828 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004829 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004830 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004831 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004832 }
drhee6438d2014-09-01 13:29:32 +00004833 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4834 assert( pCur->info.nSize==0 );
4835 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4836 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004837}
4838
drh5e00f6c2001-09-13 13:46:56 +00004839/* Move the cursor to the first entry in the table. Return SQLITE_OK
4840** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004841** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004842*/
drh3aac2dd2004-04-26 14:10:20 +00004843int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004844 int rc;
drhd677b3d2007-08-20 22:48:41 +00004845
drh1fee73e2007-08-29 04:00:57 +00004846 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004847 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004848 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004849 if( rc==SQLITE_OK ){
4850 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004851 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004852 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004853 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004854 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004855 *pRes = 0;
4856 rc = moveToLeftmost(pCur);
4857 }
drh5e00f6c2001-09-13 13:46:56 +00004858 }
drh5e00f6c2001-09-13 13:46:56 +00004859 return rc;
4860}
drh5e2f8b92001-05-28 00:41:15 +00004861
drh9562b552002-02-19 15:00:07 +00004862/* Move the cursor to the last entry in the table. Return SQLITE_OK
4863** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004864** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004865*/
drh3aac2dd2004-04-26 14:10:20 +00004866int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004867 int rc;
drhd677b3d2007-08-20 22:48:41 +00004868
drh1fee73e2007-08-29 04:00:57 +00004869 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004870 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004871
4872 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004873 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004874#ifdef SQLITE_DEBUG
4875 /* This block serves to assert() that the cursor really does point
4876 ** to the last entry in the b-tree. */
4877 int ii;
4878 for(ii=0; ii<pCur->iPage; ii++){
4879 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4880 }
4881 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4882 assert( pCur->apPage[pCur->iPage]->leaf );
4883#endif
4884 return SQLITE_OK;
4885 }
4886
drh9562b552002-02-19 15:00:07 +00004887 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004888 if( rc==SQLITE_OK ){
4889 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004890 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004891 *pRes = 1;
4892 }else{
4893 assert( pCur->eState==CURSOR_VALID );
4894 *pRes = 0;
4895 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004896 if( rc==SQLITE_OK ){
4897 pCur->curFlags |= BTCF_AtLast;
4898 }else{
4899 pCur->curFlags &= ~BTCF_AtLast;
4900 }
4901
drhd677b3d2007-08-20 22:48:41 +00004902 }
drh9562b552002-02-19 15:00:07 +00004903 }
drh9562b552002-02-19 15:00:07 +00004904 return rc;
4905}
4906
drhe14006d2008-03-25 17:23:32 +00004907/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004908** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004909**
drhe63d9992008-08-13 19:11:48 +00004910** For INTKEY tables, the intKey parameter is used. pIdxKey
4911** must be NULL. For index tables, pIdxKey is used and intKey
4912** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004913**
drh5e2f8b92001-05-28 00:41:15 +00004914** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004915** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004916** were present. The cursor might point to an entry that comes
4917** before or after the key.
4918**
drh64022502009-01-09 14:11:04 +00004919** An integer is written into *pRes which is the result of
4920** comparing the key with the entry to which the cursor is
4921** pointing. The meaning of the integer written into
4922** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004923**
4924** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004925** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004926** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004927**
4928** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004929** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004930**
4931** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004932** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004933**
drha059ad02001-04-17 20:09:11 +00004934*/
drhe63d9992008-08-13 19:11:48 +00004935int sqlite3BtreeMovetoUnpacked(
4936 BtCursor *pCur, /* The cursor to be moved */
4937 UnpackedRecord *pIdxKey, /* Unpacked index key */
4938 i64 intKey, /* The table key */
4939 int biasRight, /* If true, bias the search to the high end */
4940 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004941){
drh72f82862001-05-24 21:06:34 +00004942 int rc;
dan3b9330f2014-02-27 20:44:18 +00004943 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004944
drh1fee73e2007-08-29 04:00:57 +00004945 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004946 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004947 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004948 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004949
4950 /* If the cursor is already positioned at the point we are trying
4951 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00004952 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00004953 && pCur->apPage[0]->intKey
4954 ){
drhe63d9992008-08-13 19:11:48 +00004955 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004956 *pRes = 0;
4957 return SQLITE_OK;
4958 }
drh036dbec2014-03-11 23:40:44 +00004959 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004960 *pRes = -1;
4961 return SQLITE_OK;
4962 }
4963 }
4964
dan1fed5da2014-02-25 21:01:25 +00004965 if( pIdxKey ){
4966 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00004967 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00004968 assert( pIdxKey->default_rc==1
4969 || pIdxKey->default_rc==0
4970 || pIdxKey->default_rc==-1
4971 );
drh13a747e2014-03-03 21:46:55 +00004972 }else{
drhb6e8fd12014-03-06 01:56:33 +00004973 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004974 }
4975
drh5e2f8b92001-05-28 00:41:15 +00004976 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004977 if( rc ){
4978 return rc;
4979 }
dana205a482011-08-27 18:48:57 +00004980 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4981 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4982 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004983 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004984 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004985 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004986 return SQLITE_OK;
4987 }
danielk197771d5d2c2008-09-29 11:49:47 +00004988 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004989 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004990 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004991 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004992 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004993 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004994
4995 /* pPage->nCell must be greater than zero. If this is the root-page
4996 ** the cursor would have been INVALID above and this for(;;) loop
4997 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004998 ** would have already detected db corruption. Similarly, pPage must
4999 ** be the right kind (index or table) of b-tree page. Otherwise
5000 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005001 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005002 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005003 lwr = 0;
5004 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005005 assert( biasRight==0 || biasRight==1 );
5006 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005007 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005008 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005009 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005010 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00005011 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3e28ff52014-09-24 00:59:08 +00005012 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005013 while( 0x80 <= *(pCell++) ){
5014 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5015 }
drhd172f862006-01-12 15:01:15 +00005016 }
drha2c20e42008-03-29 16:01:04 +00005017 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005018 if( nCellKey<intKey ){
5019 lwr = idx+1;
5020 if( lwr>upr ){ c = -1; break; }
5021 }else if( nCellKey>intKey ){
5022 upr = idx-1;
5023 if( lwr>upr ){ c = +1; break; }
5024 }else{
5025 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005026 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005027 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005028 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005029 if( !pPage->leaf ){
5030 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005031 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005032 }else{
5033 *pRes = 0;
5034 rc = SQLITE_OK;
5035 goto moveto_finish;
5036 }
drhd793f442013-11-25 14:10:15 +00005037 }
drhebf10b12013-11-25 17:38:26 +00005038 assert( lwr+upr>=0 );
5039 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005040 }
5041 }else{
5042 for(;;){
drhc6827502015-05-28 15:14:32 +00005043 int nCell; /* Size of the pCell cell in bytes */
drhec3e6b12013-11-25 02:38:55 +00005044 pCell = findCell(pPage, idx) + pPage->childPtrSize;
5045
drhb2eced52010-08-12 02:41:12 +00005046 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005047 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005048 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005049 ** varint. This information is used to attempt to avoid parsing
5050 ** the entire cell by checking for the cases where the record is
5051 ** stored entirely within the b-tree page by inspecting the first
5052 ** 2 bytes of the cell.
5053 */
drhec3e6b12013-11-25 02:38:55 +00005054 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005055 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005056 /* This branch runs if the record-size field of the cell is a
5057 ** single byte varint and the record fits entirely on the main
5058 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005059 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005060 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005061 }else if( !(pCell[1] & 0x80)
5062 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5063 ){
5064 /* The record-size field is a 2 byte varint and the record
5065 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005066 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005067 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005068 }else{
danielk197711c327a2009-05-04 19:01:26 +00005069 /* The record flows over onto one or more overflow pages. In
5070 ** this case the whole cell needs to be parsed, a buffer allocated
5071 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005072 ** buffer before VdbeRecordCompare() can be called.
5073 **
5074 ** If the record is corrupt, the xRecordCompare routine may read
5075 ** up to two varints past the end of the buffer. An extra 18
5076 ** bytes of padding is allocated at the end of the buffer in
5077 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005078 void *pCellKey;
5079 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005080 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005081 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005082 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5083 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5084 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5085 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005086 if( nCell<2 ){
5087 rc = SQLITE_CORRUPT_BKPT;
5088 goto moveto_finish;
5089 }
5090 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005091 if( pCellKey==0 ){
5092 rc = SQLITE_NOMEM;
5093 goto moveto_finish;
5094 }
drhd793f442013-11-25 14:10:15 +00005095 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005096 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005097 if( rc ){
5098 sqlite3_free(pCellKey);
5099 goto moveto_finish;
5100 }
drh75179de2014-09-16 14:37:35 +00005101 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005102 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005103 }
dan38fdead2014-04-01 10:19:02 +00005104 assert(
5105 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005106 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005107 );
drhbb933ef2013-11-25 15:01:38 +00005108 if( c<0 ){
5109 lwr = idx+1;
5110 }else if( c>0 ){
5111 upr = idx-1;
5112 }else{
5113 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005114 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005115 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005116 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005117 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005118 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005119 }
drhebf10b12013-11-25 17:38:26 +00005120 if( lwr>upr ) break;
5121 assert( lwr+upr>=0 );
5122 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005123 }
drh72f82862001-05-24 21:06:34 +00005124 }
drhb07028f2011-10-14 21:49:18 +00005125 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005126 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005127 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005128 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005129 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005130 *pRes = c;
5131 rc = SQLITE_OK;
5132 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005133 }
5134moveto_next_layer:
5135 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005136 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005137 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005138 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005139 }
drhf49661a2008-12-10 16:45:50 +00005140 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005141 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005142 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005143 }
drh1e968a02008-03-25 00:22:21 +00005144moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005145 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005146 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005147 return rc;
5148}
5149
drhd677b3d2007-08-20 22:48:41 +00005150
drh72f82862001-05-24 21:06:34 +00005151/*
drhc39e0002004-05-07 23:50:57 +00005152** Return TRUE if the cursor is not pointing at an entry of the table.
5153**
5154** TRUE will be returned after a call to sqlite3BtreeNext() moves
5155** past the last entry in the table or sqlite3BtreePrev() moves past
5156** the first entry. TRUE is also returned if the table is empty.
5157*/
5158int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005159 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5160 ** have been deleted? This API will need to change to return an error code
5161 ** as well as the boolean result value.
5162 */
5163 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005164}
5165
5166/*
drhbd03cae2001-06-02 02:40:57 +00005167** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005168** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005169** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005170** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005171**
drhee6438d2014-09-01 13:29:32 +00005172** The main entry point is sqlite3BtreeNext(). That routine is optimized
5173** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5174** to the next cell on the current page. The (slower) btreeNext() helper
5175** routine is called when it is necessary to move to a different page or
5176** to restore the cursor.
5177**
drhe39a7322014-02-03 14:04:11 +00005178** The calling function will set *pRes to 0 or 1. The initial *pRes value
5179** will be 1 if the cursor being stepped corresponds to an SQL index and
5180** if this routine could have been skipped if that SQL index had been
5181** a unique index. Otherwise the caller will have set *pRes to zero.
5182** Zero is the common case. The btree implementation is free to use the
5183** initial *pRes value as a hint to improve performance, but the current
5184** SQLite btree implementation does not. (Note that the comdb2 btree
5185** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005186*/
drhee6438d2014-09-01 13:29:32 +00005187static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005188 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005189 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005190 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005191
drh1fee73e2007-08-29 04:00:57 +00005192 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005193 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005194 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005195 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005196 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005197 rc = restoreCursorPosition(pCur);
5198 if( rc!=SQLITE_OK ){
5199 return rc;
5200 }
5201 if( CURSOR_INVALID==pCur->eState ){
5202 *pRes = 1;
5203 return SQLITE_OK;
5204 }
drh9b47ee32013-08-20 03:13:51 +00005205 if( pCur->skipNext ){
5206 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5207 pCur->eState = CURSOR_VALID;
5208 if( pCur->skipNext>0 ){
5209 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005210 return SQLITE_OK;
5211 }
drhf66f26a2013-08-19 20:04:10 +00005212 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005213 }
danielk1977da184232006-01-05 11:34:32 +00005214 }
danielk1977da184232006-01-05 11:34:32 +00005215
danielk197771d5d2c2008-09-29 11:49:47 +00005216 pPage = pCur->apPage[pCur->iPage];
5217 idx = ++pCur->aiIdx[pCur->iPage];
5218 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005219
5220 /* If the database file is corrupt, it is possible for the value of idx
5221 ** to be invalid here. This can only occur if a second cursor modifies
5222 ** the page while cursor pCur is holding a reference to it. Which can
5223 ** only happen if the database is corrupt in such a way as to link the
5224 ** page into more than one b-tree structure. */
5225 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005226
danielk197771d5d2c2008-09-29 11:49:47 +00005227 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005228 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005229 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005230 if( rc ) return rc;
5231 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005232 }
drh5e2f8b92001-05-28 00:41:15 +00005233 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005234 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005235 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005236 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005237 return SQLITE_OK;
5238 }
danielk197730548662009-07-09 05:07:37 +00005239 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005240 pPage = pCur->apPage[pCur->iPage];
5241 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005242 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005243 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005244 }else{
drhee6438d2014-09-01 13:29:32 +00005245 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005246 }
drh8178a752003-01-05 21:41:40 +00005247 }
drh3aac2dd2004-04-26 14:10:20 +00005248 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005249 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005250 }else{
5251 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005252 }
drh72f82862001-05-24 21:06:34 +00005253}
drhee6438d2014-09-01 13:29:32 +00005254int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5255 MemPage *pPage;
5256 assert( cursorHoldsMutex(pCur) );
5257 assert( pRes!=0 );
5258 assert( *pRes==0 || *pRes==1 );
5259 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5260 pCur->info.nSize = 0;
5261 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5262 *pRes = 0;
5263 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5264 pPage = pCur->apPage[pCur->iPage];
5265 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5266 pCur->aiIdx[pCur->iPage]--;
5267 return btreeNext(pCur, pRes);
5268 }
5269 if( pPage->leaf ){
5270 return SQLITE_OK;
5271 }else{
5272 return moveToLeftmost(pCur);
5273 }
5274}
drh72f82862001-05-24 21:06:34 +00005275
drh3b7511c2001-05-26 13:15:44 +00005276/*
drh2dcc9aa2002-12-04 13:40:25 +00005277** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005278** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005279** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005280** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005281**
drhee6438d2014-09-01 13:29:32 +00005282** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5283** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005284** to the previous cell on the current page. The (slower) btreePrevious()
5285** helper routine is called when it is necessary to move to a different page
5286** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005287**
drhe39a7322014-02-03 14:04:11 +00005288** The calling function will set *pRes to 0 or 1. The initial *pRes value
5289** will be 1 if the cursor being stepped corresponds to an SQL index and
5290** if this routine could have been skipped if that SQL index had been
5291** a unique index. Otherwise the caller will have set *pRes to zero.
5292** Zero is the common case. The btree implementation is free to use the
5293** initial *pRes value as a hint to improve performance, but the current
5294** SQLite btree implementation does not. (Note that the comdb2 btree
5295** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005296*/
drhee6438d2014-09-01 13:29:32 +00005297static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005298 int rc;
drh8178a752003-01-05 21:41:40 +00005299 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005300
drh1fee73e2007-08-29 04:00:57 +00005301 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005302 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005303 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005304 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005305 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5306 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005307 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005308 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005309 if( rc!=SQLITE_OK ){
5310 return rc;
drhf66f26a2013-08-19 20:04:10 +00005311 }
5312 if( CURSOR_INVALID==pCur->eState ){
5313 *pRes = 1;
5314 return SQLITE_OK;
5315 }
drh9b47ee32013-08-20 03:13:51 +00005316 if( pCur->skipNext ){
5317 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5318 pCur->eState = CURSOR_VALID;
5319 if( pCur->skipNext<0 ){
5320 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005321 return SQLITE_OK;
5322 }
drhf66f26a2013-08-19 20:04:10 +00005323 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005324 }
danielk1977da184232006-01-05 11:34:32 +00005325 }
danielk1977da184232006-01-05 11:34:32 +00005326
danielk197771d5d2c2008-09-29 11:49:47 +00005327 pPage = pCur->apPage[pCur->iPage];
5328 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005329 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005330 int idx = pCur->aiIdx[pCur->iPage];
5331 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005332 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005333 rc = moveToRightmost(pCur);
5334 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005335 while( pCur->aiIdx[pCur->iPage]==0 ){
5336 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005337 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005338 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005339 return SQLITE_OK;
5340 }
danielk197730548662009-07-09 05:07:37 +00005341 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005342 }
drhee6438d2014-09-01 13:29:32 +00005343 assert( pCur->info.nSize==0 );
5344 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005345
5346 pCur->aiIdx[pCur->iPage]--;
5347 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005348 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005349 rc = sqlite3BtreePrevious(pCur, pRes);
5350 }else{
5351 rc = SQLITE_OK;
5352 }
drh2dcc9aa2002-12-04 13:40:25 +00005353 }
drh2dcc9aa2002-12-04 13:40:25 +00005354 return rc;
5355}
drhee6438d2014-09-01 13:29:32 +00005356int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5357 assert( cursorHoldsMutex(pCur) );
5358 assert( pRes!=0 );
5359 assert( *pRes==0 || *pRes==1 );
5360 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5361 *pRes = 0;
5362 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5363 pCur->info.nSize = 0;
5364 if( pCur->eState!=CURSOR_VALID
5365 || pCur->aiIdx[pCur->iPage]==0
5366 || pCur->apPage[pCur->iPage]->leaf==0
5367 ){
5368 return btreePrevious(pCur, pRes);
5369 }
5370 pCur->aiIdx[pCur->iPage]--;
5371 return SQLITE_OK;
5372}
drh2dcc9aa2002-12-04 13:40:25 +00005373
5374/*
drh3b7511c2001-05-26 13:15:44 +00005375** Allocate a new page from the database file.
5376**
danielk19773b8a05f2007-03-19 17:44:26 +00005377** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005378** has already been called on the new page.) The new page has also
5379** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005380** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005381**
5382** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005383** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005384**
drh82e647d2013-03-02 03:25:55 +00005385** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005386** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005387** attempt to keep related pages close to each other in the database file,
5388** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005389**
drh82e647d2013-03-02 03:25:55 +00005390** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5391** anywhere on the free-list, then it is guaranteed to be returned. If
5392** eMode is BTALLOC_LT then the page returned will be less than or equal
5393** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5394** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005395*/
drh4f0c5872007-03-26 22:05:01 +00005396static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005397 BtShared *pBt, /* The btree */
5398 MemPage **ppPage, /* Store pointer to the allocated page here */
5399 Pgno *pPgno, /* Store the page number here */
5400 Pgno nearby, /* Search for a page near this one */
5401 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005402){
drh3aac2dd2004-04-26 14:10:20 +00005403 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005404 int rc;
drh35cd6432009-06-05 14:17:21 +00005405 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005406 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005407 MemPage *pTrunk = 0;
5408 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005409 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005410
drh1fee73e2007-08-29 04:00:57 +00005411 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005412 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005413 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005414 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005415 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5416 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005417 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005418 testcase( n==mxPage-1 );
5419 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005420 return SQLITE_CORRUPT_BKPT;
5421 }
drh3aac2dd2004-04-26 14:10:20 +00005422 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005423 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005424 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005425 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drh9e7804d2015-06-24 12:24:03 +00005426 int nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005427
drh82e647d2013-03-02 03:25:55 +00005428 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005429 ** shows that the page 'nearby' is somewhere on the free-list, then
5430 ** the entire-list will be searched for that page.
5431 */
5432#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005433 if( eMode==BTALLOC_EXACT ){
5434 if( nearby<=mxPage ){
5435 u8 eType;
5436 assert( nearby>0 );
5437 assert( pBt->autoVacuum );
5438 rc = ptrmapGet(pBt, nearby, &eType, 0);
5439 if( rc ) return rc;
5440 if( eType==PTRMAP_FREEPAGE ){
5441 searchList = 1;
5442 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005443 }
dan51f0b6d2013-02-22 20:16:34 +00005444 }else if( eMode==BTALLOC_LE ){
5445 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005446 }
5447#endif
5448
5449 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5450 ** first free-list trunk page. iPrevTrunk is initially 1.
5451 */
danielk19773b8a05f2007-03-19 17:44:26 +00005452 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005453 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005454 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005455
5456 /* The code within this loop is run only once if the 'searchList' variable
5457 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005458 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5459 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005460 */
5461 do {
5462 pPrevTrunk = pTrunk;
5463 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005464 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5465 ** is the page number of the next freelist trunk page in the list or
5466 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005467 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005468 }else{
drh113762a2014-11-19 16:36:25 +00005469 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5470 ** stores the page number of the first page of the freelist, or zero if
5471 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005472 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005473 }
drhdf35a082009-07-09 02:24:35 +00005474 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005475 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005476 rc = SQLITE_CORRUPT_BKPT;
5477 }else{
drh7e8c6f12015-05-28 03:28:27 +00005478 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005479 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005480 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005481 pTrunk = 0;
5482 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005483 }
drhb07028f2011-10-14 21:49:18 +00005484 assert( pTrunk!=0 );
5485 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005486 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5487 ** is the number of leaf page pointers to follow. */
5488 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005489 if( k==0 && !searchList ){
5490 /* The trunk has no leaves and the list is not being searched.
5491 ** So extract the trunk page itself and use it as the newly
5492 ** allocated page */
5493 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005494 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005495 if( rc ){
5496 goto end_allocate_page;
5497 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005498 *pPgno = iTrunk;
5499 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5500 *ppPage = pTrunk;
5501 pTrunk = 0;
5502 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005503 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005504 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005505 rc = SQLITE_CORRUPT_BKPT;
5506 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005507#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005508 }else if( searchList
5509 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5510 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005511 /* The list is being searched and this trunk page is the page
5512 ** to allocate, regardless of whether it has leaves.
5513 */
dan51f0b6d2013-02-22 20:16:34 +00005514 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005515 *ppPage = pTrunk;
5516 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005517 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005518 if( rc ){
5519 goto end_allocate_page;
5520 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005521 if( k==0 ){
5522 if( !pPrevTrunk ){
5523 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5524 }else{
danf48c3552010-08-23 15:41:24 +00005525 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5526 if( rc!=SQLITE_OK ){
5527 goto end_allocate_page;
5528 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005529 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5530 }
5531 }else{
5532 /* The trunk page is required by the caller but it contains
5533 ** pointers to free-list leaves. The first leaf becomes a trunk
5534 ** page in this case.
5535 */
5536 MemPage *pNewTrunk;
5537 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005538 if( iNewTrunk>mxPage ){
5539 rc = SQLITE_CORRUPT_BKPT;
5540 goto end_allocate_page;
5541 }
drhdf35a082009-07-09 02:24:35 +00005542 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005543 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005544 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005545 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005546 }
danielk19773b8a05f2007-03-19 17:44:26 +00005547 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005548 if( rc!=SQLITE_OK ){
5549 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005550 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005551 }
5552 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5553 put4byte(&pNewTrunk->aData[4], k-1);
5554 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005555 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005556 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005557 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005558 put4byte(&pPage1->aData[32], iNewTrunk);
5559 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005560 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005561 if( rc ){
5562 goto end_allocate_page;
5563 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005564 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5565 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005566 }
5567 pTrunk = 0;
5568 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5569#endif
danielk1977e5765212009-06-17 11:13:28 +00005570 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005571 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005572 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005573 Pgno iPage;
5574 unsigned char *aData = pTrunk->aData;
5575 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005576 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005577 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005578 if( eMode==BTALLOC_LE ){
5579 for(i=0; i<k; i++){
5580 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005581 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005582 closest = i;
5583 break;
5584 }
5585 }
5586 }else{
5587 int dist;
5588 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5589 for(i=1; i<k; i++){
5590 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5591 if( d2<dist ){
5592 closest = i;
5593 dist = d2;
5594 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005595 }
5596 }
5597 }else{
5598 closest = 0;
5599 }
5600
5601 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005602 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005603 if( iPage>mxPage ){
5604 rc = SQLITE_CORRUPT_BKPT;
5605 goto end_allocate_page;
5606 }
drhdf35a082009-07-09 02:24:35 +00005607 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005608 if( !searchList
5609 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5610 ){
danielk1977bea2a942009-01-20 17:06:27 +00005611 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005612 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005613 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5614 ": %d more free pages\n",
5615 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005616 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5617 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005618 if( closest<k-1 ){
5619 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5620 }
5621 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005622 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005623 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005624 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005625 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005626 if( rc!=SQLITE_OK ){
5627 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005628 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005629 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005630 }
5631 searchList = 0;
5632 }
drhee696e22004-08-30 16:52:17 +00005633 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005634 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005635 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005636 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005637 }else{
danbc1a3c62013-02-23 16:40:46 +00005638 /* There are no pages on the freelist, so append a new page to the
5639 ** database image.
5640 **
5641 ** Normally, new pages allocated by this block can be requested from the
5642 ** pager layer with the 'no-content' flag set. This prevents the pager
5643 ** from trying to read the pages content from disk. However, if the
5644 ** current transaction has already run one or more incremental-vacuum
5645 ** steps, then the page we are about to allocate may contain content
5646 ** that is required in the event of a rollback. In this case, do
5647 ** not set the no-content flag. This causes the pager to load and journal
5648 ** the current page content before overwriting it.
5649 **
5650 ** Note that the pager will not actually attempt to load or journal
5651 ** content for any page that really does lie past the end of the database
5652 ** file on disk. So the effects of disabling the no-content optimization
5653 ** here are confined to those pages that lie between the end of the
5654 ** database image and the end of the database file.
5655 */
drh3f387402014-09-24 01:23:00 +00005656 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005657
drhdd3cd972010-03-27 17:12:36 +00005658 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5659 if( rc ) return rc;
5660 pBt->nPage++;
5661 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005662
danielk1977afcdd022004-10-31 16:25:42 +00005663#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005664 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005665 /* If *pPgno refers to a pointer-map page, allocate two new pages
5666 ** at the end of the file instead of one. The first allocated page
5667 ** becomes a new pointer-map page, the second is used by the caller.
5668 */
danielk1977ac861692009-03-28 10:54:22 +00005669 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005670 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5671 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005672 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005673 if( rc==SQLITE_OK ){
5674 rc = sqlite3PagerWrite(pPg->pDbPage);
5675 releasePage(pPg);
5676 }
5677 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005678 pBt->nPage++;
5679 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005680 }
5681#endif
drhdd3cd972010-03-27 17:12:36 +00005682 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5683 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005684
danielk1977599fcba2004-11-08 07:13:13 +00005685 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005686 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005687 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005688 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005689 if( rc!=SQLITE_OK ){
5690 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005691 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005692 }
drh3a4c1412004-05-09 20:40:11 +00005693 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005694 }
danielk1977599fcba2004-11-08 07:13:13 +00005695
5696 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005697
5698end_allocate_page:
5699 releasePage(pTrunk);
5700 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005701 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5702 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005703 return rc;
5704}
5705
5706/*
danielk1977bea2a942009-01-20 17:06:27 +00005707** This function is used to add page iPage to the database file free-list.
5708** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005709**
danielk1977bea2a942009-01-20 17:06:27 +00005710** The value passed as the second argument to this function is optional.
5711** If the caller happens to have a pointer to the MemPage object
5712** corresponding to page iPage handy, it may pass it as the second value.
5713** Otherwise, it may pass NULL.
5714**
5715** If a pointer to a MemPage object is passed as the second argument,
5716** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005717*/
danielk1977bea2a942009-01-20 17:06:27 +00005718static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5719 MemPage *pTrunk = 0; /* Free-list trunk page */
5720 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5721 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5722 MemPage *pPage; /* Page being freed. May be NULL. */
5723 int rc; /* Return Code */
5724 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005725
danielk1977bea2a942009-01-20 17:06:27 +00005726 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005727 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005728 assert( !pMemPage || pMemPage->pgno==iPage );
5729
danfb0246b2015-05-26 12:18:17 +00005730 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005731 if( pMemPage ){
5732 pPage = pMemPage;
5733 sqlite3PagerRef(pPage->pDbPage);
5734 }else{
5735 pPage = btreePageLookup(pBt, iPage);
5736 }
drh3aac2dd2004-04-26 14:10:20 +00005737
drha34b6762004-05-07 13:30:42 +00005738 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005739 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005740 if( rc ) goto freepage_out;
5741 nFree = get4byte(&pPage1->aData[36]);
5742 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005743
drhc9166342012-01-05 23:32:06 +00005744 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005745 /* If the secure_delete option is enabled, then
5746 ** always fully overwrite deleted information with zeros.
5747 */
drhb00fc3b2013-08-21 23:42:32 +00005748 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005749 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005750 ){
5751 goto freepage_out;
5752 }
5753 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005754 }
drhfcce93f2006-02-22 03:08:32 +00005755
danielk1977687566d2004-11-02 12:56:41 +00005756 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005757 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005758 */
danielk197785d90ca2008-07-19 14:25:15 +00005759 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005760 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005761 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005762 }
danielk1977687566d2004-11-02 12:56:41 +00005763
danielk1977bea2a942009-01-20 17:06:27 +00005764 /* Now manipulate the actual database free-list structure. There are two
5765 ** possibilities. If the free-list is currently empty, or if the first
5766 ** trunk page in the free-list is full, then this page will become a
5767 ** new free-list trunk page. Otherwise, it will become a leaf of the
5768 ** first trunk page in the current free-list. This block tests if it
5769 ** is possible to add the page as a new free-list leaf.
5770 */
5771 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005772 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005773
5774 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005775 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005776 if( rc!=SQLITE_OK ){
5777 goto freepage_out;
5778 }
5779
5780 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005781 assert( pBt->usableSize>32 );
5782 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005783 rc = SQLITE_CORRUPT_BKPT;
5784 goto freepage_out;
5785 }
drheeb844a2009-08-08 18:01:07 +00005786 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005787 /* In this case there is room on the trunk page to insert the page
5788 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005789 **
5790 ** Note that the trunk page is not really full until it contains
5791 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5792 ** coded. But due to a coding error in versions of SQLite prior to
5793 ** 3.6.0, databases with freelist trunk pages holding more than
5794 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5795 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005796 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005797 ** for now. At some point in the future (once everyone has upgraded
5798 ** to 3.6.0 or later) we should consider fixing the conditional above
5799 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005800 **
5801 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5802 ** avoid using the last six entries in the freelist trunk page array in
5803 ** order that database files created by newer versions of SQLite can be
5804 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005805 */
danielk19773b8a05f2007-03-19 17:44:26 +00005806 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005807 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005808 put4byte(&pTrunk->aData[4], nLeaf+1);
5809 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005810 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005811 sqlite3PagerDontWrite(pPage->pDbPage);
5812 }
danielk1977bea2a942009-01-20 17:06:27 +00005813 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005814 }
drh3a4c1412004-05-09 20:40:11 +00005815 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005816 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005817 }
drh3b7511c2001-05-26 13:15:44 +00005818 }
danielk1977bea2a942009-01-20 17:06:27 +00005819
5820 /* If control flows to this point, then it was not possible to add the
5821 ** the page being freed as a leaf page of the first trunk in the free-list.
5822 ** Possibly because the free-list is empty, or possibly because the
5823 ** first trunk in the free-list is full. Either way, the page being freed
5824 ** will become the new first trunk page in the free-list.
5825 */
drhb00fc3b2013-08-21 23:42:32 +00005826 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005827 goto freepage_out;
5828 }
5829 rc = sqlite3PagerWrite(pPage->pDbPage);
5830 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005831 goto freepage_out;
5832 }
5833 put4byte(pPage->aData, iTrunk);
5834 put4byte(&pPage->aData[4], 0);
5835 put4byte(&pPage1->aData[32], iPage);
5836 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5837
5838freepage_out:
5839 if( pPage ){
5840 pPage->isInit = 0;
5841 }
5842 releasePage(pPage);
5843 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005844 return rc;
5845}
drhc314dc72009-07-21 11:52:34 +00005846static void freePage(MemPage *pPage, int *pRC){
5847 if( (*pRC)==SQLITE_OK ){
5848 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5849 }
danielk1977bea2a942009-01-20 17:06:27 +00005850}
drh3b7511c2001-05-26 13:15:44 +00005851
5852/*
drh9bfdc252014-09-24 02:05:41 +00005853** Free any overflow pages associated with the given Cell. Write the
5854** local Cell size (the number of bytes on the original page, omitting
5855** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005856*/
drh9bfdc252014-09-24 02:05:41 +00005857static int clearCell(
5858 MemPage *pPage, /* The page that contains the Cell */
5859 unsigned char *pCell, /* First byte of the Cell */
5860 u16 *pnSize /* Write the size of the Cell here */
5861){
danielk1977aef0bf62005-12-30 16:28:01 +00005862 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005863 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005864 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005865 int rc;
drh94440812007-03-06 11:42:19 +00005866 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005867 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005868
drh1fee73e2007-08-29 04:00:57 +00005869 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00005870 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005871 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005872 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005873 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005874 }
drhe42a9b42011-08-31 13:27:19 +00005875 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005876 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005877 }
drh6f11bef2004-05-13 01:12:56 +00005878 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005879 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005880 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005881 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00005882 assert( nOvfl>0 ||
5883 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
5884 );
drh72365832007-03-06 15:53:44 +00005885 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005886 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005887 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005888 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005889 /* 0 is not a legal page number and page 1 cannot be an
5890 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5891 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005892 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005893 }
danielk1977bea2a942009-01-20 17:06:27 +00005894 if( nOvfl ){
5895 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5896 if( rc ) return rc;
5897 }
dan887d4b22010-02-25 12:09:16 +00005898
shaneh1da207e2010-03-09 14:41:12 +00005899 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005900 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5901 ){
5902 /* There is no reason any cursor should have an outstanding reference
5903 ** to an overflow page belonging to a cell that is being deleted/updated.
5904 ** So if there exists more than one reference to this page, then it
5905 ** must not really be an overflow page and the database must be corrupt.
5906 ** It is helpful to detect this before calling freePage2(), as
5907 ** freePage2() may zero the page contents if secure-delete mode is
5908 ** enabled. If this 'overflow' page happens to be a page that the
5909 ** caller is iterating through or using in some other way, this
5910 ** can be problematic.
5911 */
5912 rc = SQLITE_CORRUPT_BKPT;
5913 }else{
5914 rc = freePage2(pBt, pOvfl, ovflPgno);
5915 }
5916
danielk1977bea2a942009-01-20 17:06:27 +00005917 if( pOvfl ){
5918 sqlite3PagerUnref(pOvfl->pDbPage);
5919 }
drh3b7511c2001-05-26 13:15:44 +00005920 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005921 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005922 }
drh5e2f8b92001-05-28 00:41:15 +00005923 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005924}
5925
5926/*
drh91025292004-05-03 19:49:32 +00005927** Create the byte sequence used to represent a cell on page pPage
5928** and write that byte sequence into pCell[]. Overflow pages are
5929** allocated and filled in as necessary. The calling procedure
5930** is responsible for making sure sufficient space has been allocated
5931** for pCell[].
5932**
5933** Note that pCell does not necessary need to point to the pPage->aData
5934** area. pCell might point to some temporary storage. The cell will
5935** be constructed in this temporary area then copied into pPage->aData
5936** later.
drh3b7511c2001-05-26 13:15:44 +00005937*/
5938static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005939 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005940 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005941 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005942 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005943 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005944 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005945){
drh3b7511c2001-05-26 13:15:44 +00005946 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005947 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005948 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005949 int spaceLeft;
5950 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005951 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005952 unsigned char *pPrior;
5953 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005954 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005955 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005956 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00005957
drh1fee73e2007-08-29 04:00:57 +00005958 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005959
drhc5053fb2008-11-27 02:22:10 +00005960 /* pPage is not necessarily writeable since pCell might be auxiliary
5961 ** buffer space that is separate from the pPage buffer area */
5962 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5963 || sqlite3PagerIswriteable(pPage->pDbPage) );
5964
drh91025292004-05-03 19:49:32 +00005965 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00005966 nHeader = pPage->childPtrSize;
5967 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00005968 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00005969 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00005970 }else{
drh6200c882014-09-23 22:36:25 +00005971 assert( nData==0 );
5972 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00005973 }
drh6f11bef2004-05-13 01:12:56 +00005974 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00005975
drh6200c882014-09-23 22:36:25 +00005976 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00005977 if( pPage->intKey ){
5978 pSrc = pData;
5979 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005980 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005981 }else{
danielk197731d31b82009-07-13 13:18:07 +00005982 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5983 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005984 }
drh6200c882014-09-23 22:36:25 +00005985 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005986 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005987 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005988 }
drh6200c882014-09-23 22:36:25 +00005989 if( nPayload<=pPage->maxLocal ){
5990 n = nHeader + nPayload;
5991 testcase( n==3 );
5992 testcase( n==4 );
5993 if( n<4 ) n = 4;
5994 *pnSize = n;
5995 spaceLeft = nPayload;
5996 pPrior = pCell;
5997 }else{
5998 int mn = pPage->minLocal;
5999 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6000 testcase( n==pPage->maxLocal );
6001 testcase( n==pPage->maxLocal+1 );
6002 if( n > pPage->maxLocal ) n = mn;
6003 spaceLeft = n;
6004 *pnSize = n + nHeader + 4;
6005 pPrior = &pCell[nHeader+n];
6006 }
drh3aac2dd2004-04-26 14:10:20 +00006007 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006008
drh6200c882014-09-23 22:36:25 +00006009 /* At this point variables should be set as follows:
6010 **
6011 ** nPayload Total payload size in bytes
6012 ** pPayload Begin writing payload here
6013 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6014 ** that means content must spill into overflow pages.
6015 ** *pnSize Size of the local cell (not counting overflow pages)
6016 ** pPrior Where to write the pgno of the first overflow page
6017 **
6018 ** Use a call to btreeParseCellPtr() to verify that the values above
6019 ** were computed correctly.
6020 */
6021#if SQLITE_DEBUG
6022 {
6023 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006024 pPage->xParseCell(pPage, pCell, &info);
drh6200c882014-09-23 22:36:25 +00006025 assert( nHeader=(int)(info.pPayload - pCell) );
6026 assert( info.nKey==nKey );
6027 assert( *pnSize == info.nSize );
6028 assert( spaceLeft == info.nLocal );
6029 assert( pPrior == &pCell[info.iOverflow] );
6030 }
6031#endif
6032
6033 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006034 while( nPayload>0 ){
6035 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006036#ifndef SQLITE_OMIT_AUTOVACUUM
6037 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006038 if( pBt->autoVacuum ){
6039 do{
6040 pgnoOvfl++;
6041 } while(
6042 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6043 );
danielk1977b39f70b2007-05-17 18:28:11 +00006044 }
danielk1977afcdd022004-10-31 16:25:42 +00006045#endif
drhf49661a2008-12-10 16:45:50 +00006046 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006047#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006048 /* If the database supports auto-vacuum, and the second or subsequent
6049 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006050 ** for that page now.
6051 **
6052 ** If this is the first overflow page, then write a partial entry
6053 ** to the pointer-map. If we write nothing to this pointer-map slot,
6054 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006055 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006056 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006057 */
danielk19774ef24492007-05-23 09:52:41 +00006058 if( pBt->autoVacuum && rc==SQLITE_OK ){
6059 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006060 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006061 if( rc ){
6062 releasePage(pOvfl);
6063 }
danielk1977afcdd022004-10-31 16:25:42 +00006064 }
6065#endif
drh3b7511c2001-05-26 13:15:44 +00006066 if( rc ){
drh9b171272004-05-08 02:03:22 +00006067 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006068 return rc;
6069 }
drhc5053fb2008-11-27 02:22:10 +00006070
6071 /* If pToRelease is not zero than pPrior points into the data area
6072 ** of pToRelease. Make sure pToRelease is still writeable. */
6073 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6074
6075 /* If pPrior is part of the data area of pPage, then make sure pPage
6076 ** is still writeable */
6077 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6078 || sqlite3PagerIswriteable(pPage->pDbPage) );
6079
drh3aac2dd2004-04-26 14:10:20 +00006080 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006081 releasePage(pToRelease);
6082 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006083 pPrior = pOvfl->aData;
6084 put4byte(pPrior, 0);
6085 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006086 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006087 }
6088 n = nPayload;
6089 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006090
6091 /* If pToRelease is not zero than pPayload points into the data area
6092 ** of pToRelease. Make sure pToRelease is still writeable. */
6093 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6094
6095 /* If pPayload is part of the data area of pPage, then make sure pPage
6096 ** is still writeable */
6097 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6098 || sqlite3PagerIswriteable(pPage->pDbPage) );
6099
drhb026e052007-05-02 01:34:31 +00006100 if( nSrc>0 ){
6101 if( n>nSrc ) n = nSrc;
6102 assert( pSrc );
6103 memcpy(pPayload, pSrc, n);
6104 }else{
6105 memset(pPayload, 0, n);
6106 }
drh3b7511c2001-05-26 13:15:44 +00006107 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006108 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006109 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006110 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006111 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00006112 if( nSrc==0 ){
6113 nSrc = nData;
6114 pSrc = pData;
6115 }
drhdd793422001-06-28 01:54:48 +00006116 }
drh9b171272004-05-08 02:03:22 +00006117 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006118 return SQLITE_OK;
6119}
6120
drh14acc042001-06-10 19:56:58 +00006121/*
6122** Remove the i-th cell from pPage. This routine effects pPage only.
6123** The cell content is not freed or deallocated. It is assumed that
6124** the cell content has been copied someplace else. This routine just
6125** removes the reference to the cell from pPage.
6126**
6127** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006128*/
drh98add2e2009-07-20 17:11:49 +00006129static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006130 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006131 u8 *data; /* pPage->aData */
6132 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006133 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006134 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006135
drh98add2e2009-07-20 17:11:49 +00006136 if( *pRC ) return;
6137
drh8c42ca92001-06-22 19:15:00 +00006138 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006139 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006140 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006141 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006142 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006143 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006144 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006145 hdr = pPage->hdrOffset;
6146 testcase( pc==get2byte(&data[hdr+5]) );
6147 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006148 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006149 *pRC = SQLITE_CORRUPT_BKPT;
6150 return;
shane0af3f892008-11-12 04:55:34 +00006151 }
shanedcc50b72008-11-13 18:29:50 +00006152 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006153 if( rc ){
6154 *pRC = rc;
6155 return;
shanedcc50b72008-11-13 18:29:50 +00006156 }
drh14acc042001-06-10 19:56:58 +00006157 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006158 if( pPage->nCell==0 ){
6159 memset(&data[hdr+1], 0, 4);
6160 data[hdr+7] = 0;
6161 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6162 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6163 - pPage->childPtrSize - 8;
6164 }else{
6165 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6166 put2byte(&data[hdr+3], pPage->nCell);
6167 pPage->nFree += 2;
6168 }
drh14acc042001-06-10 19:56:58 +00006169}
6170
6171/*
6172** Insert a new cell on pPage at cell index "i". pCell points to the
6173** content of the cell.
6174**
6175** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006176** will not fit, then make a copy of the cell content into pTemp if
6177** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006178** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006179** in pTemp or the original pCell) and also record its index.
6180** Allocating a new entry in pPage->aCell[] implies that
6181** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006182*/
drh98add2e2009-07-20 17:11:49 +00006183static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006184 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006185 int i, /* New cell becomes the i-th cell of the page */
6186 u8 *pCell, /* Content of the new cell */
6187 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006188 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006189 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6190 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006191){
drh383d30f2010-02-26 13:07:37 +00006192 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006193 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006194 int end; /* First byte past the last cell pointer in data[] */
6195 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00006196 int cellOffset; /* Address of first cell pointer in data[] */
6197 u8 *data; /* The content of the whole page */
danielk19774dbaa892009-06-16 16:50:22 +00006198
drh98add2e2009-07-20 17:11:49 +00006199 if( *pRC ) return;
6200
drh43605152004-05-29 21:46:49 +00006201 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006202 assert( MX_CELL(pPage->pBt)<=10921 );
6203 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006204 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6205 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006206 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006207 /* The cell should normally be sized correctly. However, when moving a
6208 ** malformed cell from a leaf page to an interior page, if the cell size
6209 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6210 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6211 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006212 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006213 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006214 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006215 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006216 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006217 }
danielk19774dbaa892009-06-16 16:50:22 +00006218 if( iChild ){
6219 put4byte(pCell, iChild);
6220 }
drh43605152004-05-29 21:46:49 +00006221 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006222 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6223 pPage->apOvfl[j] = pCell;
6224 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006225
6226 /* When multiple overflows occur, they are always sequential and in
6227 ** sorted order. This invariants arise because multiple overflows can
6228 ** only occur when inserting divider cells into the parent page during
6229 ** balancing, and the dividers are adjacent and sorted.
6230 */
6231 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6232 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006233 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006234 int rc = sqlite3PagerWrite(pPage->pDbPage);
6235 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006236 *pRC = rc;
6237 return;
danielk19776e465eb2007-08-21 13:11:00 +00006238 }
6239 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006240 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00006241 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00006242 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00006243 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00006244 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006245 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006246 /* The allocateSpace() routine guarantees the following properties
6247 ** if it returns successfully */
6248 assert( idx >= 0 && (idx >= end+2 || CORRUPT_DB) );
drhfcd71b62011-04-05 22:08:24 +00006249 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00006250 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00006251 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006252 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006253 if( iChild ){
6254 put4byte(&data[idx], iChild);
6255 }
drh8f518832013-12-09 02:32:19 +00006256 memmove(&data[ins+2], &data[ins], end-ins);
drh43605152004-05-29 21:46:49 +00006257 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00006258 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00006259#ifndef SQLITE_OMIT_AUTOVACUUM
6260 if( pPage->pBt->autoVacuum ){
6261 /* The cell may contain a pointer to an overflow page. If so, write
6262 ** the entry for the overflow page into the pointer map.
6263 */
drh98add2e2009-07-20 17:11:49 +00006264 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006265 }
6266#endif
drh14acc042001-06-10 19:56:58 +00006267 }
6268}
6269
6270/*
drh1ffd2472015-06-23 02:37:30 +00006271** A CellArray object contains a cache of pointers and sizes for a
6272** consecutive sequence of cells that might be held multiple pages.
6273*/
6274typedef struct CellArray CellArray;
6275struct CellArray {
6276 int nCell; /* Number of cells in apCell[] */
6277 MemPage *pRef; /* Reference page */
6278 u8 **apCell; /* All cells begin balanced */
6279 u16 *szCell; /* Local size of all cells in apCell[] */
6280};
6281
6282/*
6283** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6284** computed.
6285*/
6286static void populateCellCache(CellArray *p, int idx, int N){
6287 assert( idx>=0 && idx+N<=p->nCell );
6288 while( N>0 ){
6289 assert( p->apCell[idx]!=0 );
6290 if( p->szCell[idx]==0 ){
6291 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6292 }else{
6293 assert( CORRUPT_DB ||
6294 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6295 }
6296 idx++;
6297 N--;
6298 }
6299}
6300
6301/*
6302** Return the size of the Nth element of the cell array
6303*/
6304static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6305 assert( N>=0 && N<p->nCell );
6306 assert( p->szCell[N]==0 );
6307 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6308 return p->szCell[N];
6309}
6310static u16 cachedCellSize(CellArray *p, int N){
6311 assert( N>=0 && N<p->nCell );
6312 if( p->szCell[N] ) return p->szCell[N];
6313 return computeCellSize(p, N);
6314}
6315
6316/*
dan8e9ba0c2014-10-14 17:27:04 +00006317** Array apCell[] contains pointers to nCell b-tree page cells. The
6318** szCell[] array contains the size in bytes of each cell. This function
6319** replaces the current contents of page pPg with the contents of the cell
6320** array.
6321**
6322** Some of the cells in apCell[] may currently be stored in pPg. This
6323** function works around problems caused by this by making a copy of any
6324** such cells before overwriting the page data.
6325**
6326** The MemPage.nFree field is invalidated by this function. It is the
6327** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006328*/
drh658873b2015-06-22 20:02:04 +00006329static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006330 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006331 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006332 u8 **apCell, /* Array of cells */
6333 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006334){
6335 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6336 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6337 const int usableSize = pPg->pBt->usableSize;
6338 u8 * const pEnd = &aData[usableSize];
6339 int i;
6340 u8 *pCellptr = pPg->aCellIdx;
6341 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6342 u8 *pData;
6343
6344 i = get2byte(&aData[hdr+5]);
6345 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006346
dan8e9ba0c2014-10-14 17:27:04 +00006347 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006348 for(i=0; i<nCell; i++){
6349 u8 *pCell = apCell[i];
6350 if( pCell>aData && pCell<pEnd ){
6351 pCell = &pTmp[pCell - aData];
6352 }
6353 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006354 put2byte(pCellptr, (pData - aData));
6355 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006356 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6357 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006358 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006359 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006360 }
6361
dand7b545b2014-10-13 18:03:27 +00006362 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006363 pPg->nCell = nCell;
6364 pPg->nOverflow = 0;
6365
6366 put2byte(&aData[hdr+1], 0);
6367 put2byte(&aData[hdr+3], pPg->nCell);
6368 put2byte(&aData[hdr+5], pData - aData);
6369 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006370 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006371}
6372
dan8e9ba0c2014-10-14 17:27:04 +00006373/*
6374** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6375** contains the size in bytes of each such cell. This function attempts to
6376** add the cells stored in the array to page pPg. If it cannot (because
6377** the page needs to be defragmented before the cells will fit), non-zero
6378** is returned. Otherwise, if the cells are added successfully, zero is
6379** returned.
6380**
6381** Argument pCellptr points to the first entry in the cell-pointer array
6382** (part of page pPg) to populate. After cell apCell[0] is written to the
6383** page body, a 16-bit offset is written to pCellptr. And so on, for each
6384** cell in the array. It is the responsibility of the caller to ensure
6385** that it is safe to overwrite this part of the cell-pointer array.
6386**
6387** When this function is called, *ppData points to the start of the
6388** content area on page pPg. If the size of the content area is extended,
6389** *ppData is updated to point to the new start of the content area
6390** before returning.
6391**
6392** Finally, argument pBegin points to the byte immediately following the
6393** end of the space required by this page for the cell-pointer area (for
6394** all cells - not just those inserted by the current call). If the content
6395** area must be extended to before this point in order to accomodate all
6396** cells in apCell[], then the cells do not fit and non-zero is returned.
6397*/
dand7b545b2014-10-13 18:03:27 +00006398static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006399 MemPage *pPg, /* Page to add cells to */
6400 u8 *pBegin, /* End of cell-pointer array */
6401 u8 **ppData, /* IN/OUT: Page content -area pointer */
6402 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006403 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006404 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006405 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006406){
6407 int i;
6408 u8 *aData = pPg->aData;
6409 u8 *pData = *ppData;
dan8e9ba0c2014-10-14 17:27:04 +00006410 const int bFreelist = aData[1] || aData[2];
drhf7838932015-06-23 15:36:34 +00006411 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006412 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006413 for(i=iFirst; i<iEnd; i++){
6414 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006415 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006416 sz = cachedCellSize(pCArray, i);
drhba0f9992014-10-30 20:48:44 +00006417 if( bFreelist==0 || (pSlot = pageFindSlot(pPg, sz, &rc, 0))==0 ){
dand7b545b2014-10-13 18:03:27 +00006418 pData -= sz;
6419 if( pData<pBegin ) return 1;
6420 pSlot = pData;
6421 }
drhf7838932015-06-23 15:36:34 +00006422 memcpy(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006423 put2byte(pCellptr, (pSlot - aData));
6424 pCellptr += 2;
6425 }
6426 *ppData = pData;
6427 return 0;
6428}
6429
dan8e9ba0c2014-10-14 17:27:04 +00006430/*
6431** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6432** contains the size in bytes of each such cell. This function adds the
6433** space associated with each cell in the array that is currently stored
6434** within the body of pPg to the pPg free-list. The cell-pointers and other
6435** fields of the page are not updated.
6436**
6437** This function returns the total number of cells added to the free-list.
6438*/
dand7b545b2014-10-13 18:03:27 +00006439static int pageFreeArray(
6440 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006441 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006442 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006443 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006444){
6445 u8 * const aData = pPg->aData;
6446 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006447 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006448 int nRet = 0;
6449 int i;
drhf7838932015-06-23 15:36:34 +00006450 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006451 u8 *pFree = 0;
6452 int szFree = 0;
6453
drhf7838932015-06-23 15:36:34 +00006454 for(i=iFirst; i<iEnd; i++){
6455 u8 *pCell = pCArray->apCell[i];
dan89ca0b32014-10-25 20:36:28 +00006456 if( pCell>=pStart && pCell<pEnd ){
drhf7838932015-06-23 15:36:34 +00006457 int sz;
6458 /* No need to use cachedCellSize() here. The sizes of all cells that
6459 ** are to be freed have already been computing while deciding which
6460 ** cells need freeing */
6461 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006462 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006463 if( pFree ){
6464 assert( pFree>aData && (pFree - aData)<65536 );
6465 freeSpace(pPg, (u16)(pFree - aData), szFree);
6466 }
dand7b545b2014-10-13 18:03:27 +00006467 pFree = pCell;
6468 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006469 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006470 }else{
6471 pFree = pCell;
6472 szFree += sz;
6473 }
6474 nRet++;
6475 }
6476 }
drhfefa0942014-11-05 21:21:08 +00006477 if( pFree ){
6478 assert( pFree>aData && (pFree - aData)<65536 );
6479 freeSpace(pPg, (u16)(pFree - aData), szFree);
6480 }
dand7b545b2014-10-13 18:03:27 +00006481 return nRet;
6482}
6483
dand7b545b2014-10-13 18:03:27 +00006484/*
drh5ab63772014-11-27 03:46:04 +00006485** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6486** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6487** with apCell[iOld]. After balancing, this page should hold nNew cells
6488** starting at apCell[iNew].
6489**
6490** This routine makes the necessary adjustments to pPg so that it contains
6491** the correct cells after being balanced.
6492**
dand7b545b2014-10-13 18:03:27 +00006493** The pPg->nFree field is invalid when this function returns. It is the
6494** responsibility of the caller to set it correctly.
6495*/
drh658873b2015-06-22 20:02:04 +00006496static int editPage(
dan09c68402014-10-11 20:00:24 +00006497 MemPage *pPg, /* Edit this page */
6498 int iOld, /* Index of first cell currently on page */
6499 int iNew, /* Index of new first cell on page */
6500 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006501 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006502){
dand7b545b2014-10-13 18:03:27 +00006503 u8 * const aData = pPg->aData;
6504 const int hdr = pPg->hdrOffset;
6505 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6506 int nCell = pPg->nCell; /* Cells stored on pPg */
6507 u8 *pData;
6508 u8 *pCellptr;
6509 int i;
6510 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6511 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006512
6513#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006514 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6515 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006516#endif
6517
dand7b545b2014-10-13 18:03:27 +00006518 /* Remove cells from the start and end of the page */
6519 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006520 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006521 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6522 nCell -= nShift;
6523 }
6524 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006525 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006526 }
dan09c68402014-10-11 20:00:24 +00006527
drh5ab63772014-11-27 03:46:04 +00006528 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006529 if( pData<pBegin ) goto editpage_fail;
6530
6531 /* Add cells to the start of the page */
6532 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006533 int nAdd = MIN(nNew,iOld-iNew);
6534 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006535 pCellptr = pPg->aCellIdx;
6536 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6537 if( pageInsertArray(
6538 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006539 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006540 ) ) goto editpage_fail;
6541 nCell += nAdd;
6542 }
6543
6544 /* Add any overflow cells */
6545 for(i=0; i<pPg->nOverflow; i++){
6546 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6547 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006548 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006549 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6550 nCell++;
6551 if( pageInsertArray(
6552 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006553 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006554 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006555 }
dand7b545b2014-10-13 18:03:27 +00006556 }
dan09c68402014-10-11 20:00:24 +00006557
dand7b545b2014-10-13 18:03:27 +00006558 /* Append cells to the end of the page */
6559 pCellptr = &pPg->aCellIdx[nCell*2];
6560 if( pageInsertArray(
6561 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006562 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006563 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006564
dand7b545b2014-10-13 18:03:27 +00006565 pPg->nCell = nNew;
6566 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006567
dand7b545b2014-10-13 18:03:27 +00006568 put2byte(&aData[hdr+3], pPg->nCell);
6569 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006570
6571#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006572 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006573 u8 *pCell = pCArray->apCell[i+iNew];
dand7b545b2014-10-13 18:03:27 +00006574 int iOff = get2byte(&pPg->aCellIdx[i*2]);
6575 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6576 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006577 }
drh1ffd2472015-06-23 02:37:30 +00006578 assert( 0==memcmp(pCell, &aData[iOff],
6579 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006580 }
dan09c68402014-10-11 20:00:24 +00006581#endif
6582
drh658873b2015-06-22 20:02:04 +00006583 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006584 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006585 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006586 populateCellCache(pCArray, iNew, nNew);
6587 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
dan09c68402014-10-11 20:00:24 +00006588}
6589
drh14acc042001-06-10 19:56:58 +00006590/*
drhc3b70572003-01-04 19:44:07 +00006591** The following parameters determine how many adjacent pages get involved
6592** in a balancing operation. NN is the number of neighbors on either side
6593** of the page that participate in the balancing operation. NB is the
6594** total number of pages that participate, including the target page and
6595** NN neighbors on either side.
6596**
6597** The minimum value of NN is 1 (of course). Increasing NN above 1
6598** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6599** in exchange for a larger degradation in INSERT and UPDATE performance.
6600** The value of NN appears to give the best results overall.
6601*/
6602#define NN 1 /* Number of neighbors on either side of pPage */
6603#define NB (NN*2+1) /* Total pages involved in the balance */
6604
danielk1977ac245ec2005-01-14 13:50:11 +00006605
drh615ae552005-01-16 23:21:00 +00006606#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006607/*
6608** This version of balance() handles the common special case where
6609** a new entry is being inserted on the extreme right-end of the
6610** tree, in other words, when the new entry will become the largest
6611** entry in the tree.
6612**
drhc314dc72009-07-21 11:52:34 +00006613** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006614** a new page to the right-hand side and put the one new entry in
6615** that page. This leaves the right side of the tree somewhat
6616** unbalanced. But odds are that we will be inserting new entries
6617** at the end soon afterwards so the nearly empty page will quickly
6618** fill up. On average.
6619**
6620** pPage is the leaf page which is the right-most page in the tree.
6621** pParent is its parent. pPage must have a single overflow entry
6622** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006623**
6624** The pSpace buffer is used to store a temporary copy of the divider
6625** cell that will be inserted into pParent. Such a cell consists of a 4
6626** byte page number followed by a variable length integer. In other
6627** words, at most 13 bytes. Hence the pSpace buffer must be at
6628** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006629*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006630static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6631 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006632 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006633 int rc; /* Return Code */
6634 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006635
drh1fee73e2007-08-29 04:00:57 +00006636 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006637 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006638 assert( pPage->nOverflow==1 );
6639
drh5d433ce2010-08-14 16:02:52 +00006640 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006641 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006642
danielk1977a50d9aa2009-06-08 14:49:45 +00006643 /* Allocate a new page. This page will become the right-sibling of
6644 ** pPage. Make the parent page writable, so that the new divider cell
6645 ** may be inserted. If both these operations are successful, proceed.
6646 */
drh4f0c5872007-03-26 22:05:01 +00006647 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006648
danielk1977eaa06f62008-09-18 17:34:44 +00006649 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006650
6651 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006652 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006653 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006654 u8 *pStop;
6655
drhc5053fb2008-11-27 02:22:10 +00006656 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006657 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6658 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006659 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006660 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006661 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006662
6663 /* If this is an auto-vacuum database, update the pointer map
6664 ** with entries for the new page, and any pointer from the
6665 ** cell on the page to an overflow page. If either of these
6666 ** operations fails, the return code is set, but the contents
6667 ** of the parent page are still manipulated by thh code below.
6668 ** That is Ok, at this point the parent page is guaranteed to
6669 ** be marked as dirty. Returning an error code will cause a
6670 ** rollback, undoing any changes made to the parent page.
6671 */
6672 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006673 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6674 if( szCell>pNew->minLocal ){
6675 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006676 }
6677 }
danielk1977eaa06f62008-09-18 17:34:44 +00006678
danielk19776f235cc2009-06-04 14:46:08 +00006679 /* Create a divider cell to insert into pParent. The divider cell
6680 ** consists of a 4-byte page number (the page number of pPage) and
6681 ** a variable length key value (which must be the same value as the
6682 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006683 **
danielk19776f235cc2009-06-04 14:46:08 +00006684 ** To find the largest key value on pPage, first find the right-most
6685 ** cell on pPage. The first two fields of this cell are the
6686 ** record-length (a variable length integer at most 32-bits in size)
6687 ** and the key value (a variable length integer, may have any value).
6688 ** The first of the while(...) loops below skips over the record-length
6689 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006690 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006691 */
danielk1977eaa06f62008-09-18 17:34:44 +00006692 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006693 pStop = &pCell[9];
6694 while( (*(pCell++)&0x80) && pCell<pStop );
6695 pStop = &pCell[9];
6696 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6697
danielk19774dbaa892009-06-16 16:50:22 +00006698 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006699 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6700 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006701
6702 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006703 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6704
danielk1977e08a3c42008-09-18 18:17:03 +00006705 /* Release the reference to the new page. */
6706 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006707 }
6708
danielk1977eaa06f62008-09-18 17:34:44 +00006709 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006710}
drh615ae552005-01-16 23:21:00 +00006711#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006712
dane6593d82014-10-24 16:40:49 +00006713#if 0
drhc3b70572003-01-04 19:44:07 +00006714/*
danielk19774dbaa892009-06-16 16:50:22 +00006715** This function does not contribute anything to the operation of SQLite.
6716** it is sometimes activated temporarily while debugging code responsible
6717** for setting pointer-map entries.
6718*/
6719static int ptrmapCheckPages(MemPage **apPage, int nPage){
6720 int i, j;
6721 for(i=0; i<nPage; i++){
6722 Pgno n;
6723 u8 e;
6724 MemPage *pPage = apPage[i];
6725 BtShared *pBt = pPage->pBt;
6726 assert( pPage->isInit );
6727
6728 for(j=0; j<pPage->nCell; j++){
6729 CellInfo info;
6730 u8 *z;
6731
6732 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006733 pPage->xParseCell(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006734 if( info.iOverflow ){
6735 Pgno ovfl = get4byte(&z[info.iOverflow]);
6736 ptrmapGet(pBt, ovfl, &e, &n);
6737 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6738 }
6739 if( !pPage->leaf ){
6740 Pgno child = get4byte(z);
6741 ptrmapGet(pBt, child, &e, &n);
6742 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6743 }
6744 }
6745 if( !pPage->leaf ){
6746 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6747 ptrmapGet(pBt, child, &e, &n);
6748 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6749 }
6750 }
6751 return 1;
6752}
6753#endif
6754
danielk1977cd581a72009-06-23 15:43:39 +00006755/*
6756** This function is used to copy the contents of the b-tree node stored
6757** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6758** the pointer-map entries for each child page are updated so that the
6759** parent page stored in the pointer map is page pTo. If pFrom contained
6760** any cells with overflow page pointers, then the corresponding pointer
6761** map entries are also updated so that the parent page is page pTo.
6762**
6763** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006764** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006765**
danielk197730548662009-07-09 05:07:37 +00006766** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006767**
6768** The performance of this function is not critical. It is only used by
6769** the balance_shallower() and balance_deeper() procedures, neither of
6770** which are called often under normal circumstances.
6771*/
drhc314dc72009-07-21 11:52:34 +00006772static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6773 if( (*pRC)==SQLITE_OK ){
6774 BtShared * const pBt = pFrom->pBt;
6775 u8 * const aFrom = pFrom->aData;
6776 u8 * const aTo = pTo->aData;
6777 int const iFromHdr = pFrom->hdrOffset;
6778 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006779 int rc;
drhc314dc72009-07-21 11:52:34 +00006780 int iData;
6781
6782
6783 assert( pFrom->isInit );
6784 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006785 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006786
6787 /* Copy the b-tree node content from page pFrom to page pTo. */
6788 iData = get2byte(&aFrom[iFromHdr+5]);
6789 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6790 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6791
6792 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006793 ** match the new data. The initialization of pTo can actually fail under
6794 ** fairly obscure circumstances, even though it is a copy of initialized
6795 ** page pFrom.
6796 */
drhc314dc72009-07-21 11:52:34 +00006797 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006798 rc = btreeInitPage(pTo);
6799 if( rc!=SQLITE_OK ){
6800 *pRC = rc;
6801 return;
6802 }
drhc314dc72009-07-21 11:52:34 +00006803
6804 /* If this is an auto-vacuum database, update the pointer-map entries
6805 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6806 */
6807 if( ISAUTOVACUUM ){
6808 *pRC = setChildPtrmaps(pTo);
6809 }
danielk1977cd581a72009-06-23 15:43:39 +00006810 }
danielk1977cd581a72009-06-23 15:43:39 +00006811}
6812
6813/*
danielk19774dbaa892009-06-16 16:50:22 +00006814** This routine redistributes cells on the iParentIdx'th child of pParent
6815** (hereafter "the page") and up to 2 siblings so that all pages have about the
6816** same amount of free space. Usually a single sibling on either side of the
6817** page are used in the balancing, though both siblings might come from one
6818** side if the page is the first or last child of its parent. If the page
6819** has fewer than 2 siblings (something which can only happen if the page
6820** is a root page or a child of a root page) then all available siblings
6821** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006822**
danielk19774dbaa892009-06-16 16:50:22 +00006823** The number of siblings of the page might be increased or decreased by
6824** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006825**
danielk19774dbaa892009-06-16 16:50:22 +00006826** Note that when this routine is called, some of the cells on the page
6827** might not actually be stored in MemPage.aData[]. This can happen
6828** if the page is overfull. This routine ensures that all cells allocated
6829** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006830**
danielk19774dbaa892009-06-16 16:50:22 +00006831** In the course of balancing the page and its siblings, cells may be
6832** inserted into or removed from the parent page (pParent). Doing so
6833** may cause the parent page to become overfull or underfull. If this
6834** happens, it is the responsibility of the caller to invoke the correct
6835** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006836**
drh5e00f6c2001-09-13 13:46:56 +00006837** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006838** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006839** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006840**
6841** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006842** buffer big enough to hold one page. If while inserting cells into the parent
6843** page (pParent) the parent page becomes overfull, this buffer is
6844** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006845** a maximum of four divider cells into the parent page, and the maximum
6846** size of a cell stored within an internal node is always less than 1/4
6847** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6848** enough for all overflow cells.
6849**
6850** If aOvflSpace is set to a null pointer, this function returns
6851** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006852*/
mistachkine7c54162012-10-02 22:54:27 +00006853#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6854#pragma optimize("", off)
6855#endif
danielk19774dbaa892009-06-16 16:50:22 +00006856static int balance_nonroot(
6857 MemPage *pParent, /* Parent page of siblings being balanced */
6858 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006859 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006860 int isRoot, /* True if pParent is a root-page */
6861 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006862){
drh16a9b832007-05-05 18:39:25 +00006863 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006864 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006865 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006866 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006867 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006868 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006869 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006870 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006871 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006872 int usableSpace; /* Bytes in pPage beyond the header */
6873 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00006874 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006875 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006876 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006877 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00006878 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006879 u8 *pRight; /* Location in parent of right-sibling pointer */
6880 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00006881 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
6882 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00006883 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00006884 u8 *aSpace1; /* Space for copies of dividers cells */
6885 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00006886 u8 abDone[NB+2]; /* True after i'th new page is populated */
6887 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00006888 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00006889 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00006890 CellArray b; /* Parsed information on cells being balanced */
dan33ea4862014-10-09 19:35:37 +00006891
6892 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00006893 b.nCell = 0;
6894 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00006895 pBt = pParent->pBt;
6896 assert( sqlite3_mutex_held(pBt->mutex) );
6897 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006898
danielk1977e5765212009-06-17 11:13:28 +00006899#if 0
drh43605152004-05-29 21:46:49 +00006900 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006901#endif
drh2e38c322004-09-03 18:38:44 +00006902
danielk19774dbaa892009-06-16 16:50:22 +00006903 /* At this point pParent may have at most one overflow cell. And if
6904 ** this overflow cell is present, it must be the cell with
6905 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006906 ** is called (indirectly) from sqlite3BtreeDelete().
6907 */
danielk19774dbaa892009-06-16 16:50:22 +00006908 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006909 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006910
danielk197711a8a862009-06-17 11:49:52 +00006911 if( !aOvflSpace ){
6912 return SQLITE_NOMEM;
6913 }
6914
danielk1977a50d9aa2009-06-08 14:49:45 +00006915 /* Find the sibling pages to balance. Also locate the cells in pParent
6916 ** that divide the siblings. An attempt is made to find NN siblings on
6917 ** either side of pPage. More siblings are taken from one side, however,
6918 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006919 ** has NB or fewer children then all children of pParent are taken.
6920 **
6921 ** This loop also drops the divider cells from the parent page. This
6922 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006923 ** overflow cells in the parent page, since if any existed they will
6924 ** have already been removed.
6925 */
danielk19774dbaa892009-06-16 16:50:22 +00006926 i = pParent->nOverflow + pParent->nCell;
6927 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006928 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006929 }else{
dan7d6885a2012-08-08 14:04:56 +00006930 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006931 if( iParentIdx==0 ){
6932 nxDiv = 0;
6933 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006934 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006935 }else{
danielk19774dbaa892009-06-16 16:50:22 +00006936 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006937 }
dan7d6885a2012-08-08 14:04:56 +00006938 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006939 }
dan7d6885a2012-08-08 14:04:56 +00006940 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006941 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6942 pRight = &pParent->aData[pParent->hdrOffset+8];
6943 }else{
6944 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6945 }
6946 pgno = get4byte(pRight);
6947 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006948 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006949 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006950 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006951 goto balance_cleanup;
6952 }
danielk1977634f2982005-03-28 08:44:07 +00006953 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006954 if( (i--)==0 ) break;
6955
drh2cbd78b2012-02-02 19:37:18 +00006956 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6957 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006958 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00006959 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00006960 pParent->nOverflow = 0;
6961 }else{
6962 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6963 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00006964 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00006965
6966 /* Drop the cell from the parent page. apDiv[i] still points to
6967 ** the cell within the parent, even though it has been dropped.
6968 ** This is safe because dropping a cell only overwrites the first
6969 ** four bytes of it, and this function does not need the first
6970 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006971 ** later on.
6972 **
drh8a575d92011-10-12 17:00:28 +00006973 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006974 ** the dropCell() routine will overwrite the entire cell with zeroes.
6975 ** In this case, temporarily copy the cell into the aOvflSpace[]
6976 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6977 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006978 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006979 int iOff;
6980
6981 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006982 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006983 rc = SQLITE_CORRUPT_BKPT;
6984 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6985 goto balance_cleanup;
6986 }else{
6987 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6988 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6989 }
drh5b47efa2010-02-12 18:18:39 +00006990 }
drh98add2e2009-07-20 17:11:49 +00006991 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006992 }
drh8b2f49b2001-06-08 00:21:52 +00006993 }
6994
drha9121e42008-02-19 14:59:35 +00006995 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006996 ** alignment */
drha9121e42008-02-19 14:59:35 +00006997 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006998
drh8b2f49b2001-06-08 00:21:52 +00006999 /*
danielk1977634f2982005-03-28 08:44:07 +00007000 ** Allocate space for memory structures
7001 */
drhfacf0302008-06-17 15:12:00 +00007002 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007003 nMaxCells*sizeof(u8*) /* b.apCell */
7004 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007005 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007006
drhcbd55b02014-11-04 14:22:27 +00007007 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7008 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007009 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007010 b.apCell = sqlite3ScratchMalloc( szScratch );
7011 if( b.apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00007012 rc = SQLITE_NOMEM;
7013 goto balance_cleanup;
7014 }
drh1ffd2472015-06-23 02:37:30 +00007015 b.szCell = (u16*)&b.apCell[nMaxCells];
7016 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007017 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007018
7019 /*
7020 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007021 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007022 ** into space obtained from aSpace1[]. The divider cells have already
7023 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007024 **
7025 ** If the siblings are on leaf pages, then the child pointers of the
7026 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007027 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007028 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007029 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007030 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007031 **
7032 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7033 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007034 */
drh1ffd2472015-06-23 02:37:30 +00007035 b.pRef = apOld[0];
7036 leafCorrection = b.pRef->leaf*4;
7037 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007038 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007039 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007040 int limit = pOld->nCell;
7041 u8 *aData = pOld->aData;
7042 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007043 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007044 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007045
drh73d340a2015-05-28 11:23:11 +00007046 /* Verify that all sibling pages are of the same "type" (table-leaf,
7047 ** table-interior, index-leaf, or index-interior).
7048 */
7049 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7050 rc = SQLITE_CORRUPT_BKPT;
7051 goto balance_cleanup;
7052 }
7053
drhfe647dc2015-06-23 18:24:25 +00007054 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7055 ** constains overflow cells, include them in the b.apCell[] array
7056 ** in the correct spot.
7057 **
7058 ** Note that when there are multiple overflow cells, it is always the
7059 ** case that they are sequential and adjacent. This invariant arises
7060 ** because multiple overflows can only occurs when inserting divider
7061 ** cells into a parent on a prior balance, and divider cells are always
7062 ** adjacent and are inserted in order. There is an assert() tagged
7063 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7064 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007065 **
7066 ** This must be done in advance. Once the balance starts, the cell
7067 ** offset section of the btree page will be overwritten and we will no
7068 ** long be able to find the cells if a pointer to each cell is not saved
7069 ** first.
7070 */
drh1ffd2472015-06-23 02:37:30 +00007071 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
drh68f2a572011-06-03 17:50:49 +00007072 if( pOld->nOverflow>0 ){
drh4edfdd32015-06-23 14:49:42 +00007073 memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
drhfe647dc2015-06-23 18:24:25 +00007074 limit = pOld->aiOvfl[0];
7075 for(j=0; j<limit; j++){
7076 b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
7077 piCell += 2;
7078 b.nCell++;
7079 }
7080 for(k=0; k<pOld->nOverflow; k++){
7081 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007082 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007083 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007084 }
drhfe647dc2015-06-23 18:24:25 +00007085 limit = pOld->nCell - pOld->aiOvfl[0];
drh1ffd2472015-06-23 02:37:30 +00007086 }
drhfe647dc2015-06-23 18:24:25 +00007087 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7088 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007089 assert( b.nCell<nMaxCells );
drh4f4bf772015-06-23 17:09:53 +00007090 b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
7091 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007092 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007093 }
7094
drh1ffd2472015-06-23 02:37:30 +00007095 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007096 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007097 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007098 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007099 assert( b.nCell<nMaxCells );
7100 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007101 pTemp = &aSpace1[iSpace1];
7102 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007103 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007104 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007105 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007106 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007107 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007108 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007109 if( !pOld->leaf ){
7110 assert( leafCorrection==0 );
7111 assert( pOld->hdrOffset==0 );
7112 /* The right pointer of the child page pOld becomes the left
7113 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007114 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007115 }else{
7116 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007117 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007118 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7119 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007120 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7121 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007122 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007123 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007124 }
7125 }
drh1ffd2472015-06-23 02:37:30 +00007126 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007127 }
drh8b2f49b2001-06-08 00:21:52 +00007128 }
7129
7130 /*
drh1ffd2472015-06-23 02:37:30 +00007131 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007132 ** Store this number in "k". Also compute szNew[] which is the total
7133 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007134 ** in b.apCell[] of the cell that divides page i from page i+1.
7135 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007136 **
drh96f5b762004-05-16 16:24:36 +00007137 ** Values computed by this block:
7138 **
7139 ** k: The total number of sibling pages
7140 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007141 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007142 ** the right of the i-th sibling page.
7143 ** usableSpace: Number of bytes of space available on each sibling.
7144 **
drh8b2f49b2001-06-08 00:21:52 +00007145 */
drh43605152004-05-29 21:46:49 +00007146 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007147 for(i=0; i<nOld; i++){
7148 MemPage *p = apOld[i];
7149 szNew[i] = usableSpace - p->nFree;
7150 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7151 for(j=0; j<p->nOverflow; j++){
7152 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7153 }
7154 cntNew[i] = cntOld[i];
7155 }
7156 k = nOld;
7157 for(i=0; i<k; i++){
7158 int sz;
7159 while( szNew[i]>usableSpace ){
7160 if( i+1>=k ){
7161 k = i+2;
7162 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7163 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007164 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007165 }
drh1ffd2472015-06-23 02:37:30 +00007166 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007167 szNew[i] -= sz;
7168 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007169 if( cntNew[i]<b.nCell ){
7170 sz = 2 + cachedCellSize(&b, cntNew[i]);
7171 }else{
7172 sz = 0;
7173 }
drh658873b2015-06-22 20:02:04 +00007174 }
7175 szNew[i+1] += sz;
7176 cntNew[i]--;
7177 }
drh1ffd2472015-06-23 02:37:30 +00007178 while( cntNew[i]<b.nCell ){
7179 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007180 if( szNew[i]+sz>usableSpace ) break;
7181 szNew[i] += sz;
7182 cntNew[i]++;
7183 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007184 if( cntNew[i]<b.nCell ){
7185 sz = 2 + cachedCellSize(&b, cntNew[i]);
7186 }else{
7187 sz = 0;
7188 }
drh658873b2015-06-22 20:02:04 +00007189 }
7190 szNew[i+1] -= sz;
7191 }
drh1ffd2472015-06-23 02:37:30 +00007192 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007193 k = i+1;
drh672073a2015-06-24 12:07:40 +00007194 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007195 rc = SQLITE_CORRUPT_BKPT;
7196 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007197 }
7198 }
drh96f5b762004-05-16 16:24:36 +00007199
7200 /*
7201 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007202 ** on the left side (siblings with smaller keys). The left siblings are
7203 ** always nearly full, while the right-most sibling might be nearly empty.
7204 ** The next block of code attempts to adjust the packing of siblings to
7205 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007206 **
7207 ** This adjustment is more than an optimization. The packing above might
7208 ** be so out of balance as to be illegal. For example, the right-most
7209 ** sibling might be completely empty. This adjustment is not optional.
7210 */
drh6019e162001-07-02 17:51:45 +00007211 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007212 int szRight = szNew[i]; /* Size of sibling on the right */
7213 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7214 int r; /* Index of right-most cell in left sibling */
7215 int d; /* Index of first cell to the left of right sibling */
7216
drh008d64c2015-06-23 16:00:24 +00007217 r = cntNew[i-1] - 1;
7218 d = r + 1 - leafData;
7219 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007220 do{
drh1ffd2472015-06-23 02:37:30 +00007221 assert( d<nMaxCells );
7222 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007223 (void)cachedCellSize(&b, r);
7224 if( szRight!=0
7225 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7226 break;
7227 }
7228 szRight += b.szCell[d] + 2;
7229 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007230 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007231 r--;
7232 d--;
drh672073a2015-06-24 12:07:40 +00007233 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007234 szNew[i] = szRight;
7235 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007236 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7237 rc = SQLITE_CORRUPT_BKPT;
7238 goto balance_cleanup;
7239 }
drh6019e162001-07-02 17:51:45 +00007240 }
drh09d0deb2005-08-02 17:13:09 +00007241
drh2a0df922014-10-30 23:14:56 +00007242 /* Sanity check: For a non-corrupt database file one of the follwing
7243 ** must be true:
7244 ** (1) We found one or more cells (cntNew[0])>0), or
7245 ** (2) pPage is a virtual root page. A virtual root page is when
7246 ** the real root page is page 1 and we are the only child of
7247 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007248 */
drh2a0df922014-10-30 23:14:56 +00007249 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007250 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7251 apOld[0]->pgno, apOld[0]->nCell,
7252 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7253 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007254 ));
7255
drh8b2f49b2001-06-08 00:21:52 +00007256 /*
drh6b308672002-07-08 02:16:37 +00007257 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007258 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007259 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007260 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007261 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007262 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007263 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007264 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007265 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007266 nNew++;
danielk197728129562005-01-11 10:25:06 +00007267 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007268 }else{
drh7aa8f852006-03-28 00:24:44 +00007269 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007270 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007271 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007272 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007273 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007274 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007275 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007276
7277 /* Set the pointer-map entry for the new sibling page. */
7278 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007279 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007280 if( rc!=SQLITE_OK ){
7281 goto balance_cleanup;
7282 }
7283 }
drh6b308672002-07-08 02:16:37 +00007284 }
drh8b2f49b2001-06-08 00:21:52 +00007285 }
7286
7287 /*
dan33ea4862014-10-09 19:35:37 +00007288 ** Reassign page numbers so that the new pages are in ascending order.
7289 ** This helps to keep entries in the disk file in order so that a scan
7290 ** of the table is closer to a linear scan through the file. That in turn
7291 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007292 **
dan33ea4862014-10-09 19:35:37 +00007293 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7294 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007295 **
dan33ea4862014-10-09 19:35:37 +00007296 ** When NB==3, this one optimization makes the database about 25% faster
7297 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007298 */
dan33ea4862014-10-09 19:35:37 +00007299 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007300 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007301 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007302 for(j=0; j<i; j++){
7303 if( aPgno[j]==aPgno[i] ){
7304 /* This branch is taken if the set of sibling pages somehow contains
7305 ** duplicate entries. This can happen if the database is corrupt.
7306 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007307 ** we do the detection here in order to avoid populating the pager
7308 ** cache with two separate objects associated with the same
7309 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007310 assert( CORRUPT_DB );
7311 rc = SQLITE_CORRUPT_BKPT;
7312 goto balance_cleanup;
7313 }
7314 }
dan33ea4862014-10-09 19:35:37 +00007315 }
7316 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007317 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007318 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007319 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007320 }
drh00fe08a2014-10-31 00:05:23 +00007321 pgno = aPgOrder[iBest];
7322 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007323 if( iBest!=i ){
7324 if( iBest>i ){
7325 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7326 }
7327 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7328 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007329 }
7330 }
dan33ea4862014-10-09 19:35:37 +00007331
7332 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7333 "%d(%d nc=%d) %d(%d nc=%d)\n",
7334 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007335 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007336 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007337 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007338 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007339 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007340 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7341 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7342 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7343 ));
danielk19774dbaa892009-06-16 16:50:22 +00007344
7345 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7346 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007347
dan33ea4862014-10-09 19:35:37 +00007348 /* If the sibling pages are not leaves, ensure that the right-child pointer
7349 ** of the right-most new sibling page is set to the value that was
7350 ** originally in the same field of the right-most old sibling page. */
7351 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7352 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7353 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7354 }
danielk1977ac11ee62005-01-15 12:45:51 +00007355
dan33ea4862014-10-09 19:35:37 +00007356 /* Make any required updates to pointer map entries associated with
7357 ** cells stored on sibling pages following the balance operation. Pointer
7358 ** map entries associated with divider cells are set by the insertCell()
7359 ** routine. The associated pointer map entries are:
7360 **
7361 ** a) if the cell contains a reference to an overflow chain, the
7362 ** entry associated with the first page in the overflow chain, and
7363 **
7364 ** b) if the sibling pages are not leaves, the child page associated
7365 ** with the cell.
7366 **
7367 ** If the sibling pages are not leaves, then the pointer map entry
7368 ** associated with the right-child of each sibling may also need to be
7369 ** updated. This happens below, after the sibling pages have been
7370 ** populated, not here.
7371 */
7372 if( ISAUTOVACUUM ){
7373 MemPage *pNew = apNew[0];
7374 u8 *aOld = pNew->aData;
7375 int cntOldNext = pNew->nCell + pNew->nOverflow;
7376 int usableSize = pBt->usableSize;
7377 int iNew = 0;
7378 int iOld = 0;
danielk1977634f2982005-03-28 08:44:07 +00007379
drh1ffd2472015-06-23 02:37:30 +00007380 for(i=0; i<b.nCell; i++){
7381 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007382 if( i==cntOldNext ){
7383 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7384 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7385 aOld = pOld->aData;
7386 }
7387 if( i==cntNew[iNew] ){
7388 pNew = apNew[++iNew];
7389 if( !leafData ) continue;
7390 }
7391
7392 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007393 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007394 ** or else the divider cell to the left of sibling page iOld. So,
7395 ** if sibling page iOld had the same page number as pNew, and if
7396 ** pCell really was a part of sibling page iOld (not a divider or
7397 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007398 if( iOld>=nNew
7399 || pNew->pgno!=aPgno[iOld]
7400 || pCell<aOld
7401 || pCell>=&aOld[usableSize]
7402 ){
dan33ea4862014-10-09 19:35:37 +00007403 if( !leafCorrection ){
7404 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7405 }
drh1ffd2472015-06-23 02:37:30 +00007406 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007407 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00007408 }
drhea82b372015-06-23 21:35:28 +00007409 if( rc ) goto balance_cleanup;
drh4b70f112004-05-02 21:12:19 +00007410 }
drh14acc042001-06-10 19:56:58 +00007411 }
7412 }
dan33ea4862014-10-09 19:35:37 +00007413
7414 /* Insert new divider cells into pParent. */
7415 for(i=0; i<nNew-1; i++){
7416 u8 *pCell;
7417 u8 *pTemp;
7418 int sz;
7419 MemPage *pNew = apNew[i];
7420 j = cntNew[i];
7421
7422 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007423 assert( b.apCell[j]!=0 );
7424 pCell = b.apCell[j];
7425 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007426 pTemp = &aOvflSpace[iOvflSpace];
7427 if( !pNew->leaf ){
7428 memcpy(&pNew->aData[8], pCell, 4);
7429 }else if( leafData ){
7430 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007431 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007432 ** cell consists of the integer key for the right-most cell of
7433 ** the sibling-page assembled above only.
7434 */
7435 CellInfo info;
7436 j--;
drh1ffd2472015-06-23 02:37:30 +00007437 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007438 pCell = pTemp;
7439 sz = 4 + putVarint(&pCell[4], info.nKey);
7440 pTemp = 0;
7441 }else{
7442 pCell -= 4;
7443 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7444 ** previously stored on a leaf node, and its reported size was 4
7445 ** bytes, then it may actually be smaller than this
7446 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7447 ** any cell). But it is important to pass the correct size to
7448 ** insertCell(), so reparse the cell now.
7449 **
7450 ** Note that this can never happen in an SQLite data file, as all
7451 ** cells are at least 4 bytes. It only happens in b-trees used
7452 ** to evaluate "IN (SELECT ...)" and similar clauses.
7453 */
drh1ffd2472015-06-23 02:37:30 +00007454 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007455 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007456 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007457 }
7458 }
7459 iOvflSpace += sz;
7460 assert( sz<=pBt->maxLocal+23 );
7461 assert( iOvflSpace <= (int)pBt->pageSize );
7462 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7463 if( rc!=SQLITE_OK ) goto balance_cleanup;
7464 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7465 }
7466
7467 /* Now update the actual sibling pages. The order in which they are updated
7468 ** is important, as this code needs to avoid disrupting any page from which
7469 ** cells may still to be read. In practice, this means:
7470 **
drhd836d422014-10-31 14:26:36 +00007471 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7472 ** then it is not safe to update page apNew[iPg] until after
7473 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007474 **
drhd836d422014-10-31 14:26:36 +00007475 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7476 ** then it is not safe to update page apNew[iPg] until after
7477 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007478 **
7479 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007480 **
7481 ** The iPg value in the following loop starts at nNew-1 goes down
7482 ** to 0, then back up to nNew-1 again, thus making two passes over
7483 ** the pages. On the initial downward pass, only condition (1) above
7484 ** needs to be tested because (2) will always be true from the previous
7485 ** step. On the upward pass, both conditions are always true, so the
7486 ** upwards pass simply processes pages that were missed on the downward
7487 ** pass.
dan33ea4862014-10-09 19:35:37 +00007488 */
drhbec021b2014-10-31 12:22:00 +00007489 for(i=1-nNew; i<nNew; i++){
7490 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007491 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007492 if( abDone[iPg] ) continue; /* Skip pages already processed */
7493 if( i>=0 /* On the upwards pass, or... */
7494 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007495 ){
dan09c68402014-10-11 20:00:24 +00007496 int iNew;
7497 int iOld;
7498 int nNewCell;
7499
drhd836d422014-10-31 14:26:36 +00007500 /* Verify condition (1): If cells are moving left, update iPg
7501 ** only after iPg-1 has already been updated. */
7502 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7503
7504 /* Verify condition (2): If cells are moving right, update iPg
7505 ** only after iPg+1 has already been updated. */
7506 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7507
dan09c68402014-10-11 20:00:24 +00007508 if( iPg==0 ){
7509 iNew = iOld = 0;
7510 nNewCell = cntNew[0];
7511 }else{
drh1ffd2472015-06-23 02:37:30 +00007512 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007513 iNew = cntNew[iPg-1] + !leafData;
7514 nNewCell = cntNew[iPg] - iNew;
7515 }
7516
drh1ffd2472015-06-23 02:37:30 +00007517 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007518 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007519 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007520 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007521 assert( apNew[iPg]->nOverflow==0 );
7522 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007523 }
7524 }
drhd836d422014-10-31 14:26:36 +00007525
7526 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007527 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7528
drh7aa8f852006-03-28 00:24:44 +00007529 assert( nOld>0 );
7530 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007531
danielk197713bd99f2009-06-24 05:40:34 +00007532 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7533 /* The root page of the b-tree now contains no cells. The only sibling
7534 ** page is the right-child of the parent. Copy the contents of the
7535 ** child page into the parent, decreasing the overall height of the
7536 ** b-tree structure by one. This is described as the "balance-shallower"
7537 ** sub-algorithm in some documentation.
7538 **
7539 ** If this is an auto-vacuum database, the call to copyNodeContent()
7540 ** sets all pointer-map entries corresponding to database image pages
7541 ** for which the pointer is stored within the content being copied.
7542 **
drh768f2902014-10-31 02:51:41 +00007543 ** It is critical that the child page be defragmented before being
7544 ** copied into the parent, because if the parent is page 1 then it will
7545 ** by smaller than the child due to the database header, and so all the
7546 ** free space needs to be up front.
7547 */
danielk197713bd99f2009-06-24 05:40:34 +00007548 assert( nNew==1 );
dan89ca0b32014-10-25 20:36:28 +00007549 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007550 testcase( rc!=SQLITE_OK );
7551 assert( apNew[0]->nFree ==
7552 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7553 || rc!=SQLITE_OK
7554 );
7555 copyNodeContent(apNew[0], pParent, &rc);
7556 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007557 }else if( ISAUTOVACUUM && !leafCorrection ){
7558 /* Fix the pointer map entries associated with the right-child of each
7559 ** sibling page. All other pointer map entries have already been taken
7560 ** care of. */
7561 for(i=0; i<nNew; i++){
7562 u32 key = get4byte(&apNew[i]->aData[8]);
7563 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007564 }
dan33ea4862014-10-09 19:35:37 +00007565 }
danielk19774dbaa892009-06-16 16:50:22 +00007566
dan33ea4862014-10-09 19:35:37 +00007567 assert( pParent->isInit );
7568 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007569 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007570
dan33ea4862014-10-09 19:35:37 +00007571 /* Free any old pages that were not reused as new pages.
7572 */
7573 for(i=nNew; i<nOld; i++){
7574 freePage(apOld[i], &rc);
7575 }
7576
dane6593d82014-10-24 16:40:49 +00007577#if 0
dan33ea4862014-10-09 19:35:37 +00007578 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007579 /* The ptrmapCheckPages() contains assert() statements that verify that
7580 ** all pointer map pages are set correctly. This is helpful while
7581 ** debugging. This is usually disabled because a corrupt database may
7582 ** cause an assert() statement to fail. */
7583 ptrmapCheckPages(apNew, nNew);
7584 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007585 }
dan33ea4862014-10-09 19:35:37 +00007586#endif
danielk1977cd581a72009-06-23 15:43:39 +00007587
drh8b2f49b2001-06-08 00:21:52 +00007588 /*
drh14acc042001-06-10 19:56:58 +00007589 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007590 */
drh14acc042001-06-10 19:56:58 +00007591balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007592 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007593 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007594 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007595 }
drh14acc042001-06-10 19:56:58 +00007596 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007597 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007598 }
danielk1977eaa06f62008-09-18 17:34:44 +00007599
drh8b2f49b2001-06-08 00:21:52 +00007600 return rc;
7601}
mistachkine7c54162012-10-02 22:54:27 +00007602#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
7603#pragma optimize("", on)
7604#endif
drh8b2f49b2001-06-08 00:21:52 +00007605
drh43605152004-05-29 21:46:49 +00007606
7607/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007608** This function is called when the root page of a b-tree structure is
7609** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007610**
danielk1977a50d9aa2009-06-08 14:49:45 +00007611** A new child page is allocated and the contents of the current root
7612** page, including overflow cells, are copied into the child. The root
7613** page is then overwritten to make it an empty page with the right-child
7614** pointer pointing to the new page.
7615**
7616** Before returning, all pointer-map entries corresponding to pages
7617** that the new child-page now contains pointers to are updated. The
7618** entry corresponding to the new right-child pointer of the root
7619** page is also updated.
7620**
7621** If successful, *ppChild is set to contain a reference to the child
7622** page and SQLITE_OK is returned. In this case the caller is required
7623** to call releasePage() on *ppChild exactly once. If an error occurs,
7624** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007625*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007626static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7627 int rc; /* Return value from subprocedures */
7628 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007629 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007630 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007631
danielk1977a50d9aa2009-06-08 14:49:45 +00007632 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007633 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007634
danielk1977a50d9aa2009-06-08 14:49:45 +00007635 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7636 ** page that will become the new right-child of pPage. Copy the contents
7637 ** of the node stored on pRoot into the new child page.
7638 */
drh98add2e2009-07-20 17:11:49 +00007639 rc = sqlite3PagerWrite(pRoot->pDbPage);
7640 if( rc==SQLITE_OK ){
7641 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007642 copyNodeContent(pRoot, pChild, &rc);
7643 if( ISAUTOVACUUM ){
7644 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007645 }
7646 }
7647 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007648 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007649 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007650 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007651 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007652 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7653 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7654 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007655
danielk1977a50d9aa2009-06-08 14:49:45 +00007656 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7657
7658 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007659 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7660 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7661 memcpy(pChild->apOvfl, pRoot->apOvfl,
7662 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007663 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007664
7665 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7666 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7667 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7668
7669 *ppChild = pChild;
7670 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007671}
7672
7673/*
danielk197771d5d2c2008-09-29 11:49:47 +00007674** The page that pCur currently points to has just been modified in
7675** some way. This function figures out if this modification means the
7676** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007677** routine. Balancing routines are:
7678**
7679** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007680** balance_deeper()
7681** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007682*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007683static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007684 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007685 const int nMin = pCur->pBt->usableSize * 2 / 3;
7686 u8 aBalanceQuickSpace[13];
7687 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007688
shane75ac1de2009-06-09 18:58:52 +00007689 TESTONLY( int balance_quick_called = 0 );
7690 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007691
7692 do {
7693 int iPage = pCur->iPage;
7694 MemPage *pPage = pCur->apPage[iPage];
7695
7696 if( iPage==0 ){
7697 if( pPage->nOverflow ){
7698 /* The root page of the b-tree is overfull. In this case call the
7699 ** balance_deeper() function to create a new child for the root-page
7700 ** and copy the current contents of the root-page to it. The
7701 ** next iteration of the do-loop will balance the child page.
7702 */
7703 assert( (balance_deeper_called++)==0 );
7704 rc = balance_deeper(pPage, &pCur->apPage[1]);
7705 if( rc==SQLITE_OK ){
7706 pCur->iPage = 1;
7707 pCur->aiIdx[0] = 0;
7708 pCur->aiIdx[1] = 0;
7709 assert( pCur->apPage[1]->nOverflow );
7710 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007711 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007712 break;
7713 }
7714 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7715 break;
7716 }else{
7717 MemPage * const pParent = pCur->apPage[iPage-1];
7718 int const iIdx = pCur->aiIdx[iPage-1];
7719
7720 rc = sqlite3PagerWrite(pParent->pDbPage);
7721 if( rc==SQLITE_OK ){
7722#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007723 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007724 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007725 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007726 && pParent->pgno!=1
7727 && pParent->nCell==iIdx
7728 ){
7729 /* Call balance_quick() to create a new sibling of pPage on which
7730 ** to store the overflow cell. balance_quick() inserts a new cell
7731 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007732 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007733 ** use either balance_nonroot() or balance_deeper(). Until this
7734 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7735 ** buffer.
7736 **
7737 ** The purpose of the following assert() is to check that only a
7738 ** single call to balance_quick() is made for each call to this
7739 ** function. If this were not verified, a subtle bug involving reuse
7740 ** of the aBalanceQuickSpace[] might sneak in.
7741 */
7742 assert( (balance_quick_called++)==0 );
7743 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7744 }else
7745#endif
7746 {
7747 /* In this case, call balance_nonroot() to redistribute cells
7748 ** between pPage and up to 2 of its sibling pages. This involves
7749 ** modifying the contents of pParent, which may cause pParent to
7750 ** become overfull or underfull. The next iteration of the do-loop
7751 ** will balance the parent page to correct this.
7752 **
7753 ** If the parent page becomes overfull, the overflow cell or cells
7754 ** are stored in the pSpace buffer allocated immediately below.
7755 ** A subsequent iteration of the do-loop will deal with this by
7756 ** calling balance_nonroot() (balance_deeper() may be called first,
7757 ** but it doesn't deal with overflow cells - just moves them to a
7758 ** different page). Once this subsequent call to balance_nonroot()
7759 ** has completed, it is safe to release the pSpace buffer used by
7760 ** the previous call, as the overflow cell data will have been
7761 ** copied either into the body of a database page or into the new
7762 ** pSpace buffer passed to the latter call to balance_nonroot().
7763 */
7764 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007765 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7766 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007767 if( pFree ){
7768 /* If pFree is not NULL, it points to the pSpace buffer used
7769 ** by a previous call to balance_nonroot(). Its contents are
7770 ** now stored either on real database pages or within the
7771 ** new pSpace buffer, so it may be safely freed here. */
7772 sqlite3PageFree(pFree);
7773 }
7774
danielk19774dbaa892009-06-16 16:50:22 +00007775 /* The pSpace buffer will be freed after the next call to
7776 ** balance_nonroot(), or just before this function returns, whichever
7777 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007778 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007779 }
7780 }
7781
7782 pPage->nOverflow = 0;
7783
7784 /* The next iteration of the do-loop balances the parent page. */
7785 releasePage(pPage);
7786 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007787 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007788 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007789 }while( rc==SQLITE_OK );
7790
7791 if( pFree ){
7792 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007793 }
7794 return rc;
7795}
7796
drhf74b8d92002-09-01 23:20:45 +00007797
7798/*
drh3b7511c2001-05-26 13:15:44 +00007799** Insert a new record into the BTree. The key is given by (pKey,nKey)
7800** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007801** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007802** is left pointing at a random location.
7803**
7804** For an INTKEY table, only the nKey value of the key is used. pKey is
7805** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007806**
7807** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007808** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007809** been performed. seekResult is the search result returned (a negative
7810** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007811** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007812** (pKey, nKey)).
7813**
drh3e9ca092009-09-08 01:14:48 +00007814** If the seekResult parameter is non-zero, then the caller guarantees that
7815** cursor pCur is pointing at the existing copy of a row that is to be
7816** overwritten. If the seekResult parameter is 0, then cursor pCur may
7817** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007818** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007819*/
drh3aac2dd2004-04-26 14:10:20 +00007820int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007821 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007822 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007823 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007824 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007825 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007826 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007827){
drh3b7511c2001-05-26 13:15:44 +00007828 int rc;
drh3e9ca092009-09-08 01:14:48 +00007829 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007830 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007831 int idx;
drh3b7511c2001-05-26 13:15:44 +00007832 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007833 Btree *p = pCur->pBtree;
7834 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007835 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007836 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007837
drh98add2e2009-07-20 17:11:49 +00007838 if( pCur->eState==CURSOR_FAULT ){
7839 assert( pCur->skipNext!=SQLITE_OK );
7840 return pCur->skipNext;
7841 }
7842
drh1fee73e2007-08-29 04:00:57 +00007843 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007844 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7845 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007846 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007847 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7848
danielk197731d31b82009-07-13 13:18:07 +00007849 /* Assert that the caller has been consistent. If this cursor was opened
7850 ** expecting an index b-tree, then the caller should be inserting blob
7851 ** keys with no associated data. If the cursor was opened expecting an
7852 ** intkey table, the caller should be inserting integer keys with a
7853 ** blob of associated data. */
7854 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7855
danielk19779c3acf32009-05-02 07:36:49 +00007856 /* Save the positions of any other cursors open on this table.
7857 **
danielk19773509a652009-07-06 18:56:13 +00007858 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007859 ** example, when inserting data into a table with auto-generated integer
7860 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7861 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007862 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007863 ** that the cursor is already where it needs to be and returns without
7864 ** doing any work. To avoid thwarting these optimizations, it is important
7865 ** not to clear the cursor here.
7866 */
drh4c301aa2009-07-15 17:25:45 +00007867 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7868 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007869
drhd60f4f42012-03-23 14:23:52 +00007870 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00007871 /* If this is an insert into a table b-tree, invalidate any incrblob
7872 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007873 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007874
7875 /* If the cursor is currently on the last row and we are appending a
7876 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7877 ** call */
drh3f387402014-09-24 01:23:00 +00007878 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7879 && pCur->info.nKey==nKey-1 ){
drhe0670b62014-02-12 21:31:12 +00007880 loc = -1;
7881 }
drhd60f4f42012-03-23 14:23:52 +00007882 }
7883
drh4c301aa2009-07-15 17:25:45 +00007884 if( !loc ){
7885 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7886 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007887 }
danielk1977b980d2212009-06-22 18:03:51 +00007888 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007889
danielk197771d5d2c2008-09-29 11:49:47 +00007890 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007891 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007892 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007893
drh3a4c1412004-05-09 20:40:11 +00007894 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7895 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7896 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007897 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007898 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007899 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00007900 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007901 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00007902 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007903 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007904 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007905 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007906 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007907 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007908 rc = sqlite3PagerWrite(pPage->pDbPage);
7909 if( rc ){
7910 goto end_insert;
7911 }
danielk197771d5d2c2008-09-29 11:49:47 +00007912 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007913 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007914 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007915 }
drh9bfdc252014-09-24 02:05:41 +00007916 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00007917 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007918 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007919 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007920 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007921 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007922 }else{
drh4b70f112004-05-02 21:12:19 +00007923 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007924 }
drh98add2e2009-07-20 17:11:49 +00007925 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007926 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007927
mistachkin48864df2013-03-21 21:20:32 +00007928 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007929 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007930 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007931 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007932 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007933 ** Previous versions of SQLite called moveToRoot() to move the cursor
7934 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007935 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7936 ** set the cursor state to "invalid". This makes common insert operations
7937 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007938 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007939 ** There is a subtle but important optimization here too. When inserting
7940 ** multiple records into an intkey b-tree using a single cursor (as can
7941 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7942 ** is advantageous to leave the cursor pointing to the last entry in
7943 ** the b-tree if possible. If the cursor is left pointing to the last
7944 ** entry in the table, and the next row inserted has an integer key
7945 ** larger than the largest existing key, it is possible to insert the
7946 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007947 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007948 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007949 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00007950 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00007951 rc = balance(pCur);
7952
7953 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007954 ** fails. Internal data structure corruption will result otherwise.
7955 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7956 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007957 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007958 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007959 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007960 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007961
drh2e38c322004-09-03 18:38:44 +00007962end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007963 return rc;
7964}
7965
7966/*
drh4b70f112004-05-02 21:12:19 +00007967** Delete the entry that the cursor is pointing to. The cursor
peter.d.reid60ec9142014-09-06 16:39:46 +00007968** is left pointing at an arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007969*/
drh3aac2dd2004-04-26 14:10:20 +00007970int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007971 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007972 BtShared *pBt = p->pBt;
7973 int rc; /* Return code */
7974 MemPage *pPage; /* Page to delete cell from */
7975 unsigned char *pCell; /* Pointer to cell to delete */
7976 int iCellIdx; /* Index of cell to delete */
7977 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00007978 u16 szCell; /* Size of the cell being deleted */
drh8b2f49b2001-06-08 00:21:52 +00007979
drh1fee73e2007-08-29 04:00:57 +00007980 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007981 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007982 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00007983 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00007984 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7985 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7986
danielk19774dbaa892009-06-16 16:50:22 +00007987 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7988 || NEVER(pCur->eState!=CURSOR_VALID)
7989 ){
7990 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007991 }
danielk1977da184232006-01-05 11:34:32 +00007992
danielk19774dbaa892009-06-16 16:50:22 +00007993 iCellDepth = pCur->iPage;
7994 iCellIdx = pCur->aiIdx[iCellDepth];
7995 pPage = pCur->apPage[iCellDepth];
7996 pCell = findCell(pPage, iCellIdx);
7997
7998 /* If the page containing the entry to delete is not a leaf page, move
7999 ** the cursor to the largest entry in the tree that is smaller than
8000 ** the entry being deleted. This cell will replace the cell being deleted
8001 ** from the internal node. The 'previous' entry is used for this instead
8002 ** of the 'next' entry, as the previous entry is always a part of the
8003 ** sub-tree headed by the child page of the cell being deleted. This makes
8004 ** balancing the tree following the delete operation easier. */
8005 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008006 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008007 rc = sqlite3BtreePrevious(pCur, &notUsed);
8008 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008009 }
8010
8011 /* Save the positions of any other cursors open on this table before
8012 ** making any modifications. Make the page containing the entry to be
8013 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00008014 ** entry and finally remove the cell itself from within the page.
8015 */
8016 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8017 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008018
8019 /* If this is a delete operation to remove a row from a table b-tree,
8020 ** invalidate any incrblob cursors open on the row being deleted. */
8021 if( pCur->pKeyInfo==0 ){
8022 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8023 }
8024
drha4ec1d42009-07-11 13:13:11 +00008025 rc = sqlite3PagerWrite(pPage->pDbPage);
8026 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008027 rc = clearCell(pPage, pCell, &szCell);
8028 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008029 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008030
danielk19774dbaa892009-06-16 16:50:22 +00008031 /* If the cell deleted was not located on a leaf page, then the cursor
8032 ** is currently pointing to the largest entry in the sub-tree headed
8033 ** by the child-page of the cell that was just deleted from an internal
8034 ** node. The cell from the leaf node needs to be moved to the internal
8035 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008036 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008037 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8038 int nCell;
8039 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8040 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008041
danielk19774dbaa892009-06-16 16:50:22 +00008042 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008043 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008044 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008045 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008046 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008047 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008048 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00008049 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8050 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008051 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008052 }
danielk19774dbaa892009-06-16 16:50:22 +00008053
8054 /* Balance the tree. If the entry deleted was located on a leaf page,
8055 ** then the cursor still points to that page. In this case the first
8056 ** call to balance() repairs the tree, and the if(...) condition is
8057 ** never true.
8058 **
8059 ** Otherwise, if the entry deleted was on an internal node page, then
8060 ** pCur is pointing to the leaf page from which a cell was removed to
8061 ** replace the cell deleted from the internal node. This is slightly
8062 ** tricky as the leaf node may be underfull, and the internal node may
8063 ** be either under or overfull. In this case run the balancing algorithm
8064 ** on the leaf node first. If the balance proceeds far enough up the
8065 ** tree that we can be sure that any problem in the internal node has
8066 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8067 ** walk the cursor up the tree to the internal node and balance it as
8068 ** well. */
8069 rc = balance(pCur);
8070 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8071 while( pCur->iPage>iCellDepth ){
8072 releasePage(pCur->apPage[pCur->iPage--]);
8073 }
8074 rc = balance(pCur);
8075 }
8076
danielk19776b456a22005-03-21 04:04:02 +00008077 if( rc==SQLITE_OK ){
8078 moveToRoot(pCur);
8079 }
drh5e2f8b92001-05-28 00:41:15 +00008080 return rc;
drh3b7511c2001-05-26 13:15:44 +00008081}
drh8b2f49b2001-06-08 00:21:52 +00008082
8083/*
drhc6b52df2002-01-04 03:09:29 +00008084** Create a new BTree table. Write into *piTable the page
8085** number for the root page of the new table.
8086**
drhab01f612004-05-22 02:55:23 +00008087** The type of type is determined by the flags parameter. Only the
8088** following values of flags are currently in use. Other values for
8089** flags might not work:
8090**
8091** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8092** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008093*/
drhd4187c72010-08-30 22:15:45 +00008094static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008095 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008096 MemPage *pRoot;
8097 Pgno pgnoRoot;
8098 int rc;
drhd4187c72010-08-30 22:15:45 +00008099 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008100
drh1fee73e2007-08-29 04:00:57 +00008101 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008102 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008103 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008104
danielk1977003ba062004-11-04 02:57:33 +00008105#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008106 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008107 if( rc ){
8108 return rc;
8109 }
danielk1977003ba062004-11-04 02:57:33 +00008110#else
danielk1977687566d2004-11-02 12:56:41 +00008111 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008112 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8113 MemPage *pPageMove; /* The page to move to. */
8114
danielk197720713f32007-05-03 11:43:33 +00008115 /* Creating a new table may probably require moving an existing database
8116 ** to make room for the new tables root page. In case this page turns
8117 ** out to be an overflow page, delete all overflow page-map caches
8118 ** held by open cursors.
8119 */
danielk197792d4d7a2007-05-04 12:05:56 +00008120 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008121
danielk1977003ba062004-11-04 02:57:33 +00008122 /* Read the value of meta[3] from the database to determine where the
8123 ** root page of the new table should go. meta[3] is the largest root-page
8124 ** created so far, so the new root-page is (meta[3]+1).
8125 */
danielk1977602b4662009-07-02 07:47:33 +00008126 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008127 pgnoRoot++;
8128
danielk1977599fcba2004-11-08 07:13:13 +00008129 /* The new root-page may not be allocated on a pointer-map page, or the
8130 ** PENDING_BYTE page.
8131 */
drh72190432008-01-31 14:54:43 +00008132 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008133 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008134 pgnoRoot++;
8135 }
drh499e15b2015-05-22 12:37:37 +00008136 assert( pgnoRoot>=3 || CORRUPT_DB );
8137 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008138
8139 /* Allocate a page. The page that currently resides at pgnoRoot will
8140 ** be moved to the allocated page (unless the allocated page happens
8141 ** to reside at pgnoRoot).
8142 */
dan51f0b6d2013-02-22 20:16:34 +00008143 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008144 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008145 return rc;
8146 }
danielk1977003ba062004-11-04 02:57:33 +00008147
8148 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008149 /* pgnoRoot is the page that will be used for the root-page of
8150 ** the new table (assuming an error did not occur). But we were
8151 ** allocated pgnoMove. If required (i.e. if it was not allocated
8152 ** by extending the file), the current page at position pgnoMove
8153 ** is already journaled.
8154 */
drheeb844a2009-08-08 18:01:07 +00008155 u8 eType = 0;
8156 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008157
danf7679ad2013-04-03 11:38:36 +00008158 /* Save the positions of any open cursors. This is required in
8159 ** case they are holding a reference to an xFetch reference
8160 ** corresponding to page pgnoRoot. */
8161 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008162 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008163 if( rc!=SQLITE_OK ){
8164 return rc;
8165 }
danielk1977f35843b2007-04-07 15:03:17 +00008166
8167 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008168 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008169 if( rc!=SQLITE_OK ){
8170 return rc;
8171 }
8172 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008173 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8174 rc = SQLITE_CORRUPT_BKPT;
8175 }
8176 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008177 releasePage(pRoot);
8178 return rc;
8179 }
drhccae6022005-02-26 17:31:26 +00008180 assert( eType!=PTRMAP_ROOTPAGE );
8181 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008182 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008183 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008184
8185 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008186 if( rc!=SQLITE_OK ){
8187 return rc;
8188 }
drhb00fc3b2013-08-21 23:42:32 +00008189 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008190 if( rc!=SQLITE_OK ){
8191 return rc;
8192 }
danielk19773b8a05f2007-03-19 17:44:26 +00008193 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008194 if( rc!=SQLITE_OK ){
8195 releasePage(pRoot);
8196 return rc;
8197 }
8198 }else{
8199 pRoot = pPageMove;
8200 }
8201
danielk197742741be2005-01-08 12:42:39 +00008202 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008203 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008204 if( rc ){
8205 releasePage(pRoot);
8206 return rc;
8207 }
drhbf592832010-03-30 15:51:12 +00008208
8209 /* When the new root page was allocated, page 1 was made writable in
8210 ** order either to increase the database filesize, or to decrement the
8211 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8212 */
8213 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008214 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008215 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008216 releasePage(pRoot);
8217 return rc;
8218 }
danielk197742741be2005-01-08 12:42:39 +00008219
danielk1977003ba062004-11-04 02:57:33 +00008220 }else{
drh4f0c5872007-03-26 22:05:01 +00008221 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008222 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008223 }
8224#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008225 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008226 if( createTabFlags & BTREE_INTKEY ){
8227 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8228 }else{
8229 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8230 }
8231 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008232 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008233 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008234 *piTable = (int)pgnoRoot;
8235 return SQLITE_OK;
8236}
drhd677b3d2007-08-20 22:48:41 +00008237int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8238 int rc;
8239 sqlite3BtreeEnter(p);
8240 rc = btreeCreateTable(p, piTable, flags);
8241 sqlite3BtreeLeave(p);
8242 return rc;
8243}
drh8b2f49b2001-06-08 00:21:52 +00008244
8245/*
8246** Erase the given database page and all its children. Return
8247** the page to the freelist.
8248*/
drh4b70f112004-05-02 21:12:19 +00008249static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008250 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008251 Pgno pgno, /* Page number to clear */
8252 int freePageFlag, /* Deallocate page if true */
8253 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008254){
danielk1977146ba992009-07-22 14:08:13 +00008255 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008256 int rc;
drh4b70f112004-05-02 21:12:19 +00008257 unsigned char *pCell;
8258 int i;
dan8ce71842014-01-14 20:14:09 +00008259 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008260 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008261
drh1fee73e2007-08-29 04:00:57 +00008262 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008263 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008264 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008265 }
dan11dcd112013-03-15 18:29:18 +00008266 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00008267 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008268 if( pPage->bBusy ){
8269 rc = SQLITE_CORRUPT_BKPT;
8270 goto cleardatabasepage_out;
8271 }
8272 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008273 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008274 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008275 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +00008276 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008277 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008278 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008279 }
drh9bfdc252014-09-24 02:05:41 +00008280 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008281 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008282 }
drhccf46d02015-04-01 13:21:33 +00008283 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008284 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008285 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008286 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008287 assert( pPage->intKey || CORRUPT_DB );
8288 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008289 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008290 }
8291 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008292 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008293 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008294 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008295 }
danielk19776b456a22005-03-21 04:04:02 +00008296
8297cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008298 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008299 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008300 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008301}
8302
8303/*
drhab01f612004-05-22 02:55:23 +00008304** Delete all information from a single table in the database. iTable is
8305** the page number of the root of the table. After this routine returns,
8306** the root page is empty, but still exists.
8307**
8308** This routine will fail with SQLITE_LOCKED if there are any open
8309** read cursors on the table. Open write cursors are moved to the
8310** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008311**
8312** If pnChange is not NULL, then table iTable must be an intkey table. The
8313** integer value pointed to by pnChange is incremented by the number of
8314** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008315*/
danielk1977c7af4842008-10-27 13:59:33 +00008316int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008317 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008318 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008319 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008320 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008321
drhc046e3e2009-07-15 11:26:44 +00008322 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008323
drhc046e3e2009-07-15 11:26:44 +00008324 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008325 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8326 ** is the root of a table b-tree - if it is not, the following call is
8327 ** a no-op). */
8328 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008329 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008330 }
drhd677b3d2007-08-20 22:48:41 +00008331 sqlite3BtreeLeave(p);
8332 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008333}
8334
8335/*
drh079a3072014-03-19 14:10:55 +00008336** Delete all information from the single table that pCur is open on.
8337**
8338** This routine only work for pCur on an ephemeral table.
8339*/
8340int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8341 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8342}
8343
8344/*
drh8b2f49b2001-06-08 00:21:52 +00008345** Erase all information in a table and add the root of the table to
8346** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008347** page 1) is never added to the freelist.
8348**
8349** This routine will fail with SQLITE_LOCKED if there are any open
8350** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008351**
8352** If AUTOVACUUM is enabled and the page at iTable is not the last
8353** root page in the database file, then the last root page
8354** in the database file is moved into the slot formerly occupied by
8355** iTable and that last slot formerly occupied by the last root page
8356** is added to the freelist instead of iTable. In this say, all
8357** root pages are kept at the beginning of the database file, which
8358** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8359** page number that used to be the last root page in the file before
8360** the move. If no page gets moved, *piMoved is set to 0.
8361** The last root page is recorded in meta[3] and the value of
8362** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008363*/
danielk197789d40042008-11-17 14:20:56 +00008364static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008365 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008366 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008367 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008368
drh1fee73e2007-08-29 04:00:57 +00008369 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008370 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008371
danielk1977e6efa742004-11-10 11:55:10 +00008372 /* It is illegal to drop a table if any cursors are open on the
8373 ** database. This is because in auto-vacuum mode the backend may
8374 ** need to move another root-page to fill a gap left by the deleted
8375 ** root page. If an open cursor was using this page a problem would
8376 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008377 **
8378 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008379 */
drhc046e3e2009-07-15 11:26:44 +00008380 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008381 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8382 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008383 }
danielk1977a0bf2652004-11-04 14:30:04 +00008384
drhb00fc3b2013-08-21 23:42:32 +00008385 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008386 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008387 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008388 if( rc ){
8389 releasePage(pPage);
8390 return rc;
8391 }
danielk1977a0bf2652004-11-04 14:30:04 +00008392
drh205f48e2004-11-05 00:43:11 +00008393 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008394
drh4b70f112004-05-02 21:12:19 +00008395 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008396#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008397 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008398 releasePage(pPage);
8399#else
8400 if( pBt->autoVacuum ){
8401 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008402 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008403
8404 if( iTable==maxRootPgno ){
8405 /* If the table being dropped is the table with the largest root-page
8406 ** number in the database, put the root page on the free list.
8407 */
drhc314dc72009-07-21 11:52:34 +00008408 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008409 releasePage(pPage);
8410 if( rc!=SQLITE_OK ){
8411 return rc;
8412 }
8413 }else{
8414 /* The table being dropped does not have the largest root-page
8415 ** number in the database. So move the page that does into the
8416 ** gap left by the deleted root-page.
8417 */
8418 MemPage *pMove;
8419 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008420 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008421 if( rc!=SQLITE_OK ){
8422 return rc;
8423 }
danielk19774c999992008-07-16 18:17:55 +00008424 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008425 releasePage(pMove);
8426 if( rc!=SQLITE_OK ){
8427 return rc;
8428 }
drhfe3313f2009-07-21 19:02:20 +00008429 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008430 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008431 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008432 releasePage(pMove);
8433 if( rc!=SQLITE_OK ){
8434 return rc;
8435 }
8436 *piMoved = maxRootPgno;
8437 }
8438
danielk1977599fcba2004-11-08 07:13:13 +00008439 /* Set the new 'max-root-page' value in the database header. This
8440 ** is the old value less one, less one more if that happens to
8441 ** be a root-page number, less one again if that is the
8442 ** PENDING_BYTE_PAGE.
8443 */
danielk197787a6e732004-11-05 12:58:25 +00008444 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008445 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8446 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008447 maxRootPgno--;
8448 }
danielk1977599fcba2004-11-08 07:13:13 +00008449 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8450
danielk1977aef0bf62005-12-30 16:28:01 +00008451 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008452 }else{
drhc314dc72009-07-21 11:52:34 +00008453 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008454 releasePage(pPage);
8455 }
8456#endif
drh2aa679f2001-06-25 02:11:07 +00008457 }else{
drhc046e3e2009-07-15 11:26:44 +00008458 /* If sqlite3BtreeDropTable was called on page 1.
8459 ** This really never should happen except in a corrupt
8460 ** database.
8461 */
drha34b6762004-05-07 13:30:42 +00008462 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008463 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008464 }
drh8b2f49b2001-06-08 00:21:52 +00008465 return rc;
8466}
drhd677b3d2007-08-20 22:48:41 +00008467int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8468 int rc;
8469 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008470 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008471 sqlite3BtreeLeave(p);
8472 return rc;
8473}
drh8b2f49b2001-06-08 00:21:52 +00008474
drh001bbcb2003-03-19 03:14:00 +00008475
drh8b2f49b2001-06-08 00:21:52 +00008476/*
danielk1977602b4662009-07-02 07:47:33 +00008477** This function may only be called if the b-tree connection already
8478** has a read or write transaction open on the database.
8479**
drh23e11ca2004-05-04 17:27:28 +00008480** Read the meta-information out of a database file. Meta[0]
8481** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008482** through meta[15] are available for use by higher layers. Meta[0]
8483** is read-only, the others are read/write.
8484**
8485** The schema layer numbers meta values differently. At the schema
8486** layer (and the SetCookie and ReadCookie opcodes) the number of
8487** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008488**
8489** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8490** of reading the value out of the header, it instead loads the "DataVersion"
8491** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8492** database file. It is a number computed by the pager. But its access
8493** pattern is the same as header meta values, and so it is convenient to
8494** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008495*/
danielk1977602b4662009-07-02 07:47:33 +00008496void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008497 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008498
drhd677b3d2007-08-20 22:48:41 +00008499 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008500 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008501 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008502 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008503 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008504
drh91618562014-12-19 19:28:02 +00008505 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008506 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008507 }else{
8508 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8509 }
drhae157872004-08-14 19:20:09 +00008510
danielk1977602b4662009-07-02 07:47:33 +00008511 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8512 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008513#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008514 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8515 pBt->btsFlags |= BTS_READ_ONLY;
8516 }
danielk1977003ba062004-11-04 02:57:33 +00008517#endif
drhae157872004-08-14 19:20:09 +00008518
drhd677b3d2007-08-20 22:48:41 +00008519 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008520}
8521
8522/*
drh23e11ca2004-05-04 17:27:28 +00008523** Write meta-information back into the database. Meta[0] is
8524** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008525*/
danielk1977aef0bf62005-12-30 16:28:01 +00008526int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8527 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008528 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008529 int rc;
drh23e11ca2004-05-04 17:27:28 +00008530 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008531 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008532 assert( p->inTrans==TRANS_WRITE );
8533 assert( pBt->pPage1!=0 );
8534 pP1 = pBt->pPage1->aData;
8535 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8536 if( rc==SQLITE_OK ){
8537 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008538#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008539 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008540 assert( pBt->autoVacuum || iMeta==0 );
8541 assert( iMeta==0 || iMeta==1 );
8542 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008543 }
drh64022502009-01-09 14:11:04 +00008544#endif
drh5df72a52002-06-06 23:16:05 +00008545 }
drhd677b3d2007-08-20 22:48:41 +00008546 sqlite3BtreeLeave(p);
8547 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008548}
drh8c42ca92001-06-22 19:15:00 +00008549
danielk1977a5533162009-02-24 10:01:51 +00008550#ifndef SQLITE_OMIT_BTREECOUNT
8551/*
8552** The first argument, pCur, is a cursor opened on some b-tree. Count the
8553** number of entries in the b-tree and write the result to *pnEntry.
8554**
8555** SQLITE_OK is returned if the operation is successfully executed.
8556** Otherwise, if an error is encountered (i.e. an IO error or database
8557** corruption) an SQLite error code is returned.
8558*/
8559int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8560 i64 nEntry = 0; /* Value to return in *pnEntry */
8561 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008562
8563 if( pCur->pgnoRoot==0 ){
8564 *pnEntry = 0;
8565 return SQLITE_OK;
8566 }
danielk1977a5533162009-02-24 10:01:51 +00008567 rc = moveToRoot(pCur);
8568
8569 /* Unless an error occurs, the following loop runs one iteration for each
8570 ** page in the B-Tree structure (not including overflow pages).
8571 */
8572 while( rc==SQLITE_OK ){
8573 int iIdx; /* Index of child node in parent */
8574 MemPage *pPage; /* Current page of the b-tree */
8575
8576 /* If this is a leaf page or the tree is not an int-key tree, then
8577 ** this page contains countable entries. Increment the entry counter
8578 ** accordingly.
8579 */
8580 pPage = pCur->apPage[pCur->iPage];
8581 if( pPage->leaf || !pPage->intKey ){
8582 nEntry += pPage->nCell;
8583 }
8584
8585 /* pPage is a leaf node. This loop navigates the cursor so that it
8586 ** points to the first interior cell that it points to the parent of
8587 ** the next page in the tree that has not yet been visited. The
8588 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8589 ** of the page, or to the number of cells in the page if the next page
8590 ** to visit is the right-child of its parent.
8591 **
8592 ** If all pages in the tree have been visited, return SQLITE_OK to the
8593 ** caller.
8594 */
8595 if( pPage->leaf ){
8596 do {
8597 if( pCur->iPage==0 ){
8598 /* All pages of the b-tree have been visited. Return successfully. */
8599 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008600 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008601 }
danielk197730548662009-07-09 05:07:37 +00008602 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008603 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8604
8605 pCur->aiIdx[pCur->iPage]++;
8606 pPage = pCur->apPage[pCur->iPage];
8607 }
8608
8609 /* Descend to the child node of the cell that the cursor currently
8610 ** points at. This is the right-child if (iIdx==pPage->nCell).
8611 */
8612 iIdx = pCur->aiIdx[pCur->iPage];
8613 if( iIdx==pPage->nCell ){
8614 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8615 }else{
8616 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8617 }
8618 }
8619
shanebe217792009-03-05 04:20:31 +00008620 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008621 return rc;
8622}
8623#endif
drhdd793422001-06-28 01:54:48 +00008624
drhdd793422001-06-28 01:54:48 +00008625/*
drh5eddca62001-06-30 21:53:53 +00008626** Return the pager associated with a BTree. This routine is used for
8627** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008628*/
danielk1977aef0bf62005-12-30 16:28:01 +00008629Pager *sqlite3BtreePager(Btree *p){
8630 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008631}
drh5eddca62001-06-30 21:53:53 +00008632
drhb7f91642004-10-31 02:22:47 +00008633#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008634/*
8635** Append a message to the error message string.
8636*/
drh2e38c322004-09-03 18:38:44 +00008637static void checkAppendMsg(
8638 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008639 const char *zFormat,
8640 ...
8641){
8642 va_list ap;
drh867db832014-09-26 02:41:05 +00008643 char zBuf[200];
drh1dcdbc02007-01-27 02:24:54 +00008644 if( !pCheck->mxErr ) return;
8645 pCheck->mxErr--;
8646 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008647 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008648 if( pCheck->errMsg.nChar ){
8649 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008650 }
drh867db832014-09-26 02:41:05 +00008651 if( pCheck->zPfx ){
8652 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
8653 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
drhf089aa42008-07-08 19:34:06 +00008654 }
8655 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8656 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008657 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008658 pCheck->mallocFailed = 1;
8659 }
drh5eddca62001-06-30 21:53:53 +00008660}
drhb7f91642004-10-31 02:22:47 +00008661#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008662
drhb7f91642004-10-31 02:22:47 +00008663#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008664
8665/*
8666** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8667** corresponds to page iPg is already set.
8668*/
8669static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8670 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8671 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8672}
8673
8674/*
8675** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8676*/
8677static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8678 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8679 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8680}
8681
8682
drh5eddca62001-06-30 21:53:53 +00008683/*
8684** Add 1 to the reference count for page iPage. If this is the second
8685** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008686** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008687** if this is the first reference to the page.
8688**
8689** Also check that the page number is in bounds.
8690*/
drh867db832014-09-26 02:41:05 +00008691static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008692 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008693 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008694 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008695 return 1;
8696 }
dan1235bb12012-04-03 17:43:28 +00008697 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008698 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008699 return 1;
8700 }
dan1235bb12012-04-03 17:43:28 +00008701 setPageReferenced(pCheck, iPage);
8702 return 0;
drh5eddca62001-06-30 21:53:53 +00008703}
8704
danielk1977afcdd022004-10-31 16:25:42 +00008705#ifndef SQLITE_OMIT_AUTOVACUUM
8706/*
8707** Check that the entry in the pointer-map for page iChild maps to
8708** page iParent, pointer type ptrType. If not, append an error message
8709** to pCheck.
8710*/
8711static void checkPtrmap(
8712 IntegrityCk *pCheck, /* Integrity check context */
8713 Pgno iChild, /* Child page number */
8714 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008715 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008716){
8717 int rc;
8718 u8 ePtrmapType;
8719 Pgno iPtrmapParent;
8720
8721 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8722 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008723 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008724 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008725 return;
8726 }
8727
8728 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008729 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008730 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8731 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8732 }
8733}
8734#endif
8735
drh5eddca62001-06-30 21:53:53 +00008736/*
8737** Check the integrity of the freelist or of an overflow page list.
8738** Verify that the number of pages on the list is N.
8739*/
drh30e58752002-03-02 20:41:57 +00008740static void checkList(
8741 IntegrityCk *pCheck, /* Integrity checking context */
8742 int isFreeList, /* True for a freelist. False for overflow page list */
8743 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008744 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008745){
8746 int i;
drh3a4c1412004-05-09 20:40:11 +00008747 int expected = N;
8748 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008749 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008750 DbPage *pOvflPage;
8751 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008752 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008753 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008754 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008755 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008756 break;
8757 }
drh867db832014-09-26 02:41:05 +00008758 if( checkRef(pCheck, iPage) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00008759 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh867db832014-09-26 02:41:05 +00008760 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008761 break;
8762 }
danielk19773b8a05f2007-03-19 17:44:26 +00008763 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008764 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008765 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008766#ifndef SQLITE_OMIT_AUTOVACUUM
8767 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008768 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008769 }
8770#endif
drh43b18e12010-08-17 19:40:08 +00008771 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008772 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008773 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008774 N--;
8775 }else{
8776 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008777 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008778#ifndef SQLITE_OMIT_AUTOVACUUM
8779 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008780 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008781 }
8782#endif
drh867db832014-09-26 02:41:05 +00008783 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008784 }
8785 N -= n;
drh30e58752002-03-02 20:41:57 +00008786 }
drh30e58752002-03-02 20:41:57 +00008787 }
danielk1977afcdd022004-10-31 16:25:42 +00008788#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008789 else{
8790 /* If this database supports auto-vacuum and iPage is not the last
8791 ** page in this overflow list, check that the pointer-map entry for
8792 ** the following page matches iPage.
8793 */
8794 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008795 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008796 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008797 }
danielk1977afcdd022004-10-31 16:25:42 +00008798 }
8799#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008800 iPage = get4byte(pOvflData);
8801 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00008802 }
8803}
drhb7f91642004-10-31 02:22:47 +00008804#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008805
drh67731a92015-04-16 11:56:03 +00008806/*
8807** An implementation of a min-heap.
8808**
8809** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008810** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008811** and aHeap[N*2+1].
8812**
8813** The heap property is this: Every node is less than or equal to both
8814** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008815** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008816**
8817** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8818** the heap, preserving the heap property. The btreeHeapPull() routine
8819** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00008820** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00008821** property.
8822**
8823** This heap is used for cell overlap and coverage testing. Each u32
8824** entry represents the span of a cell or freeblock on a btree page.
8825** The upper 16 bits are the index of the first byte of a range and the
8826** lower 16 bits are the index of the last byte of that range.
8827*/
8828static void btreeHeapInsert(u32 *aHeap, u32 x){
8829 u32 j, i = ++aHeap[0];
8830 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00008831 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00008832 x = aHeap[j];
8833 aHeap[j] = aHeap[i];
8834 aHeap[i] = x;
8835 i = j;
8836 }
8837}
8838static int btreeHeapPull(u32 *aHeap, u32 *pOut){
8839 u32 j, i, x;
8840 if( (x = aHeap[0])==0 ) return 0;
8841 *pOut = aHeap[1];
8842 aHeap[1] = aHeap[x];
8843 aHeap[x] = 0xffffffff;
8844 aHeap[0]--;
8845 i = 1;
8846 while( (j = i*2)<=aHeap[0] ){
8847 if( aHeap[j]>aHeap[j+1] ) j++;
8848 if( aHeap[i]<aHeap[j] ) break;
8849 x = aHeap[i];
8850 aHeap[i] = aHeap[j];
8851 aHeap[j] = x;
8852 i = j;
8853 }
8854 return 1;
8855}
8856
drhb7f91642004-10-31 02:22:47 +00008857#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008858/*
8859** Do various sanity checks on a single page of a tree. Return
8860** the tree depth. Root pages return 0. Parents of root pages
8861** return 1, and so forth.
8862**
8863** These checks are done:
8864**
8865** 1. Make sure that cells and freeblocks do not overlap
8866** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00008867** NO 2. Make sure cell keys are in order.
8868** NO 3. Make sure no key is less than or equal to zLowerBound.
8869** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00008870** 5. Check the integrity of overflow pages.
8871** 6. Recursively call checkTreePage on all children.
8872** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00008873** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00008874** the root of the tree.
8875*/
8876static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00008877 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00008878 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00008879 i64 *pnParentMinKey,
8880 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00008881){
8882 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00008883 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00008884 int hdr, cellStart;
8885 int nCell;
drhda200cc2004-05-09 11:51:38 +00008886 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00008887 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00008888 int usableSize;
drh67731a92015-04-16 11:56:03 +00008889 u32 *heap = 0;
drha33b6832015-04-16 21:57:37 +00008890 u32 x, prev = 0;
shaneh195475d2010-02-19 04:28:08 +00008891 i64 nMinKey = 0;
8892 i64 nMaxKey = 0;
drh867db832014-09-26 02:41:05 +00008893 const char *saved_zPfx = pCheck->zPfx;
8894 int saved_v1 = pCheck->v1;
8895 int saved_v2 = pCheck->v2;
danielk1977ef73ee92004-11-06 12:26:07 +00008896
drh5eddca62001-06-30 21:53:53 +00008897 /* Check that the page exists
8898 */
drhd9cb6ac2005-10-20 07:28:17 +00008899 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00008900 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00008901 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00008902 if( checkRef(pCheck, iPage) ) return 0;
8903 pCheck->zPfx = "Page %d: ";
8904 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00008905 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00008906 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008907 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00008908 depth = -1;
8909 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008910 }
danielk197793caf5a2009-07-11 06:55:33 +00008911
8912 /* Clear MemPage.isInit to make sure the corruption detection code in
8913 ** btreeInitPage() is executed. */
8914 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00008915 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00008916 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00008917 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00008918 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00008919 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008920 depth = -1;
8921 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008922 }
8923
8924 /* Check out all the cells.
8925 */
8926 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00008927 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00008928 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00008929 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00008930 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00008931
8932 /* Check payload overflow pages
8933 */
drh867db832014-09-26 02:41:05 +00008934 pCheck->zPfx = "On tree page %d cell %d: ";
8935 pCheck->v1 = iPage;
8936 pCheck->v2 = i;
danielk19771cc5ed82007-05-16 17:28:43 +00008937 pCell = findCell(pPage,i);
drh5fa60512015-06-19 17:19:34 +00008938 pPage->xParseCell(pPage, pCell, &info);
drhab1cc582014-09-23 21:25:19 +00008939 sz = info.nPayload;
shaneh195475d2010-02-19 04:28:08 +00008940 /* For intKey pages, check that the keys are in order.
8941 */
drhab1cc582014-09-23 21:25:19 +00008942 if( pPage->intKey ){
8943 if( i==0 ){
8944 nMinKey = nMaxKey = info.nKey;
8945 }else if( info.nKey <= nMaxKey ){
drh867db832014-09-26 02:41:05 +00008946 checkAppendMsg(pCheck,
drhab1cc582014-09-23 21:25:19 +00008947 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
shaneh195475d2010-02-19 04:28:08 +00008948 }
8949 nMaxKey = info.nKey;
8950 }
danielk19775be31f52009-03-30 13:53:43 +00008951 if( (sz>info.nLocal)
8952 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8953 ){
drhb6f41482004-05-14 01:58:11 +00008954 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008955 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8956#ifndef SQLITE_OMIT_AUTOVACUUM
8957 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008958 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008959 }
8960#endif
drh867db832014-09-26 02:41:05 +00008961 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00008962 }
8963
8964 /* Check sanity of left child page.
8965 */
drhda200cc2004-05-09 11:51:38 +00008966 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008967 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008968#ifndef SQLITE_OMIT_AUTOVACUUM
8969 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008970 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008971 }
8972#endif
drh867db832014-09-26 02:41:05 +00008973 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008974 if( i>0 && d2!=depth ){
drh867db832014-09-26 02:41:05 +00008975 checkAppendMsg(pCheck, "Child page depth differs");
drhda200cc2004-05-09 11:51:38 +00008976 }
8977 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008978 }
drh5eddca62001-06-30 21:53:53 +00008979 }
shaneh195475d2010-02-19 04:28:08 +00008980
drhda200cc2004-05-09 11:51:38 +00008981 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008982 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh867db832014-09-26 02:41:05 +00008983 pCheck->zPfx = "On page %d at right child: ";
8984 pCheck->v1 = iPage;
danielk1977afcdd022004-10-31 16:25:42 +00008985#ifndef SQLITE_OMIT_AUTOVACUUM
8986 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008987 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008988 }
8989#endif
drh867db832014-09-26 02:41:05 +00008990 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008991 }
drh5eddca62001-06-30 21:53:53 +00008992
shaneh195475d2010-02-19 04:28:08 +00008993 /* For intKey leaf pages, check that the min/max keys are in order
8994 ** with any left/parent/right pages.
8995 */
drh867db832014-09-26 02:41:05 +00008996 pCheck->zPfx = "Page %d: ";
8997 pCheck->v1 = iPage;
shaneh195475d2010-02-19 04:28:08 +00008998 if( pPage->leaf && pPage->intKey ){
8999 /* if we are a left child page */
9000 if( pnParentMinKey ){
9001 /* if we are the left most child page */
9002 if( !pnParentMaxKey ){
9003 if( nMaxKey > *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00009004 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009005 "Rowid %lld out of order (max larger than parent min of %lld)",
9006 nMaxKey, *pnParentMinKey);
9007 }
9008 }else{
9009 if( nMinKey <= *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00009010 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009011 "Rowid %lld out of order (min less than parent min of %lld)",
9012 nMinKey, *pnParentMinKey);
9013 }
9014 if( nMaxKey > *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00009015 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009016 "Rowid %lld out of order (max larger than parent max of %lld)",
9017 nMaxKey, *pnParentMaxKey);
9018 }
9019 *pnParentMinKey = nMaxKey;
9020 }
9021 /* else if we're a right child page */
9022 } else if( pnParentMaxKey ){
9023 if( nMinKey <= *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00009024 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009025 "Rowid %lld out of order (min less than parent max of %lld)",
9026 nMinKey, *pnParentMaxKey);
9027 }
9028 }
9029 }
9030
drh5eddca62001-06-30 21:53:53 +00009031 /* Check for complete coverage of the page
9032 */
drhda200cc2004-05-09 11:51:38 +00009033 data = pPage->aData;
9034 hdr = pPage->hdrOffset;
drh67731a92015-04-16 11:56:03 +00009035 heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
drh867db832014-09-26 02:41:05 +00009036 pCheck->zPfx = 0;
drh67731a92015-04-16 11:56:03 +00009037 if( heap==0 ){
drhc890fec2008-08-01 20:10:08 +00009038 pCheck->mallocFailed = 1;
9039 }else{
drh5d433ce2010-08-14 16:02:52 +00009040 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00009041 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
drh67731a92015-04-16 11:56:03 +00009042 heap[0] = 0;
9043 btreeHeapInsert(heap, contentOffset-1);
drhfdab0262014-11-20 15:30:50 +00009044 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9045 ** number of cells on the page. */
drh2e38c322004-09-03 18:38:44 +00009046 nCell = get2byte(&data[hdr+3]);
drhfdab0262014-11-20 15:30:50 +00009047 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9048 ** immediately follows the b-tree page header. */
drh2e38c322004-09-03 18:38:44 +00009049 cellStart = hdr + 12 - 4*pPage->leaf;
drhfdab0262014-11-20 15:30:50 +00009050 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9051 ** integer offsets to the cell contents. */
drh2e38c322004-09-03 18:38:44 +00009052 for(i=0; i<nCell; i++){
9053 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00009054 u32 size = 65536;
drh8c2bbb62009-07-10 02:52:20 +00009055 if( pc<=usableSize-4 ){
drh25ada072015-06-19 15:07:14 +00009056 size = pPage->xCellSize(pPage, &data[pc]);
danielk1977daca5432008-08-25 11:57:16 +00009057 }
drh43b18e12010-08-17 19:40:08 +00009058 if( (int)(pc+size-1)>=usableSize ){
drh867db832014-09-26 02:41:05 +00009059 pCheck->zPfx = 0;
9060 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009061 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00009062 }else{
drh67731a92015-04-16 11:56:03 +00009063 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009064 }
drh2e38c322004-09-03 18:38:44 +00009065 }
drhfdab0262014-11-20 15:30:50 +00009066 /* EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9067 ** is the offset of the first freeblock, or zero if there are no
9068 ** freeblocks on the page. */
drh8c2bbb62009-07-10 02:52:20 +00009069 i = get2byte(&data[hdr+1]);
9070 while( i>0 ){
9071 int size, j;
9072 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
9073 size = get2byte(&data[i+2]);
9074 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
drh67731a92015-04-16 11:56:03 +00009075 btreeHeapInsert(heap, (i<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009076 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9077 ** big-endian integer which is the offset in the b-tree page of the next
9078 ** freeblock in the chain, or zero if the freeblock is the last on the
9079 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009080 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009081 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9082 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009083 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
9084 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
9085 i = j;
drh2e38c322004-09-03 18:38:44 +00009086 }
drh67731a92015-04-16 11:56:03 +00009087 cnt = 0;
9088 assert( heap[0]>0 );
9089 assert( (heap[1]>>16)==0 );
9090 btreeHeapPull(heap,&prev);
9091 while( btreeHeapPull(heap,&x) ){
9092 if( (prev&0xffff)+1>(x>>16) ){
drh867db832014-09-26 02:41:05 +00009093 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009094 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009095 break;
drh67731a92015-04-16 11:56:03 +00009096 }else{
9097 cnt += (x>>16) - (prev&0xffff) - 1;
9098 prev = x;
drh2e38c322004-09-03 18:38:44 +00009099 }
9100 }
drh67731a92015-04-16 11:56:03 +00009101 cnt += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009102 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9103 ** is stored in the fifth field of the b-tree page header.
9104 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9105 ** number of fragmented free bytes within the cell content area.
9106 */
drha33b6832015-04-16 21:57:37 +00009107 if( heap[0]==0 && cnt!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009108 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009109 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00009110 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009111 }
9112 }
drh67731a92015-04-16 11:56:03 +00009113 sqlite3PageFree(heap);
drh4b70f112004-05-02 21:12:19 +00009114 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009115
9116end_of_check:
9117 pCheck->zPfx = saved_zPfx;
9118 pCheck->v1 = saved_v1;
9119 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009120 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009121}
drhb7f91642004-10-31 02:22:47 +00009122#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009123
drhb7f91642004-10-31 02:22:47 +00009124#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009125/*
9126** This routine does a complete check of the given BTree file. aRoot[] is
9127** an array of pages numbers were each page number is the root page of
9128** a table. nRoot is the number of entries in aRoot.
9129**
danielk19773509a652009-07-06 18:56:13 +00009130** A read-only or read-write transaction must be opened before calling
9131** this function.
9132**
drhc890fec2008-08-01 20:10:08 +00009133** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009134** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009135** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009136** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009137*/
drh1dcdbc02007-01-27 02:24:54 +00009138char *sqlite3BtreeIntegrityCheck(
9139 Btree *p, /* The btree to be checked */
9140 int *aRoot, /* An array of root pages numbers for individual trees */
9141 int nRoot, /* Number of entries in aRoot[] */
9142 int mxErr, /* Stop reporting errors after this many */
9143 int *pnErr /* Write number of errors seen to this variable */
9144){
danielk197789d40042008-11-17 14:20:56 +00009145 Pgno i;
drh5eddca62001-06-30 21:53:53 +00009146 int nRef;
drhaaab5722002-02-19 13:39:21 +00009147 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009148 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00009149 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00009150
drhd677b3d2007-08-20 22:48:41 +00009151 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009152 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00009153 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00009154 sCheck.pBt = pBt;
9155 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009156 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009157 sCheck.mxErr = mxErr;
9158 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009159 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009160 sCheck.zPfx = 0;
9161 sCheck.v1 = 0;
9162 sCheck.v2 = 0;
drh1dcdbc02007-01-27 02:24:54 +00009163 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00009164 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00009165 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00009166 return 0;
9167 }
dan1235bb12012-04-03 17:43:28 +00009168
9169 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9170 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00009171 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00009172 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00009173 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00009174 }
drh42cac6d2004-11-20 20:31:11 +00009175 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009176 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drhc0490572015-05-02 11:45:53 +00009177 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5eddca62001-06-30 21:53:53 +00009178
9179 /* Check the integrity of the freelist
9180 */
drh867db832014-09-26 02:41:05 +00009181 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009182 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009183 get4byte(&pBt->pPage1->aData[36]));
9184 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009185
9186 /* Check all the tables.
9187 */
danielk197789d40042008-11-17 14:20:56 +00009188 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00009189 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009190#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009191 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009192 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009193 }
9194#endif
drh867db832014-09-26 02:41:05 +00009195 sCheck.zPfx = "List of tree roots: ";
9196 checkTreePage(&sCheck, aRoot[i], NULL, NULL);
9197 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009198 }
9199
9200 /* Make sure every page in the file is referenced
9201 */
drh1dcdbc02007-01-27 02:24:54 +00009202 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009203#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009204 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009205 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009206 }
danielk1977afcdd022004-10-31 16:25:42 +00009207#else
9208 /* If the database supports auto-vacuum, make sure no tables contain
9209 ** references to pointer-map pages.
9210 */
dan1235bb12012-04-03 17:43:28 +00009211 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009212 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009213 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009214 }
dan1235bb12012-04-03 17:43:28 +00009215 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009216 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009217 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009218 }
9219#endif
drh5eddca62001-06-30 21:53:53 +00009220 }
9221
drh64022502009-01-09 14:11:04 +00009222 /* Make sure this analysis did not leave any unref() pages.
9223 ** This is an internal consistency check; an integrity check
9224 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00009225 */
drh64022502009-01-09 14:11:04 +00009226 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh867db832014-09-26 02:41:05 +00009227 checkAppendMsg(&sCheck,
drh5eddca62001-06-30 21:53:53 +00009228 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00009229 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00009230 );
drh5eddca62001-06-30 21:53:53 +00009231 }
9232
9233 /* Clean up and report errors.
9234 */
drhd677b3d2007-08-20 22:48:41 +00009235 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00009236 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009237 if( sCheck.mallocFailed ){
9238 sqlite3StrAccumReset(&sCheck.errMsg);
9239 *pnErr = sCheck.nErr+1;
9240 return 0;
9241 }
drh1dcdbc02007-01-27 02:24:54 +00009242 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009243 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
9244 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009245}
drhb7f91642004-10-31 02:22:47 +00009246#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009247
drh73509ee2003-04-06 20:44:45 +00009248/*
drhd4e0bb02012-05-27 01:19:04 +00009249** Return the full pathname of the underlying database file. Return
9250** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009251**
9252** The pager filename is invariant as long as the pager is
9253** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009254*/
danielk1977aef0bf62005-12-30 16:28:01 +00009255const char *sqlite3BtreeGetFilename(Btree *p){
9256 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009257 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009258}
9259
9260/*
danielk19775865e3d2004-06-14 06:03:57 +00009261** Return the pathname of the journal file for this database. The return
9262** value of this routine is the same regardless of whether the journal file
9263** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009264**
9265** The pager journal filename is invariant as long as the pager is
9266** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009267*/
danielk1977aef0bf62005-12-30 16:28:01 +00009268const char *sqlite3BtreeGetJournalname(Btree *p){
9269 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009270 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009271}
9272
danielk19771d850a72004-05-31 08:26:49 +00009273/*
9274** Return non-zero if a transaction is active.
9275*/
danielk1977aef0bf62005-12-30 16:28:01 +00009276int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009277 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009278 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009279}
9280
dana550f2d2010-08-02 10:47:05 +00009281#ifndef SQLITE_OMIT_WAL
9282/*
9283** Run a checkpoint on the Btree passed as the first argument.
9284**
9285** Return SQLITE_LOCKED if this or any other connection has an open
9286** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009287**
dancdc1f042010-11-18 12:11:05 +00009288** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009289*/
dancdc1f042010-11-18 12:11:05 +00009290int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009291 int rc = SQLITE_OK;
9292 if( p ){
9293 BtShared *pBt = p->pBt;
9294 sqlite3BtreeEnter(p);
9295 if( pBt->inTransaction!=TRANS_NONE ){
9296 rc = SQLITE_LOCKED;
9297 }else{
dancdc1f042010-11-18 12:11:05 +00009298 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009299 }
9300 sqlite3BtreeLeave(p);
9301 }
9302 return rc;
9303}
9304#endif
9305
danielk19771d850a72004-05-31 08:26:49 +00009306/*
danielk19772372c2b2006-06-27 16:34:56 +00009307** Return non-zero if a read (or write) transaction is active.
9308*/
9309int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009310 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009311 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009312 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009313}
9314
danielk197704103022009-02-03 16:51:24 +00009315int sqlite3BtreeIsInBackup(Btree *p){
9316 assert( p );
9317 assert( sqlite3_mutex_held(p->db->mutex) );
9318 return p->nBackup!=0;
9319}
9320
danielk19772372c2b2006-06-27 16:34:56 +00009321/*
danielk1977da184232006-01-05 11:34:32 +00009322** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009323** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009324** purposes (for example, to store a high-level schema associated with
9325** the shared-btree). The btree layer manages reference counting issues.
9326**
9327** The first time this is called on a shared-btree, nBytes bytes of memory
9328** are allocated, zeroed, and returned to the caller. For each subsequent
9329** call the nBytes parameter is ignored and a pointer to the same blob
9330** of memory returned.
9331**
danielk1977171bfed2008-06-23 09:50:50 +00009332** If the nBytes parameter is 0 and the blob of memory has not yet been
9333** allocated, a null pointer is returned. If the blob has already been
9334** allocated, it is returned as normal.
9335**
danielk1977da184232006-01-05 11:34:32 +00009336** Just before the shared-btree is closed, the function passed as the
9337** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009338** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009339** on the memory, the btree layer does that.
9340*/
9341void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9342 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009343 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009344 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009345 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009346 pBt->xFreeSchema = xFree;
9347 }
drh27641702007-08-22 02:56:42 +00009348 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009349 return pBt->pSchema;
9350}
9351
danielk1977c87d34d2006-01-06 13:00:28 +00009352/*
danielk1977404ca072009-03-16 13:19:36 +00009353** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9354** btree as the argument handle holds an exclusive lock on the
9355** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009356*/
9357int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009358 int rc;
drhe5fe6902007-12-07 18:55:28 +00009359 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009360 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009361 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9362 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009363 sqlite3BtreeLeave(p);
9364 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009365}
9366
drha154dcd2006-03-22 22:10:07 +00009367
9368#ifndef SQLITE_OMIT_SHARED_CACHE
9369/*
9370** Obtain a lock on the table whose root page is iTab. The
9371** lock is a write lock if isWritelock is true or a read lock
9372** if it is false.
9373*/
danielk1977c00da102006-01-07 13:21:04 +00009374int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009375 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009376 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009377 if( p->sharable ){
9378 u8 lockType = READ_LOCK + isWriteLock;
9379 assert( READ_LOCK+1==WRITE_LOCK );
9380 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009381
drh6a9ad3d2008-04-02 16:29:30 +00009382 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009383 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009384 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009385 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009386 }
9387 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009388 }
9389 return rc;
9390}
drha154dcd2006-03-22 22:10:07 +00009391#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009392
danielk1977b4e9af92007-05-01 17:49:49 +00009393#ifndef SQLITE_OMIT_INCRBLOB
9394/*
9395** Argument pCsr must be a cursor opened for writing on an
9396** INTKEY table currently pointing at a valid table entry.
9397** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009398**
9399** Only the data content may only be modified, it is not possible to
9400** change the length of the data stored. If this function is called with
9401** parameters that attempt to write past the end of the existing data,
9402** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009403*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009404int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009405 int rc;
drh1fee73e2007-08-29 04:00:57 +00009406 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009407 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009408 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009409
danielk1977c9000e62009-07-08 13:55:28 +00009410 rc = restoreCursorPosition(pCsr);
9411 if( rc!=SQLITE_OK ){
9412 return rc;
9413 }
danielk19773588ceb2008-06-10 17:30:26 +00009414 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9415 if( pCsr->eState!=CURSOR_VALID ){
9416 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009417 }
9418
dan227a1c42013-04-03 11:17:39 +00009419 /* Save the positions of all other cursors open on this table. This is
9420 ** required in case any of them are holding references to an xFetch
9421 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009422 **
drh3f387402014-09-24 01:23:00 +00009423 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009424 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9425 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009426 */
drh370c9f42013-04-03 20:04:04 +00009427 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9428 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009429
danielk1977c9000e62009-07-08 13:55:28 +00009430 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009431 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009432 ** (b) there is a read/write transaction open,
9433 ** (c) the connection holds a write-lock on the table (if required),
9434 ** (d) there are no conflicting read-locks, and
9435 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009436 */
drh036dbec2014-03-11 23:40:44 +00009437 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009438 return SQLITE_READONLY;
9439 }
drhc9166342012-01-05 23:32:06 +00009440 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9441 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009442 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9443 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009444 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009445
drhfb192682009-07-11 18:26:28 +00009446 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009447}
danielk19772dec9702007-05-02 16:48:37 +00009448
9449/*
dan5a500af2014-03-11 20:33:04 +00009450** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009451*/
dan5a500af2014-03-11 20:33:04 +00009452void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009453 pCur->curFlags |= BTCF_Incrblob;
danielk19772dec9702007-05-02 16:48:37 +00009454}
danielk1977b4e9af92007-05-01 17:49:49 +00009455#endif
dane04dc882010-04-20 18:53:15 +00009456
9457/*
9458** Set both the "read version" (single byte at byte offset 18) and
9459** "write version" (single byte at byte offset 19) fields in the database
9460** header to iVersion.
9461*/
9462int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9463 BtShared *pBt = pBtree->pBt;
9464 int rc; /* Return code */
9465
dane04dc882010-04-20 18:53:15 +00009466 assert( iVersion==1 || iVersion==2 );
9467
danb9780022010-04-21 18:37:57 +00009468 /* If setting the version fields to 1, do not automatically open the
9469 ** WAL connection, even if the version fields are currently set to 2.
9470 */
drhc9166342012-01-05 23:32:06 +00009471 pBt->btsFlags &= ~BTS_NO_WAL;
9472 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009473
9474 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009475 if( rc==SQLITE_OK ){
9476 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009477 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009478 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009479 if( rc==SQLITE_OK ){
9480 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9481 if( rc==SQLITE_OK ){
9482 aData[18] = (u8)iVersion;
9483 aData[19] = (u8)iVersion;
9484 }
9485 }
9486 }
dane04dc882010-04-20 18:53:15 +00009487 }
9488
drhc9166342012-01-05 23:32:06 +00009489 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009490 return rc;
9491}
dan428c2182012-08-06 18:50:11 +00009492
9493/*
drhe0997b32015-03-20 14:57:50 +00009494** set the mask of hint flags for cursor pCsr.
dan428c2182012-08-06 18:50:11 +00009495*/
9496void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
drhe0997b32015-03-20 14:57:50 +00009497 assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 );
dan428c2182012-08-06 18:50:11 +00009498 pCsr->hints = mask;
9499}
drh781597f2014-05-21 08:21:07 +00009500
drhe0997b32015-03-20 14:57:50 +00009501#ifdef SQLITE_DEBUG
9502/*
9503** Return true if the cursor has a hint specified. This routine is
9504** only used from within assert() statements
9505*/
9506int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9507 return (pCsr->hints & mask)!=0;
9508}
9509#endif
9510
drh781597f2014-05-21 08:21:07 +00009511/*
9512** Return true if the given Btree is read-only.
9513*/
9514int sqlite3BtreeIsReadonly(Btree *p){
9515 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9516}
drhdef68892014-11-04 12:11:23 +00009517
9518/*
9519** Return the size of the header added to each page by this module.
9520*/
drh37c057b2014-12-30 00:57:29 +00009521int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }